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Abstract

As the global population grows in the near future, is expected to reach the number
of 9.7 billion by 2050, agriculture will become more important than ever. Worldwide,
in fact, the food production industry is already under severe pressure. On one
hand, the change in climatic patterns caused by global warming triggers mutations
in ecosystems with the development of new plant diseases and stronger pests, with
significant impacts on production. On the other, the public opinion is day by day
less in favor of unsustainable production methods as the food sector is responsible
for intensive exploitation practices and about one-third of global greenhouse gas
emissions. The industry will have to inevitably reinvent itself in order to increase
its productive capacity and be able to meet the expected growing demand, lowering
costs and reducing environmental impacts. One of the most promising innovations,
whose aim is to guide agriculture in this transition, is the application of satellite data
to map and monitor every key aspect of crop growth maximizing yields, reducing
water wastes, reducing fertilization pollution, lowering crop management costs and
much more. On this path, the aim of this study is to examine the possibility of
obtaining land cover and crop type information by means of multispectral data
provided by Sentinel-2 mission of the European Copernicus program, which are
fundamental knowledge in order to identify characteristics of a selected area allowing
its management in a way completely tailored on its specifics. In order to do that, it
is proposed the creation of two datasets on which to train and evaluate models, one
for the task of land cover classification, one for the task of crop type classification,
by computing time series of spectral indices associated with points included in a
third dataset from Eurostat called LUCAS used for the labels.
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“Man must rise above the Farth, to the top of the atmosphere and beyond, for only
thus will he fully understand the world in which he lives.”
Plato, Phaedo, IV century BC
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Chapter 1
Introduction

Once solved the challenges posed by the storage and computational power, fun-
damental requirements for processing and managing an ever-increasing amount
of data, both the worlds of academic research and industry research have experi-
mented applying machine learning models to all possible sectors in order to extract
knowledge from data and consequently solve problems, detect patterns, increase
efficiencies, manage costs, identify new market opportunities and boost market
advantages.

Nowadays data science techniques have broad and comprehensive application
areas ranging from health to finance, marketing, process automation, energy
production and many more. Remote sensing or, more specifically, Earth observation
(EO) makes no exception. Data produced in these sectors are, in fact, extremely
valuable not only due to the high costs suffered by companies and institutions on
whose shoulders weights the burden of producing satellites and putting them into
orbit, but also since these data are soaked in important knowledge necessary to
analyze the impacts of climate change, monitor ocean temperatures, detect land
change and, as for the scope of this thesis, monitor and improve agriculture-related
processes.

1.1 Remote Sensing and Earth Observation

Remote sensing, which is often related to as Earth observation (EO) when its focus
is the blue planet, is the discipline based on the acquisition of information about
objects or phenomena without making physical contact with them [1]. Given the
definition it does not come as a surprise this discipline began with photography.
Cameras, the first remote sensing devices to be developed and perfected, enabled,
in fact, revolutions in many fields, among them the most relevant being science
and art with landscape and naturalistic photography first and later, once shortened
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Introduction

exposure times, portrait and aerial photography.

Aerial photography, an early form of EO, was first conceived by the French
photographer and balloonist Gaspard-Félix Tournachon, best known as Nadar, who
patented the idea of using photographs captured from a height for map-making
and surveying and was able to take the very first picture over Paris in 1858 [2].
Slowly, progress in technology and the awareness of the dangers associated with
balloons, made it possible to take cameras into the skies in other safer ways, using
kites, pigeons and rockets, but it was not until war times that the discipline had
its major improvements. As many technologies do, in fact, aerial photography
too benefited from unprecedented public funding as reconnaissance aircraft were
equipped with cameras to record enemy positions, movements and defenses.

The military, in fact, has always driven technological advancements essential to
achieve victory, and while during the first World War the economic effort focused
mainly on improving the hardware of cameras in order to easily and efficiently
allocate them on aircraft, one of the most important improvements, traceable to
World War II as an aid in camouflage detection, was undoubtedly the origin of
non-photographic films, not much for the step ahead in technology but mostly for
the idea behind it, idea that, more than any other, pointed out the direction for the
future development of the discipline. The main concept was, in fact, to broaden
the operability spectrum of the camera, having the possibility of acquiring not
only panchromatic images (obtained as a combination of the information from the
visible wavelengths of blue, green and red resulting in a single band formed by the
total light energy in the visible spectrum) but also Color-infrared (CIR) imagery
(obtained using a portion of the electromagnetic spectrum known as near-infrared
(NIR) ranging from 0.70 pm to 1.0 pm, just beyond the wavelengths associated
to the red color), all made possible by improvements of radar (radio detection
and ranging), thermal infra-red detection, and sonar (sound navigation ranging)
systems.

Up until this point, EO had been a synonym of aerial photography but it
all changed with satellites and the space race started in 1957 between the two
Cold War rivals, USSR and USA, with the first-ever artificial satellite to be put
into orbit, Sputnik 1. Once again identified as strategic from a military point of
view, the discipline was pushed by funding in research for space dominance and
bellicose advantage. Satellites for scientific purposes benefited too from the industry
advancements, proving to be particularly useful in meteorology and specifically
allowing scientist to obtain and study images depicting complete cloud systems
captured from way higher than what could have previously been captured by aircraft
flying just above the clouds. The first weather satellite, Vanguard 2, designed to
measure cloud cover for the first 19 days in orbit, was launched on 17*" February
1959, but due to a poor axis of rotation and its elliptical orbit, it was not able to
collect a notable amount of useful data and was soon followed by a more successful
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mission, TIROS-1 [3].

William Pecora, Director of the United States Geological Survey (USGS, U.S.
government agency whose objective is to study the natural resources of the country,
its landscape and the natural hazards associated with it) in 1965 was one of the
main advocates of the idea of a civilian satellite to conduct scientific and exploratory
studies of the Earth’s surface to gather information about the planet’s natural
resources, receiving however strong oppositions by several entities for different
reasons. While the ones thought aerial photography from high-altitude aircraft
would have been a more responsible approach, the others thought it would have
posed risks to national defense with further concerns about photographing foreign
countries without permission. In 1970, however, NASA finally received approval to
develop the Earth Resources Technology Satellite later known as Landsat-1 and
launched it on July 23" 1972 becoming the first-ever satellite designed specifically
to study and to monitor the Earth’s surface, capturing over 300.000 multispectral
images, thanks to its Multispectral Scanner (MSS), before its termination in January
1978 [4].

Many years and missions have passed since the launch of the first Landsat satellite.
Nowadays the program is the longest-running one and it has no intention to stop any
time soon with a scheduled launch of its 9" satellite in September 2021. More than
5.6 million acquisitions later, sensed from Landsat-1 to Landsat-8, there is no doubt
that the ambitions of the program have largely been met and exceeded. Such legacy
of success has not only shaped remote sensing as a whole but has also strongly
influenced in many ways following missions and programs such as Copernicus, one
of the most relevant ways being the free and open data policy, enabling factor
for this very study. Prior to 2008, the costs for a Landsat Multispectral Scanner
(MSS) image varied from $20 (1972-1978) to $200 (1979-1982), increased from
approximately $3000 to $4000 for a Landsat Thematic Mapper image (1983-1998),
and was $600 for an Enhanced Thematic MapperPlus (ETM+) image (1999-2008).
In 2008, however, the adoption by USGS of the aforementioned free data policy
resulted in a substantial increase in the use of previously costly Landsat images and
remarkable benefits for scientific studies, researches and discoveries guided by the
knowledge extracted from large numbers of such data. The results were not only the
wide adoption, proved by a twenty-fold increase of annual data downloads in 2017
with respect to 2009, but more importantly the increase by more than four-fold
of the annual number of publications (considering papers with "Landsat" in the
title or abstract in 2017 with respect to 1983) producing knowledge and boosting
innovation and employment. The high intrinsic value of Landsat images to users
and stakeholders can be summarized by a survey revealing that U.S. users have
gained $1.8 billion USD in benefits from the 2.38 million images they downloaded
prior to the survey, while the National Geospatial Advisory Committee estimated
an economic benefit of Landsat data for the year 2011 as $1.70 billion for U.S. users

3



Introduction

plus $400million for international users in sixteen economic sectors [5].

Moreover, Landsat has influenced the industry by proving the reliability and
versatility of the Multispectral Scanner that has, considerably, paved the way for
subsequent multispectral and hyperspectral sensors until this day, leading to the
more recent definition of remote sensing as the use of electromagnetic energy to
measure physical properties of distant objects [6]. Since this discipline has moved
to the domain of spectroscopy, it is, therefore, important to understand what
spectroscopy is and a few of its basic principles.

1.2 Spectroscopy

The year was 1666, when a young Isaac Newton, using a simple instrument made
of a small aperture to define a beam of light, a lens to collimate it, a glass prism to
disperse it and a screen to display the result, showed that white light from the Sun
could be dispersed into a continuous series of colors, describing this phenomenon
with the word "spectrum" [7].

10'? meters 10¢ 10% 107 100 107
1 nanometer 1000 nanometer 1 millimeter 1 meter 1 kilometer

Cosmic X-rays Microwaves Radio Broadcast

rays band
Gamma Ultraviolet Infrared Radar

rays (uv) (IR)
YW NN ~_

Short Wavelenghts - Long Wavelengths

Visible Light

Ultraviolet s Infrared
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400 nanometers 500 nanometers 600 nanometers 700 nanometers

Figure 1.1: Electromagnetic spectrum as we know it today.

That moment was undoubtedly the beginning of spectroscopy but since then
many steps ahead have been made starting from the ones taken by the Scottish
physicist Thomas Melvill, who had been observing and studying the resultant colors
obtained by dropping various salts into a flame and recording the spectra resulted
when a slit of light from the flame was passed through a prism and projected on a
surface. He found that each substance had not a continuous spectrum but rather a
unique set of lines, later called emission lines, in certain sections of the spectrum [8].
During the first half of the 19*" century, many scientists have been working in the
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field of emission and absorption spectra for both celestial and earthly sources until
Joseph von Fraunhofer stretched the spectrum from the Sun, to reveal over 600
dark absorption lines. On studying other stellar spectra and spectra of reflected
sunlight, Fraunhofer deduced that each star had a unique set of such lines, and
they were actually a function of the star itself. Since then, once explained the link
between spectral response and matter, many outstanding discoveries have been
made, from the identification of new elements such as cesium and rubidium by
Robert Bunsen and Gustav Kirchhoff in 1860 to the deduction, a few years later,
of the elemental composition of stars and planets light-years away from the Earth.

Nowadays spectroscopy is defined as the study of the interaction between matter
and electromagnetic radiation as a function of the wavelength or frequency of the
radiation [9]. This discipline is a fundamental exploratory tool in many fields such
as physics, chemistry and astronomy, allowing the composition, physical structure
and electronic structure of matter to be investigated from atomic scales up to
astronomical distances. Light, in fact, carries much information about the material
which it interacts with and since different materials interact differently with light,
it is possible to use light to understand what a given target is made of. This is
especially possible because matter is made of atoms with a unique structure of a
nucleus surrounded by electrons orbiting at different energy levels. Only the light
with the exact energy required to go between energy levels can be absorbed and no
others. Then, when electrons fall down to lower orbits they release as much energy
as the difference between the levels in the form of light, explaining why different
atoms emit different colors of light. All elements, in fact, absorb and emit specific
wavelengths of light that correspond to those energy levels. It is called absorption
spectrum the spectrum of light transmitted through a substance, showing dark
lines or bands where light has been absorbed by atoms, while it is called emission
spectrum the one made by electrons falling down energy levels. This is exactly
what Thomas Melvill was experimenting with, at the first steps of spectroscopy
using excited gasses heated by a heat source. Heating, in fact, moves the electrons
up in energy levels and when they fall back down the results are bright, colored
spikes due to the release of light at precise wavelengths [10].

