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Summary

The object of this paper is the data-driven optimization of a new public
transport lines in smart-cities. This paper provides a solution to improve
urban public transport line planning based on public transport data, urban
street data, and population data. Two scores for computing the performance
of public transport network (PTN) are used: the velocity score and sociality
score. They are indicators of city transport accessibility and public trans-
port operation capacity based on population distribution respectively. Also,
a scoring model based on the principle of isochron is used to evaluate and
calculate the sociality score of the city PTN. Then, the particle swarm op-
timization algorithm(PSO) is introduced and what kind of problems can be
solved by PSO algorithm. A greedy strategy is proposed to optimize the line
by changing the position on the stops in line, and a improved version of the
PSO is proposed. According to the sociality score of PTN, greedy strategy
is adopted, and improved PSO algorithm is used to optimize the longitude
and latitude position of the stations of the new line to seek the maximum
sociality score of city PTN after adding this line, so as to have the best op-
eration ability based on population distribution. This paper optimizes the
current version of the metro D line under construction in Rome. By adjust-
ing the location of the stops of metro D in the planning, the sociality score is
improved. By comparing the urban sociality score before and after optimiza-
tion, our new metro D have achieved 8.0% improvement of the city sociality
score. This paper confirms the role of improved PSO as an optimization
algorithm in solving the line planning problem and gives a complete strategy
that tends to do the line planning according to the population density dis-
tribution and PTN. The research significance of this paper is that the line
planning scheme combined with scoring model and optimization algorithm
can help city line planning to be data-driven to provide more schemes for
engineers and planners reference, for the final line construction site selection
to provide a data-driven scientific basis.
Key words: data-driven, line planning, line optimization, particle swarm
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Chapter 1

Introduction

1.1 Smart-city theory
In today’s world, there seems to be an obvious trend to use the prefix "smart".
For example, cities all over the world are branding themselves as "smart
cities" or striving to become "smart cities". Planners and decision-makers
support "smart growth". Infrastructure planning involves "smart grid" of en-
ergy, "smart network" of information and communication technology (ICT),
and "smart mobility" of transportation. "Smart" or "smarter" may be seen as
the next frontier in urban planning, decision-making, and management. A
common basic theme is to apply technology to urban planning and manage-
ment, so that time and resources can be more optimized, so as to improve
efficiency. In the context of modern technology, "intelligence" means follow-
ing the process of computer programming or guidance, involving a certain
degree of intelligent autonomy or automation [1].

The smart city aspects involve information and communication technology
to gather, analyze and integrate the key information of the core system of ur-
ban operation, so as to make an intelligent response to various needs including
people’s livelihood, environmental protection, public safety, urban services,
industrial and commercial activities. Its essence is to use advanced informa-
tion technology to realize the intelligent management and operation of the
city, so as to create a better life for people in the city and promote the harmo-
nious and sustainable growth of the city. Google adopted the GTFS standard
file (https://developers.google.com/transit/gtfs/) to encourage pub-
lic transport companies to release their data in a uniform way in order to
be included in its map platform. It is nowadays possible to find hundreds of
companies having released their data, and there are portals where this data
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1 – Introduction

is collected and exposed [2]. Using big data sets released by public transport
companies, we can analyze and have a new understanding of the operation
of the city. Using these, new urban planning can be carried out. Nowadays,
the data generated by mobile phone applications and sensors in our daily life
continue to supplement the traditional data sets. The massive and accurate
data enriches our experience of the operation mode of cities.

There are many scenarios of smart cities. For example, in terms of "smart
transportation", the population and area of some large cities and mega cities
are often very large. A huge transportation network will be built to serve
people’s daily life. For example, Rome has a population of 4.3 million and an
area of 1285.31 square kilometers. Cities like Rome have a high demand for
urban transportation. Rome has currently over 350 bus lines, three metro
lines over 37 miles (60 km) and a new metro line D under planning, also there
are several regional railways complement the three metro lines in Roma (see
figure 1.1). An efficient and reasonable transportation network will bring
great traffic benefits, which is very important for the citizens and the munic-
ipal government.

1.2 Optimization of public transportation
Public transport plays an important role in metropolitan areas. In the sub-
urban environment, the planning and operation of public transport is partic-
ularly important because of the low population density and the distance to
the city center. An excellent public transport planning can greatly improve
the income of public transport companies and the convenience of citizens,
and from the perspective of environmental protection, citizens using public
transport can reduce exhaust emissions and protect the air. Public trans-
portation planning mainly includes two levels [9]: strategic level and opera-
tional level as it is reported in figure 1.2 In the strategic level, it involves the
design of transportation network planning, line planning, timetabling and
tariff planning, refer to the public transportation network planing, the new
line planing, the public transportation timetable design, and the plan for the
ticket price. In the operation stage, it includes delay-management and re-
scheduling, works during the operation of public transport. The optimization
of public transport can start from the above transportation planning. Here
we now briefly introduce strategic level’s planning. Network planning in-
cludes the design of the transportation network. The outcome of the process
of network planning is the public transportation network (PTN). However, in
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1.2 – Optimization of public transportation

Figure 1.1. The routes and stations of the regional railway and metro in Rome[3]

real life a PTN is usually not designed from scratch, but only modifications
of an existing PTN are considered, such as finding new stations in a metro
or bus network, closing existing stations, or finding a subnetwork for opening
rapid transit lines.

Line planning is to plan the route of bus or metro line in PTN on which
service should be offered. Line planning has been well studied in the litera-
ture. In [10, 11], the goal is to maximize the number of directly connected
passengers under the constraint that all passengers can be transported. The
advanced integer programming technique is used in the proposed method.
Under similar constraints, the goal of [12] is to minimize the cost of public
transport companies. The paper [13, 14] studies the route planning problem
considering different vehicles simultaneously. Various models and algorithms
are discussed in [24]. In addition, there are also studies on new lines. Re-
cently, in [15, 16, 17, 18, 19, 22], it is considered to find the route plan and the

13



1 – Introduction

Figure 1.2. Planning process in public transportation[9] p.2

best route for customers. In these methods, the goal is to design the route
in such a way that the customer’s travel time is minimized. In addition,
some research use the number of customers to transfer as a target, [23] deals
with the special case of locating a transport line to maximize the number of
passengers.

It can be seen that the optimization of public transport is more focused on
line planning at the strategic level, and the optimization for line planning is
closer to real life, which is conducive to solving practical problems. Therefore,
according to the actual problems, the design of the optimal optimization
scheme can greatly improve the reliability of public transport at the strategic
level.
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1.3 – Choosing new public transport routes

1.3 Choosing new public transport routes

Now some cities are actually facing the need to optimize PTN, Take Rome as
an example, with a population of 4.3 million and an area of 1285.31 square
kilometers. Under the pressure of population growth, according to the pre-
vious paragraph, planning the new traffic line is the most direct scheme to
optimize the existing PTN. This brings new problems, such as how to choose
the location of the new stations? How to maximize the benefits of the new
public transport route? The quality of the public transport route includes
many factors, such as the speed to the destination, the carrying capacity of
urban people, and the cost of the traffic line construction. These problems
will have new solutions based on big data obtained from smart city. Using
the massive data and the existing PTN distribution, we can use a scoring
model for new line planning. Scoring model is used to analyze the existing
public transport routes and the distribution of residents, evaluate the public
transport score. According to the research of Biazzo et al[21], we will be able
to use public data to analyze and evaluate the major cities in world. Biazzo
et al also provide the model which can analyze the public transport score of
the whole city through the city data, we call it scoring model in this paper.
The model could evaluate urban PTN and give two types of indicators ve-
locity score: quantifying the overall speed of entering a specific area of the
city, and sociality score: quantifies how many people you can reach from a
specific area. With these two indicators we can evaluated the urban PTN
and calculate the score of the whole city by adding simulation stations.The
detailed introduction of the model and the concept and calculation of the
public transport score will be explained in Chapter 2. By adjusting the lo-
cation of the new line and comparing the relationship between the location
of each station and the score of the new line, the optimal line is selected as
the construction goal. This paper will focus on what kind of method and
algorithms can effectively select the optimal route. In this paper we focus on
social significance of public transport, quantifies how many people one per-
son can meet in a typical daily trip. Our experiment give an option about
how to choose a new route on the basis of the existing network, so that it
can get the maximum sociality score. Our goal is to enable PTN to let the
population reach as many people as possible in a specific time window. It
also means that PTN can connect more people and regions.
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1.4 Outline of methodology and results
The research problem of this paper is the optimization of urban public trans-
port lines. This paper uses some experience on some data-driven optimiza-
tion researches, such as optimization of charging infrastructure placement
for shared vehicles [4, 5]. What kind of execution strategy and optimization
algorithm to choose for line optimization is the main research content of this
paper. This paper takes Rome as the experimental object. Firstly, the public
transportation and urban population distribution of Rome are analyzed by
using the scoring model. Then, according to the demand of new public trans-
port lines in the city, the solution based on real population distribution and
public transport network is provided for line planning. Based on the scoring
model, this paper evaluates the simulation line. According to the evaluation
results of the scoring model, the PSO algorithm and local optimal greedy
strategy are used to optimize the simulation line to maximize the commut-
ing efficiency of the whole city. At the end of the paper, based on the existing
public transport network in Rome, we evaluate the Metro D line that Rome
is planning to build based on the score model. With the location of metro
D stations planned by the government, we use PSO and greedy strategy to
optimize it. After optimize the metro D, the sociality score of the whole city
(with new metro D) is 8.0% higher than that of the original Metro D.
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Chapter 2

