POLITECNICO DI TORINO

Corso di Laurea Magistrale
in Computer Engineering

Master degree’s Thesis

Implementation of a docker containers orchestration solution

Company: KelkooGroup (France)

kelkoogroup

Supervisor Candidate

prof. Morisio Maurizio Nguetsop Roy Paulin

Academic year 2020-2021



Contents

1 Introduction

2 Report
2.1 Problematic . . . . . . .. oL
2.2 Internship’s environment . . . . . . . ... .. ... ... ...
2.3 Problematic . . . . . ...
2.3.1 Context of the project . . . . . . . ... ... ... ....
2.3.2 Problems and Objectives . . . . ... ... ... .....
2.4 Methodology . . . . . . . ... .
3 Solution
3.1 Applicationused . . ... ... ... ...
3.2 Existing solution . . . . ... ... Lo 0oL
3.3 Newsolution . .. ... .. . . .. . .
3.4 Software stack . . . ... ... ... o o
341 Docker. . . . ...
3.4.2 Kubernetes . . . . . ... oo
3.43 Rancher . .. ... ... ..
4 Roadmap
4.1 Dockerisation . . . . . . ... L Lo
4.2 Deployment in a rancher cluster. . . . . . ... ... ... ..
4.3 Logging . . . . . . .
4.3.1 Sidecar . . . .. ...
4.4 Helm . . . . . ..
4.5 ConfigMap . . . . .. ..
4.6 Security and roles . . . ...
4.6.1 Authentication . . . . ... ... ... ... .. ...
4.6.2 Autorisation . . . .. .. ...
4.6.3 HTTPS . ... . . . . e
4.7 Autoscaling . . . .. ... Lo
4.7.1 Horizontal Pod Autoscaling . . . . .. ... ... .....
4.7.2 Creation of an horizontal pod autoscaler (hpa) . . .. ..
4.7.3 Gatling . . ... ...
5 Societal and environmental impact
5.1 Societal and environmental personal impact . . . . . . ... ...
5.2 KelkooGroup politics . . . . . . . . . . ...
5.3 Global impact of the project . . . . . .. ... ... ... .....
5.3.1 Impact environnemental . . . . . ... ... ... .....

6 Conclusion
6.1 Personal Experience . . . . . .. ... ... ... ...
6.2 Progression . . . ... ... o



7 Glossary

8 Bibliography

25

25



1 Introduction

The final project represents the opportunity to use all the notions learned in
a practical context. I started mine in march 2020 in a field more and more
important: microservices. A field which get the interest of many people due to

all its applications.



2 Report

2.1 Problematic

For a long time, virtual machines have been considered by companies as the
best way to deploy their different services . However, given that they require a
lot of resources and maintenance, a more efficient solution has been considered
and today several companies have migrated their infrastructures in the cloud.
Technologies such as Docker and Kubernetes are more and more used to host
their services.

That is why KelkooGroup has decided to hold this internship. They want
to explore how they could benefit from these technologies to optimize their
deployment procedures.

2.2 Internship’s environment

The internship was supposed to be held in the KelkooGroup offices in Echirolles
but due to the Covid-19 crisis, I did it remotely from home. I was not part of a
specific team. All the people working on the project were from different teams.

2.3 Problematic
2.3.1 Context of the project

The current infrastructure pf KelkooGroup uses 2 data centers with a total of
300 servers and 1000 virtual machines. KelkooGroup would like to set up Docker
containers on development, pre-production and production environments.. Ku-
bernetes is the core, the orchestrator who helps us to manage all those Docker
containers.

2.3.2 Problems and Objectives

It was very important to understand the technologies currently in use, to study
those used to build the new one in order to decide if, when and how this change
will impact KelkooGroup. KelkooGroup would like to increase its global effi-
ciency thanks to microservices and containers’ orchestration.

The goals are:

- a better efficiency through an easier evolution and maintenance.

- a better operability through scalability, isolation and fault tolerance.

- Infrastructure costs lower thanks to an optimized hardware and an hybrid
infrastructure.

