

POLYTECHNIC OF TURIN

Master’s degree in Mechatronic Engineering

A.Y. 2020/2021

Graduation session: July 2021

“Position control of a linear axis with

Arduino board and Matlab interface”

Tutors: Candidate:

Prof. A. Mura Raffaele Meligrana

Prof. L. Mazza Mat : 268000

Prof.ssa F. Curà

Ing. E. Goti

1

SUMMARY
The topic of the thesis concerns the development of the position control of a linear axis,

an axis composed of an electric motor controlled in position and a screw that transforms

the rotary and linear motion. In particular, the motor is a DC motor; the sensor used to

control the position and speed is an encoder. The type of control is a PID carried out by

means of an Arduino Board interfaced with Matlab.

The thesis project develops in three parts:

1. A brief introduction of the thery on the DC motors and PID controller, its origin,

its applicability. Moreover, the tuning and all the adjustment methods are

described: such as manual tuning, open loop Ziegler-Nichols method and Relay

method;

2. The construction of the model starting from the DC motor identification and its

analysis through the theory of the PWM and its possible applications in

controlling the motor;

3. Practical analysis starting from the equipment description: a system alimented by

Arduino, which is an opens source electronic board that includes a

microprocessor, digital and analog input/output and some interfaces such as

incremental encoders.

The third part has been developed in the DIMEAS department of the Politecnico of Turin

in four months. The first step was to interface Matlab with Arduino in order to manually

control the motor via PC and to read the position and the speed of the incremental encoder.

To ensure that, Arduino communicates directly with the PC – a Matlab interface was

created through the GUI (Graphical user interface) – thus allow to control the direction

of rotation and speed through some point-and-click control over software application.

Two different code were written in order to perform two different tests:

1. The first one was executed with a small DC motor, a slider to adjust the speed and

three pushbuttons: one to perform counter clockwise rotation and one to stop the

DC motor;

2

2. The second one had a different implementation: sending a set of analog data and

different speed already set. The implementation of Arduino and the connection

with the motor via the breadboard are the same as the first test.

The final GUI is designed in order to permit to set the constants of the PID control and

the target speed directly. Furthermore, it allows sending the mas a command to Arduino

through a simple pushbutton.

For the model realization, the work was divided as follows:

• Chapter 1: The first chapter concerns the didactic purpose and hardware used,

including the various datasheets and their functions within the project:

1. DC motor;

2. Encoder;

3. Motor driver L298 H-bridge;

4. Arduino.

• Chapter 2: This chapter analyses the low power DC motor, the equilibrium

analysis, the efficiency, the transient behaviour and the DC motor modelling.

• Chapter 3: In the third chapter, there is a brief review on the theoretical part

behind the controller, PWM theory and PID controllers, the origins, the

adjustment methods, the stability and the limitations.

• Chapter 4: it is focuses on the model realized by means of the MATLAB tool.

Firstly, it was analysed how Arduino and Matlab are interfaced. Secondly, the

chapter presents in detail how to create a GUI on Matlab and the entire interface

taken in consideration. Thirdly, it describes the Arduino codes for speed and

position controls, and the test carried out with the anti-windup technique.

3

• Chapter 5: in this chapter, the realized model was validate in laboratory
performing some measurements of actuation on the real system.

• Chapter 6: the sixth chapter furnishes information on the possible future

implementation with the linear axis and project conclusions.

4

INDEX

List of figures 7

List of tables 10

1. Introduction 11

1.1 Didactic purpose 11

1.2 Hardware 11

1.2.1 DC Motor 12

1.2.2 Encoder 14

1.2.2.1 Encoder Minirod 421 15

1.2.3 Motor Driver Module-L298N 17

1.2.3.1 L298N Features & Specifiations 18

1.2.3.2 L298N Module Pin Configuration 19

1.2.4 Arduino 19

1.2.4.1 Arduino UNO 20

2. DC Motor identification 23

2.1 Equilibrium analysis 23

2.2 DC Motor Stall torque and No-load velocity 25

2.3 DC Motor efficiency 26

2.4 Transient behaviour 27

2.5 DC motor Modelling 28

3. Types of control 31

3.1 PID control 31

3.1.1 Mathematical form 32

3.1.2 Origins of the PID 32

3.1.3 Theory of the PID control 33

5

3.1.3.1 Proportional term 34

3.1.3.2 Integral term 35

3.1.3.3 Derivative term 36

3.1.4 Loop tuning 36

3.1.5 Stability 37

3.1.6 Adjustment methods 37

3.1.7 Limitation of PID control 38

3.2 PWM theory 38

3.2.1 Time proportioning 40

3.2.2 PWM sampling theorem 40

3.2.3 Applications 41

4. Modelling and Simulation 42

4.1 How to interface Matlab and Arduino 42

4.2 GUI application creation 43

4.3 PID speed control and final graphic interface 47

4.3.1 Arduino Code 47

4.3.2 Matlab GUI 51

4.4 PID position control 52

4.5 Anti-Windup, speed and position control 55

5. Model validation and results 57
 5.1 DC Motor Identification 58
 5.2 Experimental results of speed control with Matlab graphic interface 59