Scoring model and
computational
improvements

The most critical points for finding the optimal solution of line planning
based on known PTN are:

1. How to quantify and evaluate the PTN added to the new line?

2. What kind of algorithm can be used to select the station location of the
new line?

In this chapter we will introduce a way to quantify and evaluate the PTN.
The work developed in this thesis aim at providing optimization scheme

for the construction of new urban traffic lines. So, how to compare the effect
of adding new lines on existing PTN? First of all, we need to evaluate and
score the existing PTN, and then calculate the score of the PTN with a new
line after line planning. We will see the impact of a new line on the whole city
PTN. On this basis, we can adjust the new line, adjust the station position in
the line, and use the scoring model to evaluate after each adjustment to get a
new score. According to this score, we can judge whether the adjusted line is
better than the previous one. Of course, for the sake of fair comparison, the
modification of the line only includes the adjustment of the station position,
not the change of the number of stations. Because lines with more stations
have more coverage capacity than lines with fewer stations. According to
the process of route selection, we can see that the scoring model is very
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2 – Scoring model and computational improvements

important for line planning. The scoring model will be directly used as the
optimization function of optimization algorithms, and the scoring will be
used as the direct standard to judge the optimization results. Therefore, in
this chapter, we will introduce the model used in this thesis to evaluate and
score the situation of urban PTN.

2.1 Scoring model
First of all, we need define what kind of score can evaluate the city PTN.
There are two kinds of scores that will be explained in this thesis: velocity
score and sociality score.

1. The velocity score of a city represents the different places that urban
residents can reach through public transport.

2. The sociality score of a city is the number of people that a person living
in the city can potentially meet within a typical daily trip.

The two scores represent the quality of PTN without population distribu-
tion and with population distribution influence respectively.

We need scoring model to evaluate these two score of PTN. This thesis uses
the urban accessibility assessment method based on public transport data
proposed in [21]. This method uses the concept of isochrones as a metric for
accessibility and to measure the performance of urban transportation system
connecting people and places.

It is important to be able to quantify accessibility in a way that closely
represents the experience of citizens. Following the general approach in acces-
sibility research [25], the model focuses on travel time between geographical
regions, which better represents the mindset adopted by citizens in planning
their mobility.

The key mathematical concept used to quantify travel time in this method
is isochronic maps, which showing areas related to isochrones between dif-
ferent points. Considering a geographical point, its isochronic map will be
composed of isochronic contours, which are marked with different transporta-
tion systems to mark the areas that can be reached within a given time span.
The concept of isochronic maps has existed since 1881 [26], which shows the
travel time from London to all over the world. Different from 1881, at present,
it is very accurate to draw isochronal map of area and transportation system
based on open source data. More precise calculation and analysis can be
done.
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2.1 – Scoring model

The model proposed by Biazzo et al[21] focuses on public transportation,
and uses multiple routing methods to calculate travel time and isochrones.
There are many modes of routing methods, for example, the best route from
point a to point B in the city can be realized by a combination of many
modes of transportation, such as walking, bus, metro and train. Generally,
PTN is analyzed as static graph in public transport research, points and
edges represent the stops and the connection between stations respectively
[27, 28, 29, 30, 34]. Few studies have considered the "time" factor of these
transportation systems. Model proposed by Biazzo et al pays more attention
to the dynamical aspect of mobility. Its mainly produces two indicators:
Velocity score, quantifying the overall speed of entering a specific area of the
city. Sociality score quantifies how many people you can meet from a specific
area. In the horizontal comparison between cities, the model will also reduce
the dependence of social score on the total urban population. This is to
reduce the impact of urban population on scores. Since our line planning
is mainly for a certain city, it does not involve horizontal comparison with
other cities, so this thesis will not describe it here.

In addition, because the definition of accessibility is very broad, which may
refer to the ability to provide services for the disabled [35], or the ability to
make ordinary people reach the workplace [36], the significance of this method
is to provide a general, efficient and easily visualized on maps to make the
scoring and display of urban PTN easier to use and more general. This thesis
will also show the visualization of PTN score change (impact on city) after
line planning in Chapter 5. In addition, the score calculation time of the
model for the whole city is short (Roma, for example, takes 7 seconds on
average run the code [33] on Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz
with 16 CPU Threads and 64 GB mem) The calculation of isochron is based
on the multi-mode method to calculate the travel time between any pair of
places in the city. As mentioned above, the method includes a variety of
routing methods, taking into account the walking, bus, subway and train. In
order to keep the computing time low, the model uses hexagonal subdivision
of urban areas. Biazzo et al. constructed a hexagonal grid with a side length
of 0.2 km. Not the whole area of a city is covered by hexagons. Hexagon
covers the city areas which the locations containing at least one public service
stops, that is, if there is no public service stops in the area, it will not be
divided into hexagon area. Moreover, as well as all areas from public service
stops, the walking path should not exceed 15 minutes, which is convenient to
calculate the walking path between public service stops and the total walking
time.
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2 – Scoring model and computational improvements

After dividing the city into hexagonal grid, it is necessary to calculate
the walking path between the public service stops and the hexagonal grid.
The model uses the open source routing machine (OSRM) [37] OSRM, which
allows to use the corresponding OpenStreetMap [38]to calculate the short-
est walking path in PTN. Except for the walking path, the public trans-
port schedule data uses the data released by 100 companies incorporated by
Google [2] . In this way, the model has the basic data to analyze multiple
routing modes. The model also uses the urban population density data. In
order to match the population density data with the hexagon region, the
population density is divided into hexagon regions according to the propor-
tion of overlapping surfaces. Data about population densities in urban areas
have been gathered through the Eurostat Population Grid [31] for the Eu-
ropean cities [40] and the Gridded Population of the world made by the
Center for International Earth Science Information Network [41]. The model
adopted a modified version of the connection scan algorithm (CSA) [42], that
we call the intransitive connection scan algorithm (ICSA) Finally, combined
with the city hexagon area division, pedestrian routing and bus informa-
tion. Using ICSA algorithm, the travel time between any pair of hexagons
can be calculated. And because the model combines the hexagon area with
the population density data, the model also has the ability to quantify the
performance of public transport in connecting people.

2.2 Computation of sociality and velocity score

The definition of city sociality and velocity score has been given above. This
section introduces the calculation method of two scores. The city scores
are the average scores we get as the final score we use to evaluate the PTN
of the city.

Velocity score: The velocity score aims at giving a synthetic representa-
tion of the information encoded in all the isochronic maps computed from all
the points of a city. Therefore, the isochronic map is regarded as an expan-
sion process starting from a starting point. Consider the isochrone centered
on a hexagon λ. At time t0 corresponding to the travel time τ , I(τ, (λ, t0)).
The covered area A(τ, (λ, t0)) of the isochrone at time τ will thus be the
area contained within I(τ, (λ, t0)). By approximating the perimeter of the
isochrone with a circle, the average travelled distance r taking a random

20



2.2 – Computation of sociality and velocity score

direction from the starting point p0 is given by

r(τ, (λ, t0)) =
√
A(τ, (λ, t0))

π
(2.1)

and dividing by the time τ we obtain a quantity that has the dimension of a
speed:

v(τ, (λ, t0)) = r(τ, (λ, t0))
τ

(2.2)

The interpretation of v(τ, (λ, t0)) is the average speed of expansion, at time
τ , of a circular isochrone with the same area as the real one in figure 2.1

Figure 2.1. Isochrone area. Isochrones with hexagonal tessellation at
different times. The circles in the figure have the same area as the area
contained by the isochrones.[32]

Sociality score: Compared with the average velocity approximation a of a
person leaving the hexagon in a random direction provided by the velocity
score, the sociality score is used to measure the number of people that may
be contacted in a trip. The Sociality score considers the distribution of the
population density, because the distribution of population density has rele-
vant demand for transport services, such as strengthening transport services
in densely populated areas. the sociality score quantifies the performance of
public transit in connecting people. Model define P (τ, (λ, t0)) as the amount
of population living within the isochrone I(τ, (λ, t0)). Similarly to what we
did for the velocity score, we can average P (τ, (λ, t0)) over the travel time
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2 – Scoring model and computational improvements

τ (with the same distribution of daily budget times f(τ)) and over different
starting times t0, obtaining the sociality score as(t0 is the operation time of
public transport):

v(λ) =
∑22.00
t0=6.00

∫∞
0 v(τ, (λ, t0))f(τ)dτ∑22.00

t0=6.00
∫∞
0 f(τ)dτ (2.3)

City scores: For each hexagon, λ, we have both the number of people
living there, pop(λ), as well as the average velocity of their trips with public
transport starting from the considered hexagon. Through the formula, the
average velocity per person of the whole city can be calculated to evaluate
velocity property of the whole city, which represents the average number of
different places that urban residents can easily reach through public transport
and called city velocity score.

vcity =
∑
λ∈city v(λ) ∗ pop(λ)

pop(city) (2.4)

The calculation of sociality score is close to that of velocity score, and the
city sociality score is defined as:

vcity =
∑
λ∈city s(λ) ∗ pop(λ)

pop(city) (2.5)

the areas of the city not served by public transport are considered to have
zero sociality score. The city sociality is the typical number of people that a
person living in the city can potentially meet within a typical daily trip.[21]

In this thesis, based on this scoring model, the line planning will strive to
find a new line to make the PTN with new line could get the maximum city
sociality score.