2.4 Methodology

For this project, an Agile methodology has been adopted. A team gathering
people from different background has been built. a 2 weeks workload was decided
followed by a demonstration. Everyone gave his/her view and according to



that, the next 2 weeks goals were defined. Moreover, a stand up was scheduled
everyday to check the progression of the student.



3 Solution

3.1 Application used

We chose ImageflyResizer as test application. It is an application built by
KelkooGroup, coded in php which downloads an image and resize it. It is used
in ecommerce for products images.

3.2 Existing solution

For its current deployment, KelkooGroup uses a few proprietary technologies.

The procedure is as described:

- The application L’application est packagée sous forme de rpm + réle Pup-
pet pour la configuration.

- Geppetto allows to manage the configuration of nodes.

- Release Automation allows to automate configuration changes linked to
releases.

- Puppet allows to deploy the application with the desired configuration on
a server.

- Ansible allows to orchestrate the deployment.

3.3 New solution

The current solution is taking too much resources and is asking too much main-
tenance due to all the virtual machines used. The new one is based on docker
containers which are lighter. We want to ”dockerize” the application (which
means create its docker image). To use that solution on a higher scale we used
Kubernetes which is an orchestrator. This way, we could deploy our applica-
tions in a Kubernetes cluster which offers a lot of tools, like configmap, for the
configuration. This solution should also allow to view our application logs using
an ElasticSeartch server and Kibana as front end.

3.4 Software stack
3.4.1 Docker

Docker is a containerization tool to automate the deployment of programs
through OS level virtualization. A container is like a virtual machine but it
is lighter and fast because it does not go through the virtualization of all the
software stack.

With Docker the distribution of our program in several machines as well as
the updates are easier.

3.4.2 Kubernetes

Most of the time, we must manage a great number of containers, their creation,
interaction, destruction and the exposition of our applications to the outside.



Doing it manually would be very challenging and that is where we need Kuber-
netes. In our project, we used Kubernetes to manage different nodes where our
applications were running.

3.4.3 Rancher

Rancher is a software based on Kubernetes. It allows to resolve in an effec-
tive way operational and security problems caused by the management of sev-
eral Kubernetes clusters.It provides tools to manage and monitor our different
workloads.

4 Roadmap

4.1 Dockerisation

In order to run our application in containers, it is necessary to create first a
Docker image of our application and then, create as many containers as we
want all following the model defined by the image. So the dockerisation process
consists in taking as input an application and after a certain number of oper-
ations, obtaining as output a docker image. From that image, any container
created will host our application ensuring the same functionalities.

The ”dockerisation” can be summarized in 2 steps :

- Building the Dockerfile : The Dockerfile is a text document where we put
a set of necessary commands to set up our image. It is like a recipe for image.

- saving the image in a registry.

(Client }———————  [DOCKER_HOST}

docker build -- ,_J){ Docker daemon |
<

-~

4 b
! i K
docker pull - j Containers }— \.\ |mages}+

‘\' g
\_\
™~
o /
\\ s
64 i

~|

docker run |

00eQ

Figure 1: docker workflow



4.2 Deployment in a rancher cluster

Once the application is available in a registry, we need to deploy it in a cluster
and access it from the outside.

For that we needed to:

- Save our register in order that we can access it from everywhere.

- From yaml files, create deployment, service and ingress which are the main
resources used to set up our application.

Ingress

Cluster
Ingress

SR

Service

[ Pod [ Pod ] Pod ]

Figure 2: Cluster Components



- deployment: It is a resource used to describe our application by precising
images, number of pods, port used etc...

apiVersion: apps/vl
kind: Deployment
metadata:
name: imageflyresizer-deployment
labels:
app: imageresizer
spec:
replicas: 3
selector:
matchLabels:
app: imageresizer
template:
metadata:

labels:
app: imageresizer

spec:

containers:

- name: imageflyresizer
image: kelkoo20/imageflyresizer
ports:

- containerPort: 80

- Service: It is an abstraction which defines a logical set of pods and rules on
how to access them. The motivation of its usage come from the fact the pods
present at a certain moment could be different from those present at another
one. That create a persistence issue due to the changing of the ip address.

