
POLITECNICO DI TORINO
Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Study and development of design
techniques for 3D integrated circuits

Supervisors

Prof. Luca STERPONE

Ph.D Sarah AZIMI

Candidate

Davide MASSIMINO

July 2021

Acknowledgements

I would first like to thank Professor Luca Sterpone, whose expertise and motivating
passion have guided me into the development of the project. Your introduction
to a such interesting topic stimulated my interest and pushed me to expand my
cultural background, and for this I will always be grateful to you.

I would also like to express my thanks to Dr. Sarah Azimi who has followed my
work step by step, always ready to answer my questions or clarify my doubts. Your
insightful feedback prompted me to hone my knowledge and develop more critical
thinking. You provided me with the tools I needed to successfully complete the
project.

A special thanks goes to my family who have never made me miss anything in all
my years of university. They have always been ready to listen to me in times of
need and were the first to push me to give my best. I would not have gotten this
far without them.

ii

Table of Contents

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Motivation . 2
1.2 Goals . 3

2 Background 5
2.1 TSV-based 3D IC . 6
2.2 Monolithic 3D IC . 9
2.3 3D Packaging . 10

3 Previous Works 13
3.1 FT-TDP . 17
3.2 METIS package . 18
3.3 Strategies . 20

3.3.1 Stacking and Folding . 21
3.3.2 Optimal blocks . 23
3.3.3 Multifactor placement . 25
3.3.4 FPGA TPR . 27

4 Algorithm 30
4.1 3D Place and Route . 33

4.1.1 Modularization . 34
4.1.2 Vertical BFS . 39
4.1.3 TSV optimization . 44
4.1.4 2D placement . 50
4.1.5 Pins placement . 57

iii

4.2 Fixed units case . 62
4.2.1 Fixed modules generation 63
4.2.2 Anchorage . 65

4.3 Delays update . 66

5 Experimental result 69
5.1 Benchmark . 69
5.2 Results . 73

6 Conclusion 80
6.1 Future works . 81

Bibliography 83

iv

List of Figures

2.1 Two examples of TSV-based 3D IC cross-section view 8
2.2 Size comparison between different inter-tiers vias 9

3.1 Three main design rules . 14
3.2 Example of Channel routing . 16
3.3 Example of Dogleg routing . 16
3.4 Maze route search pattern . 16
3.5 METIS multilevel partitioning . 20
3.6 Example of LST and TTF approaches 23
3.7 Adjacent placement of blocks according to their connectivity 24
3.8 Example of power and resistance distribution into a 3-tiers architecture 26
3.9 Partitioning 2D IC into tiers . 28

4.1 Section of PDD file . 31
4.2 Breadth First Search algorithm with starting node A 40
4.3 Cost computation on a 3D IC with three tiers 45
4.4 Example of TSVs minimization on a 3D IC with three tiers 50
4.5 Placement strategies for node with TSVs connections 52
4.6 Searching path for free cell . 54
4.7 Example of 2D placement result on a 4-tiers architecture 57
4.8 Pins placement process . 60
4.9 3D IC after Pins placement phase 60
4.10 Visualization of partitions with and without balancing of fixed nodes 64

5.1 Difference between edges based on TSV and number of TSVs 71
5.2 Formula and graphical representation of the Manhattan distance . . 72

v

List of Tables

5.1 Attributes of the tested circuits . 70
5.2 Results obtained by running the algorithm on B09 IC 76
5.3 Comparison between the wire-lengths of the tiers used on B09 IC . 76
5.4 Results obtained by running the algorithm on B12 IC 77
5.5 Comparison between the wire-lengths of the tiers used on B12 IC . 77
5.6 Results obtained by running the algorithm on B14 IC 78
5.7 Comparison between the wire-lengths of the tiers used on B14 IC . 78
5.8 Results obtained by running the algorithm on CNN IC 79
5.9 Comparison between the wire-lengths of the tiers used on CNN IC . 79

vi

Chapter 1

Introduction

The last five decades was great for the semiconductor industry, the development of
ever smaller component allows to riding high on the back of the device scaling and
improve in a tremendous way the performance, power, and cost of the integrated
circuits (ICs). From the late 1960s[1], thanks to the improvement on those metrics,
the semiconductor industry products were in line with the Moore’s law. Moore
said that the number of transistors in a microprocessor would double roughly every
18 months and his law was used frequently by the main firms of the semiconductor
sector to make prediction and focus their investment. Over the years many new
device and interconnect innovation like High-k Metal Gate, strained silicon, FinFET
and porous low-k dielectric were able to boost the performance and follow the
increasing demand of the market. In the last few years, the focus on new technology
like Artificial Intelligence (AI) and Internet of Things (IoT) create the need of even
better and performing device that can manage and work on huge amount of data.
Today we have microprocessors with transistors’ size of 7nm (Apple A12 Bionic)
that allow a very large-scale integration, but we are reaching a point in which
the Moore’s law break apart due to physical limitation. Transistors that reach
the nano-scale enter in the world of quantum mechanics in which the behaviour
of mass and energy are different form the macro-world, this brings the problem
of electron tunnelling where the gate of the transistor cannot prevent the flow of

1

Introduction

the electrons. This physical limitation is a huge problem for the semiconductor
industry because the firms are not able anymore to counting on the traditional
scaling approach base on the reduction of the size of ICs’ components, while the
market demand for better performance is still rising. To meet the requirements of
next generation of Information and Communication Technology (ICT) systems, big
firms like Intel, AMD and Nvidia have started to look for some possible solution.
A first attempt for increase the integration density was made by 2.5D ICs in which
the area of the silicon plane is reduced using a silicon interpose that allow dice to
be placed into a single package. The 3D approach was defined later and unlike the
previous ones it increases the integration density of ICs by stacking the dice one
above another. Like in the natural world where high-rise buildings are the solution
to accommodating large population in small area, stacking dice allow to increase
the number of components that we can place in a fixed silicon area. 3D integration
can be an enabler for performance and speed, but it can also reduce the power
consumption and push the development of modular circuits based on independent
tiers.

3D ICs are arousing more and more interest from researchers and companies
thanks to its features, but of course all the advantage come with a price. The
development and the integration of a 3D IC is still quite complex task. The way
how the components of a circuit are placed into a tier and the selection of the tier
will affect the performances of our device like the delay time, thermal dissipation,
reliability, consumption, and area footprint. Moreover, with an additional dimen-
sion, is critical the management of inter-tiers connections that can become the
bottleneck of the communication. It became essential to define a design path that
allow to find the best placement and optimize the performance.

1.1 Motivation

The huge limitation that an 3D architecture implementation brings slowed re-
searchers down and turned investors away. Fortunately, the IT and technology
industry has continued to have an ongoing thirst for better performance, which has

2

Introduction

resulted in major manufacturers being unable to ignore the hardware limitation.
New technology was implemented to develop the components of 3D ICs, but there
still a lack in the design practices. 3D architecture brings new challenges respect to
2D, the placement of the elements needs to take in account also the vertical space
and the inter-tiers and intra-tiers connections, because they affect in different way
the total performance. Despite having the necessary technologies, limiting oneself
to building a 3D IC by joining only the different components not considering the
new constraints leads to bad results. It became more and more clear the need of
best practices to follow for the development of the circuits. In 2D architecture the
Place and Route algorithm is used to find the best placement for the components
of the circuits and then check if their routes are feasible. What is needed now is
an update of this algorithm that should take in consideration all the new aspect
that a 3D architecture brings. Many companies have already begun to work to fill
this gap, but for now no definitive solution has been found. The exploration of this
kind of design become even more impellent with the Big Data shift. The amount
of information produced by device increase exponentially every year creating value
both for companies and client. New application like CNN (Convolutional Neural
Network) and ML (Machine Learning) created their own place in the market arising
a high interest from everyone. The need of even better IC able to manage such
amount of data is now quite important. Joined with the parallelization of multiple
devices the 3D architecture can be an enabler for these new applications. The
develop of 3D IC is still now quite complex because it depends on the goals defined
and technology used, but the advantage that it can brings are enormous. For this
reason, the implementation of a Place and Route algorithm for 3D architecture can
be the starting point for the development of new powerful devices and performing
technologies.

1.2 Goals

The project goal is to define a Place and Route algorithm that, starting from a
classic 2D IC, can define a 3D IC, finding for each element the best position. The

3

Introduction

number of tiers that characterize the output circuit is defined by the users, and
the algorithm will focus on two main aspect: minimize the number of inter-tiers
connection that represent a critical path and can slow down the performance;
minimize the total wire length of the circuit. These two optimizations allow to
reduce the delay time required for the communication between two components
and minimize also the area required for place all the elements of the circuit. The
obtained 3D IC will be tested to understand its performance and which advantage
it brings compared to the 2D IC.

4

Chapter 2

Background

To implement 3D design, it is required to understand the different technology that
can be used to create the circuit. Each of them is characterized by features that
should be taken in consideration because lead to specific approach and solution.
There is no generic method that can be use in any case, but there is a distinct
design that derived from the goals and the technologies of the problem. The Place
and Route algorithm can fallow an ASIC (Application Specific Integrated Circuit)
design with the goal of create a circuit able to solve a precise problem. The ASIC
approach allow to reach higher clock frequency and lower delay, but it arises thermal
issues that should be manage especially when are present multiple tiers. On the
other hand, there is the FPGA (Field Programmable Gate Array) design where
the IC is programmable so it can execute different functions. Since the FPGA
approach have a lower power density, the thermal issues are less important, but the
cost of connectivity rise. This can be attributed to the fact that a larger number
of possible connections must be facilitated in FPGAs, and this entails an overhead
of the silicon area that must be used to implement pass transistor switches, buffers
and SRAMs that enable this capability; in ASICs all we need to add is an inter-tier
via that connects one active device tier to another one. This dichotomy of the
design style is the starting point for the development of the algorithm.

5

Background

Once the design style is defined, another important point is the intercon-
nection between the IC’s tiers. 2D ICs are based on a single flat mono-layer of
silicon called die, on which all the elements that compose the circuit are placed.
The interconnection inside the layer is made by channels which are of the order of
magnitude of nanometres. Small size like that facilitate the management of the
interconnection, over more having all the channel on the same layer help the thermal
dissipation. 3D ICs are based on multiple silicon layer stack on to another that
increase the complexity of interconnection management and thermal dissipation.
Each tier will produce a thermal energy that will affect the upper layer, for this
reason are required power constraint for both single layer and total stack. If two
connected elements are placed on the same layer, their communication is managed
like the 2D case, while if they are on different tiers the connection is managed
by a particular channel able to pass through the silicon layers. Typically, the
inter-tiers channels are slower than the ones inside the same layers and they are
more easily subject to external disturb, for this reason is a good practice to reduce
them when the placement is made. The main technology use for the inter-tier
connections are two, the TSV (Through Silicon Via) and the MIV (Monolithic
Inter-tier Vias). These two channels are characterized by different behaviours that
give rise to two approaches: TSV-based 3D IC and Monolithic 3D IC. The 3D
TSV-based integration is the focus of this thesis project.

2.1 TSV-based 3D IC

TSVs are few micrometres (≈5µm) in diameter, and they have large pitch (30-
50µm) and keep-out-zone (KOZ) requirements. The KOZ define an area around the
channel that cannot be used, due to thermal management components, cooling, and
mounting constraints. In addition to that, they have large parasitic capacitance
that become more evident whit the increase of temperature and reduction of
diameter. With logic gate size scaling to less than 0.5µm2 in 14nm technology
nodes and below, such large TSVs will be beneficial only for coarse-partitioning
for block-level or die-level memory-on-logic 3D IC designs. It become a crucial

6

Background

need to consider the impact of TSVs in the floor-planning solutions. TSVs are
not only the I/O and power/ground ports of the layers, but they also introduce
many uncertainty in performance, reliability and power consumption of 3D ICs.
For example, TSVs can modulate the power supply noise and thermal profile of
a 3D stack. Hence, TSV-aware and TSV-unaware 3D floor-planning may lead
to very different thermal/noise profile for the entire 3D stack. TSVs are etched
through the silicon layer with deep reactive-ion etching, insulated with thermal
oxide, and then filled with liner and conductor. The contacts are made by backside
metallization and depending on when the TSVs are fabricated, the TSV formation
has various versions: Via-first, Via-middle, Via-last, and Via-after. The Via-first
approach create the TSVs before building transistor and metal layer. The Via-
middle approach create the TSVs after building transistor, but before building
metal layer. The Via-last approach create the TSVs after building transistor and
metal layer. The Via-after approach create the TSVs only after the connection with
another silicon layer. The process of bonding two tiers is also important and can
affect the performance of our IC. A single die is composed by two macro-parts, the
“face” that represent the top metal layer, and the “back” that represent the bottom
silicon substrate. In a face-face bonding the face of the lower die is connected
to the face of the upper bound, while in the face-back the face of lower die is
connected to the back of the upper die. The TSVs fabrication and the bonding
approach need to be defined together and they will set the bases for the design of
the IC. Last important step for the technological characterization of the 3D IC is
the definition of the stacking strategy that effect the overall yield and chip size.
The thin slice of silicon on which the die is fabricated are called wafer and can
be used as interconnection base between to tiers. The main stacking policy[2] are
three: Wafer-Wafer, Die-Wafer and Die-Die. The Wafer-Wafer stacking have the
lower operating cost but typically lead to huge chip size and lower performance.
The Die-Wafer and Die-Die approach enables the assembly of Known-Good-Die
(KGD) and combination of dice featuring different sizes or aspect ratios. The main
drawback of the individual die placement is the low throughput. A KGD is defined
as a package type fully supported by suppliers to meet or exceed quality, reliability,
and functional data sheet specifications, with non-standardized (die specific) but
completely and electronically transferable mechanical specifications. The original

7

Background

intent of the KGD was to signify that bare die or unpackaged ICs had the same
quality and reliability as equivalent packaged devices.

Figure 2.1: Two examples of TSV-based 3D IC cross-section view

Due to their large size and their strictly requirements, the TSVs should
be manage carefully. A large number of TSVs can degrade the yield of the final
chip. Also, under the current technologies, TSV pitches have huge size compared
to the regular metal wires, usually around 5-10µm[3]. In 3D ICs TSVs are usually
placed at the space between the macro blocks or cells, so the number of TSVs will
not only affect the routing elements but also the overall silicon areas. Therefore,
the number of TSVs in the circuit needs to be controlled and minimized. The
placement of the circuit’s elements defines the number of inter-tiers interconnections
and their position, it means that an optimize placement can lead to a minimal
number of TSVs with the best position. The floor-planner and placer must take in
consideration also the latency and power consumption that characterize the circuits’
inter-tiers connections. Stack several dice on top of each other and managing the
communications with large wires create a critical thermal issue[4]. The multiple
vertically piled layers of active components cause a rapid increase in power density
that arise consumption and dissipation problems. The thermal conductivity of the
dielectric layers between the different tiers is low compared to silicon and metal layer.
For instance, in a closed space characterized by a temperature of 300K, the thermal
conductivity for the epoxy used for gluing die is 0.05 W/m/K, and the thermal
conductivity of the metal layers embedded in a dielectric is about 2 W/m/K. Both
values are much smaller than the thermal conductivity of silicon (150 W/m/K)
and copper (401 W/m/K). Therefore, the thermal issue needs to be considered

8

Background

during every step of the 3D physical design flow. To mitigate those problems a new
kind of TSVs connections called mini-TSVs was created, characterize by smaller
size around 2µm.

2.2 Monolithic 3D IC

The Monolithic 3D integration is a new design strategy that enable a huge perfor-
mance improvement of our ICs. The architecture of a circuit is based on vertically
stacked layers like the TSV-base method, but now the inter-tier connections are
made by nano-scale vias called MIV. The MIVs are orders of magnitude denser than
conventional through silicon vias (TSVs). Those new kind of system architectures
can achieve remarkable performance and energy consumption compared to classic
design. The increase of the vertical density connectivity makes those new designs
particularly attractive for Big Data applications that impose high constrains with
respect to low-latency data processing, high-bandwidth transmission, and energy
storage of massive amounts of information. The tiers that compose the IC are in
this case fabricated directly on the below layer allowing in this way the nano-scale
interconnection. All the layers are built on a single semiconductor wafer so there is
no substrate or bonding strategy. MIVs and pitch dimensions are the same of the
metal layers and can enable a massive vertical integration of orders of magnitude
denser then TSVs (≈1000X)[5].

Figure 2.2: Size comparison between different inter-tiers vias

Despite all the promise the Monolithic approach made, it still in a R&D

9

Background

phase due to processing obstacles that posed major roadblocks. The fabrication
of the circuit on the upper tier must be done in a low temperature (<400°C),
while preserving the performance of the underlying components and connections.
Recent advances in semiconductor industry and nanotechnologies facilitated the
development of Monolithic architecture and pushed big companies, like Qualcomm,
to start new project base on it. Alternative to the silicon CMOS technology is being
explored, like the carbon nanotubes (CNTs) that have size around 1nm. The CNTs
are the base of the CNFETs (Carbon Nanotube Filed-Effect Transistor), a new kind
of transistor projected to improve the energy-delay product (EDP, a measure of
energy efficiency) of very-large-scale integrated (VLSI) digital systems by an order of
magnitude compared to silicon CMOS. CNFETs make also possible to increase the
integration level and the performance thanks to their nanoscopic size. The emerging
memory technology such Resistive RAMs make the rise of Monolithic integration
closer, thanks to higher storage density. Some low temperature procedure that
can be used for building the Monolithic vertical stack of tiers are: Rapid melt
re-growth, template-based epitaxy, and programmable interconnect. The Rapid
melt re-growth is based on a heat micro pulse able to produce bulk on the top-oxide
layer while maintaining the underlaying structure below 400°C. The template-based
epitaxy method works like the previous one, but instead of using the laser pulse
to melt the top-oxide layer we melt instead the top-silicon layer and then we
re-crystallized it between the oxide grids. The programmable interconnect is based
on the addiction of materials that change the resistance of metal oxides into our
tiers. Doing so it will be possible on the top layer to reach higher temperature
without effect the underlying level. Today the Monolithic 3D ICs are not ready yet
for the commercialization, but with high probability they will become the dominant
design of the future IC’s generations.