2.3 Performance improvement
As we mentioned above, the score calculation of Roma takes 7 seconds on
average to run the code [33] on Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz
with 16 CPU Threads and 64 GB mem. This section describes how we
increase the computational efficiency.

First, let’s look at how the city is divided into hexagon area. Figure 2.2
shows the population distribution of a region in Rome. Figure 2.3 shows the
isochrones that the selected hexagon can reach the other hexagon through
public transport. Through these two figures, we can see how the hexagon
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2.3 – Performance improvement

divides the city into multiple regions. Through the divided regions, the
calculation of isochrone from one hexagon region to other hexagon regions
could be done.

Figure 2.2. The distribution of population in a certain area of Rome
is divided into hexagons[39]

Figure 2.3. The isochrones of the map divided by the hexagon area. The
isochrones is calculated with the selected hexagon as starting point[39]

When we calculate the city score, we need accessibility information and
population information to calculate the sociality score and velocity score, as
shown in Figure 2.1. Because we need to calculate the score frequently when
we add and adjust new line. Every change of the line will mean the change
of score. We need to recalculate the score and make comparison again and
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again. the efficiency of the code to calculate the score is particularly impor-
tant. So in the experimental stage, we tried to improve the performance of the
scoring model. We think about whether there is a way to improve the com-
putational efficiency in the experimental stage. First of all, we thought about
redesign the hexagon, because the population data information is divided by
the hexagon also when calculating the isochrones, whether the region can be
reached at time t is determined by hexagon. When calculating the isochrone
starting from a hexagon, we need to calculate the reachable time t from this
starting point to all other hexagons. Therefore, the more the number of city
hexagons, the more areas the city divides, and the higher the complexity of
calculating the isochrone, because each hexagon needs to calculate its time to
all other hexagon areas. Therefore, we expand the side length of the hexagon
from 0.2km to 0.5km. The number of hexagons in the whole city has declined.
After such modification, the average calculation time of the scores decreases
from 7 seconds to 4 seconds, nearly 50% improvement in efficiency.
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Chapter 3

Meta-heuristic
optimization algorithms
and PSO

In this chapter, we will explain what is our optimization problem. Then we
will introduce the class of meta-heuristic algorithms, and then the specific
PSO category that we will use for line planning.

3.1 Optimization problem
This paper aims to solve the problem of how to select a new route in urban
line planning so that the whole PTN can get a higher sociality score. In
short, we hope to find a new line, which can make the city PTN get the
maximum sociality score within certain limits (such as the fixed number
of stations, the fixed starting and ending stations, etc.). The new line is
composed of stops and the path between stops. The most important attribute
of the stop in this paper is the geographical location, and the coordinates
can be calculated by longitude and latitude on the map. This paper does
not focus on the attributes of the line between stations, but can be directly
considered as a straight line between two stops. A line composed of five
stops can be expressed as line = (S1, S2, S3, S4, S5). What we want to do
is to adjust the location of the five stations to maximize the sociality score
calculated after the line is added to the PTN of the city. From the previous
introduction, it can be seen that the calculation of the city’s sociality score
is very complex. First of all, we need the urban population distribution data
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and public transport data, follow the concept of accessibility, and use the
routing method ICSA algorithm to calculate the sociality score, and then
average the entire urban area to get the sociality score of the whole city. The
complexity of the formula is beyond the scope of the general mathematical
model. So how to choose the route efficiently and reliably? What kind of
problem does our line planning problem belong to?

Some calculation problems are deterministic, such as addition, subtrac-
tion, multiplication and division. As long as you deduce according to the
formula, step by step, you can get the results. However, there are some
problems that cannot be directly calculated step by step. For example, the
problem of finding large prime numbers. Is there an algorithm that you
can work out step by step with a set of formulas? What’s the next prime
number? There is no such algorithm. Another example is the problem of
factoring prime factors with large composite numbers. Is there a formula to
directly calculate the respective factors by substituting the composite num-
bers? There is no such formula.

The answer to this question can not be calculated directly, but can only be
obtained through indirect "Guessing". This is the problem with uncertainty.
These problems usually have an algorithm, which can not directly tell you
what the answer is, but can tell you whether a possible result is correct or
wrong. This algorithm can tell you whether the answer to "guess" is correct
or not. If it can be worked out in polynomial time, it is called polynomial
non deterministic problem NP. However, there is a set of problems in NP
that are proved to be more or at least as difficult to solve than all other
problems in NP. These problems are called NP-complete(NPC)[53].

Figure 3.1. Shows a brief description of NP and NP complete and
their categories

In general there is two kinds of NPC problems called decision and op-
timization problems, where the first consists of finding if it is true or not
and the other represents a problem where an optimal solution needs to be
found.[54] Our line planning problem is a NP-complete problem. When
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looking for a new line, the location of each station can be placed in any
coordinates of the city map. Suppose that each station has 1000 locations.
Then, for the combination of N stations line, there will have the possibility
of 1000!/(1000−N)! combinations(Suppose that two sites cannot be in the
same location). So far when we use scoring model to evaluate the PTN after
line planning, even if someone gives us a new "optimal line", it is difficult for
us to verify whether the "optimal line" is optimal. But, as long as we try all
the possibilities, we can get the optimal solution, and the score calculation
for each combination can be completed in a short time. The problem is that
the combinations are often more than 1000N , and even if each calculation
can be completed in a short time, the whole process of violent verification
will be extremely time-consuming.

3.2 Heuristic and Meta-Heuristic algorithms
What method or algorithms is suitable for solving NPC problem? Heuristics
and meta heuristics are good methods to solve NPC problems. Heuristic
strategy is a general term for a kind of strategies that can give a solution
to a specific problem in an acceptable time and space, but do not guarantee
the optimal solution (and the deviation between the feasible solution and
the optimal solution). Many heuristic algorithms are quite specific and de-
pend on a specific problem. In the process of seeking the optimal solution,
heuristic strategy can change its search path according to individual or global
experience. When the optimal solution of the problem becomes impossible or
difficult to complete (NP-complete problem), heuristic strategy is an efficient
way to obtain feasible solution. In short, the heuristic strategy in a limited
search space, greatly reduces the number of attempts and can quickly solve
the problem. Many important discoveries made by scientists are often based
on very simple heuristic rules.(need to cite more)

Meta-Heuristic Algorithm is an improvement of heuristic algorithm. Meta-
heuristic strategy usually do not rely on the specific conditions of a problem,
so they can be applied to a wider range of aspects. It is the combination
of random algorithm and local search algorithm. Meta-heuristic algorithm
is proposed relative to the optimization algorithm. The optimization algo-
rithm of a problem can obtain the optimal solution of the problem, while
meta heuristic algorithm is an algorithm based on intuition or experience,
which can give a feasible solution of the problem at an acceptable cost, And
the deviation degree between the feasible solution and the optimal solution
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cannot be predicted in advance. Considering that our line planning prob-
lem is a kind of NPC problem, meta-heuristic algorithm is very suitable for
this kind of problem. This paper uses meta-heuristic algorithm to solve the
line planning problem. Meta-Heuristic Algorithm includes simulated anneal-
ing algorithm, genetic algorithm, ant colony optimization algorithm, parti-
cle swarm optimization algorithm, artificial fish swarm algorithm, artificial
bee colony algorithm, artificial neural network algorithm and so on. These
meta-Heuristic algorithms have their own advantages and disadvantages. As
shown in the table 3.1, the advantages and disadvantages of GA algorithm,
ant colony algorithm and PSO algorithm are compared.

Genetic algorithm (GA) Ant colony algorithm (ACO) Particle swarm optimization algorithm (PSO)

Advantages Fast convergence
and good versatility

It has strong global search ability,
strong robustness
and easy to combine with other algorithms

Fast convergence, few parameters,
simple and easy to operate,
easy to combine with other algorithms

Disadvantages Easy to converge
to local optimal

It is easy to fall into local optimal solution
and weak in solving continuous problems

The search ability is not strong in the late iteration,
and it is easy to fall into the local optimal solution

Applications Combinatorial optimization problems
, continuous optimization problems

Discrete optimization problem,
combinatorial optimization problem Continuous optimization problem

Table 3.1. Advantages and disadvantages of three meta-heuristic algorithms

So, which meta-heuristic algorithm should we choose for line planning?
After the introduction of the optimization problem in the first section of this
chapter, we can know that what we want to optimize is the transport line,
more specifically, the longitude and latitude position of each stop of the line.
Therefore, the longitude and latitude position of each stop of the line is our
variable to be optimized. Through the introduction of the scoring model, we
can know that expect public transport schedule and route data, the scoring
model also includes the walking time of citizens from one stop to another
and the population distribution. Because the stop location reflects the value
of longitude and latitude, even the slight change of address will lead to the
change of walking time and social score of the city. In this way, the station
location problem can be solved as a continuous problem, and the station
location can be discretized to make the line problem as a discrete problem.
In this paper, the problem is regarded as a continuous problem. The stop
address is regarded as a continuous variable.

