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SUMMARY 
The topic of the thesis concerns the development of the position control of a linear axis, 

an axis composed of an electric motor controlled in position and a screw that transforms 

the rotary and linear motion. In particular, the motor is a DC motor; the sensor used to 

control the position and speed is an encoder. The type of control is a PID carried out by 

means of an Arduino Board interfaced with Matlab. 

The thesis project develops in three parts: 
 

1. A brief introduction of the thery on the DC motors and PID controller, its origin, 

its applicability. Moreover, the tuning and all the adjustment methods are 

described: such as manual tuning, open loop Ziegler-Nichols method and Relay 

method; 

2. The construction of the model starting from the DC motor identification and its 

analysis through the theory of the PWM and its possible applications in 

controlling the motor; 

3. Practical analysis starting from the equipment description: a system alimented by 

Arduino, which is an opens source electronic board that includes a 

microprocessor, digital and analog input/output and some interfaces such as 

incremental encoders. 

 
 

The third part has been developed in the DIMEAS department of the Politecnico of Turin 

in four months. The first step was to interface Matlab with Arduino in order to manually 

control the motor via PC and to read the position and the speed of the incremental encoder. 

To ensure that, Arduino communicates directly with the PC – a Matlab interface was 

created through the GUI (Graphical user interface) – thus allow to control the direction 

of rotation and speed through some point-and-click control over software application. 

Two different code were written in order to perform two different tests: 

1. The first one was executed with a small DC motor, a slider to adjust the speed and 

three pushbuttons: one to perform counter clockwise rotation and one to stop the 

DC motor; 
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2. The second one had a different implementation: sending a set of analog data and 

different speed already set. The implementation of Arduino and the connection 

with the motor via the breadboard are the same as the first test. 

 
 

The final GUI is designed in order to permit to set the constants of the PID control and 

the target speed directly. Furthermore, it allows sending the mas a command to Arduino 

through a simple pushbutton. 

For the model realization, the work was divided as follows: 
 

• Chapter 1: The first chapter concerns the didactic purpose and hardware used, 

including the various datasheets and their functions within the project: 

1. DC motor; 

2. Encoder; 

3. Motor driver L298 H-bridge; 

4. Arduino. 
 
 
 

• Chapter 2: This chapter analyses the low power DC motor, the equilibrium 

analysis, the efficiency, the transient behaviour and the DC motor modelling. 

 
 

• Chapter 3: In the third chapter, there is a brief review on the theoretical part 

behind the controller, PWM theory and PID controllers, the origins, the 

adjustment methods, the stability and the limitations. 

 
• Chapter 4: it is focuses on the model realized by means of the MATLAB tool. 

Firstly, it was analysed how Arduino and Matlab are interfaced. Secondly, the 

chapter presents in detail how to create a GUI on Matlab and the entire interface 

taken in consideration. Thirdly, it describes the Arduino codes for speed and 

position controls, and the test carried out with the anti-windup technique. 
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• Chapter 5: in this chapter, the realized model was validate in laboratory 
performing some measurements of actuation on the real system. 

 
• Chapter 6: the sixth chapter furnishes information on the possible future 

implementation with the linear axis and project conclusions. 
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1. Introduction 
1.1 Didactic purpose 

 
This thesis intends to create a test bench to control a test bench to control a linear axis in 

position. It explains how the Arduino code must connect and implement the DC motor 

and how it has started from the Matlab graphical interface. The aim is to realize speed 

control for the motor and position control for the linear axis. 

1.2 Hardware 
 

The figure 1.1 shows the scheme. It is composed of the following components: 
 

• DC motor: to operate the bench and to transform an input voltage into rotation 

speed; 

• Encoder: sensor required for speed, to close the control loop; 

• L298N H-bridge: allows to electronically control both the speed and the direction 

of rotation of a DC motor; 

• Arduino: Hardware platform consisting of a series of elctronic boards equipped 

with a microcontroller. 
 

 
Figure 1.1 Test bench diagram 
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1.2.1 DC motor 

Figure 1.2 test bench made 

 

The DC motor features large torque, low speed and low noise. The gear motor is primarily 

designed to reduce the speed in a series of gears, which in turn creates more moment of 

force. This motor is adopted with pure copper wire coil, low temperature and low loss. 

The motor is made of metal gears, wear-resistant, in order to prevent the teeth from 

breaking. By consequence, it has a long service life. 
 

Figure 1.3 DC motor with built-in encoder Figure 1.4 DC motor with built-in 

Encoder 
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Figure 1.5 Encoder 
 
 
 

The following table presents the meaning of the cable colours: 
 

RED Motor + (positive and negative switching can 

control CW/CCW 

BLACK Encoder – (voltage range is 3.3-5 [V]) 

YELLOW Encoder A phase (The motor turns one turn 

output, 11 signals) 

GREEN Encoder B phase (The motor turns one turn 

output, 11 signals) 

BLUE Encoder + (voltage range is 3.3-5 [V]) 

WHITE Motor - (positive and negative switching can 

control CW/CCW) 
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Specifications: 
 

Voltage DC 12[V] 

Speed 230 rpm 

Encoder motor end: 11 signals 

Rated voltage DC 12[V] 

No-load speed 230 rpm 0.13[A] 

Max efficiency 2[Kg][cm]/170 rpm/2[W]/0.6[A] 

Max power 5.2[kg][cm]/110rpm/3.1W/1.10A 

Stall torque 10[kg][cm] 3.2[A] 

Reduction ratio 1:34 

Hall resolution Hall x ratio 34.02 = 341.2 PPR 
 
 

Table 1.1 specifications of the DC motor 
 
 
 

1.2.2 Encoder 
 

In the relative mode, the encoder provides an incremental indication referred to the 

previous position. This indication is easy to manage as it is sufficient to associate the 

resolution unit of the incremental encoder to the displacement unit or the precision ratio. 

The incremental information consists of a two-bit Gray code (phases A and B) in 

quadrature (duty cycle 50%). The phase shifts between the two bits in 90 electrical 

degrees and is necessary to check the direction of rotation. By convention it is possible to 

assume that the increase is positive when phase B anticipates phase A with rotation of the 

shaft clockwise, with a view from it. There is also a reference (Zero or Marker) which 

indicates the completion of the lap. The size of this pulse can be supplied on request from 

90 electrical degrees up to some periods (in reference to the duration of the pulses. 
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Figure 1.6 Phases of the Encoder 
 
 
 

1.2.2.1 Encoder Minirod 421 
 

The model used for this work is the ‘HEIDENHAIN’ ‘Minirod 421’ which presents the 

following technical specifications. This is also used as a substitute of the one already 

applied to the DC motor to have further confirmation. 
 
