POLITECNICO
DI TORINO

Master of Science in Computer Engineering

Master Degree Thesis

Traffic low and network security
function models

Supervisors
prof. Riccardo Sisto
prof. Guido Marchetto

dott. Fulvio Valenza

dott. Daniele Bringhenti

Candidate
Simone Bussa

ACADEMIC YEAR 2020-2021

This work is subject to the Creative Commons Licence

Summary

With respect to traditional networks, virtualized networks introduce some advan-
tages, such as the possibility to use flexible software appliances instead of dedicated
hardware devices and the possibility to dynamically reshape and reconfigure the
networks themselves. Thanks to such flexibility and dynamicity, they also enable
an increased level of network automation, which can be exploited to obtain network
solutions that are not only more adaptive to changes, but also less prone to human
errors. In this context, nowadays we are assisting at some first research attempts
to exploit network virtualization to automate and optimize the allocation and con-
figuration of network security mechanisms. However, these attempts are still quite
limited compared to what could be achieved with these paradigms.

One of the aspects that needs further investigation is how traffic flows and
network functions can be modelled efficiently in order to forecast the behaviour
of a network that may be made of different components, including stateful ones.
The goal of this thesis is to propose different network modelling approaches, that
could be used to solve the problem of automatically defining the allocation and
configuration of security mechanisms in a virtualized network.

More precisely, two different (and alternative) models for describing traffic flows
and network functions have been proposed and compared. Each model must enable
the computation of how a packet that enters the network is forwarded and trans-
formed when crossing the various nodes (i.e., NAT, Load balancer, VPN gateway
etc). Such computation, in turn, is necessary to find the optimal placement and
configuration of security functions like firewalls, on the basis of given high-level user
requirements.

The first approach for describing traffic flows that has been considered makes
use of Atomic Predicates, a concept recently proposed by some researchers for com-
puting network reachability. This concept has been adapted to our purposes by
introducing some new substantial differences, but keeping the basic idea. Given a
set of predicates (identified by the IP quintuple), it is possible to compute the set
of totally disjunct and minimal predicates (atomic) such that each predicate can
be expressed as a disjunction of a subset of them. In other words, it is possible
to split each complex predicate (representing for example a firewall rule, a NAT
input class, a requirement source, etc) into a set of simpler and minimal atomic
predicates.

The second approach, instead, is based on a totally different idea that we call
Mazximal Flows. 1f with atomic predicates we try to split the traffic flows into
smaller atomic flows (reaching the highest level of granularity but also a higher

3

number of flows), with this second approach we try to do the opposite work, that is
to reduce the number of generated flows, aggregating as much as possible different
flows into maximal flows representative for all the ones that have been joined. All
flows represented by the same maximal flow must behave in the same way when
crossing the various nodes of the network, so that it is sufficient to consider the
maximal flow and not each single flow that it represents.

Each one of the two described models has its pros and cons, and crucial, besides
the formal description of the main algorithms and their implementation, has been
the work of comparing performance against scalability testing, for highlighting their
difference and feasibility in real scenarios. The proposed implementation in Java,
instead, aims to be a contribution and extension to an already existing framework,

VEREFOO.

Acknowledgements

To all the supervisors of this thesis. Their help and advice were indispensable. To
all those who were alongside me in this academic path that is coming to an end.
My sincere thanks go to everyone.

Contents

List of Figures

Listings

1

Introduction
1.1 Thesis introduction

1.2 Thesis description

Traffic flows modelling (BACKGROUND 1)

2.1 Predicates

2.2 How can be a Predicate modelled?
22.1 BDD

2.3 Atomic Predicates.

Refinement Problem (BACKGROUND II)

3.1 VEREFOO, general presentation

3.2 VEREFOO, in more details
3.2.1 Service Graph VS Allocation Graph
3.2.2 Network Security Requirements
3.2.3 Generating traffic lows phase
3.2.4 Description of constraints for the MaxSMT problem

Thesis objective

4.1 Introduction to two novel approaches for defining traffic flows

New Predicate Model

51 TPAddress
5.2 PortInterval
5.3 LdProtocolType
5.4 Predicate

5.4.1 Operations on Predicate (implementation)

6

11

12
12
13

15
15
17
17
19

22
23
24
25
26
26
26

32
33

6 Atomic Flows

6.1 Approach
6.2 Example
6.3 Advantages L.
6.4 Disadvantages
6.5 Other considerations

7 Tests on Atomic Flows

7.1 Test parameters
7.2 Tests execution
7.3 Analysis of test results

8 Maximal Flows

81 Approach
82 Example
8.3 Advantages L.
8.4 Disadvantages L.

8.5 Maximal Flows VS Atomic Flows, introduction

9 Tests on Maximal Flows
9.1 Test parameters

9.2 Analysis of test results

10 Atomic Flows VS Maximal Flows
10.1 Tests execution
10.2 Analysis of test results
10.2.1 Finalresults
10.2.2 Time division between the phases

10.2.3 Stressing the Atomic Predicates approach

11 Conclusions

Bibliography

50
o1
93
o7
58
o8

59
99
60
60

70
70
72
76
76
76

7
77
77

81
82
83
33
83
86

87

89

A Implementation Atomic Flows 92

A.1 Algorithm 2: Atomic Predicates computation 92
A.2 Algorithm 3: "Interesting” Predicates and corresponding Atomic
Predicates computation L. 93
A.2.1 Interesting predicates for source and destination traffic of
each requirement oo 94
A.2.2 Interesting predicates for forwarding behaviour and transfor-
mation input domains 95
A.2.3 Applying transformations 97
A.3 Algorithm 4: Atomic Flows computation 99
B Implementation Maximal Flows 102
B.1 Algorithm 5: Atomic Flows computation 102
B.1.1 Generate maximal flows 103
B.1.2 Forward traversal L. 104
B.1.3 Backward traversal L. 108

List of Figures

2.1
2.2

3.1
3.2

5.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17

BDD subgraphs representing a prefix, a suffix and an interval

BDD representation of an ACL rule. (a) action = allow, (b) action =
deny . . . e

VEREFOO General Architecture

Example of Allocation Graph generation. The graph showed above
is the Service Graph. The graph below is the Allocation Graph.
White circles represent the Allocation Places.

UML class diagram describing Predicate

Computation time VS number of requirements
Number of generated AP VS number of requirements
Division of time VS number of requirements
Computation time VS number of NATs (i)
Computation time VS number of NATs (i)
Number of generated AP VS number of requirements
Division of time VS number of NATs
Computation time VS number of Firewalls
Number of generated AP VS number of Firewalls
Computation time VS number of Firewall rules
Number of generated AP VS number of Firewall rules
Computation time AP VS number of web clients and web servers

Computation time VS number of NAT sources
Number of generated AP VS number of NAT sources
Computation time VS progression tests
Computation time VS number of threads

Computation time VS percentage of requirements with information
on ports and protocol type

7.18 Number of generated AP VS percentage of requirements with infor-
mation on ports and protocol type

9.1 Computation time VS number of requirements, Computation time
VS number of web clients and web servers

9.2 Computation time VS number of NATs, Computation time VS num-
ber of Firewalls

9.3 Computation time VS number of NAT sources, Computation time
VS number of firewall rules

9.4 Computation time VS percentage of requirements with information
on ports and protocol typeo

9.5 Computation time VS progression tests

10

Chapter 1

Introduction

1.1 Thesis introduction

The advent of Network Functions Virtualization (NFV) and Software-Defined Net-
working (SDN) has led to the birth of an increasing number of automated tools
based on formal methods. To give some examples, scientific research in recent years
has focused on proposing automated and efficient solutions to solve, between the
many, two problems, which are connected one to each other: the problem of Ver-
ifying Network Reachability (e.g., “exists a path that links host a to host b”, “a
packet with a certain header value can reach host ¢”) and the problem of Verifying
Essential Network Properties, including security properties that the network must
satisfy.

The growing level of automation introduced by NFV and SDN allows to reach
greater flexibility and dynamism, avoiding manual work that is more prone to hu-
man errors and certainly less reactive to network changes. Furthermore, many times
the manual static analysis, which involves designing and configuring the network
by hand by a network manager, is not possible due to the size of the network itself,
measured in number of nodes and variables to be taken in consideration.

In this context, nowadays, it has become essential to be able to exploit automa-
tion especially in the field of Cybersecurity, as suggested in [I] and [2]. Given any
network, it should be possible to express a series of Network Security Requirements
(NSRs) that the network must satisfy, to be defined safe and reliable facing the
variety and constant evolution of cybersecurity attacks. In particular, what scien-
tific research is trying to do is to exploit network virtualization to automate and
optimize the allocation and configuration of network security mechanisms, such as
packet filters ([3], [4], [7]). The main goal of such solutions is to allow the user to
specify a series of NSRs, expressing them in a high-level and user-friendly language
(e.g., “node a must not communicate with node b”, “server x can only be reachable
through port y”) and then automatically translate these requirements by drawing
a graph of the network that is conflict free, with security functions allocated in
specific points and configured automatically. The assurance of correctness is pro-
vided by formal methods (correctness-by-construction). These solutions are called
Refinement tools.

12

Introduction

The efforts made to find these solutions exist, but they are not as many as
expected and in many cases they are limited to be adopted in simple networks. If
on the one hand great progress has been made in literature in developing models
with efficient algorithms for verifying networks of packet filters, representing only
forwarding tables and access control lists (in which each packet can be either for-
warded or dropped but not transformed) - HSA [6], NetPlumber [7], VeriFlow [5]
- on the other hand there are not so many solutions for networks that include also
packet transformers. Designing an automated tool that also provides support for
the use of packet transformers as well as filters presents major challenges. State-of-
the-art verification tools fail in those challenges mainly for reason of efficiency and
scalability. And this is a great limitation if we consider how many packet transform-
ers are applied in today’s networks: NATs that modify the header of the packet,
MPLS tunnels that perform label switching, IP-in-IP tunnels used by IPsec, tun-
nels used for the co-existence of IPv4 and IPv6 that performs header encapsulation
and de-encapsulation etc. For this reason, automated tools working on network
models that only include packet filters but not packet transformers would not be
very useful for most of today’s networks.

What is really missing in literature and need further investigation, is how to
model traffic flows and network functions, in order to forecast the behaviour of the
network. Traffic Flows are used to represent the set of all the possible flows of
packets that can cross a network, each traffic flow describes the transformations
that affect a certain packet along a certain path: it takes in consideration not only
how the packet exits from the source node, but also how it is transformed crossing
the various nodes it encounters travelling from source to destination. Some works
in this direction are [9], [10] and [11]. The difficulty lies in the fact that, in modern
network, it is quite difficult to have a priori a clear vision of what could happen
at runtime because many functions perform transformations and are stateful. It is
therefore increasingly necessary to find a model that can describe in an efficient way
these transformations by means of Traffic Flows. The computation of all possible
Traffic Flows for the network, in turn, is necessary to find the optimal placement
and configuration of security functions like firewalls, on the basis of given high-level
user requirements and so to respond to the Refinement problem described above.

Study, propose and compare different network modelling approaches that could
be used to solve the problem of automatically defining the allocation and config-
uration of security mechanisms in a virtualized network is the main goal of this
thesis.

1.2 Thesis description

The remaining of this thesis is organized as follow:

e Chapter 2 (BACKGROUND I): describes what is the state-of-the-art in
traffic modelling. So, it is a description of the latest novel approaches used to
describe traffic packets and how each element of the network can be described
as a function that models those packets. In particular, we focus on a novel
approach proposed by two researchers Yang and Lam first in 2015 ([12], [13]),

13

Introduction

based on what they called Atomic Predicates, that can help in Refinement
problems.

Chapter 3 (BACKGROUND II): provides a brief description of the Net-
work Refinement Process and presents VEREFOO (VErified REFinement
and Optimized Orchestration) that is an existing tool for Refinement, whose
framework this thesis aims to be a contribution and extension of.

Chapter 4: describes the objective of this thesis, introducing the central
work done, that is the definition of a new model for representing a class of
packets, Predicate, and two novel approaches for defining traffic flows over
Predicates.

Chapter 5: shows the definition of a new model for representing a class of
packets (how it has been modelled, implemented and which operations are
possible over it) that we call Predicate.

Chapter 6: Atomic Flows. This chapter introduces the first novel approach
for defining traffic flows that makes use of Atomic Predicates described in
Chapter 1. Chapter 5 describes how this concept has been adapted to our
purposes by introducing some new substantial differences but keeping the
basic idea.

Chapter 7: analyses how the approach with Atomic Flows performs and
scales against different scalability test cases.

Chapter 8: Maximal Flows. Introduction to the second novel approach.
This Chapter shows what is the basic idea behind this approach and what
are its related algorithms.

Chapter 9: analyses the performance of this second approach on the same
tests done for Atomic Flows.

Chapter 10: final comparison between the two proposed approaches. Pros
and cons of each one and final analysis for determining which could be con-
sidered “the best one” for solving the Refinement problem.

Chapter 11: Conclusions

Appendix A: shows a possible Java implementation for the main functions
of the Atomic Flows approach.

Appendix B: shows a possible Java implementation for the main functions
of the Maximal Flows approach.

14

Chapter 2

Traffic lows modelling
(BACKGROUND I)

A network can be modelled as a graph of nodes. A node can be any function that
works within the network (i.e., web client, web server, router, firewall, NAT etc).
Each node has a set of input and a set of output ports, each port is controlled by
an ACL, that describes whether a packet with a certain header can pass through
that port or not, determining what is the forwarding domain of the node: I, for
packets allowed to pass, I; for those denied. Once entered the node (through the
input port), the packet is transferred to the corresponding output port (switching
operation), chosen according to the forwarding rules set in the forwarding table of
the node, which in turn has been built by routing protocols. Inside the node and
before exiting through the output port, the packet could be transformed. As men-
tioned in the introduction, the most common transformations are header rewriting,
encapsulation, de-encapsulation, label switching. Therefore, in addition to the for-
warding table and the domains I, and I;, in many nodes of the network there
is also another table, which is in charge of deciding whether a packet has to be
transformed or not, and if yes how it has to be transformed. This transformation
behaviour is modelled according to a function T, that has a series of input domains
to which corresponds a series of output domains. For a forwarder that simply does
forwarding of the packet without modifying it, for example, function 7" has a single
input domain D, that matches all the packets, and 7" is modelled as the Identity
function. For a NAT instead, there are three main domains, Dy, Dy, D3, which
are followed by three distinct transformations: a packet that matches with D; is
affected by the Shadowing operation, one that matches with D, by the Reconver-
sion operation, one that matches with D3 no transformations are applied to and
the packet is simply forwarded.

2.1 Predicates

The choices of forwarding and transformation of a packet are made based on the
content of its header. Hence the need to model packet headers as Predicates capable
of describing them. The variables of such predicates represent packet header bits

15

Traffic flows modelling (BACKGROUND 1)

or fields. This means that packets with the same header are represented by the
same Predicate and are treated in the same way by all nodes they pass through.
Scientific research shows that the choice of how these predicates are modelled and
built is trivial and there are an increasing number of solutions (i.e., BDD, Tuple
Representation [11], Wildcards Expressions [6], FDD etc.), that we will discuss in
the next section of this Chapter. For now, we just need to know that a packet header
can be represented by a class called Predicate, which contains the information of
its main header fields, and which lends itself well to being the subject of logical
operations such as intersection, union and negation.