Such interaction between matter and electromagnetic radiation is, usually,
analyzed by means of a tool called spectrometer whose basic function is to take
in light, collimate it, break it into its spectral components thanks to a diffraction
grating, digitize the signal as a function of wavelength by means of a detector,
and display it through a computer. Multispectral scanners and multispectral
instruments equipped on satellites work very similarly but are a little more complex.
For example the Multispectral Instrument of Sentinel-2 mission by Copernicus,
which will be later covered, accepts the light reflected up from Earth and its
atmosphere, collects it by a three-mirror telescope (M1, M2 and M3 in figure 1.3)
and focuses it via a beam-splitter onto two Focal Plane Assemblies, one for the
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visible and near-infrared (VNIR) wavelengths and one for the SWIR wavelengths,
where it then finds two distinct arrays of 12 detectors mounted on each focal plane
in a staggered configuration to cover the entire field of view.

Figure 1.2: Sentinel-2 Multispectral Instrument produced by Airbus Defence and
Space). Source: ESA

splitter
: 7~ SWIR
channels channets

Fadatofe

Figure 1.3: Sentinel-2 Multispectral Instrument Internal Configuration. Source:
ESA

Analyzing the spectral response registered by a spectrometer carried by a satellite
in orbit however, comes with an additional set of challenges unknown to spectroscopy
on Earth where the discipline is performed in controlled environments and distances
do not affect measurements. When electromagnetic radiations coming from the
Sun travel through the atmosphere, in fact, they may interact with particles along
their paths giving place to several phenomena, among which:

o Absorption: it happens when the radiation energy is converted into excitation
energy of the molecules it interacts with. Ozone, carbon dioxide, and water
vapor are the three main radiation-absorbing atmospheric constituents. Ozone
absorbs ultraviolet radiation, carbon dioxide absorbs radiation in the far
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infrared portion of the spectrum trapping heat inside the atmosphere, while
water vapour absorbs much of the incoming longwave infrared and shortwave
microwave radiation. Since these gases absorb electromagnetic energy in these
very specific regions of the spectrum, by comparing the characteristics of the
two most common radiation sources (the Sun and the Earth) along with the
combination of wavelengths absorption of the aforementioned atmospheric
constituents, it is possible to define the wavelengths that can be used most
effectively for remote sensing. The regions, shown in figure 1.4, containing
groups of these wavelengths, found in the visible, near-infrared, thermal
infrared and microwave, are known as the Atmospheric Transmission Windows

[11].
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Figure 1.4: transmittance of electromagnetic radiation across the spectrum.
Values close to 1, represent 100% transmittance, indicating the all radiation is able
to pass through the atmosphere at the given wavelength.

o Scattering: it happens when the radiation is redirected from its original
path redistributing the energy of the incident beam to all directions. There
exist three types of scattering: the first, called Rayleigh scattering, occurs
when particles are very small compared to the wavelength of the radiation.
These could be particles such as nitrogen or oxygen molecules, causing shorter
wavelengths of energy to be scattered much more than longer wavelengths.
This type of scattering is the dominant scattering mechanism in the upper
atmosphere, so much that the sky appears blue during the day because of this
phenomenon. As sunlight passes through the atmosphere, in fact, the shorter
wavelengths of the visible spectrum are scattered more than the longer ones.
At sunrise and sunset the light has to travel further through the atmosphere
with respect to midday and the scattering of the shorter wavelengths is more
complete, leaving a greater proportion of the longer wavelengths to penetrate
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the atmosphere, resulting in the red coloration of the sky. The second, called
Mie scattering, occurs, mostly in the lower portions of the atmosphere, when
the particles are just about the same size as the wavelength of the radiation,
such as dust, pollen, smoke and water vapour and tends to affect longer
wavelengths. The final scattering effect, called non-selective scattering, occurs
when the particles are much larger than the wavelength of the radiation, such
as water droplets and large dust particles. Non-selective scattering gets its
name from the fact that all wavelengths are scattered about equally. This
type of scattering causes fog and clouds to appear white since blue, green,
and red light are all scattered in the same way. Scattering causes degradation
in the final product in the form of an hazy appearance of the image or in
the form of a blur of the targets due to spreading of the reflected radiations
and resulting in a reduced resolution image [12]. Another effect, related to
scattering, causing the degradation of the sensed image occurs when the light
from targets outside the field of view of the sensor is scattered into its field of
view. This effect is known as the adjacency effect and it is particularly evident
near a boundary between two regions of different brightness resulting in an
increase of brightness of the darker region and a reduced brightness of the
brighter region.

The amount and combination of the two phenomena depend on several factors
including the wavelength of the radiation, the abundance of particles or gases, and
the length of the path that the radiation has to travel through the atmosphere.

Among other challenges posed by the distance, there are the facts that:

o Earth surface materials are known to be generally non-Lambertian in nature,
which means, they do not reflect the incoming radiation equally in all directions,
and tend to be anisotropic (exhibit reflectance directionality) [13][14]. The
degree of anisotropy depends on the spectral and directional nature of the
radiation and on the properties of the surface itself and more specifically
on its density and arrangement (surface structure), which in turn introduce
shadows under clear skies with varying illumination zenith and azimuth angles
and transmittance and absorption properties of the surface. In addition, the
measured reflectance will vary depending on the view, the illumination and
the solar zenith angles of the surface under clear sky conditions [15][16]. The
non-Lambertian property of Earth surface materials is a limitation especially
during the calibration phases of the sensors. Calibration, in fact, requires a
near-Lambertian surface on which the sensed reflectance should be spectrally
flat with change in time.

o The output signal is not only affected by the presence of the atmosphere, and
all the aforementioned phenomena, but it also depends on the sensor carried
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Figure 1.5: (a) Atmospheric scattering, (b) adjacency effect, (c¢) energy transmit-
ted and diffused from the atmosphere to the target, (d) multiple reflections and
scattering, (e, f) absorption

by the satellite itself and more specifically on its Point Spread Function (PSF),
a function of the sensor’s optical properties and detector’s properties. As for
the optical properties of the sensor, aberrations and misalignments may cause
spectral non-uniformity of the sensed image, called “smile effect” (resulting in
a non-uniform spectral response given by an actual uniform surface) or spatial
misregistrations commonly known as the “keystone effect” (resulting in black
pixels in given areas of the image), while for the detector, it might happen,
for elements of the array which it is made of, to have a slightly different gain
with respect to one another causing striping effect (resulting in literal stripes
in the image).
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(© (d)

Figure 1.6: Four examples of surface reflectance: (a) Lambertian reflectance (b),
non-Lambertian (directional) reflectance (c), specular (mirror-like) reflectance, (d)
retro-reflection peak (hotspot). Source: [17]
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1.3 Data

1.3.1 Data Source

The data in use in this study come from an Earth observation program called Coper-
nicus, managed by the European Commission in partnership with the European
Space Agency (ESA), and more specifically from missions Sentinel-2. Copernicus’s
objective is to provide data to policymakers who need information to develop
environmental legislation and policies, to public authorities in order for them to
take critical decisions in emergency situations, such as a natural disaster or a
humanitarian crisis, as well as to companies and to the general public for economic
purposes due to jobs creation and innovation boost. The program achieves such
objective via a collection of services fueled by data gathered from in situ systems
supervised by European Environment Agency and EU Member States, by means
of ground stations, which deliver data acquired by a multitude of sensors on the
ground, at sea or in the air, as well as from data gathered from dedicated satellites
belonging to missions grouped under the name of Sentinels, satellite constellations
that have been growing in number year after year since the launch of the first,
Sentinel-1A in 2014. Copernicus also transforms this wealth of satellite and in situ
data into value-added ready to use products by processing and analyzing the data,
examining patterns to create better forecasts and creating maps from imagery and
identifying features and anomalies and extracting statistical information, resulting
in new business opportunities for companies [18].

Sentinel-2

Sentinel-2 mission’s aim is to provide global acquisitions of high-resolution and high
revisit frequency multispectral images. Differently from color images consisting
in the representation of light reflected only from the portion of the spectrum
associated to the wavelengths of red, green and blue, multispectral images are
simply image data that represent the spectral response in a greater number of
determined wavelengths, with the sequence of such values called spectral signature.
Sentinel-2 is composed of a constellation of two satellites manufactured by a
consortium led by Airbus Defence and Space. The satellites, polar-orbiting phased
at 180° to each other in the same Sun-synchronous orbit at a mean altitude of
786 km, allowing them to achieve a high revisit time (10 days at the equator with
one satellite, and 5 days with 2 satellites under cloud-free conditions), carry a
MultiSpectral Instrument (MSI), produced by Astrium SAS (France), that samples,
by passively collecting the sunlight reflected from the Earth, four bands at 10 m
(meaning each pixel of the sensed image covers an area of 10 m x 10 m), six bands
at 20 m and three bands at 60 m spatial resolution, for a total of 13 bands. As
shown in Figure 1.3, the incoming light beam is split and focused onto two separate
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focal planes within the instrument, one for VNIR bands and one for Short Wave
Infra-Red (SWIR) bands. The spectral separation of each band into individual
wavelengths is accomplished by stripe filters mounted on top of the detectors. A
shutter mechanism prevents the instrument from direct illumination by the Sun in
orbit and avoids contamination during launch. The same mechanism functions as
a calibration device by collecting the sunlight after reflection by a diffuser.

Band Number | Central wavelength (nm) | Bandwidth (nm) | Res
Coastal 1 442.7 21 60m
Blue 2 492.4 66 10m
Green 3 559.8 36 10m
Red 4 664.6 31 10m
Red Edge 1 ) 704.1 15 20m
Red Edge 2 6 740.5 15 20m
Red Edge 3 7 782.8 20 20m
NIR 1 8 832.8 106 10m
NIR 2 8A 864.7 21 20m
Water Vapour 9 945.1 20 60m
SWIR 1 10 1373.5 31 60m
SWIR 2 11 1613.7 91 20m
SWIR 3 12 2202.4 175 20m

Table 1.1: Spectral bands of Sentinel-2A sensor

1.3.2 Data Applications

The precious data gathered by the aforementioned mission have a crucial significance
in shaping the future of the world. Apart from agriculture, the following are few of
the main field of applications of such data.

Biodiversity and environmental protection

Human activities are causing deterioration to ecosystems and put enormous strain
on the environment that progressively degrades under the weight of pollution,
urbanization, and global warming as demonstrated by an ever-increasing decline
in biodiversity. For these reasons, satellite data, providing, with unprecedented
frequency, information useful to monitor the environment in its entirety via land,
atmosphere and ocean parameters, allowing the tracking of vegetation health,
chlorophyll content estimations, oceanic currents, oceanic temperature and more,
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are part of a higher project that is the support of the European Union environ-
mental policies whose aim is the preservation of the natural environment, essential
to have clean water and air, maintain soils, regulate the climate, recycle nutrients
and provide mankind with food. The environment, however, can only be protected
if these policies are properly implemented. These data are, therefore, important
means of awareness for local and regional authorities, decisive players in environ-
mental protection being responsible for rule-making, enforcement and undertaking
investments, boosting the implementation of EU environmental standards and
sustainable growth.

