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Abstract
Artificial Intelligence (AI) has developed tremendously in recent years, notably thanks to the

advances in neural networks. However, the "black box" character of the latter has slowed down
the diffusion of Deep Learning (DL) in the industry. Indeed, despite the in growing efficiency,
neural networks still do not have the confidence of industrials. This is why explainability is a
rapidly expanding research sector.

Delfox is working on Deep Reinforcement Learning (DRL) solutions for important industrial
actors working in particular with critical systems. Explainability applied to Reinforcement Learn-
ing (RL) is therefore a key issue for Delfox and thus it is the focus of this internship. Explainability
is still a recent field of research and there is no industrial application of such a technology known
to date. Hence the challenge of Delfox is to make that happen, as they also need to show that its
AIs are reliable.

This report presents an exhaustive bibliography, a taxonomy of both the eXplainable Artificial
Intelligence (XAI) methods applicable to RL and the methods from eXplainable Reinforcement
Learning (XRL). From this bibliography, three methods, namely Feature Relevance (FR), Obser-
vation Clustering (OC) and Probe Sensing (PS), have been selected, applied and studied onto one
of Delfox’s projects, they have been studied and applied on a project. This report introduces these
three methods and discusses the results obtained and how they can generate complementary ex-
planations of the decisions and behaviors of an Artificial Intelligence (AI) of RL.

Keywords: Explainability, Interpretability, Explainable Artificial Intelligence, Reinforcement Learn-
ing, Deep Reinforcement Learning, Explainable Reinforcement Learning
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Abstract in French
L’intelligence artificielle s’est énormement développpée ces dernières années, notamment grâce

aux avancées sur les réseaux de neurones profonds. Cependant, le caractère "boîte noire" de ces
derniers a freiné la diffusion du Deep Learning (DL) dans l’industrie. En effet, malgré l’efficacité
grandissante des réseaux de neurones, ceux-ci n’ont toujours pas la confiance des industriels.
C’est pourquoi l’explicabilité est un secteur de recherche en pleine expansion.

Delfox travaille sur le Deep Reinforcement Learning (DRL) pour d’importants acteurs indus-
triels travaillant notamment avec des systèmes critiques. L’explicabilité appliquée au Reinforce-
ment Learning (RL) est donc un enjeu clé pour Delfox qui a motivé le travail de ce stage et la rédac-
tion du présent rapport. Le DRL est un domaine encore jeune et il n’y à ce jour pas d’application
industrielle d’une telle tehnologie, d’où le défi de Delfox et l’importance de montrer que leurs IA
sont fiables.

Ce rapport présente une bibliographie complète, une taxonomie des méthodes d’eXplainable
Artificial Intelligence (XAI) applicables au RL et des méthodes du XRL. De cette bibliographie,
trois méthodes appelées Feature Relevance (FR), Observation Clustering (OC) et Probe Sensing
(PS), elles ont été séléctionnées, étudiées et appliquées sur l’un des projets de Delfox. Ce rapport
introduit ces trois méthodes et discute des réultats obtenus et comment elles peuvent générer des
explications complémentaires sur les décisions et le comportement d’une IA de RL.
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Glossary
Explainability An explainable model is a model where feature contributions, the actions taken,

and the decision process (at each step) can be understood. A model can be made explainable
through other methods applied to this model. (explainability and interpretability will be
used as synonyms). 2, 5

Explanation Additional meta-information, generated by an external algorithm or by the machine
learning model itself, to describe the feature importance or relevance of an input instance
towards a particular output classification. (from Das and Rad 2020). 9

Interpretability A desirable quality or feature of an algorithm that provides enough expressive
data to understand how the algorithm works. (from Das and Rad 2020), (explainability and
interpretability will be used as synonyms). 1, 5, 6, 11

Taxonomy The practice and science of classification of things or concepts, including the princi-
ples that underlie such classification. Originally used only for biological classification, tax-
onomy has developed to become synonym for classification. 1, 7, 8, 41
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Introduction
Delfox is an AI-first startup which develops Autonomous Learning Systems based on Deep

Reinforcement Learning (DRL). Its clients are prestigious actors of the aeronautics, spatial and
defense industries (ASD) such as Thales, Ariane Group and Dassault Aviation. However, the in-
famous “black box” effect that deep neural networks (DNNs) suffer also affect DRL. Therefore,
Delfox needs to prove that its AI can be trusted and are robust. One way to enhance this confi-
dence consists in making their decisions explainable. The problematic of this thesis is thus the
application of Interpretability methods to DRL in an industrial context.

The objectives of this thesis are therefore to justify and explain the decisions of the Artificial
Intelligence (AI) developed by Delfox. This means: to explore the eXplainable Reinforcement
Learning (XRL) literature, to try different methods and provides the means to easily use the rele-
vant methods for Delfox. The idea is to propose a framework to automatically apply the methods
to a trained AI from Delfox.

This thesis will present how were fulfilled those objectives. To provide the necessary elements
to understand the work that was effectuated, the thesis will follow the following plan:

• Presentation of the context of this internship: the company, the scientific aspect and the rele-
vance of this research.

• Description of the state of the art in eXplainable Artificial Intelligence (XAI) and XRL through
the developed Taxonomy of those domains.

• Description of three methods that were applied to one of the project of Delfox. Each method
will be explained extensively, then some graphics obtained with such method will be pre-
sented and analyzed.

• Conclusion of the thesis through the obtained results, the contributions of this internship and
the perspectives.
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1. Context
First of all, to understand what was done during this master thesis and why it was done, the

context will be presented. The first point will be a presentation of the company, Delfox. In a sec-
ond and third phase, the two scientific directions of the subject will be presented, (Reinforcement
Learning (RL) and Explainability). Finally, a description of the objectives of this internship will
conclude the context part.

1.1 Delfox

Delfox is an AI-first startup that develops Autonomous Learning Systems based on Deep Re-
inforcement Learning (DRL). Its unique technology, built upon state-of-the-art techniques (Schul-
man et al. 2017) and (Lowe et al. 2020), lead to great successes with prestigious actors of the
aeronautics, spatial and defense industries (ASD) such as Thales, Ariane Group and Dassault
Aviation. It was founded in 2018 and already counts fourteen persons.

1.1.1 Their Mission

Till now, Delfox was a company of service but it is now developing a product to expand its
horizons. Traditionally, Delfox was responding to request for proposals on projects by big French
companies. Those companies, which are interested in RL applications but do not have access to
the related expertise internally, rely on such projects to study the benefit of RL in their own fields
of application. Delfox first settled a strong partnership with Ariane for Space Situational Aware-
ness and developed its RL expertise with Thales and Dassault Aviation on various other topics.

Today, while keeping its historical partnerships, Delfox is developing his first product a a aim-
ing at allowing non-RL-expert to develop AI systems based on DRL.

1.1.2 The R&D Team

The R&D team is composed of nine persons, two machine learning doctors (including my tutor,
the R&D team lead), five machine learning engineers and two machine learning interns (includ-
ing myself). The whole team is specialized in Deep Reinforcement Learning (DRL), mostly thanks
to their work at Delfox. Apart from my tutor who supervises all projects, team members usually
work on one or two projects, including the product development.
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1.2 Reinforcement Learning (RL)

Reinforcement Learning is an area of machine learning, at the same level as supervised and
unsupervised learning. The RL is a change of paradigm compare to Deep Learning, here, the Ar-
tificial Intelligence (AI) learns by trial and error. There are several key elements in RL as depicted
in figure 1.1. The elements are :

• Agent: The entity that represent the AI.

• Environment: The space or world within which the agent evolves or moves. The environ-
ment is often a simulation of the reality with several entities and a physic. But it can also be
a board of chess.

• Observations: What the agent see of the environment, it could be an image or a list of posi-
tions. This is the input of the AI.

• Actions: How the agent interact on the environment, his decisions, it could to move forward
or turn for example. Those actions are the output of the AI.

• Reward: How the environment evaluate each action, the way for the agent to learn if his
decisions were good or bad. This is the process as in dog training were they receive a reward
when they perform well or progress. This can be seen as the objective of the AI.

• Policy: A part of the agent, the decision process of the agent. This is a function that take
observations as input and outputs actions. This is the part of RL that becomes a neural
networks in DRL. This term will also be used to refer to the general behavior of the agent.

• Reinforcement Learning Algorithm: A part of the agent, the algorithm that update the pol-
icy based on the reward. This algorithm try to maximize the cumulative reward. There exist
many different algorithms.

Another particularity of RL is the time. An agent is trained on episodes, an episode refer
to the simulation of the environment during a given amount of steps or till the agent complete
his objective. A step represent an iteration of the cycle represented in figure 1.1 (observations,
actions, update of the environment, reward). Furthermore, if at each step the environment can be
represented with an image, then the simulation of an episode can create a video. In this way, it is
easy to see what the agent is doing in the environment.

There exist several algorithms considered as the foundation of RL:

• Q-learning is an algorithm based on the updating of a Q-function. This function gives the
expected cumulative reward for an observation-action tuple, and is used by the policy to take
decisions.

• Policy Gradient learns the policy directly, evaluating which state should be preferred. It then
outputs a probability distribution on the possible actions.