In this way, it is therefore necessary that also the rules inserted in the ACL of
the nodes, as well as those inserted in the forwarding tables and the input domain
for T, are represented by Predicates, so that they can be comparable with the
Predicates describing the header of incoming packets. In literature, there are lot
of algorithms that can transform any ACL/forwarding table/transformation table
into a set of Predicates.

Let us see an example, that is how a generic ACL can be transformed into a
Predicate. This example is taken from [12]. An Access Control List is a list of rules
expressed by a condition and an action (which can be ALLOW or DENY), that
determines the forwarding behaviour of a packet crossing the node. The order in
which these rules are inserted into the list is very important: a packet could match
with conditions of several rules, but the action it will undergo is determined by the
action of the first rule in sequential order whose condition is satisfied, according to
the so called “first match” criterion.

Algorithm 1 Converting an ACL to a Predicate

Input: An ACL (G}, action; for i =1,...,m)
Output: A Predicate for the ACL

1: allowed « false, denied < false
2: fori=1,....,m do

3: if action; = deny then

4: denied + denied V G;

5: else

6 allowed < allowed V (G; N\ —denied)
7 end if

8: end for

9: return allowed

First, we convert the condition of each rule into a Predicate G;. Then we run the
Algorithm shown in figure, that takes in input the list of rules in sequential order,
and transform them into a set of Predicates representing the I, domain (allowed in
the code) and a set of Predicates representing the I; domain (denied in the code).
The two sets, allowed and denied, are initially set to false, which in the Set theory
represents the empty set. Then for each rule scanned, if the action is DENY, its
G condition is simply added in OR to the denied set. Instead, if the action is
ALLOW, then its condition is added in OR to the allowed set only after removing

16

Traffic flows modelling (BACKGROUND 1)

the part of the condition that intersects with denied. This step is essential in order
to maintain the logic introduced by the “first match” criterion. At the end, the
algorithm returns the set allowed, that is the set of Predicates for the I, domain.
The set for the I; domain can be obtained as the negation of I,. In other words,
allowed contains the disjunction of all the Predicates representing the conditions
for which the action to perform is ALLOW. Any packet represented by a Predicate
in this set, is let pass through the node. We can also note that at the end of the
algorithm we obtain a representation of the ACL that completely abandoned the
concept of “first match”.

Similar operations can be done to covert forwarding tables and input classes for
transformers. The goal of these algorithms is always the same, that is the achieve
a representation of network function domains as sets of Predicates.

2.2 How can be a Predicate modelled?

The choice for the data structures used to represent Predicates, as mentioned before,
is crucial and can affect both space and time efficiency of automated tools that
use them. Nowadays, the state-of-the-art has identified several solutions: among
these we mainly mention three different models - BDD, Tuple Representation and
Wildcards Expressions - but we will analyse in detail only one - BDD -, that is the
one used by researchers Yang and Lam as cornerstone for their approach based on
Atomic Predicates. We will describe its advantages and provide a practical example,
to allow the reader to concretize the concept of Predicate described in the previous
sections. However, despite the many advantages of BDDs, it must be immediately
said that, for the work of this thesis, was chosen a fourth representation, novel in
literature and introduced here by me for the first time. The main reason is that the
work of this thesis aims to be a contribution and extension of an existing Refinement
tool, VERFEFOOQO, implemented in Java. Since there is not an implementation of
BDDs in Java, it was necessary to study and propose a new representation that
was Java compatible and therefore usable within the VEREFOO framework. We
will present this new model in Chapter 4.

2.2.1 BDD

BDD stands for Binary Decision Diagram. It is an acyclic, direct and rooted graph
structure used to represent Boolean functions. It consists of central nodes (decision
nodes) and two terminal nodes labelled as TRUE and FALSE. Each decision node
is represented by a Boolean variable and has two children paths, which respectively
represent the path to take if the Boolean variable evaluates to true and the one to
take if it evaluates to false.

In our case, each variable inside the BDD represents a bit of the packet header.
The three graphs in figure 2.1, for example, represent a header field made up of
four bits (xg, x1, z2, x3). A dotted edge denotes an assignment to false, a solid edge
denotes an assignment to true. In (a), the BDD subgraph stands for prefix 101*
(notice that the variable x5 is not represented in the graph because it is meaningless

17

Traffic flows modelling (BACKGROUND 1)

@& @
.
fJ'L:E .' ‘ %
{c)

Figure 2.1: BDD subgraphs representing a prefix, a suffix and an interval

¥ ¥
(&

)

for the choice), in (b) it stands for suffix *101, while in (c) stands for the interval
from 0001 to 1110.

With this representation, each header field can be represented by a BDD sub-
graph. The BDD graph representing the whole Predicate is obtained by merging
the subgraphs representing the single header fields.

Freld,

fieldy false Ficld,
false A

(a) (b)

Figure 2.2: BDD representation of an ACL rule. (a) action = allow, (b) action =
deny

In figure 2.2, each circle represents the BDD subgraph for field-i. An edge
exiting the circle is labelled to true if the corresponding subgraph evaluates to
true. Otherwise, an edge exiting the circle is labelled to false if the corresponding
subgraph evaluates to false. For a Predicate representing an ACL rule, if the rule
has action = ALLOW, its BDD graph evaluates to true if all subgraphs evaluate
to true. If the rule has action = DENY, its BDD graph evaluates to false if all
subgraphs evaluate to true.

BDDs can, in this way, be used to model the network Predicates. In particular,
compared to the other approaches mentioned above, they could bring three main
advantages:

e Unique representation. Considering a Predicate representing a set of pack-
ets, its representation as a BDD is unique. Hence, it is not possible for the
same Predicate to be represented by two different BDDs. At the contrary, if
the representation were not unique, it would have been trivial time consuming
to check if different representations thus refer to the same Predicate.

18

Traffic flows modelling (BACKGROUND 1)

e Representation size. It can be shown that the number of nodes inside a
BDD used to represent a packet header is <= 2h + 2, where h is the number
of header bits and +2 stands for the two terminal nodes (true and false). All
the other representations have greater complexity (in some cases even 2").

e Logical operations. BDDs lend themselves very well to logical operations,
being made up exclusively of true/false Boolean variables. Conjunction and
disjunction require time proportional to the product of operand sizes while
computing the negation is much easier, it simply consists of swapping the two
terminal nodes.

2.3 Atomic Predicates

Although the representation through BDD has proved very effective in representing
the Predicates of the network, the complexity in general of these kinds of represen-
tation could affect the performance of Refinement tools that continuously perform
intersection and union operations over packet sets. Using Predicates directly as the
base variable within the Refinement tools could be disadvantageous, regardless of
the formal representation used to represent them. And this is the origin of the idea
developed by two researchers, Yang and Lam, who in 2015 proposed an alternative
approach based on what they called Atomic Predicates.

Given a set of Predicates representative of the network, the two researchers
present an algorithm to compute a set of corresponding Atomic Predicates, that is
minimal and unique. As stated in [12] “Atomic predicates are the smallest set of
disjunct predicates such that each predicate, of the set over which they are computed,
can be expressed as a disjunction of a subset of them”. In particular,

Definition 2.3.1 Atomic Predicates: Given a set P of predicates, its set of Atomic
Predicates {p1 ... pr} satisfies these five properties:

1. p; # false, Vi € {1, ..., k}.
2. \/f:1 p; = true.
3. pi Ap; = false, if i # j

4. Each predicate P € P, P + false, is equal to the disjunction of a subset of
atomic predicates

P = U;cs(py Pi» where S(P) C {1,...,k}

5. k is the minimum number such that the set {py, ..., pr} satisfies the above
four properties

The main advantage of Atomic Predicates is that, being unique, they can be
built as BDD (all the operations to compute the set of atomic predicates start-
ing from network predicates can be done exploiting the advantages of BDD), and
then be identified uniquely by integers. The conjunction (and disjunction) of two

19

Traffic flows modelling (BACKGROUND 1)

predicates, then, can be computed as the intersection (union) of two sets of inte-
gers. Refinement tools, therefore, will have in input simple integers and no longer
complex classes.

Yang and Lam, in their papers [12] [13], present a series of algorithms that allow
to compute Atomic Predicates starting from a set of Predicates representative of
the network. Let us see these algorithms and then a practical example of their
application.

Given a Predicate P, the atomic predicates corresponding to A({P}) are com-
puted as follow:

{true}, if P = false or true

APy = { {P,—P}, otherwise (2.1)

Given two sets of atomic predicates P, = {by,...,b} and P, = {dy, ..., d,, }, their
union Py = A(P, U P,y) = {ay,...,ax} is equal to

{a; = b, Ndi,la; # false,iy € {1,....1},is € {1,...,m}} (2.2)

So, at this point, we use the following algorithm to compute the set of atomic
predicates, given a set of predicates P

Algorithm 2 Computing Atomic Predicates

Input: {Py, P, ..., Py}
Output: A{Py, P, ..., Py})

: fori=1to N do

compute A({F;}) using (2.1)

: end for

: for i =2to N do

compute A({Py, ..., B;}) from A({P, ..., P,_,}) and A({F;}) using (2.2)
: end for

: return A({Py, ..., Py})

Each of the atomic predicates in the returned set is then assigned an integer.

Let us take a practical example and consider two predicates represented by the
I[P quintuple q = {IP source, port source, IP destination, p destination, prototype}.
Each field of this quintuple represents a field of the packet IP header. We use the
wildcard “*”, associated with a field, when we want to indicate that there are no
limitations for that field (its value may be equal to any possible value within its
domain). The five fields of the quintuple are set together in AND.

Py ={10.0.0.1, *, * * *} represents any IP packet with IP source = 10.0.0.1.
There are not limitations for the other fields.

Py = {* * 10.0.0.2, *, *} instead, represent any IP packet whose destination is
10.0.0.2.

20

Traffic flows modelling (BACKGROUND 1)

These two predicates can express, for example, a condition in an ACL, an input
domain for a transformer or simply a forwarding rule. Also note that they have
overlaps: a packet {10.0.0.1, *, 10.0.0.2, *, *} would intersect with both.

The first step is to apply formula 2.1 to P; and Ps.

A{Pi}) ={10.0.0.1, %, %, %, %} (1), 1{10.0.0.1, %, %, %, * } (o) (Notice that symbol ”!”
stands for the negation, so the second predicate means the set of all packets with
an IP source different from 10.0.0.1)

A{Po}) = {*,%,10.0.0.2, %, x}(3), 1{,%,10.0.0.2, %, %})

Now we can apply formula 2.2 in order to compute A({Py, P»}).
(1) A (3) = {10.0.0.1, %,10.0.0.2, %, %}

(1) A (4) = {10.0.0.1, ,110.0.0.2, *, +}

(2) A (3) = {110.0.0.1, ¥, 10.0.0.2, %, ¥}

(2) A (4) = {110.0.0.1, ¥,110.0.0.2, %, *}

The resulting set, A({ Py, P,}), is equal to {{10.0.0.1, *, 10.0.0.2, *, *}, {10.0.0.1,
*110.0.0.2, *, *}, {110.0.0.1, *, 10.0.0.2, *, *}, {110.0.0.1, *, 110.0.0.2, *, *}}.

We have obtained four final atomic predicates, which are unique and disjoint
one from each other. We can assign each of them an integer identifier.

{10.0.0.1, *, 10.0.0.2, *, *} = AP1

{10.0.0.1, *, 110.0.0.2, *, *} = AP2
{110.0.0.1, *, 10.0.0.2, *, ¥} = AP3
{110.0.0.1, *, 110.0.0.2, *, *} = AP4

Starting predicates, P; and P,, can be expressed as a disjunction of a subset of
the above computed atomic predicates. In particular,

Pl =AP1UAP2
P2 =AP1UAP3

(Final note for this Chapter: in describing this model, we have defined an
example considering IP headers. The same, however, is valid for all protocols and
abstract the specific fields of application)

21

Chapter 3

Refinement Problem
(BACKGROUND I1)

We are in the context of Security Automation. In recent years, there has been much
discussion about how automated policy-based network security management tools
can assist human in creating and configuring reliable security services capable of
verifying and satisfying a series of security requirements given them in input. In
addition to the scientific researches mentioned in the introduction of this thesis, we
can add [15], [16] and [17]. While the misconfiguration of Network Security Func-
tions (NSFs) has recently become the third most critical exploit for cybersecurity
attacks, due to the inability of the human being to have a global vision of the
entire network that consequently leads to a distribution of filtering rules on NSF's
based more on common sense than on a true exhaustive and deterministic analy-
sis, on the other hand the advantage introduced by exploiting security automation
can become fundamental to avoid or minimize human errors ([1]). The main task
of Refinement tools is precisely to refine high-level security requirements by au-
tomatically allocating and configuring the necessary security functions. They are
approaches predominantly based on formal methods that guarantee correctness-by-
construction. These tools can provide for both the design of a complete end-to-end
service, also including network functions not related to security aspects, and for
the enrichment of an already configured network by introducing security functions
built ad hoc for that network. One of the main use cases is that in which there is a
service designer who wants to define a Service Graph manually and then enforce it
with security functions in an automatic way, because he does not have the security
skills to do it by himself.

Among the many interesting aspects of these tools, there is the possibility of
seeking optimality: so having all the security functions allocated, configured and
conflict free, and at the same time minimize the consumption of resources. One of
the problems which arises, instead, is the huge variety of tools that can be used
to orchestrate the virtual functions, each one having different peculiarities and
characteristics and so being difficult to interface with the others. And this has an
impact on the portability of automatic processes that allocate and configure virtual
security functions, that must work with a large number of APIs and data formats.

After all these considerations, in the rest of the chapter we will introduce an

22

Refinement Problem (BACKGROUND II)

existing Refinement framework called VEREFOO (VErified REfinement and Op-
timized Orchestration). The work done for this thesis, as previously mentioned,
aims to be a contribution and extension of this tool.

3.1 VEREFOQOOQO, general presentation

“VEREFOO manages the creation, configuration and orchestration of a complete
end-to-end network security service following a modular approach, that is reflected
by the design of the framework itself. VEREFOO automatically performs, on a
provided Service Graph, an optimized allocation and configuration of the Network
Security Functions (NSFs) that are necessary to fulfil an input set of Network
Security Requirements (NSRs), which can be expressed by the service designer by
exploiting a high-level language”.

The VEREFOO general architecture is shown in figure 3.1. It follows a brief
description of its behaviour.

mu:<

Palicy GUI Sarvice GUI ‘

HLF. MLP:

i)

NF Catalog’
reg S
/ Policy Analysis (PAN) \\
/ VEREFOO ‘
HLF Analyzis MLP Analysis
A, b %
f j Al = |E| Canf -
— MLP J Sl = IE‘
: MLP
P / =
‘ Allacation ‘ /
% [Distribution ‘ 1 >
SEL from MLP 2)
. NF ‘ Placament ‘
] . SEL from HLP / S ———
|
NF Catalog:
\ NF Salection (SE) f
\ /
B #

Figure 3.1: VEREFOO General Architecture

e First of all, the user can define the Network Security Requirements through
the Policy GUI, expressing them as HLP or MLP depending on the expe-
rience level of the user. HLP stands for High-Level Policies and refers to
requirements expressed in a user-friendly language such as “Block all traffic
from/to social networks”, “Log access to all web sites”. MLP instead stands
for Medium-Level Policies and refers to requirements described with much
more level of detail such as “Block all IP traffic coming from 10.0.0.1 having
source port equal to 80”.