2.3 3D Packaging

The 3D packaging enables to integrate 3D architecture relying only on the traditional
interconnections like wire bonding and flip chip to achieve a vertical stack system.

10

Background

This kind of strategy is not focus anymore on stack physical die on top of each
other, but increase the density level by integrate multiple dice on the same package
that will be place on a single layer. 3D packaging is becoming an increasingly used
approach to multiply integration densities and performance in a single package.
These packaging system solutions provide the necessary compute, IO, and memory
scaling to address specialized workloads in the compute intensive markets like
machine learning or AI. Advanced packaging solutions bring huge advantages, but
they also create some challenges due to a larger form-factor, need for larger silicon
interposer, higher power consumption, increased thermal and longer design cycles,
that all must be addressed. All these issues can be managed by a unified platform
with tight integration of system level signal, power, and thermal analysis, delivering
automated power, thermal, and noise aware optimization. Having a consolidated
view of the entire system is especially important because power and thermal analysis
of an individual die in isolation is no longer enough in a multi-die environment,
the full system needs to be analysed together. The main package strategy for 3D
architecture is 3D SiP (System in Package), 3D WLP (Wafer Level Package) and
BGA (Ball Grid Array). The SiP approach is based on share different resource
between dice that will be placed in the same package. The dice will be bounded
with the package using standard wires on flip chip technology. The WLP approach,
instead, is based on packaging an IC while still part of the wafer, in contrast to the
more conventional method of slicing the wafer into individual circuit (die) and then
packaging them. This strategy is essentially a true chip scaling method since the
resulting package have the same size as the die. The BGA approach is based on a
surface-mount packaging used for IC. A BGA can provide more interconnection
pins than can be put on a classic flat package. The whole bottom surface of the
layer can be used, instead of just the perimeter. It means that we will end up
with higher density integration. A particular case of WLP approach is the 2.5D
interpose[6] that was the predecessor of the 3D IC architecture. An interposer
is an electrical component routing between one package to another. The goal of
an interposer is to propagate an interconnection to a different pitch or change its
route. Most of the advantages of 3D integration could be reach by placing bare
dies together on an interposer instead of placing them on top of each other. If size
of the pitch is small and the interconnection are short, 2.5D approach will bring a

11

Background

solution with better size, weight, and power consumption compared to classic 2D
ICs[7].

12

Chapter 3

Previous Works

Before the advent of 3D strategies, the circuits were based on a single layer of silicon
and took the name of 2D IC. The first IC was built in the half of the 50s and it was
much less powerful compared to the today ones. The creation of IC was the starting
point of the enormous electronic and information development that has radically
changed today’s world. The market, education, entertainment, and healthcare are
just some of the sectors that have developed a strong dependence on electronic
devices and software application over the time. In recent years, this trend has
strengthened to the point that some sectors have been completely renewed by new
technologies and devices. Although today there is a high integration of electronic
and digital components in society and it is difficult to imagine how things worked
before, the evolution that led the first ICs to become more and more performing
has been gradual. As mentioned in the previous chapter, there has always been
a strong demand for better performance in the semiconductor industry. The real
challenge in building 2D ICs was meeting these demands while keeping power
consumption and size small. As in the 3D ICs became important to integrate more
and more elements into a single circuit following Moore’s law. The semiconductor
industry investment started to focus on smaller transistor technology that led to
today’s nanometric scale components. Also, the way how the elements are placed
on silicon layer become essential because it will affect the performance, delay time

13

Previous Works

and thermal dissipation of our circuit. For this reason, with the goals of finding
the best placement for all the IC’s components and optimize the performance, the
Place and Route algorithm was defined. The Place and Route is a stage of the IC
design. As suggested by the name, this stage is composed by two steps, placement
and routing. The placement step is the segment of the design flow that find and
set an exact location for all the elements of the circuit, taking in consideration the
generally limited amount of space available. Non optimized placement will not
only affect the circuit performance but might also make it non manufacturable
due to the presence of excessive wire-length, which exceeded the available routing
resources. Consequently, is important to define several objective that the placer
should perform while making the position assignment, only in this way the IC
can be compliant with the constrains and meets the performance demand. The
routing step follow the placement and adds the wires needed to properly connect
the components of the IC. The interconnection of components is quite complex
because it needs to be compliant with the circuits design rules. Those rules are
geometric limitation[8] imposed by process engineers based on the capability of
their processes to realize design. The main constrains applied to an IC are check if
the width of a route is sufficient, check if the spacing between routes is sufficient
and check if the enclosure of a route inside a component is regular and with a
sufficient thickness.

Figure 3.1: Three main design rules

Due to the frequent changing in technology and performance exist many
kinds of routing process[9]. The first type to be studied were the maze-routers in

14

Previous Works

which the interconnection between two terminals is made by using a maze-searching
technique. Maze-router first searches the cells that are closest to the starting
terminal, and then proceeds in precise spread path by searching the cells adjacent
to those that have already been searched. When the end terminals have been
found, the search stops, and the wire is created. The spread path is defined by the
builder of the IC. This kind of approach always find the connections with minimum
length, but not guarantee that the total length of all wires will be minimized.
The channel-routers are an efficient alternative to the maze-routers, that solve the
limitation of the previous approach but work only with specific restriction. While
with maze-routers the wiring area have not constrain in size or shape, and the
terminals can be placed anywhere, with channel-routers the wiring area (channel) is
assumed rectangular with fixed terminals on the top and bottom edge. The simplest
channel-router laid out on a horizontal grid and use two layers, one for vertical wire
sections, and another for horizontal sections. A single net can have at most one
horizontal segment called trunk which extends from the rightmost terminal to the
leftmost terminal. Depending on the type of application the trunks can be fixed or
variable. A trunk is connected to different terminals with vertical segments called
branches. If a single branch contains terminals for two different nets produce one
vertical constrain, the set of verticals constrain is usually represented as a directed
graph with the nets represented by vertices ad constrains represented by direct arcs.
The graph is used to implement the simplest of the channel routing algorithm called
the left-edge algorithm. This algorithm goals are to find the minimum number
tracks with shorter path that allow to interconnect all the nets with their terminals.
A variation of the channel-routers approach that gives more flexibility to the routing
process is the dogleg approach. With dogleg we define a vertical wire segment
able to connect two trunks, doing so nets can be assigned to multiple trunk and
this typically led to more compacts routing. A further development of the routing
process was pushed by the switch-box approach that work like channel-routers but
allow to place the terminal in all the edge of the rectangular wiring area. This
new approach is more complex to mange but can lead to better solution. There
are many other classes of routing process, most of which are designed to solve
specialized problems such as power consumption or area optimization.

15

Previous Works

Figure 3.2: Example of Channel rout-
ing Figure 3.3: Example of Dogleg routing

Figure 3.4: Maze route search pattern

The definition of good Place and Route algorithm is now essential for the
development of an optimized IC. In the 2D case already exist a lot of different
solution. The increasing focus on 3D ICs create the need of new algorithms able
to take in consideration also the vertical dimension in the placement and routing
phase, for this reason the thesis will focus on exploring those new approach. During
the execution of the 3D algorithm, a 2D Place and Route algorithm (FT-TDP) is
used to optimize the placement within the individual layers which are treated as
independent 2D circuits. The management of the IC as a graph is also essential to
the algorithm, for this reason a specialized library called METIS is used.

16

Previous Works

3.1 FT-TDP

Before the development of the 3D architecture, the ICs were built on a single
layer. Despite the lack of vertical development, the positioning of the elements on
the plane was essential to optimize the performance of the product. Like the 3D
case, a lot of strategy were developed for placing and routing the units in a single
layer. There is no better approach, there are different strategies depending on the
goals you want to achieve. The typical objectives of the 2D placement are the
reduction of heat flow, the minimization of the wirelength and the maximization of
the reliability. This section briefly explains the FT-TDP (Fault Tolerant Timing-
Driven Placement) strategy, which is used in one step of my 3D Place and Route
algorithm.

The goal of the FT-TDP algorithm is to find a valid allocation for each
configuration logic block while minimizing the total interconnection segments
required and without inserting single point of failure (SPOF)[10] in the circuit.
The SPOF is a potential risk posed by a flaw in the design, implementation or
configuration of a circuit in which one fault or malfunction causes an entire system
to stop operating. Starting from a circuit description, which includes Configurable
Logic Blocks (CLBs), I/O pins, and their interconnections, the algorithm is able to
return a 2D placement in line with the previous aims. The FT-TDP core is based
on min-cut optimization technique applied on the units, mixed with quadratic
placement that minimize the distance between the elements. The overall algorithm
is composed by three phases[11]. Initially, a preliminary phase, initializes the
environment by setting all the structures required for the placement. The second
phase aims at reducing the overall delays of connections in a global sense, while the
last phase is a local optimization to improve the specific critical paths related to
the units. The circuit is represented in these steps by an undirected graph, where
the vertices are the units to be positioned and the edges are the interconnections
between the elements. Each vertex of the graph is characterized by a location and
a kind. The location corresponds to the physical position of the logic element on
the layer, and the kind describe the type of logic resources. The second phase of
the FT-TDP consist in a global placement of all the units where, step by step,

17

Previous Works

the circuit is partitioned, minimizing the number of cuts of the nets that connect
component between the partitions. In this way the highly connected blocks are
allocated in the same partition. The process is repeated until the number of logic
element within a partition is limited to few blocks defined by the user. The goal
of this min-cut processes is to partitioning the initial circuit while minimize the
wires cut. The third and last step instead, apply a quadratic algorithm that tries
to minimize the total squared length by solving linear equation of the distance
between units that create a critical path. The critical path in a net defines the
connection between an input and output with the maximum delay. Is important to
manage those kinds of links because they can work as a bottleneck for the circuit
performance. This step is repeated until there is not a significant improvement of
the estimated delay.

FT-TDP is used in 3D algorithm after all the units have been assigned to
their best tier. Is possible to apply the 2D placement to find the best position of each
unit inside a tier. Unfortunately, the placement within the layers is conditioned
by the presence of the inter-tier connections, so it is not possible to treat the
layer independently. For this reason, FT-TDP is used only as a starting point for
positioning the units in their tier of belonging.

3.2 METIS package

METIS[12] is a serial software package for partitioning large irregular graphs,
partitioning large meshes, and computing fill-reducing orderings of sparse matrices.
METIS has been developed at the Department of Computer Science & Engineering
at the University of Minnesota and is freely distributed. For the scope of the
thesis, we will focus only on graph concerning process. Algorithms that find a
good partitioning of highly unstructured graphs are critical for developing efficient
solutions for a wide range of problems in many application areas on both serial
and parallel computers. Graph partitioning is becoming more and more important
for solving optimization problems arising in numerous fields such as design of very
large-scale integrated circuits (VLSI), storing and accessing spatial databases on

18

Previous Works

disks, transportation management, and data mining. The algorithms implemented
in METIS are based on the multilevel graph partitioning paradigm, which has
been shown to quickly produce high-quality partitioning and fill-reducing orderings.
The multilevel paradigm is composed by three steps: graph coarsening, initial
partitioning, and uncoarsening. In the coarsening phase a series of smaller graphs
is derived from the initial one. Each of the sub-graphs are created by collapsing
together a maximum size set of adjacent pairs of vertices. This process continue
until the size of the graphs is reduced to just few hundred vertices. The initial
partitioning phase consist in partitioning of the coarsest, hence, smallest graphs,
using relatively simple approaches such as the algorithm developed by Kernighan
Lin[13]. Due the fact that the coarsest graph are also small this lead to a very fast
execution of this step. In the uncoarsening phase the partitioning of the smallest
graph is projected to the successively larger graphs by assigning the pairs of vertices
that were collapsed together to the same partition as that of their corresponding
collapsed vertex. After each projection step, the partitioning is refined using various
heuristic methods to iteratively move vertices between partitions as long as such
moves improve the quality of the partitioning solution. The uncoarsening phase
ends when the partitioning solution has been projected all the way to the original
graph. During coarsening, METIS employs algorithms that make it easier to find a
high-quality partition at the coarsest graphs. During refinement, METIS focuses
primarily on the portion of the graph that is close to the partition boundary. These
highly tuned algorithms allow METIS to quickly produce high-quality partitions
and fill-reducing orderings for a wide variety of irregular graphs, unstructured
meshes, and sparse matrices.

The core of METIS is written in C/C++ to optimize the speed of execution.
METIS provide us a set of stend-alone command-line programs that can work on
different operating system and can be called from several programming language.
In the project it is used a specific package of METIS called hMETIS specialized
on partitioning hypergraphs that arise from circuit design. hMETIS provides the
shmetis, hmetis, and khmetis programs that can be used to partition a hypergraph
into k parts, but in the project only shmetis is needed. Shmetis program accept as
input a file containing the initial graph, the number of partitions needed by the

19

Previous Works

Figure 3.5: METIS multilevel partitioning

user and the balancing factor that define the level of unbalance allowed between
the finial partitions. An optional parameter is a file containing the nodes with a
fixed partition of belonging, sometimes it can help when elements of the circuit
must be placed in a specific position of the silicon layer. Shmetis[14] return as
result a file containing for each node of the graph the corresponding partition index.
This program is used in the first step of the Place and Route algorithm described
in the next chapter.

3.3 Strategies

The 3D IC have aroused a lot of interest in both researchers and companies. Different
strategies were studied and developed to define a Place and Route algorithm able to
manage in a proper way this new kind of architecture. As explained in the previous
chapters, the presence of multiple technology on which is possible to apply a 3D
strategy and the huge number of parameters that should be taken in consideration

20

Previous Works

for the optimization process, made this task quite hard to complete. Therefore,
many of these algorithms were not able to fulfil their purpose, while others only
partially achieved the objectives they had set. The first step for defining a new Place
and Route algorithm was the documentation. Studying the previous approaches
help to understand which are the most critical part of the development and the
main limitation that arise during the implementation. Looking at old strategies
is possible learn their strengths, that can lead to new ideas and optimizations,
but also their weaknesses for avoiding making the same errors of other developers.
The need for a new Place and Route algorithm arose from the observation of past
documents, where very often the processes that determined the algorithm had been
studied only in a theoretical way but never written in the form of a code. This is a
lack that does not consider possible problems or limitations that derive from the
software compartment. Furthermore, none of the algorithms examined manages
the positioning of the TSVs considering the dependence with the position of the
elements connected by it. They typically focus only on the minimization of the
inter-tiers interconnections. Below are some of the main strategies for the Place
and Route algorithm defined in the past few years.

3.3.1 Stacking and Folding

The Stacking/Folding is a thermal-aware 3D IC placement strategy. Starting from
a 2D placement is able to adapt it into a 3D architecture using a sequence of
transformations. The function of this strategy can be summarized as starting from
a single layer that represents the 2D IC, we divide the plane into sub-sections
of rectangular or square shape. Each subsection represents a tier of the final 3D
architecture. The subdivision of the initial layer and the order with which the
subsections are placed to create the pile of tiers can follow two approaches: The
Local Stacking Transformation (LST) and the Transformation Through Folding
(TTF). The LST consist in two steps, stacking and legalization. The stacking step
shrinks the initial layer uniformly in N subsections, all the elements will belong to
one of the sections characterise by an area that is N time smaller than the initial
one. N is defined by the user and represent the number of tiers of the final 3D IC.

21

Previous Works

The legalization step minimizes the on-chip temperature and reduce the number
of TSVs through the position assignment of the elements in each subsection. The
elements’ order is defined by two cost functions[15]. The legalization function
represents the cost of moving an element from its initial position (x, y) to the final
position (x, y, z), taking in consideration the effect of moving a cell through tiers
on the TSVs number. The thermal function represents how the cells placement
effect the total heat. Under the current 3D IC technologies, the heat sinks are
usually attached at the bottom and top sides of the tiers’ vertical stack, with
other boundaries being adiabatic. It means that the main heat flow within the
3D IC stack is vertical towards the heat sink. Each cell will affect the total heat
in different way, in particular their z location will influence the final temperature
much more than the x and y location. This function allows to avoid putting the
hottest cells into critical thermal spots of the circuits, leading to lower total heat
flow. LST archives short wirelength by stacking the neighbouring cells together.
However, a huge number of TSVs will be generated when cells of close nets are
placed on different tiers. If the technology used required a limited TSV density
we should use the TTF strategy. The TTF consist in folding the original 2D tier
like a piece of paper without cutting off any parts of layer. In this way a TSV is
required only when a net crossing the folding line, but the number of such nets
should be quite small. The folding transformation define both the subdivision
of the initial 2D IC and the vertical placement order of the different subsections.
Is very important in this strategy the selection of the folding policy. There are
many approaches for folding the IC, typically the best one depends on the kind of
technology used and the structure of the circuit.