• Actor-Critic is a combination of Q-learning and policy gradient. The actor is the policy, the
algorithm that takes decisions, and the critic, a function similar to the Q-function.
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FIGURE 1.1: Reinforcement Learning Paradigm
Source: mathworks.com

This report will not go into further details on RL algorithm, two well-made crash courses be-
ing available here: Introduction to RL and Q-Learning and Policy Gradients and Actor-Critics. A
complete dictionary (written by Shaked Zychlinski on towardsdatascience.com) is also available.

Deep Reinforcement Learning (DRL) is the Deep version of RL, where deep neural networks
are used to model the agents. For example, Deep Q-learning is a Q-learning algorithm where the
Q-function is approximated by a neural network.

1.3 Explainability

Nowadays, Machine Learning and Deep Learning techniques are progressing at an astonish-
ing rate. Everybody now knows about the possibilities and potential of such methods. However,
their use has been slowed down by a profound lack of trust in those methods, as they carry
with them the heavy image of being black boxes, particularly with neural networks used in Deep
Learning. Moreover, when using an algorithm to make predictions or take decisions on critical
situations, legal problems may arise. For example, the GDPR set of laws (2018), introduces the
right to explain, meaning that every person has the right to know how and why any algorythm
decide. This creates the need for interpretable, certifiable, and accountable models and methods,
which leads to a new field of research, eXplainable Artificial Intelligence (XAI), and in the same
idea, eXplainable Reinforcement Learning (XRL).

XAI is a recent branch of machine learning, as most of the work on this topic has appeared
after 2015. The aim of XAI is to provide tools to understand what deep neural networks do. The
different type of methods will be described in the first part of the bibliography (see section 2.1).

https://www.mathworks.com/help/reinforcement-learning/ug/create-agents-for-reinforcement-learning.html
https://medium.com/@shakedzy/qrash-course-deep-q-networks-from-the-ground-up-1bbda41d3677
https://medium.com/@shakedzy/qrash-course-ii-from-q-learning-to-gradient-policy-actor-critic-in-12-minutes-8e8b47129c8c
https://towardsdatascience.com/the-complete-reinforcement-learning-dictionary-e16230b7d24e
https://towardsdatascience.com/the-complete-reinforcement-learning-dictionary-e16230b7d24e
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In the literature, both terms can be found : Interpretability and Explainability being used as
synonym. As no clear definition arises from the literature, both terms will be used as synonyms
in the present thesis.

XAI methods can be applied with several purposes. It could be to justify that a decision or a
group of decision was correct or to make a representation of the model that can be understood
by humans. Nevertheless, all those purposes join in the scope of trusting the models. That is
why, even if initial terms have a slightly different meaning, they are used in the same way in the
literature.

1.4 Internship Objectives

The subject of this master thesis is post-hoc Explainability for Deep Reinforcement Learning.
This section will introduce the context, the objectives and the missions I was in charge of during
this internship.

1.4.1 Context

Delfox works for companies manipulating critic systems, those companies thus require models
to be certified. For now, Delfox do not create RL-based agents that are used in real applications.
What Delfox do is closer to proofs of concept. To enable the practical use of trained agents, Delfox
is involved in :

• Proving that agents provide better solutions (more optimized and robust), than what humans
or scripted algorithms can do.

• Convincing that agents can be trusted, hence the need for Explainability.

Moreover, Explainability will help improving Delfox’s technologies, because, a better under-
standing of agents, makes it easier to adapt them and improve them.

1.4.2 The Objectives

The objectives of this internships are :

• Survey of the XAI scientific literature, particularly focused on post-hoc techniques methods,

• Choice, implementation and test of the most promising approaches,

• Adaptation to the specific context of deep reinforcement learning

• Application to real complex problems brought by our industrial clients.

• Propose tools that will allow Delfox to apply Interpretability methods easily in the future.

• This tool should aim to provide results interpretable by clients.
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1.4.3 The Missions

To achieve those goals, the assigned missions are :

• Bibliography: List all possible solutions and select which one are relevant for Delfox. This
was done through an exhaustive bibliography on existing XAI and XRL methods.

• Application: Apply those solutions on a project, and explore the possibility of several promis-
ing solutions. Using different types of solutions will provide complementary explanations
and interpretations, leading to a more complete understanding of agents.

• Communication and Visualization: Those results need to be communicated. Hence, for
each solution, a set of visualizations was provided to ensure that most of the information
collected was accessible.

• Documentation and Presentations: To allow this work to be reusable complete documenta-
tion needs to be done. A documentation through an example of an extensive analysis and the
means to interpret the results from the Interpretability methods. With the same goal, several
presentations will be done to the R&D team, to present the methods and the results.
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2. Bibliography
The aim of the bibliography is to explore existing solutions, understand them and select the

interesting ones for Delfox. This bibliography and all the related documentation were done in
the beginning of the internship in approximately 5 weeks. I began this bibliography with papers
on the eXplainable Reinforcement Learning (XRL) field, but this field is even more recent than
the eXplainable Artificial Intelligence (XAI) one. There were only one survey on XRL (Puiutta
and Veith 2020), hence it was not possible to focus only on existing solutions in XRL. Therefore,
an exhaustive literature on XAI was also performed to find methods that could be adapted to XRL.

To be able to present all the existing work to the team, the creation of a Taxonomy to classify
XAI and XRL methods was necessary. Most of the XAI surveys proposed a Taxonomy for Inter-
pretability methods, (Adadi and Berrada 2018), (Carvalho, Pereira, and Cardoso 2019), (Das and
Rad 2020), and (Belle and Papantonis 2020). The majority agreed on three points that will be pre-
sented later in section 2.1.1. However, there is no agreed-upon Taxonomy considering the type,
methodology, or principle of the methods. Moreover, no taxonomy was able to class every known
methods and at the same time gives a hint on how the method is working. Therefore, creating a
new taxonomy by merging existing ones was necessary (see section ??).

After a description of the agreed-upon and the created XAI Taxonomy, this thesis will present
the different categories of XRL methods in section ??.

2.1 eXplainable Artificial Intelligence (XAI)

Making a Taxonomy is a difficult task which requires a complete understanding of the subject
and a deep exploration of existing methods. However, thank to previously cited surveys, finding
the related papers was easy and the proposed taxonomies have been used as inspirations. The
three categories agreed upon by most surveys will be presented first and then the two proposed
levels will be described. All studied papers on XAI methods are referenced in the appendix B.1.

The final taxonomy consist of 5 levels: (see figure A.1)

• Specificity: Model-Agnostic vs Model-Specific;

• Application Time: Intrinsic vs post-hoc;

• Scope: Global vs Local;

• Type: Type of the explanation;

• Principle: Mechanism of the interpretability method;
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2.1.1 Agreed Upon Taxonomy

• Specificity: Model-agnostic or Model-specific, the specificity determines if the interpretabil-
ity method is :

– model-agnostic, i.e, a method that can be applied to any model or a large group of mod-
els.

– Or model-specific, a method that can only be applied to one model or a smaller group
of models.

• Application Time: Intrinsic or Post-hoc:

– An intrinsic method is a method that needs to be built at the same time as the model
itself is built. Those methods often require to deeply understand the model and to adapt
the method to the precise model structure. Note that some models called transparent
models are inherently interpretable.

– Post-hoc methods are applied to a trained model or need to be trained at the same time
as the model. They allow much more flexibility on the model choice.

This category is closely linked to the previous one, as most intrinsic methods are model-
specifics and most post-hoc methods are model-agnostics.

• Scope: Global or Local, the scope determines if an interpretability method aims at explaining
a decision or the model globally.

– A global XAI method is a method that tries to summarize the overall behavior of the
model. One way is to make a simpler and easier to interpret model that will mimic the
model to be to explained.

– A local method focuses on a single decision, and tries to unveil the decision process for
this decision.

Model-agnostic and post-hoc methods from XAI can be applied to Reinforcement Learning
quite simply, for both local and global methods. However, model-specific or intrinsic methods
can be much more complex to adapt. Therefore this bibliography and the following Taxonomy
will focus on model-agnostic and post-hoc XAI methods. Furthermore, post-hoc methods are
preferred by Delfox because they can be applied directly and do not need modifications of the RL
algorithm. Besides, both local and global methods will be treated, note that, several local expla-
nations may bring global comprehension of the model decision process.

2.1.2 Developed Part of the Taxonomy

The two developed levels of Taxonomy specific to model-agnostic and post-hoc are type and
principle.
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• Type: The types are four large category afterward divided in principles. They represent
the kind of Explanation produced, while the principle describe the means to produce such
Explanations The type is close to the proposition from (Adadi and Berrada 2018). It is less
precise than principle as a type may bring together several principles.

– Simplifications refer to the techniques that approximate an opaque model using a sim-
pler one, which is easier to interpret.

– Feature Relevance methods attempt to explain a model’s decision (i.e. the output) by
quantifying the influence of each input variable. This results in a ranking of importance
scores, where higher scores mean that the corresponding variable was more important
for the model.

– Example-based methods extract representative instances from the training dataset in
order to demonstrate how the model operates. They are local by definition.

– Visualization methods aim at generating visualizations that facilitate the understanding
of a model. They are local by definition, otherwise, the model is said to be transparent.