As a meta-heuristic algorithm, the implementation of PSO is relatively
simple and suitable for solving continuous problems. Many known modules
of general and meta-heuristic algorithms can be added to the PSO algo-
rithm, such as local search, simulated annealing, etc., which can improve
the efficiency of the algorithm when necessary. Therefore, This paper will
use particle swarm optimization(PSO) algorithm as the algorithm to find the
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optimal solution of line planning.

3.3 Particle Swarm Optimization algorithm -
PSO

Particle swarm optimization algorithm was developed by J. Kennedy and R.
C. Eberhart et al [6]. The idea of Particle swarm optimization algorithm
is based on the bird predatory behavior. It simulates the behavior of birds
flying and foraging in groups, and makes the group reach the optimal goal
through collective cooperation among birds. The basic idea of particle swarm
optimization: Imagine a group of birds randomly searching for food. It is
known that there is only one piece of food in this area; all the birds do not
know where the food is; all birds can communicate with their peers. When
a bird finds that it is closest to the food, it will inform other birds of its
location. So the birds will know the position of the bird which nearest to the
food. So what’s the best strategy for finding food?

1. Search the area around the bird that closest to the food so far.

2. Judge where the food is according to your own flying experience.

The idea of PSO algorithm is just like the example of birds foraging above.
The main idea is to combine the two kinds of search experience of individ-
ual (particle) and swarm (swarm) (the so-called experience for birds is the
position closest to the food so far. For the equation f(x, y), experience is
the position of x and y which lead the best f(x, y)). Each particle in the
group needs to constantly search for new positions, accumulate their own
experience and record their optimal positions, and select the optimal posi-
tion of the whole swarm after each round of particle search and calculation.
Particles will constantly change their position according to their own best
experience(optimal position) and the best experience of the swarm(optimal
position of the whole swarm), in order to seek closer to the optimal results,
and constantly search for the optimal possible position.

PSO algorithm is a kind of evolutionary algorithm, It is an optimization
method based on swarm intelligence. It seeks the global optimum by follow-
ing the current optimal value. PSO and evolutionary algorithm have a lot
in common. Both of them initialize the population randomly, and both use
the fitness value to evaluate the system, and both of them conduct random
searches according to the fitness value. Both systems are not guaranteed
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to find the optimal solution. However, PSO does not have genetic opera-
tions such as crossover and mutation but decides the search according to its
particle’s speed and position. Compared with other modern optimization
methods, particle swarm optimization (PSO) has many positive characteris-
tics, such as few parameters need to be adjusted, easy to operate and fast
convergence speed, It shows a large applicability in many practical problems
such as [43, 44, 45, 49]. At the same time, a lot of research and applications
also use swarm algorithm similar with PSO [46, 47, 48]. In PSO, the func-
tion or model we will optimize is called fitness function, in our paper the
scoring model is our fitness function. In the scoring model, the longitude
and latitude of the stops are the input, and the sociality score of the city
is the evaluation result of our scoring model. The evaluation result of the
fitness function to be optimized in PSO called fitness value. In PSO, all
particles need to evaluate the fitness values of the current position through
fitness function, so all of particles have fitness values.

• Fitness value: For example, If we have the fitness function f(X) =
x2

1 + x2
2 + x2

3, in this fitness function x1,x2 and x3 are three variables.
A swarm with N particles, the position of the i-th particle is Xi =
(xi,1, xi,2, xi,3), i ∈ 1,2, . . . , N , and the fitness value is f(Xi)

The value space of each particle’s position within the optimization problem
is called search domain.

• Position and search Domain: Suppose that in a d-dimensional target
value space, there are N particles in the swarm, in which the i-th parti-
cle is expressed as a d-dimensional vector, Xi = (xi,1, xi,2, . . . , xi,d), i ∈
1,2, . . . , N ,and all Xi are in the search domain

In addition to the X describing the position of the particle, there are also
vectors that describe the velocity of the particle. The velocity of a particle
also determines the direction and distance of its next move.

• Velocity: The "flying" speed of the i-th particle is also an d-dimensional
vector, which is recorded as Vi = (vi,1, vi,1, . . . , vi,d), i ∈ 1,2, . . . , N

In the process of solving the optimal value of PSO, there is an important
concept of iteration number. In particle swarm optimization with N parti-
cles, the concept of one iteration is: N particles record the optimal position of
themselves and the group after each fitness equation calculation, and update
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their velocity vector V according to the optimal position of themselves and
the group. The number of iterations represents the number of iterations of
the above process. When the number of iterations reaches the set value, the
optimal position of the particle swarm is the result.

In the first iteration, the original PSO is initialized as a group of random
particles, Then the optimal solution is found by iteration. At each iteration
particles update their position by tracking two "extremes", optimal position of
particle itself Pbest and optimal position of the swarm Gbest respectively.

• Pbest: It is called individual extreme value. In each iteration, by com-
paring the calculated fitness value of the particle with the historical
optimal fitness value of the particle. Keep the position of the particle
with the optimal fitness value and replace the Pbest. Like the example
before, the swarm has N d-dimensional particles. The optimal position of
the i-th particle, denoted as Pbesti = (pi,1, pi,2, . . . , pi,d), i ∈ 1,2, . . . , N .
If in the new iteration, the fitness value calculated by the position
Xi = (xi,1, xi,2, . . . , xi,d), i ∈ 1,2, . . . , N of i-th particle is better than
that calculated by the current Pbesti, then the current pbesti value is
modified to Xi

• Gbest: It is called global extreme value. Gbest represents the position
of the best fitness value obtained from all the experience of all the parti-
cles in the particle swarm. Similar to the updating of Pbest, Gbest is also
compared and replaced in each iteration. The difference is that Pbest is
the best position of each particle’s experience, and the number of Pbest
is same with the number of particles. For a particle swarm, there is only
one Gbest, which represents the best position obtained in the whole
particle swarm experience. denoted as Gbest = (pg,1, pg,2, . . . , pg,d)

In the first iteration of PSO algorithm, the position will be initialized ran-
domly in the search domain and velocity of particles will be initialized ran-
domly(We usually sets the maximum velocity, velocity not larger than the
maximum value), In each subsequent iteration, i-th particle will use position
Xi to calculate fitness function to get fitness value. Then pbest and gbest
will choose whether to update according to the fitness value. Finally, before
the next iteration, the particle needs to know how to move before the next
iteration, because if the particle’s position does not change, the iteration
will be meaningless. So the particle will update the velocity and position
according to the velocity formula, so as to prepare for the next iteration.
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When the two optimal values Pbest and Gbest are found, the particles
are determined according to the following formula to update the velocity
and position:

Update velocity:

vi,d = w ∗ vi,d + c1 ∗ r1(pi,d − xi,d) + c2 ∗ r2(gd − xi,d) (3.1)

Update position:
xi,d = xi,d + vi,d (3.2)

where,

• vi,d velocity of i-th particle in d dimension

• xi,d position of i-th particle in d dimension

• w inertia factor

• c1 determine the relative influence of the cognitive component

• c2 determine the relative influence of the social component

• pi,d Pbest of i-th particle, values on dimension d

• gd Gbest of the group, values on dimension d

• r1, r2 random numbers, the standard range is [0,1]. Each iteration takes
a new random value, so that the algorithm has the ability of random
search

The inertia weight w makes the particles keep the inertia of motion, which
makes them have the tendency to expand the search space and have the abil-
ity to explore new areas. The acceleration constants C1 and C2 represent
the weights of the statistical acceleration terms pushing each particle to the
Pbest and Gbest positions. Low values allow the particles to wander outside
the target area before being pulled back, while high values cause the parti-
cles to suddenly rush or cross the target area. Without the latter two parts,
C1 = C2 = 0, the particles will fly at the current speed until they reach
the boundary. Because it can only search a limited region, it is difficult to
find a good solution. If there is no first part, i.e. w = 0, then the velocity
only depends on the current position of the particles and their best historical
positions Pbest and Gbest, and the velocity itself has no memory. Suppose
a particle is in the best position in the world, it will remain stationary. The
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other particles fly to the weighted center of their best position Pbest and
global best position Gbest. Under this condition, PSO will shrink the statis-
tics to the current global best position, which is more like a local algorithm.
After adding the first part, the particles tend to expand the search space,
that is, the first part has the ability of global search. This also makes the
role of w to adjust the balance of global and local search ability for different
search problems. If there is no second part, that is, C1 = 0, particles have
no cognitive ability, that is, the "social only" model. Under the iteration
of particles, it has the ability to reach a new search space. Its convergence
speed is faster than that of the Standard Version, but for complex problems,
it is easier to fall into local optimal points than that of the standard version.
If there is no third part, that is, C2 = 0, then there is no social information
sharing between particles, that is, the "cognition only" model. Because there
is no iteration between individuals, a group of M is equivalent to the opera-
tion of m single particles. So the probability of getting the solution is very
small. The above is the explanation of PSO and the significance of each part.
As shown in the figure 3.3, it shows the change of a particle swarm with 49
particles in the process of finding the optimal value of Ackley function. In
this example, Ackley function is the fitness function to be optimized, whose
global minimum 0 appears in coordinates [0,0]. This example has 100 iter-
ations. At the beginning, shown in figure 3.3(a) , the particles are evenly
distributed in the area of 7∗7 (usually the particles are randomly initialized).
After initialization, particles will bring their position Xi into fitness function
to calculate fitness value. The particle individual optimal Pbesti and swarm
global optimal Gbest are found. The particles update their velocity Vi and
position Xi according to Pbesti and Gbest with equation 3.1 and 3.2.