23

Refinement Problem (BACKGROUND II)

Requirements expressed in high-level language are automatically translated
into medium-level language by the H2M (High- To-Medium) Module. Medium-
level language contains all the useful information necessary for the future
creation of the policies of the NSF's.

A preliminary phase is represented by the Policy Analysis module (PAN).
The goal of this module, which receives the NSRs as input, is to make sure
that there are no errors in the NSRs and that they are conflict-free. It returns
the minimum set of constraints that must be satisfied or a report highlighting
which are the errors in case the conflicts cannot be automatically solved.

At this point, a fundamental role is played by the NF Selection Module (SE),
which, looking at the expressed NSRs, decides which are the NSFs necessary
to satisfy them, choosing them from a pre-built catalogue (NF catalogue)
which includes all the available functions for the system.

Finally, the Allocation, Distribution and Placement Module (ADP) is the
central element of the architecture. Its purpose is to compute the final Ser-
vice Graph with the added NSFs, receiving in input the medium-level NSRs,
the list of selected NSFs and the original Service Graph, that describes the
topology of the network in turn transformed into the corresponding Alloca-
tion Graph (see more later). In order to do this, the ADP module uses a
partial weighted MaxSMT problem solver, z30pt. These kinds of tools
are an extension of the classic SMT solvers in optimization contexts: the se-
curity requirements are introduced into the solver as hard constraints that
must be satisfied at all costs, while other specifications can be introduces as
weighted and optional soft constraints in order to find the ideal and optimal
allocation of the NSFs within the network. The word "partial” stands for
the fact that there are constraints that are not relaxable and must be satis-
fied, and others not necessary to solve the problem but introduced only for
optimization purposes. The word "weighted” instead means that each clause
is assigned a weight that contribute to finding the best solution that gives
priority to most valued clauses. In terms of computational complexity, the
MaxSMT problem is NP-complete but, despite this discouraging worst case,
with a convenient formulation of the problem and proper pruning techniques
the complexity could be reduced to polynomial time. In the next session of
this chapter, we will discuss in detail the various types of constraints applied

in VEREFOO.

e The last module presented in figure is the M2L module (Medium-to-Low).
This takes the list of medium-level policy rules, returned by the solver, and
translates them into low-level language, that depends on the specific imple-
mentation of each network function that must be configured.

3.2 VEREFOOQO, in more details

Let us see and describe VEREFOO in more details.
24

Refinement Problem (BACKGROUND II)

3.2.1 Service Graph VS Allocation Graph

As already mentioned in several points, the purpose of the tool is to research the
optimal allocation scheme of NSFs and configure them so that they are compliant
with the provided NSRs. The network security functions the tool allocates are
packet filter virtual instances, providing the self-configuration of their rules, by
solving a partial weighted MaxSMT problem. All starts from the definition of the
requirements and the graph describing the network topology, called Service Graph,
which is given in input to the tool.

A Service Graph (SG) is an interconnection of service functions and network
nodes. The functions are organized in a graph structure, providing the possibility
that multiple paths connecting the same source and destination exist. An important
thing to consider is that the SG is defined by the network service designer without
involving security considerations, but only providing a network service to the user.

The Service Graph provided by the service designer is automatically transformed
into an Allocation Graph (AG). Without further specification, a placeholder
node, called Allocation Place (AP), is placed on each link that connect two con-
secutive nodes. These AP represent the potential points where a firewall instance
could be inserted by the optimizer engine to reach the optimal allocation scheme.

u B a

Figure 3.2: Example of Allocation Graph generation. The graph showed above
is the Service Graph. The graph below is the Allocation Graph. White circles
represent the Allocation Places.

There is one last thing to say. Although the transformation process from the SG
to the AG is done automatically, a security service designer can still introduce by
hand specific constraints, forcing the allocation of a firewall in a specific position, or
prohibiting to consider specific links as potential allocation places. This capability
enriches flexibility and, at the same time, decreases computation time by reduc-
ing the solution space the optimizer must consider, but can lead to unoptimized
solutions.

25

Refinement Problem (BACKGROUND II)

3.2.2 Network Security Requirements

Among all the security requirements that can be defined, VEREFOO focuses on
connectivity requirements between pairs of end points: Reachability require-
ments require that two nodes must be able to communicate, while Isolation
requirements require they must not communicate. There are four possible ap-
proaches used to specify requirements:

1. Whitelisting approach: the default behaviour is set to block all possible
traffic flows and the user can only additionally specify Reachability require-
ments.

2. Blacklisting approach: the default behaviour is set to allow all possible
traffic flows and the user can only specify Isolation requirements.

3. Rule-oriented specific: the user can specify both isolation and reachability
requirements. The way the system manages all the other cases not specified
is automatically decided trying to minimize the number of configured rules.

4. Security-oriented specific: the user can specify both isolation and reach-
ability requirements and for the other traffic flows the system allows only the
communications that are strictly necessary to satisfy user requirements.

3.2.3 Generating traffic flows phase

A class of packets, also called traffic, is modelled as a Predicate, as we have seen
in Chapter 2. Each node in the SG acts on its input traffic and generates a cor-
responding output traffic. The forwarding and transformation behaviour of the
AG is described by means of its set of traffic lows F. Each flow f belonging to
F, is formally modelled as a list [ng, tsa, N, tap, N, - - -, Nk, tra, Na), that is a list of
alternating nodes and traffic. Each list starts from the source node and the cor-
responfing generated traffic, and then includes all the intermediate nodes, in the
path that links source ng to destination ny. Each intermediate node can forward the
traffic, possibly changing it, or drop it. Traffic ¢;; represents the traffic transmitted
from node n; to node n;. All packets represented by ¢;; are threaten in the same
way by node n;. The set of intermediate nodes includes also the allocation places,
with potential firewall configured.

Understanding which traffic flows are generated for each specified requirement
is very crucial, in order to know which particular traffic must be blocked (if the
requirement is Isolation) or allowed to pass (if the requirement is Reachability), at
the generic node n;.

3.2.4 Description of constraints for the MaxSMT problem

In VEREFOO there are two kinds of constraints: hard constraints and soft
constraints. Hard constraints are not relaxable, they must be satisfied to get a
solution of the problem. They are used to model the NSRs and user requirements

26

Refinement Problem (BACKGROUND II)

about firewall allocation. Soft constraints instead are relaxable and are used to
find the optimal firewall allocation and configuration. In particular, VEREFOO
considers two main optimization goals: 1) minimize the number of allocated firewall
(saving on resource consumption) and 2) minimize the number of rules configured
on each allocated firewall (shorter list means filtering operations are done faster
and less amount of memory necessary to store it).

In order to describe how constraints are modelled in VEREFOO, let us first
introduce some auxiliary functions.

allocated(n) : N — B. This Boolean function returns true whether a firewall
must be allocated in the allocation node n.

forbidden(l;;) and forced(l;;) : L — B. The first function returns true if the
allocation of an AP on the link /;; has been prohibited by the service designer, the
second one returns true if the allocation has been forced. The two requirements
cannot coexist on the same node.

deny(t) : T — B. It is the function that models the forwarding behaviour of a
node. It is true for ingress traffic ¢t € T' if packets represented by ¢ are dropped by
the node.

w(f) : F — (N)*. This function maps a flow f € F to the ordered list of
network nodes that are crossed by that flow, including the destination but not the
source.

7(f,n): F'x N — T. This function maps a flow and a node to the ingress traffic
of that node belonging to that flow. In case the flow does not cross the node, this
function returns ty, that means the empty set.

v(f,n) : F'x N — N. This function maps a flow f and a node n to the next
node crossed by f after n. In case n is not in f or it is the last node, the function
returns ng, that means no node.

Hard constraints in firewall allocation
Vi;; € L.(—forbidden(l;;) = a;; € ANl € LAl € L) (3.1)
Wij € L(fO?“bde@?’L(lZ]) — lz’j € L) (32)

Function 3.1 means: if on the link between nodes n; and n; nothing has been
prohibited, then we can insert an allocation place a;j, splitting the original link in
two segments l;; and li;. At the contrary, function 3.2 means: if the creation of
the allocation place has been prohibited, link /;; is inserted directly into L without
modification.

Vi;; € L.(forced(l;;) = allocated(a;;)) (3.3)

Function 3.3 is used to force the allocation of a firewall on the link /;;, when the
user requests it.

27

Refinement Problem (BACKGROUND II)

Hard constraints modelling the NSRs
Vf e F..3i.(n; € w(f) A allocated(n;) A deny;(T(f,n;))) (3.4)
Vf e F.Vi(n; € n(f) A allocated(n;) = —deny;(7(f,n;))) (3.5)

Formula 3.4 models an Isolation requirement. The requirement r is satisfied if,
for each possible traffic flows computed for r, exists on the path of that flow at least
one firewall that is allocated and is configured to block the ingress traffic to that
node for that flow. Formula 3.5 instead models a Reachability requirement. The
requirement r is satisfied if exists at least a traffic flow computed for r, for which
all the nodes in the path of that low do not block the ingress traffic to that node
for that flow.

Soft constraints

Since the solver tries to minimize the number of virtual firewalls allocated, a soft
constraint is introduced for each allocation place to express the preference that no
firewall should be allocated in that node.

Va;; € A.Soft(allocated(a;;) = false, cy) (3.6)

The algorithm tries to maximize the sum of the costs, so putting a high cost ¢y,
to allocated = false means trying to prioritize the fact that the firewall should not
be placed there.

For the next constraints, we must introduce another function:

enforces(dg,r) : A x R — B. This Boolean function returns true if the default
action d; of a firewall, allocated in the allocation place k, enforces requirement
r. For enforces we mean the case in which the default action is aligned to the
property of the requirements (i.e., default action = ALLOW and requirement =
REACHABILITY or default action = DENY and requirement = ISOLATION). In
this case, there is no need to configure any rule inside the firewall for satisfying
that requirement.

Starting from this function we can try to minimize the cardinality of the set of
rules configured inside each firewall to be allocated, identifying the only security
requirements which could actually need a specific rule inside the filtering policies
of the firewall. In particular, a firewall could be interested by a specific NSR only
if there exists a flow, for that requirement, that cross the allocation place in which
the firewall is placed, and if the requirement is not already enforced by the default
action of the firewall itself.

Vr € RVf € F..(a, € w(f) AN —enforces(dy,r) = (Vg € 7(f,ar).q € Qr)) (3.7)

The set @y is the set of all possible tuples (Predicates) describing the traffic
incoming to a potential firewall allocated in k, for which a rule is needed. Then, for

28

Refinement Problem (BACKGROUND II)

each tuple ¢ belonging to @), a placeholder rule p is created. This placeholder rule
has the potential to become a real rule for that firewall, but it is the MaxSMT prob-
lem that states if it is necessary or not. Obviously, the action of each placeholder
rule is opposite to the default action of the firewall.

configured(p) : P — B. This formula returns true if the placeholder rule needs
to be configured.

A soft constraint is then introduced to try to minimize the number of placeholder
rules that must actually be configured, (3.8).

Vp; € Py,.Soft(—configured(p;), cx:) (3.8)

If at least one rule belonging to P, must be configured, then necessarily a firewall
instance must be allocated in the allocation place a;. This condition is expressed
by the following hard constraint,

(3p; € Py.configured(p;)) = allocated(ay,) (3.9)

Since goal 2) has less priority than goal 1), the value assigned to the weight of
the soft clause 3.7 must be greater than the sum of the weights assigned to the soft
clauses related to placeholder rules, 3.8. This is expressed by the following formula

Z (cki) < (3.10)

i:p; € Py

In general, the cost of allocating a firewall within an allocation place must be
greater than the sum of the costs related to all other constraints defined for that
allocation place. This choice is critical not only to reach the real objective of the
framework but also in terms of performance since, if the solver establishes that a
firewall should not be allocated within an allocation place, it does not make sense
to try to satisfy all the other policy rule constraints related to that allocation place,
because they would be anyway never satisfied.

Fixed that a rule must be configured on a firewall, and therefore that firewall
must necessarily be instantiated, then we could try to exploit as much as possible
the use of wildcards instead of single values for each field of the rule, in order to
aggregate more placeholder rules under a single one. To do this, a weight is assigned
to the use of wildcards introducing eleven new soft constraints:

Vp: € Po¥j € {1,2,34}.Soft(p;. IPSre; = *, ciz;) (3.11)
Vp; € P,.Vj € {1,2,34}.Soft(pi. I PDst; = *, cyis;) (3.12)
Vp; € Pp.Soft(p;.pSrc = [0,65535], cxia) (3.13)
Vp; € Pp.Soft(p;.pDst = [0,65535], cxis) (3.14)

29

Refinement Problem (BACKGROUND II)

Vp; € Pp.Soft(p;.tProto = *, i) (3.15)

Here too, the weight assigned to the configuration of the placeholder rule must
be greater than the sum of weight for using wildcards. In practise, if the placeholder
rule is not needed and so not configured, it makes no sense to try to exploit the
usage of wildcards for that rule. The formula describing the cost relationship for
the three types of soft constraints can be summarized by 3.16

Z (cri1 + Z(ij + Crizg)) < ck (3.16)

i:p; € Py, j=1

and with this we close the discussion on soft clauses.

Other constraints

Finally, there is one more thing to consider in order to finalize the configuration of
a firewall consistently with the allocation and configuration choices. It is necessary
to define for each allocation place two new hard constraints, taking in account the
set of all possible input Predicates.

We must introduce two new formulas:

matchAll(p, q) and matchNone(p,q) : P x Q — B. p represents the condition
of a rule configured on the firewall; q represents the tuple expressing the Predicate
of the input traffic. MatchAll returns true if the rule condition completely includes
the traffic tuple (in other words, it means that the intersection between p and ¢
is equal to q). MatchNone, on the other hand, is the opposite and means that
there is no intersection between the Predicate representing p and the Predicate
representing q.

The two new hard constraints are modelled as follow:
allocated(ay) N denyy(t) = (a) V (b)

(a) = wlst(ax) AVq € t.(Vp; € Py.(—configured(p;) V matchNone(p;, q)))
(b) = —~wlst(ax) ANVq € t.(Ip; € Py.(configured(p;) N matchAll(p;, q)))(3.17)

allocated(ay) N\ —denyi(t) = (a) V (b)

(a) = wlst(ax) AVq € t.(Ip; € Py.(configured(p;) N matchAll(p;, q)))
(b) = ~wlist(ar) AVq € t.(Vp; € Py.(—con figured(p;)VmatchNone(p;,q)))(3.18)

Formula 3.17 means that, if there is a firewall allocated and it is required to
block a traffic ¢, then

(a) If the firewall is in whitelisting (i.e., default action = DENY), each tuple of
the traffic ¢ must not intersect with any placeholder rule (which will have action =

30

Refinement Problem (BACKGROUND II)

ALLOW)), if the placeholder rule is configured, if it is not configured the problem
not even arises.

(b) If the firewall is in blacklisting (i.e., default action = ALLOW), then for
each traffic tuple there must be at least one configured rule (which will have action
= DENY) that does matchAll with that tuple.

Formula 3.18 means that, if there is a firewall allocated and it is asked to let
the traffic ¢ pass, then

(a) If the firewall is in whitelisting (i.e., default action = DENY), then there
must be at least one configured rule (which will have action = ALLOW) that does
full intersection with each traffic tuple

(b) If the firewall is in blacklisting (i.e., default action = ALLOW), then there
must be no configured rules (which will have action = DENY) that intersects the
traffic tuple.