Climate, water and energy

Water and energy, both strictly linked to climate, are two key aspects of life in
an ever-increasing demand. Climate change affects the availability of the two
resources in multiple ways and for this reason, effective adaptation measures need
to be taken to reduce exposure and vulnerability to shortages. Satellite data
provide authoritative, quality-assured information to help understanding climate
change and guide the development of policies addressing mitigation and adaptation
measures avoiding the solutions for the needs in one area to produce unintended
outcomes in another, with unexpected broader economic, environmental, and
security consequences. Such measures are sustained thanks to the monitoring of
inland water basins and snow /glaciers, by performance forecasting for renewable
energy sources such as solar, wind and hydro-power, and finally ocean surface
temperature, ocean surface height and more.

Territorial Management and urban planning

In Europe, over two thirds of the population lives in urban areas, using around 80%
of the energy and generate up to 85% of the GDP. Geospatial information regarding
land use and land cover, urban growth, urban green areas and urban heat islands is
key in order to manage such areas and guide them towards sustainable development
by integrating different scales of cities and human settlements, making sure that
supplies and demands between urban and rural areas are smoothly flowing and
territories are connected and ensuring that citizens’ private and social living is
balanced, planning infrastructure and services that facilitate trade and productivity
safeguarding the environment and social public places.

Civil protection

Floods, landslides, earthquakes, wildfires, volcanic eruptions and other disasters
can occur at any moment in time and not only cause economic and environmental
damage but more importantly, threaten lives. Satellite data can be used to organize

13



Introduction

the response to emergencies in the immediate aftermath of a disaster, improving
preparedness through mapping risk-prone areas and providing early warnings
related to specific types of events such as floods or wildfires, but it can also be
used for post-disaster assistance, rehabilitation and reconstruction, or even before
disasters take place organizing prevention with monitoring and alerting functions
for some types of disasters such as volcanic eruptions.

Transports, Civil infrastructure and safety

Countries need efficient transport systems and reliable infrastructures if they are
to prosper and provide a decent standard of living for their populations, and
ensuring passenger safety is a priority for public authorities. Satellite data allow
improved planning and management of civil infrastructure and the prevention of
future damages through information on the topography and on instabilities of the
terrain surface that may arise due to subsidence, sliding or underground natural
or human-induced activities (such as public utility works). Such security is also
been provided over sea settings, forecasting oceanic currents and estimating sea ice
concentrations and drift.

Public Health

Protecting and improving the health of people has been a priority like never before
since the rise of the Covid-19 pandemic in early 2020. Public health can be achieved
not only through healthcare and assistance but also through research for new drugs
and preventing and responding to infectious diseases or other risk factors. In this
frame, satellite data provide useful information to support public health policies,
especially in relation to air quality and respiratory diseases, as poor air quality
continues to prematurely claim the lives of millions of people every year. It is
possible to use these data, in fact, to track the range of trace gases that affect
air quality such as carbon monoxide, nitrogen dioxide and ozone, forecasting air
pollutants, greenhouse gases and small particles such as dust, smoke and pollen,
ozone concentrations and UV radiation harmful for skin and eyes. It is furthermore
possible to exploit these data to design cooler, more comfortable cities by delineating
urban areas affected by severe heatwaves or identify toxic algal blooms that could
potentially hit coastal areas and affect human activities such as bathing and fish
farming. Finally, these data can also support the identification of areas prone to
the emergence and spread of vector-borne epidemics, such as malaria, which greatly
depend on environmental factors such as water, sanitation, food or air quality.
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1.4 Scope of the Thesis

Among all areas of application of satellite data above, agriculture and the food
production industry are surely among the most important as well as reference
sectors for this study. These sectors are increasingly subject to various threats
linked to anthropogenic pressure such as global warming and intensive exploitation
practices. As the population increases and climatic patterns change, in fact, so
does the spatial distribution of ecological zones, ecosystems, plant diseases and
pests, with significant impacts on food production. These fields are not only crucial
since they form the basis of food supply but also since they constitute relevant
economic sectors. Satellite data not only help to monitor the health status of
crops allowing for sustainable food production by reducing water waste, fertilizer
waste and maximizing yields but can also support the setup of more efficient and
environment-friendly agricultural practices for public authorities, farmers and other
companies (such as insurance companies) alike replacing, for example, on-farm
checks for determining governmental subsidies amount or insurance costs.

The scope of the thesis is to extract knowledge from Sentinel-2 multispectral data
and translate it into the information of land cover and crop type, important insights
making it possible to remotely identify many characteristics of the constituents
element of a selected area allowing its management in a way completely tailored
on its specifics. Land cover, although often confused with land use, refers to
the identification of the physical material covering a given portion of Earth’s
surface, such as artificial material, cropland, woodland, shrubland, grassland, bare
soil, water body and more. Its study and identification constitute fundamental
information not only in planning, management and monitoring programs at local,
regional and national levels providing a better understanding of land utilization
aspects and guiding the formation of policies and programs required for development
planning but also for change detection analysis and thematic mapping which result
in environmental assessments especially crucial given the pace and extent of land
cover change across the globe and worldwide concern for issues such as global
warming [19][20].

Crop classification is the first step toward crop mapping and monitoring, ac-
tivities that play and will play a fundamental role as mankind will progress into
a new way of making agriculture. As previously stated the agricultural sector is
crucial from many points of view, being strongly connected to food security, to the
economy, politics and the environment. For this reason, even minor innovations
in both processes and technologies linked to the sector might have a huge impact
on societies, providing food for billions of people and saving billions of dollars
optimizing operations and cutting costs. Crop monitoring allows the possibility of
forecasting crop yields that, at a governmental level, is essential for determining how
much food can be stored or exported and for assessing food losses along the supply
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chain, while at a local level, provides useful information in various decision-making
processes for managing resources with precision, limiting water wastes, limiting
chemical pesticides and fertilizers, moving toward a maximized and sustainable
production able to satisfy the demand of the 7.9 billion people of today as well as
the 9.7 billion people expected by 2050.

1.5 Spectral Indices

In order to achieve the goals mentioned above, it is important to understand
the distributions of both land cover classes as well as vegetation types and their
biophysical and structural properties in relation to spatial and temporal variations.
To do that one useful conceptual tool is represented by spectral indices. While it is
true that both the tasks of land cover and crop type classification could be carried
out using the raw values of the multispectral bands, however, spectral indices
are preferred since these are quantities able to enclose higher-level information.
Spectral indices are, in fact, spectral transformations of two or more multispectral
bands designed to enhance the contribution of specific compounds or features
allowing reliable spatial and temporal comparisons of Earth surface areas and
relative land cover material. Features that can be extracted using spectral indices
range from vegetation (highlighting, among many aspects, photosynthetic activity),
to geologic and artificial features (identifying for example high contrasts between
nearby areas), or related to burned areas, snow-covered areas, and many others.
Being such indices a simple transformation of spectral bands, they are computed
directly without the need for any assumption regarding land cover class, soil type,
or climatic conditions [21].

The computation of such indices is possible since the nature of multispectral
data, as previously stated, is simply quantitative. As for color pictures, where
each pixel has three values representing brightness in each of the three spectral
wavelengths of red, green and blue (RGB), the same happens for multispectral
data representing, in fact, the physical measurement of reflectance response to
electromagnetic radiation for each of the available wavelength windows, called
spectral bands, in the multispectral instrument. The resulting data is, therefore,
very similar to a colored picture where, however, each pixel has more than three
channels, specifically one for each spectral band. Analyzing multispectral data by
means of calculated indices instead of using directly spectral bands not only has the
advantage of emphasizing specific features or phenomena within remotely sensed
imagery and extracting, therefore, meaningful information, but also reducing the
dimensionality of multispectral data, resulting in overall easier interpretations. The
most common mathematical formulas used for computing indices are ratios and
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normalized differences:

B
Index = 2%
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These types of formulas are very useful to enhance spectral features and minimize
as much as possible the effects of illumination and more importantly shadows.

It is fair to point out, however, that there is no general mathematical expression
from which to derive all spectral indices due to the complex reproducibility of
the task given by instrumentation, platforms, and resolutions. For this reason,
ad hoc formulas have been developed and empirically tested against a variety of
applications according to specific mathematical expressions that combine visible
light radiation to obtain proxy quantifications of the measure of interest [22].
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Figure 1.7: Spectral signatures. Source: [23]

To make an example it is possible to use one of the most famous vegetation indices
called Normalized Difference Vegetation Index (NDVI), quantity ranging from -1 to
1 used to assess greenness and health of biomass as well as to distinguish between
vegetation and other types of surface, consisting basically in a normalized difference
NIR/RED that is NDVI = (NIR — RED)/(NIR + RED). By considering the
vegetation reflectance shown in Fig 1.7 it is possible to see that the response is low
in the red region (around 0.7 micrometers) but high in the NIR. Based on this, the
result of the index for a densely vegetated area would be two positive values for
both the numerator and the denominator, leading to an overall NDVT value close to
1, while the same formula computed over bare soil, where red reflects about equally
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to NIR, the numerator will have a value close to 0 and, therefore, the overall result
would be around 0, while, finally, water surfaces reflect higher in the red than NIR,
leading to an NDVI value close to -1.

Vegetation properties measured with spectral indices can generally be di-
vided into three main categories: structure, biochemistry and physiology. Struc-
ture indices have the objective of measuring properties such as fractional cover,
green biomass, leaf area index (LAI), biomass senescence, and fraction absorbed
photosynthetically-active radiation (FAPAR). The objective of biochemistry indices
is to measure biochemical properties including water, pigments that among the
most important ones count chlorophyll (the most critical plant pigment due to
its fundamental role in photosynthesis and primary production), anthocyanins
(plant pigments that increase in response to environmental stress and play a role
in minimizing photo-inhibition) and carotenoids (pigment aiding in the process of
light-harvesting for photosynthesis and protect chlorophyll from photo-oxidation
via the reversible conversion of the xanthophyll violaxanthin to zeaxanthin). Also
among biochemistry indices, some are particularly useful in measuring nitrogen,
important components of many light-absorbing compounds in the visible to SWIR
range. Finally, physiology indices, whose objective is to measure stress-induced
changes in xanthophyll cycle pigments, chlorophyll content, fluorescence and leaf
moisture, make especially use of red edge wavelengths. Changes in leaf physiology
and stress, in fact, impact the position and shape of the red edge, shifting it toward
either shorter wavelengths (blue shift) or longer wavelengths (red shift). Blue shifts
have been observed in response to heavy metal stress in plants while red shifts
typically occur during chlorophyll development and nutrient stress [24].