With multiple iterations, the particle gradually finds the position close to
the local optimal and global optimal shown in figures 3.3(b)3.3(c)3.3(d) The
global optimal position and individual optimal position that have been found
affect the direction of particles. In the later stage of iteration, the particles
gradually converge. It can be seen that most of the particles have converged
to the global optimal position, and a few particles are still trapped in their
local optimal position shown in figures 3.3(e)3.3(f). However, for the whole
PSO, the conclusion is the global optimal solution, some particles do not
affect the overall result. So after 100 iterations, PSO finds the Gbest which
is close to the optimal position [0,0], and obtains the fitness value of 0 which
is the minimum value of Ackley function.
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Figure 3.2. PSO algorithm execution flow chart
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(a) 1st iteration (b) 20th iteration (c) 40th iteration

(d) 60th iteration (e) 80th iteration (f) 100th iteration

Figure 3.3. A particle swarm with 49 particles shows the position changes
of the particles during the 1st to 100th iterations of the optimization of the
Ackley function. x indicates the current position of the particle, and the
arrow indicates the next iteration position of the particle. The minimum
value of Ackley function 0 at position [0,0][20]
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Chapter 4

Proposed methodology

Based on the scoring model in the previous chapter as the scoring standard,
we can use longitude and latitude to represent the location of new stop,
and use the number of new stops and stop positions as parameters as the
input of the scoring model to obtain the scientific evaluation of the new line.
According to the essence of line planning, a new line can be found on the
basis of existing PTN, which can maximize the PTN sociality score of the
city. So the variable that can change the score under the fixed number of
new stops is the position and sequence of stops in the new line. In this paper,
the stops location of the new line is our variable. The scoring model is our
fitness function. The model takes the city sociality score of the PTN with
new line as fitness value. What we need to do is to optimize the fitness
function using PSO optimization algorithm, In order to seek the maximum
fitness value. Finally, the line with the largest fitness value is selected as
the new line. For the purpose of better line planning with optimization
algorithm, we confirm the overall goal. On the basis of using PSO algorithm,
the way to get the best line planning is the content to be discussed in this
chapter. Facing the line with multiple stops, we need a strategy that can
help us to reach the optimal value to select the stop location and order.
We use PSO algorithm to support the score optimization scheme. First,
we make clear that we want to optimize the position of a public transport
line, it is important to transform the stop position with sequence into the
parameters that scoring model and PSO algorithm can support. The scoring
model supports adding a new line with any number of stops and calculating
the city sociality scores of new PTN(with new line added), and it only needs
to provide the longitude, latitude and sequence of stations. Latitude and
longitude are not only accurate, but also well combined with the map, which
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is suitable for visualization. And the scoring model also supports longitude
and latitude as the location of the stop. As for PSO algorithm, the same
as the scoring model, PSO supports the introduction of stop longitude and
latitude, and also supports multi-dimensional variables fitness function. So
the longitude and latitude coordinates of the stops are selected as the input
of our scoring model, that is, fitness function.

If the longitude and latitude of each station are taken as precise coordi-
nates, we will get a two-dimensional coordinate value [xi, yi] to represent
the stop orientation. Taking the new line of N stations as an example,
L = [x1, y1, x2, y2, . . . , xN , yN ] represents a line L composed of N stations,
and the order of stations can also be expressed as the order from left to
right. Then the starting station of line L is [x1, y1] and the terminal station
is [xN , yN ]. PSO is used to optimize the scoring model, and L is taken as line
planning example. We can divide the optimization strategy into two kinds,
global optimization and local optimization.

In general, the difference between them is that the input of each iteration
of PSO algorithm is different, although the scoring model is both used as the
fitness function. In global optimization, the position of i-th particle Xi(same
meaning with Xi in chapter 3) of PSO is the location of all stations in the
line L, while the input Xi of local optimization is the location of one stop. It
needs to be explained here is that although the local optimization mentioned
in this paper is the PSO optimization object with only one stop, but the
calculate of fitness value it still uses the scoring model with whole new L as
input.

Global optimization means that we introduce new line with N stops L =
[x1, y1, x2, y2, . . . , xN , yN ] as a whole parameter into the PSO model, In the
first iteration, PSO initializes stops of L with random position(Randomly
initialize the position in the search area). The initialized L will be used to
calculate the city sociality score in the scoring model. Then using this city
sociality score as the fitness value of optimization, through iteration and par-
ticle movement, PSO optimization process in Chapter 3 is adopted to update
the position of particles in each iteration and bring new particle position into
the scoring model for scoring, and keep the highest fitness value particle po-
sition as Gbest. Until the end of the iteration, we will get the maximum
city sociality score so far and all the stops locations of the L line that got
this score. The advantage of this approach is to be able to optimize globally.
From the input parameters, we can see that every iteration of optimization
is the transformation of the whole line. This method can also search in a
large range of maps and change flexibly, which is more suitable for finding
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the optimal route for the wide range of unconstrained cities with underde-
veloped PTN. But the disadvantages are obvious, the lack of constraints will
cause a large deviation in the optimization results of each experiment in
a limited number of optimization iterations. Moreover, the optimization of
multi stations may mean that the dimension of PSO input is very high, which
means that if the line y has 20 stations, the object to be optimized by PSO
will become an array parameter of 2 * 20 dimensions, and the optimization
difficulty can be imagined.

As for local optimization, the line L = [x1, y1, x2, y2, . . . , xN , yN ] is still
taken as an example. The location of only one stop is changed by fixing
other stations at each time. For example, for line x, fixed [x2, y2, . . . , xN , yN ]
only changes [x1, y1], and it can easily add space limit for [x1, y1] to limit its
moving position. But the calculate of fitness value it still uses the scoring
model with whole new L as input. So PSO can search for the best of [x1, y1]
in a search area. In summary, it is the position of only one stop optimized by
PSO at a time, so for the optimization of the i-th stop in new line, only the
position of [xi, yi] needs to be optimized and changed. Local optimization is
more suitable for the line planning in real life. For example, the city PTN is
relatively robust. In order to alleviate the traffic pressure between the north
and south regions, the initial line can be determined throw south and north
first, and then each station can be optimized one by one by using the local
optimization strategy through PSO. Finally, the optimization is achieved.
The local optimization is in line with the actual station optimization strategy.
At the end of this paper, As part of the experiment, the metro D under
construction in Rome is optimized, using the local optimization strategy.
Through the adjustment of Metro D line station by station, the city sociality
score is about 8.0% higher than the original line.

4.1 Greedy strategy
The greedy strategy in this paper is a strategy to search the optimal line, it
is the specific implementation strategy based on local optimization. When
we do line planning with local optimization method, we need a strategy to
select each stop. Considering that the construction of the stop in real life
often has a general construction idea in the early stage of the design, mainly
to solve the practical problems and design the direction of the line. One of
our greedy strategy is based on the fixed first stop and last stop, inserting
stops one by one between the first stop and the last stop until the all stops
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of line plans is selected. It is called greedy strategy, because it is based
on the local optimization mentioned above, and it is to search for the best
location of one stop without changing other stops. The location of the stop
will find the optimal location and score in the iterations of PSO, and then
fix the location of the stop and do not change it, then proceed to the optimal
search of the next stop. Every time a new stop location is found, it will be
considered that the new stop location is optimal for the current line plans,
That is to say, for the whole line, the location of the stop searched is locally
optimal. There are two ways to implement the greedy strategy in this paper,
taking the construction of a line with N stations L = (S1, S2, . . . , SN) as an
example. details used here are as follows: The first way is to fix the location
of the starting stop S1 and the last stop SN . After the location of starting
station and terminal station are determined artificially, we need to search
the optimal location of N-2 stations. First step is to search the location of
S2 which is the next station of S1. The search of S2 station will use PSO
algorithm. The location of S2 is searched in the search area(it is the same
"search area" within chapter 3 PSO part) Z. In this way, the initialization
of all particles in the first iteration of PSO, the particles must be generated
randomly in Z. In the process of PSO iterations and particle motion, for those
particles moving outside Z, we force the particles to move to the nearest Z
boundary. There are many rules for making Z area, which can be flexibly
limited according to the angle and distance between stations. Here is what
we did in our experiment as an example of greedy strategy, and a method to
choose Z.
Example of set a new line in Roma with greedy strategy: The first
step is to initialize and fix the first and last stops , In the figure, they are
represented by blue and red. Suppose the distance between two stops is 6km
and we expect to build 5 stops between the two stations. We will divide 6km
equally into 7 stops, (7− 1)/6 = 1km. If the stops in the line is straight, the
distance between each stop should be 1km. We determine the search area
Z of the next stop based on this distance of 1km and the angle between the
previous station and the last station. We hope that the new station search
area is reasonable, so we use 1km as the base to take 1∗1.5 and 1∗0.5 as the
two radii r1 and r2. And make two quarter circles at the 45-degree area on
both sides of the line connecting the previous station and the last station. As
shown in the figure, the green area in the picture as the search area Z for the
new stop. As shown in the figure 4.1, we searched for the station (orange) in
the first Z area and fixed the stop.
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Figure 4.1. search first stop(orange) in the search area Z(green area)