31

Chapter 4

Thesis objective

Stated how necessary it is nowadays to be able to exploit the automation that
Refinement tools can provide and how important it is, to make these tools work
at their best, to arrive at a definition of flexible and efficient traffic flows, in this
Chapter we will present the thesis objective. As mentioned in the introduction, one
of the aspects that in literature need further investigation is how traffic flows and
network functions can be modelled efficiently in order to forecast the behaviour of
the network, that may be made of different components, including stateful ones. In
Chapter 3, we presented a definition of traffic flows, which make use of the concept
of Predicate described in Chapter 2, and which are used by Refinement tools for
automatically defining the allocation and configuration of security mechanisms.

Then, we moved on to describe VEREFOO, explaining the problem it must
solve and, in general, what is its functioning. All starts with the definition of the
requirements by the user. Then, the second step consists of computing the sets
of all the possible traffic flows that are affected by at least one requirement. All
these classes of packets, that describe the behaviour of the packets crossing the
network, are collected in what in this thesis are called Traffic Flows. Then the set
of traffic flows are given in input to a Solver that, considering the various nodes of
the network and the classes of packet that arrive in input to them, automatically
decides where to allocate the security functions and how to configure them, creating
the policy necessary to meet the requirements.

Having a clear and flexible modelling for traffic flows, to arrive quickly at a
definition of them and then be able to use them efficiently in the context of the Re-
finement problem, is one of the most important aspects. And with these premises,
we can present the thesis objective.

First, the goal of this thesis is to propose a new model able to describe Predi-
cates, explain how they can be built, implemented and which operations are possible
over them. Predicates, as we have seen, are the basic element inside a traffic flow.
Therefore, having an efficient model to represent them is a good starting point. We
will present this new Predicate model in Chapter 5.

Subsequently, we move on presenting and comparing two novel network mod-
elling approaches and algorithms, proposed too for the first time here with this
thesis, for defining traffic flows over Predicates. These defined traffic flows can

32

Thesis objective

then be used within the VEREFOO framework or in general within any Refine-
ment tool to solve the Refinement problem. In particular, it will be explained in
detail what is the idea that stands behind these two novel approaches, how traf-
fic flows are computed and finally how they interface with the solver internal to
VEREFOO. Since each one of the two models has its pros and cons, it has been
crucial, besides the implementation, the work of comparing performance against
scalability testing, for highlighting their feasibility in real scenarios. In the next
paragraph of this Chapter, we will introduce the basic idea that stands behind these
two novel approaches. Later they will be treated separately and in more detail in
the following Chapter 6 and 8.

4.1 Introduction to two novel approaches for defin-
ing traffic flows

Two different (and alternative) models for describing traffic flows and network func-
tions have been identified and compared. Each model must enable the computation
of how a packet that enters the network is forwarded and transformed when crossing
the various nodes (i.e., NAT, Load balancers, VPN gateways, firewalls etc.).

The first approach that has been considered makes use of Atomic Predicates,
a concept described in Chapter 2, proposed in 2015 by some researchers for com-
puting Network Reachability. This concept has been adapted to our purposes by
introducing some new substantial differences but keeping the basic idea. Given a
set of predicates (identified by the IP quintuple), it is possible to compute the set
of totally disjunct and minimal predicates (atomic) such that each predicate can
be expressed as a disjunction of a subset of them. In other words, it is possible to
split each complex predicate (representing for example a firewall rule, a NAT input
class, a requirement source, etc) into a set of simpler and minimal atomic predi-
cates. After having computed the set of atomic predicates for all the “interesting”
predicates of the network, we proceed to generate for each user requirement all
the related Atomic Flows. Atomic flows are flows in which each traffic between
two consecutive nodes is an atomic predicate. Then we use these atomic flows as
input to the MaxSMT solver, to allocate and configure firewalls with rules whose
conditions are expressed by a certain atomic predicate.

The second approach, instead, is based on a totally different idea that we call
Maximal Flows. If with atomic predicates we try to split the traffic flows into
smaller atomic flows (reaching the highest level of granularity but also a higher
number of flows), with this second approach we try to do the opposite work, that is
to reduce the number of generated flows, aggregating as much as possible different
flows into Maximal Flows representative for all the ones that have been joined. All
flows represented by the same maximal flow must behave in the same way when
crossing the various nodes of the network, so that it is sufficient to consider the
maximal flow and not each single flow that it represents. Also in this case, flows
are modeled as a list of alternating nodes and Predicates, representing the traffic
traveling between two consecutive nodes. Predicates lying in Maximal Flows are
no longer necessary Atomic but express the disjunction of several quintuples.

33

Thesis objective

Both proposed approaches lead to the same correct solution of the problem, and
for 99% of cases also to the definition of the same flows. In remaining 1% of cases,
computed traffic flows differ slightly (depending on if they have been computed
with the Atomic or Maximal approach), but obviously lead to the same correct
solution of the problem. We will describe later, after introducing more concepts
and definitions, some clarifying examples.

34

Chapter 5

New Predicate Model

This Chapter proposes the definition of a new model to express the predicates of
a network. A Predicate is basically a class used to describe a class of packets. For
example, if we use Predicates to describe IP packets, this class must contain the
useful information included in the IP header of the packet, such as the IP quintuple
{source IP, destination IP, source port, destination port, protocol type}. This class
can either describe a single type of packet, and in this case its fields will be filled
with precise and unique values (e.g., {10.0.0.1, 20.0.0.1, 200, 80, UDP}), or even
represent a set of packets, and in this case its fields will be filled with ranges of
values or will use wildcards (e.g., {10.0.0.1, 20.0.0.*, 200, [80-100], TCP}).

In Chapter 2, we presented a model used to describe Predicates, Binary Deci-
sion Diagram (BDD), and we said that, although they are an efficient and flexible
model, there is not a real implementation of them in Java, so it is not easy to
use them directly within the framework VEREFOO, which uses Java as program-
ming language. It has been therefore necessary to model a new class for defining
Predicates and develop it in Java.

Predicate

Putils

boolean APCompare{Predicate p1, Predicate n2)
Predicate can (Predicate p1, Predicate p2):
Li eq{Predicate ap)

List<Predicates complexPredicateToOrTuples(Predicate inputPredicate)

boolean hasPD:
bookean hasProtoTypel

void prink);

'y [y

= LaProtoccTpes
IPAddress
enum { ANY, TCP, UDF, OTHER;)
String firstByte:
String secondByte;
ing thirdByte,

String fourthByte;
boolean neg;

boolean

ho Pardnterval

int min;
intmax;
boolean neg;

Figure 5.1: UML class diagram describing Predicate

35

New Predicate Model

Let us start discussing this class, whose UML diagram in shown in fugure 5.1,
following a bottom-up approach.

5.1 TIPAddress

Let us start describing the IPAddress class, which is used to model IPv4 addresses.
This class has four fields, each one describing a byte of the IP address. Each one
of these four fields can have a value between 0 and 255 or can be represented by
a wildcard (“*” represents concisely the full range [0, 255]). From now on, for
simplicity, we will represent each IP address thorough dotted-decimal notation.

1p1.1p2-ip3.ipy Where the generic ip; represent the byte in position ¢ inside the
IP address.

For example: 130.192.5.*% stands for the IPAddress with firstByte=120, second-
Byte=192, thirdByte=5 while fourthByte is the wildcard “*” meaning all values
inside [0, 255]. In other words, this example identifies all the IP addresses match-
ing 130.192.5.0/24. An important thing to notice is the following: if a wildcard is
used to describe byte i, then all subsequent bytes to the right of i must also use
wildcards. It is not be possible to have an IP address such as, for example, 10.0.*.7.

The Boolean attribute neg indicates whether a class should be considered as
described by the other four attributes or interpreted as their negated. For example,
130.192.5.1 with the neg attribute set to true indicates any IP address different
from 130.192.5.2. 130.192.5.* with the neg attribute set to true, instead, indicates
all the IP addresses that do not begin with 130.192.5. This attribute, as we will see
later, will be very useful to model the list of [PAddresses included inside Predicate.
For simplicity in future notations, we will indicate the presence of the neg attribute
equal to true with the logical negation symbol “!”. For the two examples described
above, they would have been !130.192.5.1 and !130.192.5.*.

Implementation

public boolean isIncludedIn(IPAddress ip) {
if((firstByte.equals(ip.getFirstByte()) || ip.getFirstByte().equals("-1"))

&% (secondByte.equals(ip.getSecondByte()) || ip.getSecondByte().equals("-1"

&% (thirdByte.equals(ip.getThirdByte()) || ip.getThirdByte().equals("-1"))

&% (fourthByte.equals(ip.getFourthByte()) || ip.getFourthByte().equals("-1"

return true;
return false;

isIncludedIn returns true if the instance of the IPAddress class calling this
method has values equal or included in ip. Ip should use wildcards.

equalsStar returns true if all the bytes within the IPAddress are equal to the
wildcard.

equalField instead returns true if the two IPAddresses have the same values for
all bytes (here we do not consider the value of attribute neg).

36

)

New Predicate Model

public boolean equalsStar() {
if(firstByte.equals("-1") && secondByte.equals("-1") &&
thirdByte.equals("-1") && fourthByte.equals("-1"))
return true;
return false;

public boolean equalFileds(IPAddress ip) {
if(firstByte.equals(ip.getFirstByte()) && secondByte.equals(ip.getSecondByte(}) &%
thirdByte.equals(ip.getThirdByte()) && fourthByte.equals(ip.getFourthByte()))
return true;
return false;

5.2 PortInterval

This class is used to model source and destination port numbers within an IP
header. It can represent a range of values included between min and max, within the
range of all possible values starting from 0 to 65535, or a single specific port number
(in this case min = max). Here too, it is possible to use wildcards, representing the
full range [0, 65535], by setting min = max = -1. As for IPAddress, fundamental is
the Boolean attribute neg which indicates whether the PortInterval instance should
be interpreted as it is or as its negation.

Examples:
min=10, max=20, neg=false indicates the range [10,20]
min=10, max=20, neg=true indicates the disjunction of [0,9] U [21, 65535]
min=>5, max=>5, neg=false indicates port number 5
min=5, max=>5, neg=true indicates any port number different from 5 (that is,
the disjunction [0,4] U [6, 65535])
min=-1, max=-1, neg=false indicates the full range [0, 65535]
min=-1, max=-1, neg=true actually indicates no port numbers and therefore
the empty set

Implementation

public boolean isIncludedInPortInterval(PortInterval p) {
if((min >= p.getMin() || p.getMin() == -1) && (max <= p.getMax() || p.getMax() == -1))
return true;
return false;

1sIncludedInPortInterval returns true is the instance of Portlnterval has values
included within p.

equalStar returns true if the PortInterval represents the full set of ports [0,

65535]
37

New Predicate Model

public boolean equalStar() {
if(min == -1 && max == -1)
return true;
return false;

public boolean equalFileds(PortInterval pi) {
if(min == pi.getMin() && max == pi.getMax()})
return true;
return false;

equalFields instead returns true if the two PortInterval represent the same range
(here we do not consider the value of attribute neg).

5.3 L4ProtocolType

L4ProtocolTypes class is an enum that contains all the possible values for the
IP prototype field. VEREFOO mainly considers two values for protocol type,
which are TCP and UDP. All other possible values are represented by the value
OTHER. ANY instead represents the wildcard, meaning in this case the disjunction
of {TCP,UDP,OTHER}.

5.4 Predicate

Let us now see the definition of the most important class, Predicate, used to si-
multaneously model the five main fields of the IP header, that are represented
by the quintuple {source IP, destination IP, source port, destination port, proto-
col type}. These five fields are modelled as list of IPAddress, Portlnterval and
L4Protocol Types.

IPAddress List

Let us start from the two lists of [PAddress representing IP source and IP destina-
tion. Each element inside a list is in conjunction (AND) with the other elements.
We can indicate two main cases:

1. The list contains only one element: in this case the only element corresponds
to the representation of the source or destination IP (it depends on which list
we are considering, IPSrcList or IPDstList).

Examples:
IPSrcList = [10.0.0.1] means that the source of the packet is the IP address
10.0.0.1

38

New Predicate Model

IPDstList = [10.0.0.*] means that the destination of the packet can be any
IP address matching 10.0.0.0/24

. The list contains more than one element: in this case the elements are con-
sidered in AND one to each other. It is important that the following two
properties are satisfied: 1) in case there are more IPAddress elements in the
list, there must be only one with neg = false (while all the others must have
neg = true) and 2) the one with neg = false must contain at least one wildcard
in order to include all the others with neg = true (and not vice versa).

Examples:

[10.0.0.%, !10.0.0.1, !10.0.0.2]. This list of [IPAddress is used to model all
[P addresses that matches 10.0.0.0/24 different from 10.0.0.1 and 10.0.0.2.
The fact that the single IPAddresses are placed in conjunction (AND) im-
plies that the formulation of this list is equal to 10.0.0.* AND !10.0.0.1 AND
110.0.0.2. We can see that there is only one element with neg = false (10.0.0.%),
which has a wildcard on its fourth byte to include the other IPAddresses with
neg = true (10.0.0.1, 10.0.0.2).

[!10.0.0.1, !10.0.0.2]. This is a second possible example in which there are
not IPAddresses with neg = false. In this case, the address with all wildcards
kXK is taken by default and put in conjunction with the other elements.
The corresponding logic formulation would be **** AND !10.0.0.1 AND
110.0.0.2, indicating any IP address different from 10.0.0.1 and 10.0.0.2.

All the other cases are not valid, for example:

[10.0.0.1, 10.0.0.2]. It contains two IPAddress with neg = false. It has no
meaning because the conjunction between them returns the empty set. In
fact, 10.0.0.1 AND 10.0.0.2 = empty set.

[10.0.0.1, !10.0.0.*]. In this case there is one element with neg = false and
one element with neg = true. The first property is then satisfied but not the
second one. In fact, the IPAddress with neg = false (10.0.0.1) does not include
the TPAddress with neg = true (10.0.0.*) but it happens the opposite. The
corresponding logic formulation is 10.0.0.1 AND !10.0.0.* that is equivalent
to the empty set.

[10.0.0.%, !20.0.0.1]. Here, we have an [PAddress with neg = false and one
with neg = true, but the one with neg = false does not include the one with
neg = true and it does not happen even the vice versa. This formulation by
itself is not an error as it corresponds to 10.0.0.* AND !20.0.0.1 = 10.0.0.*.
It is only superfluous to indicate the IPAddress with neg = true. The same
formulation could be obtained with [10.0.0.*%] (which is a list with a single
element).

The main reason for this choice, that is maintaining the Boolean attribute neg
within [PAddress and having the elements inside the list in conjunction and sat-
isfying the described above properties, is scalability. Modelling the list as a set
of IPAddress in disjunction (OR), without in this case the need of using the neg
attribute anymore, would have been much more expensive in terms of memory al-
location and time to perform the operations (as the sets would have been much
larger).

39

New Predicate Model

Examples:

[10.0.0.*%, !10.0.0.2, !10.0.0.3]. This list contains 3 elements using the attribute
neg and in conjunction one to each other. The corresponding formulation with
elements in OR and without the attribute neg, could no longer use the wildcard
and it would become [10.0.0.1, 10.0.0.4, 10.0.0.5 ..., 10.0.0.255], a list containing
254 elements (versus 3 of previous representation).