Limitations

While someone might be tempted to use spectral indices as a universal tool for any
remote sensing application, it is fair to point out that even though their potential
is in fact considerable, so are their limitations. To start, differently from what one
may think, there is no unique signature for a given surface especially in the case of
vegetation. This happens for many reasons among which the interference of soil
on leaf reflectance, approximate atmospheric corrections and more. In the case
of vegetation, for example, the signatures vary across latitudes, plant phenology,
plant pathology and even internal factors of the plant like water content or other
parameters for the same crop type [25]. This causes the impossibility of building a
universal spectral signature dataset on which to train models and deploy solutions
effortlessly, but instead, as it will happen in this study, the only viable option for a
dataset is to build it enforcing location constraints. A further consequence of the
variable nature of spectral signatures is the impossibility of making assumptions
by analyzing the value of a given area in a single moment in time. What is, in fact,
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a normal value for an area in one location might not be the same for an area with
the same land cover in a second location. For this reason, assumptions can only
be made by analyzing the time series of the given index over the area of interest.
Finally, most of the spectral indices have been firstly theorized for broad-band
systems and have been later approximated with multispectral equivalents.
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Chapter 2

Dataset Creation and
Models

As previously stated, there is no unique signature for a given surface but instead,
the response varies with change in many factors. In the case of vegetation, the
response may change as location, phenology, pathology and other internal factors of
the plant, such as water content, change [25]. This explains the lack of a universal
spectral signature dataset on which to train models in a supervised way. There is
no certainty, in fact, that using a dataset built with data coming from a specific
location would give accurate results when used for another one. For this reason,
two paths could be undertaken, the first, consisting in reaching a classification of
land cover and crop type by means, in an early phase, of unsupervised techniques
such as clustering, while the second, consisting in building from scratch a dataset
associated to the specific area of interest. Although it seems like there is room
to ponder pros and cons and to weigh every possibility, what looks like a choice
unfortunately is not really one. In both cases, in fact, there would be the need for
validating the results and assess the quality of processing and models. This would
mean that in both cases there would be the need to have labeled data to test on,
and since an effort has to be made in order to gather and label data, then it is
reasonable to make a slightly bigger effort to collect more data in order to build a
dataset and be able to train, validate and test models on it.

2.1 Land use/cover area frame statistical survey

In order to build the dataset for both the tasks of land cover and crop type
classification, the fundamental information required is the one associating a location,
whether identified by a polygon containing the area having coordinates points as
vertices or by just a coordinates point in a specified coordinate system, to the type
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of cultivation, in case of agricultural field or type of surface for everything else.
Unfortunately making such mapping in person would mean investing not only a
non-negligible amount of time planning a way to sample the region of interest in
order for the dataset to be as representative as possible, and consequently wandering
around with a GPS device, but also investing economic resources in terms of fuel
and probably in term of an expert able to distinguish between crops. This would
be unfeasible in this preliminary phase where the interest is to obtain a proof of
concept, having in mind the considerable amount of instances required for such a
dataset.

There is, therefore, the need to link the geolocation of an area to the relative
surface cover without having to personally inspect the area. One possible solution
could be retrieving these pieces of information from archives of local authorities
by means of the Land-parcel identification system (LPIS) which is a governmental
system linking land use to each parcel identified by a unique number for a given
country. Retrieving documents from local authorities is however a long process,
particularly so if the digitalization level of the country of interest lags behind.
The real solution is, therefore, provided by the European Union, and specifically
by the European Statistical Office (Eurostat), which is a department located in
Luxembourg responsible to provide statistical information to EU institutions, in the
form of the Land use/cover area frame statistical survey (LUCAS) of 2018. LUCAS,
initially developed across a limited number of EU Member States to provide early
crop estimates for the European Commission, launched as a pilot in 2001 following
Decision 1445/2000/EC of 22", May 2000 on the application of aerial-survey and
remote-sensing techniques to agricultural statistics, little by little established itself
over time as a key tool for policymakers and statisticians due to both the increasing
amounts of data as well as their growing variety. Just 5 years after the first survey,
in 2006, in fact, the focus of the sampling methodology shifted from an agricultural
land survey to a broader land cover, land use and landscape survey, allowing for
more extensive studies and statistics. The next step for LUCAS was to expand
its geographical coverage, reaching up to 23 of the then 27 EU Member States
(Bulgaria, Cyprus, Malta and Romania were not covered) in 2009 and completing
it in 2012 reaching all 27 Member States. Nowadays LUCAS is defined as an "in
situ" survey program (data are, in fact, also gathered through direct observations
made by surveyors on the ground as well as sensors) that extends over the whole
EU’s territory and whose objective is to build a consistent framework for coherent
sampling plan, classifications and data collection processes to provide harmonized
and unbiased statistics on land cover and land use for agriculture, environment
and landscapes in the European Union, useful for the definition and evaluation of
common European agricultural, environment and sustainable development policies,
as well as ground evidence for satellite images calibration.

LUCAS is composed of two sampling phases, the first, called Master or Frame,
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consists in the remotely interpretation and assignment of a land cover class among
a pool of predefined classes to 1.1 million points forming the intersections of a 2
km spaced virtual grid covering the whole of the EU’s territory, while the second
phase consists in the selection of a stratified sub-sample of points from the first
phase points by means of an iterative algorithm in order to minimize sampling
errors, on which to proceed for on-ground assessment carried out personally by a
surveyor. Excluded from the second phase subset are points above 1500 meters or
far from the road network, therefore considered inaccessible, in order to limit the
cost of data collection effort. The bias for the exclusion of such points from the
field assessment phase is, however, compensated by "in office" interpretation and
classification from images with the further help of regression models also taking
into account data from previous surveys.

Land Cover Class | Code

Artificial land
Cropland
Woodland
Shrubland
Grassland

Bareland
Water
Wetlands

TQEHEoQ W e

Table 2.1: LUCAS land cover classes

The survey design has been fine-tuned in several aspects over the years, going
from seven original land cover categories (arable land, permanent crops, grassland,
wooded areas and shrubland, bare land, artificial land, and water) to the current
eight, made to be comparable with other statistical standards such as EU’s farm
structure survey (FSS) and many more, listed in table 2.1, and from 273.500 points
(of which 67.000 points interpreted "in office") visited by 750 field surveyors in 2015
to 337.854 points (of which 99.777 points interpreted "in office") in 2018 [26].

Furthermore, a fundamental fact for the task of crop classification, each land
cover category is made of several classes and subclasses of which it is possible to see
the ones associated with Cropland land cover category in table 2.2. It is important
to notice that points might be labeled BX1 and BX2, two classes that do not take
place among the ones in table 2.2. Points are, in fact, assigned to such classes when
the crop associated to the given LUCAS point is not recognizable from the "in-office"
image classification, specifically BX1 is associated with "Temporary crops” covering
the classes from B11 to B55 and BX2 to “Permanent crops” covering the classes
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from B71 to B&4.

2.2 Spectral Indices Selection

Once found the information associating coordinates to types of surface, what is left
in order to build the dataset is firstly the determination of spatial and temporal
boundaries and finally the selection of spectral indices derived from the spectral
bands to populate the dataset’s feature space, and therefore describe the behavior
of the points, for both the tasks of land cover and crop type classification. Since
the study is linked to possible commercial use for Italian customers the study area
is set to Italy, which contains 33442 points from LUCAS 2018 usable for land cover
classification, 8418 of which belongs to the land cover class of Cropland and can
therefore be used for crop type classification by means of their subclasses. The
temporal scope, following the study [27] (which will be later resumed to implement
the neural network it proposes) consists of one picture per month from July 2018
to July 2019 (both included), excluding the months of November, December and
January, for a total of 10 Sentinel-2 products for a given area. More specifically
Sentinel-2 has a 290 km field of view when capturing its products that are then
projected onto a UTM grid and made available publicly on 100x100 km? tiles. Italy
is covered by roughly 50 Sentinel-2 UTM tiles ("roughly" because tiles with land
content much lower than sea content have been discarded to optimize the process.
Including, in fact, for example, the tile 33STV covering Lampedusa, would have
meant requesting, downloading and processing more than 50 GB of Sentinel-2
products just to obtain a fistful of additional LUCAS points). From these 50 tiles,
have been requested and downloaded from Copernicus SciHub, for each of the
aforementioned months, the product with lower cloud coverage of the month, where
cloud coverage is a parameter of the percentage of the product obscured by clouds
(since the wavelengths of Sentinel-2 are not able to go through clouds), for a total
of 500 Sentinel-2 products corresponding to around 650 GB. Finally, the dataset is
populated with the values that the spectral indices, described below, assume in
the given months for each LUCAS point. With the bands provided by Sentinel-2,
it is possible to compute up to 2004 spectral indices, in this study, however, the
ones in use are the ones that more frequently appear in papers and researches and
therefore the ones having a more solid background.
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Family Crop Class Code
Common wheat B11

Durum wheat B12

Barley B13

Cereals Rye Bl4
(BIX) Oa.ts B15
Maize B16

Rice B17

Triticale B18

Other cereals B19

Root Crops Pgtatoes B21
(B2X) Sugar beet B22
Other root crops B23

Sunflower B31

Rape and turnip rape B32

Non-Permanent Soya B33
Industrial Crops Cotton B34
(B3X) Other fibre and oleaginous crops B35
Tobacco B36

Other non-permanent industrial crops B37

Dry pulses B41

Tomatoes B42

Dry Pulses, V%gf}‘c(ables, Flowers Other fresh vegetables B43
( ) Floriculture and ornamental plants B44
Strawberries B45

Clovers B51

Lucerne B52

Fod?}gg}%r ops Other leguminous and mixtures for fodder | B53
Mixed cereals for fodder B54

Temporary grasslands B55

Apple fruit B71

Pear fruit B72

Permanent Crops: Fruit Trees Cherry fruit B73
(BTX) Nuts trees ' B74
Other fruit trees and berries B75

Oranges B76

Other citrus fruit B77

Olive groves B8&1

Other Permanent Crops Vineyards B8&2
(B8X) Nurseries B83
Permanent industrial crops B&4

Table 2.2: LUCAS crop classes
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2.2.1 Land Cover Indices

Forest Index (FT)

NIR—RED—L>*( c1—NIR )
NIR+ RED ca + GREEN

FI, proposed in [28] is designed to highlight forest vegetation by assuming
positive and high values for pixels associated with forests and low values for pixels
associated with non-forest areas. As forest is a kind of vegetation, it is generally
easy to distinguish it from non-vegetation surfaces with the help of any vegetation
index, while it is rather difficult to distinguish forest from non-forest vegetation,
however, FI solves both the two aspects. To identify forests, non-vegetation is
firstly highlighted by a kind of vegetation index in the form of the multiplicand,
then, according to the spectral difference introduced by the multiplier, forest is
discriminated from non-forest vegetation. The idea behind the multiplier is based on
the observation that the reflectance of forest is usually lower than other vegetation
in the visible and shortwave infrared bands. L is a soil adjustment parameter as
found in many other vegetation indices, empirically set to 0.01, while ¢; and cq
are empirical parameters used to scale the function, empirically set to 1 and 0.1,
respectively.