 
 

 
Figure 1.7 Encoder Minirod 421 
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Line counts 100/200/250/360/400/500/600/720/900/1000/1024/1080/3600 

Accuracy ±1/20 grating period 

Resolution 0.025° with 3600 lines and 4-fold evaluation in the subsequent 

electronics 

Speed Max. 10000 rpm 

Moment of inertia of 

rotor 

0.17 ∙ 10−6 kg𝑚2 

Torque at 20°C 

(68°F) 

≤0.001Nm 

Shaft load Axial max 5N, Radial max 10N (at shaft end) 

Weight Approx 0.09kg (0.198lb) 

Protection IP 50 according to IEC 529 

Operating 

temperature and 

Storage temp. 

0° to 70°C 

-32° to 80°C 

Vibration (50 to 

2000 Hz) 

≤ 100m/𝑠2 

Shock (11 ms) ≤ 300m/𝑠2 

 
 

Table 1.2 Encoder datasheet 
 
 
 

Pin Layout 
 

Pin 1 2 3 4 5 6 7 8 9 10 11 12 

Signal �̅̅̅��̅�2̅ Sensor 

+5V 

𝑈𝑎0 𝑈̅̅̅�̅�0̅ 𝑈𝑎1 𝑈̅̅̅�̅�1̅ free 𝑈𝑎2 Shield 0V Sensor 

0V 

+5V 

Color Pink Blue Red Black Brown Green / Gray / Whithe/ 

Green 

White Brown/ 

Green 

 
 

Table 1.3 Encoder Pin layout 
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1.2.3 Motor Driver Module-L298N 
 

The L298N is an integrated monolithic circuit in a 15-lead Multiwatt and power SO20 

packages. It is a high voltage, high current dual full-bridge driver de-signed to accept 

standard TTL logic level sand drive inductive loads such as relays, solenoids, DC and 

stepping motors. Two inputs are provided to enable or disable the device independently 

of the input signals. The emitters of the lower transistors of each bridge are connected 

together and the corresponding external terminal can be used for the connection of an 

external sensing resistor. It is provided an additional supply input in order that the logic 

works at a lower votage. 
 
 
 

Figure 1.8 Motor driver H-bridge L298N 
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The figure 1.9 shows the L298N schematic circuit : 
 
 
 
 

 
Figure 1.9 Circuit motor driver L298N 

 
 
 

1.2.3.1 L298N Features & Specifications: 
 

• Driver Model: L298N 2[A]; 

• Driver Chip: Double H Bridge L298N; 

• Motor Suplly Voltage (maximum): 46[V]; 

• Motor Suplly Current (maximum): 2[A]; 

• Logic Voltage: 5[V]; 

• Driver Voltage: 5-35[V]; 

• Driver Current: 2[A]; 

• Logical Current: 0-36[mA]; 

• Maximum Power (W): 25[W]; 
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• Current Sense for each motor; 

• Heatsink for better performance; 

• Power-On LED indicator. 
 

1.2.3.2 L298N Module Pin Configuration 
 

PIN Name Description 
IN 1 & IN 2 Motor A input pins. Used to control the 

spinning direction of Motor A. 

IN 3 & IN 4 Motor B input pins. Used to control the 

spinning direction of Motor A. 

ENA Enables PWM signals for Motor A. 

ENB Enables PWM signals for Motor B. 

OUT1 & OUT2 Output pins of Motor A. 

OUT3 & OUT4 Output pins of Motor B. 

12 V 12V input from DC power Source. 

5 V Supplies power for the switching logic 

circuitry inside L298N IC. 

GND Ground pin. 

 
Table 1.4 Motor driver L298N pin specification 

 
 
 
 
 

1.2.4 Arduino 
 

Arduino was born in 2003 in Ivrea, with the idea of developing a low-cost board that 

could interface with sensors and actuators and is an open source electronic board that 

includes a microprocessor and various inputs and outputs which can be digital or analog, 

the number and type depends on the card considerate. These inputs/outputs can be 

interfaced with cards or other circuits. The card is easily programmable via USB interface 

from which can be loaded programs written with the appropriate software. The 
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programming language can be said to be a mixture of C and C++ with functions added 

and dedicated to the purposes for which the card was created. 

 
 
 

1.2.4.1 Arduino UNO 
 

Figure 1.10 Arduino UNO 
 

Arduino Uno is a microcontroller device based that allow you to create different types of 

electronic circuits. It has 14 programmable digital pins as inputs or outputs (which also 

have the ability to be used for dedicated functions such as PWM signal generation or 

UART communication) and 6 input for the acquisition and processing of analog signals. 

The microcontroller is the ATMega328 produced by Atmel with the following 

characteristics: 

- speed of 16 [MHz] 

- 32KB of flash memory 

- 2KB sram 
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- 1KB EEPROM memory. 
 

The board is powered via the USB port or via the appropriate connector. If both the USB 

cable and the power connector are connected, the card is able to automatically choose the 

external power source. 

The following table lists the Arduino UNO features: 
 

Type of Microcontroller Atmel ATmega328 

Working Voltage 5Vdc 

Reccomanded power supply voltage 7V-12V 

Digital pins 14 configurable as inputs or outputs 

Analog pins 6 entrances 

Maximum current per digital pin 40mA max 

Flash memory 32KB 

Sram memory 2KB 

EEPROM memory 1KB 

Clock speed of the microcontroller 16MHz 

Table 1.5 Arduino UNO features 

Description of additional functions of the digital pins: 

Pin 0 UART RX 

Pin 1 UART TX 

Pin 2 External interrupt 

Pin 3 External interrupt or PWM 

Pin 5 8 bit PWM 

Pin 6 8 bit PWM 

Pin 9 8 bit PWM 

Pin 10 8 bit PWM or SPI(SS) 

Pin 11 8 bit PWM or SPI(MOSI) 

Pin 12 SPI(MISO) 

Pin 12 SPI(SCK) 

Table 1.6 Functions of the digital pins 
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Description of additional functions of the analog pins: 
 

Pin 4 I2C(SDA) 

Pin 5 I2C(SCL) 

Table 1.7 functions of others pins 
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2. DC motor identification 
The equation of the motion for DC motors are the following: 