LST achieves greatest wirelength reduction at the expense of large amount
of TSVs, while folding results in much smaller TSV number but longer wirelength
and possibly high via density along the folding lines. Both strategies have pros
and cons, so a good idea is merge them to increase the optimization of the solution
while mitigate their problems. The windows-based stacking/folding strategy try to
reach this goal by subdividing the initial 2D placement into KxK windows, then
applying the TSV or TTF on each of this window. The final 3D IC is composed
by placing on the same tiers all the subsection of each window that belong to the

22

Previous Works

(a) Local Stacking Transformation. (b) Transformation Through Folding.

Figure 3.6: Example of LST and TTF approaches
J. Cong, G. Luo, J. Wei, and Y. Zhang ~"Thermal-Aware 3D IC PlacementVia Transformation"

same layer. Wirelength reduction is due to the following reasons: the wirelength of
the nets inside the same square is preserved; the wirelength of nets inside the same
window is most likely reduced due to the effect of stacking/folding; and wirelength
of nets that cross the different windows is reduced. Therefore, the overall wirelength
quality is improved. Meanwhile, the TSVs are distributed evenly among different
windows and can be reduced by choosing proper layer assignments.

3.3.2 Optimal blocks

The strategy proposed demonstrates that allocating blocks of the initial 2D IC
into the tiers that compose the final 3D IC in a compact fashion, lead to solutions
with lower wirelength and less TSVs in most of the cases. Again, this algorithm
focuses on minimize the wirelength and the number of inter-tiers interconnection,
while satisfying the space limitation. The block is defined as a subsection of the
initial 2D placement. If multiple blocks are bounding together a net is created.
The placement in multi-tiers can be modelled in term of hyper-graph. The set
of blocks of the circuits define the nodes, while the nets define the hyper-edges.
The number of tiers K is selected by the users and the tiers’ area will be equal
to the initial total surface over K. The area constrains is typically increase of the
15% to allow easier manoeuvre like blocks replacing and moving. The wirelength
value is estimate by adding the half-perimeter length of the bounding box of the
net in every layer and the length of TSVs required for the net. The bounding box

23

Previous Works

define the rectangle that contain in each layer the different blocks that belong to
the same net. Is possible to have for a single net multiple bounding boxes, one
for each tier. The number of TSVs for a net is define as the difference between
the highest and the lowest layer where the net is being used, while the length of a
TSV is given by the technology used. The algorithm is composed by three parts,
first we go on placing the blocks in each tier according to their interconnections,
starting from bottom layer. The second phase consist to allocate the unplaced
blocks in the vacant spaces left in each tier. The third phase is nothing but the
re-iteration of first and second phase, which will be executed if there is at least one
block remaining to be placed after the second phase. An important fact is that
all blocks are allowed to be rotated, to be placed in a compact fashion, in every
step of the allocation procedure, except the initial block, which is being placed
at first in every tier. Before the first step we need to compute for each blocks its
connection degree, then sort them according to a non-increasing order of this value.
This is done in order to deal with densely connected blocks first.

Figure 3.7: Adjacent placement of blocks according to their connectivity

The first step starts from the bottom tier and the most densely connected
block. The block is placed in the centre of the layer and is it marked as placed.
Then, is it selected the second most densely connected unplaced block that have at
least a connection with the already placed block. In other words, the next block is
selected on the basis of its degree of connectivity to the already placed blocks. We

24

Previous Works

try to place this selected block adjacent to one of those already placed blocks with
which it has a connection. This process continue till no more blocks can be placed
in this layer. The block may be placed on any of the four sides of the previously
placed block. The selection of an unplaced block for the tiers above the first one is
based on two criteria. The first criterion is the area of the block. If there is a block
with surface greater than or equal to 40%[16] of the area constraint of the layer it is
selected first because big blocks like these hinder the compactness of the placement,
so we allocate them in one of the four corners of the tier. The second criterion is
based on degree of connectivity, like the placement for the first layer, and it is use
only if there no block with surface greater than or equal to 40% of the tiers ‘area
constraint. Once the placement for each layer is completed, the second step start.
For each block not placed in the first phase we compute their connectivity degree
and number of TSV added if they are allocated in one of the tiers. This approach
allows to define for the remaining blocks the best tiers and fix their position. In
the event that after the execution of the first two phases some blocks still remain
unplaced; the third step restart the previous operations to find a feasible solution.

3.3.3 Multifactor placement

This strategy provides a multi-parameter criterion and an appropriate approach
for the assignment of IC’s elements into a 3D architecture. The main goals of
the algorithm are the minimization of the total length of connections between the
components and the optimization of the power consumption for the final 3D IC.
The tiers in this case are named crystal, and their number K is defined by the users.
Each crystal consumes a specific quantity of power and the total power consumption
will be equal to the sum of all crystals consumption. The final temperature reached
by the 3D IC will derived from the total power consumption, the environment
temperature, and the circuit shell temperature. Between the several crystals are
present multiple resistance that can affect the heat flow of our circuit. From
the point of view of 3D design with the given powers of crystals, for minimizing
temperature the layers must be placed in descending order of powers.[17].

25

Previous Works

Figure 3.8: Example of power and resistance distribution into a 3-tiers architecture
V. Sh. Melikyan and A. G. Harutyunyan ~"3D integrated circuits multifactorplacement"

Given all the information specified above, the algorithm involve three phases.
The first step consists in subdividing the initial 2D placement into K crystals, while
minimize the number of interconnections between layers. The second step is the
definition of the position of the crystals in the 3D IC’s vertical pile according to
their power consumption. The third and last step is the placement of the cells inside
the crystal with thermal field levelling and with minimal interconnections’ length.
For the first step a fragmentation sequential algorithm is used. This algorithm
achieves the minimization of connections among crystals by the recursive repetition
of the following steps. For each cell that belong to the initial circuit we compute
how the quantity of interconnection between two crystal change by assign the cells
to one of the possible layers. When the crystal that bring less interconnections
is found the cell is assigned to it. This process continues until all the cells are
allocated to one crystal. During the assignation phase, it is required that the
total area of each crystal not exceed a value equal to the 2D IC area divided by
number of crystals. The second step assumes that the power characteristic of each
crystal’s cells is known, so is possible to compute the total power of each crystal.
Then, the crystals’ vertical position in the 3D architecture is set according to a
descending order of power. For the third phase a sequential placement algorithm
is proposed which will consider powers values and interconnections at the same
time. The management of thermal reduction is achieved by computing how the
average temperature of a cell changes with different placement of the elements on
the crystals. In this way is possible to understand how a single cell placement affect

26

Previous Works

the heat of a layer. Knowing that, is possible to find for each cell the position that
minimize the total temperature. To minimize the wirelength on a single crystal
the geometric distance between two cells is taken in account while the average
temperature is computed. The final goals is finding for each cell the position that
reduce the temperature while minimize the distance with the other interconnected
cells.

3.3.4 FPGA TPR

For the development of an FPGA architecture several considerations must be
taken into account. As designer is necessary to provide a good balance between
fabrication cost and speed. A 3D architecture brings new challenges like the
routability and the area overhead. An important factor affecting the performance
and area efficiency of the 3D FPGA is the routing architecture. Route with too
much capillarity will waste area, and huge quantity of inter-tier interconnections
will hurt the performance of the design. The algorithm proposed to provide an
3D FPGA architecture taking in account all the previous parameters is the Three-
dimensional Place and Route (TPR)[18]. TPR is composed by three steps, the
first one employs a partitioning phase using the hMETIS algorithm to divide the
circuit into a number of balanced partitions, equal to the number of tiers for the
3D IC. The goal of this first min-cut partitioning is to minimize the connections
between tiers, which translates into reducing the number of TSVs and decreasing
the area overhead associated with the circuit. After dividing the initial 2D IC into
seveal tiers, TPR continues with the second step where the placement on each
layer is made by using a hybrid approach that combines top-down partitioning and
simulated annealing. The annealing process moves cells mostly within tiers. Finally,
in the last step, the cells are routed to check the presence of possible critical path.

In the first step, the 2D IC, is represented as a graph where the nodes
define the cells, and the vertices define the interconnections. Once the initial IC is
subdivided by hMETIS into clusters we need to place the different tiers in a way
that the wirelength is minimized. This is achieved by mapping this problem to the

27

Previous Works

Figure 3.9: Partitioning 2D IC into tiers
C. Ababei, Y. Feng, B. Goplen, Hushrav Mogal, T. Zhang, K. Bazargan, and S. Sachin

~"Placement and routing in 3D integrated circuits"

bandwidth minimization of a matrix, using an efficient bandwidth minimization
heuristic algorithm. The bandwidth of a matrix is defined as the maximum
bandwidth of all its rows. The bandwidth of a row is defined as the distance
between the first and last non-zero entries. The clusters and their interconnections
are represented by a matrix that contain a number of columns equals to the number
of clusters, and a number of row equal to the number of edges. An entry aij is
non-zero if cluster j is incident to edge i. Minimizing the matrix bandwidth achieves
two main goals: it minimizes the span of every row and distributes the bands across
columns. The processes used to solve the bandwidth minimization problem apply
row swaps in order to sort rows such that non-zero elements are moved towards
the main diagonal. The second step focus on placement within tiers. Starting from
the top layer and proceeding tier after tier, the cells’ position is defined by an
edge-weighted partitioning, computed again by hMETIS. Following this placement,
low-temperature annealing allocation is made to further improve wirelength and
routability. The annealing is based on a cost function that consider the number of
tiers, the span between tiers and the area of the different cluster. The last step
is the routing algorithm in which the 3D FPGA architecture is represented as a
routing resource graph. Each node of the routing resource graph represents a wire
(horizontal vias into a tier, TSVs into inter-tier interconnections) or a logic block
I/O pin. A directed edge represents a unidirectional interconnection. A pair of
directed edges represents a bidirectional interconnection. Extra penalties are added

28

Previous Works

to communications based on route composed by a horizontal track and a TSVs as
well as to TSVs alone, in order to discourage the routing engine to use vertical vias.
Avoiding, in this way, that the majority of cells placed in one tier to be routed
using tracks in different tiers.

29

Chapter 4

Algorithm

This chapter explain how the Place and Router algorithm is defined and how all its
features have been modelled. The new algorithm is developed for the placement and
routing of TSV-based 3D ICs in both FPGA and ASIC devices. The optimization
of our result is based on different processes which goals is initially minimize the
number of TSV inter-tier connections that cause delay, space and thermal problems.
Then minimize the wirelength of each layer that compose the IC by finding the
best position of each module inside its own tier. During the optimization process
is needed to consider different constrain. The algorithm require as input the
description of a starting 2D IC containing all the information needed to manage
the circuit, like the interconnections and the identifier of each element. Is possible
to represent an IC using specific tools like Libero Soc[19], that use several file
to show different aspect and characteristics of our system. The Physical Design
Constrains (PDC) is a file that contain for each cell its coordinates in a Cartesian
plane that represent the silicon layer. Verilog is a hardware description language
(HDL) used to represent digital electronic systems. A Verilog file will contain all
the interconnection between the cells of an IC. The Standard Delay Format (SDF)
file is produced by implementation tools and contains for each cell the delay and
timing check. To define a proper representation of the 2D IC the PDC and the
Verilog files are merged together to create the Physical Design Description (PDD)

30

Algorithm

file. The PDD file contains the number of elements that belong to the IC and for
each of them show main information like identifier, name, 2D-coordinates, and
the list of interconnected elements. The PDD file is used as input for the new
algorithm and its format is also employed for the output file that will contain for
each element also the vertical coordinate that define the tier of belonging in the
3D placement. Is important to notice that the PDD representation manage the
circuits like a graph in which the vertices are the elements and the edges are the
interconnections. This graph-like definition is important because it push us to
adopt solution feasible for hypergraphs and synergizes very well with the METIS
package and its processes.

Figure 4.1: Section of PDD file

Before developing the algorithm, it is important to define, in addition to the
objectives, the constraints to be respected during the execution of the processes.
The area of each tier should be smaller than the initial surface of the 2D IC because
the density level must increase. Over more, the tiers area should be decided in
relation to the number of elements to be placed in order to avoid wasting space.
Even if we try to minimize them, an excessive number of TSVs can lead to solutions
that are not feasible for real production, so we should anyway check their quantity.
The position of a TSV should be chosen carefully because the elements belonging

31

Algorithm

to different levels, but connected by the same TSV, should have the same 2D-
coordinates, thus being one above the other or at least as close as possible to
this solution. The position of the pins is also subject to constraints; they can be
placed only in the first or in the last layer of the 3D IC, in order to facilitate the
connection with the main board. Moreover, pins should be allocated in a way
that minimize the solution wirelength. To check if the algorithm is compliant with
those constraints, during the execution, partial results are printed as output and
graphical representation of the 3D IC are shown.

The Place and Route algorithm is composed by five steps that, starting
from a 2D PDD file, are able to produce a final 3D PDD file containing for each
element a 3D-coordinates that define the tier of belonging and the position on
it. The objectives of the first three phases are the minimization of the number of
TSVs, therefore the identification of the best level for each component of the IC.
The fourth step begins when each element has been assigned to a tier, now the
main goal is finding the best 2D placement in each layer in order to minimize the
wirelength. In this step is extremely important the placement of elements connected
through TSVs with other tier’s components, for this reason different approaches
were made to understand how the final solution can be affected. The fifth and
last step focus on the placement of the pins which depend on the position of all
the other components, for this reason it must be done as final operation. Besides
the parameters necessary for execution, such as the input file and the number
of tiers, the user is able to define other options that will change the algorithm’s
behaviours. Is possible to set by a specific parameter if the tiers’ area should be
computed starting by the total number of elements of the IC, or by the surface
size of the initial 2D IC, that can be obtained by the minimum and maximum
values of the 2D-coordinates. The user can also link an input file containing a
list of elements’ names. All the components identify by these names belong to
a specific tier and during the placement phase cannot be moved from it. This
kind of feature can be very useful with IC characterized by peculiar architecture
that require fixed position for some components. To give an example, for CNN
inference[20] IC architecture was developed in which fixing the position of specific
blocks can implementing low-latency and energy-efficient solution. To summarize

32

Algorithm

how the Place and Route algorithm works, its different steps are listed below with
a brief description that will be expanded in further chapters.

1 - Modularization: Starting from the 2D PDD file a graph of the IC is composed.
The graph will be divided in sub-graphs (modules) that will become the base
component of the algorithm, that will move them across the different tiers.

2 - BFS vertical placement: An initial tier is assigned to all the modules thanks
to the exploration of the graph using Breadth First Search (BFS) algorithm.

3 - TSV optimization: By computing the cost of moving modules through all
the distinct tiers is possible to find solution different to the initial ones that
have a lower number of inter-tier interconnections.

4 - 2D placement: Once the components belonging to each tier have been defined,
the modules are decomposed into the initial nodes which are placed in their
layer following a policy of reducing the wirelength.

5 - Pins placement: The IC’s pins are placed on the first layer according to the
distance with the others components.

4.1 3D Place and Route

In this paragraph is it shown how my algorithm work, going into details on the
different steps’ goals and their characteristics. As previously explained, mine Place
and Route algorithm is composed by five steps: Modularization, BFS vertical
placement, TSV optimization, 2D placement and pins placement. The main goal
of the algorithm is the minimization of both wirelength and number of TSVs,
while satisfy the area and architectural constraints. When a step manages a quite
complex process its pseudo-code is shown, so it will be easier to understand it.

33

Algorithm

4.1.1 Modularization

The Modularization is the first phase of the Place and Route algorithm. Its goals
are the definition of the main structures that will be used several times in the whole
process, and the subdivision of the initial 2D IC into multiple modules. Initially,
the 2D PDD file that represent the circuit as a graph is read and all its information
are stored. The main structure created are the nodes that contain all the elements
belonging to the IC with all their characteristics, and the edges that store all the
interconnections between IC’s components. As explained previously the PDD file
identify each element with a univocal ID, for this reason an interconnection is
represent through a pair of IDs. To avoid storing the same edges multiple time
with different ID sequence, the ID pairs are sorted in ascending order. Together,
nodes and edges, define the initial 2D IC graph that will be used often during
the algorithm. Two other important structures are the pins and the units; these
respectively store the IDs of all pins and the IDs of all units (non-pin elements)
belonging to the 2D IC. To distinguish these two types of elements it is necessary to
observe their initial coordinates in the PDD file. The pins are fixed in the origin of
the Cartesian plane (0,0), while the units cannot have null coordinates. Is required
to discriminate between pins and units because, to minimize the wirelength, the
pins placement is computed on the units’ location. For this reason, the pins position
is defined in the last phase of the algorithm, when the units’ location is already
fixed and cannot be changed. To manage initially only the units without care about
the pins a mapping process is applied. This process removes from the IC graph
all the nodes identified by a pin’s ID and detach all the edges where one of the
elements is a pin. Before the remotion two new structures are defined, elements

and elementsreverse. Those two variables are required because by deleting the pins’
ID, the remaining units have a non-sequential list of IDs that contains some gap,
but the hMETIS algorithm used for the Modularization accept in input only graph
with sequential nodes’ ID. Into elements is it stored the mapping between the
true units’ ID with a temporary ID that assume a sequential value between 1 and
the number of units. Into elementsreverse is it stored the opposite mapping, from
temporary ID to true ID. The main structure on which the development of the new
graph is based is connections that contains for each unit all the IDs of connected

34

Algorithm

elements. Connections is useful because allow to access to all the interconnection
of a single units without having to read the whole edges structure. Once the
elements’ ID are mapped and the pins are eliminated, the final result is a new
graph based only on the units.