• Principle: The principle is about the mechanism used by the method to make the prediction.
One clear example of the difference between type and principle would be back-propagation
and perturbations which both aim at explaining features relevances while using different
principle. The principle is a mix of proposition from (Das and Rad 2020), and (Belle and
Papantonis 2020). Not all types will be described here, only the most relevant to be derived
or used in XRL.

– Compressions are global simplification methods that take an ensemble of models called
the teachers, and a simpler (transparent) model called the student. The student is trained
to replicate the teachers’ behavior.

– Approximations are local simplification methods, where the model’s behavior is approx-
imated around the studied data point, like in a Taylor development. See LIME (Ribeiro,
Singh, and Guestrin 2016) as example.

– Explanations generated by giving several slightly different input to a trained machine
learning model and looking at the impact on the output fall in the perturbations princi-
ple. See Sensitive Analysis (SA) (Baehrens et al. 2010) and Occlusion (Zeiler and Fergus
2013) as example.

– Back-Propagation, in contrast to perturbation methods, uses the backward pass of infor-
mation flow in a neural network to understand neuronal influence and relevance of the
input towards the output. The majority of gradient-based methods focus on either vi-
sualization of the activation of individual neurons with high influence or overall feature
attributions reshaped to the input dimensions. See LRP (Bach et al. 2015) and Integrated
Gradient (Sundararajan, Taly, and Yan 2017) as example.

– Prototypes are example-based methods, therefore local methods. They provide data
points (called prototypes) close (in the input space) to the studied one and have the
same output as the decision that is studied here. The idea is to say, the output of X was
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Y because those X’ are close to X and they also output Y. See MMD-critic (Lloyd and
Ghahramani 2015) as example.

– Counterfactuals are example-based methods that show the closest data points that have
different outputs. To give examples of how should have been the input to get a change
on the output. See counterfactual (Wachter, Mittelstadt, and Russell 2017) as example.

2.2 eXplainable Reinforcement Learning (XRL)

Methods for XRL cannot be classified as strictly as methods for XAI. Indeed there are far fewer
methods. Hence bringing them together is more complicated. Nevertheless, some general ideas
can be isolated. For XRL, the three levels of taxonomy agreed upon for XAI can also be applied.
Nonetheless, many methods will not be relevant for Delfox. All studied papers are referenced the
appendix B.2.

In the bibliography, six groups of methods were represented:

• Simplification: This type is the same as the one in XAI, but here it can be applied to several
parts of the RL algorithm. This class represents close to half of the studied papers. It can
be applied to the policy, the actor, or the critic (for an algorithm that possesses either of
them). Either of those functions can be simplified in a more interpretable function. Finally,
observations space can also be simplified, such a method was applied during this thesis and
will be described in section 3.3. See distillation (Rusu et al. 2015) as example.

• Feature relevance: It is the study of the influence of each observation n the actions. There
was no paper on this subject in the XRL literature. But this type is the easiest to derive from
XAI to XRL, and those methods could be applied to the policy, the actor, or the critic. (see
methods from XAI, section 2.1.2).

• Transparent models: Model that are by construction interpretable are either really simple or
there structure provides intuition on the model functioning. Hierarchical RL (Shu, Xiong,
and Socher 2017) and Reward machine (Icarte et al. 2018) fall in this category. There are also
methods to apply when building the model, but those methods may be difficult to apply for
Delfox because they use existing libraries.

• Interestingness elements: Represented by only one paper (Sequeira and Gervasio 2020), it
is a method which extracts elements from episodes simulation. Those elements gives insight
on the agent behavior, what are usual sequence actions, what part of the observation space
is never explored...

• Autonomous explanations are natural language explanations, developed for interaction be-
tween working robots and humans. This explanations can be seen as the robot directly ex-
plaining to a human what he is doing. For example company, to the question: "Why are you
here?", the robot could answer: "I am going to the stock, but the main way was blocked.".
See Autonomous Explanations (Hayes and Shah 2017) as example.
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• Neurons activation: This is a group of method where the activation of neurons is studied.
There are no paper specific one of those methods for XRL, but such method was used in a
paper (Jaderberg et al. 2019) from DeepMind to analysis their agents. Besides, a method from
this group was applied during this thesis, the probe sensing (see section 3.4).

In RL, in an episode, decisions are ordered this allows a time related analysis in XRL that was
not available in XAI. To perform this analysis, tools specific to XRL or complex adaptation of XAI
methods are necessary. For instance, if explanations from the application of local XAI methods on
one decision are grouped together, it can provide global insight.

Many RL algorithms have a policy divided in an actor-critic pair, the actor decide on the action
and the critic estimate how good are each actions. (more detail on Policy Gradients and Actor-
Critics course). In this thesis, the interpretability methods have been applied to the actor, but they
could have been applied to the critic.

In XRL as in XAI, several different Interpretability methods should be applied. They are often
complementary, one method can neither work for every model nor give every possible explana-
tions.

https://medium.com/@shakedzy/qrash-course-ii-from-q-learning-to-gradient-policy-actor-critic-in-12-minutes-8e8b47129c8c
https://medium.com/@shakedzy/qrash-course-ii-from-q-learning-to-gradient-policy-actor-critic-in-12-minutes-8e8b47129c8c
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3. Application
After the bibliography, the next step was to select some methods, choose one or several projects

and apply the selected methods to the project. The chosen project is called Heaxplain and it is in-
troduced in section 3.1. The methods were applied to only one project because it allows more
extensive researches on each methods. Each applied method will be presented after the introduc-
tion of Heaxplain. The selected methods are :

• Feature Relevance (section 3.2): it is a group of methods adapted from XAI. The idea is to
study the influence of the observations on the actions. The concept is intuitive and natural
even for people not familiar with interpretability or Deep Reinforcement Learning, hence for
example, for Delfox’s clients. It highlights the important factors for a decision. This kind of
methods brings many information and enables effective representations.

• Observation Clustering (section 3.3): this method is specific to XRL, the idea is to divide the
observations spaces into sub-spaces where the agent behavior is comparable. This method is
quite intuitive and the results are easy to understand.

• Probe Sensing (section 3.4): this method is also specific to XRL. The idea is to see what are
the information that the model can compute and have access to in order to make a decision.
This method is far less intuitive and is difficult to explain but the results provide information
on the representation the agent have of the environment.

3.1 Heaxplain

The name Heaxplain refers to a project conducted in collaboration between 4 companies, the
one that created the project, a company that formulated the physical constraints, Delfox that de-
veloped the environment and the RL models and the company that worked on the interpretability
of the RL agent behavior.

3.1.1 The Project

The problematic is a capture-the-flag game between two planes. Each plane have his side,
begin in his camp and need to capture the flag and bring it back. The agents have missiles and
can destroy each other. The figure 3.1 show an image extracted from the video of an episode of
Heaxplain. On this image, the elements aforementioned can be seen, the two agents are the red
and blue arrows, the flag is the green square in the middle, the red and blue lines delimit the
sides or camps and the red point is a missile fired by the red agent. The small dots represent the
trajectories and the arrows in front of the agents show there directions, those two elements are
only visual elements and do not exist in the simulation.
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FIGURE 3.1: Image Extracted from a Video of Heaxplain

3.1.2 Reinforcement Learning in Heaxplain

In the Heaxplain environment is a simplified simulation of the reality where planes fight and
try to capture a flag.The agents are the planes but for one agent, the other agent is part of the
environment. The observations are what the agent see of the environment and the actions are the
way the agent interact the environment. In Heaxplain, there are 19 observations and 4 actions.

First, the observation : (position and speed have two elements and the direction have three)

• Global observations

– the side of the agent

• Observations on the agent itself

– position

– speed

– direction

– number of missiles left

• Observations on the enemy

– position

– speed

– direction

• Observations on the flag

– position

– if the flag has been captured

Second, the actions:

• Gas (Gaz): The intensity of the acceleration (a negative value serve to break)

• Turn (Virage): The intensity of the turn (the directions right or left are decided by the sign)

• Fire-range distance (D_tir): this distance delimit a zone (the fire-range) around the agent, if
the enemy is in this zone and the agent still have missiles, the agent fires a missile.

• Number of missiles (Nb_msl): The number of missiles that should be fired, used to decide
if the agent should shoot or not.
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3.1.3 The Reasons To Select Heaxplain

The reasons to choose Heaxplain are multiple :

• The project was already finished before the thesis. Therefore, the agent was already trained
and efficient. There was only one agent to analyze.

• As aforementioned, interpretability was an important part of the project’s scope and has
thus been already studied. However, the method that has been used to explain the models is
patented and does not belong to Delfox. The results from this study were available and can
serve has a baseline for for Feature Relevance (see section 3.2) and Observation Clustering
(see section 3.3).

• This project is well balanced. It is complex enough to have interesting behavior to be in-
terpreted and simple enough to be interpretable and to allow effective visualization of the
interpretation.
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3.2 Feature Relevance

Feature Relevance (FR) is the first kind of methods that has been studied. Those methods were
developed for XAI and can be applied to neural networks. However there are neural networks
in Deep Reinforcement Learning. Therefore FR methods are naturally transportable to XRL. For
those methods, the python’s library DeepExplain was used.

This section section will first present the necessary elements to understand the FR methods :
The concept, the objectives of the use of such methods, the different methods, the different possi-
ble levels of study and the pipeline. After this presentation, this section will present two different
axis of analysis. Those axis are linked to the levels that will be presented beforehand.