5.3 Experimental results of speed control with Matlab graphic interface at different

speeds 62

5.4 Experimental results of the position control on Arduino 65

6

5.4.1 Experimental result of the position control with fixed target position 66

5.4.2 Experimental result of the position control with sinusoidal position 67

5.5 Experimental result of the speed and position control on Arduino,Anti-windup

68

6 Conclusion and future applications 70

6.1 Final implementation on the linear axis 70

6.2 Conclusion 73

Bibliography 74

7

List of figures

1.1 Test bench diagram 11

1.2 Test bench mode 12

1.3 DC Motor with built-in Encoder 12

1.4 DC Motor with built-in Encoder 12

1.5 Encoder 13

1.6 Phases of the Encoder 15

1.7 Encoder Minirod 421 15

1.8 Motor Driver H-bridge L298N 17

1.9 Circuit Motor Driver L298N 18

1.10 Arduino UNO 20

2.1 Power versus angular speed in DC motor 24

2.2 Speed versus torque DC motor 25

2.3 Current and velocity versus time 27

2.4 Electrical diagram of a DC motor circuit with torque and rotor angle 28

3.1 PID control scheme 31

3.2 First PID controller 32

3.3 PID controller circuit 33

3.4 Response of the system to the proportional action 34

3.5 Response of the system to the integral action 35

3.6 Response of the system to the integral action 36

3.7 Duty cycle with different PWM (0-255) 39

4.1 Matlab serial communication with Arduino 42

8

4.2 First step Matlab GUI 43

4.3 First Matlab GUI with start and stop 44

4.4 Initialization of the parameters for speed control 47

4.5 Void setup speed control 48

4.6 Void loop speed control 49

4.7 PID speed control 49

4.8 PWM regulation PID speed control 50

4.9 Communication with Matlab 50

4.10 Parameters and target speed to be sent to Arduino 51

4.11 Graph to visualize the response of the system 51

4.12 Initialization of the parameters for position control 53

4.13 Void loop position control 53

4.14 Arduino code to read the encoder 54

4.15 Initialization of the parameters, Anti-windup 55

4.16 Void loop Anti-windup 56

5.1 Parameters of the step Response 57

5.2 DC Motor identification 58

5.3 Simulink simulation PID speed control 59

5.4 Beginning of oscillation with 𝐾𝑝0 = 0.9 60

5.5 Behaviour at 100 rpm 61

5.6 Behaviour at 50 rpm 62

5.7 Behaviour at 100 rpm 63

5.8 Behaviour at 150 rpm 64

5.9 Behaviour at 210 rpm 65

5.10 Position control on the Arduino serial plotter 66

5.11 Position control, sinusoidal function on the Arduino serial plotter 67

5.12 Data from arduino 68

5.13 Anti WINDUP path 69

5.14 PID speed control with Anti-windup technique 69

9

6.1 Linear axis test bench 70

6.2 Linear axis test bench 71

6.3 Linear axis test bench 71

10

List of tables

1.1 Pin specification 14

1.2 Encoder datasheet 16

1.3 Encoder Pin layout 16

1.4 Motor driver L298N pins specification 19

1.5 Arduino UNO features 21

1.6 Functions of digital pins 21

1.7 Functions of others pins 22

5.1 Effects of PID constants on output behavior 58

5.2 Ziegler-Nichols method 66

11

1. Introduction
1.1 Didactic purpose

This thesis intends to create a test bench to control a test bench to control a linear axis in

position. It explains how the Arduino code must connect and implement the DC motor

and how it has started from the Matlab graphical interface. The aim is to realize speed

control for the motor and position control for the linear axis.

1.2 Hardware

The figure 1.1 shows the scheme. It is composed of the following components:

• DC motor: to operate the bench and to transform an input voltage into rotation

speed;

• Encoder: sensor required for speed, to close the control loop;

• L298N H-bridge: allows to electronically control both the speed and the direction

of rotation of a DC motor;

• Arduino: Hardware platform consisting of a series of elctronic boards equipped

with a microcontroller.

Figure 1.1 Test bench diagram

12

1.2.1 DC motor

Figure 1.2 test bench made

The DC motor features large torque, low speed and low noise. The gear motor is primarily

designed to reduce the speed in a series of gears, which in turn creates more moment of

force. This motor is adopted with pure copper wire coil, low temperature and low loss.

The motor is made of metal gears, wear-resistant, in order to prevent the teeth from

breaking. By consequence, it has a long service life.

Figure 1.3 DC motor with built-in encoder Figure 1.4 DC motor with built-in

Encoder

13

Figure 1.5 Encoder

The following table presents the meaning of the cable colours:

RED Motor + (positive and negative switching can

control CW/CCW

BLACK Encoder – (voltage range is 3.3-5 [V])

YELLOW Encoder A phase (The motor turns one turn

output, 11 signals)

GREEN Encoder B phase (The motor turns one turn

output, 11 signals)

BLUE Encoder + (voltage range is 3.3-5 [V])

WHITE Motor - (positive and negative switching can

control CW/CCW)

14

Specifications:

Voltage DC 12[V]

Speed 230 rpm

Encoder motor end: 11 signals

Rated voltage DC 12[V]

No-load speed 230 rpm 0.13[A]

Max efficiency 2[Kg][cm]/170 rpm/2[W]/0.6[A]

Max power 5.2[kg][cm]/110rpm/3.1W/1.10A

Stall torque 10[kg][cm] 3.2[A]

Reduction ratio 1:34

Hall resolution Hall x ratio 34.02 = 341.2 PPR

Table 1.1 specifications of the DC motor

1.2.2 Encoder

In the relative mode, the encoder provides an incremental indication referred to the

previous position. This indication is easy to manage as it is sufficient to associate the

resolution unit of the incremental encoder to the displacement unit or the precision ratio.

The incremental information consists of a two-bit Gray code (phases A and B) in

quadrature (duty cycle 50%). The phase shifts between the two bits in 90 electrical

degrees and is necessary to check the direction of rotation. By convention it is possible to

assume that the increase is positive when phase B anticipates phase A with rotation of the

shaft clockwise, with a view from it. There is also a reference (Zero or Marker) which

indicates the completion of the lap. The size of this pulse can be supplied on request from

90 electrical degrees up to some periods (in reference to the duration of the pulses.

15

Figure 1.6 Phases of the Encoder

1.2.2.1 Encoder Minirod 421

The model used for this work is the ‘HEIDENHAIN’ ‘Minirod 421’ which presents the

following technical specifications. This is also used as a substitute of the one already

applied to the DC motor to have further confirmation.

Figure 1.7 Encoder Minirod 421

16

Line counts 100/200/250/360/400/500/600/720/900/1000/1024/1080/3600

Accuracy ±1/20 grating period

Resolution 0.025° with 3600 lines and 4-fold evaluation in the subsequent

electronics

Speed Max. 10000 rpm

Moment of inertia of

rotor

0.17 ∙ 10−6 kg𝑚2

Torque at 20°C

(68°F)

≤0.001Nm

Shaft load Axial max 5N, Radial max 10N (at shaft end)

Weight Approx 0.09kg (0.198lb)

Protection IP 50 according to IEC 529

Operating

temperature and

Storage temp.

0° to 70°C

-32° to 80°C

Vibration (50 to

2000 Hz)

≤ 100m/𝑠2

Shock (11 ms) ≤ 300m/𝑠2

Table 1.2 Encoder datasheet

Pin Layout

Pin 1 2 3 4 5 6 7 8 9 10 11 12

Signal �̅̅̅��̅�2̅ Sensor

+5V

𝑈𝑎0 𝑈̅̅̅�̅�0̅ 𝑈𝑎1 𝑈̅̅̅�̅�1̅ free 𝑈𝑎2 Shield 0V Sensor

0V

+5V

Color Pink Blue Red Black Brown Green / Gray / Whithe/

Green

White Brown/

Green

Table 1.3 Encoder Pin layout

17

1.2.3 Motor Driver Module-L298N

The L298N is an integrated monolithic circuit in a 15-lead Multiwatt and power SO20

packages. It is a high voltage, high current dual full-bridge driver de-signed to accept

standard TTL logic level sand drive inductive loads such as relays, solenoids, DC and

stepping motors. Two inputs are provided to enable or disable the device independently

of the input signals. The emitters of the lower transistors of each bridge are connected

together and the corresponding external terminal can be used for the connection of an

external sensing resistor. It is provided an additional supply input in order that the logic

works at a lower votage.