[10.%.*%.*% 110.0.0.2]. This would become an even larger list, equal to [10.1.%.*
10.2.%.% ...) 10.255.%.%] + [10.0.1.*, 10.0.2.%, ..., 10.0.255.%] + [10.0.0.1, 10.0.0.3,
10.0.0.4 ..., 10.0.0.255], thus containing 255+255+254 = 764 elements (versus 2 of
the previous representation).

PortInterval List

Trying to exploit wildcards and the attribute neg as much as possible is essential.
This is why also the two list of PortInterval (pSrcList and pDstList) are modelled
inside Predicate in the same way. So, here too we make use of the attribute neg
and build the lists with element in conjunction one to each other. Within the list,
there can only be one element with neg = false which must use wildcards to include
any other element inserted with neg = true.

Examples:
[(10,20)]. The list contains one single element and represents the range of ports
(10, 20).
[1(10,20) |. The list contains one single element and represents the set of ports not
included in the range [10,20]. This formulation corresponds to [0,9]+[21, 65535].
[(1, 20), !(4,6)]. This case represents all ports included between the range
[1,20] except for those included in the range [4,6]. The corresponding formulation
is [1,3]+[7,20]
[(1, 50), !(10,20), !(30,40)]. In this case the corresponding formulation is
[1,9]4[21,29]+[41,50].
[(-1, -1), !(5,5)]. This last one represents all possible port numbers except for
5. The corresponding formulation is [0,4]+[6,65535].

L4ProtocolTypes List

The situation is different for L4ProtocolTypes list. As mentioned in the previous
section, this class is an enum which contains four possible values (UDP, TCP,
OTHER, ANY). For simplicity, the single elements inserted inside the list are placed
in OR one to each other, since the maximum cardinality is very small. With a set
of up to two elements, it is very easy to do intersection, union and negation without
the need of introducing the concept of neg.

Examples:
protoTypeList = [UDP, TCP] means that the protocol type value of the Pred-
icate can be either UDP or TCP.
protoTypeList = [ANY] means that the protocol type value of the Predicate
can be either UDP or TCP or OTHER

40

New Predicate Model

5.4.1 Operations on Predicate (implementation)

Now, let us see what are the operations that can be done on Predicates. In ad-
dition to the methods included in the Java class, which are auto-explicative and
we leave their description in the Appendix of this thesis, those included in the in-
terface PUtils are very important. Among these, there are the methods allowing
to perform logical operations between Predicates, such as equivalence, intersection
and negation.

APCompare

public boolean APCompare(Predicate pl, Predicate p2) {
//comparing lists size
if(pl.getIPSrcList().size(
|| pl-getIPDstList
|| pl.getpSrcList(
|| pl.getpDstList(
return false;
J/NOTE: since listl and list2 have the same size and they don't contain duplicates,
//listl.containsAll(list2) is sufficient
/fNo need to call also list2.containsAll{listl)
if(!pl.getIPSrcList().containsAll(p2.getIPSrcList()))
return false;
if(!pl.getIPDstlist().containsAll{p2.getIPDstList()))
return false;
if(!APComparePortList(pl.getpSrcLlist(), p2.getpsSrcList())})
return false;
if(!APComparePortlist(pl.getpDstlist(), p2.getpDstlist()})
return false;
return APComparePrototypelist(pl.getProtoTypelList(), p2.getProtoTypeList());

I= p2.getIPsrcList().size()
y.size() != p2.getIPDstList().size()
.size() != p2.getpSrcList().size()
.size() != p2.getpDstList().size())

Tt ot g et

}

public boolean APComparePrototypelist(List<L4ProtocolTypes: listl,
List<L4ProtocolTypes> list2) {
if({!listl.containsAll(list2)})
return false;
return true;

b

public boolean APComparePortlList(List<PortInterwval> listi,
List{PortInterval: list2) {
if(!listl.containsAll(list2)}
return false;
return true;

}

public boolean isPredicateContainedIn(Predicate p, List<Predicate> list) {
for(Predicate p2: list) {
if(APCompare(p, p2))
return true;

¥

return false;

This function receives two Predicates as parameters in input and returns true
if the two are equal, false otherwise. To be equal, two Predicates must have lists
containing the same identical elements. So, a first check verifies that these lists
have the same size, otherwise we can say Predicates are different. After this check,
taking also into account that lists cannot contain duplicate elements, to ensure

41

New Predicate Model

equality it is sufficient to check that one list contains all the elements present in the
other one (it is not necessary to check also the vice versa). This operation is done
for all the five lists (IPSrcList, IPDstList, pSrcList, pDstList, protoTypeList).

computelntersection

public List<IPAddress> intersectionIPAddressNew({IPAddress ipl, IPAddress ip2){
List<IPAddress> retlist = new ArraylList<>();
if(!'ipl.isNeg() && !ip2.isNeg()) { //both not peg
if(ipl.isIncludedIn{ip2}) {
retList.add{ipl);
return retlist;
}
if{ip2.isIncludedIn(ipl)) {
retlist.add(ip2};
return retlist;

} else if(lipl.isNeg() && ip2.isNeg()) { //ipl not neg, ip2 neg
if(!ipl.equalFileds(ip2) && ip2.isIncludedIn(ipl)}) {
retlist.add{ipl);
retList.add{ip2);
return retlist;

3

if(!ipl.equalFileds(ip2) && !ipl.isIncludedIn(ip2}) {
retList.add{ipl);
return retlist;

} else if(ipl.isNeg() && !ip2.isNeg()} { //ipl neg, ip2 not neg
if(!ipl.equalFileds(ip2) && ipl.isIncludedIn(ip2)) {
retlist.add{ipl);
retlist.add{ip2};
return retlist;

1

if(!ipl.equalFileds(ip2) && !ip2.isIncludedIn(ipl}) {
retList.add{ip2};
return retlist;

1
} else { //both neg
if(ipl.equalFileds(ip2}) {
retlist.add{ipl);
return retlist;
} else {
if(ipl.isIncludedIn{ip2}) {
retlist.add{ip2);
return retlist;
1
if(ip2.isIncludedIn{ipl}) {
retlist.add{ipl};
return retlist;
}
retList.add{ipl};
retlist.add{ip2);
return retlist;

}

return retlist;

A little more complicated, however, is computing intersection. The function
must perform the intersection between all the fields present within Predicate, placed
in conjunction one to each other. In practise, it is sufficient that one of the five fields

42

New Predicate Model

(for example the IP source field) does not have intersection with the corresponding
field of the other Predicate, to state that there is no intersection between the two
Predicates (intersection equal to the empty set).

In fact, (I PSrcy AIPDsty ApSrc; ApDstyAprotoy) A (IPSrcaNIPDstoApSrea A
pDsty A protoy) = (IPSrce; N 1PSrey) A (IPDsty A IPDsty) A (pSrey ApSres) A
(pDsty A pDsts) A (protoy A protos)

Let us first see the code that describes the intersection between single fields.

The function must perform the intersection between two IPAddress. If the
intersection exists, the corresponding list of TPAddress (as usual with elements
in AND one to each other and with the porperties described above) is returned,
otherwise an empty list is returned.

There are mainly four cases to consider:

1. Both ip; and ip, have neg attribute set to false.

e If ip; is included in ips, then it is returned the list containing only ip;.
Example:
ip1 = 10.0.0.1, ipo = 10.0.0.*%, ip; AND ip, = 10.0.0.1 AND 10.0.0.* =
10.0.0.1 = 4p; so it is returned the list [10.0.0.1].

e Vice versa if ipy is included in ipy, then it is returned the list containing
only ipo, for the same reason described in the precious point.

e In all other cases, when ip; and ipy are disjointed, it is returned the
empty set.
NOTE: function isIncludedIn returns true also in the case ip; is equal
to lpg

2. 1py has neg = false, ips has neg = true. In this case:

e If ip; and ip, have different byte values and ips is included in ¢p;, then
it is returned the list containing both ip; and ups.
Example:
ip1 = 10.0.0.%, ip; = 110.0.0.1, ip; AND ipy = 10.0.0.* AND !10.0.0.1
that corresponds to the list [10.0.0.*, 110.0.0.1].

e If ip; and ips have different byte values and ip, is not included in ipy,
then it is returned only the list containing up; .
Example:
ip1 = 10.0.0.1, ips = 110.0.0.2, ip; AND ip, = 10.0.0.1 AND !10.0.0.2 =
10.0.0.1 = ipy, that corresponds to the list [10.0.0.1].

e All the other cases return the empty set.
Example when ¢p; and ipy have the same byte values: ip; = 10.0.0.1, 2ps
= 110.0.0.1, ip; AND ips = 10.0.0.1 AND !10.0.0.1 = empty set.
Example when ip; is included in ips:
ipy = 10.0.0.1, ipy = !10.0.0.*, ip; AND ip, = 10.0.0.1 AND !10.0.0.* =
empty set.

3. 1p; has neg = true, ip, has neg = false. Same for the previous point.

43

New Predicate Model

4. Both ip; and ips have neg attribute set to true.

e If ip; and ip, have te same byte values, it means they are identical and
so it is returned a list of a single element equal to their value.
Example:
ip1 = 110.0.0.1, ip, = 110.0.0.1, ip; AND ip, = 110.0.0.1 AND !10.0.0.1
= 110.0.0.1 that corresponds to the list [!10.0.0.1]

e If 7p; and ip, have different byte values and ip; is included in ¢py, then
it is returned a list containing ips.
Example:
ip1 = 110.0.0.1, ipy = '10.0.0.*, ip; AND ip, = 110.0.0.1 AND !10.0.0.*
= 110.0.0.* = ip,, that corresponds to list [!110.0.0.%]

e If ip; and ipy have different byte values and ip, is included in ip;, then
it is returned a list containing ip;.
Example:
ip; = 110.0.0.%, ip, = 110.0.0.1, ip; AND ipy = 110.0.0.* AND !10.0.0.1
= 110.0.0.* = ip;, that corresponds to list [!10.0.0.%].

e If ip; and ipy have different byte values and none includes the other,
then it is returned the list containing both of them.

Example:
ipy = 110.0.0.1, ipy = 110.0.0.2, ip, AND ipy = 110.0.0.1 AND 110.0.0.2,
that corresponds to the list [!10.0.0.1, 110.0.0.2].

The same is done for intersectionPortIntervalNew.

These described two functions are used to compute the intersection starting
from two single [IPAddress or PortInterval. But, as we said before, the Predicate
class does not contain single instances of these classes, but it contains lists of them
with elements in conjuction. The intersection then becomes a little more complex
and it is computed with the following algorithm.

public Predicate computeIntersection(Predicate pl, Predicate p2){
I fCheck IPSrc
List<IPAddress> resultIPSrclList = p2.getIPSrcList();
List<IPAddress> tmplist;
List<IPAddress: tmpList2 = new ArrayList<»();
List<IPAddress» toInsertlList = new ArrayList<»();
boolean tolnsertl;
for{IPAddress srcl: pl.getIPSrclist())} {
tolnsertl = false;
for{IPAddress src2: resultIPSrcList) {
tmpList = intersectionIPAddressNew(srcl, src2};
if(tmplist.isEmpty(})
return null; //no intersection exists
for{IPAddress res: tmpList) {
if(res.equals(srcl))
tolnsertl = true;
else tmplList2.add(res);

44

New Predicate Model

if(resultIPSrcList.isEmpty())} toInsertl = true;
resultIPsrcLlist = new Arraylist<>(tmpList2);
tmpList2 = new Arraylist<:();

if(toInsertl) toInsertllist.add({srcl};

}

resultIPsrclist.addAll(toInsertllist);

//Check IPDst
List{IPAddress: resultIPDstList = p2.getIPDstList();
toInsertlList = new ArraylList<»();
for(IPAddress dstl: pl.getIPDstList()) {
toInsertl = false;
for(IPAddress dst2: resultIPDstList) {
tmpList = intersectionIPAddressNew(dstl, dst2);
if(tmpList.isEmpty())
return null; //no intersection exists
for(IPAddress res: tmpList) {
if(res.equals(dstl})
toInsertl = true;
else tmplList2.add(res);

}

if(resultIPDstList.isEmpty()} toInsertl = true;
resultIPDstlist = new Arraylist<>(tmplist2});
tmplList2 = new ArraylList<:();

if(toInsertl) toInsertllList.add({dstl};

}

resultIPDstlist.addAll(toInsertllist);

//Check psrc
List<PortInterval> resultPSrclist = p2.getpSrcList();
List<PortInterval> tmpPList;
List{PortInterval: tmpPList2 = new ArraylList<>();
List<PortInterval> toInsertlPList = new ArraylList<>();
for(PortInterval psrcl: pl.getpSrcList()) {
toInsertl = false;
for(PortInterval psrc2: resultPSrcList) {
tmpPList = intersectionPortIntervalNew(psrcl, psrc2);
if(tmpPList.isEmpty(})
return null; //no intersection exists
for(PortInterval res: tmpPList) {
if(res.equals(psrcl))
toInsertl = true;
else tmpPList2.add(res);

}

if(resultPSrcList.isEmpty()}) toInsertl = true;
resultPSrclist = new Arraylist<»(tmpPList2};
tmpPList2 = new Arraylist<>();

if(toInsertl) toInsertlPList.add(psrcl);

}

resultPSrclist.addAll(toInsertlPList);

//Check pDst
List<PortInterval> resultPDstList = p2.getpDstList();
toInsertlPList = new Arraylist<»();
for(PortInterval pdstl: pl.getpDstList()) {
toInsertl = false;
for(PortInterval pdst2: resultPDstlList) {
tmpPList = intersectionPortIntervalNew(pdstl, pdst2);
if(tmpPList.isEmpty())
return null; //no dintersection exists
for(PortInterval res: tmpPList) {

45

New Predicate Model

if(res.equals(pdstl)})
toInsertl = true;
else tmpPList2.add(res);

¥

if(resultPDstList.isEmpty())} toInsertl = true;
resultPDstlist = new Arraylist<>(tmpPList2);
tmpPList2 = new ArraylList<>();

if(toInsertl) tolnsertlPList.add(pdstl);

resultPDstList.addAll{toInsertlPList);

//Check proto

List<L4ProtocolTypes> resultProtolist = new ArrayList<»();

if(pl.getProtoTypelist().contains (L4ProtocolTypes . ANY))
resultProtolist = p2.getProtoTypelist()};

else if(p2.getProtoTypelist().contains(L4ProtocolTypes.ANY))
resultProtolist = pl.getProtoTypelist()};

else { //None contains ANY, so compute intersection
for(L4ProtocolTypes protol: pl.getProtoTypelist()) {

if(p2.getProtoTypelist().contains(protol))
resultProtolist.add{protol);

¥

if(resultProtolist.isEmpty(})
return null; //no intersection exists

Predicate resultPredicate = new Predicate();
resultPredicate.setIPSrcList{resultIPSrclList);
resultPredicate.setIPDstList{resultIPDstList);
resultPredicate.setpSrcList(resultPSrcList);
resultPredicate. setpDstlist(resultPDstlList);
resultPredicate.setProtoTypelList(resultProtolist);
return resultPredicate;

Each list within a Predicate is considered individually and must be placed in
intersection with the corresponding list of the other Predicate. Let us describe
first how it works the algorithm for the intersection of IPAddress lists related to
IP sources. Let us consider the algorithm step by step with an example to make it
easier to understand.