The Modularization process is now applied to the new graph. As previously
explained this phase consist in subdivide the initial IC into multiple modules. A
module is the main item for the tier selection process, and it can contain one or
more units. The partitioning of the 2D IC bring two advantages: computational
optimization and cut minimization. The majority of the IC, also the less com-
plex, are composed by huge number of elements that form a dense network of
interconnections. By representing the circuit as a graph, managing all the single
nodes and interconnections directly involves an enormous amount of time and
required computational power, but often this type of approach is not feasible. The
modularization group multiple units together, so are possible to manage them as
a single element. In this way, the number of components considered is reduced
and consequently also the number of operations required to execute the algorithm.
Even if the use of the modules involves an approximation of the best result, if the
subdivision of the units is carried out with specific approaches (min-cut in our case),
the result obtained will be very performing. The partitioning of the 2D IC is made
by hMETIS script that provide a min-cut approach. Having the minimum number
of connections between modules means that inside each partition the nodes have a
high interconnection density. In this way is possible to treat together the units most
connected to each other, which typically must be positioned close in the circuit.
Using hMETIS allow to reduce the computational power required for running the
algorithm, while providing a performing placement result. An important step for
the Modularization is the definition of the number of modules, which can heavily
affect the partitioning result. Too many partitions increase the complexity of the
execution, while a scart number of partitions decrease the mobility of the units.
The best number of modules can change in based on the characteristics of the
initial circuit; it is up to the user to select it according to the different scenarios. In
my project the 2D IC on which the algorithm is applied is characterized by several
elements always between 100 and 21000. Initially, I thought it was necessary to

35

Algorithm

Algorithm 1 Mapping algorithm. Reads the 2D PDD file and generate the main
structures.
1: procedure Mapping(pdd)
2: ó pdd Location of the 2D PDD file
3: nodes← dict() ó Dictionary for storing all the IC’s components
4: edges← set() ó Set for storing connections between components
5: pins← list() ó List for storing pins’ IDs
6: units← list() ó List for storing IDs of non-pins components
7: elements← dict() ó List for mapping true ID with temporary ID
8: elementsreverse ← dict() ó List for mapping temporary ID with true ID
9: mappingid ← 1 ó Set first temporary ID
10: connections← dict() ó Dictionary that store for each unit its connections
11:
12: ó Execution
13: ReadFile(pdd) ó Update nodes, pins, units
14: for id in units do ó Mapping the nodes IDs excluding pins
15: elements[id]← mappingid

16: elementsreverse[mappingid]← id
17: mappingid ← mappingid + 1
18: end for
19: for k, info in nodes do ó Generation of new graph without pins
20: if k in units then
21: kmap ← elements[k]
22: if kmap not in connections then
23: connections[kmap]← set() ó Define a new entry
24: end if
25: for id in info[connections] do ó Mapping the connected IDs
26: if id not in pins then
27: idtemp ← elements[id]
28: connections[kmap] add idtemp

29: if kmap ≥ idtemp then ó Sort pair to avoid duplication
30: edges add (idtemp, kmap)
31: else
32: edges add (kmap, idtemp)
33: end if
34: end if
35: end for
36: end if
37: end for
38: end procedure

36

Algorithm

have a fixed number of partitions equal for each tier, so I defined a baseline of 4
module for each layer. This approach worked well in the presence of few elements
but is limiting for circuits with many units. For example, a circuit with three layer
and 21000 units can have at most 12 partitions with an average of 1750 units in
each module. This leads to low flexibility in movement. Consequently, I observe
that other than depending on the number of tiers, the number of modules also
had to derive from the quantity of units. Initially I tried to assign to each tier a
number of modules equal to the number of units divided by the number of layers.
As expected, the result obtained was an excessive number of modules which only
made execution very slow and did not lead to good partitioning. I started to assign
to each layer a number of modules equal to a percentage of the total units. I made
different test where, with a higher percentage the number of modules increase and
bring more process complexity and the possibility of having some void partition
that are useless and make the computation heavier. On the other hand, with a
lower percentage the number of modules decrease and brings a faster solution but
with excessive modules size. If the partition contains too many units it will be
hard to move it in the TSV optimization phase due to the lack of space on the
tiers. After performing several partitioning, I found that with a number of units
ranging between 100 and 21000, the best compromise between module mobility
and interconnection minimization is achieved by assigning to each layer a number
of modules equal to 1% of the total units. This solution is also based on the
assumption that in a real 3D IC the maximum number of tiers used hardly exceeds
five. In case the user wants to modify this percentage, he can do it through a
specific parameter.

To call the hMETIS partitioning algorithm three parameters are requires.
The modules that define the number of modules which computation is explained
above. The balance variable that specifies the allowed disparity between the
partitions. It can assume value between 1 and 49 and specifies the allowed load
imbalance in the following way. Consider a hypergraph with n vertices and let b

be the balance. If the number of modules is two, the number of vertices assigned
to each partition will be between (50 − b)n/100 and (50 + b)n/100. It means
that low value of b brings low unbalance, while high value allows higher disparity.

37

Algorithm

For example, for b equal to 10, we will be allowing a 40-60 bisection, that is
the number of vertices in each partition will be between 0.40n and 0.60n. This
allowed imbalance is applied at each bisection step, so if instead of 2 modules
we are interested in 4 modules, then a balance of 10 will result in partitions that
can contain between 0.402n = 0.16n and 0.602n = 0.36n vertices. The optimal
solution would be having all the modules composed by the same number of units,
but this is not feasible because it would force the partitioning algorithm to give
less importance to the cuts minimization. Maintaining a good balance between
partitions makes it easier to move modules between tiers and prevents a single
block from taking up most of the area of a layer.

Algorithm 2 Modularization algorithm. Graph subdivision into modules by
hMETIS partition algorithm.
1: procedure Modularization(graphMET IS, edges, nodes, tiers, balance)
2: ó graphMET IS Name of the output METIS graph file
3: ó edges Set containing the connections between IC’s units
4: ó nodes List containing the ID of all IC’s units
5: ó tiers Number of tiers
6: ó balance Value that define the balance between modules
7: f ← open(graphMET IS) ó Open the file in write mode
8: partitions← list() ó Store for each module its units
9:
10: ó Execution
11: f.write(len(edges), len(nodes)) ó Write firts line (numedges, numnodes)
12: for pair in edges do
13: f.write(pair) ó Write pair of IDs that define an edge
14: end for
15: f.close()
16: modules← tiers ∗ ceil(len(nodes) ∗ 0.01) ó Number of modules
17: hMETIS(graphMET IS, modules, balance) ó Call hMETIS algorithm
18: f ← open(graphMET IS+".part."+modules)
19: for idpartition in f.read() do ó Read the partitioning output file
20: partitions add idpartition

21: end for
22: end procedure

For those reason, the balance parameter is set to 1 (lower possible value),

38

Algorithm

in this way the smallest difference in size between the modules is guaranteed. The
last parameter is graphMET IS, a file representing the graph to be partitioned. The
structure of the graphMET IS is composed by a first line containing the number
of edges and nodes, while the other lines contains edges pairs ID. Moreover, as
explained before, the nodes must have a sequential ID without gaps. hMETIS
algorithm generate as output a file containing a number of line equal to the number
of units, each line contains the partition ID of the corresponding node. The core of
Modularization consists in two steps. First the graphMET IS file is created and the
hMETIS algorithm called. Then, the output file generated by hMETIS is read and
is content is saved in the partitions structure.

4.1.2 Vertical BFS

The BFS vertical phase is applied on the partitions generate by the Modularization.
It assigns to each module an initial tier with a selection base on the BFS (Breadth
First Search) algorithm. The main idea behind this initial positioning is to keep the
modules that have a high level of interconnections between them in the same tier.
Doing so, the number of TSVs required for communication between two partitions
on different layer are minimized. BFS algorithm is used for traversing a graph or a
tree. It starts from a root node and explore all the neighbour nodes at the present
depth prior to moving on the nodes at successive depth level[21]. By making a
small modification the algorithm can base its exploration on the interconnections
density between the nodes. Therefore, once the starting root has been defined,
the BFS return all the nodes in a sequence which represent the best placement
order for minimizing the number of TSVs. To generate a graph that represent the
modules and their interconnections a pre-processing step is define. It will create all
the structures required to execute in a proper way the BFS algorithm.

The pre-processing step define three main structures. The modulesnodes that
for each module store the IDs of the connected partitions and other information. The
modulesedges that store pairs ID that represent the links between two modules. The
modulemax that define the ID of the module with the higher number of connections.

39

Algorithm

Figure 4.2: Breadth First Search algorithm with starting node A

The first two structures allow to manage the partitions as a graph, making more
feasible the application of the BFS algorithm, while the modulemax will be used as
starting point for graph exploration. Using the partitions define by hMETIS, the
pre-processing algorithm initialize for each module several information and save
them in modulesnodes:

• position: Sequential ID representing the membership tier. It can assume value
between 0 and n− 1, where n is the number of tiers.

• size: Value counting the number of units inside the module. It will be used for
defining the space required into a tier to accept the module.

• nodes: List of unit IDs contained in the module.

• outputs: Value counting the total number of connections with other modules.
It will be used for leading the BFS algorithm exploration.

• modules: List containing for each module the number of connections with the
current module. It will be used to define the level of interconnections between
partitions.

The modulesnodes is populated by cycling through the list of units. When a unit
belong to a specific partition the corresponding module is update with several
information. The size is increase by one and the unit’s ID is added to the nodes. To
update outputs and modules the list of elements connected to the unit belonging
to the current partition is needed. The structure connections, that store for

40

Algorithm

each unit the IDs list of the connected elements, is used for this goal. outputs is
incremented by one each time a connected unit belongs to a different partition,
while the value of modules cells identified by the partition’s ID of each connected
unit are incremented by one. Each time two interconnected units belong to different
partitions the modulesedges is update with a new edge represented by the pair
of partitions IDs. Before moving on to the next unit it is checked whether it is
necessary to update modulemax. If outputs value is the highest reached up to that
point, the ID of the current partition becomes the new modulemax. Once all the
units have been processed, the generated graph represents all the modules and their
interconnections, so it can be explored using the BFS. The BFS algorithm is based
on three different structures. V isited is the list containing the IDs of the already
checked modules. Queue contain the sequence of IDs that need to be visited.
Bestpath is the output of the algorithm and represent the sequence of modules
to follow for the vertical placement. The BFS algorithm start the exploration of
the graph from the module with higher level of connections (modulemax). Then it
checks its neighbourhood defined by the closest nodes with same depth. When a
node is visited for the first time, its ID is added to the queue. When all the closest
nodes are visited the algorithm remove the first module inside the queue and start
to check the neighbourhood of the new root node, always considering the already
visited nodes. When a module leaves the queue it is added to the final bestpath

sequence. To ensure that the nodes with the highest number of interconnections are
treated first, two precautions must be taken. As previously explained, the starting
node of the BFS must be the module with the highest number of connections. In
this way, modules that can lead to many TSVs have a higher probability of being
placed on the same layer. Furthermore, the nodes belonging to a neighbourhood
will be sorted according to the number of their interconnections with the root node.
In doing so, the exploration prefers, among the nodes closest to the starting one,
those characterized by more connections. This means that modules with multiple
interconnections between them are more likely to be contained in the same tier.
Once all the modules have been visited, the bestpath contains the IDs order that
will be used for vertical placement. This sequence focuses on keeping modules with
a lot of connections close together (same tier), minimizing the number of TSVs.

41

Algorithm

Algorithm 3 Preprocessing algorithm. Preparation of the structures used for the
initial placement.
1: procedure Preprocessing(units, partitions, connections)
2: ó units List of units’ ID
3: ó partitions List containing for each unit the module of belonging
4: ó connections List containing for each element the IDs of connected units
5: modulesnodes ← dict() ó Dictionary storing for each module its nodes
6: modulesedges ← set() ó Set storing the modules interconnections
7: modulemax ← −1 ó Module with max degree of interconnections
8: outputmax ← −1 ó Max degree of interconnections
9:
10: ó Execution
11: for idelement in units do
12: idpartition ← partitions[idelement]
13: if idpartition not in modulesnodes then ó Define a new entry
14: modulesnodes[idpartition]←
15: {position : −1, size : 0, outputs : 0, nodes : list(), modules : list()}
16: end if
17: module← modulesnodes[idpartition]
18: module[nodes] add idelement

19: module[size]← module[size] + 1
20: ó For each units check all its connected nodes
21: for idconnection in connections[idelement] do
22: idconnpartition ← partitions[idconnection]
23: module[modules][idconnpartition]+ = 1 ó Count number of ties
24: if idpartition != idconnpartition then
25: module[outputs]← module[outputs] + 1
26: if idpartition ≥ idconnpartition then ó Avoiding edge duplication
27: modulesedges add (idconnpartition, idpartition)
28: else
29: modulesedges add (idpartition, idconnpartition)
30: end if
31: end if
32: end for
33: if module[outputs] > outputmax then ó Max connections update
34: outputmax ← module[outputs]
35: modulemax ← idpartition

36: end if
37: end for
38: end procedure

42

Algorithm

Algorithm 4 BFS vertical algorithm. Initial placement of the modules within the
tiers.
1: procedure BFS vertical(modulemax, modules, layersize)
2: ó modulemax ID of the module with max number of output connections
3: ó modules Modules information generated in the preprocessing
4: ó layersize Max number of elements that can be placed into a tier
5: graph← dict() ó For each module the IDs list of connected modules
6: visited← list() ó List of visited modules during BFS
7: queue← list() ó List of module to visit during BFS
8: bestpath← list() ó Best placement path for modules
9: tiersize← list() ó Number of elements in each tiers initially set to 0
10: z ← 0 ó ID first tier
11:
12: ó Execution
13: for k, v in modules do
14: graph[k]← sort(v[modules]) ó Sorting on the number of connections
15: end for
16: visited add modulemax

17: queue add modulemax

18: while queue not empty do ó Start BFS algorithm
19: s← queue.pop()
20: bestpath add s
21: for neighbour in graph[s] do
22: if neighbour not in visited then
23: countconnections← modules[s][modules][neighbour]
24: if countconnections != 0 then ó Check presence of connections
25: visited add neighbour
26: queue add neighbour
27: end if
28: end if
29: end for
30: end while
31: for k in bestpath do ó Assign to each module a tier
32: mod← modules[k]
33: if tiersize[z] + mod[size] > layersize then ó Check tier size
34: z ← z + 1
35: end if
36: mod[position]← z ó Set tier
37: tiersize[z]← iersize[z] + mod[size] ó Update tier size
38: end for
39: end procedure

43

Algorithm

Vertical placement begins on the lower tier. Following the bestpath sequence,
modules are allocated in the tier as long as there is sufficient space. Each time
a module is placed the tiersize, containing for each layer the number of units, is
updated. When the space is exhausted, the placement continues on the above layer.
While the size of each module is defined by the number of units contained and
is computed in the pre-processing phase, the size of the layer is derived from the
initial 2D IC. The constraint on the number of elements placeable into a single tier
is equal to the number of units plus a 15%, divided by the number of layers. 15%
more units are considered because it is useful to have an extra margin of space to
facilitate the movement of the modules in the TSV optimization phase. At the end
of the BFS vertical phase all the module generated form the Modularization phase
are assigned to a specific tier.

4.1.3 TSV optimization

The BFS vertical phase define an initial disposition where all the partition are
allocated into a specific layer of the final 3D IC. This process takes in consideration
the space constraints and prioritize the placement on the same tier of those modules
with high level of interconnections. The only flaw of this method is that using the
BFS algorithm to define the best sequence with which to place our modules, does
not necessarily lead us to the optimal solution. This means that there still some
unnecessary TSVs that can be removed. The TSV optimization phase is defined to
overcome this problem. The goal of the Place and Route algorithm third step is still
focused on the TSV minimization. Starting from the initial disposition obtained
by the BFS vertical phase, The TSV optimization try to reduce the number of
TSVs by moving modules in the different layers. Moving a module between two
tiers is performed only if it involves a reduction in the number of TSVs and does
not violate spatial constraints. This phase is highly affected by the choice of the
modules’ size and the tiers’ area. Having modules of not excessive dimensions
facilitates their movement because they require less space to be placed. On the
other hand, modules composed by several units need larger area to be hosted, this
makes TSV optimization difficult due to lack of space. As explained in the previous

44

Algorithm

paragraph, to further ease movement between layers, the tiers’ area is computed
from the number of units increased of 15%. This makes space constraints less strict.
The TSVs minimization is based on the computation of a cost parameter for each
module-tier combination. This variable defines the number of TSVs needed to place
a module in a specific layer, considering also their length and is computed as follows.
For each module M and tier T , the list of partitions with at least a connection with
M that are not placed on T are computed and stored in the connected structure.
The cost for placing M in T is equal to the sum of the distance between the tiers
multiplied by the number of connections, calculated for each module contained in
connected. While the number of connections between two modules is equal to the
number of connections between the units belonging to those two partitions, the
tiers’ distance is the absolute difference between the tiers’ height. By computing
the cost associated with each tier, it is possible to identify the layer that bring less
TSVs, so the best vertical placement for the module.

(a) Tier 1; cost 6. (b) Tier 2; cost 4. (c) Tier 3; cost 2.

Figure 4.3: Cost computation on a 3D IC with three tiers

Once the cost strategy has been defined, it must be applied to all the
present modules to identify the exchanges necessary to minimize the total number
of TSVs. Initially, the switchvals structure is generated. This structure store for
each partition all the information required for selecting which module it should be
moved and where, in particulars the variables used are:

• initialval: This value represents the initial cost associated with the tier define

45

Algorithm

by the BFS vertical phase. It is used for the computation of the gain.