3.2.1 The Concept and Objectives

The concept

Feature Relevance methods aims at computing the impact of the input (features) on the out-
puts for one decision. This impact is called relevance of a observation for one action, the terms
relevance and influence will be used as synonyms. There are two principles of FR methods :

• Perturbation, methods that analyze the consequences of the modification of one or several
features on the output.

• Back Propagation, methods where influences are computed by Back-propagation. The value
of the actions are back-propagated using the model weights to get the relevance of the obser-
vations. (for further explanations and examples, see section 2.1.2).

In the case of RL as aforementioned in section 1.2, the studied model is the actor, the obser-
vations are the inputs and the actions the outputs. In Heaxplain there are 19 observations and 4
actions, therefore, at each time-step, a FR method will produce 19 ∗ 4 = 76 relevances.

The Objectives

Feature Relevance (FR) methods are based on an intuitive reasoning. The first thing a human
would ask to understand a decision is what where the elements that influenced the choice. Then
he would ask how much did each factor influence a decision and if it was negatively or positively.
This is exactly the answers that FR methods provides. The primary objective of such methods are
thus to answer those questions.

Those objectives are the initial objectives inherited from XAI, those objectives are naturally
kept. However, with the time relative analysis, FR methods can provide much more complex
information and explanations. The analysis of a sequence of actions will lead to the analysis of a
behavior. The new objectives of such analysis is the analysis of patterns in the behavior, the study

https://github.com/marcoancona/DeepExplain
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of phases in the behavior or comparison between episodes.

The objectives of having such information is dual. First, for the clients of Delfox, the results of
those methods are part of the information they are looking for. They can easily give sense to what
they see and have a natural interpretation of such results. Secondly, for the Machine Learning En-
gineer (MLE) that is building the agent. The influences highlight the utilities of each observation
and if the MLE detects illogical relevances, it allows him to make improvements or to discover
interesting behaviors.

The methods

There exist many different methods for computing feature relevances, each one of them having
its particularities. They have advantages and disadvantages, but none of them stood out. There
were four methods used :

• Layer-wise Relevance Propagation (LRP) (Bach et al. 2015) : a back-propagation method.

• Integrated Gradient (Sundararajan, Taly, and Yan 2017) : a back-propagation method.

• Occlusion (Zeiler and Fergus 2013) : a perturbation method.

• SHAP (Lundberg and Lee 2017) : a perturbation method.

The Levels

Initially, those methods are local methods, meaning they explain one decision. However, sev-
eral local explanations can bring global insight on the decision process. In RL it is possible to
concatenate the relevances for each decision in an episode. The order of the concatenation is the
time order. This create another level of study of Feature Relevance applied to DRL. There also
exist other levels of study. Below is a list of the possible level of study :

• The level of a decision is the necessary first step to build the other level. But a comportment
is a sequence of actions, hence this level only allow limited explanations and it will not be
presented in this document.

• The level of an episode is the concatenation of the method applied to all time-steps of an
episode. It will be describe in section 3.2.2.

• The level of an ensemble of episodes could be seen as the mean of the relevances over
several episodes. At this level, relevances are still arranged temporally and this level will
also be presented after. This level will be called the tendencies. It will be presented in section
3.2.3

• The level of an ensemble of decisions (not temporally linked) this level compare the distri-
bution of the value of each observations and actions. The information provided by this level
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are not meaningful alone and their analysis is more complicated to explain than the two pre-
vious levels. Thus, it will not be presented in this thesis. However, this level allow further
analysis if used after the two previous ones.

The Pipeline

One of the objectives of the internship was to build a framework to allow the RD teams to use
interpretability methods easily. This framework uses a trained model to simulate episodes and
then apply the following pipeline to those episodes to generate visualizations. The visualization
produced by each level of study are separated. As depicted in the figure 3.2, he pipeline consist
of the following steps :

• Load the model

• Use the model to simulate episodes

• Use the episodes to compute densities, (level of an ensemble of decisions).

• Use the episodes and the model to compute the relevances, the relevances are computed
with the library DeepExplain, what is called relevances here is a matrix of size 19 ∗ 4 of the
relevances, (level of a decision).

• Aggregate the relevances from the level of a decision to get the level of an episode, the
concatenation gives a matrix of size 76 ∗ totalnumbero f steps.

• Compute tendencies from the level of an episode by computing the mean of several episodes
for each step. The matrix size is still 76 ∗ totalnumbero f steps. (level of an ensemble of
episodes).

• From all levels, make visualizations.

FIGURE 3.2: Feature Relevance Pipeline

The pipeline works for every method presented before but a more robust result was obtain
with the mean of each methods. Therefore, to computation the relevance, the first step is to com-
pute the relevance for each method and then take the mean mean of those methods. The output
is still 76 relevances for each step and episode.

https://github.com/marcoancona/DeepExplain
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3.2.2 Study at the Level of an Episode

The study at the level of an episode is the study of an ensemble of decisions (actions) ordered
temporally, (all the actions of one simulation). A sequence of actions represent the behavior of
the agent in a given situation. This study allow to reveal the important observations for an agent
depending on the step. This level allow to study the behavior of the agent through an example.
It is the easiest to understand and the most natural level, it makes this level very interesting for
Delfox when thy need to provide explanations on their agents behaviors.

For this part, only one graphic will be shown, the figure 3.3, this graphic provides all the in-
formation contained by the matrix of relevances as it is a heatmap. There are 4 heatmaps because
the influences are computed for each action. In those heatmaps, each line represents an observa-
tion and each column represents a time step. This means that a line represents the evolution of
the relevance of one observation on one action through time in one episode. Red and blue pixels
represent high influences and gray pixels, no influence. Blue pixels represent negative influences.
(For reminders on Heaxplain, see section 3.1)

FIGURE 3.3: Heatmap of Feature Relevance Throughout an Episode

The figure 3.3 reveals phases in the comportment of the agent. A phase in the comportment
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is determined by a clear change in the relevances at a given step for at least one action. In this
episode, 3 main phases appear. With information from the information and with the video of the
episode, it is possible to characterize those phases :

• Approach, steps 0-30 : The agent goes from his camp to the flag.

• Fight, steps 30-60 : The enemy enters fire-range and the agent fires his missiles. The agent is
still looking for the flag.

• Return steps 60-100 : The agent has just captured the flag and is coming back to his camp.

This graphic is interesting when it is put in parallel with the evolution of the observation and
action values. In this case, the value of the action D_tir is 0 (minimum) till the step 30 and 70000
(maximum) after. On the figure 3.3, the relevances of action D_tir are negligible after the step 30
(too small). Therefore, the value 70000 seems to be the default value for this action. Hence what
is important to explain is the reason for the diminution on the 30 first steps. In the case of this
method, this explanation is to give the observations that have a negative influence on the value
of D_tir during the first 30 steps. Those observations are here the number of missile and the di-
rection of the agent. An interpretation of those explanation could be : The agent still have missiles
and it faces the wrong decision. Therefore it decides to wait before firing the missiles. Reducing D_tir is a
way to wait before firing.

3.2.3 Study at the Level of an Ensemble of Episodes

The study at the level of an ensemble of episodes, also called tendencies, consist in the merg-
ing of the relevances of several episodes. The scope of this level is not to analyze the behavior of
the agent but to see if what was analyzed on one episode can be extrapolated to an ensemble of
episodes, i.e discover tendencies in the behavior. The transitions between phases in the behavior
will be fuzzy in the heatmaps, because the initial position of the agent is random and the ap-
proach phase may be longer. Another application of this level of study is to compare the behavior
of the agent depending on the environment parameters. For example in Heaxplain, it is possible
to change the starting side of the agent or the type of enemy it faces.

The plots that can be exported from tendencies are the same as in the level of an episode.
Therefore the figures 3.4 and 3.5 are also heatmaps. It will be easier to compare and to understand.
For this level, each line will not be analyzed precisely, the interesting information come from the
comparison between heatmaps. There are two kind of comparison possible :

• The comparison of the heatmaps of relevances between tendencies and one episode (where
the episode could have been in the episode batch of the tendencies). This comparison allow
to see if the behavior of this episode is representative of the policy (global behavior).

• The comparison of the heatmap of relevances between two tendencies with different environ-
ment parameters. This comparison will provide information on the impact such parameters
have on the agent behavior.
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The figures 3.4 and 3.5 both represent a batch of 100 episodes. The figure 3.4 correspond to a
start of the agent on the left and the figure 3.5 correspond to a start of the agent on the right side.

FIGURE 3.4: Feature Relevance
Left Tendency Heat-map

FIGURE 3.5: Feature Relevance
Right Tendency Heat-map

The first kind of comparison aforementioned is possible between the figure 3.3 from previous
level and figure 3.4. Indeed, the figure from previous level describe an episode where the agent
started from the left side. This comparison indicates that the episode is a particular because the
phases in D_tir are far less clear. This affirmation is verified with the comparison of the action
distributions, in fact, with a start from the left side, the D_tir value usually stay at 70000 dur-
ing the whole episode. The episode that served as an example for previous level was selected
because the described behavior was easy to see and to explain. Nevertheless, the other part of
the heatmaps are quite similar, this indicates that in this episode, a particular situation led to a
particular behavior and it may be interesting to deepen the analysis on this situation. There are
many other things that could be interpreted from those graphics, this was just an example.