Continue, The rules for zone Z of the next stop are the same as those of
the previous stop. Figure 4.2

Figure 4.2. search next stop(orange, right one) in the search area Z(green area)

Continue using greedy strategy until all station locations are found, figure
4.3

Figure 4.3. search stops

The second way is to make a preliminary planning of the whole line before
optimization, so we will get all the stations’ location of a line at beginning.
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Then based on the line, we do the optimization on each stations one by
one from the S1 to SN and the fixed station should be from (S2, S3, . . . , SN)
to (S1, S2, . . . , SN−1). The difference from the first way in the first step is
that the fixed station of the second way is S1 to SN at beginning and the
first way fix only first stop and last stop. Another difference is that the
first method has only two initial stations, while the second method has N
initial stations. We have conducted experiments on both of two methods.
For detailed experimental content, see Chapter 5

4.2 Improved PSO
Although the particle swarm optimization algorithm in solving the optimiza-
tion function and multi-dimensional optimal problem, it shows good opti-
mization ability. Through iterative optimization calculation, the approxi-
mate optimal solution can be found quickly. But the basic PSO is easy to fall
into the local optimum, leading to poor results. And the convergence effect
of particles is also a very important aspect of how to improve the algorithm.
In view of this situation, we consider how to avoid the PSO into the local
optimal strategy. There are two main aspects of the strategy. 1. Transform
the PSO itself. Various improved PSO algorithms are studied. 2. Combining
PSO algorithm with other intelligent optimization algorithms. Various hy-
brid optimization algorithms are studied. For example, PSO combined with
simulated annealing algorithm can avoid falling into local optimum with the
randomness advantage of simulated annealing algorithm[50]. PSO combined
with GA algorithm[51]. The above two methods can improve the perfor-
mance of some aspects of the algorithm. This paper mainly adopts the first
way to improve the basic PSO.

Original PSO formula for updating particle velocity:

vi,d = w ∗ vi,d + c1 ∗ r1[0,1](pi,d − xi,d) + c2 ∗ r2[0,1](gd − xi,d) (4.1)

According to the PSO velocity and particle position update formula 4.1,
it can be seen that the larger the w is, the faster the particle flies, and the
particle will search globally in a larger step size; The smaller the w is, the
smaller the particle step size is and tends to local search. w is called the
weighting factor. The larger weight factor is beneficial to jump out of the
local minimum value and facilitate the global search, while the smaller inertia
factor is beneficial to the accurate local search of the current search area and
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the convergence of the algorithm; However, if w is too large, it will lead
to premature convergence and oscillation near the global optimal solution.
Therefore, the general method to improve w is to gradually change w from
wmax to wmin. It can make the particles have greater activity in the initial
stage, and help the particles to search globally in a larger step size. In the
later stage of convergence, the search is carried out with smaller step size to
increase the accuracy. As shown in equation 4.2, tmax can be regarded as the
number of iterations.

w =wmax −
t ∗ (wmax − wmin)

tmax
wmax = 0.9, wmin = 0.4

(4.2)

This paper uses the PSO algorithm of weight linear decreasing. Set the
maximum and minimum value of w, according to the change of iteration
times, keep the large weight factor in the early stage and reduce the inertia
factor in the later stage to ensure the function convergence. We call it w-
PSO

At the same time, this paper also analyzes and compares another improve-
ment of the speed formula. According to the update formula of speed, we
can see that the factors that affect the prime are not only the inertia factor
w, but also the random value r1,r2 because r1,r2 is a random value in the
[0,1] interval. This random value ensures that the particles will always move
towards gbest and pbest. According to the improved scheme in [52], in order
to avoid the particle falling into the local optimum, the author of this paper
changes the random value interval of r1,r2 to [−1,1] 4.3,

vi,d = w ∗ vi,d + c1 ∗ r1[−1,1](pi,d − xi,d) + c2 ∗ r2[−1,1](gd − xi,d) (4.3)
so that the particle has the ability to stay away from the optimal position,

which can make the particle more active and explore a larger area in the early
stage. In order to verify whether this improvement can be applied to line
planning, we change the random value of r1,r2 to the interval of [−1,1], and
test whether its better random search ability is applicable to our problem.
We call it lr-PSO

In the next section, we test PSO and improved PSO with Ackly function.

4.3 PSO optimization example
This section mainly tests the PSO function to test its optimization ability
and efficiency. The Ackley function 4.4 is used as the test object .
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f(x0 · · · xn) = −20exp(−0.2
√√√√ 1
n

n∑
i=1

x2
i )− exp(

1
n

n∑
i=1

cos(2πxi)) + 20 + e

− 32 ≤ xi ≤ 32
minimum at f(0, · · · , 0) = 0

(4.4)
The Ackley function[55] is widely used for testing optimization algorithms.
In its two-dimensional form, as shown in the figure 4.4, it is characterized by
a nearly flat outer region, and a large hole at the centre. The function poses
a risk for optimization algorithms, particularly hillclimbing algorithms, to be
trapped in one of its many local minima. Input Domain of Ackley function
is usually evaluated on the hypercube xi ∈ [−32, 32] , for all i = 1, . . . , d ,
although it may also be restricted to a smaller domain. The global minimum
is 0 at f(0, . . . ,0).

We use ackly function to compare the optimization results for both original
PSO algorithm and the improved PSO algorithm. The improved PSO are
described last section, one way is to adjust the weight factor adaptively, the
other way is to adjust the random value of PSO particle velocity update
formula from [0,1] to [−1,1]. For the convenience of observation, we choose
two-dimensional variable [x0, x1] for equation 4.4.

We use PSO to search the optimal value of Ackley function four times
for each PSO algorithm(two improved PSO, and one original PSO), set the
number of PSO size to 20, and the number of maximum iterations to 100.
For each optimization method, recording average fitness value of four exper-
iments.

As shown in the figure 4.5. In the aspect of optimizing Ackley function,
both the original PSO and the adaptive w PSO(w-PSO) have good perfor-
mance. Although the method of changing the range of random values in the
veloity update formula(lr-PSO) does not perform well in the optimization of
Ackley equation, its characteristic of not easy convergence is obvious. It can
still be desirable in special cases.

The conclusion is that PSO can achieve quite good results in dealing with
Ackley function. Both the original PSO and the adaptive w PSO have good
performance. Although the method of changing the range of random values
in the veloity update formula does not perform well in the optimization
of Ackley equation, its characteristic of not easy convergence is obvious.
In the experimental stage, this paper also makes some comparison on the
optimization ability of these three methods in city line planning problem.
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Figure 4.4. The 2-dimensional Ackley functon is as shown in the figure, the
global minimum is 0 at f(0,0). There are a lot of local minima.
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Figure 4.5. The original PSO algorithm and the improved PSO algorithm
are compared in optimizing Ackley function
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Chapter 5

Experiments and results

In the experiment, we will use improved PSO and greedy strategy to optimize
the public transport line. For the two improved-PSO mentioned in Chapter
3, which are respectively for the weight factor and the modified PSO for
the range of random values in the velocity formula of PSO. The selection of
these two PSO is as follows, For the experiments of 5.1.1, 5.1.2 and 5.1.3,
only improved PSO based on dynamic weight factor(w-PSO) is used . In 5.2,
we combine the improved PSO based on weight factor with the improved
PSO based on modifying the range of random values in the velocity formula
of PSO (lr-PSO). Finally, compare the effect of the methods in 5.2 with the
same optimized scene in 5.1.3.