FI=(

Modified Normalized Difference Water Index (MNDWTI)

GREEN — SWIR
GREEN + SWIR

MNDWTI is an NDWI [29] derived index and as such is suitable to monitor
changes related to water content in water bodies. Differently from NDWI, which
is sensitive to built-up land and can result in over-estimation of water bodies,
however, the index is able to enhance open water features suppressing the influence
from a background dominated by built-up land areas and vegetation [30]. Open
water has, in fact, greater positive values in MNDWTI with respect to NDWTI as it
absorbs more SWIR light than NIR light as used in the latter index. Built-up land
has usually negative values in the SWIR, while soil and vegetation will still have
negative values as soil reflects SWIR light more than NIR light and the vegetation
reflects SWIR light still more than green light. Consequently, compared to NDWI,
the contrast between water and built-up land of the MNDWTI will be considerably
enlarged thanks to increasing values of water feature and decreasing values of
built-up land from positive down to negative.

MNDWI =

Normalized Difference Built-Up Index (NDBI)
SWIR - NIR
SWIR+ NIR
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NDBI is a suitable index to highlight bare soil, urban and built-up areas since,
differently from vegetation where the reflection of NIR is higher than SWIR, there
is an opposite response for the same bands for the aforementioned surfaces, that
means higher reflectance in SWIR with respect to NIR [31].

Normalized Built-up Area Index (NBAI)

S
Ny SWIRS = SEE
SWIR3 + Spiia

GREEN

The index proposed in [32] claims not only to perform better than NDBI in
distinguishing between built-up areas with respect to vegetation and water, but
also improving the accuracy in highlighting differences between built-up areas and
bare soil.

2.2.2 Crop Classification Indices

Normalized Difference Vegetation Index (NDVT)

NIR - RED
NIR+ RED

As shown in the previous chapter, NDVTI is one of the simplest and most used
indices. Sensitive to the effects of foliage chlorophyll concentration, canopy leaf area,
foliage clumping and canopy architecture, it measures the quantity and vigor of
green vegetation and more specifically the overall amount of photosynthetic material,
essential for the vital functions of the plant, comparing reflectance measurements
from the near-infrared bandwidth, which has much greater penetration depth
through the canopy, to the ones taken in the red window which is where chlorophyll
absorbs photons to store into energy through photosynthesis. It is also correlated
with the vegetation parameter of fractional absorption of photosynthetically active
radiation (fAPAR) [33].

NDVI =

Modified Soil Adjusted Vegetation Index 2 (MSAVI2)

2% NIR+1— (/2% NIR+1)2 — 8% (NIR — RED))
2

MSAVI2 is a simpler version of the MSAVI proposed in [34], which is an
improvement of the Soil Adjusted Vegetation Index (SAVI). While NDVT is highly
sensitive to soil color, soil moisture and prone to saturation effects from high-density
vegetation, SAVI is a much more stable index thanks to the suppression of the
effects of soil pixels by means of a canopy background adjustment factor, L, which
is a function of vegetation density and often requires prior knowledge of vegetation
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amounts. MSAVI, however, not only reduces soil noise and increases the dynamic
range of the vegetation signal but is also based on an inductive method that does
not use a constant L value to highlight healthy vegetation [35].

Structure Intensive Pigment Index (SIPI)

NIR — COASTAL
NIR+ RED

SIPI, one of the biochemistry spectral indices related to vegetation stress and
light use efficiency, provides a measure of the efficiency of the vital functions of the
plant and its stress level, aspects related to carbon uptake efficiency and growth
rate. The index takes advantage of relationships between different pigment types
to assess the overall status of the vegetation. In particular, SIPI, whose increase
indicate increased canopy stress, is designed to be sensitive to the ratio of bulk
carotenoids (such as alpha-carotene and beta-carotene) to chlorophyll without
being influenced by variations in canopy structure [36].

SIPI =

Carotenoid Reflectance Index (CRI)

1 1
~ BLUE GREEN

As stated above, carotenoids are not only strongly related to the efficiency of
light absorption processes in plants but are also fundamental in protecting plants
from the harmful effects of too much light. Weak vegetation, in fact, contains
higher concentrations of carotenoids. CRI comes, therefore, from the same category
of SIPI as high CRI values, obtained exploiting reflectance measurements in the
visible spectrum, mean high carotenoid concentration with respect to chlorophyll

[37).

CRI

Normalized Difference Moisture Index (NDMTI)

NIR - SWIR
NIR+ SWIR

NDMI is a spectral index that provides a measure of the amount of water
contained in the foliage canopy, a parameter particularly important since higher
water content indicates healthier vegetation that is likely to grow faster and be more
fire-resistant. To do that the index uses the SWIR band, which, being negatively
related to water content, is sensible to its variation at mesophyll (internal leaf
structure) level in vegetation canopies, and the NIR band, which penetrates deeper
and whose reflectance is affected by leaf internal structure and leaf dry matter
content but not by water content. The combination of the two bands removes
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variations induced by leaf internal structure and leaf dry matter content, improving
the accuracy in retrieving the vegetation’s total column water content [38].

Anthocyanin reflectance index (ARI)

1 1

~ GREEN R.EDGE

Anthocyanins, water-soluble pigments abundant in newly forming leaves and
those undergoing senescence, common in higher plants causing red, blue and
purple coloration, provide valuable information about the physiological status
of plants. They are considered indicators of various types of plant stresses as
their concentration is higher in weakening vegetation. Anthocyanins reflectance
is highest around 550nm which corresponds however to the wavelengths reflected
by chlorophyll. To isolate anthocyanins, the 700nm spectral band only related to
chlorophyll is subtracted. ARI, by means of reflectance measurements in the visible
spectrum, is sensible to anthocyanins and it is, therefore, suitable to sense canopy
changes in foliage via new growth or death and canopy stress [39].

ARI

Modified Chlorophyll Absorption Reflectance Index (MCARI)

R.EDGE

RED

MCARI, one of several indices derived from Chlorophyll Absorption Reflectance
Index (CARI) which measures the relative abundance of chlorophyll of a given
plant, not only measures the depth of chlorophyll absorption and is very sensitive
to variations in chlorophyll concentrations, but it also extends CARI being more
resilient to the combined effects of illumination conditions, background reflectance
from soil and other non-photosynthetic materials observed [40].

MCARI = (R.EEDGE — RED) — 0.2 % (R.EDGE — GREEN)) x

Canopy Chlorophyll Content Index (CCCI)

NIR-R.EDGE

_ NIR+R.EDGE
CCCI = —Jrr—RED
NIR—RED

Nitrogen is one of the most vital fertilizer components in agriculture as it
directly affects the amount of chlorophyll in plants. Under the condition of nitrogen
malnourishment the plant growth process is disturbed, chlorophyll development
stops, and finally, the leaves begin to turn yellow. In order to survive the plant
takes nitrogen from older leaves and transfers it to new ones, thus lower-level leaves
show an indication of nitrogen starvation. CCCI, derived from the Normalized
Difference Vegetation Index (NDVI) and Normalized Difference Red Edge (NDRE),
analyzes the amount of chlorophyll in vegetation, thereby allowing detection of
nitrogen starvation [41].
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RedEdgeNDVI

R.EDGE2 — R.EDGFE1
R EDGE2+ R EDGE1

This index is a modification of the NDVI index introduced above, differing
from the usage of bands along the red edge, instead of the main absorption and
reflectance peaks, shifting its focus on the vegetation red edge to small changes in
canopy foliage content, gap fraction, and senescence. It is strongly correlated to
vegetation stress [42].

RedEdgeNDVI =

Red-Green Ratio (RGR)

RED
GREEN
RGR is a useful index as a measure of foliage development, leaf or flower

production, stress. The ratio measures the relative expression of leaf redness caused
by anthocyanin to the one of chlorophyll [43].

RGR =

Red Edge Position (REP)

(RED+R2.EDGE3 _ RE.DGEl)

EP = 4
R 00+ 40 = e B DGE2 — REDGE)

The red edge position refers to the wavelength of the steepest slope within the
range of 690nm to 740nm, where the common range for green vegetation is between
700nm and 730nm. Such position moves to longer wavelengths as chlorophyll
concentration rises. REP is a reflectance measurement sensitive to changes in
chlorophyll concentration that estimates the red edge position [44].

2.3 Models Selection and Training

The dataset created this way, with rows corresponding to LUCAS points and
columns corresponding to the aforementioned indices computed for each of the
10 months, is tabular, reason why among the selected machine learning models,
along with the well known Random Forest and SVM, there are models proved
to be exceptionally performing on tabular data such as Extreme Gradient Boost-
ing Machine and Light Gradient Boosting Machine. Additionally, deep learning
approaches are taken into account both to test new concepts proposed in recent
papers trying to fix the fame of neural networks of not being the preferred models
when it comes to tabular data, as well as to manage and account for the temporal
component of the dataset.
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2.3.1 Random Forest

Random Forests is a supervised learning classification method, applied to decision
tree model, based on the concept of bootstrap aggregation, a simple yet powerful
ensemble method consisting in the combination of the predictions from multiple
learners to achieve an accuracy higher than the one achieved by any of the single
learners. Since decision trees are sensitive to the data they are trained on, all the
trees trained on the same training data would end up being exactly equal in all
aspects to each other, in order to avoid having equal trees which would make the
aggregation useless, the trees are instead trained on different data, more specifically
on different subsets of the training data drawn with replacement. Additionally,
only a random subset of all the features, generally as big as the squared root of
the total number of features, is considered to subdivide nodes in each decision
tree. This way, although each tree may present a high variance with respect to a
particular set of training data, overall the entire forest will have a lower variance
thus achieving higher accuracy when predictions, obtained with a simple majority
voting system among all trees, are finally made.

dataset
Sample #1 Sample #2 Sample #3 Sample #N
N, features N, features N, features N, features
b @ &R S
O @
TREE #1 TREE #2 TREE #3 TREE #N

| | | |

Figure 2.2: Random Forest

2.3.2 Support Vector Machine

SVM, popular in applications such as natural language processing, speech recogni-
tion and computer vision, is a supervised machine learning algorithm, proposed
by Vapnik in 1963, based on the idea of finding hyperplanes that best divide
the training data into classes, that means finding hyperplanes that maximize the
distance between support vectors and the hyperplanes themselves. In the case of
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a classification task with only two spatial dimensions, as it is possible to see in
figure 2.3, for example, the hyperplane takes the form of a line that best divides
data. In three dimensions the hyperplane would have the form of a plane and so
on. Are called support vectors the data points closest to the hyperplane, according
to which the optimal hyperplane is computed, removing or modifying these points
would alter the position of the dividing hyperplane. The margin is defined as the
distance between the closest support vectors of different classes to the hyperplane.
Once found the best hyperplane in the training phase, when new data is submitted
for prediction, the model decides the class based on the position of the data point
in the space with respect to the hyperplane.

T/

Figure 2.3: Example of hyperplane

The SVM described above does not only works when the classes are linearly
separable and that is, for the case of binary classification, when exists a linear
hyperplane such that all the data points of a class are on one side and all the data
points from the other class are on the other side. If a dividing linear hyperplane
does not exist in fact, SVM can allow for a certain degree of misclassification
with the introduction of a slack variable or, by means of a non-linear mapping
known as kernel trick, can transform the training data into a higher dimension to
achieve separability. SVM works also for tasks of multi-class classification using the
same principle described above breaking down the problem into multiple binary
classification problems. This can happen by exploiting a One-to-One approach
or a One-to-Rest approach. In the first approach, the algorithm looks for the
hyperplanes dividing every combination of couples of classes, neglecting the points
belonging to third classes, while in the second approach the algorithm looks for the
hyperplanes dividing the points from each class from the union of points belonging
to all the other classes. This means that in this case, each attempt of finding any
hyperplane takes all points into account, dividing them into two groups, the first
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group for given class points while the second group for all other points.