The second kind of comparison is also possible, this time between the figures 3.4 and 3.5. Apart
from the three phases that appear there seems to be no evident similarity. In fact there are some
common features because depending the side, some features may have a different sign and this
sign impact the sign of the relevances. Hence positive relevances for the left figure may indicate a
similar behavior as negative relevance in the right figure. Even so, this rectification do not justify
alone the differences, therefore, it can be said that the policy depends on the starting side and is
not symmetric.
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3.3 Observation Clustering

Observation Clustering is the second method that was applied. This method was inspired by
what was done by the other company that worked on explainability on Heaxplain. The objective
was to provide comparable information, but the process presented here is completely different
from theirs. This section will first describe the Concept and objectives of this method, then the
process used to build such a method (the clusterings and the merge of those clusterings). Finally,
the results of this method will be described through an example.

3.3.1 Concept and Objectives

This section will present the idea behind observation clustering, the objectives or the form of
results expected from this method and the pipeline used to process the data, build the method
and export the visualization.

The Concept

The Observation Clustering method group observations together in super states where the
agent have the same comportment. The number of expected clusters is not known, but analyzing
different number of clusters may bring different information. This method focus on the possible
observation space and divide it in sub-spaces, those sub-spaces are the clusters.

The Objectives

• Simplify the observation space, group observations that the agent consider as similar to-
gether. Understand how he agent see the environment.

• Simplify the study of the behavior, the analysis of several well delimited behaviors is easier
and more relevant than the direct analysis of the global behavior. Understand the phases of
the comportment and make a temporal study of behavior clusters chaining. See if there are
one or several global behaviors and what make the agent choose one or the other.

• Produce of a Markov chain that represent the agent global behavior with the transitions
between each behavior cluster. This is easy to interpret for a client.

• Produce several complementary graphics to provide information in parallel of the Markov
chain.

The Pipeline

As shown in the figure 3.6, there are three main steps in the pipeline, each one of those are
separated in two sub-steps:

• The generation of the data for the clustering:

https://en.wikipedia.org/wiki/Markov_chain
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– Retrieve data from the simulation of the episodes (the observations and actions).

– Compute the feature relevances with the method presented in section 3.2.

• The creation of a clustering based on the data from episodes and the feature relevances.

– Make several clusterings on various part of the data with different number of clusters
required. (presented in section 3.3.2)

– Merge those clusterings to get a final one for each possible final number of clusters.
(presented in section 3.3.3)

• The analysis of the clustering, this part uses the clustering and information directly from the
data:

– Extract the information.

– Export Graphics built from the gathered information.

The clusterings made on one dataset were not satisfactory no matter the clustering method, the
hyperparameter optimization and the dataset. They were not robust, the most interesting cluster-
ing was never created with the same parameters. Therefore a the idea to merge several clustering
emerged.

FIGURE 3.6: Observation Clustering Pipeline

3.3.2 Clustering

This section will describe how to build the different clusterings that will be merge. To do this,
the explanation is divided in three parts:

• Details on the choice of the clustering method,

• Further information on the necessity to merge several clustering,

• Description of the parameters of the different clusterings that will be generated.
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The Clustering Method

The chosen clustering method is Gaussian Mixture model, many known clustering methods
from the Scikit-Learn library were tried, but Gaussian Mixture was by far the most interesting.
No matter the hyperparameters used, the other methods created one huge cluster most of the
time. Therefore, with a manual analysis of the clustering and thanks to metrics, Gaussian Mix-
ture always appeared better. This method was therefore selected and it was the only one used.

To do the hyperparameter optimization, the Silhouette metric was used. The Silhouette metric
have the advantage to be computed only with the clustering and the data, this way the learning is
completely unsupervised. The Davies Bouldin Index was also tried, but the Silhouette metric pro-
duced more robust results and most of the time clusters with comparable size. In fact, the process
is not completely unsupervised, the clustering was tuned to find "interesting" results. Therefore,
the clustering may be biased, one way to verify this would be to try this method on other projects.

The Necessity to Merge

It was mentioned several time before, but none of the hyperparameters setting or method had
robust results. Therefore, a solution with interpretable results was needed. Some clustering cre-
ated interesting separations between observations but there were always some too small clusters
and it was never for the same set of hyperparameters or dataset. The expected clustering was a
mix of several of those clusterings and boosting models proved their efficiency in classification.
Therefore, a method to merge several clustering was developed. The particularity of this method
is that it allow to merge clustering without using the features. This is useful here because the
interesting clustering were done on several different datasets.

The necessity to merge is in fact a necessity to find a more robust solution and the merge
of clustering is a solution, the solution used here. But before the merge of clustering, not all
clustering should be merge, this lead to the selection of the different interesting clusterings.

The Different Clusterings

The different clusterings come from a combination of two parameters, the dataset used and
the number of clusters in the clustering. The number of clusters go from two to five clusters (4
possibilities) and there are seven datasets (one for the observations, one for the actions and one
for each feature relevance method.) This leads to the creation of 28 different clusterings.

For each one of those clusterings, there is an hyperparameter optimization and the best hy-
perparameters are selected with the Silhouette metric. This leads to the computation of several
hundreds of clusterings and it take some time, but it brings satisfying results.

https://sklearn.org/
https://en.wikipedia.org/wiki/Silhouette_%28clustering%29
https://en.wikipedia.org/wiki/Davies%E2%80%93Bouldin_index
https://en.wikipedia.org/wiki/Boosting_%28machine_learning_%29
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3.3.3 Merge of Clusterings

After the creation of several clustering, the merge can be done. This method is divided into
three parts, the creation of minimal clusters, the merging of those minimal clusters and the selec-
tion of the best merge.

Minimal Clusters

The method is based on two hypothesis :

• Two points (observations) are in the same cluster if they were clusterized together in all the
clusterings.

• The number of time two minimal clusters were clusterized differently is a distance.

Do I need to prove that it is really a distance ?
The minimal clusters are the clusters formed following the first rule. The points in each mini-

mal cluster were clusterized together in all clusterings. Hence it is possible to have clusters with
only one point and a cluster with more than 90% of the points if all clusterings were unbalanced
in the same way.

Those minimal clusters can be seen as the clusters on which all clustering agree, there is no
doubt that those points should be together. Then the distance between minimal clusters can be
seen as how much do clustering disagree on the fact that two minimal clusters should be merged.
For example, a distance of 1 between two minimal clusters means that only one clustering sep-
arated those two group of points. Therefore, for the merge of those minimal clusters, the merge
will be done with the smallest distance first, (hierarchical merge). A representation of an example
of minimal clusters in shown in the figure 3.7.

Merge of Minimal Clusters

The merge of the minimal clusters produces a new clustering with the desired number of clus-
ters. However, as aforementioned, the exact number of clusters is not known and several number
of clusters can be interesting and give different interpretations. Therefore, several clustering are
created, one for each number of clusters between 2 and 8 (2 and 8 are only parameters and are
easy to change). Each one of those clustering is then automatically analyzed and the correspond-
ing plots are exported.

The merging method is hierarchical clustering where each minimal cluster is treated like a
point. The applied hierarchical clustering method was from the Scikit-Learn library. This method
output clusters of minimal clusters, then the level of minimal clusters are forgotten and the clus-
ters of minimal clusters are transformed in normal clusters.

https://sklearn.org/
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FIGURE 3.7: Observation clustering, minimal clusters

The Problem of too Small Clusters

This method produce results that are far better than what I could get with only one method.
But there is still a problem, this method do not prevent output clusters from having a size of one
observations. Clusters with really small size are not a problem themselves, but they make the
analysis more complicated. Small clusters represent rare and specific behaviors, therefore, they
hinder a first pass analysis. In fact, most of the time those clusters were represented by one point
that was an outlier.

Therefore a method that will limit the minimum size of clusters was needed. But this method
should also allow small clusters if they represent a specific behavior and not outliers. (The idea
to make a cluster with outliers was not treated).

A new solution was developed to solve this problem. It was to merge the small clusters before
the closest clusters. The small clusters are determined with a minimum size under which, each
minimal cluster is considered too small. Then, it will be merged with the closest cluster (the re-
sulting cluster could still be under the minimum size.) The new distances between clusters were
computed with a weighted mean (the weights are the size of each clusters). After this first merge,
the same hierarchical clustering as before was applied.

Several minimum size were tried, but for each final number of clusters, the best minimum size
was different. Therefore, for each final number of clusters the best minimum size was selected
with the Silhouette metric. The clusterings with the minimum size parameter to one correspond
to the initial merge of clusterings, (this size was also included). The figure 3.8 is a representation
of this method, the initial process is also included because it is used.
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FIGURE 3.8: Observation clustering, minimal clusters with minimum-size

Finally, the clustering was satisfactory, every selection was made automatically with the Sil-
houette metric. (An example is available in the Appendix D). There were only interpretable clus-
ters in the final clusterings. The number of expected clusters could be selected manually. (the
possibility to output only the most interesting final number of clusters was not explored.)

3.3.4 Results and Interpretations

This section will present the clustering results through an example. All the following graph-
ics were generated from the same clustering, on the same batch of episodes. Only a part of the
available graphics will be presented, those plots are complementary and should be interpreted
together.