• gain: His value is equal to the difference between initialval and the cost of
moving the module on another layer. It represents the reduction or the increase
of the number of TSVs.

• layer: ID that define for a movement the destination tier.

• cost: List of values that store the cost associated with each tier.

• size: Value defining the number of units contained inside the module. It is used
for checking the space constraint.

• movable: Boolean value that define if the module can be moved or not.

Algorithm 5 TSV cost algorithm. Computes the number of interconnections
between tiers.
1: procedure TSVcost(m, layer, modules, nummodules)
2: ó m Module ID on which the cost is computed
3: ó layer The main module tier
4: ó modules Modules information generated in the preprocessing
5: ó nummodules Total numbers of modules
6: cost← 0 ó Initial cost set to 0
7:
8: ó Execution
9: for i in nummodules do
10: ó Number of connections between main module and i-module
11: connections← modules[m][modules][i]
12: if i! = m AND connections! = 0 then
13: cost← cost + abs(layer −modules[i][position]) ∗ connections
14: end if
15: end for
16: Return(cost)
17: end procedure

Once the switchvals content is initialized, the main loop start. For each
module characterized by movable equal to TRUE, the cost associated with moving
them on all the different layers is computed. The results are stored in cost structure.
Each tier is identified by an index that assume value from 0 to the number of

46

Algorithm

Algorithm 6 Max gain ID algorithm. Finds module with higher gain.
1: procedure MAXgainID(switchvals)
2: ó switchvals For each module contain the information for move it
3: gainmax ← −1 ó The max gain values reach by modules
4: idmax ← −1 ó Module ID with higher gain value
5:
6: ó Execution
7: for k, v in switchvals do
8: ó Check the gain value and mobility of the module
9: if v[gain] > gainmax AND v[movable] = TRUE then
10: gainmax ← v[gain]
11: idmax ← k
12: end if
13: end for
14: Return(idmax)
15: end procedure

tiers (numtiers) minus one. The layer that brings the lower cost become the best
tier for the considered module and its index is saved in layer variable. Then, the
gain is computed by subtracting to initialval the new cost associated with the
layer index. If gain is equal to 0 it means that the module is already on its best
vertical placement, consequently there are no reasons for moving it. To block its
position, movable is set to FALSE. Once these variables have been updated for all
the modules present, all the information needed to make a move will have been
defined. The process to change the layer of a module is composed by two steps. The
first step is the identification of the module that should be moved. This decision
is made according to the gain. The module that brings the greatest reduction in
the number of TSVs is also the one with the higher gain. Its selection is based
on the exploration of switchvals, where for each movable module is it check if its
gain is the highest reached up to that moment. Once all partitions have been
checked, idmax will identify the module with the greatest gain. If no module can
be moved, so all the movable variables are equal to FALSE, the searching loop
will return idmax with value -1. It means that all the modules that should be
moved were already moved and the TSV optimization phase is over. The second
step consists in moving the selected module from the initial tier (oldlayer) to its

47

Algorithm

best tier (newlayer). If the size of newlayer can accommodate the module, then
movable is set to FALSE and the transfer proceeds. Otherwise, among the available
tiers, the one that involves the greatest gain and is also able to host the module is
searched and become the newlayer. At the end of this searching if the newlayer

is equal to oldlayer it means that no tiers are able to accommodate the module,
so its layer does not change and movable is set to FALSE, otherwise we proceed
with the latest newlayer. The transfer is carried out by updating the number of
elements contained in the two tiers involved and by changing the position of the
module in modulesnodes. Once a module has been moved, the loop restarts with
all the values contained in switchvals updated. As previously explained, the TSV
optimization phase continues until there are no more movable elements.

Algorithm 7 TSV optimization algorithm. Minimization of the number of TSVs
by moving the modules between tiers.
1: procedure TSV optimization(modules, numtiers, tiersize, layersize)
2: ó modules Modules information generated in the preprocessing
3: ó numtiers Number of tiers
4: ó tiersize Number of elements inside each tier
5: ó layersize Max number of elements that can be placed into a tier
6: switchvals ← dict() ó Information required for moving modules
7:
8: ó Execution
9: for k, v in modules do
10: ini← TSV cost(k, modules[k][position], modules, len(modules))
11: switchvals[k] ← {initialval : ini, gain : 0, layer : −1, cost : list(), size :

v[size], movable : TRUE}
12: end for
13: while TRUE do
14: for k, module in switchvals do
15: ó If the module has not yet been placed
16: if module[movable] = TRUE then
17: costs← list()
18: ó Compute cost of moving the module into others tiers
19: for i in numtiers do
20: costs[i] add TSV cost(k, i, modules, len(modules))
21: end for

48

Algorithm

22: bestlayer ← index(min(costs)) ó Module bringing lower cost
23: module[layer]← bestlayer
24: module[cost]← costs
25: module[gain]← module[initialval]− cost[bestlayer]
26: ó If gain is null then block the module
27: if module[gain] = 0 then module[movable]← FALSE
28: end if
29: end if
30: end for
31: idmax ←MAXgainID(switchvals) ó Identify module with higher gain
32: if idmax = −1 then STOP ó Stop if no module is movable
33: end if
34: module← switchvals[idmax]
35: newlayer ← module[layer]
36: oldlayer ← modulesnodes[idmax][position]
37: ó If there is space in the tier block the module
38: if tiersize[newlayer] + module[size] ≤ layersize then
39: module[movable]← FALSE
40: else
41: ó Find the best tier with with available space
42: while tiersize[newlayer] + module[size] ≥ layersize AND

newlayer! = oldlayer do
43: module[cost][newlayer]← inf
44: newlayer ← index(min(module[cost]))
45: end while
46: end if
47: if newlayer = oldlayer then module[movable]← FALSE
48: else
49: ó Move the module
50: tiersize[oldlayer]← tiersize[oldlayer]−module[size]
51: tiersize[newlayer]← tiersize[newlayer] + module[size]
52: modulesnodes[idmax][position]← newlayer
53: module[initialval]← module[initialval]−module[gain]
54: end if
55: end while
56: end procedure

49

Algorithm

(a) Before TSV optimization. (b) After TSV optimization.

Figure 4.4: Example of TSVs minimization on a 3D IC with three tiers

4.1.4 2D placement

Once the first three steps of Place and Route algorithm are executed, the obtained
3D architecture define an intermediate solution compared to the one sought. In fact,
placing each module on a specific layer, according to the TSVs minimization, led
to fixing the vertical position for the units contained in the partitions. This means
that each unit have their z coordinate defined, but to complete the 3D architecture
it is needed to also set the x and y coordinates. The 2D placement phase is designed
to solve this problem. Its goal consists in finding for each unit the best position
inside the tier of belonging, minding several optimizations and constraints. Now
that the objective of minimize the inter-tiers connections is achieved, the modules
are no longer needed and the focus change on the single units. For this reason, this
is the first step in which the modules graph representation of the circuit is forsaken
to adopt a units graph representation. The main optimization this phase provide
is the minimization of the wirelength on the tiers without inserting single point
of failure, while the main constraints to care about are the TSVs placement and
direction. During the 2D placement, if the interconnections between the units not
belonging to the same layer are not considered, is possible to manage the tiers as
independent circuits. For example, with an 3D architecture compose by three tiers
is possible to apply to each layer the FT-TDP algorithm that provide best x and y
coordinates for each unit. The FT-TDP algorithm works on a PDD file generated

50

Algorithm

by a single layer, which contain all the units and interconnections related to that
tier. Since the PDD file characterize the elements with a sequential identification
starting from a value of 1, it is necessary to map the units to new IDs for each
layer. The FT-TDP alone not achieve good results because it can place units
linked by a TSV (belonging to different tiers) in very distant positions increasing
the wirelength needed to make the connection. TSVs connect two tiers through
vertical holes in the silicon, for this reason they cannot directly link two units that
are not on top of each other. Once the TSV tie two levels, horizontal links will
reach the affected units allowing the communication. For this reason, is important
to manage in a proper way the TSVs position because they will affect the total
wirelength. Moreover, due to their technological characteristics the TSVs allow slow
communications compared to the vias inside the same layer, for this reason they
can create critical path. To identify the best location for the TSVs two strategies
are defined. For each node to place, the centroid strategy compute the centroid
of the connected units that belong to a different tier. In geometry the centroid is
defined as the arithmetic mean positions of all the points in a figure. Computing
the centroid allow to define the TSV’s position that minimize the average distance
with all the connected units, and so also the wirelength. On the other hand, the
vertical strategy compute again the centroid of the connected units, but then place
the TSV above the connected element closest to the centroid coordinates. In this
way the inter-tiers link add zero horizontal wirelength with the selected unit. These
two strategies are both used and their results are compared to identify the best
one, if present. Since it is not possible to deal independently with the layers for
the placement of units, an approach must be defined that take in considerations
the relations and the inter-tiers constraints.

The 2D placement algorithm allocate the units starting from the bottom
tier because it contains the elements with the higher connection density. Once
the first layer is managed, it moves on the next ones. The placement within the
tiers following the first is more complex because these contain links with nodes
belonging to the lower layers that must be managed. Before starting the main
process all the units belonging to a tier are mapped with a sequential ID (seqid).
For each tier seqid is initialized to 1 and increase unit by unit. The correlation

51

Algorithm

Figure 4.5: Placement strategies for node with TSVs connections

between real ID and mapped ID, essential to restore the initial circuit, is stored in
the tiersmapping structure.

Algorithm 8 Centroid algorithm. Computes the centroid of a group of nodes.
1: procedure Centroid(infonodes, belowconnections)
2: ó infonodes Dictionary containing units’ information
3: ó belowconnections List of connected units ID
4: nconnections← len(belowconnections) ó Number of connected units
5: sumx← 0 ó Sum of the x coordinate of the connected elements
6: sumy ← 0 ó Sum of the y coordinate of the connected elements
7:
8: ó Execution
9: for nodeid in belowconnections do
10: nearx← infonodes[nodeid][position].x ó Unit’s X coordinate
11: neary ← infonodes[nodeid][position].y ó Unit’s Y coordinate
12: sumx← sumx + nearx
13: sumy ← sumy + neary
14: end for
15: x← sumx/nconnections
16: y ← sumy/nconnections
17: Return(x, y)
18: end procedure

Following the IDs mapping, the main cycle begin and, one at a time, all the
tiers are managed. Starting from the first layer, the algorithm generate the PDD file.

52

Algorithm

The structure of the PDD file is the same as shown at the beginning of the chapter,
it will therefore be necessary to insert the number of units in the first line and
write all the necessary information for each node. Since each PDD file represents a
single tier, all interconnections with units not belonging to the current layer are not
reported. Even if they are not written to the file, these external connections are
very important because they define the dependencies between the tiers and affect
the arrangement of the units in the layers above the current one. For this reason,
the aboveconnections structure is defined. It is a dictionary that contain for each unit
that belong to the upper tiers the list of connected units belonging to the current
layer. This structure is used during the placement of the next layer to compute the
best position for those nodes that have links with the tiers below. Once the PDD
generation is terminated, the FT-TDP algorithm is called. This script require four
parameters to work: PDD input path, PDD output path, tier width and height.
In our case the tiers have a square shape, so their dimensions are both equal to
layeredge. FT-TDP returns as a result a PDD file containing for each unit the x
and y coordinates that minimize the tier’s wirelength. To conclude the first-tier
units’ placement, the obtained PDD file is read, and the final coordinates of each
unit are stores in positionsfinal structure. Once the first layer has been managed,
we can move on to the next ones. As previously anticipated, the positioning
becomes more complex from here on, because the inter-tiers connections saved in
aboveconnections must be managed. Also in this case, a PDD file representing the
units and the interconnections of the new layer is generated. Now instead of having
all the units free to be placed anywhere on the tier, the presence of links with the
below layer creates some constraints. All the units contained in aboveconnections are
sorted according to the number of interconnections with the below layer. If the
strategy adopted is the centroid one, for each unit of the current tier contained
in aboveconnections the centroid of the list of nodes connected to it is computed.
The centroid defines for the unit to place, the position that minimize the average
distance with the connected nodes of the below layer. The centroid coordinates are
used as possible position to allocate the node. Otherwise, if the strategy adopted is
the vertical one, from the list of the connected units the coordinates closest to the
centroid position are used as possible allocation for the node. Once one of the two
strategies is applied, the result will be a pair of coordinates. If the defined position

53

Algorithm

is not available, a subroutine will search for the closest free cell to the resulting one.
In particular, the search starts from the cells that are only one block away from the
initial one. In case there are no free positions the acceptable distance is increased
by one block and the searching restart. This process continues until a free position
is reached. Once the final coordinates (x, y) are defined, the corresponding cell
is calculated as y ∗ layeredge + x. The position is finally added to usedpositions

structure that store the not available blocks.

(a) Acceptable distance 1
Block.

(b) Acceptable distance 2
Blocks.

(c) Acceptable distance 3
Blocks.

Figure 4.6: Searching path for free cell

Once their coordinates are fixed, the units characterised by links with below
tiers should not be moved, not even by the FT-TDP algorithm. But the FT-TDP
must place all the remaining units characterise only by connections with nodes
on the same tier. To manage it, the FT-TDP source code has been modified to
accept the presence of fixed nodes that must not be moved during the execution
of the algorithm. A new parameter defines a path to a file that contain all the
fixed units ID with the corresponding x and y coordinates. When the FT-TDP is
called, it will set the positions of the fixed units, then it will run the placement
algorithm on the remaining ones. In this way the wirelength will be optimized on
the current tier, while the links with the lower layer are managed in a proper way.
This process is repeated for all the remaining tiers, and in each step it manages the
reduction of the wirelength and the vertical constraints. Once the units of the last
layer are placed, positionsfinal contains the definitive x,y and z coordinates of all
the units that composed the initial 2D PDD file. To conclude the 3D architecture
the only remaining nodes to be placed are the pins.

54

Algorithm

Algorithm 9 2D placement algorithm. Defines the best x and y coordinates for
all the units.
1: procedure 2Dplacement(tiersnodes, infonodes, layeredge, strategy)
2: ó tiersnodes Dictionary containing for each tiers its units
3: ó infonodes Dictionary containing units’ information
4: ó layeredge Size of the tiers’ edges
5: ó strategy Allocation strategy (centroid or vertical)
6: tiersmapping ← dict() ó Units’ IDs mapping for each tier
7: aboveconnections ← dict() ó Save for each unit the links with upper tiers
8: positionsfinal ← dict() ó Contain the final coordinates of each unit
9:
10: ó Execution
11: for tierid, nodes in tiersnodes do
12: if tierid not in tiersmapping then
13: ó Initialize the mapping structure for the tier
14: tiersmapping[tierid]← {trueaus : dict(), austrue : dict()}
15: end if
16: seqid ← 1 ó Sequential ID used on each tier
17: for node in nodes do
18: tiersmapping[tierid][trueaus][node]← seqid ó From true to aus ID
19: tiersmapping[tierid][austrue][seqid]← node ó From aus to true ID
20: seqid ← seqid + 1
21: end for
22: end for
23: ó Main cycle
24: for tierid, nodes in tiersnodes do
25: ó Generate PDD with mapped IDs
26: f ← open(tierid+".PDD")
27: f.write(len(nodes)) ó Numbe of units
28: for node in nodes do
29: f.write(infonodes[node]) ó Node’s information
30: for connnode in infonodes[node][connections] do
31: if connnode not in nodes then
32: ó If the node belong to another tier store the connection
33: if connnode not in aboveconnections then
34: aboveconnections ← list()
35: end if
36: aboveconnections[connnode] add node
37: end if
38: end for
39: end for

55

Algorithm

40: f.close()
41: if tierid = 0 then
42: ó Run directly the FT-TDP algorithm
43: FT-TDP(tierid+".PDD", tiertid+"out.PDD", layeredge, layeredge)
44: else
45: ó Sort according to descending number of links
46: aboveconnections ← sort(aboveconnections)
47: usedpositions ← set() ó Initialize set of unavailable positions
48: ó Write the units with fixed positions
49: f ← open(tiertid+"fix.PDD")
50: for node, belowconnections in aboveconnections do
51: z ← infonodes[node][position].z)
52: x, y ← Centroid(infonodes, belowconnections)
53: if strategy = ”vertical” then
54: ó Apply vertical strategy if required
55: x, y ← Closest coordinates to x, y form belowconnections units
56: end if
57: pos← y ∗ layeredge + x ó Compute corresponding position
58: if pos in usedpositions then
59: ó Find closest free cell
60: x, y, pos← Closest position x, y not yet occupied
61: end if
62: usedpositions add pos
63: f.write(tiersmapping[tierid][trueaus][node], x, y)
64: end for
65: f.close()
66: FT-TDP(tierid+".PDD", tiertid+"out.PDD", tiertid+"fix.PDD",

layeredge, layeredge)
67: end if
68: f ← open(tiertid+"out.PDD")
69: id, x, y = f.read()
70: realid← tiersmapping[tierid][austrue][id]
71: positionsfinal[realid]← (x, y, z) ó Save definitive coordinates
72: end for
73: end procedure

56

Algorithm

Figure 4.7: Example of 2D placement result on a 4-tiers architecture

4.1.5 Pins placement

The pins allocation is the last phase of the algorithm. Once all the units are placed
on the different tiers, and their position cannot change, the optimization process
focus on the pins. The pins are the terminals of the IC, used to provide power
supply and I/O interconnections with other circuits. In the Modularization phase
these components have been set aside to favour units management, now they are
instead treated to conclude the placement process that define the 3D IC. The pins
placement is based on two constraints derived from architectural standards. Since
the pins are the components used to connect an IC with other systems and circuits,
they can only be placed on the outermost layers of the 3D IC. The architecture, in
this case, is composed of a stack of tiers, so the eligible layers are the first or the
last one. All the pins in this way are contained in a single tier which will be the
one used as a base for the connection with an additional element. This allows to
simplify the creation of interconnections between different systems. By default, the
algorithm places the pins in the first layer, but the user can set also the last one.
There are better performing procedures in which the I/O pins are partitioned and
positioned on all tiers[22]. These strategies involve short wirelength but require
a compatible system to establish a connection. To make the circuit adaptable

57

Algorithm

to most situations, the positioning of the pins is carried out following the classic
strategy based on a single tier. The other constraint derived from the selected pins
packaging, that define where the pins should be placed into the tier. In the project
the pins are allocated by default on the top and bottom edge of the layer, following
an approach similar to the DIP (Dual In-line Package)[23]. This procedure is
widely used for many IC related products, thus giving our architecture strong
adaptability and usability. Is possible to use also another packaging approach
where all the four edges of the layer are used for the pins placement. Once the tiers
selection and the packaging strategy are defined, the Pins placement phase must
satisfy all their constraints. Manage in a proper way the pins and their position
is quite important for the performance of the 3D IC. Pins can bring two kinds
of connections, pin-to-pin that in our case are harmless because they take place
on the same layer, and pin-to-unit that can generate inter-tiers links. Incorrect
management of the pins allocation can lead to slowdowns and higher complexity,
especially in circuits with a small number of units. For this reason, the main goal of
this phase is defining a strategy for placing the pins in a way that the wirelength is
minimized, and the circuit performance does not drop dramatically. The algorithm
proposed below reach these goals always remaining compliant with the architectural
constraints.