Figure 1.8 Motor driver H-bridge L298N

18

The figure 1.9 shows the L298N schematic circuit :

Figure 1.9 Circuit motor driver L298N

1.2.3.1 L298N Features & Specifications:

• Driver Model: L298N 2[A];

• Driver Chip: Double H Bridge L298N;

• Motor Suplly Voltage (maximum): 46[V];

• Motor Suplly Current (maximum): 2[A];

• Logic Voltage: 5[V];

• Driver Voltage: 5-35[V];

• Driver Current: 2[A];

• Logical Current: 0-36[mA];

• Maximum Power (W): 25[W];

19

• Current Sense for each motor;

• Heatsink for better performance;

• Power-On LED indicator.

1.2.3.2 L298N Module Pin Configuration

PIN Name Description
IN 1 & IN 2 Motor A input pins. Used to control the

spinning direction of Motor A.

IN 3 & IN 4 Motor B input pins. Used to control the

spinning direction of Motor A.

ENA Enables PWM signals for Motor A.

ENB Enables PWM signals for Motor B.

OUT1 & OUT2 Output pins of Motor A.

OUT3 & OUT4 Output pins of Motor B.

12 V 12V input from DC power Source.

5 V Supplies power for the switching logic

circuitry inside L298N IC.

GND Ground pin.

Table 1.4 Motor driver L298N pin specification

1.2.4 Arduino

Arduino was born in 2003 in Ivrea, with the idea of developing a low-cost board that

could interface with sensors and actuators and is an open source electronic board that

includes a microprocessor and various inputs and outputs which can be digital or analog,

the number and type depends on the card considerate. These inputs/outputs can be

interfaced with cards or other circuits. The card is easily programmable via USB interface

from which can be loaded programs written with the appropriate software. The

20

programming language can be said to be a mixture of C and C++ with functions added

and dedicated to the purposes for which the card was created.

1.2.4.1 Arduino UNO

Figure 1.10 Arduino UNO

Arduino Uno is a microcontroller device based that allow you to create different types of

electronic circuits. It has 14 programmable digital pins as inputs or outputs (which also

have the ability to be used for dedicated functions such as PWM signal generation or

UART communication) and 6 input for the acquisition and processing of analog signals.

The microcontroller is the ATMega328 produced by Atmel with the following

characteristics:

- speed of 16 [MHz]

- 32KB of flash memory

- 2KB sram

21

- 1KB EEPROM memory.

The board is powered via the USB port or via the appropriate connector. If both the USB

cable and the power connector are connected, the card is able to automatically choose the

external power source.

The following table lists the Arduino UNO features:

Type of Microcontroller Atmel ATmega328

Working Voltage 5Vdc

Reccomanded power supply voltage 7V-12V

Digital pins 14 configurable as inputs or outputs

Analog pins 6 entrances

Maximum current per digital pin 40mA max

Flash memory 32KB

Sram memory 2KB

EEPROM memory 1KB

Clock speed of the microcontroller 16MHz

Table 1.5 Arduino UNO features

Description of additional functions of the digital pins:

Pin 0 UART RX

Pin 1 UART TX

Pin 2 External interrupt

Pin 3 External interrupt or PWM

Pin 5 8 bit PWM

Pin 6 8 bit PWM

Pin 9 8 bit PWM

Pin 10 8 bit PWM or SPI(SS)

Pin 11 8 bit PWM or SPI(MOSI)

Pin 12 SPI(MISO)

Pin 12 SPI(SCK)

Table 1.6 Functions of the digital pins

22

Description of additional functions of the analog pins:

Pin 4 I2C(SDA)

Pin 5 I2C(SCL)

Table 1.7 functions of others pins

23

2. DC motor identification
The equation of the motion for DC motors are the following:

V = L
di

+ RI + k
dt

θ̇ (2.1)

Where:

Jθ̈ = kTI − βθ̇ − τ (2.2)

- V is the voltage applied to the motor (from 12V battery); [V]

- L is the motor inductance; [H]

- I is the current through the motor windings; [A]

- R is the motor winding resistance; [Ω]

- kb is the motor's back electromagnetic force constant; [Vs/rad]

- θ ̇ is the rotor's angular velocity; [rad/s]

- J is the rotor's moment of inertia; [Kgm2]

- kT is the motor's torque constant; [Nm/A]
- β is the motor's viscous friction constant; [Nm/(rad/s)]

- τ is the torque applied to the rotor by the load. [Nm]

2.1 Equilibrium analysis

When a voltage source is applied to the terminals of the DC motor and a mechanical load

is applied to its rotor, a transitory behaviour, lasting a transitory time interval, is followed

by a regime behaviour: the angular speeds increments to a stabilized value after a

transition time and, at regime, the time derivatives of the current and velocity are null, the

regime equilibrium equations are then:

V = RI + kbθ̇ (2.3)

τ = kTI − βθ ̇ (2.4)

It means that:

b

24

V =
R

τ +
Rβ

θ̇ + k

θ̇ (2.5)
kT kT b

It is now possible to get the equations of velocity and torque for the equilibrium:

θ̇ = (
Rβ

kT

−1

+ kb)
R

(V −
kT

τ) (2.6)

τ = V
kT

− (β +
kTkb

) θ ̇ (2.7)
R R

From equation 2.6 and 2.7 it is possible to get the equation for the mechanical power P

delivered by the motor.

P = τ θ ̇ (2.8)

Figure 2.1 Power versus Angular speed in DC motor

When the motor is not braked, it will turn at its maximum speed and it will deliver no

mechanical power (left part of the graph). It will deliver the highest amount of mechanical

power when the braking is such that the motor turns at one half its maximum speed. In

25

fig. 2.2 angular velocity, efficiency, current and power curves with respect to the torque

for the DC motor running at 12V are displayed.

Figure 2.2 (Blue) ÷ Speed with respect to the Torque;

(Green) ÷ Power with respect to the Torque;

(Black) ÷ Current with respect to the Torque;

(Red) ÷ Efficiency with respect to the Torque.

2.2 DC motor stall torque and no-load velocity
When the load is such that the DC motor does not move at all, the maximum torque is

achieved and this is so called stall torque:

τs = V

kT
(2.9)

R

Under stall conditions (θ̇ = 0), since the current is proportional to the torque, it follows
that the stall current is:

26

β = T

τs
Is =

T

(2.10)

It is now possible to compute R in stall conditions Rstall, the value of the motor’s torque

constant kTs, and the value of the motor’s back electromagnetic force kbs.