The results were obtained with the processing of 60 episodes. In those 60 episodes, half corre-
spond to the right side and the other half to the left side. (Th agent can begin on the left or the
right side). There are also three possible enemies that can be faced, 20 episodes were simulated
for each enemy. Hence for each pair side-enemy, there are 10 episodes. This number is quite low,
but it does not impact significantly the clustering.

The example that will be treated is a clustering with five final clusters. This number of clus-
ters allow balance between interpretability and complexity. More complex graphics would make
the interpretations too long and this example provide interesting results. For this example, three
plots were selected, the Markov chain, the distribution of clusters through time and the spacial
distribution of clusters. Each one of those graphics will be described and analyzed.
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Markov Chain

In the Markov chain, the states represent the clusters, the size of the states represent the num-
ber of steps that were assigned to the corresponding cluster. The transition between two clusters
describe the probability of going from one cluster to the other. It is calculated taking all pair of
consecutive steps. Here, most of the time, two consecutive steps belong to the same cluster.

There are many possible legends that could be applied to the Markov chain, the size of states
and transitions could be associated with many different values. Furthermore, states can also be
colorized with a pie-chart, this provides information to interpret the states. The first Markov
chain (3.9) is not colorized because it is easier to understand when this graphic is seen for the
first time. However, the second one (3.10) is colorized, this coloration was done arbitrarily based
on the phases discovered with the Feature Relevance method (see section 3.2). Thee coloration
correspond to a manual clustering, and the pie-chart show the portion of the steps in one clusters
that are associated to the manually created clusters. This coloration could be seen as the objective
of the clustering but it was used to verify if the clusters made sens.

FIGURE 3.9: Markov chain from the 5c-clustering

The analysis of those Markov chains will begin with the interpretations that can be done with-
out the coloration. Then the interpretations allowed by the coloration will complete the analysis:

Interpretations from the simple Markov chain:

• The transitions between states have low probabilities. Which means that clusters are stable,
the clusters represent behavior and the agent do not oscillate between behaviors.

• Each state only have two output transitions, itself and another cluster. Which means that the
order of the comportment phases is fix.

• There are three different states between the init and the end states. Therefore, the global be-
havior an agent can be divided in three phases. It could be more, but with five clusters, this
is what comes out. This reinforce the conclusion made with the Feature Relevance method.

• There are three possible sequences to go from the init state to the end state. Hence, there are
two or three global behaviors.
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FIGURE 3.10: Markov chain from the 5c-clustering, arbitrarily colorized

Interpretations from the colorized Markov chain:

• The three big phases are Approach, Fight and Return.

• The two behaviors are linked to the starting side.

• The comportment in the return phase is similar for both starting sides.

Distribution of Clusters Through Time

The distribution of clusters through time show the distribution of episodes between cluster at
each step. The x-axis represent the time in steps. There are 60 episodes therefore the maximum
number of episodes associated to a cluster at a given step is 60. The sum between all clusters
should also be 60 episodes. The length of the episodes is not fixed, it goes from 85 to 120 steps,
that is why the green curve starts decreasing after the step 85. The colors and the number associ-
ated to each cluster is the same for all graphics, this allow an easier accumulation of information
between plots.

FIGURE 3.11: Distribution of clusters through time

With this graphic, some affirmations from the previous graphic are confirmed. The cluster 0
and 3 are complementary, there sum is 30 (all the episodes corresponding to one side). The same
can be said for the clusters 1 and 4. The two groups do not sum to 30 anymore after the 40th step,
(40 is the shortest time needed for the agent to capture the flag, start of the return phase). This
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graphic does not bring many information in comparison to the previous one. However it is much
easier to read and allow a faster representation of the different behaviors and phases for someone
new to those graphics.

Spacial Distribution of Clusters

The spacial distribution of clusters show the position of the agent at each step for the 60
episodes. There is one subplot for each cluster and the last one is a superposition of all the others.
The lines in those plots correspond to parts of the agent trajectories that are associated to a cluster.

FIGURE 3.12: Spacial distribution of clusters

With this graphic, it is clearly shown that the clustering divide the episodes between the left
and right starting sides for the approach and fight phases. This graphic also show that the return
phase is similar for both starting sides. But this graphic also highlight a problem that was visible
in the Markov chain, some part of episodes are associated to the cluster 4 while they may look
like they initially belong to cluster 1. This graphic confirms that the behavior is not symmetric
between both side, but it does not explain why. With the help of other graphics and analysis, it
was shown that the behavior also depends on the position of the enemy that is not shown here.
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3.4 Probe Sensing

Probe Sensing (PS) is the third and last method that was applied. This method is an idea from
Delfox inspired by cite quake III. This section section will first present the necessary elements to
understand the PS methods : The reasoning, the process, the objectives of the use of such methods,
the different possible levels of study, the shifted probes and the pipeline. After this presentation,
this section will present two different axis of analysis. Those axis are linked to the levels that will
be presented beforehand.

3.4.1 Concept and Objectives

The Reasoning

The reasoning for this method is more complex than for the two previous methods. Under-
standing the intuition requires to be familiar with neural networks. Those are the steps of the
reasoning :

• The agent’s action requires a complex calculation, otherwise there would be no need for
neural networks.

• This computation transforms the inputs into a new representation of the environment that is
specific to the agent.

• It is from this representation that the agent takes its decisions, this representation is located
the last layer of neurons.

• The part of the neural network between the input and the last layer of neurons must be seen
as a function that transforms the observation space into a representation of this space.

• Probe sensing is the study of this representation. It aims to discover what information the
agent has access to and/or the information it learned to compute.

• Those information are the information that can be calculated from this representation.

However, it is not possible to be sure that one information has been used in a decision or that
it is usually used. Probe Sensing cannot provide certainty.

The Process

The Probe Sensing method uses a trained model to build a probe sensing model and train this
model to predict the aforementioned information. The following list of steps are represented by
the figure 3.13 :

• Consider the first part of the network as a black box.
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• Replace the output corresponding to the four actions by a unique output. The output of
prediction of an information. This information is called a probe. (For examples of probes,
refer to section 3.4.1)

• Recover the weights of the first part of the model and freeze them. Only the weights corre-
sponding to the calculation of the information from the representation are trainable.

• Train this new neural network to predict information, this network will be called the probe
sensing model.

• Study the prediction capacities and the accuracy of the probe sensing model.

FIGURE 3.13: Schema of the Probe Sensing Process

One probe sensing model is made for each different probe. The data used to train those model
are from simulated episodes and the probes are calculated manually. All model are trained with
the same hyperparameters so that the results can be compared.

The Different Types of Probes

Probes can be seen as questions, a question on one information and the value that need to
be predicted by the model is the answer to this question for the given data. There exist many
different types of probes, to simplify the model, they were classed into two big categories:

• Binary probes: Question were there are only two solutions. For example: Is the flag cap-
tured? Is the enemy dead?

• Numerical probes: Question that ask to evaluate a value: How far is the enemy? How long
before the flag is captured?
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The Objective

The objective of this method is to comprehend the representation the agent have of the envi-
ronment. In fact, this method provides a way or have an intuition on the information the agent
has access to and/or the information it learned to compute. This may seems like a little step but
it is not really possible to think like an AI. This method, like the others aims to be part of an en-
semble of methods that provide complementary information.

The levels

This method have the same particularity has the Feature Relevance methods, it can be applied
at different levels. This method allow local and global explanations.

• The level of a decision is the necessary first step for the other levels. It is the comparison of
the predictions and the reality.

• The level of an episode is the concatenation of the method applied to all time-steps of an
episode, this level is still considered a local explanation. This level also allow to directly
compare predictions with reality. In one graphic it is possible to see all predictions and real
probes value. Therefore, with the presentation of this level, a presentation of the level of
decision is not necessary. This level is presented in section 3.4.2.

• The level of an ensemble of episodes, this level computes global explanations. It provides
the accuracy of the probe sensing model. This level gives the margin of error with which
affirmations are made in the previous level. This level is presented in section 3.4.3.

The Shifted Probes

The aforementioned probes are information from a step t that need to be predicted from the
observations of step t. However, it is possible to predict information on step t + k with the obser-
vations of step t. This creates a new set of probes called shifted probes, all probes can be shifted,
the shift can be positive or negative.

The shifted probes allow to analysis the capacity of the agent to predict future information or
remember past information. Those prediction may not be easy if the model does not have a mem-
ory. The shifted probes can also be analyzed with the three levels presented above.

The thesis will not present the analysis of Heaxplain with the shifted probes because the model
in Heaxplain does not have a memory and results were less interesting than the normal probes.
For most probes the mean error grows linearly with the shift.
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The Pipeline

For all levels, the first part of the pipeline is common. The level of a decision is not represented
because there are no visualization generated from this level. In fact, the level of a decision can be
seen in the level of an episode. As depicted in the figure 3.14, the common part of the pipeline is
divided into three big parts:

• Generate Data: The generation of the data necessary to train the probe sensing model is done
in three parts:

– Simulate episodes, as for Feature Relevance and Observation Clustering, the first step
is to simulate the episodes. This creates the input of the probe sensing models.

– Compute probes, the probes are manually computed from the episodes data. They are
the expected output of the probe sensing models.