2.3.3 Extreme Gradient Boosting Machine

Extreme Gradient Boosting Machine, also known as XGBoost, is an implementation
of the Gradient Boosting method that has been for many years the state of the art
when it came to tabular structured data thanks to its more accurate approximations
to find the best tree model. Among its peculiarities, there is the computation of the
second-order gradients which consist of the partial secondary derivatives of the loss
function and provide more information about the direction of the gradients to get
to the minimum of the loss function, and the usage of regularization which improves
the generalization of the model. One further advantage is that the training is fast
and can be distributed between different machines. The XGBoost formation is an
iterative procedure that calculates at each step the best possible subdivision for the
k'" tree, listing all the possible structures still available at that point of the path.
The first step of the XGBoost algorithm consists of performing an initial prediction
with a default value and subsequently calculate residuals which are the difference
between the predicted value and true values. After that, thanks to a similarity
score and information gain, XGBoost builds a tree in the most accurate way by
selecting the split with major gain computed as a function of the similarity scores
of all leaves and roots from the trees derived by all possible splits of the training
data. Starting from the found root, each leaf will be divided into additional leaf
nodes until there is only one residue left or a specific depth is reached. Additionally,
XGBoost uses a pruning technique, which consists of removing branches that make
use of less important features, to reduce the complexity of the tree and consequently
increase the accuracy and generalization capabilities of the trees. This is performed
by subtracting a quantity y to the gain value beginning from the bottom leaves
up to the root, and removing the branches that start from nodes with negative
gain value after the subtraction along with the node itself. Even if v is set to zero,
however, it is possible for the gain to be negative, in which case the node would
be deleted according to the pruning technique anyway. Finally, the root node is
deleted if and only if all the child nodes have negative gain values. The prediction
is then adjourned, residuals are computed and the construction of a new tree, that
will be combined with the existing ones by means of a quantity n learning rate, can
then begin until the desired number of iterations is reached.

2.3.4 Light Gradient Boosting Machine

Light GBM is a fast, distributed and high-performance gradient-based framework
implemented on top of decision tree algorithm, used in many machine learning
tasks such as classification, regression and many others, released in January 2017
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by Microsoft, whose aim is to maintain an accuracy comparable to the more famous
XGBoost while reducing training time and memory occupation. Differently from
XGBoost, which uses pre-sorting or histogram-based algorithms for computing the
best splits, Light GBM uses instead a technique called Gradient-based One-Side
Sampling (GOSS) to filter out data and find splits. While pre-sorting splitting
consists of sorting data by feature value for each feature and using a linear scan
to decide the best split along with that feature according to the gain quantity,
and histogram-based algorithms consist of splitting all data into discrete bins
and use these bins to find the split value, GOSS is faster than both methods in
training time thanks to its use of the gradient as an indicator for the importance of
instances. Gradient, in fact, represents the slope of the tangent of a loss function,
so logically if the gradient of data points is large in some sense, these points are
important for finding the optimal split point as they have higher error. GOSS
keeps all the instances with large gradients and performs random sampling on
the instances with small gradients, exploiting the assumption that samples with
training instances with small gradients have smaller training error and it is already
well-trained. Finally, in order to keep the same data distribution, when computing
the gain, GOSS introduces a constant multiplier for the data instances with small
gradients. Thus, GOSS achieves a good balance between reducing the number of
data instances and keeping the accuracy high.

2.3.5 Deep Learning Models
Pixel R-CNN

In [27] is proposed a deep learning architecture called Pixel R-CNN, for land
cover and crop classification, consisting of a Recurrent Neural Network (RNN)
in combination with a Convolutional Neural Network (CNN) which join forces
to first extract temporal correlations from time-series data, then to analyze and
encapsulate patterns through convolutional filters. RNN is a powerful and robust
type of neural network able to remember certain aspects of the received sequence
data input, which is basically ordered data in which related things follow each
other with the most famous being time-series data, which is just a series of data
points that are listed in time order, allowing the achievement of more accurate
predictions of what is coming next. Differently from feed-forward neural networks,
where the information only moves in one direction, from input to output layer
never flowing through the same node twice, and where therefore only the input
at a given time is considered to obtain the output, making the architecture not
ideal at predicting the next item of an input sequence, RNN is instead ideal for
sequential data since when a prediction is to be made the network considers not
only the current input but also what it has learned from the inputs it previously
received. The RNN used in the paper is specifically a Long short-term memory
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(LSTM) which is an extension of vanilla RNN, being able to remember inputs over
a long period of time thanks to a computer-like memory allowing LSTM to read,
write and delete information from its internal state. LSTM memory is much like a
gated cell since it can decide whether to let new input in, delete the information
because it is not important, or let it impact the output at the current timestep,
based on the importance it assigns to it by means of weights, which are also learned
by the algorithm during training time.

I_l_lllllll \_rlllllllll\

Input LSTM TimeDistributedDense Reshape Conv2D Conv2D Dense

Figure 2.4: Pixel R-CNN Architecture

The three main tasks of Pixel R-CNN are:

o Temporal correlations extraction from multispectral temporal pixels exploiting
a sequence-to-sequence recurrent neural network based on long short-term
memory (LSTM) cells, followed by a time-distributed layer to compress and
maintain a sequence structure, preserving multidimensionality exploiting
temporal and spectral correlations simultaneously.

o Temporal pattern extraction where temporal sequences are processed by a
subsequent cascade of convolutional filters, which in a hierarchical fashion,
extracts essential features.

o Multiclass classification that maps the feature space with a probability dis-
tribution with K different probabilities, where K is equal to the number of
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classes.

Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles (NODE) is an architecture proposed in [45]
consisting of differentiable oblivious decision trees (ODT), which are regular trees
of depth d constrained to use the same splitting feature and splitting threshold in
all their internal nodes of the same depth, trained end-to-end by backpropagation.
This constraint of using the same splitting feature and splitting threshold, on one
hand, makes the ODTs weaker learners with respect to unconstrained decision
trees, making them less prone to overfitting when used in an ensemble which is
perfect for gradient boosting, while on the other, it allows the representation of
ODTs as a table with 2¢ entries, corresponding to all possible combinations of
d splits which makes them very efficient during inference time since ODTs can
compute d independent binary splits in parallel and return the appropriate table
entry while unconstrained decision trees require evaluating d splits sequentially.
One layer of the proposed architecture is composed of m differentiable oblivious
decision trees of equal depth d which accept as input a common vector containing n
numeric features. While in unconstrained decision trees, the feature choice to split
a node by is deterministic, in ODTs, for differentiability reasons, to have a sparse
feature selection for the split so the decision can be made on only a small number of
features, a-entmax transformation proposed in [46] is used over a learnable feature
selection matrix.

1.0 A a = 1 (softmax)
a=1.25
-=-a=15
a = 2 (sparsemax)
054  «=4

0.0 {_ =====

Figure 2.5: Illustration of entmax in the two-dimensional case

Additionally, to increase the learning capabilities of the model, it is possible to
stack several NODE layers, each one on top of the other linking them with residual
connections and giving to each layer as input features the concatenation of the
input and the outputs of all previous layers, averaging all outputs for the final
prediction.
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Figure 2.6: Single ODT inside the NODE layer. The splitting features and the
splitting thresholds are shared across all the internal nodes of the same depth. The
output is a sum of leaf responses scaled by the choice weights.
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Figure 2.7: The NODE architecture, consisting of densely connected NODE
layers. Each layer contains several trees whose outputs are concatenated and serve

as input for the subsequent layer. The final prediction is obtained by averaging the
outputs of all trees from all the layers

prediction

TabNet: Attentive Interpretable Tabular Learning

TabNet is a high-performance and interpretable deep learning architecture for
tabular data, proposed in [47] by Arik and Pfister, that makes use of sequential
attention to choose the features to be considered at each decision step, enabling
interpretability and more efficient learning as the learning capacity is mostly used
for salient features. The authors demonstrate that TabNet outperforms other
models on a wide range of non-performance-saturated tabular datasets and yields
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interpretable feature attributions.

Only raw numerical features are used, therefore, categorical features have to be
mapped, in the specific case by means of trainable embeddings. TabNet’s encoding
is based on sequential multi-step processing with Ngeps decision steps where each
step receives the same D-dimensional features that are passed to all other steps.
The i*® step inputs the processed information from the (i — 1) step to decide which
features to use and outputs the processed feature representation to be aggregated
into the overall decision.
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Figure 2.9: TabNet’s feature transformer and attentive transformer

A learnable mask is obtained, by means of an attentive transformer, for a sparse
selection of important features ensuring that the learning capacity of the given
decision step is invested properly in relevant features only, making the model
more parameter efficient. The filtered features are then processed using a feature
transformer, consisting of layers that are shared across all decision steps as well as
decision step-dependent layers for parameters efficiency and robust learning, and
then split for the decision step output and information for the subsequent step.
The feature transformer is therefore implemented as a concatenation of two shared
layers and two decision step-dependent layers where each fully connected layer is

38



Dataset Creation and Models

followed by batch normalization and the gated linear unit, eventually connected to
a v/0.5 normalized residual connection to stabilize learning by ensuring that the
variance throughout the network does not change dramatically.

Encoded representation

e
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Feature Feature
transformer

Reconstructed
tee features

Figure 2.10: TabNet’s decoder architecture
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Chapter 3
Processing and Results

The datasets built following the methodology described in the previous chapter
consists of 33442 points for the task of land cover classification, divided among
classes as shown in table 3.1, while for the task of crop type classification the dataset
is obtained starting from the one of land cover filtering all the points belonging to
the Cropland class, for a total of 9543 points (BX1 and BX2 subclasses included),
divided among classes as shown in table 3.2. At this stage, however, the datasets
are not suitable to be given to models and proceed to the training and evaluation
of performances. A processing phase is, in fact, required since the datasets present
several aspects to be tackled in order to achieve the best possible results. There are,
indeed, missing and "Inf" values resulting from indices computations and divisions
between bands to be accounted for, outliers to be removed, the values are then to
be normalized, the features selected and finally, as the two tables reporting the
distributions of classes show, the dataset have to be balanced.