To reduce the wirelength, the algorithm finds the position that minimize
the distance between pin and all its connected elements. Starting from the pins

structure, that contains the required IDs, the centroid of each pin is computed.
The centroid coordinates are computed by summing the x (sumx) and y (sumy)
coordinates of all the connected node, then dividing them by the number of elements.
During the summation it is necessary to pay attention to the presence of connections
with other pins that have not yet been positioned. In this case the coordinates
should not be considered for the centroid computation, otherwise they would lead
to wrong positions. To recognize a pin not yet positioned just read its coordinates,
if these are still the same as the default ones (0,0) we must not consider it. The
order in which the pins are placed and managed is also important. Is possible to
have pins with most or all their connections made with other pins. This implies
that their allocation will have to be managed only after that of the other pins,

58

Algorithm

otherwise their final position would be conditioned only by the few units already
placed. If this problem of order is not handled it can also break the code with
an infinite loop where two connected pins are one waiting for the positioning of
the other. To avoid those complication, the first step of this phase orders the IDs
inside pins list according to the number of ties with other nodes. Doing so, the pins
characterized by a higher number of connections with placed units will be managed
before critical pins. Once the centroid coordinates are defined, is it computed which
is the closest edge between the top and bottom one. If the top one is the closest
the y coordinate of the centroid is changed to edge size (layeredge) plus padding.
Otherwise, the y coordinate assumes a value equal to the negative padding. The
padding is required to separate the units and the pins, it will increase the size of
the initial tier. Next the shifting of the centroid on the closest edge, if the new
position is available the pin is placed there, otherwise the closest free position is
found. Starting from the shifted centroid, if its position has already been occupied,
a recursive function checks, with a step initially set to 1, if the positions on its
right and left are free.If one of this two locations are available it becomes the final
position of the pin. Otherwise, the step is incremented by one until a free location
is found. The positionpins structure is used to keep track of all spots already used
by pins. At the end of this phase for each pin an x and y coordinate will be define
on the first layer of the 3D IC.

If all four edges of the first tier are used for pin allocation rather than just
the top and bottom one, the algorithm changes a little. During the computation
of the centroid closest edge, it is considered also the distance with the left and
right edge. Furthermore, if in the search for a free position the new coordinates are
closer to a different edge than the starting one, the search continues on the closest
edge resetting the step to 1.

59

Algorithm

(a) Centroid computation. (b) Closest edge identification.

(c) Centroid shifting. (d) Searching for an available lo-
cation.

Figure 4.8: Pins placement process

(a) Top and Bottom edge. (b) All four edges.

Figure 4.9: 3D IC after Pins placement phase

60

Algorithm

Algorithm 10 Pins placement algorithm. Defines the position of IC’s pins.
1: procedure PINSplacement(pins, nodes, layeredge)
2: ó pins List of pins’ IDs
3: ó nodes List containing the information of all IC’s components
4: ó layeredge Size of the tiers’ edges
5: positionpins ← set() ó Set containing the already used positions
6:
7: ó Execution
8: pins← sort(pins) ó Sort according to the number of their connections
9: for id in pins do
10: x, y ← Centroid(id, nodes) ó Compute centroid
11: adder ← 1 ó Step size for searching a feasible position
12: padding ← 2 ó Pins’ padding
13: if y > layeredge/2 then ó Find the closest edge of the tier
14: y ← layeredge + padding
15: else
16: y ← −padding
17: end if
18: ó Check the closest left and right position until the placement is feasible
19: while TRUE do
20: if (x, y) in positionpins then
21: x← x + adder
22: if adder > 0 then
23: adder ← (adder + 1) ∗ −1
24: else
25: adder ← (adder ∗ −1) + 1
26: end if
27: else
28: STOP
29: end if
30: end while
31: nodes[position] = (x, y,0) ó For pins the z coordinates is 0
32: positionpins add (x, y)
33: end for
34: end procedure

61

Algorithm

4.2 Fixed units case

The previous paragraph explains step by step the processes that compose the Place
and Route algorithm. During the development, the main constraints to be careful
are the limited area of each layer and the number of inter-tiers connections. In some
cases, is possible to have additional limitations to care about. Until now the IC
used were characterized by units free to be positioned and moved on each tier, but
this is not always true. Many IC are composed by elements that should be placed
in a specific positions or on a fixed tier. Components that produce a lot of heat, for
example, need to be placed in strategic points so they do not affect the temperature
of other units too much. One possible solution would be place the component on
the higher tier, because its temperature affects the lower ones less. Sometime the
architecture of an IC require that specific pair of elements should be placed close,
or that entire blocks of units should be allocated on the same tiers, even if they
have no connections between them. For example, the development of a CNN using
a 3D IC is subject to those limitation. The CNN is composed by building blocks
called DPU (Data Processing Units) that need to be interconnected following a
specific logic. For this reason, its architecture is based on a topology that bond
blocks in middle tiers. In these cases, fixing the position of these elements involves
lower latency and higher energy efficiency.

For the reasons explained above, management of units with default vertical
location (tier of belonging) has been implemented in the Place and Route algorithm.
The development of this feature involves new processes in the first three steps of
the algorithm (Modularization, Vertical BFS, TSV optimization), while leaving
the remaining two unchanged. The user can report the presence of units with fixed
layer by passing as input parameter a file containing the list of names of the units
concerned. By default, all these nodes will be fixed in the second tier starting from
the bottom, but this option can be changed with any layer. This feature should
only be used when it is strictly necessary because it involves a substantial increase
in the number of TSVs. Blocking elements in certain positions leads to a lower
efficiency of the hMETIS partition algorithm which now no longer has full control
over all modules. Moreover, it also involves the reduction of the usable space to

62

Algorithm

move modules between tiers. The implementation of this feature consists of two
steps: The generation of fixed modules that groups the nodes to be placed into
a specific tier; The anchorage where the final position is defined and cannot be
changed by other processes.

4.2.1 Fixed modules generation

Starting from the input file containing all the fixed nodes, is generated a structure
called fixednodes that stores the names of the units that will placed in a specific
tier. This structure is used during the reading of the 2D IC PDD file to identify the
corresponding IDs and store them in the fixedids structure. In the Modularization
phase, to call the hMETIS script for partitioning the IC graph, is required to define
the number of modules, the level of balance between modules and the hMETIS
graph. With the presence of fixed units, a new file is required as input parameter.
This new file is called fixedgraph and describe for hMETIS algorithm which are
the fixed units, and in which partition they should be placed. It is composed by
a number of lines equal to the number of units, and each row contains a positive
integer that represent the partition of belonging of the correspondent unit. If an
element does not belong to a specific module, the value of its line is set to -1.
Once the file is populated is possible to run the partitioning algorithm taking in
consideration also the fixed vertical positions. A problem to be managed in this
phase is the imbalance between the dimensions of the modules. If fixed nodes
are many and they are all inserted in the same partition, the module created will
be larger than all the others generated by the partitioning. hMETIS to balance
the module with excessive dimensions will create several void modules, but their
presence damages the performance of our processes because they force us to make
useless calculations and lead to incorrect solutions. To solve this problem the
average size of a module (meansize) is computed as number of units over the
number of modules. Later, while writing fixedgraph, the fixed nodes are initially
associated with the partition with ID 0, but when it reaches a size equal to meansize

the following fixed nodes are associated with the next partition. This process is
repeated until all fixed nodes have been associated with a module. With this

63

Algorithm

strategy, instead of creating a big module with all the fixed nodes, several modules
with an average size are created. This removes the presence of empty modules
because hMETIS is now working on partitions with similar sizes. The only flaw of
this strategy is that to manage all the fixed units we must save all the IDs of the
modules that contain them (fixedpartitions).

(a) Single fixed module. (b) Multiple fixed modules.

Figure 4.10: Visualization of partitions with and without balancing of fixed nodes

Algorithm 11 Fixed modules generation algorithm. Subdivision of the fixed units
in several balanced modules.
1: procedure FixedModulesGeneration(pdd, fixedname, fixedgraph,

nmodules, elements)
2: ó pdd Location of the 2D PDD file
3: ó fixedname Path to the file that contains fixed units names
4: ó fixedgraph Path to the file that will contains for each fixed unit its partition
5: ó nmodules Number of modules
6: ó elements List of units ID
7: fixednodes ← list() ó List containing all the name of fixed units
8: fixedids ← list() ó List containing all the IDs of fixed units
9: meansize ← len(elements)/nmodules ó Average size of a module
10: idpartition ← 0 ó ID of the current partition
11: size← 0 ó Size of the current partition
12: fixedpartitions ← list() ó IDs of the modules associated with fixed units
13: f ← open(fixedname) ó Open the file in reading mode
14:

64

Algorithm

15: ó Execution
16: for line in f.read() do
17: fixednodes add line.strip() ó Store all the names
18: end for
19: ReadFile(pdd) ó Update fixedids

20: f.close()
21: f ← open(fixedgraph) ó Open the file in writing mode
22: fixedpartitions add idpartition ó Save partition ID
23: for k, v in elements do
24: if k in fixedids then
25: f.write(idpartition) ó Set the partition of belonging
26: size← size + 1
27: if size = meansize then
28: size← 0
29: idpartition ← idpartition + 1 ó Switch to the next partition
30: fixedpartitions add idpartition ó Save partition ID
31: end if
32: else
33: f.write(−1) ó For the units not fixed
34: end if
35: end for
36: f.close()
37: hMETIS(..., fixedgraph) ó Run the partitioning with the new parameter
38: end procedure

4.2.2 Anchorage

Once the fixed modules were defined, it is required to place them into the preselected
tier that by default is equal to the second one. During the BFS vertical pre-
processing, the fixed modules are managed like the others normal partitions. All the
value of modulenodes are computed as previously explained. Before the generation
of the bestpath defined by the BFS algorithm, the vertical position of all the fixed
modules is set to the preselected tier and the size of the layer is updated. To
avoiding changing the placement later, the IDs representing the fixed modules are
removed from the bestpath sequence. Now that the partitions are placed is required
to not move the fixed ones form their original tier in the TSV optimization phase.
For this reason, during the initialization of the switchvals structure where all the

65

Algorithm

value necessary for moving a module are stored, the movable parameter is set to
FALSE for each fixed module. In this way those partitions are ignored and are not
moved even if it would bring a reduction in TSVs number.

4.3 Delays update

The 3D PDD file obtained by the algorithm is used to update the SDF (Standard
Delay Format) file. As previously explained the SDF contains for each cell the
delay and timing check. Each initial circuit on which the algorithm is executed is
characterized by a 2D PDD file and a 2D SDF. The presence of TSVs in the 3D
architecture involves the need to update the delays reported in the 2D SDF because,
due to their technological characteristics, the TSVs allow a slower communication
than the traditional one. If two nodes belonging to different layers are connected, the
delay computation must now also consider the slowness of the inter-tier connection
which can become a performance bottleneck. For this reason, starting from the
2D SDF, a 3D SDF is generated by updating the delay of all the interconnections
between units that belong to different tiers and require a TSV to communicate.
The 3D PDD file is essential for this process because it contains the information
necessary to identify the presence of a connections between layers. In particular, if
an edge is composed of two nodes characterized by different z coordinates, it implies
that a TSV is required, and the delay must be updated. The additional delay
that a TSV brings, can change in base of the used technology and architecture,
in our case is fixed to 10ns. The process starts by reading the 3D PDD file and
saving its information inside setnodes. Between all the information stored into this
structure is required to format the names of the nodes by removing some additional
characters not supported by SDF. All the information associated to the formatted
names are then stored in the dictionaryname structure that will be used later. The
first fifteen lines of the 2D SDF contains generic information about the version
and format of the file and are copied to the 3D SDF. Then, the main loop starts
and the 2D SDF file is read line by line. The process ends when is it reached
the last line of the file characterized by a closing round parenthesis. For each

66

Algorithm

element two main information are read, its type and its name, saved respectively
in celltype variable and instance variable. From the dictionaryname is it checked if
the instance exist and its information are retrieved. If the instance type match
the celltype variable we can proceed to check its interconnections. All connected
components are identified by a unique character code and by the delay time. For
each connected node, its layer of belonging is compared to the current instance
element tier. If they are placed on the same layer the delay time is copied from
the 2D SDF to 3D SDF without any change, otherwise the delay is incremented
by 10ns. At the end of the process, the 3D SDF file contains all the delays of the
interconnections, the value of which has been updated in case of TSV presence.

Algorithm 12 Delays update algorithm. 3D SDF file generation based on the
update of the delays of the 2D SDF file.
1: procedure DELAYSupdate(pdd3d, sdf2d)
2: ó pdd3d Path to the 3D PDD file
3: ó sdf2d Path to the 2D SDF file
4: dictionaryname ← dict() ó Dictionary of formatted names
5:
6: ó Execution
7: setnodes ← ReadFile(pdd3d) ó Store nodes’ information from the PDD file
8: for k, v in setnodes do
9: formattedname ← v[name].replace(Í\\Í,ÍÍ) ó Chars removal
10: dictionaryname[formattedname]← v
11: end for
12: sdf2D ← open(sdf2d)
13: sdf3D ← open("3d-sdf.sdf")
14: for i in range(15) do ó Copy generic information
15: line← sdf2D.read()
16: sdf3D.write(line)
17: end for
18: while TRUE do ó Main reading and writing loop
19: line← sdf2D.read()
20: if line = ”)” then STOP ó Last line reached
21: end if
22: sdf3D.write(line)
23: line← sdf2D.read()
24: celltype← line.split(””)[1]

67

Algorithm

25: sdf3D.write(line)
26: line← sdf2D.read()
27: instance← line.split(””)[1].split(”/”)[0]
28: sdf3D.write(line)
29: instanceinf ← dictionaryname.get(instance) ó Get the element instance
30: if instanceinf = −1 then ERROR(name not found)
31: else
32: line← sdf2D.read()
33: sdf3D.write(line)
34: ó If types not match the lines are copied
35: if instanceinf [labels][1]! = celltype then
36: while line! = ”)” do
37: line← sdf2D.read()
38: sdf3D.write(line)
39: end while
40: else
41: while line! = ”)” do
42: line← sdf2D.read()
43: splittedline ← line.split(””)
44: charID ← splittedline[1]
45: time← splittedline[2]
46: ó Find connected node id
47: for connected in instanceinf [connectedelements] do
48: if connected[1] = charID then idv ← connected[0]
49: end if
50: end for
51: connectedid ← instanceinf [inputs][idv − 1]
52: layer1← instanceinf [position][2]
53: layer2← setnodes[connectedid][position][2]
54: if layer1 = layer2 then sdf3D.write(time) ó Same tier
55: else
56: time← time + 10 ó Delay update
57: sdf3D.write(time)
58: end if
59: end while
60: end if
61: end if
62: end while
63: sdf2D.close()
64: sdf3D.close()
65: end procedure

68

Chapter 5

Experimental result

Once all the steps of the algorithm have been performed, the result obtained is a
PDD file containing all the main information about the components, including their
3D coordinates. To understand the performance of the new 3D architecture and
compare them with the 2D IC, multiple tests are executed on different initial circuits.
The result of these tests will show how many benefits we get from verticalization of
a circuit, and what are the drawbacks. It will also be possible to understand how
the performances are influenced by the main parameters and strategies defined in
the previous chapters.

5.1 Benchmark

The algorithm is executed on four initial 2D IC: B09, B12, B14, CNN. These
circuits are characterized by quite different number of elements. In this way is
possible to understand how the algorithm behave with several graph size and
interconnection complexity. Furthermore, the number of TSVs and the size of
the silicon area required are expected to change as the initial circuit variate, so it
becomes important understand how this affects the result. The tests start from
B09, the less complex circuit characterized by 96 elements, and end with CNN that

69

Experimental result

count 20362 nodes.