5.1 Line optimization

5.1.1 Using greedy strategy to search stops in large
scale with no location restriction between stops

Greedy strategy is used on line planning and optimize the transport line.
Firstly, greedy strategy and PSO were used to search stations in large scale.
The greedy strategy we adopt here is slightly different from the one mentioned
above. The one mentioned above is to initialize the start station and last
station, but here we only initialize the start station. The idea is to take a fixed
station as the starting station, then based on the starting station find the
last station in Roma, so that the new last station and the starting station
constitute the line with two stations can get the maximum city sociality
score. Then fix the position of the last station, add the stations one by one
between two stations as the passing stations. During the query process, all
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station locations will be searched in area Z (xmin, ymin, xmax, ymax) in the
city of Rome, Here Z is a square area bounded by xmin, ymin, xmax, zmax.
The search area for all stations is the same, all within the area Z, which
means In this scenario, two stations can be built at the same location. In the
experiment, the position (x0, y0) of the starting station S0 and the number
of stations to be added are specified. Taking the starting station S0 as the
starting point, the swarm optimization algorithm is used to find the station
Slast, So that the line composed of two stations can get the maximum social
score. The new line order is S0 -> Slast. On this basis, the stops S1 to Sn
are updated, and the route after N iterations is S0 -> S1 -> S2 -> Sn ->
Slast. For the optimization of each station, we need to set the parameters of
PSO. The main parameters are the maximum particle velocity, the number
of particles and the number of iterations etc.

Here the configurations of PSO and search area are as follows:

• xmin = 12.430106 , xmax = 12.614079 , ymin = 41.867929 , ymax =
41.941441 , they are latitude and longitude

• w PSO weight factor dynamic update from 0.9 to 0.4

• vmax maximum velocity of particle motion is 0.002

• size Size of particle swarm is 20

• iter_num iterations of each site update is 200

• stops_num number of stops to be built is 9

The experiment is divided into four groups with the same configuration,
and the above greedy way and main parameters are used for line optimization
query. Figure 5.1 shows the search process of each station in the first group
of experiments more directly. It can be seen that the stop optimization shows
a kind of irrationality in the case of only limited search space and no limited
distance and angle between stops. Although each stop selected represents
the stop with the largest city sociality score found in 200 iterations, it is not
reasonable as a public transport line on the whole.

Meanwhile, the results of the city sociality score shows in the figure 5.2.
Through the first group of experiment 5.1 , we can see that the stop

location without limiting the distance and angle between stops will cause
many problems, such as the two stops are too close, the stop spacing is too
large, the direction of the line is chaos and so on. Although the idea of
generating line is to get a greater city sociality score, the final line has no
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5 – Experiments and results

(a) find first stop (b) 2th stop (c) 3th stop

(d) 4th stop (e) 5th stop (f) 6th stop

(g) 7th stop (h) 8th stop

Figure 5.1. In the process of line optimization, the optimal position of
each stop after 200 iterations optimization is fixed. The figure shows the
optimization process of eight stops including last stop. When the 8th stop is
found, the optimization process ends.

meaning of practical application, the problems show that we need to further
refine the search area of the stops when we use greedy strategy to select
stops. And through the comparison of city sociality score optimization of
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Figure 5.2. In four groups of experiments, the figure shows the fit-
ness value during the optimization iterations. Here the fitness value
is the city sociality score

four groups of experiments 5.2, it shows the change of the city sociality score
of the line with the number of iterations when the new stop is added, the stop
location will be optimized. Because the selection of each station we set is 200
iterations, we can clearly observe that every 200 iterations the city sociality
score will have a significant improvement. Finally, after 1600 iterations, all
eight stations are selected. We can see that the experimental results of the
four groups with the same configuration are quite different. This shows that
the optimization of a station with 200 iterations and the number of particles
of 20 populations may be insufficient, and this may also be due to the search
space is too large, resulting in the particles can not be fully explored.

After experiment, we found that it is difficult to get a valuable route
scheme. So we think it is necessary to build new stops based on the existing
line to meet some specific conditions. For example, the distance between the
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new stop and the previous stop is less than the fixed radius (the length of
the radius is determined by the distance between the starting and the last
stations and the total number of stations. If there are 11 stations within
10km, the interval between each station is required No more than 1.5km).
This can not only avoid circuit detours but also reduce the search area.

5.1.2 Using greedy strategy to search stops with loca-
tion restriction between stops

Because of the problems encountered in the experiment of 5.1.1, we decided
to change the way defined the search space. this time we fix the first stop lo-
cation and the last stop location at beginning, The first station to be searched
is between these two stops. We connected the two stops with line L, Use the
search space definition method mentioned above, the search area of first new
stop is in area Z as shown in the figure 4.1 4.2 4.3, and the distance between
first station to be searched and the starting station is less than the linear
distance D between the starting station and the last station divided by the
N-1 (total number of stations minus 1) multiplied by 1.5 (named r1) and
larger then D/(N-1)*0.5 (named r2). so the new station is chosen from a
fan-shaped area, and each station is selected take 200 iterations as optimiza-
tion times. 4 groups of experiments were carried out. line with 6 stations
line will be finally decided.

During the PSO, when the particles move outside the Z area, multiple
situations will occur. When the distance between the particles and the pre-
vious confirmation stop is greater than r1, the distance from the particles
to the previous stop will be restricted to r1. when the distance from the
particles to the previous station is less than r2, the distance from the parti-
cles to the previous station will be restricted to r2 For the particle moving
position outside Z, the particle is selected with Z boundary near to ensure
that all particles will always fall in the optional interval Z. The actual exper-
imental results are shown in the figure 5.3, when a greedy selection of new
stop location, the particle motion density map of PSO. For the stop search
with 200 iterations and 20 particles, a total of 200 ∗ 20 particle positions
are recorded, and their positions are scattered in the fan-shaped area Z. The
fan-shaped area in the figure is search area Z. The heat map represents 200
* 2 times of particle movement. It can be found that the density of particles
movement is concentrated in several peaks with the highest heat. The high
density region is not concentrated in the four corners of the sector, which
shows that the algorithm is reasonable when the running position is outside
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the optional range. The two figures 5.3 5.4 show density maps with different
accuracy. The number of particles falling in the region is taken as the density
value. The X and Y axes represent the longitude and latitude, and the color
represents the number of particles moving in the modified block area. The
higher the number, the lighter the color.

Figure 5.3. The X and Y axes represent the longitude and latitude of a
stop, and the color represents the number of particles moving in the modi-
fied block area. The higher the number, the lighter the color (Each X-axis
and Y-axis has 100 segments, there are 200 times of particle movement,
because there are 200 iterations )

Figure 5.6 shows the process of the first group of station addressing in the
new method. It can be seen that this time the station addressing is obviously
more practical. It can ensure a higher city sociality score and limit the search
space of each station, making the new line more reasonable.

The city sociality score optimization of the four groups of experiments
with the same parameter configuration is shown in the figure 5.5
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Figure 5.4. The X and Y axes represent the longitude and latitude,
and the color represents the number of particles moving in the modified
block area. The higher the number, the lighter the color(Each X-axis
and Y-axis has 40 segments)

By limiting the location of the new station, we get feasible lines and ensure
high city sociality score. This fully solves the shortcomings of the previous
experimental design, so that the results can be reference. However, by an-
alyzing the score optimization process of the four groups of data, we found
that when the last stop location is finished searching, the results of the four
groups are different. And because of the greedy strategy we use for adding
new stop between last stop and previous stop, each new stop will make the
score get a significant improvement, which makes it difficult to observe the
optimization effect of the same number of stations. For example, we can
get the city sociality score comparison of four 5-station lines through four
groups of experiments with 1600 iterations. And only after all iterations of
all stations are completed can we get the city sociality score of the whole
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PTN. With such a small number(four groups) of samples, it is difficult to
find out whether our final optimization results are superior to the lines with
the number of stations. And it is difficult to get a conclusion of the optimiza-
tion effect. So we try to use greedy strategy for the third kind of experiment.
The idea is that we optimize the line of fixed N stops, that is the second
greedy strategy mentioned in Chapter 4.

Figure 5.5. Optimization by limiting stops location in fan-shape area
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(a) find 1st stop (b) 2th stop

(c) 3th stop (d) 4th stop

Figure 5.6. The process of line optimization by limiting stops loca-
tion in fan-shape area

5.1.3 Optimization on the line with all stops fixed

The second greedy method requires us to not only fix the first stop and last
stop, but also give a fixed line for all stops, and then optimize the station
location based on the initial line. The advantage of this method is that each
optimization result can be easily compared with the city sociality score of
the PTN with original line. Every iteration of PSO algorithm can find the
influence of stop position change on the city sociality score. And because
the number of stops is fixed at the beginning, the whole optimization process
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will not have the obvious increase of scores caused by adding each new stop
in the previous experiment. In order to have a more intuitive and reasonable
initialization line, we use the metro line D in the planning of Rome as the
initialization metro line. Line D was a proposed line of the Rome Metro
system, whose project was shut down in 2012. The project in 2018 was
reproposed for a reborn version of the Line. We found the station coordinates
of metro D in Google map (table 5.1). Metro line consists of 22 stations, and
the main direction of the line runs through the north and south.