V
Rstall =

s

(2.11)

kT = τs
Rstall

(2.12)
V

kbs ≅ kTs (2.13)

It is now necessary to consider the nominal speed of the DC motor. It can be achieved

when no load is applied to the motor shaft and so it is also called no-load velocity �̇�̇𝑛. The

corresponding formulas are reported:

kT kbkT −1
θ̇

n = V (β +)
R R

(2.14)

From that equation is it possible to get the value of the motor’s viscous friction

coefficient:

k V (− k

) (2.15)

R θ̇ n
b

2.3 DC motor efficiency
The efficiency of a motor is defined as the ratio between the output mechanical power

and the input electrical power:

P
η = (2.16)

VI

To get the efficiency as a function of the velocity, it is possible to express the current and

the torque as a function of the velocity as follows:

k

I

27

s R

V − kb θ
I =

R

(2.17)

τ = τs − (β +

kb kT
) θ ̇ (2.18)

R

It is now possible to get the efficiency as:

τ θ
η = =

VI

τ θ̇ − (β +
kbkT) θ̇ 2

V2
−

V kbs θ̇

(2.19)

R R

2.4 Transient behaviour
When a voltage is applied to the DC motor starting from a rest condition, the current
increases according to the equation 2.1. The current increment is faster than the rotor

velocity increment. The time constant with which the current grows is 𝐿⁄𝑅 which is called

electrical time constant. In general, the electrical time constant is larger than the time

constant and so, when analysing the speed dynamics, it is possible to assume the current

value as being at regime value. It means that:

V ≅ RI + kTθ̇ (2.20)

The above equation means that, generally speaking, it is possible to assume a null

electrical time constant. In the following figure, it is possible to understand the differences

between using the approximation or not:

Fig 2.3 Blue: Current and Velocity using the differential equations;

Red: Current and velocity using the zero electrical time constant approximation.

28

Supposing the DC motor in a stationary condition and applying a voltage V, the current

suddenly assumes a peak value called start-up value:

Istart−up =
V − kbθ̇

≅
R

V
(2.21)

R

After this peak, the current slowly decreases according to the motor velocity. For a given

voltage range [-V; V], the largest current spike occurs when the motor runs at maximum

speed (no load speed), and the voltage is reversed. Because of the large current draws,

which may occur when a sudden change in the supply voltage takes place, it is important

to have hardwares capable of handling these current spikes. Another approach is to avoid

abrupt changes in voltage. For example, to accelerate and decelerate by slowly changing

the voltage.

2.5 DC motor modelling

For a proper modelling of the DC motor, it is important to know its electrical diagram:

Figure 2.4 Electrical diagram of a DC motor circuit with torque and rotor angle.

The motor torque τ is related to the armature current I by the torque constant kT :

29

T

τ = I kT (2.22)

The voltage generated on the motor, VM, is related to the angular velocity by the following

equation:

VM = kT
dθ

θ̇ = kT
dt

 (2.23)

Basing on figure 4, neglecting electrical and mechanical dissipations, it is possible to

write the following equations based on the Newton’s law combined with the Kirchhoff’s

law:
d2θ

J
dt2 + β

dI

dθ

dt
= kTI (2.24)

dθ
L

dt
+ RI = V − kT

dt
(2.25)

Using the Laplace transform, the above equations could be written as follows:

Js2θ(s) + βs θ(s) = kT I(s) (2.26)

Ls I(s) + RI(s) = V(s) − kTs θ(s) (2.27)

From the equation 2.27 it is possible to express I(s):

I(s) =
V(s) − kTs θ(s)

Ls + R

(2.28)

and substitute it into the equation 2.26:

Js2θ(s) + βs θ(s) = kT

V(s) − kTs θ(s)
() (2.29)

Ls + R

From the above equation it is possible to get the expression for θ(s):

θ(s) =
 kT V(s)

(Ls + R)(Js2 + βs + k2s)

(2.30)

It is now possible to get the transfer function from the input voltage V to the output
angle θ:

30

T

T

θ(s)
=

V(s)

kT

s[(Ls + R)(Js + β) + k2]
(2.31)

In the same way, considering the equation 2.23 it is possible to get the transfer function

from the input voltage V to the output angular velocity θ̇ :

θ̇ (s)
=

V(s)

kT

(Ls + R)(Js + β) + k2
(2.32)

The above transfer functions are related to the following block scheme, considering 𝑘𝑏 ≅
𝑘𝑇 .

31

3. Types of control
3.1 PID control

A PID is a proportinal-integrative-derivative control used in control system, both in

industrial environments and where continuous and modulated controls are required. The

operation of this system is based on the calculation of an error in time which is the

difference between the setpoint and the feedback, that is the measured process variable

e(t)=Set-Feedback. It is a negative feedback system widely used in control systems. It

reacts thanks to an input to any positive or negative errors.

Figure 3.1 PID control scheme

In the figure 3.1 it is possible to see how the process variable y(t) is subtracted from the

setpoint r(t) to generate the error e(t). The controller acquires a value as input and

32

compares it with a reference value and the difference, the error signal, is used to determine

the value of the controller’s output variable.

The PID controller adjusts based on:

• proportional action;

• integral action (past values);

• derivative action (how fast the signal varies).

3.1.1 Mathematical form

The output can be interpreted as:

𝑢(𝑡)
𝑡

= 𝐾𝑝 ∙ 𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡′)𝑑𝑡′
0

+ 𝐾𝑑
𝑑𝑒(𝑡)

(3.1)
𝑑𝑡

Where 𝐾𝑝 , 𝐾𝑖 and 𝐾𝑑 are non-negative values corresponding to the terms proportional,

integrative and derivative.

The are other types of control based on the PID such as the PI where the derivative action

is null.

3.1.2 Origins of the PID

In the image 3.2 it is possible to see one of the first pneumatic PID controllers

Figure 3.2 first PID controller

33

With the advent of electronic, PID controllers become cheaper and more accessible, made

through Operational Amplifiers. In the fig 3.3, the three operational amplifiers represent

the three types of correction.

Figure 3.3 PID controller circuit

3.1.3 Theory of the PID control

As already mentioned before, the PID has 3 terms, which added together form the output

u(t). (3.1).

𝑒(𝑡) = 𝑆𝑃 − 𝑃𝑉(𝑡) (3.2) is the error (SP is the setpoint and PV(t) is the process variable,

the feedback).