B09 B12 B14 CNN

Nodes 96 620 4088 20362

Edges 486 3424 20240 102126

Table 5.1: Attributes of the tested circuits

For each circuit, different tests are carried out in which the initial parameters
and positioning strategies are changed. In this way, in addition to examining how
the algorithm behaves on different types of IC, we can also understand how the
variables and the used approach affects the results obtained on the same circuit. In
particular, starting form a 2D IC, the algorithm is executed several times with an
increasing number of tiers defined for the 3D architecture. The initial number of
layers considered is equal to one and represent the 2D architecture. The maximum
number of tiers tested is five, this quantity has been chosen because the construction
of a circuit composed by a higher number of layers is not feasible due to thermal
and architectural reasons. In some case is not even possible use five tiers due to the
presence of long TSV. The long TSV are inter-tiers connections that bond together
two units that belong to non-adjacent layers. For example, in a 3-tiers architecture,
an edge that connect a node belonging to the first layer to a node that belong
to the third layer is a long TSV. This kind of interconnection is illegal in the 3D
architecture because each layer allowing the communication only with its adjacent
tiers. This limitation derived from the TSVs structure that is based on physical
holes in the silicon between two tiers. If the algorithm is applied with a high
number of tiers to a 2D circuit characterized by a huge interconnections’ density,
sometime become hard or even impossible to avoiding the presence of long TSV.
Consequently, the maximum number of tiers that can be reached will always be
less than six but can be further reduced by the characteristics of the initial circuit
used. In addition to the variation in the number of layers, the algorithm is executed
using the two 2D placement strategies explained in the previous chapter: Centroid
strategy and Vertical strategy. These two approaches have been defined to manage
the placement of nodes on a layer considering possible interconnections with the

70

Experimental result

lower tiers. While the Centroid strategy place the node in the centroid coordinates
of the connected elements, the Vertical strategy place the node above the connected
element closest to the centroid coordinates. By comparing these two approaches it
will be possible to understand when one reach better performance than the other.
For each combination of tiers quantity and placement strategy several attributes
are computed from the resulting 3D PDD file. Each of which allows to identify the
main properties of the new 3D circuit. All the attributes computed for each run are
explained and listed below. The Area of the circuit represents the size of the silicon
surface on which the elements are placed. It is computed from the maximum and
minimum coordinates defined by the PDD file. The value of the area is defined in
number of cells, which can contain a maximum of one component each. Depending
on the technology used, the cells can assume different edge sizes which can assume
value vary between 7nm and 130nm. Knowing how many cells are needed to build
a layer allows us to compare the area of different circuits without having to define
the technology used in advance. The Nodes and the Edges represent respectively
the number of elements that make up the circuit (units and pins) and the number
of interconnections between these components. The #TSVs is the real number of
TSVs physically needed for managing all the inter-tiers connections. Its value is
computed next the 2D placement phase, when the nodes are allocated according
to their interconnections with the below tiers. If an element is connected to three
units belonging to the layer below it, the number of edges based on TSV are three,
but once the node is positioned the connection with the lower level will be made
with only one TSV, while the connections with the three nodes will be managed
through horizontal vias placed on the below plane.

(a) Edges based on TSV. (b) Number of TSVs.

Figure 5.1: Difference between edges base on TSV and number of TSVs

71

Experimental result

The Vertical wirelength represent the total length of the TSVs required for
building the 3D IC. The computation of this variable derived by the length of a
single TSV. The TSV can assume several sizes according to the used technology.
In our case the TSV length is fixed to 10µm, but in particular case it can also
reach 100µm[24]. The Vertical wirelength is computed by multiplying the #TSVs
with the TSV’s length. The Horizontal wirelength represent the total length of
those vias that connect nodes belonging to the same tier. Are also considered the
horizontal wire that connect a unit to a TSV that will be used to communicate with
another tier. The Horizontal wirelength computation is based on the Manhattan
distance, a geometric concept according to which the distance between two points
is the sum of the absolute value of the differences of their coordinates. This value
defines how close two connected nodes are, and so how good their placement is.
The Avg wirelength define the typical length of a connections between two nodes,
considering both the vertical and horizontal vias. It is computed by summing
the vertical and horizontal wirelength and dividing the result by the number of
edges. The Max wirelength represent the longest connection between two elements,
it is very useful because can tell us which are the critical path that can become
the bottleneck of our 3D IC. To understand the distribution of the Horizontal
wirelength between the layers used for the verticalization of the circuit, a table
show and compare the lengths of the cables of each tier for all the performed tests.

D(A, B) = |XA −XB|+ |YA − YB|

Figure 5.2: Formula and graphical representation of the Manhattan distance

72

Experimental result

5.2 Results

The results obtained from the tests performed on the different initial circuits are
reported in this paragraph. The tables below allow to make a direct comparison
between the performances achieved on the various circuits and how these are
affected by the initial parameters.

The B09 is the less complex circuit, is composed by 96 nodes that create a
network of 486 interconnections. The silicon area of the 2D architecture is composed
by 221 cells. As expected, by increasing the number of tiers for the 3D architecture,
the required area decrease. Is equal to 49 cells with two layers and is reduced to
25 cells with four layers. It means that the required area can be reduced of 88%
compared to the initial size. The #TSVs value increase with the number of tiers,
this leads to a greater length of the vertical cable. This rise is foreseeable because
the presence of more levels also involves the increase of interconnections between
nodes not belonging to the same layer. The Horizontal wirelength of the B09 IC,
developed on a single tier, is equal to 23874µm. Using only one additional tier
this value drops drastically to 2834µm for the Centroid strategy and 2822µm for
the Vertical strategy. The Max wirelength drop from 131µm to 19µm for both the
approaches. The reduction of these distances derives from the small size of the tiers
which force the nodes to stay close together. Increasing the number of layers shows
a reduction in the Horizontal wirelength and the Max wirelength for both strategies.
With circuits characterized by many interconnections, the presence of more tiers
entails the fixing of the positions of many nodes due to the links with lower layers.
Furthermore, having more TSVs leads to an increase in the total length of the
cables used. Despite this, the reduction of the area of the tiers brings such a high
advantage that the average wirelength decreases with the increase of the layers. The
Centroid strategy and the Vertical strategy, with B09 IC, lead to similar solutions
due to the simplicity of the circuit. The distribution of wirelength on the different
tiers, as expected, is higher in the first layers. This behaviours derived from the
fact that the BFS algorithm place the modules with higher interconnections density
starting form the first layer. The B12 IC is composed by 620 nodes that create
a network of 3424 edges. The initial area of the circuit, considering one tier, is

73

Experimental result

equal to 3068 cells. By increasing the number of layers, like the previous case,
the required area decreases from 361 cells with two tiers, to 144 cells with five
layers. It means that by executing the algorithm the initial area can be reduced
from the 88% to the 95%. Obviously, this big improvement is achieved with a
price. The number of TSVs increase more respect to the B09 IC because now
the total number of interconnections to manage are further. The ratio of #TSVs
to the number of edges is greater for B09 than for B12. The initial Horizontal
wirelength is equal to 117138µm with a maximum of 182µm. With two tiers their
values become, respectively, 31820µm and 30µm for the Centroid strategy and
32490µm and 32µm for the Vertical strategy. A reduction not as drastic as that
of B09 but still quite impressive. Also in this case, increasing the number of tiers
lead to a lesser Horizontal wirelength, that remain always lower than the 2D initial
value. For B12, the Vertical strategy lead all the time to a Horizontal wirelength
greater than the one obtained with the Centroid strategy, while the Max wirelength
still quite similar for both the approaches. The distribution of the wirelength, in
this case, does not follow a decreasing trend when more than two layers are used.
Although the first tier remain the one characterized by a greater wirelength, due
to the high number of connections, is possible to have lower levels characterized by
a total length of the cables shorter than the higher ones.

The B14 IC is composed by 4088 nodes that create a network of 20240 edges.
Unlike the previous circuits B14 is more complex, and its initial area is equal to
23478 cells, almost eight times the initial size of B12. By increasing the number of
tiers that are required for building the circuit, the size of the silicon area decrease.
With two layers the area needed is equal to 2304 cells (more than a tenth of the
initial one), while with four layers the area assumes the value of 1156 cells. With a
greater number of edges, the #TSVs value increase compared to the previous result.
Like the prior circuits, the value of the Horizontal wirelength decreases with the
number of layers. The only difference is that the reduction brought about by adding
each tier is greater than the previous cases. This is initially equal to 451096µm
for Centroid strategy and 457126µm for Vertical strategy and drops respectively
to 364216µm and 365602µm. This improvement derives from the fact that, in
the presence of a large quantity of nodes, a high number of tiers does not affect

74

Experimental result

the dispersion in a heavy way as with the two previous circuits. In addition, the
number of nodes that must be blocked due to connections with lower layers does not
negatively affect the positioning of the others, because the area of the tiers is now
larger and offers a greater quantity of positions. For this reason, even if the number
of TSVs increase and affect in a negative way the total length of the interconnections,
the reduction of the area involves a greater advantage and therefore the Horizontal
wirelength improve. Having many Interconnections help also to understand the
main difference between the Centroid and Vertical strategies. In all the B14 tests,
the Vertical strategy leads to a greater Avg wirelength than the Centroid strategy,
even if sometimes the Max wirelength has a opposite trend. It means that critical
paths are managed better using the centroids coordinates. Like the B09 IC, the
wirelength distribution on the different layer follow a decreasing behaviour with
the increase of the number of tiers. Moreover, the maximum wirelength reach
by a single layer is lower when many levels are used for the verticalization of the
IC respect to cases with few tiers. The last and most complex IC tested is CNN
which is constituted of 20362 nodes and 102126 edges. The number of TSVs is
quite high and reach a maximum of 9424 with five tiers. Although the circuit is
composed of a number of elements that is five times that of B14, its initial area is
quite small, equal to 24576 cells. For this reason, it is possible to note that the
Horizontal wirelength computed with a number of tiers higher than one is worse
than that of the equivalent circuit in 2D. The Horizontal wirelength is initially equal
to 2703646µm and become 4230306µm for the Centroid strategy and 4254206µm
for the Vertical strategy, with two tiers. The small initial area results in a low
wirelength which gets worse when the circuit is divided into several tiers because
node that initially were close can be placed into different layer. By increasing the
number of tiers, the Horizontal wirelength value decrease, thanks to more restricted
area, reaching a minimum of 3237038µm with five layers. Although Horizontal
wirelength worsens compared to the 2D circuit, its maximum value is mitigated,
albeit slightly. Also in this case, the Centroid strategy achieves better average
wirelength than the Vertical strategy. Like the B12 IC, in CNN IC is possible to
find below tiers with a total wirelength lower than upper tiers.

75

Experimental result

B
09

IC
R

es
ul

ts C
en
tr
oi
d
St
ra
te
gy

Ve
rt
ic
al

St
ra
te
gy

T
ie
rs

A
re
a

[c
el
ls]

N
od

es
Ed

ge
s

T
SV

s
[#

]
Ve

rt
ic
al

w
ire

le
ng

th
[µ
m
]

H
or
iz
on

ta
l

w
ire

le
ng

th
[µ
m
]

Av
g
w
ire

-
le
ng

th
[µ
m
]

M
ax

w
ire

-
le
ng

th
[µ
m
]

H
or
iz
on

ta
l

w
ire

le
ng

th
[µ
m
]

Av
g
w
ire

-
le
ng

th
[µ
m
]

M
ax

w
ire

-
le
ng

th
[µ
m
]

1
22
1

96
48
6

0
0

23
87
4

49
.1
2

13
1

23
87
4

49
.1
2

13
1

2
49

96
48
6

50
50
0

28
34

6.
86

19
28
22

6.
84

19

3
36

96
48
6

80
80
0

25
00

6.
79

17
25
10

6.
81

17

4
25

96
48
6

10
4

10
40

21
46

6.
56

16
22
64

6.
80

14

Ta
bl

e
5.

2:
R
es
ul
ts

ob
ta
in
ed

by
ru
nn

in
g
th
e
al
go
rit

hm
on

B0
9
IC

B
09

IC
T

ie
rs

’H
or

iz
on

ta
lW

ir
e-

le
ng

th

C
en
tr
oi
d
St
ra
te
gy

Ve
rt
ic
al

St
ra
te
gy

T
ie
rs

T
ie
r
1

[µ
m
]

T
ie
r
2

[µ
m
]

T
ie
r
3

[µ
m
]

T
ie
r
4

[µ
m
]

T
ie
r
1

[µ
m
]

T
ie
r
2

[µ
m
]

T
ie
r
3

[µ
m
]

T
ie
r
4

[µ
m
]

1
23

87
4

0
0

0
23

87
4

0
0

0

2
23

14
52

0
0

0
23

10
51

2
0

0

3
20

76
38

8
36

0
21

00
37

4
36

0

4
17

60
27

6
10

4
6

18
56

27
0

12
8

10

Ta
bl

e
5.

3:
C
om

pa
ris

on
be

tw
ee
n
th
e
w
ire

-le
ng

th
s
of

th
e
tie

rs
us
ed

on
B0

9
IC

76

Experimental result

B
12

IC
R

es
ul

ts C
en
tr
oi
d
St
ra
te
gy

Ve
rt
ic
al

St
ra
te
gy

T
ie
rs

A
re
a

[c
el
ls]

N
od

es
Ed

ge
s

T
SV

s
[#

]
Ve

rt
ic
al

w
ire

le
ng

th
[µ
m
]

H
or
iz
on

ta
l

w
ire

le
ng

th
[µ
m
]

Av
g
w
ire

-
le
ng

th
[µ
m
]

M
ax

w
ire

-
le
ng

th
[µ
m
]

H
or
iz
on

ta
l

w
ire

le
ng

th
[µ
m
]

Av
g
w
ire

-
le
ng

th
[µ
m
]

M
ax

w
ire

-
le
ng

th
[µ
m
]

1
30
68

62
0

34
24

0
0

11
71
38

34
.2
1

18
2

11
71
38

34
.2
1

18
2

2
36
1

62
0

34
24

13
1

13
10

31
82
0

9.
68

30
32
49
0

9.
87

32

3
25
6

62
0

34
24

29
3

29
30

27
54
0

8.
90

30
27
88
2

9.
00

28

4
19
6

62
0

34
24

44
6

44
60

25
10
8

8.
64

25
25
56
8

8.
77

24

5
14
4

62
0

34
24

55
6

55
60

22
00
4

8.
05

23
23
18
2

8.
39

25

Ta
bl

e
5.

4:
R
es
ul
ts

ob
ta
in
ed

by
ru
nn

in
g
th
e
al
go
rit

hm
on

B1
2
IC

B
12

IC
T

ie
rs

’H
or

iz
on

ta
lW

ir
e-

le
ng

th

C
en
tr
oi
d
St
ra
te
gy

Ve
rt
ic
al

St
ra
te
gy

T
ie
rs

T
ie
r
1

[µ
m
]

T
ie
r
2

[µ
m
]

T
ie
r
3

[µ
m
]

T
ie
r
4

[µ
m
]

T
ie
r
5

[µ
m
]

T
ie
r
1

[µ
m
]

T
ie
r
2

[µ
m
]

T
ie
r
3

[µ
m
]

T
ie
r
4

[µ
m
]

T
ie
r
5

[µ
m
]

1
11
71
38

0
0

0
0

11
71
38

0
0

0
0

2
18
24
6

13
57
4

0
0

0
18
37
6

14
11
4

0
0

0

3
16
10
4

81
90

32
46

0
0

16
09
6

84
62

33
24

0
0

4
13
93
6

46
10

52
74

12
88

0
13
64
4

50
14

55
22

13
88

0

5
10
88
6

37
96

43
68

26
90

26
4

11
14
2

41
04

47
32

28
54

35
0

Ta
bl

e
5.

5:
C
om

pa
ris

on
be

tw
ee
n
th
e
w
ire

-le
ng

th
s
of

th
e
tie

rs
us
ed

on
B1

2
IC

77

Experimental result

B
14

IC
R

es
ul

ts C
en
tr
oi
d
St
ra
te
gy

Ve
rt
ic
al

St
ra
te
gy

T
ie
rs

A
re
a

[c
el
ls]

N
od

es
Ed

ge
s

T
SV

s
[#

]
Ve

rt
ic
al

w
ire

le
ng

th
[µ
m
]

H
or
iz
on

ta
l

w
ire

le
ng

th
[µ
m
]

Av
g
w
ire

-
le
ng

th
[µ
m
]

M
ax

w
ire

-
le
ng

th
[µ
m
]

H
or
iz
on

ta
l

w
ire

le
ng

th
[µ
m
]

Av
g
w
ire

-
le
ng

th
[µ
m
]

M
ax

w
ire

-
le
ng

th
[µ
m
]

1
23
47
8

40
88

20
24
0

0
0

71
67
56

35
.4
1

31
2

71
67
56

35
.4
1

31
2

2
23
04

40
88

20
24
0

14
88

14
88
0

45
10
96

23
.0
2

13
0

45
71
26

23
.3
2

13
1

3
15
21

40
88

20
24
0

26
70

26
70
0

38
85
96

20
.5
2

11
2

39
58
82

20
.8
8

10
9

4
11
56

40
88

20
24
0

38
11

38
11
0

36
42
16

19
.8
8

11
4

36
56
02

19
.9
5

10
9

Ta
bl

e
5.