apiVersion: vl
kind: Service

metadata:
name: imageflyresizer-service
labels:
app: imageresizer
spec:
selector:
app: imageresizer
ports:
- protocol: TCP
port: 80

targetPort: 80
type: NodePort

10



This way we have an unique ip address to refer to when we want to access the
application.
- Ingress: It an object used to access our services from outside the cluster.

apiVersion: extensions/vibetal
kind: Ingress
metadata:
name: ingress-imageresizer
spec:
rules:
- http:
paths:
- path: /
backend:
serviceName: imageflyresizer-service
servicePort: 80
host: imageresizer.name.domain

All the requests to our application will be sent using the host name specified on
the yaml above, and those requests will be redirected to the specified service.

4.3 Logging

Logs are important parts of applications. They let us know about the events
occurring and which, very often, help us to determine the application’s state.
Collecting logs in rancher is done through Fluentd which extracts stdout/stderr
logs from from each container in files located at /var/log/containers.
this figure summarizes the procedure:

11



R i mw elasticsearch . -
! -

:9200 E

‘ kibana

Figure 3: Rancher Logging

The final goal is accessing these logs from kibana which is used as front end.
an ElasticSearch server has been configured to receive those logs and send them
to Kibana. Logs are differentiated from each other using indexes.

4.3.1 Sidecar

A sidecar container is a container which runs in the same pod as the application,
sharing the same resources, and improving how the application works by adding
other functionalities. In this case, it has been used to manage the logging.

We have created a sidecar container, from the busybox image, which shares
a file (with our application) which it will read logs from and will export them
in other to be used by rancher. The application will write the logs in the shared
file.

12



p

Application
Container

POD

Storage

Sidecar Container }——

A

Figure 4: logging with sidecar

13

Export
logs



4.4 Helm

Deploy applications in kubernetes can by complex. Setting up an application
can imply creating several pods, services, deployments, and so writing yaml
files for each one of them. Helm is a package manager providing the same
functionalities as Debian’s apt and Python’s pip.

It is very important first of all to understand 3 key concepts of helm:

- CHART: It is a package helm. It contains all resources’ definitions (de-
ployment, services, ingress, etc...) necessary to execute an application or service
inside the cluster.

- REPOSITORY: It is a simple place where charts can be collected and
shared.

- RELEASE: It is a chart instance running in the cluster. A chart can be
installed several times in the same cluster and at each installation, a new release

is created.

Developer

n HELM
Helm Client a
retrives Chart from s
configured chart Repo

Helm Chart Repo

w Helm Connects to
Kubernetes API to B
r’H EL M deploy helm charts

Cluster-admin
Role

Helm Client / Kubernetes Cluster
Workstation

Figure 5: Helm’s general structure

4.5 ConfigMap

A configmap lets you separate your application code from the configuration.
That way, you can easily change configuration depending on the environment.
Firstly, create your yaml file to define your configurations:

14



apiVersion: vl
kind: ConfigMap
metadata:
name: app-config
namespace: default
data:
MAX_IMAGE_SIZE_IN_PIXELS: ’6’

Precise the configmap name as well as a set of key - value pairs indicating
the configuration. You will just need to refer to your configuration file, in the
deployment yaml, in order that newly created pods take into account the new
configuration.

apiVersion: apps/vl
kind: Deployment
metadata:
name: imageflyresizer-deployment2
labels:
app: imageflyresizer
spec:
replicas: 3
selector:
matchlLabels:
app: imageflyresizer
template:
metadata:
labels:
app: imageflyresizer
spec:
containers:
- name: imageflyresizer
image: kelkooprivate/kelkoo20:imageflyresizer

envFrom:

- configMapRef:
name: app-config

ports:

- containerPort: 80

This way, when the container is created, it will use the key-value pairs from the
configuration files as environment variables.

15



4.6 Security and roles
4.6.1 Authentication

Kubernetes does not know the concept of normal user. So, normal users should
be managed by external services.