– Compute shifted probes, the shifted probes are built from the probes. The outputs are
just associated with different inputs.

• Build the probe sensing models: The creation of the probe sensing models is also done in
three part. It only needs the weights of the trained model of the agent.

– Build structure, the first step for every neural network is to set the structure.

– Import weights from trained model, when the structure is built according to the process
aforementioned, it is possible to import the weights.

– Freeze the weights from trained model, those weights are what is studied, therefore
they should not be updated, thus they are frozen.

• Train the probe sensing models, when the data have been generated and the models have
been initiated then it is possible to train the models. There are many different models to train,
there is one model for:

– Each probe: All probes have a specific model, the weights are trained for each probes.

– Each layer: It will be presented in section 3.4.2 but the concept of probe sensing can be
applied to other layers, not only the last layer.

– Each shift: The study of shifted probes, multiply by a huge amount the number of mod-
els that need to be trained. Each pair probe-shift have a specific model. Therefore, to
reduce this number, only a part of the probes are studied here, the ones that are consid-
ered interesting.

After those common parts, when the models are trained, different levels of study can be ap-
plied:

• The level of an episode, at this level, predictions are made with the observations from one
episode and directly compared to the real values of the probe. This level is presented in
section 3.4.2).

• The level of an ensemble of episodes, this level evaluates the trained probe sensing models
with different metrics and analyze results. This level is presented in section 3.4.3.
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FIGURE 3.14: Probe Sensing Pipeline

3.4.2 Study at the Level of an Episode

This section will present how is built this level, introduce the graphics that are exported from
this level, show two examples and provide their respective analysis.

The level of an episode for the probe sensing method is the comparison between true probe
values and the probe sensing model predictions. The predictions are made for all steps of an
episode, then they are concatenated temporally ordered. The same is done for the true values of
the probes, hence for each probe and episode, there are two vectors of values with the length of
an episode.

In the visualizations created at this level and thus for the following figures 3.15 and 3.16, the
two vectors are represented by two lines. The blue line for the predictions and the green line for
the true values. The x-axis represent the time in number of step from the beginning of the episode
and the y-axis represent the probe values. For binary probes, a one signifies true while zero means
false. On those graphics, if the two lines are close, then the predictions accurate.

The probe presented in figure 3.15 is a binary probe, it corresponds to the question: "Is the
agent shooting?". The agent have 12 missiles and is therefore shooting for 12 consecutive steps,
from step 38 to 50. The model detect that the agent is shooting one step after the agent is actually
shooting and detect the stop one step earlier. This leads to an accuracy of approximately 98%. The
fact that the agent is shooting is complex to predict because the actions of the agent are involved
and the probe sensing model do not have access to them. Nevertheless, there are errors, it is not
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FIGURE 3.15: Comparison Between Probe Sensing and Reality on Probe: "Is the Agent Shooting?"

possible to say that agent knows when it is shooting. This probe is a great example because with
binary probes, the errors are essentially done at the transition between true and false. This is the
moment where the model is the most uncertain.

FIGURE 3.16: Comparison Between Probe Sensing and Reality on Probe: "How Long Before the Agent
Reach his Camp with the Flag?"

The probe presented in figure 3.16 is a numerical probe, a time estimation probe, it correspond
to the question: "How long before the agent gets to his camp with the flag?". This probe gives the
number of steps remaining before the agent wins, with 5 extra steps to be sure it stays in his camp.
On the figure, the two lines are close and the maximal distance between the two is 3 steps (the
y-axis also represents steps here). The agent can predict with less than 3 steps of error, the time
it will need to win since the beginning. It is possible to predict the length of the simulation only
with the initial positions. This is weird because the agent often miss the flag once or twice during
an episode and this delay the end of the episode by than more than 3 steps. However, the probes
with accurate results like this one are useful for Delfox. This means that during a simulation it is
possible to show the time before the end of the episode estimated by the agent. When this time is
accurate, this shows to Delfox’s clients that the agent knows what it is doing and understands its
environment.

3.4.3 Study at the Level of an Ensemble of Episodes

The level of an ensemble of episodes will be presented first theoretically then through the ex-
ample of one type of graphic. There are other possible graphics but one type is enough to illustrate
the uses of a method. For this graphic, a new metric has been defined and probe sensing has been
applied in a more complex way as explained before. Hence those two steps will be presented
before the examples and their analysis.

The level of an ensemble of episodes is the study of metrics on the probe sensing models. It
allows to take a step back from the results from the previous level and provide mathematical justi-
fications to the previous affirmations. Those justifications are based on statistics on more precisely
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on the metrics computed between the predictions and the probes true values. It is then possible
to compare those metrics between probes, between shift, between layers or even between times
of an episode.

The New Metrics

There are many metrics but the most common and easy to understand is the accuracy. How-
ever, the accuracy have disadvantages, for example: it does not differentiate between the two type
of errors. Hence it is easy to get a high accuracy with an unbalanced dataset. Also, binary probes
are often unbalanced, sometimes there are more than 95% of zeros in the dataset.

To solve this problem, the idea of a baseline was proposed, this baseline was made with a
dumb classifier. A dumb classifier always output the same value, which is the most common
value in the training set for binary probes and the mean for numerical probes. Then a new metric
was developed, the accuracy gain from the baseline:

accgain =
acc − accbaseline
1 − accbaseline

Note that if accbaseline = 1 then all real value of a probe are the same, hence the probe is not inter-
esting and should be removed.

Nonetheless, the accuracy does not exist for non-binary values, thus it was necessary to create
a comparable metric from the mean absolute error. (mean square error could have been used but
it is harder to interpret). The transformed mean absolute error will be noted maet and is computed
with the mae and the maximum error maemax in the following way:

maet =
maemax − mae

maemax

Note that the mae is always positive and lower than maemax, thus maet is between 0 and 1, the
closer it is to one, the smaller is the mae. Then the same calculation as for the accuracy can be
executed.

This new metrics have a huge advantage, it is that binary and numerical probes can be treated
the same way. Therefore the graphic for both types are the same and the interpretations are also
the same. Hence Delfox only have to explain one graphic to his clients, which are usually familiar
with metrics that go from 0 to 1 where 1 is the best result. Additionally, the results are easy to
treat for the R&D team.

Application of Probe Sensing to Several Layers

After this metric, a new idea emerged, the idea to apply probe sensing to the first layer of the
neural network and to the input. The utility of such method would be to compare the results
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between layers, i.e compare the representations of the environment. If it is easier to compute a
probe with two layers of the neural networks than with just one layer, this means that the added
layer helps the computation of the probe.

The interpretation of such result must not be made hastily. The amelioration of the result on a
probe could be due to the fact that the model learned to compute another information and that the
means to compute this information helped to compute the probe. However, when the results on
the last layer are worse than those on the input, then the probability that the information is used
in the decision process is close to zero. Nevertheless, it is still possible that the agent does not
need the precision available in the observations and thus losses information. Those two points
highlight the fact that probe sensing cannot provide certain results and must be interpreted spar-
ingly.

The process to apply probe sensing to the other layers of the neural network is close to the
original one. The only difference between the two process is the the part of the original model
that is exported to the probe sensing model. As aforementioned, the frozen part of the model can
be seen as a black-box where the output is connected. The difference between each layer is the
black-box, this is depicted in figure 3.17. The probe sensing applied to the input corresponds to
when there is no black box and that the observations are directly connected to the output. The
baseline that is noted benchmark in the figure can be seen as the output that is not connected to
anything, it can only train its bias. There is one probe sensing model for each pair probe-layer.

FIGURE 3.17: Schema of Probe Sensing Applied to Several Layers

The Examples and the Analysis

The following graphic uses both the new metric and the three layers. To build this graphic,
the first step is to compute the metrics, then, from those metrics create the new metric using the
baseline. Finally, compare the new metrics obtain on each layer.
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The following graphics are barplots that show this comparison for several probes. The objec-
tive in this section is not to interpret the result of each probe and make conclusion on the behavior
of the agent. The objective is to illustrate the probe sensing method and provide examples of inter-
pretations. But naturally, the link with the behavior of the agent was done in the documentation
provide to Delfox.

For figures 3.18 and 3.19, there are three bars for each probes, each one represents respectively
the probe sensing applied to the input, to the first layer and to the second layer (blue, orange
and green). The height of each bar corresponds to the value of the new metric obtained on the
corresponding probe sensing model.