Example:
P1 contains internally the IPSrcList = [10.0.0.*, 110.0.0.1]
P2 contains internally the IPSrcList = [!10.0.0.1, 110.0.0.2, 120.0.0.1]
By eye, it is easier to see that the resulting intersection is [10.0.0.*; !10.0.0.1,
110.0.0.2].

The algorithm to arrive at this solution contains a double nested for loop: the
outer one that cycles on the elements of the list of P1 (we call this list listl), the
inner one that cycles on a list (resultIPSrcList, that we call list2) modified at each
iteration of the outer loop and which initially contains all the elements of the list
of P2. What we try to do at each iteration is to reduce the cardinality of the two
lists, eliminating those elements that are superfluous for the representation of the
intersection (in our example, we have to eliminate the IPAddress “120.0.0.17).

For the outer cycle, we consider one element of list1 at a time, and this element
(srcl) is placed in intersection with each one of the elements of resultIPSrcList.
They are two single IPAddresses, so we can call the intersectionIPAddressNew

46

New Predicate Model

method. If this method returns the empty list, it means that the two elements do
not intersect and so we can directly say that the intersection of the two whole Pred-
icates is equal to null, since, because of the two lists contain element in conjunction
(AND), the intersection of each element of one must exist with all the elements of
the other. On the contrary, if returned list is not empty, the code will cycle on
the resulting IPAddresses returned. If a resulting element is an IPAddress coming
from list1, then we set the Boolean variable tolnsertl equal to true and later (at
the end of the outer loop iteration) we will add that IPAddress inside toInsertList1,
which is the list that contains IPAddresses coming from list1 that are going to be
part of the solution, otherwise if it is an IPAddress coming from list2, we insert it
in a temporary list tmpList2, which at the end of outer loop iteration will become
the new resultIPSrsList, on which we will cycle in the next internal for. For the
example we are considering, after the first external iteration, tolnsertl = [10.0.0.*],
resultIPSrcList = [110.0.0.1, !10.0.0.2]. We note that the IPAddress “120.0.0.1” has
been removed because 10.0.0.* AND 120.0.0.1 = 10.0.0.*, so it is not added to re-
sultIPSrcList. At the end of the second and last external iteration tolnsertl =
[10.0.0.*%, 110.0.0.1], resultIPSrcList = [!10.0.0.2]. The final list representing the
intersection of IPSrcList from P1 with IPSrcList from P2 is given by concatenating
tolnsert]l with the remaining values contained inside resultIPSrcList after the last
iteration.

As we can see from the code, the same operations are applied to compute
the intersection of IPDstLists, pSrcLists and pDstLists. The code differs only
for the intersection of protoTypesLists, that contain few elements in disjunction.
Computing the intersection of these lists simply consists of checking if one of the two
contains the element “ANY” | in this case the result of the intersection is given by the
other list. If instead neither of the two lists contains “ANY”, then the code cycles
on each element of one list at a time, checking if its value is contained also in the
other list. If the value is contained, then we can add it to the final set representing
the intersection, otherwise we can discard it. At the end of the double nested loop,
if the resulting final set is empty, then it means that the intersection between the
two protocolTypesList does not exist and so between the two Predicates.

neg

public List<Predicate> neg(Predicate ap)}{
List<Predicate> neg = new Arraylist<:();
/fcheck IPSrc
for(IPAddress src: ap.getIPSrcList()) {
if(!src.equalsstar()) {
Predicate sp = new Predicate(src.toString(), src.isNeg(}), "*",
false, "*", false, "*", false, L4ProtocolTypes.ANY);
neg.add(sp);
Predicate sp2 = new Predicate(src.to5tring(), !src.isNeg(}), "*",
false, "*", false, "*", false, L4ProtocolTypes.ANY);
neg.add(sp2);

47

New Predicate Model

//check IPDst
for{IPAddress dst: ap.getIPDstList()) {
if(!dst.equalsStar()) {
Predicate sp = new Predicate("*", false, dst.toString(), dst.isMNeg(),
"*", false, "*", false, L4ProtocolTypes.ANY);
neg.add(sp);
Predicate sp2 = new Predicate("*", false, dst.toString(), !dst.isNeg(),
", false, "*", false, L4ProtocolTypes.ANY);
neg.add(sp2);
L

//check pSrc
for(PortInterval psrc: ap.getpSrcList()) {
if(!psrc.equalstar()) {
Predicate sp = new Predicate("*", false, "*", false, psrc.toString(),
psrc.isNeg(), "*", false, L4ProtocolTypes.ANY);
neg.add(sp);
Predicate sp2 = new Predicate("*", false, "*", false, psrc.toString(),
Ipsrc.isNeg(}), "*", false, L4ProtocolTypes.ANY);
neg.add(sp2);
i}

f/check pDst
for(PortInterval pdst: ap.getpDstList()) {
if(!pdst.equalstar()) {
Predicate sp = new Predicate("*", false, "*", false, "*", false,
pdst.toString(), pdst.isNeg(), L4ProtocolTypes.ANY);
neg.add(sp);
Predicate sp2 = new Predicate("*", false, "*", false, "*", false,
pdst.toString(), !pdst.isNeg(), L4ProtocolTypes.ANY);
neg.add(sp2);
¥
)
//check protoType
List<L4ProtocolTypes> list = ap.getProtoTypelist();
//If different from ANY and different from the full set
if(!list.contains(L4ProtocolTypes.ANY) 8& list.size() =
L4ProtocolTypes.values().length-1) {
Predicate spl = new Predicate("*", false, "*", false, "*", false,
"*, false, L4ProtocolTypes.ANY);
spl.setProtoTypelList(list);
neg.add(spl);
List<L4ProtocolTypes> neglist = computeDifferenceld4ProtocolTypes(list);
if(!'neglist.isEmpty()) {
Predicate sp2 = new Predicate("*", false, "*", false, "*", false,
"*" false, L4ProtocolTypes.ANY);
sp2.setProtoTypelist(neglist);
neg.add(sp2);

¥

return neg;

Let us now see how it works the function that, given a Predicate, returns the list
of Predicates in disjunction (OR) representing the negation of the given Predicate.

Here the code is simpler, given a Predicate having all its fields in AND, its
negation is expressed by the disjunction of more Predicates, as stated by the De
Morgan Law:

—(aANb)==-aV-b (5.1)

Since the five fields inside Predicate {IPSrcList, IPDstList, pSrcList, pDstList,
protoTypeList} are in AND one to each other and each element inside those lists are

48

New Predicate Model

in turn in AND one to each other, then the negation of the Predicate is computed in
this way: it is simply the disjunction of multiple Predicates, each one representing
the negation of a single element within each field.

Examples:
'{[10.0.0.1], [20.0.0.2], *, *} = {[!10.0.0.1], *, * *} U {*, [120.0.0.2], *, *
'{[10.0.0.*, !10.0.0.1], [20.0.0.2], *, [80], *} = {[!10.0.0.%], *, * * * } U {
[10.0.0.1], *, * * * LU {* * * [180], *}

So, what the code does is simply take each element within each list, compute
its negation (i.e., replace the value of the attribute neg with its complement) and
then create a Predicate with that only field specified, and the others expressed
with the wildcard. NOTE: for each scanned element, we have to first check if its
value is different from the wildcard (!equalStar). In fact, the negation of a wild-
card is the empty set. Any field in conjunction with the empty set returns the
empty set itself, so these cases are not to be taken in consideration. NOTE2: for
computing the negation of the protocol type list we call the method computeDiffer-
encelL4Protocol Types that given the set of values corresponding to protoTypesList,
returns its complement.

49

Chapter 6

Atomic Flows

This approach makes use of the concept of atomic predicates described in Chapter
2. The basic idea introduced by the authors, Yang and Lam, has been modified to
suit our purposes. In particular, it is no longer used within the context of Verifying
Network Reachability but to Verifying Satisfiability of a set of given NSRs. We use
Atomic Predicates to represent the traffic that can cross the network and then, after
the MaxSMT problem, to configure each firewall with rules expressed by certain
atomic predicates.

According to the definition given by the two authors, Atomic Predicates are the
smallest set of disjunct predicates such that each predicate, of the set over which
they are computed, can be expressed as a disjunction of a subset of them.

The basic idea is to compute the set of atomic predicates representative of the
network, based on what we will call “interesting” predicates, according to NSRs
given in input by the user. We consider “interesting” all the predicates linked to
nodes related to a requirement, such as the predicate representing the traffic gener-
ated by a node source of a requirement, the predicate representing the traffic that
arrives in input to a destination node, but also predicates describing input traffic
classes for transformers crossed on the path or describing conditions of rules on
firewalls. Each one of these “interesting” predicates can be described as a disjunc-
tion of simpler and minimal atomic predicates, following the rules presented by the
two authors and described in Chapter 2. Both atomic predicates and “interesting”
predicates are modelled following the model presented in Chapter 5.

Then, after having computed the set B of atomic predicates, we proceed to
generate for each requirement all related atomic flows, to give in input to the

MaxSMT solver.

Definition 6.0.1 A flow f = [ns, tsa, Ny -y My this Ny tij, Mgy Mo, idy N
is defined atomic if each traffic t;; € B, where B is the set of atomic predicates
computed above.

Because of atomic predicates are totally disjointed one from each other, we
can identify each of them with an integer identifier, keeping all the advantages of
working with integers instead of complex Java classes.

50

Atomic Flows

6.1 Approach

In this thesis, we propose two new algorithms, for computing respectively the atomic
predicates on the base of NSRs given in input, and the related atomic flows.

In order to understand these algorithms, we have to first introduce some nota-
tions. Each requirement r is expressed as a pair (C, a), where C is a condition and
a is the action that must be performed on the flows that satisfy C. Each condition
C is a Predicate modelled as the class described in Chapter 5 and representing the
IP quintuple = {IPSrc, IPDst, pSrc, pDst, tProto}. Each action a is one of the two
elements {ALLOW, DENY}. The “.” notation, when applied to a tuple, is used
to retrieve a specific tuple field. A flow satisfies C if the three following properties
are satisfied: 1) its source and destination endpoints have IP address matching
respectively C.IPSrc and C.IPDst, 2) its source traffic satisfies C.IPSrc and C.pSrc
(that means it matches with the predicate {C.IPSrc, *, C.pSrc, *, *}, 3) its desti-
nation traffic satisfies C.IPDst, C.pDst and C.tProto (that means it matches with
the predicate {*, C.IPDst, *, C.pDst, C.tProto}).

First of all, for each requirement r, all the network paths with endpoints e,
and ey (where e and ey are the nodes satisfying property 1) are computed. Each
network path is thus represented by the two endpoints and a list of middleboxes
L = [ny,ns,...,n,]. We save in N, the list of all the transformers that are crossed
by at least one path.

Algorithm 3 for computing the atomic predicates

Input: a set of n requirements, a set of m transformers N,
Output: the set of atomic predicates B

1: P < {false}

2: for v =0,1,...,n do

3: P < P U {r;.C.IPSrc, *, r;.C.pSrc, *, %)}

4: P < P U {x, %, r,.C.IPDst, r;.C.pDst, r;.C.tProto}
5: end for

6: for © =0,1,...,m do

T P(—PU{IZ,IZd} U {Di17Di27Di3})

8: end for

9: B+ A(P)

10: R < {false}

—_
—_

: fort=0,1,...,m do

R + R U {T;(b)| for each b € B}
: end for

: if B=A(PUR) then

return B

. else

P+ PUR, B+ A(P)

goto line 9

. end if

e e e e e e

51

Atomic Flows

Algorithm 4 for computing the atomic flows

Input: one requirement r, the source and destination nodes eg and eg4, a list of
middleboxes L=[nq,na,...,n,|, the set B of atomic predicates computed in
Algorithm 1

Output: a set of atomic flows F,

1. F, « 0

2: By + {b1,bay....0;m, } Vb; : b IPSrc A r.IPSrc # () and b; € B
3: for b € By do

4: for f € RECURSIVEGEN(L,b) do

5: fo < [es, 0]+ f

6: Fo < Fo U {fa}

7 end for

8: end for

9: return Fj,

10: function RECURSIVEGEN(%, b)
11: if 1 ==m + 1 then

12: if b.IPDst == a(ey) then

13: return {[e4]}

14: else return ()

15: end if

16: end if

17: if b.IPDst == «a(n;) then return ()
18: end if

19: t < Ti(b)

20: B; < {b1,ba,....b;, } such that Vi b; =t and b; € B;
21 Fy+ 0
22: for b, € B; do

23: for f € RECURSIVEGEN(: + 1, ;) do
24: fe < [ni, b + f

25: Ft — Ft U {ft}

26: end for

27: end for

28: return F;

29: end function

We run Algorithm 3 for creating, at first, the set P, containing the “interesting”
predicates of the network (up to line 7), then for transforming the computed set P
into the corresponding set B of atomic predicates, unique for the entire network,
applying function A described in Chapter 2.

For each requirement r, we generate the Predicate representing the source traffic
(according to property 2) and the Predicate representing the destination traffic
(according to property 3) and we insert them into P. Then, for each transformer
belonging to N, we compute its forwarding domain {I,, I;} and its transformation
behaviour {Dy, Dy, D3} according to the algorithms presented in Chapter 2. We

52

Atomic Flows

insert all these Predicates inside P. In line 7, we transform the set P into the
corresponding set B of atomic predicates. Notice that we have not yet considered
how predicates are transformed crossing the various transformers, P so far only
contains the input packet classes for transformers but how predicates matching
these classes are transformed has not yet been considered. So, starting from line
8, we must apply to each predicate inside B, that matches a specific input classes
of a transformer included into N, , the corresponding transformation 7', obtaining
in this way the transformed predicate. In other words, we insert into R the result
of each predicate of B after having passed through a transform node. This is an
iterative function that continues until we have in B a set of predicates representative
for both input predicates and transformed ones. In line 12, if the condition B =
A(P' U R) is satisfied it means that each transformed predicate in R is already
equal to the disjunction of a subset of predicates contained in B, so we can stop
the iterative algorithm, since we have in B the set representative for input predicates
and transformed ones.

The result of Algorithm 3, that is the set of atomic predicates representative
for the networks and for the requirements, is then used as input for Algorithm 4.

We pass to consider one requirement and one path at a time. The traffic gen-
erated by e, source node of the requirement, is grouped in a subset By, that
represents the disjunction of all predicates of B whose IPSrc and pSrc are equal
to IPSrc and pSrc expressed by the condition of the requirement. Starting from
By, we compute recursively all related atomic flows. Each single atomic predicate
b, belonging to By, is propagated along the path that links source to destination,
taking in consideration the fact that, crossing a node, it can be transformed into
one or more different disjointed atomic predicates. At each recursion level, some
pruning is done in order to reduce the total number of atomic flows, discarding the
ones that are not part of the solution, because they are incorrect (i.e., they do not
arrive at destination with the correct IPDst, pDst and tProto that matches the
condition of the requirement) or because they are dropped during the path.

6.2 Example

Let us consider a clarifying example. In order to compute Atomic Predicates, we
use formulas described in Chapter 2.