Land Cover Class | Code | Points
Woodland C 13208
Cropland B 9543
Grassland E 5602

Artificial land A 2827
Shrubland D 1490
Bareland F 417

Water G 292
Wetlands H 63

Table 3.1: Land cover dataset distribution
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Family Crop Class Code | Points
Common wheat B11 732
Durum wheat B12 | 1389
Barley B13 376
. Rye B14 6
((jgrfil)b Oats BI5 | 174
Maize B16 1079
Rice B17 126
Triticale B18 31
Other cereals B19 43
Potatoes B21 36
Roolggéops Sugar beet B22 25
( ) Other root crops B23 29
Sunflower B31 163
Rape and turnip rape B32 15
Non-Permanent Soya B33 308
Industrial Crops Cotton B34 0
(B3X) Other fibre and oleaginous crops B35 14
Tobacco B36 17
Other non-permanent industrial crops B37 7
Dry pulses B41 274
Tomatoes B42 87
Dry Pulses, V]cgglgc(ablcs, Flowers Other fresh vegetables B43 208
( ) Floriculture and ornamental plants B44 5
Strawberries B45 2
Clovers B51 95
Fodder Crops . Lucerne. B52 754
(B5X) Other leguminous and mixtures for fodder | B53 226
Mixed cereals for fodder B54 429
Temporary grasslands B55 479
Apple fruit BT71 28
Pear fruit B72 21
Permanent Crops: Fruit Trees Cherry fruit B73 12
(BTX) Nuts trees ‘ B74 164
Other fruit trees and berries B75 118
Oranges B76 23
Other citrus fruit B77 25
Olive groves B81 526
Other Permanent Crops Vineyards B8&2 336
(B8X) Nurseries B83 32
Permanent industrial crops B&4 4
. Temporary Crops BX1 967
Not Recognisable Pernll)anenz Crogs BX2 158

Table 3.2: Crop dataset distribution
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3.1 Processing

3.1.1 Imputation

While it is true that many machine learning algorithms are able to handle missing
values, others (Random Forest for one), are not. For this reason, a solution is to
be found in order to tackle the problem. One possible way is to drop all instances
presenting at least a missing values among their features but this would lead not
only to a waste of data but, in the case of this study, to the annihilation of the
entire datasets since the missing values are 122634 in the land cover dataset, of
which 33054 are in crop type classification dataset. These numbers may seem big
but they actually represent around 1% of values in the dataset. Another possible
solution could be replacing all missing values with the most common value or with
zero but in this case, the action of replacing missing values with constant values
would inevitably change relationships between points in the datasets leading to
misclassifications. Zero values carry, in fact, specific information when it comes to
spectral indices, in the case of NDVI, for example, it identifies the bare soil.

One possible way, that has been tried in several experiments in this study, has
been the imputation of missing values thanks to the mean of the preceding and
the following values. Differently, however, from computing the mean of preceding
and following value on the same column feature, the mean is to be computed along
a given row, since the row is a set of temporal spectral index sequences, paying
attention not to mix several different indices together whether the missing value is
the last of one or the first of the other.

The best accuracy scores, however, have been achieved by means of the method
of iterative imputation according to which each feature is modeled as a function of
the other features much like it happens in a regression task where missing values
are imputed sequentially and iteratively to improve estimates, one after the other
allowing for prior imputed values to be used as part of a model in the prediction of
subsequent features. While different regression algorithms can be used to estimate
the missing values Light GBM has been preferred for its performances with the
number of iterations of the procedure set to 5.

3.1.2 Outliers & inconsistent points Removal

In statistics, is defined as an outlier an observation point that is distant from other
observations, basically unusual values in the dataset, having a different underlying
behavior than the rest of the data, able to distort statistical analyses due to the
increase in variability they introduce, which lead to decreases in statistical capability.
Machine learning algorithms are, in fact, sensitive to the range and distribution of
attribute values, outliers can spoil and mislead the training process resulting in
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longer training times, less accurate models and ultimately poorer results. In order to
identify outliers, the visualization method of box plot has been used for all features
separately for each class and index. Box plot is a method for graphically depicting
groups of numerical data through their quartiles and indicating also variability
outside the upper and lower ones allowing for the identification of outliers. Since
the datasets are not particularly big, not all outliers identified by the plots have
been removed but rather the most extreme ones.
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Figure 3.1: Box plot example for RGR index for Cereal Crops

Furthermore, a check for inconsistent points has been performed. Points have
been in fact filtered out in case some of theirs values were outside the accepted
range for the belonging class on the basis of the scientific literature of any given
index. For this reason, for example, have been discarded vegetation points with
NDVI values close to -1, which identifies water surfaces, as well as water surfaces
with MNDWTI values smaller than zero, and so on. Obviously, this removal has
been rather mild, to resume the example of NDVI, it is proven, in fact, that the
index for vegetation is supposed to assume values close to 1 while for bare soil
surfaces is supposed to assume values close to 0, however, only vegetation points
with values close to -1 have been removed since it is not infrequent for a crop field
to assume 0 value, for instance right after the harvest, while it is not consistent for
the field to assume water surface values (with the only exception for rice fields).

3.1.3 Normalization

Normalization is a data preparation technique whose goal is to change the values of
numerical columns in a dataset to use a common scale, without distorting differences
in the ranges of values, relationships among instances, general distribution or losing
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information. As such it is also required for some algorithms to model data correctly
since they look for trends in the data by comparing features of the instances and
tend to give more importance to a feature with the increasing magnitude of values.
The preferred and selected normalization method in the study is Z-Score, whose
formula is:

value — [
Zscore = ————
o

where 1 is the mean value of the given feature and o its standard deviation
of the feature. According to the normalization, if a value is exactly equal to the
mean of all the values of the feature is normalized to 0, if it is below the mean
is mapped to a negative number, and if it is above the mean is normalized to a
positive number, with the size of those negative and positive numbers determined
by the standard deviation of the original feature.

3.1.4 Feature Selection & Feature Engineering

In the development phase of a predictive model, it is desirable to reduce the number
of input variables to both reduce the computational cost of modeling and, in some
cases, to improve the performance of the model. It is called feature selection
the process in charge of this reduction. While it is true that there exist many
effective statistical-based feature selection methods consisting in the evaluation
of relationships between input variables and class variables, preferring features
with the strongest relationship with the latter, the features relating to Band2,
Band3, Band4, Band8, Band11 (corresponding to the three bands of the visible
spectrum plus NIR and SWIR), NDVI, MNDWI, NDMI, NBAI, MCARI for the
task of land cover classification and NDVI, SIPI, CRI550, NDMI, ARI, MCARI,
RedEdgeNDVI, MSAVI, CCCI, RGR and REP for the task of crop classification
have been empirically selected as being the ones achieving the best accuracy scores
among many carried out experiments.

Additionally, some features have been engineered, namely the mean, median and
standard deviation for each index and each point computed over the ten months
values.

3.1.5 Class Groupings

One further important step is the one associated with the identification of the
classes for both tasks. Not only, in fact, the number of classes is too high to
efficiently and accurately train any predictive model, especially concerning crop
type classification, with its 40 classes, but also classes are grouped according to
the scientific belonging family, so families do not necessarily contain classes whose
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points have a similar spectral signature and it might happen for classes belonging
to two different scientific families to have a similar spectral signature. An example
is "Rape and turnip rape" belonging to family "Non-Permanent Industrial Crops"
having a spectral signature similar and comparable to the classes belonging to the
"Root Crops" family. Additionally, families include classes that are an aggregation
of many minor and rarer subclasses, this means that the spectral signatures of
these classes are combinations of all the signatures of different subclasses within
them, and this has to be accounted for. Furthermore, some classes have little to
no points and have to be aggregated with some other classes. Finally, there are
some families like "Fodder Crops" that contain a mix of classes that should belong
to other families for the purpose of this study but are instead aggregated in such
families on the basis of the usage, for example, "Other leguminous and mixtures
for fodder" should be found in "Dry Pulses" while "Mixed cereals for fodder" should
be found in "Cereals".

Concerning the task of land cover classification, the classes have been reorganized
according to the considerations proposed in [48] and then once again modified on
the basis of spectral signature analyses as well as tracking performances in several
experiments finally obtaining classes shown in table 3.3.

Land Cover Class | Code | Points

Artificial land A 1082
Cropland Seasonal | CS 6972
Cropland Perennial | CP 1394

Woodland F 13167

Grassland G 5362
Water Body W 94

Wetlands WL 64

Table 3.3: Reorganized Land Cover Classes

Where Artificial not only contains points belonging to LUCAS A class but
also barren soil, rock and sand surfaces previously belonging to class "Bareland",
making it more like an "Impermeable surface" class. LUCAS class B, used in
the crop classification task, has been split into CS and CP according to whether
the crop is seasonal like cereals or permanent like fruit trees. Finally, LUCAS
Shrubland, which consists of small to medium vegetation surfaces like bushes, has
been aggregated with Grassland.

Concerning the task of crop classification, the classes have been reorganized
according to in-depth spectral signature analyses as well as empirically in several
experiments finally obtaining classes shown in table 3.4.
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Crop Class Points
Cereals 3005
Dry Pulses 755
Floriculture 160
Fresh Vegetables | 365
Fruit Trees 852
Maize 1023
Rice 114
Vineyard 327
Other 813

Table 3.4: Reorganized Crop Classification Classes

As a first thing the instances belonging to classes BX1 and BX2 have been
dropped since they do not convey any useful information in terms of crop clas-
sification, they in fact represent respectively seasonal and permanent crops for
which the LUCAS operator was unable to understand the exact class and family.
Then, all cereals have been aggregated with the only exceptions being Maize and
Rice that have clearly distinguishable spectral signatures. All Root Crops along
with "Rape and turnip rape" belonging to the family of "Non-Permanent Industrial
Crops" have been put in "Fresh Vegetables' along with classes from family "Dry
Pulses, Vegetables, Flowers" that are "Tomatoes", "Other fresh vegetables" and
"Strawberries". "Sunflowers' from "Non-Permanent Industrial Crops" and "Flori-
culture and ornamental plants" have formed the class of "Floriculture'. Finally,
"Other leguminous and mixtures for fodder" from "Fodder Crops" Family has been
put in "Dry Pulses", "Mixed cereals for fodder" in "Cereals", all trees have been put
in "Fruit Trees", "Nurseries" and "Permanent industrial crops" have been dropped
respectively because not informative the first and with too few points the second,
and all the remaining instances have been put into "Others".

3.1.6 Dataset Balance

At this point of the processing phase, after all the procedures described above
what is left of the two datasets are 28136 points for the land surface classification
dataset distributed among classes as shown in table 3.3, and 7414 points for the
crop classification dataset distributed among classes as shown in table 3.4. As
it is possible to see both the datasets are highly unbalanced, that means the
classes are not represented approximately equally, therefore, balance is pursued
by means of the last processing procedure before training models. Class balance
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within a given dataset allows machine learning models to make more accurate
and reliable predictions since with unbalanced data, classifiers are more sensitive
to detecting the majority class and less sensitive to the minority class leading to
a biased classification output. There are two possible ways to achieve balance,
the first, Undersampling, consists in the removal of instances from the majority
classes up until the number of instances is comparable among all the classes, the
second, oversampling, consists of the synthetic creation of instances belonging to
the minority classes up until the number of instances is comparable among all the
classes.