FIGURE 3.18: Comparison of Probe Sensing Result on Different Layers for Binary Probes on Agent’s
Actions

The figure 3.18 group together binary probes linked to actions of the agent or the enemy, such
as shooting or following the opponent. For the first probe, there is a negative value because the
trained probe sensing model have a worse accuracy than the baseline. It is thus impossible for
such information to be used in the decision process. The second probe shows a clear gain between
layers, but practice has shown that such schema cannot prove that the probe is used. The third
probe shows however an important gain with layers one and two, hence the agent has learned to
compute this probe (or a similar information) and there is a high probability that it is used in the
decision process. The fourth one may seem like a bad result in the first place. But it shows that
the probe is complicated to compute and that two layers were necessary to gain accuracy. Fur-
thermore, this probe is indeed complicated compute, it is unbalanced (98% of false) and it needs
information on the actions of the enemy that are not provided to the agent. Therefore, the agent
seems to use something closely linked to this probe.
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FIGURE 3.19: Comparison of Probe Sensing Result on Different Layers for Numerical Probes on Time
Estimation

The figure 3.19 group together numerical probes of estimation of the time remaining before an
event. This graphic serves as an example to show that binary and numerical probes can here be
analyzed with the same process. The first, fourth and fifth probes follow the same schema, in-
formation are provided in the input and the first layer make the computation necessary for those
probes. There is a high probability that a highly correlated information (or the probe itself) is used
in the decision process. The second probe show only a small improvement from the input to the
second layer, this means that the probe is not complicated to compute and that further precision is
not necessary. Finally, the third probe, it shows a gain close to 100% for the second layer while the
gain for the input and the first layer is about 2/3. Therefore this probe is complicated to compute
and it is possible to say that it is used in the decision process.
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4. Conclusion
To conclude this thesis and make clear what was done during this internship, the conclusion

part will begin with a review of the obtained results, enumerate a list of the contributions, present
the perspectives, provide my feed back on the internship and finally reflect on the environmental
and societal impacts of this thesis.

4.1 Review of Obtained Results

This section compare the results of this internship to the original objectives. The original ob-
jectives proposed in the subject of this thesis are:

• Survey of the XAI scientific literature, particularly focused on post-hoc techniques;

• Choice, implementation and test of the most promising approaches;

• Adaptation to the specific context of deep reinforcement learning;

• Application to real complex problems brought by our industrial clients.

The idea of a framework was not precised in the subject but brought soon after the first ap-
plication of the methods. To summarize, this internship was done to explore the possibilities of
explainability and provide means to use it if the results were conclusive.

As shown in this report, an exhaustive bibliography of possible methods was effectuated (see
section 2). From this bibliography, the three most promising methods were applied to a project
from an industrial client. Some of those methods were adapted from XAI to XRL.

To apply those methods, a framework was built, the idea was to provide a tool to apply the
methods automatically. The framework takes as input a trained model of the agent and the means
to do simulations. The output of the framework is a large set of visualizations providing expla-
nations on the agent decisions and behavior.

The explanations provided through the various methods were proven satisfactory through the
feedback of Delfox’s team after the presentation of the results. Each method had its advantages
and their explanations were complementary.
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4.2 Contributions

The contributions of this internship can be divided in two groups, the contributions to Delfox
and the contributions to research. Even if the contributions to research may only affect the com-
pany and were done in order to complete the objectives of the internship.

4.2.1 Contributions to Delfox

The contributions to Delfox represent the work that have, will or may impact Delfox:

• The presentation of the state of the art in XAI and XRL and the presentation of the possible
explainability methods for Delfox and the objectives of this thesis.

• The documentation of the bibliography that was effectuated.

• The framework that automatically apply the three presented methods and export all the
visualizations.

• The presentation of those methods and the presentation of their results.

• The documentation of the framework, an explanation of each method, an explanation of each
graphic and an example of analysis.

• For Observation Clustering, the results were better than the baseline.

4.2.2 Contributions to Research

The contribution to research can be seen as the list of methods and tools that were developed
for this thesis but did not exist beforehand:

• Creation of a new Taxonomy for XAI through the merge of other taxonomies.

• Development of the idea of levels of study in XRL.

• Adaptation of Features Relevance to XRL with time related analysis and several level of
analysis.

• A method to apply Observation Clustering.

• A method to merge different clusterings.

• The development of Probe Sensing and a method to apply it with several levels of study.
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4.3 Perspectives

The initial objectives of the internship have been fulfilled, nonetheless, there are still many
possibilities to explore and improvements to provide to the framework:

• The three methods have been studied extensively, but there are still possibilities to explore.

• Three methods were applied, this do not mean that there are no other interesting methods,
for example distillation. (see section 2.2).

• The framework have been tested on Heaxplain, but it needs to be validated on other projects.
It has been developed so that it can be adapted easily, however, it is not possible to know how
well it works without trying it.

• Delfox is now developing his first product which aims at making reinforcement learning ac-
cessible to industrial experts without requiring any IA skill. The integration of interpretabil-
ity to such a product is a strategic point and a future objective.

• The explanations and graphics generated by the framework were judged satisfactory by
Delfox. Nonetheless, the real entity that needs to be convince are the clients of Delfox. There-
fore, the opinion of the clients is the most important factor to decide if the explanations were
relevant. Therefore, those explanations should be confronted to clients opinion.



4.4. Feed Back 43

4.4 Feed Back

This thesis contributed to Delfox, but it also contributed to my development, this section will
present my feed back through the encountered difficulties and what was learned.

4.4.1 The difficulties

During an internship or any type of work, facing difficulties is bond to happen. For this thesis,
the main difficulties were:

• Begin a bibliography: I had never done it before. Therefore I was lost between: the number
of papers, the order in which I should read them and how to organize my thoughts.

• Conflicts between libraries: At some point in the internship, I tried to apply Feature Rele-
vance (FR) to another project of Delfox (which had a really particular structure.) After several
days of trials, I discovered that the library for FR and a library used for the RL algorithm were
incompatible. There were no solutions to use both of them at the same time.

• Redaction: To write the documentation and the reports, it requires redaction’s skills in which
I am lacking. Therefore, to produce qualitative work, I needed a lot more time than I ex-
pected.

• Methods Problems: The application of each method came with several difficulties, however
there was nothing too important.

4.4.2 What was learned ?

Difficulties, errors and critics are what allows us to grow, hence those difficulties made me
learn or improve on the following points:

• To begin a a bibliography, the first thing to do is to look for surveys around your problematic.
They usually go through more papers than you have the time to, they provide summarize
the key elements from all those papers and provide a list of papers that may help for your
problematic.

• Sometimes, libraries are incompatible, it is necessary to change at least one of the two or
develop it yourself. Therefore, before selecting a library, one should always check the com-
patibility with all the other libraries already used. However, it was not possible here because
this incompatibility was not obvious, I did not find a solution to prevent this problem.

• Through the critics and remarks of my tutor at Delfox, Dr. Xabier Jaureguyberry, I improved
my writing skills a lot. It is still one of my main flow but I know it and I am working on it.

• The application of the several interpretability methods naturally enhanced my comprehen-
sion of explainability, machine learning and deep learning.

• I also improved in communication, I had three presentations to do and the key element to
explainability is the ability to convey information.
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Taxonomy
For the description of the levels, see section 2.1

FIGURE A.1: Taxonomy Tree Diagram
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Methods Grid
For details, see 2.1. List of abbreviations:

• GL: Global,

• LO: Local,

• Simp.: Simplification,

• Feat. R.: Feature Relevance,

• Visu.: Visualization,

• Ex.: Example-based,

• Compr.: Compression,

• Pert.: Perturbation,

• BackProp: Back-Propagation,

• Dep. plt: Dependency plot,

• Approx.: Approximation,

• Proto.: Prototypes,

• Counter.: Counterfactuals
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FIGURE B.1: grid of XAI methods
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FIGURE B.2: grid of XRL methods
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Explanation properties

C.1 Properties of Individual Explanations

The following list was extracted from (Carvalho, Pereira, and Cardoso 2019). Definitions have
not been changed, only shortened for some.

• Accuracy: It is related to the predictive accuracy of the explanation regarding unseen data.

• Fidelity: It is associated with how well the explanation approximates the prediction of the
black box model.

• Consistency: Regarding two different models that have been trained on the same task and
that output similar predictions, this property is related to how different the explanations are.

• Stability: It represents how similar the explanations are for similar inputs for a fixed model.

• Comprehensibility: This property is one of the most important but also one of the most dif-
ficult to define and measure. It is related to how well humans understand the explanations.

• Certainty: It reflects the model’s confidence on the correctness of the prediction.

• Importance: It is associated with how well the explanation reflects the importance of fea-
tures.

• Novelty: It describes if the explanation reflects whether an instance comes from a region in
the feature space that is far away from the distribution of the training data.

• Representativeness: It describes how many instances are covered by the explanation.
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C.2 Properties of Explanation Methods

The following list was extracted from (Carvalho, Pereira, and Cardoso 2019).

• Expressive power: It is the language or structure of the explanations the method is able to
generate. These could be, e.g., rules, decision trees, or natural language.

• Translucency: It represents how much the explanation method relies on looking into the
inner mechanism of the ML model, such as the model’s parameters. For example, model-
specific explanation methods are highly translucent. Accordingly, model-agnostic methods
have zero translucency.

• Portability: It describes the range of ML models to which the explanation method can be ap-
plied. It is inversely proportional to translucency, meaning that highly translucent methods
have low portability and vice-versa. Hence, model-agnostic methods are highly portable.

• Algorithmic complexity: It is related to the computational complexity of the explanation
method. This property is very important to consider regarding feasibility, especially when
computation time is a bottleneck in generating explanations.
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Example of the Minimum Size Results
The figures D.2 and D.1 are TSNE’s representations of clustering. The figure D.2 show the re-

sults when there are no minimum size for the clusters. (There are four clusters but only three can
be seen). However on figure D.1, they clearly appear.

FIGURE D.1: Clustering Results Without the Minimum Size

FIGURE D.2: Clustering Results Without the Minimum Size
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