In the Laplace domain, this results in:

𝐿(𝑠) = 𝐾𝑝 +
𝐾𝑖

𝑠
+ 𝐾𝑑 ∙ 𝑠 (3.3)

Where ‘s’ indicates the Laplace variable.

34

3.1.3.1 Proportional term

The proportional term produces an output value which is proportional to the current value

of the error. The proportional contribution can be adjusted multiplying it by the

proportional gain 𝐾𝑝, which is, in fact, constant. There is, therefore,

𝑃𝑜𝑢𝑡 = 𝐾𝑝 ∙ 𝑒(𝑡) (3.4)

A high proportional gain results a large variation of the output also as result of a small

variation of the error. If the gain proportional is too high, the system can become unstable,

viceversa with a small gain proportional, large variations of error and small variations on

the output, which make the insensitive contribution to the error. If the proportional gain

is too small, the system can be slow to respond to disturbances.

Figure 3.4 response of the system to the proportional action

35

0

3.1.3.2 Integral term

The contribution of the integral part can amplify the error and its duration, the integral

term in PID is the sum of the instantaneous error over time and gives an accumulated

offset that should have been corrected previously. The accumulated error is then

multiplied by the integral gain and the whole comes added to the control output.

To recap:

 𝐿𝑜𝑢𝑡

= 𝐾𝑖

∙ ∫𝑡
𝑒(𝑡)𝑑𝑡

(3.5)

The integral term is used to eliminate the error steady state residue, which is generally

presente with a purely proportional control. It necessary to take into account that even, if

the integral term counts the accumulated value of the error from the past, it can cause

overshoots around the setpoint value.

Figure 3.5 Response of the system to the integral action

36

3.1.3.3 Derivative term

The derivative term is calculated by determining the variation of the error over a certain

period, this variation is finally multiplied by the gain derivative 𝐾𝑑

𝐷𝑜𝑢𝑡 = 𝐾𝑑 ∙

𝑑𝑒(𝑡)
(3.6)

𝑑𝑡

This contribution predicts the behavior of the system and increases system stability.

Figure 3.6 Response of the system to the derivative action

3.1.4 Loop tuning

With tuning we want to indicate the changes to the control parameters (proportional,

integrative and derivative gains) which lead to a system with optimal response. Stability

is a basic requirement, but depending on the system, there may be different behaviors and

sometimes the requirements the may be in conflict.

37

Many processes can have degrees of non-linearity and it can happen that in certain fields,

the parameters used are fine, while in other fields these tuning values are incorrect and

do not maintain the system stability; this can be corrected by doing ‘gain scheduling’ or

mapping different paramenters in different regions where the system operates.

3.1.5 Stability

If the PID parameters (𝐾𝑝, 𝐾𝑖, 𝐾𝑑) are not correct, the system can be unstable and very

often this instability is caused by excessive gain, particularly if the system has delays

significant. Theoretically, the system must reach the set value as soon as possible and not

oscillate. Mathematically, considering a classic ring, the following transfer function can

be obtained:

𝐻(𝑠) =

𝐾(𝑠) ∙ 𝐺(𝑠)

1 + 𝐾(𝑠) ∙ 𝐺(𝑠)

(3.7)

Where K(s) is the transfer function of the PID, while G(s) is the feedback transfer

function. The system in unstable if the closed loop function diverges, this happens when

K(s)·G(s) = -1 but tipically this happens when |K(s)·G(s)|=1 with a phase of 180°.

Optimal behavior can be established in two conditions:

• A fixed set is imposed and disturbs the system with an external input, the system

has to go back to set as fast as possible and without wobbling. In practice, a system

faster to reach the set even if there are small oscillations around it, however, they

die down pretty fast rather than having a system that doesn’t it wobbles at all at

the set but inevitably remains slower in reaching it;

• A variable set is imposed and notice how fast and stable the system is in following

the set.

3.1.6 Adjustment methods

There are several methods for tuning a PID, the most used, in general, involves

development of models, then the values of 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 are chosen. However, the most

38

pratical way is to do a manual tuning by seeing how the system reacts, but this can lead

to setup times long. The choice of method is also influenced by how the system is

complex.

• Manual tuning;

• Ziegler-Nichols method;

• ‘Relay’ method;

• Softaware tools;

• Cohen-coon (only for first order processes);

• Ảstrὂm-Hἂgglund.

3.1.7 Limitation of PID control

PID control can be applicable in many situations, in many situations it works well but in

others it may have unsatisfactory performance. The main difficulty with simple PID

control is to have a controlled system with feedback with constant parameters, therefore

there is no direct knowledge of the process that involves delays, compromising

performance in certain cases. PID controllers, when used alone, can lead to poor

performance if the gains are reduced in such a way that the system does not have

overshoot and oscillations around the setpoint. PID controllers have difficulty with the

presence of non-linearity of the system, because they always respond in the same way.

An improvement can be done through feed-forward with system knowledge, using the

PID to check only the errror. PID can also be used by doing ‘gain scheduling’ that is,

using different parameters in based on the work area and performance. A PID control can

also be imbroved by acting on the reading of the values, on the time of sampling,

increasing precision and accuracy or using multiple PID controls in cascade.

3.2 PWM theory

PWM is the acronym for Pulse-Width-Modulation technique used to control digital

devices. It is mainly used for the control of electrical devices, such as motors, digital

valves etc.

39

The average value of voltage and current provided is checked by connecting the load

through pulses repeated ON and OFF in which the duration is controlled through the ratio

of Ton anT. Ideally, if the frequency is high, the result is to an analog control, but we

must to consider the application.

The term duty cycle is proportional to the ON period, in fact we have that: 𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 =
𝑇𝑜𝑛 , for example, a low duty cycle corresponds to a low supplied power, because the

𝑇

power suplly is on OFF most of the time. The duty cycle is expressed as a percentage,

100% means that the load is always powered.

A square wave is therefore created, given precisely by the continuous change between

ON and OFF during the period. By varying the duty cycle, the portion of the ON time

with respect to the period of the carrier varies.

With Arduino the duty cycle can be done through the analogWrite() function and the

values of output voltage are between 0 volts and 5 volts.

Figure 3.7 Duty cycle with different PWM(0-255)

40

Considering figure 3.17 it is possible to see that a 50% duty cycle corresponds to a square

wave which assume a high value for the 50% of the period; a 75% duty cycle corresponds

to a square wave which assume a high value for the 75% of the period and so on. The

output square wave is the signal that drives the switch of the power converter. Anyway,

this kind of control is not able to run the motor in both directions of rotation. In order to

run the motor also in the opposite direction it is necessary to invert the sign of the current

which flows in the motor. To invert the sign of the current a circuit called H-bridge

realized with 4 switches and 4 recirculation diodes must be implemented (in our case

motor driver H-bridge L298N).