 
 

V = L 
di 

+ RI + k 
dt 

θ̇ (2.1) 

 
 

Where: 

Jθ̈ = kTI − βθ̇ − τ (2.2) 

 

- V is the voltage applied to the motor (from 12V battery); [V] 

- L is the motor inductance; [H] 

- I is the current through the motor windings; [A] 

- R is the motor winding resistance; [Ω] 

- kb is the motor's back electromagnetic force constant; [Vs/rad] 

- θ ̇ is the rotor's angular velocity; [rad/s] 

- J is the rotor's moment of inertia;  [Kgm2] 

- kT is the motor's torque constant; [Nm/A] 
- β is the motor's viscous friction constant;  [Nm/(rad/s)] 

- τ is the torque applied to the rotor by the load. [Nm] 
 
 

2.1 Equilibrium analysis 
 

When a voltage source is applied to the terminals of the DC motor and a mechanical load 

is applied to its rotor, a transitory behaviour, lasting a transitory time interval, is followed 

by a regime behaviour: the angular speeds increments to a stabilized value after a 

transition time and, at regime, the time derivatives of the current and velocity are null, the 

regime equilibrium equations are then: 

V = RI + kbθ̇ (2.3) 

τ = kTI − βθ ̇ (2.4) 
 

It means that: 

b 
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V = 
R 

τ + 
Rβ 

θ̇ + k 
  

θ̇ (2.5) 
kT kT b 

It is now possible to get the equations of velocity and torque for the equilibrium: 
 
 

θ̇ = (
Rβ

 
kT 

−1 

+ kb) 
R 

(V − 
kT 

 
τ) (2.6) 

τ = V 
kT 

− (β + 
kTkb 

) θ ̇ (2.7) 
R R 

 
 
 

From equation 2.6 and 2.7 it is possible to get the equation for the mechanical power P 

delivered by the motor. 

P = τ θ ̇ (2.8) 
 
 
 
 

Figure 2.1 Power versus Angular speed in DC motor 
 
 

When the motor is not braked, it will turn at its maximum speed and it will deliver no 

mechanical power (left part of the graph). It will deliver the highest amount of mechanical 

power when the braking is such that the motor turns at one half its maximum speed. In 
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fig. 2.2 angular velocity, efficiency, current and power curves with respect to the torque 

for the DC motor running at 12V are displayed. 
 
 
 

Figure 2.2 (Blue) ÷ Speed with respect to the Torque; 

(Green) ÷ Power with respect to the Torque; 

(Black) ÷ Current with respect to the Torque; 

(Red) ÷ Efficiency with respect to the Torque. 

 

2.2 DC motor stall torque and no-load velocity 
When the load is such that the DC motor does not move at all, the maximum torque is 

achieved and this is so called stall torque: 

 
τs = V 

kT 
(2.9) 

R 
 

 

Under stall conditions (θ̇ = 0), since the current is proportional to the torque, it follows 
that the stall current is: 
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β = T 

τs 
Is = 

T 

 
(2.10) 

 

 

It is now possible to compute R in stall conditions Rstall, the value of the motor’s torque 

constant kTs, and the value of the motor’s back electromagnetic force kbs. 

V 
Rstall = 

s 

 
(2.11) 

 

 

kT = τs 
Rstall 

(2.12) 
V 

 

kbs ≅  kTs (2.13) 
 
 
 

It is now necessary to consider the nominal speed of the DC motor. It can be achieved 

when no load is applied to the motor shaft and so it is also called no-load velocity �̇�̇𝑛. The 

corresponding formulas are reported: 

kT kbkT −1 
θ̇ 

n = V (β + ) 
R R 

(2.14) 

 
 

 

From that equation is it possible to get the value of the motor’s viscous friction 

coefficient: 

k V  ( − k 
 
) (2.15) 

R θ̇ n 
b 

 
 

2.3 DC motor efficiency 
The efficiency of a motor is defined as the ratio between the output mechanical power 

and the input electrical power: 

P 
η = (2.16) 

VI 

To get the efficiency as a function of the velocity, it is possible to express the current and 

the torque as a function of the velocity as follows: 

k 

I 
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s R 

 

V − kb θ 
I = 

R 

 

(2.17) 

 
τ = τs − (β + 

kb kT
) θ ̇ (2.18) 

R 

It is now possible to get the efficiency as: 
 
 
 

τ θ 
η =  = 

VI 

τ θ̇ − (β + 
kbkT) θ̇ 2 

 
 

V2 
− 

V kbs θ̇ 
  

 

(2.19) 

R R 
 
 

2.4 Transient behaviour 
When a voltage is applied to the DC motor starting from a rest condition, the current 
increases according to the equation 2.1. The current increment is faster than the rotor 

velocity increment. The time constant with which the current grows is 𝐿⁄𝑅 which is called 

electrical time constant. In general, the electrical time constant is larger than the time 

constant and so, when analysing the speed dynamics, it is possible to assume the current 

value as being at regime value. It means that: 

V ≅ RI +  kTθ̇ (2.20) 

The above equation means that, generally speaking, it is possible to assume a null 

electrical time constant. In the following figure, it is possible to understand the differences 

between using the approximation or not: 
 

 

Fig 2.3 Blue: Current and Velocity using the differential equations; 

Red: Current and velocity using the zero electrical time constant approximation. 
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Supposing the DC motor in a stationary condition and applying a voltage V, the current 

suddenly assumes a peak value called start-up value: 
 
 
 

Istart−up = 
V − kbθ̇ 

≅ 
R 

V 
(2.21) 

R 
 
 

After this peak, the current slowly decreases according to the motor velocity. For a given 

voltage range [-V; V ], the largest current spike occurs when the motor runs at maximum 

speed (no load speed), and the voltage is reversed. Because of the large current draws, 

which may occur when a sudden change in the supply voltage takes place, it is important 

to have hardwares capable of handling these current spikes. Another approach is to avoid 

abrupt changes in voltage. For example, to accelerate and decelerate by slowly changing 

the voltage. 

 
2.5 DC motor modelling 

For a proper modelling of the DC motor, it is important to know its electrical diagram: 
 
 

 
Figure 2.4 Electrical diagram of a DC motor circuit with torque and rotor angle. 