Rancher allows to go beyond that limit by offering the capability to exe-
cute a centralized user authentication. This feature let the users authenticate
themselves on each of their kubernetes clusters with the same credentials.

Rancher provide us 2 types of authentication: local and external.

- Local authentication: It is the default one where Rancher itself save (local)
users.

- External authentication : The one we used. KelkooGroup already has a
server where all the employees data are saved. The goal is, when an employee
wants to log in, Rancher will go to check his/her credentials on the company
Idap server.

Rancher include several external authentication services such as openLDAP,
Github, Shibboleth...and in general external authentication procedure follows
these steps:

o« - A®)
M8 |’ [ gmp'RANCHER

Local Principal

Figure 6: rancher log in as local admin and external authentication configuration

16



o - . O
3
Local Principal External Principal
1D: foo ID: foo

Figure 7: association of external and local users both sharing the same ID

o < | [ ¥ RANCHER

Local Principal

Figure 8: Automatic log out of the local user after configuration

o [ [ 1% RANCHER

External Principal

Figure 9: Automatic log in of the external user

Users
D Name
foo Local Principal

Figure 10: At the end only the external one remains

17



4.6.2 Autorisation

Once a user has been authenticated, it is very important to control what he/she
can do. To do that we define and provide a role which is a set of actions he/she is
allowed to take. There are three rancher default roles: Administrator, Standard
User and User-base.

- Administrator: users have the complete control of the system and its clus-
ters.

- Standard User: users can create new clusters and use them. The Standard
User can also assigned to other users access rights to his/her clusters.

- User-base: these users can only log in.

It is also possible to create your own roles in order to define yourself per-
missions assigned to authorized users. That is what we have done. We have
created 2 roles from the Rancher UL

Thanks to the external authentication, for each user we are able to access
the group he/she belongs to. We assigned permissions to a group and this way
all its members will inherit them. The 2 created roles were:

- Admin: assigned to KelkooGroup members part of the sysadmins group.
The have a total control on clusters. - New User: assigned to all users but
sysadmin members. Possible actions are limited.

4.6.3 HTTPS

Now we have a working and accessible cluster, and our application running in
http. For security purpose, we decide to set up https.

Once we have tls certificate (key + certificate), we need to save it on the
cluster using a secret. A secret let us stock and manage sensible information such
as passwords, tokens, keys... But it is safer because it is completely separated
from the pod. We can create one from the rancher Ul or using a yaml file as
below:

apiVersion: vl
data:
tls.crt: <BASE64 ENCODE .crt>
tls.key: <BASE64 ENCODE .key>
kind: Secret
metadata:
créationTimestamp: null
name: rancher-dev-kelkoo-net-tls
namespace: <NAMESPACE>
type: kubernetes.io/tls

The secret is then deployed in the cluster and each time we will need it, we
will just call it from a yaml file. No changes are needed in our application or
deployment.

apiVersion: extensions/vibetal

18



kind: Ingress

metadata:
name: imageresizer-secure
spec:
rules:
- host: whateveryouwant.rancher.dev.kelkoo.net
http:
paths:
- backend:
serviceName: imageflyresizer-deployment
servicePort: 80
path: /
tls:
- hosts:

- whateveryouwant.rancher.dev.kelkoo.net
secretName: rancher-dev-kelkoo-net-tls

As we can see we just need to add the key word tls followed by the hostname
and the secret name used to save the certificate.

19



4.7 Autoscaling

One of the main reasons why we chose this solution was its flexibility when
the traffic is increasing. With Kubernetes, new pods can be created automati-
cally when the cluster is in a particular state. That way, our applications can
function efficiently even when the traffic is huge, and they use only the needed
resources.that gives an advantage in managing available resources.

4.7.1 Horizontal Pod Autoscaling

There are a lot of types of autoscaling but the one we are interested in in
the Horizontal Pod Autoscaling. It consists in increasing the number of pods
according to the cpu and/or memory usage (or other custom metrics).