Stop name Location
Agricoltura 41.840563548030, 12.473230888930281
Eur Magliana 41.839191506830, 12.462023207004686
Magliana Nuova 41.847371830617, 12.460377626788132
Roma Tre 41.853844931653, 12.466297171703426
Marconi 41.865327493239, 12.467852852897877
Trastevere 41.876065058751, 12.465964577829673
Nievo 41.883190482764, 12.469354889949997
Sonnino 41.887343950958, 12.470856927053982
Venezia 41.895130975886, 12.481435559209263
S.Silvestro 41.902813243343, 12.480899117524887
Spagna 41.906518289413, 12.483055613558003
Fiume 41.911595743555, 12.498129626584431
Salario 41.925933659528, 12.504974623800425
Vescovio 41.933053520764, 12.512248774642222
Prati Fiscati 41.946003516768, 12.514845066219882
Jonio 41.949897560200, 12.525230579297329
Adriatico 41.948237833068, 12.538620166405437
Ojetti 41.947918649976, 12.555099658723092
Talenti 41.950089064552, 12.558017902067167
Cecchinia 41.954493502271, 12.555357150782863
Casal Boccone 41.963560738585, 12.554847531123201
Torraccia 41.974313693871, 12.553860478275505

Table 5.1. Metro D stops location

First of all, we add the original metro D to the city PTN, as shown in
the figure 5.7, which shows the change of the city sociality score after adding
metro D, the city sociality score of PTN after adding metro D is 12173.27.
It is noteworthy that before adding metro D in Roma, the sociality score of
the city’s PTN was 10803.24, that is to say, the addition of metro D lines
increased the sociality score of the whole city by 13%.
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Figure 5.7. Comparison of city sociality score after joining metro D. It shows
improvement of city sociality score of hexagon area after built metro D

Based on Metro D, we adjust the stations one by one, and adjust the
position of the stations. Each stop is also limited by the search area of the
fan-area. In this experiment, we use two groups of experimental 5.8. Take
the results of the group with good optimization results from the two groups,
the city sociality score optimized from 12173.27 to 12883.57, which increased
by 5.8%.
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Figure 5.8. The optimization of 21 stations, 200*21 iterations were carried out

It should be noted that the configuration and parameters of the three
groups of experiments are as follows

• w PSO weight factor dynamic update from 0.9 to 0.4

• vmax maximum velocity of particle motion is 0.002

• size Size of particle swarm is 20

• iter_num iterations of each site update is 200

• stops_num number of stops to be built is 22
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5.2 Compare the performance of different im-
proved PSO

In the chapter 4, we mentioned the theory and method of improved PSO.
5.1 experiments are all based on w-PSO the optimization of dynamic weight
factor w. In this section, we will use lr-PSO to adjust the random value
selection range of PSO partical velocity update formula from [0,1] to [-1,1] to
make particles more active, so as to improve the optimization ability of PSO.
At the same time, this method does not conflict with the w-PSO, so we will
combine the two ways to carry out experiments. We carried out two groups
of experiments with the same configuration as in 5.1.3, and the experiment
was also optimized for Metro D. The only difference between the experiment
and the experiment in 5.1.3 is to modify the random value interval. Compare
the results in 5.1.3 as shown in the figure 5.9. Take the results of the group
with good optimization results from the two groups, the city sociality score
optimized from 12173.27 to 13155.25, which increased by more than 8.0%.

It can be seen that the results of lr-PSO are better than those with w-
PSO. Under the same particle swarm optimization configuration, the better
results are obtained with the same computing time.

At the same time, as shown in figure 5.10, the comparison of hexagon area
sociality score between the new metro D and the original metro D. It can be
seen that the new route optimized by our optimization algorithm has a very
significant improvement in the urban area compared with the original Metro
D.

5.2.1 Parameter hypertuning
In the experimental stage, we analyzed some parameters. For the inertia
weight w in PSO, we use dynamic adjustment to update. We also limit the
search area of particles. This part, we will show how we choose the maximum
velocity of particles vmax, as well as the number of population and the number
of iterations. The velocity of particles determines the search accuracy of
particles, and the vmax of particles determines the range of this accuracy.
We refer to the comparison between the numerical change of longitude and
latitude and the actual distance. In reality, every 0.001 degree of latitude
and longitude, the distance difference is about 100 meters. Considering the
actual public transport station, we decided to set about 200 meters, which is
0.002 of longitude and latitude, as the maximum particle velocity vmax. In
general, the population of the partical swarm is better be choosen between 20
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Figure 5.9. Compare the optimization effects of modified random interval
and unmodified random interval

and 50 follow the initial suggestion from 1995 [6]. Considering the calculation
cost, we decided to set the population of PSO at 20 to reduce the calculation
cost. And through experimental observation. We have carried out 42 times
of stop location optimization, and each stop has set a maximum number of
iterations of 200 times. Among the 42 times of station location optimization,
9 times converge after 100 iterations, and only 4 times converge after 150
iterations. So we finally chose 20 populations and 200 iterations

5.2.2 Complexity and speed
We focus on optimization efficiency, and try to reduce the population P and
iteration times I of PSO. For a N stops line. if the time required for PTN score
calculation is t, then the time cost could be N ∗I∗P ∗t. Our experiment in 5.2
needs 21∗200∗20∗4s = 336000s which almost needs 94 hours. Using greedy
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Figure 5.10. Comparison of sociality score after optimized metro D with
sociality score of original metro D. It shows improvement of sociality score of
hexagon area after optimized metro D

strategy, the calculation time of the whole line will be affected by the total
number of stations. We have tried to control the number of iterations and
the number of particle population, as described in the previous paragraph, it
has been reduced as far as possible within the acceptable range. At the same
time, because every particle movement needs to calculate the whole city PTN,
reducing the time-consuming of PTN calculation is also an important method
to improve the efficiency of our output results. If our average calculation time
is 7 seconds like it use to be (See 2.3), the total calculation time will be as
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high as 163 hours. So the follow-up optimization point of this study can be
in the calculation optimization of the fractional model.

improved PSO sociality score percentage improvement time cost
original Line D 12173.27 - -
w-PSO 12883.57 5.8% 94 hours
lr-PSO 13155.25 8.0% 94 hours

Table 5.2. Comparison between improved PSO and original metro D (take
the best score of each experiment)

5.2.3 Robustness
In order to verify the stability of the optimization results of lr-PSO, we
conducted five experiments. The highest and lowest scores were 13155.25 and
13072.60, with an average of 13112.85 and a standard deviation of 29.458404.
lr-PSO shows good stability, which is what we need. Stable optimization
results are more worthy of adoption and application.
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Chapter 6

Discussion of results and
conclusions

6.1 Discussion

In this work we aim as solving the problem of city line planning, in order
to select better public transport lines and stops locations. We use improved
PSO and greedy strategy to select the location of the stops. This paper
compares the advantages and disadvantages of a variety of greedy strategies
to solve the problem of Roma metro line planning. It also proposes and
verifies the method of using lr-PSO to replace the original PSO to optimize
the line, which greatly improves the sociality score of urban PTN.

After tried a variety of greedy strategies, we choose to use the complete
line plan as the basis, and use greedy method and improved PSO to optimize
the whole line. At the same time, we compare the optimization ability of
a variety of improved PSO algorithms with the same time complexity and
code execution efficiency. We focus to compare the results of optimization
and the discreteness of result. Finally, we propose a scheme to optimize
Rome metro line D by lr-PSO algorithm, and the optimization result is 8.0%
on the sociality score of urban PTN.

The lr-PSO method has good robustness with the problem of urban line
optimization, and it shows a small difference in many experimental results.
Moreover, the stronger activeness of particles in lr-PSO can make the algo-
rithm not easy to fall into local optimum in the case of a small number of
iterations and partical population. The algorithm can cooperate with greedy
strategy to find a better location for each station in their respective search
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area.
Looking forward to the future, although our lr-PSO algorithm can opti-

mize the route of a large city like Rome in an acceptable time and give the
scheme with the highest sociality score, as mentioned in Chapter 5, it takes
93 hours to optimize the route of a 22 station, which can be normally im-
plemented on a reliable server, But less time is what we need. Therefore,
one of the future directions of this study is to optimize the scoring model, so
that it can complete the optimization of the whole line in a shorter time. In
addition, the score model used in this paper is based on the walking data of
openStreetMap data[38] and the bus timetable and route data. However, the
setting of the stop is completely dependent on the latitude and longitude, and
does not take into account the building and terrain or river factors. Which
means in line planning work, the improved PSO and greedy strategy pro-
posed in this paper are used to optimize the line. Then the proposed scheme
needs to be combined with the field survey of architectural engineers, and
continue to adjust the line position after the survey. Therefore, considering
these factors, the second work in the future is to limit the location of the
station according to the spatial attributes of the map, such as avoiding the
setting of stations on rivers and existing buildings, or choosing the inter-
section or both sides of the road to set stations and other ways to further
optimize the algorithm.

Future work Possible solution
Scoring model optimization Looking for ways to speed up the calculation of city scores

Limit the location of thestation

Building and terrain data are introduced to limit the location
of the station and find a common way to limit the stop location.
But in this way, the line planning problem may be transformed
into a discrete problem.

Table 6.1. Future work and possible solutions
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