 
 

The motor torque τ is related to the armature current I by the torque constant kT : 
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T 

 

τ = I kT (2.22) 
 

The voltage generated on the motor, VM, is related to the angular velocity by the following 

equation: 

VM = kT 
dθ 

θ̇ = kT 
dt

 (2.23) 

 

Basing on figure 4, neglecting electrical and mechanical dissipations, it is possible to 

write the following equations based on the Newton’s law combined with the Kirchhoff’s 

law: 
d2θ 

J 
dt2 + β 

dI 

dθ 

dt 
= kTI (2.24) 

dθ 
L 

dt 
+ RI = V − kT 

dt 
(2.25) 

Using the Laplace transform, the above equations could be written as follows: 
 

Js2θ(s) + βs θ(s) = kT I(s) (2.26) 

 

Ls I(s) + RI(s) = V(s) − kTs θ(s) (2.27) 
 

From the equation 2.27 it is possible to express I(s): 
 

I(s) = 
V(s) − kTs θ(s) 

Ls + R 

 

(2.28) 

 

and substitute it into the equation 2.26: 

 
Js2θ(s) + βs θ(s) = kT 

 
 

V(s) − kTs θ(s) 
(  ) (2.29) 

Ls + R 
 

From the above equation it is possible to get the expression for θ(s): 
 

θ(s) =
  kT V(s)              

(Ls + R)(Js2 + βs + k2s) 

 
 
 

(2.30) 

 

It is now possible to get the transfer function from the input voltage V to the output 
angle θ: 
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T 

T 

 
 

θ(s) 
= 

V(s) 

kT 

s[(Ls + R)(Js + β) + k2] 
(2.31)

 
 

In the same way, considering the equation 2.23 it is possible to get the transfer function 

from the input voltage V to the output angular velocity θ̇ : 
 

θ̇ (s) 
= 

V(s) 

kT 

(Ls + R)(Js + β) + k2 
(2.32)

 
 

The above transfer functions are related to the following block scheme, considering 𝑘𝑏 ≅ 
𝑘𝑇 . 
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3. Types of control 
3.1 PID control 

 
A PID is a proportinal-integrative-derivative control used in control system, both in 

industrial environments and where continuous and modulated controls are required. The 

operation of this system is based on the calculation of an error in time which is the 

difference between the setpoint and the feedback, that is the measured process variable 

e(t)=Set-Feedback. It is a negative feedback system widely used in control systems. It 

reacts thanks to an input to any positive or negative errors. 
 
 
 
 

 
Figure 3.1 PID control scheme 

 
 
 

In the figure 3.1 it is possible to see how the process variable y(t) is subtracted from the 

setpoint r(t) to generate the error e(t). The controller acquires a value as input and 
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compares it with a reference value and the difference, the error signal, is used to determine 

the value of the controller’s output variable. 

The PID controller adjusts based on: 
 

• proportional action; 

• integral action (past values); 

• derivative action (how fast the signal varies). 
 
 

3.1.1 Mathematical form 

The output can be interpreted as: 
 

𝑢(𝑡) 
𝑡 

= 𝐾𝑝 ∙ 𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡′)𝑑𝑡′ 
0 

+ 𝐾𝑑 
𝑑𝑒(𝑡) 

(3.1) 
𝑑𝑡 

 
 

Where 𝐾𝑝 , 𝐾𝑖 and 𝐾𝑑 are non-negative values corresponding to the terms proportional, 

integrative and derivative. 

The are other types of control based on the PID such as the PI where the derivative action 

is null. 

3.1.2 Origins of the PID 
 

In the image 3.2 it is possible to see one of the first pneumatic PID controllers 
 

 
Figure 3.2 first PID controller 
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With the advent of electronic, PID controllers become cheaper and more accessible, made 

through Operational Amplifiers. In the fig 3.3, the three operational amplifiers represent 

the three types of correction. 
 

 
Figure 3.3 PID controller circuit 

 
 
 

3.1.3 Theory of the PID control 
 

As already mentioned before, the PID has 3 terms, which added together form the output 

u(t). (3.1). 

𝑒(𝑡) = 𝑆𝑃 − 𝑃𝑉(𝑡) (3.2) is the error (SP is the setpoint and PV(t) is the process variable, 

the feedback). 

In the Laplace domain, this results in: 

 

 

 

 

 

 

 

 

𝐿(𝑠) =  𝐾𝑝 +  
𝐾𝑖

𝑠
+  𝐾𝑑 ∙ 𝑠                    (3.3) 

 
 

Where ‘s’ indicates the Laplace variable. 
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3.1.3.1 Proportional term 
 

The proportional term produces an output value which is proportional to the current value 

of the error. The proportional contribution can be adjusted multiplying it by the 

proportional gain 𝐾𝑝, which is, in fact, constant. There is, therefore, 

𝑃𝑜𝑢𝑡 =  𝐾𝑝 ∙ 𝑒(𝑡) (3.4) 
 

A high proportional gain results a large variation of the output also as result of a small 

variation of the error. If the gain proportional is too high, the system can become unstable, 

viceversa with a small gain proportional, large variations of error and small variations on 

the output, which make the insensitive contribution to the error. If the proportional gain 

is too small, the system can be slow to respond to disturbances. 
 

 
Figure 3.4 response of the system to the proportional action 
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3.1.3.2 Integral term 
 

The contribution of the integral part can amplify the error and its duration, the integral 

term in PID is the sum of the instantaneous error over time and gives an accumulated 

offset that should have been corrected previously. The accumulated error is then 

multiplied by the integral gain and the whole comes added to the control output. 

To recap: 

                   𝐿𝑜𝑢𝑡 

  

= 𝐾𝑖 

 

∙ ∫𝑡 
𝑒(𝑡)𝑑𝑡 

 

(3.5) 
 

The integral term is used to eliminate the error steady state residue, which is generally 

presente with a purely proportional control. It necessary to take into account that even, if 

the integral term counts the accumulated value of the error from the past, it can cause 

overshoots around the setpoint value. 
 
 
 

 
Figure 3.5 Response of the system to the integral action 
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3.1.3.3 Derivative term 
 

The derivative term is calculated by determining the variation of the error over a certain 

period, this variation is finally multiplied by the gain derivative 𝐾𝑑 

 
𝐷𝑜𝑢𝑡 = 𝐾𝑑 ∙ 

𝑑𝑒(𝑡) 
(3.6) 

𝑑𝑡 
 

This contribution predicts the behavior of the system and increases system stability. 
 