6:
R
es
ul
ts

ob
ta
in
ed

by
ru
nn

in
g
th
e
al
go
rit

hm
on

B1
4
IC

B
14

IC
T

ie
rs

’H
or

iz
on

ta
lW

ir
e-

le
ng

th

C
en
tr
oi
d
St
ra
te
gy

Ve
rt
ic
al

St
ra
te
gy

T
ie
rs

T
ie
r
1

[µ
m
]

T
ie
r
2

[µ
m
]

T
ie
r
3

[µ
m
]

T
ie
r
4

[µ
m
]

T
ie
r
1

[µ
m
]

T
ie
r
2

[µ
m
]

T
ie
r
3

[µ
m
]

T
ie
r
4

[µ
m
]

1
71

67
56

0
0

0
71

67
56

0
0

0

2
29

68
14

15
42

82
0

0
29

67
16

16
04

10
0

0

3
21

21
48

14
25

16
33

93
2

0
21

15
68

14
80

48
36

26
6

0

4
17

87
68

10
50

48
68

61
6

11
78

4
17

84
46

10
73

74
66

05
8

13
72

4

Ta
bl

e
5.

7:
C
om

pa
ris

on
be

tw
ee
n
th
e
w
ire

-le
ng

th
s
of

th
e
tie

rs
us
ed

on
B1

4
IC

78

Experimental result

C
N

N
IC

R
es

ul
ts C
en
tr
oi
d
St
ra
te
gy

Ve
rt
ic
al

St
ra
te
gy

T
ie
rs

A
re
a

[c
el
ls]

N
od

es
Ed

ge
s

T
SV

s
[#

]
Ve

rt
ic
al

w
ire

le
ng

th
[µ
m
]

H
or
iz
on

ta
l

w
ire

le
ng

th
[µ
m
]

Av
g
w
ire

-
le
ng

th
[µ
m
]

M
ax

w
ire

-
le
ng

th
[µ
m
]

H
or
iz
on

ta
l

w
ire

le
ng

th
[µ
m
]

Av
g
w
ire

-
le
ng

th
[µ
m
]

M
ax

w
ire

-
le
ng

th
[µ
m
]

1
24
57
6

20
36
2

10
21
26

0
0

27
03
64
6

26
.4
7

35
5

27
03
64
6

26
.4
7

35
5

2
12
10
0

20
36
2

10
21
26

27
49

27
49
0

42
30
30
6

41
.6
9

23
9

42
54
20
6

41
.9
2

24
7

3
81
00

20
36
2

10
21
26

49
15

49
15
0

37
39
27
4

37
.1
0

25
5

37
55
97
0

37
.2
6

25
5

4
60
84

20
36
2

10
21
26

78
12

78
12
0

34
38
88
0

34
.4
4

22
3

34
39
93
8

34
.4
5

24
8

5
49
00

20
36
2

10
21
26

94
24

94
24
0

32
37
03
8

32
.6
2

21
2

32
57
17
0

32
.8
2

20
7

Ta
bl

e
5.

8:
R
es
ul
ts

ob
ta
in
ed

by
ru
nn

in
g
th
e
al
go
rit

hm
on

C
N
N

IC

C
N

N
IC

T
ie

rs
’H

or
iz

on
ta

lW
ir

e-
le

ng
th

C
en
tr
oi
d
St
ra
te
gy

Ve
rt
ic
al

St
ra
te
gy

T
ie
rs

T
ie
r
1

[µ
m
]

T
ie
r
2

[µ
m
]

T
ie
r
3

[µ
m
]

T
ie
r
4

[µ
m
]

T
ie
r
5

[µ
m
]

T
ie
r
1

[µ
m
]

T
ie
r
2

[µ
m
]

T
ie
r
3

[µ
m
]

T
ie
r
4

[µ
m
]

T
ie
r
5

[µ
m
]

1
27
03
64
6

0
0

0
0

27
03
64
6

0
0

0
0

2
28
40
83
0

13
89
47
6

0
0

0
28
48
36
0

14
05
84
6

0
0

0

3
18
95
22
2

11
37
19
8

70
68
54

0
0

19
02
09
8

11
29
57
4

72
42
98

0
0

4
14
29
01
8

79
72
78

90
96
12

30
29
72

0
14
27
44
8

79
57
64

90
77
94

30
89
32

0

5
12
36
98
4

57
06
76

62
42
92

69
44
34

11
06
52

12
43
76
2

58
00
10

62
67
16

69
02
00

11
64
82

Ta
bl

e
5.

9:
C
om

pa
ris

on
be

tw
ee
n
th
e
w
ire

-le
ng

th
s
of

th
e
tie

rs
us
ed

on
C
N
N

IC

79

Chapter 6

Conclusion

From the results obtained it is possible to observe that the Place and Route
algorithm achieve different performances depending on the complexity of the 2D
IC. The silicon area on which the circuit is built is drastically reduced with the
introduction of tiers and this applies to all four initial circuits. The higher the
number of layers used, the more the required area can be shrink. The 3D ICs as
expected, thanks to the vertical development allow to save space. The #TSVs used
to build the networks of interconnections rise with the quantity of edges to manage
and with the number of levels used, because both increase the presence of links
between two tiers. The partitioning in modules allow to obtain excellent results
because the ratio between the #TSVs and the edges is very low, in particular
for more complex circuits such as CNN, where assumes value around 10% for
five tiers. The reduced number of TSVs that characterize the 3D ICs allows to
mitigates all the problems explained in the previous chapters, such as critical paths,
performance bottlenecks and excessive vertical wirelength. The Centroid strategy
and the Vertical strategy, used in the 2D placement phase to define the position
of nodes having inter-tier connections, achieve very similar results with simple
circuits. With more complex circuits such as B14 and CNN, even if the best Max
wirelength is achieved alternately by both approaches, the Vertical strategy gets a
higher Avg wirelength. In principle, it is therefore better to rely on the Centroid

80

Conclusion

strategy which provides a lower average distance between two nodes. By using two
tiers, the Horizontal wirelength is reduced compared to the initial 2D IC for all
circuits except for CNN. This, being formed by a very small area already in 2D
architecture, does not undergo a large reduction in surface compared to the other
circuits and consequently its elements are not forced to be close as in the other
cases. Therefore, the reduction or increase of the Horizontal wirelength is strictly
linked to the characteristics of the initial circuit. Very interesting is the trend of
the Horizontal wirelength with respect to the increase of the tiers considered. For
simple circuits, such as B09 and B12, an increase in the number of layers entails a
decrease in the Horizontal wirelength due to the area shrinking. This improvement
is achieved even if, more TSVs mean more node that are placed in base of the
connections with other layer, rather than according to the minimization of the total
distances. For more complex circuits as B14 and CNN, the trend is exactly the
same but the values achieved are higher. With large tiers, even if it is necessary to
lock the position of many nodes, it is possible to optimize the wirelength thanks to
the presence of more usable positions. Consequently, also in this case, the trend of
the Horizontal wirelength will depend on the characteristics of the initial circuit.
The wirelength distribution over the used tiers follow a similar behaviour for all
ICs. The first layer contains, in all the cases, the higher wirelength value due to
the presence of the elements characterized by huge interconnections density. As
the number of levels increases, the wirelength distribution can follow two trends. A
more linear one where its value decreases tier by tier. A non-linear one where, after
the first layer, it is possible to find inferior levels with lower wirelength compared to
superior ones. In conclusion, we can be satisfied with the results obtained because
they achieve the set objectives: increase the integration density and minimize both
the number of TSVs and the total length of the cable.

6.1 Future works

Starting from the Place and Route algorithm it is possible to introduce new
strategies and improvements that allow the processes to base nodes allocation and

81

Conclusion

tier choice on different possible objectives. For example, a variant can be defined
to optimize energy consumption or to favour thermal dispersion. In this way it will
be possible to introduce the 3D ICs to many new applications. Furthermore, the
algorithm for now manages the connections between tiers using only the TSVs, but
other strategies are emerging, such as MIVs (Monolithic Inter-tier Vias). It may be
useful to allow the algorithm, depending on the context, to choose which is the
best technology to use for the inter-tier connections. After all, 3D ICs are a new
topic that big companies have only recently started working on, so I expect many
new technologies and approaches will emerge in the coming years.

82

Bibliography

[1] Vachan Kumar and Azad Naeemi. «An overview of 3D integrated circuits». In:
2017 IEEE MTT-S International Conference on Numerical Electromagnetic
and Multiphysics Modeling and Optimization for RF, Microwave, and Tera-
hertz Applications (NEMO). 2017, pp. 311–313. doi: 10.1109/NEMO.2017.
7964270 (cit. on p. 1).

[2] Guojie Luo. «Placement and Design Planning for 3D Integrated Circuits».
PhD thesis. Univ. of California, 2011, pp. 1–24. url: https://cadlab.cs.
ucla.edu/news/dissertation_final.pdf (cit. on p. 7).

[3] Sandeep Kumar Samal, Deepak Nayak, Motoi Ichihashi, Srinivasa Banna, and
Sung Kyu Lim. «Monolithic 3D IC vs. TSV-based 3D IC in 14nm FinFET
technology». In: 2016 IEEE SOI-3D-Subthreshold Microelectronics Technology
Unified Conference (S3S). 2016, pp. 1–2. doi: 10.1109/S3S.2016.7804405
(cit. on p. 8).

[4] Deepak Kumar Nayak, Srinivasa Banna, Sandeep Kumar Samal, and Sung
Kyu Lim. «Power, performance, and cost comparisons of monolithic 3D ICs
and TSV-based 3D ICs». In: 2015 IEEE SOI-3D-Subthreshold Microelectronics
Technology Unified Conference (S3S). 2015, pp. 1–2. doi: 10.1109/S3S.2015.
7333538 (cit. on p. 8).

[5] Max M. Shulaker, Tony F. Wu, Mohamed M. Sabry, Hai Wei, H.-S. Philip
Wong, and Subhasish Mitra. «Monolithic 3D integration: A path from concept
to reality». In: 2015 Design, Automation Test in Europe Conference Exhibition
(DATE). 2015, pp. 1197–1202. doi: 10.7873/DATE.2015.1111 (cit. on p. 9).

83

https://doi.org/10.1109/NEMO.2017.7964270
https://doi.org/10.1109/NEMO.2017.7964270
https://cadlab.cs.ucla.edu/news/dissertation_final.pdf
https://cadlab.cs.ucla.edu/news/dissertation_final.pdf
https://doi.org/10.1109/S3S.2016.7804405
https://doi.org/10.1109/S3S.2015.7333538
https://doi.org/10.1109/S3S.2015.7333538
https://doi.org/10.7873/DATE.2015.1111

BIBLIOGRAPHY

[6] Santo Papaleo. Mechanical Reliability of open through silicon via structures
for integrated circuits. eng. Wien, 2016 (cit. on p. 11).

[7] Aarohi Desai. «2.5D and 3D ICs: New Paradigms in ASIC». In: Einfochips
Blog (2017). url: https://www.einfochips.com/blog/2-5d-3d-ics-new-
paradigms-in-asic (cit. on p. 12).

[8] S. Muralikrishna and S. Sathyamurthy. «An overview of digital circuit design
and PCB design guidelines - An EMC perspective». In: 2008 10th International
Conference on Electromagnetic Interference Compatibility. 2008, pp. 567–573
(cit. on p. 14).

[9] Pete M. Maurer. Automatic routing of integrated circuit connections: a tutorial.
Tech. rep. Department of Computer Science and Engineering University of
South Florida, Jan. 1990. doi: 10.1109/ICC.1990.117186 (cit. on p. 14).

[10] Stephen J. Bigelow. single point of failure (SPOF). url: https://searchdat
acenter.techtarget.com/definition/Single-point-of-failure-SPOF.
(accessed: 11.06.2021) (cit. on p. 17).

[11] Luca Sterpone. «A New Timing Driven Placement Algorithm for Dependable
Circuits on SRAM-Based FPGAs». In: ACM Trans. Reconfigurable Technol.
Syst. 4.1 (Dec. 2010). issn: 1936-7406. doi: 10.1145/1857927.1857934
(cit. on p. 17).

[12] George Karypis. Family of Graph and Hypergraph Partitioning Software. url:
http://glaros.dtc.umn.edu/gkhome/views/metis. (accessed: 17.05.2021)
(cit. on p. 18).

[13] B. W. Kernighan and S. Lin. «An efficient heuristic procedure for partitioning
graphs». In: The Bell System Technical Journal 49.2 (1970), pp. 291–307.
doi: 10.1002/j.1538-7305.1970.tb01770.x (cit. on p. 19).

[14] G. Karypis and V. Kumar. hMETIS - A Hypergraph Partitioning Package.
Tech. rep. University of Minnesota, Department of Computer Science &
Engineering, Nov. 1998 (cit. on p. 20).

84

https://www.einfochips.com/blog/2-5d-3d-ics-new-paradigms-in-asic
https://www.einfochips.com/blog/2-5d-3d-ics-new-paradigms-in-asic
https://doi.org/10.1109/ICC.1990.117186
https://searchdatacenter.techtarget.com/definition/Single-point-of-failure-SPOF
https://searchdatacenter.techtarget.com/definition/Single-point-of-failure-SPOF
https://doi.org/10.1145/1857927.1857934
http://glaros.dtc.umn.edu/gkhome/views/metis
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x

BIBLIOGRAPHY

[15] J. Cong, G. Luo, J. Wei, and Y. Zhang. «Thermal-Aware 3D IC Placement
Via Transformation». In: 2007 Asia and South Pacific Design Automation
Conference. 2007, pp. 780–785. doi: 10.1109/ASPDAC.2007.358084 (cit. on
p. 22).

[16] S. Banerjee, S. Majumder, A. Varma, and D. K. Das. «A placement op-
timization technique for 3D IC». In: 2017 7th International Symposium
on Embedded Computing and System Design (ISED). 2017, pp. 1–5. doi:
10.1109/ISED.2017.8303930 (cit. on p. 25).

[17] V. Sh. Melikyan and A. G. Harutyunyan. «3D integrated circuits multifactor
placement». In: 2017 IEEE East-West Design Test Symposium (EWDTS).
2017, pp. 1–4. doi: 10.1109/EWDTS.2017.8110082 (cit. on p. 25).

[18] C. Ababei, Y. Feng, B. Goplen, Hushrav Mogal, T. Zhang, K. Bazargan, and
S. Sachin. «Placement and routing in 3D integrated circuits». In: IEEE Design
Test of Computers 22.6 (2005), pp. 520–531. doi: 10.1109/MDT.2005.150
(cit. on p. 27).

[19] Microsemi Corporation. Libero SoC v11.9 and earlier. url: https://www.
microsemi.com/product-directory/libero-soc/5507-libero-soc-v11-
9-archive. (accessed: 20.05.2021) (cit. on p. 30).

[20] H. T. Kung et al. «Systolic Building Block for Logic-on-Logic 3D-IC Im-
plementations of Convolutional Neural Networks». In: 2019 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS). 2019, pp. 1–5. doi:
10.1109/ISCAS.2019.8702753 (cit. on p. 32).

[21] Jason Holdsworth. «The Nature of Breadth-First Search». In: (Feb. 1999)
(cit. on p. 39).

[22] R. Hentschke, S. Sawicki, M. Johann, and R. Reis. «A method for I/O pins
partitioning targeting 3D VLSI circuits». In: vol. 249. Nov. 2007, pp. 259–279.
isbn: 978-0-387-74908-2. doi: 10.1007/978-0-387-74909-9_15 (cit. on
p. 57).

[23] Nikhil Agnihotri. «What are the different types of IC packages?» In: Engineers-
Garage (2021). url: https://www.engineersgarage.com/what_is/ic-
packages-types (cit. on p. 58).

85

https://doi.org/10.1109/ASPDAC.2007.358084
https://doi.org/10.1109/ISED.2017.8303930
https://doi.org/10.1109/EWDTS.2017.8110082
https://doi.org/10.1109/MDT.2005.150
https://www.microsemi.com/product-directory/libero-soc/5507-libero-soc-v11-9-archive
https://www.microsemi.com/product-directory/libero-soc/5507-libero-soc-v11-9-archive
https://www.microsemi.com/product-directory/libero-soc/5507-libero-soc-v11-9-archive
https://doi.org/10.1109/ISCAS.2019.8702753
https://doi.org/10.1007/978-0-387-74909-9_15
https://www.engineersgarage.com/what_is/ic-packages-types
https://www.engineersgarage.com/what_is/ic-packages-types

BIBLIOGRAPHY

[24] Wen-Wei Shen and Kuan-Neng Chen. «Three-Dimensional Integrated Circuit
(3D IC) Key Technology: Through-Silicon Via (TSV)». In: Nanoscale Research
Letters 12 (Dec. 2017). doi: 10.1186/s11671-017-1831-4 (cit. on p. 72).

86

https://doi.org/10.1186/s11671-017-1831-4

	List of Figures
	List of Tables
	Introduction
	Motivation
	Goals

	Background
	TSV-based 3D IC
	Monolithic 3D IC
	3D Packaging

	Previous Works
	FT-TDP
	METIS package
	Strategies
	Stacking and Folding
	Optimal blocks
	Multifactor placement
	FPGA TPR

	Algorithm
	3D Place and Route
	Modularization
	Vertical BFS
	TSV optimization
	2D placement
	Pins placement

	Fixed units case
	Fixed modules generation
	Anchorage

	Delays update

	Experimental result
	Benchmark
	Results

	Conclusion
	Future works

	Bibliography