' [ees) [ee) | oD
N oo | oo el oo

Pod 1 Pod 2 Pod n
RC / Deployment

o |
| BHEE |

|
i S

Metrics Server API — Horizontal Pod

Autoscaler

Figure 11: Horizontal pod autoscaler

First of all we need to install a metrics server which will collect data on the
resources usage of pods. The hpa, from collected data, will check if our pods
are in a certain state (ex: cpu usage greater than 50%) defined at its creation ,
and will increase the number of pods.

20



4.7.2 Creation of an horizontal pod autoscaler (hpa)

An hpa can be created from the rancher UI but it is better to use a yaml file
because this way you could specify advanced options. An example of such a file
could be:

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
name: hpal
namespace: default

spec:
maxReplicas: 10
metrics:
- resource:
name: memory
target:

averageUtilization: 4
type: Utilization
type: Resource
- resource:
name: cpu
target:
averageUtilization: 25
type: Utilization
type: Resource
minReplicas: 1
scaleTargétref:
apiVersion: apps/vibeta2
kind: Deployment
name: imageflyresizer-deployment

Here we are interested by the cpu/memory usage. We also specify the de-
ployment we are interested in. When the cpu average usage will go above 25%
and/or the memory average usage will go above 4%, new pods will be created
until both the usages reach a value lower than their respective threshold.

4.7.3 Gatling

Gatling is a test tool easy to use and that let us emulate the behavior of one
or several clients sending http requests to a specified server . It also provides
results about the test which lets us know if the server is working correctly.
It shows us the numbers of requests sent to the server as well as their results.
In this case, gatling is used to send several requests to the host defined in
the ingress and, due to the increase of the resources usage, new pods will be
created when the condition specified in the hpa will be verified.

21



'I:iﬂ B 2020-07-30 10:44:03 +02:00, duration : 121 seconds
e .

P STATISTICS

5k ) Executions
Total
4475
Meanreq/s  36.983
® Response Time (ms)
Total
Min 21

50th percentile

75th percentile

Number of Requests

95th percentile

99th percentile

Max

Mean

T T T
t< 800 ms B800ms<t< t>1200ms failed

1200 ms

Std Deviation

Figure 12: Gatling test report

5 Societal and environmental impact

5.1 Societal and environmental personal impact

Due to the covid-19 crisis, I had to stay home so I didn’t do any professional
activity in presence

The computer I received to work at home was a DELL latitude 6440 with
a total carbon print of 348 kg eq. CO2, which is like refueling 3 times a VW
golf. The usage contributes up to 23% of the total. Moreover, this model has
an annual energy consumption of 26 KWh; and if we consider the internship
duration of 5 months, we obtain 11KWh.

5.2 KelkooGroup politics

KelkooGroup strictly uses hardware with low carbon prints. Moreover they
have a good work scheduling with flexible hours which allows a limited number
of people to access the structure at the time.

5.3 Global impact of the project
5.3.1 Impact environnemental

In this project, a limited environmental impact has always been the goal.Choice
of low impact hardware and increase of resources only if strictly needed, are few
of the measures taken to limit the impact. However the the energy consumption
will increase due to the number of applications working simultaneously which
will grow bigger.

22



6 Conclusion

6.1 Personal Experience

One of the greatest difficulties was understanding how Kubernetes works. Al-
though it is a tool which make management and deployment in cloud easier, it is
so vast and complex. It is very important to understand its key concepts. The
security aspect is also important because it will be useless to implement this
solution if we can guarantee the safety of our applications. It was also a first
experience of the Agile method and, it really optimizes team work and allows
to focus on a set of tasks at a time. I have also learnt a lot about microservices,
their impact and their integration to modern technologies.