3.2.1 Time proportioning

Many digital circuits can generate PWM signals. They normally use a counter that

increments periodically and is resetted at the end of every period of the PWM. When the

counter value is more than the reference value, the PWM output changes state from high

to low (or low to high).

The incremented and periodically reset counter is the discrete version of the intersecting

method's sawtooth. The analog comparator of the intersecting method becomes a simple

integer comparison between the current counter value and the digital (possibly digitized)

reference value. The duty cycle can only be varied in discrete steps, as a function of the

counter resolution.

3.2.2 PWM sampling theorem

The process of PWM conversion is non-linear and generally supposed that low pass filter

signal recovery is imperfect for PWM. The PWM sampling theorem shows that PWM

conversion can be perfect. The theorem states that “Any bandlimited baseband signal

within ±0.637 can be represented by a pulsewidth modulation (PWM) waveform with

unit amplitude. The number of pulses in the waveform is equal to the number of Nyquist

samples and the peak constraint is independent of whether the waveform is two-level or

three-level”.

41

• Nyquist-Shannon Sampling Theorem: “If you have a signal that is perfectly band

limited to a bandwidth of 𝑓0 the you can collect all the information there is in that

signal by sampling it at discrete times, as long as your sample rate is greater than

2𝑓0.”

3.2.3 Applications

Pwm is used to vary the voltage and therefore the power to a generic load. With a duty

cycle equal to zero the transferred power is zero, while at 100% the power corresponds

to the maximum transferred value if the modulation circuit is not present. Each

intermediate value determines a corresponding power supply. The advantage of this

technique is to reduce drastically the power dissipated by the limiting circuit compared

to the use of analogically controlled transistors and MOSFETs. PWM is also used in

efficient voltage regulators. By switching voltage to the load with the apprpriate duty

cycle, the output will approximate a voltage at the desired level. The switching noise is

usally filtered with an inductor and a capacitor. One method measures the output voltage.

When it is lower than the desired voltage, it turns on the switch. When the output voltage

is above the desired voltage, it turns off the switch.

42

4. Modelling and simulation
The pratical part begins by checking the behavior of the motor in open loop, simply by

checking it with a simple graphic interface that allows it to rotate clockwise and

counterclockwise, stop it and adjust its speed with the PWM theory.

4.1 How to interface Matlab and Arduino

The first step was to interface Matlab with Arduino in order to manually control the motor

via PC. The Matlab support package for Arduino allows to write Matlab programs that

read and write data on the Arduino device and on connected devices such as Adafruit

motor shields, I2C and SPI devices. Since Matlab is a high-level interpreted language,

programming with it is easier than with C/C++ and other compiled languages. Morover,

it is immediately to see the results from the I/O instructions – no compilation. Matlab

includes thousands of built-in math, engineering, and graphing functions to quickly

analyze and visualize the data collected by Arduino device.

Figure 4.1 Matlab serial connection with Arduino

The graphical command interface was the first application that it was considered

appropriate to create.

43

4.2 GUI application creation

The first step to do is the guide instruction in the Matlab command window in order to

create a GUI. As a result, a window appears that allows you to create a new project. By

choosing to create a new job, it will begin to work in the window shown in the figure 4.2

Figure 4.2 first step Matlab GUI

On the left there is a menu from which it is possible to select which components to insert

in the graphic interface.

For the first control, the open loop one, the following buttons are necessary:

• Pushbuttons: to choose the type of movement (clockwise or counterclockwise);

• Slider: to increase or decrease the speed;

• Edit text: to view the selected speed.

44

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

'gui_Singleton', gui_Singleton,

...

'gui_OpeningFcn',

@DCcontrol_OpeningFcn, ...

'gui_OutputFcn',

@DCcontrol_OutputFcn, ...

'gui_LayoutFcn', [] , ...

'gui_Callback', []);

Figure 4.3 first Matlab GUI with start and stop

It is possible to see the matlab code below, automatically generated after the creation of

the matlab GUI and implemented to be able to communicate with Arduino. (Comments

also generated automatically have been eliminated to make reading more fluid).

45

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State,

varargin{:});

else

gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before DCcontrol is made visible.

function DCcontrol_OpeningFcn(hObject, eventdata,

handles, varargin)

% Choose default command line output for DCcontrol

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

function varargout = DCcontrol_OutputFcn(hObject,

eventdata, handles)

% Get default command line output from handles

structure

varargout{1} = handles.output;

clear all;

global a;

a = arduino('COM3');

a.pinMode(6,'output');

a.pinMode(7,'output');

% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata,

handles)

global a;

a.digitalWrite(6,0);

a.digitalWrite(7,1);

% --- Executes on button press in pushbutton2.

46

function pushbutton2_Callback(hObject, eventdata,

handles)

global a;

a.digitalWrite(6,1);

a.digitalWrite(7,0);

% --- Executes on button press in pushbutton3.

function pushbutton3_Callback(hObject, eventdata,

handles)

global a;

a.digitalWrite(6,0);

a.digitalWrite(7,0);

% --- Executes on slider movement.

function slider1_Callback(hObject, eventdata, handles)

global a;

slider = get(hObject,'Value')

slider1 = slider*20;

set(handles.edit1, 'String', num2str(slider1));

a.digitalWritePWMVoltage(8, slider);

guidata(hObject, handles);

function slider1_CreateFcn(hObject, eventdata,

handles)

if isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

function edit1_Callback(hObject, eventdata, handles)

function edit1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function edit1_Callback(hObject, eventdata, handles)

function edit1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

47

4.3 PID speed control and final graphic interface

The PID control of this test bench is summarized in the Arduino and Matlab GUI codes

(4.4 and 4.5). The closed loop speed control adds the value obtained with the control

open loop with the result achieved from the PID control. The control part allows us to

compensate for disturbances.

4.3.1 Arduino Code

Figure 4.4 inizialization of the parameters for speed control

In the inizialization part of the variables, a string and a character are defined. They

allow us to read the values sent by Matlab. Arduino digital pins, 2 and 3 to read the

encoder, 4 5 and 6 to communicate with the H-bridge. Lastly, the PID parameters,

errors and constants, initialized to zero are defined.

48

Figure 4.5 Void setup() speed control

In the Void setup(), all the necessary informations are given before the execution of the

program.

In particular:

• pin_a and pin_b are INPUT_PULLUP to force the input pin to be HIGH by

default, it sets the pin as an Input and also activates the internal resistor, which

keeps the pin at HIGH level;

• pin_fwd,pin_bwd and pin_PWM are OUTPUT, this means that a digital signal

can go out from these pins and therefore can be high or low.