 
 
 

 
Figure 3.6 Response of the system to the derivative action 

 
3.1.4 Loop tuning 

 
With tuning we want to indicate the changes to the control parameters (proportional, 

integrative and derivative gains) which lead to a system with optimal response. Stability 

is a basic requirement, but depending on the system, there may be different behaviors and 

sometimes the requirements the may be in conflict. 
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Many processes can have degrees of non-linearity and it can happen that in certain fields, 

the parameters used are fine, while in other fields these tuning values are incorrect and 

do not maintain the system stability; this can be corrected by doing ‘gain scheduling’ or 

mapping different paramenters in different regions where the system operates. 

 
 

3.1.5 Stability 
 

If the PID parameters (𝐾𝑝, 𝐾𝑖, 𝐾𝑑) are not correct, the system can be unstable and very 

often this instability is caused by excessive gain, particularly if the system has delays 

significant. Theoretically, the system must reach the set value as soon as possible and not 

oscillate. Mathematically, considering a classic ring, the following transfer function can 

be obtained: 

 
𝐻(𝑠) = 

𝐾(𝑠) ∙ 𝐺(𝑠) 
 

 

1 + 𝐾(𝑠) ∙ 𝐺(𝑠) 

 
(3.7) 

 

Where K(s) is the transfer function of the PID, while G(s) is the feedback transfer 

function. The system in unstable if the closed loop function diverges, this happens when 

K(s)·G(s) = -1 but tipically this happens when |K(s)·G(s)|=1 with a phase of 180°. 

Optimal behavior can be established in two conditions: 
 

• A fixed set is imposed and disturbs the system with an external input, the system 

has to go back to set as fast as possible and without wobbling. In practice, a system 

faster to reach the set even if there are small oscillations around it, however, they 

die down pretty fast rather than having a system that doesn’t it wobbles at all at 

the set but inevitably remains slower in reaching it; 

• A variable set is imposed and notice how fast and stable the system is in following 

the set. 

 
3.1.6 Adjustment methods 

 
There are several methods for tuning a PID, the most used, in general, involves 

development of models, then the values of 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 are chosen. However, the most 



38 

 

 

 

pratical way is to do a manual tuning by seeing how the system reacts, but this can lead 

to setup times long. The choice of method is also influenced by how the system is 

complex. 

• Manual tuning; 

• Ziegler-Nichols method; 

• ‘Relay’ method; 

• Softaware tools; 

• Cohen-coon (only for first order processes); 

• Ảstrὂm-Hἂgglund. 
 
 

3.1.7 Limitation of PID control 
 

PID control can be applicable in many situations, in many situations it works well but in 

others it may have unsatisfactory performance. The main difficulty with simple PID 

control is to have a controlled system with feedback with constant parameters, therefore 

there is no direct knowledge of the process that involves delays, compromising 

performance in certain cases. PID controllers, when used alone, can lead to poor 

performance if the gains are reduced in such a way that the system does not have 

overshoot and oscillations around the setpoint. PID controllers have difficulty with the 

presence of non-linearity of the system, because they always respond in the same way. 

An improvement can be done through feed-forward with system knowledge, using the 

PID to check only the errror. PID can also be used by doing ‘gain scheduling’ that is, 

using different parameters in based on the work area and performance. A PID control can 

also be imbroved by acting on the reading of the values, on the time of sampling, 

increasing precision and accuracy or using multiple PID controls in cascade. 

3.2 PWM theory 
 

PWM is the acronym for Pulse-Width-Modulation technique used to control digital 

devices. It is mainly used for the control of electrical devices, such as motors, digital 

valves etc. 
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The average value of voltage and current provided is checked by connecting the load 

through pulses repeated ON and OFF in which the duration is controlled through the ratio 

of Ton anT. Ideally, if the frequency is high, the result is to an analog control, but we 

must to consider the application. 

The term duty cycle is proportional to the ON period, in fact we have that: 𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 = 
𝑇𝑜𝑛 , for example, a low duty cycle corresponds to a low supplied power, because the 

𝑇 

power suplly is on OFF most of the time. The duty cycle is expressed as a percentage, 

100% means that the load is always powered. 

A square wave is therefore created, given precisely by the continuous change between 

ON and OFF during the period. By varying the duty cycle, the portion of the ON time 

with respect to the period of the carrier varies. 

With Arduino the duty cycle can be done through the analogWrite() function and the 

values of output voltage are between 0 volts and 5 volts. 
 

 
Figure 3.7 Duty cycle with different PWM(0-255) 
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Considering figure 3.17 it is possible to see that a 50% duty cycle corresponds to a square 

wave which assume a high value for the 50% of the period; a 75% duty cycle corresponds 

to a square wave which assume a high value for the 75% of the period and so on. The 

output square wave is the signal that drives the switch of the power converter. Anyway, 

this kind of control is not able to run the motor in both directions of rotation. In order to 

run the motor also in the opposite direction it is necessary to invert the sign of the current 

which flows in the motor. To invert the sign of the current a circuit called H-bridge 

realized with 4 switches and 4 recirculation diodes must be implemented (in our case 

motor driver H-bridge L298N). 

 
 

3.2.1 Time proportioning 
 

Many digital circuits can generate PWM signals. They normally use a counter that 

increments periodically and is resetted at the end of every period of the PWM. When the 

counter value is more than the reference value, the PWM output changes state from high 

to low (or low to high). 

The incremented and periodically reset counter is the discrete version of the intersecting 

method's sawtooth. The analog comparator of the intersecting method becomes a simple 

integer comparison between the current counter value and the digital (possibly digitized) 

reference value. The duty cycle can only be varied in discrete steps, as a function of the 

counter resolution. 

3.2.2 PWM sampling theorem 
 

The process of PWM conversion is non-linear and generally supposed that low pass filter 

signal recovery is imperfect for PWM. The PWM sampling theorem shows that PWM 

conversion can be perfect. The theorem states that “Any bandlimited baseband signal 

within ±0.637 can be represented by a pulsewidth modulation (PWM) waveform with 

unit amplitude. The number of pulses in the waveform is equal to the number of Nyquist 

samples and the peak constraint is independent of whether the waveform is two-level or 

three-level”. 
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• Nyquist-Shannon Sampling Theorem: “If you have a signal that is perfectly band 

limited to a bandwidth of 𝑓0 the you can collect all the information there is in that 

signal by sampling it at discrete times, as long as your sample rate is greater than 

2𝑓0.” 