Undersampling Oversampling

Copiesofthe [N
minority class -

Samples of
maijority class

Original dataset Original dataset

Figure 3.2: Undersampling and Oversampling

Since undersampling would lead to a huge information loss, especially considering
the relatively small crop type classification dataset (it is, in fact, advisable only
when the amount of data is so big, its processing constitute a too expensive
computational cost), oversampling has been preferred by means of a technique
called SMOTE proposed in [49]. SMOTE consists of the selection of a minority
class instance ’A” at random and the finding of its k nearest minority class neighbors.
A synthetic instance is then created by choosing one of the k nearest neighbors "B’
at random and connecting A’ and "B’ to form a line segment in the feature space.
The synthetic instances are generated as a convex combination of the two chosen
instances "A” and 'B’.
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Figure 3.3: SMOTE
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However, it is rather important to understand when to perform the dataset
oversampling. As it is possible to see from figure 3.4, in fact, oversampling before
cross-validation, would make the model be trained on instances that are the same
as the ones used for validating the model voiding the purpose of the validation
phase and leading to overfitting. It is, therefore, important to perform oversampling
only on training data.
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dataset C dataset

S _ $

/. 00— /.
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Figure 3.4: Wrong vs correct oversampling methodology

3.2 Results

The following results have been obtained by the models described in the second
chapter, trained on the datasets built according to the methodology depicted in the
same chapter on which have been applied the processing procedures illustrated in
the current chapter. Furthermore, to tune hyperparameters in the best possible way,
both Random Search first and Bayesian Optimization later, have been performed in
combination with stratified 5-fold cross-validation, which is a technique for assessing
how the results of a statistical analysis will generalize to an independent data set,
mainly used in settings where the goal is prediction, according to which the original
training and validation sets are partitioned into k = 5 equal-sized subsamples. Of
the k subsamples, a single subsample is retained as the validation data for tuning
the model, and the remaining k - 1 subsamples are used as training data. The
cross-validation process is then repeated k times, with each of the k subsamples
used exactly once as the validation data. The k results can then be averaged to
produce a single estimation. The advantage of this method is that all observations
are used for both training and validation, and each observation is used for validation
exactly once. “Stratified” means that each partition contains roughly the same
proportions of class labels, important since the validation has to be performed on
a subsample whose underlying distribution is as close as possible to the one of
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the test sample and finally as close as possible to the whole dataset’s underlying
distribution. As for the hyperparameters tuning algorithms, differently from Grid
Search, Random Search does not require an explicit set of possible values for each
hyperparameter, but rather a statistical distribution for each hyperparameter from
which values are sampled, while Bayesian optimization is a sequential model-based
optimization algorithm that uses the results from the previous iteration to select
the next hyperparameter value candidates, that means instead of blindly searching
the hyperparameter space as it happens with Grid Search and Random Search,
this method selects as next set of hyperparameters the one which will improve the
model performance.

Generally, results follow the same trend for both the tasks of land cover classifi-
cation and crop type classification, which means the models’ rankings by accuracy
are the same for both tasks with the only difference being a decrease of roughly 10%
in overall accuracy (OA) from land cover classification to crop type classification.
As expected the best models are the ones belonging to the gradient boosting family
with Light GBM achieving 82.6% OA on land cover and 73.8% on crops followed
by XGBoost achieving 82.0% OA on land cover and 72.6% on crops. Of the more
simple models, Random Forest proves to be suitable to tackle the tasks achieving
81.2% OA on land cover and 70.7% on crops, while, differently from what claimed
in [27] SVM, although being experimented with extensively and implemented with
several kernels and thorough hyperparameters searches, has not been able to go past
46.8% OA on land cover and 40.5% on crop. Finally, deep learning models have
proved to be worthy of the tasks reaching comparable results with respect to the
shallow models mentioned above, with the best among them being NODE achieving
81.3% OA on land cover and 71.6% on crops, followed by TabNet achieving 80.6%
OA on land cover and 67.7% on crops while Pixel R-CNN’s claimed accuracy [27]
has not been met as the model reached 77.7% OA on land cover and 64.1% on
crops even though it is fair to point out that in [27] the number of data points was
bigger since all the pixels of a given field containing a LUCAS point were taken and
labeled with the same label of the LUCAS point, by means of a manual mapping
of the geo-polygon of the field. This method performed on just one UTM tile leads
to a dataset of many points belonging to a fraction of the classes analyzed in this
study, therefore, making it possible to reach such high accuracy values.

Investigating results more deeply, as it is possible to see from figures 3.5 and 3.6
the OA is not equally distributed among the classes of the two tasks. Concerning
land cover, in fact, while there are classes, like "Artificial, Rock and Bare soil",
"Forest" and "Grassland and Shrubland", with very high accuracy score, others, like
"Crop Permanent", which is often confused with other classes especially "Forest",
and "Wetland", whose number of instances is too limited to have an effective impact
on dataset balancing, have very low scores.
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Concerning crop classification, on the other hand, the scores have less variance
with the less performing classes being "Fresh Vegetables" which is most of the times
confused with "Cereals", and "Vineyards" which are confused with "Fruit Trees".
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Figure 3.5: Land Cover Classification class report and confusion matrix. Artificial,
Rock & Bare Soil: 0, Crop Permanent: 1, Crop Seasonal: 2, Forest: 3, Grassland
and Shrubland: 4, Water body: 5, Wetland: 6
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Figure 3.6: Crop Classification class report and confusion matrix. Cereal: 0, Dry
Pulses: 1, Floriculture: 2, Fresh Vegetables: 3, Fruit Trees: 4, Maize: 5, Other: 6,
Rice: 7, Vineyard: 8

Finally, the best performing model has been used to predict both the task on
two random Italian areas, whose only constraint was to include as many different
features as possible such as towns, crops, water bodies, forest, etc. To better explain
the top image being a simple RGB satellite image of the area, the bottom left one
being the predicted land cover and the bottom right one being the predicted crop
type classification. One important thing to point out is that the crop classification
has been carried out starting from the land cover classification, which means only
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pixels associated with "Crop Permanent" and "Crop Seasonal" have been passed
down to the crop classification model, this is why the bottom right image shows a
further class called "Not Crop".

Figure 3.7: Best performing model applied on the area of Lago Ripasottile, RI
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Figure 3.8: Best performing model applied on the area Lesina, FG
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3.3 Conclusions

In this study has been examined the possibility of obtaining land cover classification
and crop type classification relying on the only information carried by multispectral
satellite data provided by Copernicus Sentinel-2 mission. To do so, two tabular
datasets have been built starting from a dataset provided by Eurostat called LUCAS
which has been used to obtain ground truth labels, in conjunction with a careful
selection of spectral indices. Furthermore, both shallow and deep learning models
have been used in order to obtain the best possible accuracy, of which Light GBM
has been found to be the best in both tasks achieving an overall accuracy of 82.6%
on land cover and 73.8% on crops which can be considered a good result considering
the limited amount of points in the datasets. There are however many possible
improvements that may boost the performances of the models used in the study on
both tasks, many of which will certainly be pursued in the near future as technology
advances in the sector. Such improvements are not much in relation to the models
themselves, many of which still have learning capacity to be exploited, but rather
in relation to the data that is fed to them.

Increasing Points with Border Detection

The first improvement would certainly concern the number of data. Both the
datasets built as described in this study, unfortunately, count too few instances,
especially for the crop type classification one, not only limiting the number of classes
among which it is possible to classify since many classes have to be aggregated with
others or have to be dropped due to the scarce number of instances, insufficient
to train a model to be able to recognize them, but also precluding deep learning
models, that need big datasets especially with the increasing number of parameters,
to reach their full potential, leading them to overfit.

In order to increase the number of data without having to personally register
geographical points and their land cover, given all the obstacles described in the
previous chapter, the datasets could be filled not only with the exact LUCAS point
but, by means of border detection models, with all the points within the same field
of the given LUCAS point that is reasonable and safe to assume would belong to
the same class, thus exceptionally increasing the number of data.

Increasing Temporality with Sen2Like

In this study, 10 Sentinel-2 multispectral products distributed over one year, as
described in paragraph 2.2, have been considered. Increasing the number of
products may lead to more accurate and distinguishable spectral signatures and
therefore more accurate predictions. Sentinel-2, a constellation of the satellites 2A
and 2B, is however limited by a 5 day revisit time that along with cloud coverage
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translates to a small increase in the number of usable products. For this reason,
it is possible to use a tool proposed in [50] called Sen2Like, whose objective is to
harmonize Sentinel-2 and Landsat-8 multispectral products, which by nature are not
comparable since they have not only different geometries (angles, orbits, product
formats, etc.) but also different band resolutions. Sen2Like harmonization process
improves significantly revisit time with the theoretical number of acquisitions
of the virtual constellation made of Sentinel-2 and Landsat-8 (consisting of 95
products per year) being increased by as much as 30% with respect to Sentinel-2
only acquisitions (consisting of 73 products per year).
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Figure 3.9: Specific placement of Sentinel-2 bands, as compared to Landsat-7
and 8 bands. Source: USGS

Increasing Band and Spatial Resolutions

Further improvements could concern a general enhancement of spectral imaging
data in the two main directions of increasing the number of bands and consequently
transitioning from multispectral products to hyperspectral ones or increasing the
spatial resolutions of the bands. In the first case, since, differently from multispectral
products which consist from 3 to 13 bands, hyperspectral products might count
hundreds to thousands of narrower bands packed in the same spectral range, there
might be not only benefits given by the number of spectral indices that were not
computable with multispectral products and consequently a higher descriptive
capability but also benefits given by the extreme accuracy of the computed values
achieving a high level of distinctiveness even among spectral signatures of classes
belonging to the same family.

In the second case the higher the resolution the more precise is the spectral value
of the band. Sentinel-2 satellites provide several bands at different resolutions as
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shown in table 1.1, where the resolution identifies the length of one side of a pixel
in the given band. Having higher resolution bands would not only avoid obtaining
a downgraded result when computing indices with two different resolutions but
also would make it possible to filter out pixels that do not belong to the target,
such as pixels associated with soil, instead of having huge pixels whose value is the
mean of the responses of all the components of the associated area.

Sentinel-1 Integration

One last improvement consists in the enhancement of the descriptive capabilities
with the integration of SAR data provided by another Copernicus mission: Sentinel-
1. The mission is composed of a constellation of two satellites, 1A and 1B, created by
an industrial consortium led by Thales Alenia Space Italy as prime contractor, along
with Astrium Germany being responsible for the C-SAR payload, incorporating the
central radar electronics sub-system developed by Astrium UK. The two satellites,
sharing the same polar orbital plane with a 180° phasing difference, provide a
continuous radar mapping of the Earth with an enhanced revisit frequency of 6 days.
Each satellite is, in fact, able to map the global landmasses once every 12 days,
in a single pass (ascending or descending). The mission includes a C-band, IEEE
designation for a portion of the electromagnetic spectrum in the microwave range of
frequencies ranging from 4 to 8 GHz, Synthetic Aperture Radar (SAR), radar type
able to reach a resolution way higher than the one of a normal radar with equal
antenna length. This happens because the satellite acquires not just one response
from a given target on the ground but as many responses as long as the target is
inside the illumination beam emitted by the antenna, the complex echo signals
received during this time are then added coherently to obtain higher resolutions.
The antenna is said to be "synthesized" with the synthetic aperture length being
equal to the distance traveled by the satellite during the echo signals integration
time. The fact that the system works coherently from end-to-end means that both
the amplitude and the phase relationships between the complex transmitted and
received signals are maintained throughout the whole process. This facilitates
aperture synthesis as well as multi-pass radar interferometry using pairs of images
taken over the same area at different times. Moreover, the satellite can collect
several different images from the same series of pulses by using its antenna to
receive specific polarisations simultaneously. Sentinel-1 is a phase-preserving dual
polarization SAR system and can transmit a signal in either horizontal (H) or
vertical (V) polarisation, and then receive in both H and V polarisations. The main
advantage of operating in the C-band is that the wavelengths are not impeded by
clouds or lack of illumination so images can, therefore, be acquired during day or
night and under almost all weather conditions.
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