Web client

\ Allocation place NAT Allocation place server

/” h / \ / _‘“\) -
\

Web cller\t / \ / \ /
Sres for NAT: {10.0.0.1, 10.0.0.2}

\
/

53

Atomic Flows

Requirements:
- Reachability: ~ 10.0.0.1, *, 30.0.5.2, *, *
- Isolation: 10.0.0.2, *, 30.0.5.2, *, *

Each requirement follows only one path:

e path for requirement 1: [10.0.0.1, 20.0.0.3, 20.0.0.2, 20.0.0.1, 30.0.5.2]
e path for requirement 2: [10.0.0.2, 20.0.0.3, 20.0.0.2, 20.0.0.1, 30.0.5.2]

Set N, containing transformer: {20.0.0.2}

Line 1-4 of Algorithm 3: compute predicates representing source and destination
traffic, each of these predicates are inserted into P

e S5; ={10.0.0.1, * * * *} from source of requirement 1
e Sy =1{10.0.0.2, * * * *} from source of requirement 2

e Dy ={* * 30.0.5.2, * *} from destination of requirements 1 and 2

Line 5-6 of Algorithm 1: compute the forwarding behaviour for the nodes and
input classes for transformers. In this example, there are no nodes (i.e., firewall)
dropping packets, so all packets are simply forwarded by all nodes, and there is
only a transformer that is the NAT in 20.0.0.2. Let us consider its input classes
and then add them to P

e D; = {10.0.0.1, *, 110.0.0.1 A 110.0.0.2, * *} U {10.0.0.2, *, 110.0.0.1 A
110.0.0.2, *, *}

o Dy ={110.0.0.1 A !10.0.0.2, *, 20.0.0.2, *, *}

L D3 = _|D2 VAN _\Dg

D, refers to input classes for shadowing operation: each packet arriving to the
NAT matching one of these two predicates is shadowed (that means, its source IP
address is translated into the IP address of the NAT, 20.0.0.2). D, refers to the
operation of reconversion. Predicates matching D3 instead are simply forwarded.

Line 7: add these three predicates inside P and then compute B = A(P).

P = {10.0.0.1, % *,* *}U{10.0.0.2, *, * * *}U{* * 30.0.5.2, *, *}U{10.0.0.1,
*110.0.0.1 A 110.0.0.2, *, ¥} U {10.0.0.2, *, 110.0.0.1 A !10.0.0.2, *, *} U {110.0.0.1
A 110.0.0.2, *, 20.0.0.2, *, *}.

B = A(P) = {10.0.0.1, *, 10.0.0.1, *, *}U{10.0.0.1, *, 10.0.0.2, *, *}U{10.0.0.1,
*.20.0.0.2, *, *}U{10.0.0.1, *, 30.0.5.2, *, *} U {10.0.0.1, *, 110.0.0.1 A 110.0.0.2 A
120.0.0.2 A 130.0.5.2, *, ¥} U
{10.0.0.2, *, 10.0.0.1, *, ¥} U {10.0.0.2, *, 10.0.0.2, *, *} U {10.0.0.2, *, 20.0.0.2, *,
¥} U {10.0.0.2, *, 30.0.5.2, *, ¥} U {10.0.0.2, *, 110.0.0.1 A !10.0.0.2 A 120.0.0.2 A

54

Atomic Flows

130.0.5.2, *, *} U

{110.0.0.1 A 110.0.0.2, *, 10.0.0.1, *, *} U {110.0.0.1 A !10.0.0.2, *, 10.0.0.2, *, *} U
{110.0.0.1 A 110.0.0.2, *, 20.0.0.2, *, *} U {!10.0.0.1 A !10.0.0.2, *, 30.0.5.2, *, *
}U{110.0.0.1 A 110.0.0.2, *, 110.0.0.1 A 110.0.0.2 A 120.0.0.2 A 130.0.5.2, *, *}

These are the atomic predicates representing sources and destinations of the
requirements and the input classes for transformers. Now we must compute how
these predicates are transformed crossing the NAT. Each predicate is put in inter-
section with D¢, D, and Ds, if the intersection with one of these classes exists, then
the corresponding transformation is applied.

In particular,
{10.0.0.1, *, 30.0.5.2, *, *}, {10.0.0.1, *, 110.0.0.1 A !10.0.0.2 A 120.0.0.2 A 130.0.5.2,
* %1, {10.0.0.2, *, 30.0.5.2, * *} {10.0.0.2, * 110.0.0.1 A !10.0.0.2 A 120.0.0.2 A
130.0.5.2, *, *} matches with DI.

The corresponding transformed predicates after applying Shadowing are {20.0.0.2,
*030.0.5.2, **} and {20.0.0.2, *; 110.0.0.1 A 110.0.0.2 A 120.0.0.2 A 130.0.5.2, *, *}.

{!110.0.0.1 A 110.0.0.2, *, 20.0.0.2, *, *} instead matches with Ds.

The corresponding transformed predicates after applying Reconversion are {!10.0.0.1
A 110.0.0.2, *, 10.0.0.1, *, *}, {!10.0.0.1 A !10.0.0.2, *, 10.0.0.2, *, *}.

We add the resulting transformed predicates to R and then we compute B =
A(PUR).

R = {20.0.0.2, *, 30.0.5.2, * ¥} U{20.0.0.2, *, 110.0.0.1 A 110.0.0.2 A 120.0.0.2 A
130.0.5.2, *, *} U {110.0.0.1 A 110.0.0.2, *, 10.0.0.1, *, *} U {110.0.0.1 A 110.0.0.2, *,
10.0.0.2, *, *}.

B = A(PUR) = {10.0.0.1, *, 10.0.0.1, *, *} U {10.0.0.1, *, 10.0.0.2, *, *} U
{10.0.0.1, *, 20.0.0.2, *, *} U {10.0.0.1, *, 30.0.5.2, *, *} U {10.0.0.1, *, 110.0.0.1 A
110.0.0.2 A 120.0.0.2 A 130.0.5.2, *, *} U {10.0.0.2, *, 10.0.0.1, *, *} U {10.0.0.2, *,
10.0.0.2, *, *}U{10.0.0.2, *, 20.0.0.2, *, *}U{10.0.0.2, *, 30.0.5.2, *, *}U{10.0.0.2,
*110.0.0.1 A 110.0.0.2 A 120.0.0.2 A 130.0.5.2, *, *} U {20.0.0.2, *, 10.0.0.1, *,
¥1U{20.0.0.2, *, 10.0.0.2, *, ¥} U{20.0.0.2, *, 20.0.0.2, *, ¥} U{20.0.0.2, *, 30.0.5.2,
¥ ¥1U{20.0.0.2, *, 110.0.0.1 A 110.0.0.2 A 120.0.0.2 A 130.0.5.2, *, *} U {!10.0.0.1 A
110.0.0.2 A 120.0.0.2, *, 10.0.0.1, *, *}U{110.0.0.1 A 110.0.0.2 A 120.0.0.2, *, 10.0.0.2,
* %10 {110.0.0.1 A 110.0.0.2 A 120.0.0.2, *, 20.0.0.2, *, *} U {!10.0.0.1 A 110.0.0.2 A
120.0.0.2, *, 30.0.5.2, *, ¥*}U{110.0.0.1 A !10.0.0.2 A 120.0.0.2, *, 110.0.0.1 A 110.0.0.2
A 120.0.0.2 A 130.0.5.2, *, *}.

These are the final atomic predicates representative of the network. As we can
see they are simple, minimal, and disjunct so we can identify them with an integer
identifier.

{10.0.0.1, *, 10.0.0.1, *, *}(1)
{10.0.0.1, *, 10.0.0.2, *, *}(2)
{10.0.0.1, *, 20.0.0.2, *, *}(3)
{10.0.0.1, *, 30.0.5.2, *, *}(4)
{10.0.0.1, *, 110.0.0.1 A !110.0.0.2 A 120.0.0.2 A 130.0.5.2, *, *}(5)
{10.0.0.2, *, 10.0.0.1, *, *}(6)
{10.0.0.2, *, 10.0.0.2, *, *}(7)

5]

Atomic Flows

{10.0.0.2, *, 20.0.0.2, *, *}(8)

{10.0.0.2, *, 30.0.5.2, *, *}(9)

{10.0.0.2, *,110.0.0.1 A 110.0.0.2 A 120.0.0.2 A 130.0.5.2, *, *}(10)
{20.0.0.2, *, 10.0.0.1, *, *}(11)

{20.0.0.2, *, 10.0.0.2, *, *}(
{20.0.0.2, *, 20.0.0.2, *, *}(13)
{20.0.0.2, *, 30.0.5.2, *, *}(
{20.0.0.2, *,110.0.0.1 A 110.0.0.2 A 120.0.0.2 A 130.0.5.2, *, *}(15)

{110.0.0.1 A 110.0.0.2 A 120.0.0.2, *, 10.0.0.1, *, *}(16)

{110.0.0.1 A 110.0.0.2 A 120.0.0.2, *, 10.0.0.2, *, *}(17)

{110.0.0.1 A 110.0.0.2 A 120.0.0.2, *, 20.0.0.2, *, *}(18)

{110.0.0.1 A 110.0.0.2 A 120.0.0.2, *, 30.0.5.2, *, *}(19)

{110.0.0.1 A 110.0.0.2 A 120.0.0.2, *, 110.0.0.1 A 110.0.0.2 AND 120.0.0.2 A 130.0.5.2,
*, *}(20)

The transformation behaviour of the NAT can be modelled as follow:
— (14) (Shadowing transformation)

— (14) (Shadowing transformation)

) — (16) + (17) (Reconversion operation)

All the other atomic predicates are simply forwarded, without being trans-
formed.
NOTE: (3), (8), (13), and (18) are not forwarded because the NAT (IP address
20.0.0.2) represents their destination (their IPDst is equal to 20.0.0.2 and they
match only with Ds).
NOTES,: In case a predicate arrives to the NAT matching with D,, the reconversion
is applied. In this case, the transformation returns two predicates, (16) and (17).
We cannot know a priori which is the correct one, it depends on the destination of
the path. So, the entering atomic flows is splitted into two different atomic flows
and recursion continues, in one case with atomic predicates (16) exiting from the
Nat, in the other with (17).

At this point we can run Algorithm 4, considering one requirement and one
path at a time, to compute the set of atomic flows (list of alternating nodes and
traffics).

Requirement 1: {10.0.0.1, * 30.0.5.2, * *}
Source traffic By can be represented by atomic predicates (1), (2), (3), (4) and
(5), which are the predicates whose IPSrc is equal to 10.0.0.1. Destination traffic
instead is represented by (4), (9), (14) and (19), which are the predicates whose
IPDst is equal to 30.0.5.2.

Starting from By, we propagate each atomic predicates along the path taking
in consideration the forwarding and transformation behaviour of the nodes.

e [10.0.0.1,(1),, reached its destination without reaching the destination of the
requirement, so this atomic flow must be discarded

56

Atomic Flows

[10.0.0.1, (2),20.0.0.3, (2),20.0.0.2, (2),20.0.0.1, (2), discarded at the destina-
tion because it arrives with IPDst different from the IP address of the desti-
nation (30.0.5.1).

e [10.0.0.1,(3),20.0.0.3, (3), discarded because it reached its destination without
reaching the destination of the requirement.

e [10.0.0.1, (4), 20.0.0.3, (4), 20.0.0.2, (14), 20.0.0.1, (14), 30.0.5.2].
Accepted atomic flow. Notice how atomic predicate (4) is transformed cross-
ing the NAT following the Shadowing operation.

e [10.0.0.1, (5),20.0.0.3,(5),20.0.0.2, (5),20.0.0.1, (5). .., discarded at the desti-
nation

6.3 Advantages

1. Predicates are totally disjointed one from each other. The main benefit of
this approach is to arrive to a definition of a set of predicates that are totally
disjointed one from each other. If we configure a firewall with a deny rule
whose condition is expressed by a certain atomic predicate, we can be sure
that this rule will block only the traffic specified by that predicate, and all
the other traffics will be allowed to pass, because they are totally disjointed
from the blocked one.

2. Each atomic predicate can be identified with an integer, as suggested in Chap-
ter 2, keeping all the advantages of working with integers instead of complex
Java classes representing the IP header fields.

3. The MaxSMT formulation will then use integers for representing a traffic.
One of the most critical aspects working with MaxSMT solver, z3 in our
case, is understanding how to interface these tools with the classes to give
them in input. In our case, we have complex Java classes, represented by the
Predicate class. Z3 works mostly with simple data classes (integers, Booleans,
characters, strings etc.), so it is often difficult to model complex Java classes
using only the simple data types provided by the tool. With this solution,
the MaxSMT formulation will simply use integers for representing a traffic,
instead of taking in input multiple variables (e.g., four integers representing
the bytes of the source IP address, other four for the destination IP address,
etc.). This is expected to reduce the time required by z3 for solving the
MaxSMT problem.

4. z3 will not see any details about the network. From its point of view, it is
simply solving a problem on integers.

5. Algorithm 4, the one describing how atomic flows are computed starting from
the set of atomic predicates, can be easily parallelized.

o7

Atomic Flows

6.4 Disadvantages

1. Initial time spent for computing atomic predicates.

2. The output of the MaxSMT problem will be a list of disjointed configured
rules, we cannot demand to z3 to merge more rules into a single one, because
it is working with integers. This is not a problem if we adopt solutions such
as firewall with hash-based rules, but on the other cases we must demand the
work to a post-processing Java algorithm, that takes the rules configured on
a firewall and merge them.

6.5 Other considerations

Why considering a unique set of atomic predicates related to all requirements (ap-
proach 1), and not n set of atomic predicates each one related to a single require-
ment (approach 2)?7

e With approach 1, the complexity is O(n + m) where n is the number of
requirements while m the number of transformers. With approach 2 the
complexity is O(n % m). Furthermore, most iterations will repeat the same
operations (e.g., the computation of input packet classes D1, D2, D3 for a
transformer in common with more requirements).

e Even if the total number of atomic predicates computed with approach 2 is
smaller than the number computed with approach 1, the atomic predicates
could not be disjointed (for sure they are disjointed locally in the set of the
single requirement, but not for sure for the resulting set given by merging
them)

58

Chapter 7

Tests on Atomic Flows

The goal of this section is to introduce the various test cases used to evaluate the
performance of the two approaches. All test cases described in this Chapter are
the same that will be used later to evaluate the performance of the other approach,
based on Maximal Flows and described in Chapter 8. In particular, we will evaluate
how much time the two approaches take to compute the set of traffic flows and how
the number of generated flows varies increasing the size of the network and the
number of transformers inside it. We still do NOT take into account the time
taken to solve the MaxSMT problem. A total analysis, including the time taken
by the solver, will be done later in Chapter 10.

7.1 Test parameters

Parameters that can be configured before running the test are number of require-
ments (REQ), number of web clients (WC), number of web servers (WS), number
of NATs (NATS), number of firewalls (FWs), number of sources present in each
NAT (NATSrcs), number of rules present in each firewall (FWRules) and per-
centage of requirements with information also on ports and prototype (instead of
simply having information about source and destination of the requirement). It
is also possible to specify through a flag (true/false) whether the rules for pre-
existing firewalls are to be build automatically starting from source/destination of
the requirements (in this case we will have rules on firewalls only affecting nodes
on which at least one requirement has been built) or randomly selecting any nodes
from the network (in this case not necessarily belonging to a requirement). Based
on this last decision, time can vary greatly. In fact, rules that have source/desti-
nation not belonging to any requirement introduce new “interesting” predicates on
the network. At the contrary, if source/destination of the rules are created by look-
ing at the requirements, no additional predicates are created (they have all already
been added to the set when considering source/destination of the requirements).