 

3.2.3 Applications 
 

Pwm is used to vary the voltage and therefore the power to a generic load. With a duty 

cycle equal to zero the transferred power is zero, while at 100% the power corresponds 

to the maximum transferred value if the modulation circuit is not present. Each 

intermediate value determines a corresponding power supply. The advantage of this 

technique is to reduce drastically the power dissipated by the limiting circuit compared 

to the use of analogically controlled transistors and MOSFETs. PWM is also used in 

efficient voltage regulators. By switching voltage to the load with the apprpriate duty 

cycle, the output will approximate a voltage at the desired level. The switching noise is 

usally filtered with an inductor and a capacitor. One method measures the output voltage. 

When it is lower than the desired voltage, it turns on the switch. When the output voltage 

is above the desired voltage, it turns off the switch. 
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4. Modelling and simulation 
The pratical part begins by checking the behavior of the motor in open loop, simply by 

checking it with a simple graphic interface that allows it to rotate clockwise and 

counterclockwise, stop it and adjust its speed with the PWM theory. 

 
 

4.1 How to interface Matlab and Arduino 
 

The first step was to interface Matlab with Arduino in order to manually control the motor 

via PC. The Matlab support package for Arduino allows to write Matlab programs that 

read and write data on the Arduino device and on connected devices such as Adafruit 

motor shields, I2C and SPI devices. Since Matlab is a high-level interpreted language, 

programming with it is easier than with C/C++ and other compiled languages. Morover, 

it is immediately to see the results from the I/O instructions – no compilation. Matlab 

includes thousands of built-in math, engineering, and graphing functions to quickly 

analyze and visualize the data collected by Arduino device. 
 
 
 
 
 
 

 
 

Figure 4.1 Matlab serial connection with Arduino 
 
 
 

The graphical command interface was the first application that it was considered 

appropriate to create. 



43 

 

 

 

4.2 GUI application creation 
 

The first step to do is the guide instruction in the Matlab command window in order to 

create a GUI. As a result, a window appears that allows you to create a new project. By 

choosing to create a new job, it will begin to work in the window shown in the figure 4.2 
 
 
 

 
Figure 4.2 first step Matlab GUI 

 
 
 

On the left there is a menu from which it is possible to select which components to insert 

in the graphic interface. 

For the first control, the open loop one, the following buttons are necessary: 
 

• Pushbuttons: to choose the type of movement (clockwise or counterclockwise); 

• Slider: to increase or decrease the speed; 

• Edit text: to view the selected speed. 
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gui_Singleton = 1; 

gui_State = struct('gui_Name', mfilename, ... 

'gui_Singleton', gui_Singleton, 

... 

'gui_OpeningFcn', 

@DCcontrol_OpeningFcn, ... 

'gui_OutputFcn', 

@DCcontrol_OutputFcn, ... 

'gui_LayoutFcn', [] , ... 

'gui_Callback', []); 

 
 
 

 
 

Figure 4.3 first Matlab GUI with start and stop 
 
 
 

It is possible to see the matlab code below, automatically generated after the creation of 

the matlab GUI and implemented to be able to communicate with Arduino. (Comments 

also generated automatically have been eliminated to make reading more fluid). 
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if nargin && ischar(varargin{1}) 

gui_State.gui_Callback = str2func(varargin{1}); 

end 

 

if nargout 

[varargout{1:nargout}] = gui_mainfcn(gui_State, 

varargin{:}); 

else 

gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 
 

 

% --- Executes just before DCcontrol is made visible. 

function DCcontrol_OpeningFcn(hObject, eventdata, 

handles, varargin) 

 

% Choose default command line output for DCcontrol 

handles.output = hObject; 

 

% Update handles structure 

guidata(hObject, handles); 
 

function varargout = DCcontrol_OutputFcn(hObject, 

eventdata, handles) 

 

% Get default command line output from handles 

structure 

varargout{1} = handles.output; 

clear all; 

global a; 

a = arduino('COM3'); 

a.pinMode(6,'output'); 

a.pinMode(7,'output'); 
 

% --- Executes on button press in pushbutton1. 

function pushbutton1_Callback(hObject, eventdata, 

handles) 

global a; 

a.digitalWrite(6,0); 

a.digitalWrite(7,1); 
 

 

% --- Executes on button press in pushbutton2. 



46 

 

 

 

function pushbutton2_Callback(hObject, eventdata, 

handles) 

global a; 

a.digitalWrite(6,1); 

a.digitalWrite(7,0); 
 

 

% --- Executes on button press in pushbutton3. 

function pushbutton3_Callback(hObject, eventdata, 

handles) 

global a; 

a.digitalWrite(6,0); 

a.digitalWrite(7,0); 

 

% --- Executes on slider movement. 

function slider1_Callback(hObject, eventdata, handles) 

global a; 

slider = get(hObject,'Value') 

slider1 = slider*20; 

set(handles.edit1, 'String', num2str(slider1)); 

a.digitalWritePWMVoltage(8, slider); 

guidata(hObject, handles); 

function slider1_CreateFcn(hObject, eventdata, 

handles) 

if isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor',[.9 .9 .9]); 

end 
 

 

 

function edit1_Callback(hObject, eventdata, handles) 

function edit1_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 

end 
 

 

function edit1_Callback(hObject, eventdata, handles) 

function edit1_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 

end 
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4.3 PID speed control and final graphic interface 
 

The PID control of this test bench is summarized in the Arduino and Matlab GUI codes 

(4.4 and 4.5). The closed loop speed control adds the value obtained with the control 

open loop with the result achieved from the PID control. The control part allows us to 

compensate for disturbances. 

4.3.1 Arduino Code 
 
 
 
 

Figure 4.4 inizialization of the parameters for speed control 
 
 
 

In the inizialization part of the variables, a string and a character are defined. They 

allow us to read the values sent by Matlab. Arduino digital pins, 2 and 3 to read the 

encoder, 4 5 and 6 to communicate with the H-bridge. Lastly, the PID parameters, 

errors and constants, initialized to zero are defined. 
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Figure 4.5 Void setup() speed control 
 
 
 

In the Void setup(), all the necessary informations are given before the execution of the 

program. 

In particular: 
 

• pin_a and pin_b are INPUT_PULLUP to force the input pin to be HIGH by 

default, it sets the pin as an Input and also activates the internal resistor, which 

keeps the pin at HIGH level; 

• pin_fwd,pin_bwd and pin_PWM are OUTPUT, this means that a digital signal 

can go out from these pins and therefore can be high or low. 