• TCCR1A: is timer/counter 1 control register A;

49

• TCCR1B: is timer/counter 1 control register B;
• TCNT1: is timer/counter 1’s counter value;
• CS12: is the 3rd clock select bit for timer/counter 1;
• TIMSK1: is timer/counter 1’s interrupt mask register;
• TOIE1: is timer/counter 1 overflow interrupt enable;
• Initialize Motor speed and position.
• Attach interrupt: Rising, the interrupt is executed when passing from a LOW

level to a HIGH level.

The void loop:

Figure 4.6 Void loop() speed control

In the void loop the cleanliness of the string is checked and if the motor is on or off

according to the matlab GUI.

PID control:

Figure 4.7 speed PID control

50

The errors are calculated and thanks to the action of the proportional, integrative and

derivative constants, the stability of the system is obtained. When the motor is stopped

the variables are reset to 0.

PWM regulation:

Figure 4.8 PWM regulation PID speed control

If the pulsations exceed 255 the speed is set to maximum otherwise to 0

Communication with Matlab:

Figure 4.9 Communication with Matlab

The values sent by the Matlab GUI are received.

51

4.3.2 Matlab GUI

The graphical interface of Matlab consists of the setting of the PID parameters and the

choice of the target speed (fig 4.10)

Figure 4.10 Parameters and target speed to be sent to Arduino

In detail it is composed of:

• Four edit text: allow us to write the set value which will be read as a string and
then transformed into a number;

• ‘START’ pushbutton: allow us to send values to Arduino.

The behavior of the system is displayed in this graph 4.11 , with the speed versus time,

always created on the Matlab GUI:

Figure 4.11 Graph to visualize the response of the system

52

handles.s = serial('COM3');

set(handles.s,'BaudRate',9600);

set(handles.s,'DataBits', 8);

set(handles.s,'StopBits', 1);

fopen(handles.s);

guidata(hObject, handles);

return;

After creating the matlab GUI, the code is implemented to make it possible to

communicate with Arduino. In particular:

• Initialization of the serial port;

• Communication speed;

• Data bits;

• Stop bit.

4.4 PID position control

Arduino simplifies the position control. Indeed, it tries it both with a fixed position and

with a variable positin over time, for example using sin and cos functions. The PID

position control was no then implemented with a graphical user interface, it is designed

only as a test so that it can the be implemented with the linear axis.

53

4.12 Inizialization of the parameters for position control

As for speed control, errors and pins are defined. Subsequently, the communication speed

of the serial port and the characteristics of the pins are determined in the void setup().

In the void Loop:

The initialized variables are used to save the values between the time phases. Thus, they

are able to adjust the control signal. The error is calculated by subtracting the current

position from the target position. The maximum value of PWM=255 means thate we are

at 100% od the duty cycle.

4.13 Void loop() position control

54

The values of the controller constants are those entered for the final test, which leads to

the stability of the system. You have the operations for the control and regulation of the

maximum power (regulated thanks to the PWM output and the H-bridge) by following

the reading of the code.

Encoder reading:

In the following figure, you have the final piece of the code. Here, you can see the function

that controls the direction of the motor. Moreover, the figure shows if it is OFF. The

increase or decrease o

4.14 Arduino code to read the encoder

55

4.5 Anti-Windup, speed and position control.

When using a regulator with integral action, it is possible that the controller output reaches

these limits; in this case the action of the actuator cannot grow, even if the error of

regulation is not null. Consequently, the integral term continues to grow, but this increase

does not produce no effect on the plant control variable. This situation, in addition to not

making the regulator work properly, makes the regulator inactive even when the error

decreases or reverses its sign; in fact, the regulation system can reactivate only when the

u(t) signal falls within the linearity zone of the actuator characteristic (discharge of the

integral term). This phenomenon is called integral wind-up.

The code starts with the same initialization of the pins of the controls seen previously. A

classic control that increases or decreases a counter in order to check if the motor rotates

clocwise or anticlockwise.

Figure 4.15 inizialization of the parameters Anti-windup

56

The key part of the code is this with the trajectory that the system must follow, we

calculate the acutual angular speed and the position. We also define the trajectory,

minimize the error using the PID and the wind-up formulation.

4.16 void loop Anti-windup

The encoder function measure rpm and position of the motor. The power supply is finally

set to 12[V].

57

5. Model validation and results
In this part, the key points of system behavior are analyzed in fig. 5.1:

Figure 5.1 parameters of the step Response

• Average speed: the average speed maintained during the period considered;

• Peak value: the highest speed value during the period considered;

• Rise time: the time taken by a signal to change from a specified low value to a

specified high value.

58

• Settling time: the time elapsed form the aplication of an ideal instantaneous step

input to the time which the amplifier output has entered and remained within a

specified error band.

• Overshoot: the occurence of a signal or function exceeding its target.

• Steady-state error: the difference between the desired value and the actual

value.

The constants of the PID controllers affect the behavior of the system in this way:

PID Rise Time Overshoot Settling Time Steady-state err

𝐾𝑝 decrease increase Small change decrease

𝐾𝑖 decrease increase increase eliminate

𝐾𝑑 Small-change decrease decrease No change

Table 5.1 effects of PID constants on output behavior

5.1 DC Motor identification

To identify the motor, tests were carried out to measure the I/O behaviour voltage and

current:

Fig 5.2 DC Motor Identification

59

5.2 Experimental results of speed control with matlab graphic

interface

In this formulation, the PID part allows to compensate the disturbances. However, it is

linked to the accuracy of the encoder. The system is powered by an external 12V power

supply

Controller constants are calibrated with the Ziegler-Nichols method wich consists of:

• The loop is closed by inserting a constant of low proportionality until the system

begins to exhibit stable oscillations, so as to close the loop;

• The chosen value of 𝐾𝑝 is what allows us to trigger a permanent oscillation;

Fig. 5.3 Simulink simulation PID speed control

The first value of 𝐾𝑝 that allows us to see stable oscillations is 𝐾𝑝 = 0.9.

60

Figure 5.4 Beginning of oscillation with 𝐾𝑝0 = 0.9

• The chosen 𝐾𝑝 becomes the reference 𝐾𝑝0;

• The period of oscillation 𝑇0 is measured;

• 𝐾𝑖 is increased until maximum performance is reached;

Experimentally the following results are found:

• 𝐾𝑝 = 0.48;

• 𝐾𝑖 = 9.6;

• 𝐾𝑑 = 0.06;

• 𝑇0 = 0.2 [ms];

Inserting these values in the Matlab GUI the system response is that of the figure 5.5

61

Figure 5.5 behaviour at 150 rpm

• Peak value: 171 rpm;

• Rise time: 0.93 [s];

• Settling time: 3.41 [s];

• Overshoot: 14%;

• Steady-state error: 2.4%.