6.2 Progression

KelkooGroup thanks to this internship explored a lot of aspects in order to use
them in production. However there is still a long way to go because they still
have to study monitoring, build and integration with existing tools

23



Epic

v B KelkoolmageResizer dockerization

Migration of KelkoolmageResi.
[ Deployment of ImageResizer w.
3 Dockerfile for KelkoolmageResi...
[ KelkoolmageResizer configuration
[ KelkoolmageResizer autostart
[ KelkoolmageResizer isalive
[0 Docker user guide
~ @ Dev cluster
[3 Dev cluster creation
[ Publication of image in Artifactory
[J Automated tests
KelkoolmageResizer logging
Docker hub respository name
Entry point

Deployment of ImageResizer i...

o
o
[n]
(n ]
O ELKissues
[ Different log indexes
[ Doc for migration of applications...
] Testdata
v @ Build - Utilisation de Helm
B Helm investigation
B ConfigVap investigation
[ Helm usage
O Helm evaluation
v B sécurité/ Roles
O Authentication issues
[ Authorization
[ Authentication
0 HTTPS
~ @ scalabiliy

[ Apps scalability: automatic (CPU.

o
°
o
°
°
°
°

© 0 00 000O0O0CKO0O0

© o

© 000

°

3 Apps scalability: automatic (custom...

@ Cluster scalability

[ Apps scalability: manual

> @ Monitoring
High availability
Inventory

Create preprod / prod cluster

Build - CI

Build - Création des images de base
Build - Release

Build - Processus de déploiement
Build - Développement

Build - Dockerfile

Automatisation des processes

Build - Configuration

°
°

Rancher / Openshift / Kubemetes eval...

SEP

COUDERT STEPHANE  DONE
ROY-PAULIN.NGUETSOP  DONE
ROY-PAULIN.NGUETSOP  DONE
ROY-PAULIN.NGUETSOP  DONE
ROY-PAULIN.NGUETSOP  DONE
ROY-PAULIN.NGUETSOP  DONE
ROY-PAULIN.NGUETSOP  DONE
ROY-PAULIN.NGUETSOP  DONE
ROY-PAULIN.NGUETSOP  DONE
ROY-PAULIN.NGUETSOP  DONE

ROY-PAULIN.NGUETSOP  DONE

ROY-PAULIN.NGUETSOP  DONE

ROY-PAULIN.NGUETSOP  DONE

ROY-PAULIN.NGUETSOP  DONE

ToD0.

ROY-PAULIN.NGUETSOP  DONE

ROY-PAULIN.NGUETSOP  DONE

ROY-PAULIN.NGUETSOP  DONE

ROY-PAULIN.NGUETSOP  DONE

ROY-PAULIN.NGUETSOP  DONE

ROY-PAULIN.NGUETSOP  IN PROGRESS

STEPHANEPEREZ  DONE

ROY-PAULIN.NGUETSOP  DONE

Figure 13: avancement



7 Glossary

docker: is an open-source project that automates the deployment of applications
within software containers, providing an additional abstraction through Linux
OS-level virtualization.

kubernetes: is an open source platform that automates Linux container op-
erations . It eliminates many of the manual processes involved in deploying and
scaling containerized applications. In other words, Kubernetes allows you to
easily and efficiently manage host clusters running Linux containers.

jenkins: an open source automation server which enables developers around
the world to reliably build, test, and deploy their software.

Helm: is a package manager for Kubernetes that allows developers and op-
erators to more easily package, configure, and deploy applications and services
onto Kubernetes clusters.

8 Bibliography

References

[1] Kubernetes-sigs, kubernetes.
https://github.com/kubernetes-sigs/metrics-server

[2] Rancher Docs: Authentication, by Rancher
https://rancher.com/docs/rancher/v2.x/en/admin-settings/authentication/

[3] Daniel Weibel, Autoscaling apps on Kubernetes with the horizontal pod au-
toscaler,
https://itnext.io/autoscaling-apps-on-kubernetes-with-the-horizontal-pod-
autoscaler-798750ab7847#18ca

[4] Docker overview, by Docker
https://docs.docker.com/get-started/overview/

[6] Matthew Palmer, Ultimate Guide to ConfigMaps in Kubernetes,
https://matthewpalmer.net/kubernetes-app-developer/articles/
ultimate-configmap-guide-kubernetes.html

[6] Helm package
https://helm.sh/

[7] Gatling test analysis
https://gatling.io/open-source/

[8] horizontal pod autoscaling
https://aws.amazon.com/blogs/opensource/horizontal-pod-autoscaling-eks/

[9] kubernetes basics
https://kubernetes.io/

25