• TCCR1A: is timer/counter 1 control register A; 
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• TCCR1B: is timer/counter 1 control register B; 
• TCNT1: is timer/counter 1’s counter value; 
• CS12: is the 3rd clock select bit for timer/counter 1; 
• TIMSK1: is timer/counter 1’s interrupt mask register; 
• TOIE1: is timer/counter 1 overflow interrupt enable; 
• Initialize Motor speed and position. 
• Attach interrupt: Rising, the interrupt is executed when passing from a LOW 

level to a HIGH level. 

 
The void loop: 

 

Figure 4.6 Void loop() speed control 
 

In the void loop the cleanliness of the string is checked and if the motor is on or off 

according to the matlab GUI. 

PID control: 
 
 

 

Figure 4.7 speed PID control 
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The errors are calculated and thanks to the action of the proportional, integrative and 

derivative constants, the stability of the system is obtained. When the motor is stopped 

the variables are reset to 0. 

PWM regulation: 
 
 
 
 

 
Figure 4.8 PWM regulation PID speed control 

 
 
 

If the pulsations exceed 255 the speed is set to maximum otherwise to 0 
 

Communication with Matlab: 
 

 
Figure 4.9 Communication with Matlab 

 
 
 

The values sent by the Matlab GUI are received. 
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4.3.2 Matlab GUI 
 

The graphical interface of Matlab consists of the setting of the PID parameters and the 

choice of the target speed (fig 4.10) 
 

 
Figure 4.10 Parameters and target speed to be sent to Arduino 

In detail it is composed of: 

• Four edit text: allow us to write the set value which will be read as a string and 
then transformed into a number; 

• ‘START’ pushbutton: allow us to send values to Arduino. 
 

The behavior of the system is displayed in this graph 4.11 , with the speed versus time, 

always created on the Matlab GUI: 
 

 
Figure 4.11 Graph to visualize the response of the system 
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handles.s = serial('COM3'); 

set(handles.s,'BaudRate',9600); 

set(handles.s,'DataBits', 8); 

set(handles.s,'StopBits', 1); 

fopen(handles.s); 

 

 

guidata(hObject, handles); 

return; 

 

After creating the matlab GUI, the code is implemented to make it possible to 

communicate with Arduino. In particular: 
 
 
 

 
 

• Initialization of the serial port; 

• Communication speed; 

• Data bits; 

• Stop bit. 
 
 
 

4.4 PID position control 
 

Arduino simplifies the position control. Indeed, it tries it both with a fixed position and 

with a variable positin over time, for example using sin and cos functions. The PID 

position control was no then implemented with a graphical user interface, it is designed 

only as a test so that it can the be implemented with the linear axis. 
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4.12 Inizialization of the parameters for position control 
 

As for speed control, errors and pins are defined. Subsequently, the communication speed 

of the serial port and the characteristics of the pins are determined in the void setup(). 

 
 

In the void Loop: 
 

The initialized variables are used to save the values between the time phases. Thus, they 

are able to adjust the control signal. The error is calculated by subtracting the current 

position from the target position. The maximum value of PWM=255 means thate we are 

at 100% od the duty cycle. 
 

 
4.13 Void loop() position control 
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The values of the controller constants are those entered for the final test, which leads to 

the stability of the system. You have the operations for the control and regulation of the 

maximum power (regulated thanks to the PWM output and the H-bridge) by following 

the reading of the code. 

Encoder reading: 
 

In the following figure, you have the final piece of the code. Here, you can see the function 

that controls the direction of the motor. Moreover, the figure shows if it is OFF. The 

increase or decrease o 

 

 
4.14 Arduino code to read the encoder 
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4.5 Anti-Windup, speed and position control. 
 

When using a regulator with integral action, it is possible that the controller output reaches 

these limits; in this case the action of the actuator cannot grow, even if the error of 

regulation is not null. Consequently, the integral term continues to grow, but this increase 

does not produce no effect on the plant control variable. This situation, in addition to not 

making the regulator work properly, makes the regulator inactive even when the error 

decreases or reverses its sign; in fact, the regulation system can reactivate only when the 

u(t) signal falls within the linearity zone of the actuator characteristic (discharge of the 

integral term). This phenomenon is called integral wind-up. 

The code starts with the same initialization of the pins of the controls seen previously. A 

classic control that increases or decreases a counter in order to check if the motor rotates 

clocwise or anticlockwise. 

 

 
Figure 4.15 inizialization of the parameters Anti-windup 
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The key part of the code is this with the trajectory that the system must follow, we 

calculate the acutual angular speed and the position. We also define the trajectory, 

minimize the error using the PID and the wind-up formulation. 

 

 
 

4.16 void loop Anti-windup 
 
 
 

The encoder function measure rpm and position of the motor. The power supply is finally 

set to 12[V]. 
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5. Model validation and results 
In this part, the key points of system behavior are analyzed in fig. 5.1: 

 
 
 

 

Figure 5.1 parameters of the step Response 
 
 
 

• Average speed: the average speed maintained during the period considered; 

• Peak value: the highest speed value during the period considered; 

• Rise time: the time taken by a signal to change from a specified low value to a 

specified high value. 
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• Settling time: the time elapsed form the aplication of an ideal instantaneous step 

input to the time which the amplifier output has entered and remained within a 

specified error band. 

• Overshoot: the occurence of a signal or function exceeding its target. 

• Steady-state error: the difference between the desired value and the actual 

value. 