62

5.3 Experimental results of speed control with matlab graphic

interface at different speeds.

The behaviours are evaluated by looking at the different speed using the same parameters

of the PID used previously and calculate with the method of Ziegler-Nichols, always

powering the motor at 12[V]:

• 50 [rpm];

• 100 [rpm];

• 150 [rpm];

• 210 [rpm].

Figure 5.6 behaviour at 50 rpm

63

 Figure 5.7 response at 100 rpm

64

 Figure 5.8 behaviour at 150 rpm

65

 Figure 5.9 behaviour at 210 rpm

The overshoot for low speeds is higher and the steady state encrease with increasing

speed. At different speed levels, the read system responses are not very oscillating while

they oscillate more at low speeds, when PWM decreases. This could be interesting to test

in motors with higher power so as to notice the differences in a much more marked way.

5.4 Experimental results of the the position control on Arduino

The PID position control speed, made using the Arduino IDE, is the basis of what the

position control will be for the linear axis. The results are analyzed on the Arduino serial

plotter

66

5.4.1 Experimental result of the position control with fixed

target position.

PID parameters used: using the method of Ziegler-Nichols based on the following table:

Control type 𝐾𝑝 𝑇𝑖 𝑇𝑑

P 0.5𝐾𝑝0

PI 0.45𝐾𝑝0 0.8𝑇0

PID 0.6𝐾𝑝0 0.5𝑇0 0.125𝑇0

Table 5.2 Ziegler-Nichols method

• 𝐾𝑝 = 0.66;

• 𝐾𝑖 = 6.6;

• 𝐾𝑑 = 0.0165;

• 𝑇0 = 0.2 [ms].

Figure 5.10 Position control on the Arduino serial plotter

67

5.4.2 Experimental result of the position control with sinusoidal

test.

To perform this test, unlike the previous one, just replace the int target variable in the

code with an int sin(). For example target=130sin(prevT).

• 𝐾𝑝 = 0.66;

• 𝐾𝑖 = 6.6;

• 𝐾𝑑 = 0.0165;

• 𝑇0 = 0.2 [ms].

Figure 5.11 Position control, sinusoidal function on the Arduino serial plotter

68

5.12 Data from Arduino serial plotter to Matlab

5.5 Experimental results of the the speed and position control

on Arduino, Anti-windup.

First test done by increasing 𝐾𝑝 until displaying oscillations, 𝐾𝑑 and 𝐾𝑖 set to zero.

PID parameters used:

• 𝐾𝑝 = 1;

• 𝐾𝑖 = 0.03;

• 𝐾𝑑 = 0.0015;

• 𝑇0 = 0.2 ms;

The motor is rotated in both directions following a sinusoidal path. The data obtained in

the Arduino serial plotter were entered on Matlab to obtain a clearer and more readable

graph. The maximum speed is setted and it is 230 [rpm]. The system it tends to stabilize

69

and then to follow the desired profile with a minimum of delay. This is due to the time in

which the signal is communicated.

Fig 5.13 Anti WINDUP path

Figure 5.14 PID speed control with Anti-windup technique

70

6. Conclusion and future applications
6.1 Final implementation on the linear axis.

After checking the motor both in position and speed, the future application will be to

connect it with the linear axis in the fig. 6.1, 6.2 and 6.3

Figure 6.1 Linear axis test bench

71

Figure 6.2 linear axis test bench

Figure 6.3 linear axis test bench

72

The screw applied to the DC motor has a pitch of 1[mm] and it will allow the table to be

moved forward or backward by 1[mm] at each revolution of the motor. As a result, the

rotary motion is transformed into linear motion. The DC motor, with its rotary movement,

transmits motion to the reducer which it turn rotates the screw. Being coupled to the

screw, they produce a linear movement as being constrained they do not rotate but they

‘unscrew or screw’.

73

6.2 Conclusion

The main idea of the work was the creation of a PID controller with a Matlab graphic user

interface to stabilise a DC motor. In order to do that, it was crucial to analyse the whole

system and its functioning.

The realisation of the Matlab GUI has given satisfactory results. Through the Matlab

Support package for Arduino Hardware it was possible to proceed to imlement the

Arduino controllers and to found clear advantages. First of all, because the functions

given by Matlab are better exploited with respect to the only one of the Arduino IDE that

would require many lines of code, difficult to implement with C or C++ languages and it

would take enormous knowledge in the field of programming. Secondly, it is also possible

to control the variables in real time and, thirdly to have the possibility to directly analyse

the data without having to move them to Matlab. The experimental data made it possible

to tune the parameters of the model with a higher precision then before.

Since the final aim of the thesis would be the control in the position of the linear axis, we

can assume that a possible future control can be done with a greater power supply, so as

to be able to have better response behaviors especially with larger speed differences,

compared to a small size motor.

74

Bibliography

- C. Bonivento - C. Melchiorri - R. Zanasi, “Sistemi di controllo digitale”,1995.

- MathWorks, “SystemIdentificationToolbox”

- MathWorks, “Arduino support from Matlab”

- MathWorks, “Arduino support from Simulink”

- Law, A. M., and W. D. Kelton. 1991. Simulation Modeling and Analysis, Second

Edition, McGraw-Hill.

- Wikipedia, PID control Arduino, Arduino.cc

- Banks, J., J. S. Carson, II, and B. L. Nelson. 1996. Discrete-Event System Simulation,

 Second Edition,Prentice Hall.

- Mathworks, GitHub. “Communication Matlab and Arduino”

- Wikipedia, PWM

- Wikipedia, Motor Driver H-bridge

- Lastminuteengineers.com, Motor Driver H-bridge

75

- Luca Zaccarian, “Motori CC ed encoders incrementali”. MathWorks, “System

Identification Toolbox”.

- Montgomery, D. C. 1997. Design and Analysis of Experiments, Third

Edition, John Wiley.

- Law, A. M., and M. G. McComas. 1991. Secrets of Successful Simulation Studies,

 Proceedings of the 1991 Winter Simulation Conference, ed. J. M.

76

Thanks
I would like to thank my tutors: Professors A. Mura and L. Mazza for excellently guiding

and supporting me during these months and for what they taught me in the past years;

I would also like to thank all the people which in the years of university studies have

supported and tolerated me: they know who they are.

To ‘Zia Rosa and Nonna Melina’ who celebrate with us from the sky.