 
 

The constants of the PID controllers affect the behavior of the system in this way: 
 

PID Rise Time Overshoot Settling Time Steady-state err 

𝐾𝑝 decrease increase Small change decrease 

𝐾𝑖 decrease increase increase eliminate 

𝐾𝑑 Small-change decrease decrease No change 

Table 5.1 effects of PID constants on output behavior 
 
 

5.1 DC Motor identification 
 

To identify the motor, tests were carried out to measure the I/O behaviour voltage and 

current: 
 

 
Fig 5.2 DC Motor Identification 
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5.2 Experimental results of speed control with matlab graphic 

interface 

In this formulation, the PID part allows to compensate the disturbances. However, it is 

linked to the accuracy of the encoder. The system is powered by an external 12V power 

supply 

Controller constants are calibrated with the Ziegler-Nichols method wich consists of: 
 

• The loop is closed by inserting a constant of low proportionality until the system 

begins to exhibit stable oscillations, so as to close the loop; 

• The chosen value of 𝐾𝑝 is what allows us to trigger a permanent oscillation; 
 
 
 
 

 
Fig. 5.3 Simulink simulation PID speed control 

 
 
 

The first value of 𝐾𝑝 that allows us to see stable oscillations is 𝐾𝑝 = 0.9. 
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Figure 5.4 Beginning of oscillation with 𝐾𝑝0 = 0.9 

 
 

• The chosen 𝐾𝑝 becomes the reference 𝐾𝑝0; 

• The period of oscillation 𝑇0 is measured; 

• 𝐾𝑖 is increased until maximum performance is reached; 

Experimentally the following results are found: 

• 𝐾𝑝 = 0.48; 

• 𝐾𝑖 = 9.6; 

• 𝐾𝑑 = 0.06; 

• 𝑇0 = 0.2 [ms]; 
 

Inserting these values in the Matlab GUI the system response is that of the figure 5.5 
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Figure 5.5 behaviour at 150 rpm 
 
 
 

• Peak value: 171 rpm; 

• Rise time: 0.93 [s]; 

• Settling time: 3.41 [s]; 

• Overshoot: 14%; 

• Steady-state error: 2.4%. 
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5.3 Experimental results of speed control with matlab graphic 

interface at different speeds. 

The behaviours are evaluated by looking at the different speed using the same parameters 

of the PID used previously and calculate with the method of Ziegler-Nichols, always 

powering the motor at 12[V]: 

• 50 [rpm]; 

• 100 [rpm]; 

• 150 [rpm]; 

• 210 [rpm]. 
 
 

 
 

Figure 5.6 behaviour at 50 rpm 
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                                                                   Figure 5.7 response at 100 rpm 
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                                                    Figure 5.8 behaviour at 150 rpm 
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                                                                        Figure 5.9 behaviour at 210 rpm 
 
 
 

The overshoot for low speeds is higher and the steady state encrease with increasing 

speed. At different speed levels, the read system responses are not very oscillating while 

they oscillate more at low speeds, when PWM decreases. This could be interesting to test 

in motors with higher power so as to notice the differences in a much more marked way. 

 
 
 

5.4 Experimental results of the the position control on Arduino 
 

The PID position control speed, made using the Arduino IDE, is the basis of what the 

position control will be for the linear axis. The results are analyzed on the Arduino serial 

plotter 
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5.4.1 Experimental result of the position control with fixed 

target position. 

PID parameters used: using the method of Ziegler-Nichols based on the following table: 
 

Control type 𝐾𝑝 𝑇𝑖 𝑇𝑑 

P 0.5𝐾𝑝0   

PI 0.45𝐾𝑝0 0.8𝑇0  

PID 0.6𝐾𝑝0 0.5𝑇0 0.125𝑇0 

Table 5.2 Ziegler-Nichols method 
 

• 𝐾𝑝 = 0.66; 

• 𝐾𝑖 = 6.6; 

• 𝐾𝑑 = 0.0165; 

• 𝑇0 = 0.2 [ms]. 
 

 

Figure 5.10 Position control on the Arduino serial plotter 
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5.4.2 Experimental result of the position control with sinusoidal 

test. 

To perform this test, unlike the previous one, just replace the int target variable in the 

code with an int sin( ). For example target=130sin(prevT). 

• 𝐾𝑝 = 0.66; 

• 𝐾𝑖 = 6.6; 

• 𝐾𝑑 = 0.0165; 

• 𝑇0 = 0.2 [ms]. 
 
 
 
 
 
 

Figure 5.11 Position control, sinusoidal function on the Arduino serial plotter 
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5.12 Data from Arduino serial plotter to Matlab 
 
 
 

5.5 Experimental results of the the speed and position control 

on Arduino, Anti-windup. 

First test done by increasing 𝐾𝑝 until displaying oscillations, 𝐾𝑑 and 𝐾𝑖 set to zero. 

PID parameters used: 

• 𝐾𝑝 = 1; 

• 𝐾𝑖 = 0.03; 

• 𝐾𝑑 = 0.0015; 

• 𝑇0 = 0.2 ms; 
 

The motor is rotated in both directions following a sinusoidal path. The data obtained in 

the Arduino serial plotter were entered on Matlab to obtain a clearer and more readable 

graph. The maximum speed is setted and it is 230 [rpm]. The system it tends to stabilize 
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and then to follow the desired profile with a minimum of delay. This is due to the time in 

which the signal is communicated. 
 

 
Fig 5.13 Anti WINDUP path 

 
 

 
Figure 5.14 PID speed control with Anti-windup technique 
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6. Conclusion and future applications 
6.1 Final implementation on the linear axis. 

 
After checking the motor both in position and speed, the future application will be to 

connect it with the linear axis in the fig. 6.1, 6.2 and 6.3 
 
 
 

Figure 6.1 Linear axis test bench 
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Figure 6.2 linear axis test bench 
 

 
Figure 6.3 linear axis test bench 
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The screw applied to the DC motor has a pitch of 1[mm] and it will allow the table to be 

moved forward or backward by 1[mm] at each revolution of the motor. As a result, the 

rotary motion is transformed into linear motion. The DC motor, with its rotary movement, 

transmits motion to the reducer which it turn rotates the screw. Being coupled to the 

screw, they produce a linear movement as being constrained they do not rotate but they 

‘unscrew or screw’. 
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6.2 Conclusion 
 

The main idea of the work was the creation of a PID controller with a Matlab graphic user 

interface to stabilise a DC motor. In order to do that, it was crucial to analyse the whole 

system and its functioning. 

The realisation of the Matlab GUI has given satisfactory results. Through the Matlab 

Support package for Arduino Hardware it was possible to proceed to imlement the 

Arduino controllers and to found clear advantages. First of all, because the functions 

given by Matlab are better exploited with respect to the only one of the Arduino IDE that 

would require many lines of code, difficult to implement with C or C++ languages and it 

would take enormous knowledge in the field of programming. Secondly, it is also possible 

to control the variables in real time and, thirdly to have the possibility to directly analyse 

the data without having to move them to Matlab. The experimental data made it possible 

to tune the parameters of the model with a higher precision then before. 

Since the final aim of the thesis would be the control in the position of the linear axis, we 

can assume that a possible future control can be done with a greater power supply, so as 

to be able to have better response behaviors especially with larger speed differences, 

compared to a small size motor. 
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