As for times considered in analysing the approach based on Atomic Flows,
they differ in: time to generate the atomic predicates, time to associate
each transformation behaviour to the corresponding transformer (each transformer
in fact, as we have seen in the example, has an internal map the specify haw

59

Tests on Atomic Flows

that node has to behave when a certain atomic predicates arrives to it in input:
example, atomic predicate X arrives in input and it must be transformed into
atomic predicate Y, the time taken to fill these maps is not irrelevant) and time to
generate the atomic flows. The number of atomic predicates generated
for each test is also analysed.

7.2 Tests execution

We basically followed two approaches.

The first consisted of finding a starting value for each configurable parameter.
Once this configuration has been obtained, let us call it “base configuration”, we
proceed to execute the various tests increasing one parameter at a time, keeping
all the others at their basic value. This approach was mainly used to understand
which parameters have the greatest influence on the number of generated atomic
predicates, and consequently on the total execution time. We set the standard
configuration to the case with “100 requirements, 100 web clients, 100 web
servers, 25 NAT, 25 FW, 10 sources for each NAT, 10 rules for each
firewall” (case which takes 4.7 seconds to complete in case fw rules are not taken
from requirement, so in the worst case). NOTE: for the moment we do not consider
the aspect related to the percentage of requirements with indication on ports and
prototypes, which deserves a separated discussion, and we will talk about it at the
end of this Chapter.

The second approach, instead, consisted in the progressive increase of all pa-
rameters at the same time. So, a sort of progressive enlargement of the network,
in which the ratios between the values of the parameters is maintained constant,
while they are increased together step by step.

7.3 Analysis of test results

Most affecting parameters

As we expected, we found that parameters most affecting the number of gener-
ated atomic predicates, and consequently affecting the total execution time, are
the number of requirements, the number of NATSs, the number of fire-
walls (when the rules are NOT generated starting from requirements, i.e., FALSE
configuration) and the number of rules within those firewalls.

Number of requirements because it is from the requirements that we start
to build the atomic predicates: a predicate is generated for the source traffic of
each requirement and a predicate for the destination traffic of each requirement.
The more the requirements are, the more the starting “interesting” predicates, and
consequently the more time is required to transform them into atomic predicates.
Moreover, the number of generated atomic flows will be certainly greater, increasing
in this way also the time to generate them. We must generate all flows for each

60

Tests on Atomic Flows

100 WC, 100 WS, 100 AP, 25 NAT, 25 FW, FALSE 100 WC, 100 WS, 100 AP, 25 NAT, 25 FW, TRUE
100000 90000
83329,36
86950,54
90000 ; 80000
80000 < 70000
g E
E 70000 =
. £ 60000
& 160000 = 50542,36
< 52357 E 50000 =
® 50000 '%
3 £ 40000
£ 40000 2
o
=4 S 30000
g 30000 26465,3 o 23202,84
=3 20021,42 =
20000 < 20000 16409,92
ar00ae 045212
10000 . 10000 6147,18
| 2110,68
0 o
100 REQ 200 REQ 500REQ 1000REQ 5000REQ 10000 REQ 100 REQ 200 REQ S00REQ 1000REQ 5000REQ 10000 REQ

Computation time (difference TRUE/FALSE)

86550,54

90000 83329,36
80000
70000
& 60000 52357
E 50542,36
» 50000
E
= ao000
26465,3
30000 20021,42 | -23202,84
| 1640992
20000
10452,12
10000 470036 hldiig I
o o A
100 REQ 200 REQ 500 REQ 1000 REQ 5000 REQ 10000 REQ
Hfalse M true

Figure 7.1: Computation time VS number of requirements

specified requirement, so the higher the number of requirements, surely the higher
the number of atomic flows that will be generated.

We can see, from the third graphic of Figure 7.1, that the difference in time,
between the case in which fw rules are generated from requirements (“TRUE case”)
and the case in which they do not (“FALSE case”), is really minimal. It will be
much more decisive for other parameters. This is reasonable since the number of
considered requirements is very high, and so there is a high probability that, even in
the “FALSE case”, fw rules coincide with the source/destination of a requirement.

Generated atomic predicates FALSE Generated atomic predicates TRUE

50692,66 51076 51076 50499,02 51076 51076

g
g

20000 46384,98
4390548

I
8
8

31169,02

23203,62

200087744,06

Number of generated AP
w
g8
8

Number of generated AP
N w
8 8
8 8

10763,48

10000 |
o o

100 REQ, 200 REQ 500 REQ 1000REQ. SO00REQ 10000 REQ 100 REQ 200 REQ 500 REQ 1000REQ 5000REQ 10000 REQ

H
8
3

Figure 7.2: Number of generated AP VS number of requirements

We can also see, with these last two graphs (Figure 7.2), that, with a high
number of requirements, the number of generated requirements saturates to the
maximum possible value (51076). This happens when all the nodes of the network

61

Tests on Atomic Flows

Division of time in ms FALSE

100000
90000
20000
70000
60000

50000

Time (ms)

40000
30000

20000

o I I I I I
o

100 REQ 200 REQ 500 REQ 1000 REQ 5000 REQ 10000 REQ

Figure 7.3: Division of time VS number of requirements

are related to at least one requirement and therefore used for the computation of the
atomic predicates. In this way, the set representing the whole network is computed,
no node excluded. As we can see from the last graph (Figure 7.3), for the last three
columns the time taken to compute the set of atomic predicates (coloured BLUE)
remain constant and equals to the maximum possible value, and only the time used
to compute the set of related atomic flows (coloured GREY) increases, because of
the major number of requirements.

Number of NATSs because they introduce transformations. So, in addition
to predicates representing source and destination of requirements, it must also
be considered how they are transformed, and which are the input classes for the
NAT. Number of generated atomic predicates increases. All three considered times
increase: both the time to generate atomic predicate (because the initial set of
“Interesting” predicates is bigger), the time to build maps for the transformers
(because there are an higher number of transformers) and the time to compute
atomic flows (because there are more atomic predicates and therefore the recursive
function is called more times).

100 REQ, 100 WC, 100 WS, 25 FW, FALSE 100 REQ, 100 WC, 100 WS, 25 FW, TRUE

450000 350000 332580,08
393157,74

400000

300000

—. 350000
=

m
N
&
8
8
3

300000

250000 200000

200000 150000

150000
100000

AVG Computation time (m:
AVG COmputation time (ms)

100000
55621,54

20000 18524,3 I

50000 39375,72

2110,68 4307,1 10508,38
g - - n

25 NAT 50 NAT 100 NAT 200 NAT 500 NAT 25 NAT 50 NAT 100 NAT 200 NAT 500 NAT

470036 8694,16 1
Q0 = [

Figure 7.4: Computation time VS number of NATSs (i)

Here too, as we can see in Figure 7.5, the difference in time between the true
and false case is not so marked, since the number of firewall present in the network
(25) is not so decisive and does not determine such a substantial increase in the
number of APs obtained from their rules.

62

Tests on Atomic Flows

450000

400000

350000

300000

250000

200000

Time (ms)

150000

100000

4700,36

2110,68

25 NAT

Computation time

8694,16 18524,3
4307,1 10508,38
— —
50 NAT 100 NAT

W false Htrue

55621,54
129375,72

200 NAT

393157,74

332580,08

500 NAT

Figure 7.5: Computation time VS number of NATSs (ii)

Generated atomic predicates FALSE

400000

350000

300000

250000

400000
371147,9
350000
300000

250000

200000

Generated atomic predicates TRUE

336460,3

150000 150000

Number of generated AP
N
8
8
3
Number of generated AP

94900,52
100000 100000 78204,06

— 44184,72
\7744.06 25780,5 I

et 11 |

25 NAT

50000 10763,48 32431,62

16969,94 I
3¢l 1
25 NAT 50 NAT 100 NAT

50 NAT 100 NAT 200 NAT 500 NAT 200 NAT 500 NAT

Figure 7.6: Number of generated AP VS number of requirements

As we can see in Figure 7.6, the number of NATs is decisive in increasing the
number of generated atomic predicates. Among those analysed, it is the parameter
the most influences the increase because it is also the only transformer considered.

Division of time in ms FALSE

50000 I
o - - .

25 50 100
NAT NAT NAT

200
NAT

500
NAT

Figure 7.7: Division of time VS number of NATSs

Number of FWs in case configuration is FALSE because they increase the
number of generated atomic predicates for the network. For each firewall we must
build the Allowed and Denied set of predicates Ia, Id, characterizing the forwarding

63

Tests on Atomic Flows

behaviour of the node. Each predicate present in these two sets Ia, Id must then
be added to the set of “interesting” predicates. In case configuration would be
TRUE, these predicates are already present in the set (added because they are
source/destination of a requirement) and so should not be added again. But if
the configuration is FALSE, the corresponding new “interesting” predicates must
be added because they are not yet present determining an increase of generated
atomic predicates. So, the more FWs in a false configuration and the more rules
configured on them imply longer times.

100 REQ, 100 WC, 100 WS, 25 NAT, FALSE 100 REQ, 100 WC, 100 WS, 25 NAT, TRUE

28004,42
6178,82

21140,7

16263,38

H
7]
4]
3

10469,24 0054

2110,68

2332,42 2377,36
4700,36
5000
0 I

0 ‘ ‘

A o Axhbn e R 25 FW 75 AW 140 FW 240 FW 540 FW

AVG Computation time (ms)
=
8
8

AVG COmputation time (ms)
N
8
5}

g
g

Computation time (difference TRUE/FALSE)

30000 28004,42

25000
21140,7

20000
7 16263,98
£
2 15000
E
a 10469,24

10000

5178,22
4700,36
5000
2110,68 2332,42 2377,36 3008,4 I
g] |]| |
25 FW 75 AW 140 FW 240 FW 540 FW

Figure 7.8: Computation time VS number of Firewalls

NOTE : the unusual numbers (25, 75, 140, 240, 540) represent the total number
of firewalls in the network. Only a part of them is actually crossed by at least a
flow. For how the network is automatically built, these numbers are those necessary
so that the average number of firewall crossed is equals to 25, 50, 100, 200, 500 (i.e,
same number used for progression tests on NATS).

In case of configuration equal to FALSE, the increase in time is decisive. If rules
on firewalls do not concern nodes included yet in the requirements, the computation
will be much longer. NOTE: the increase in times in case configuration is equal
to TRUE only concerns the time spent to process the rules for the construction of
the Allowed and Denied list. Then, in the “TRUE case”, the predicates in these
list are not inserted in the list of “interesting” predicates because they are already
present and so time does not increase further.

As we can see in Figure 7.9, in the “True case”, the number of generated atomic
predicates does not increase but remains almost constant (even if the number of
firewalls increases).

64

Tests on Atomic Flows

Generated atomic predicates FALSE Generated atomic predicates TRUE
60000 11050 11025,9 11028,04
29608,76 51071,48 11000 10977,04 10981,18
50000
42773,9 10950
s %
o 40000 o 10900
2 g
s 8
@ 30373,62 S 10850
& 30000 &
5 ‘6 10800
] 5 10763,48
3 17744,06]
E 20000 E 10750
5 5
= =
10700
10000
10650
0 10600
25FW 75 W 140 FW 240 FW 540 FW 25 FW 75 W 140 FW 240 FW 540 FW

Figure 7.9: Number of generated AP VS number of Firewalls

Number of rules configured on firewalls with FALSE configuration.
As mentioned before, if firewalls have rules taken selecting nodes randomly (and
not from requirement), then the number of atomic predicates increases.

As we can see, from the following graphs, in the TRUE case, the number of
atomic predicates remains exactly the same. Times are slightly different because of
the time it takes to process and create the Allowed and Denied list {Ia, Id}, since
we have more rules inserted into firewalls.

100 REQ, 100 WC, 100 WS, 25 NAT, 25FW, 10 100 REQ, 100 WC, 100 WS, 25 NAT, 25 FW, 10
NATSrcs, FALSE NARSrcs, TRUE
14000 6000
12846,74 w0
11615,08
12000 5006
@ 10143,66 =
£ 10000 £
@ 2 4000
E £
T 2000 7856,84 =
2]
= ® 3000 2638,52
3 e000 2
g 4700,36 g 2110,68 221624 2188,76
] 8 2000
@ 4000 ©
z z
1000
2000
[0
10 FWRules 25 FWRules 50 FWRules 100 FWRules 200 FWRules 10 FWRules 25 FWRules 50 FWRules 100 FWRules 200 FWRules

Computation time (difference TRUE/FALSE)

12846,74
12000 11615,08
10143,66
10000
pre 7856,84
2 8000
E
o
E 6000 5399,08
4700,36
4000
2638,52
2110,68 2216,24 2188,76
- . l . I
o
10 FWRules 25 FWRules 50 FWRules 100 FWRules 200 FWRules

m false mtrue

Figure 7.10: Computation time VS number of Firewall rules

65

Tests on Atomic Flows

Generated atomic predicates FALSE Generated atomic predicates TRUE

40000 12000
475726 10763,48 10763,48 10763,48 10763,48 10763,48
35000 33412,1

30347,82 10000

30000

24575,86

o
&
8
8

20009 7744,06

Number of generated AP
&
8

Number of generated AP
@
]
5]

10000

5000

0 0
10 FWRules 25 PWRules 50 FWRules 100 FWRules 200 FWRules 10 FWRules 25 FWRules 50 FWRules 100 FWRules 200 FWRules

Figure 7.11: Number of generated AP VS number of Firewall rules

Parameters that do not affect or have minimal influence

Among the parameters that do not greatly affect times there are number of web
clients and web servers, number of firewalls with configuration equal to
TRUE and number of NAT sources.

Number of Web Clients and Web Servers. Like Allocation Places, they do
not affect times because the number of atomic predicates depends on the number
of requirements and not on the number of nodes in the network. This means
that an “interesting” predicate is not created for each node of the network (as it
is done in the Yang and Lam Algorithm), but only on the basis of requirements
(said in another way on the basis of source and destination nodes of requirements).
ANOMALY: from the figures we can see a sort of anomaly. Increasing the number
of web clients and web servers seems that the total time decreases. This actually
cannot be true, and the cause can be found in the rough creation of the network. In
fact, looking at the data of the number of crossed firewalls, it seems that increasing
the number of clients and servers determines a decreasing of the number of firewalls
crossed.

100 REQ, 25 NAT, 25 FW, FALSE 100 REQ, 25 NAT, 25 FW, TRUE

5000 3000
2758 2715,08 2715,34

5043,38 2471,84
50004700,36 4828,44 2500

2110,68

4148,5 204,84

2000

g
g

3307,22

1500

g
g

2131,98

n
3
2

AVG Computational time (ms;

AVG Computational time (ms)

1000 500

[0
100WCWS 200WCWS 300WCWS 500 WCWS 1000 WCWS 10000 WC 100WCWS 200 WCWS 200WCWS 500 WCWS 1000 WCWS 10000 WC
ws ws

Figure 7.12: Computation time AP VS number of web clients and web servers

The difference is especially noticeable in the “FALSE case” and it is reasonable.
In fact, that is the case in which firewalls and their rules, after being processed,
increase the number of APs. In the “TRUE case” instead, a greater number of
firewalls crossed simply implies a greater processing time for processing the Allowed
and Denied list (so a less significant increase because the number of APs remains
constant).

66

Tests on Atomic Flows

Number of NAT sources for each NAT. They do not increase the number of

generated APs (it remains exactly the same). Remember that an atomic predicate
computed on predicate X, also automatically generates the negation of X. So, if we
have a set of 100 addresses, the number of APs remains the same, both in the case
98 are obscured by the Shadowing operation and in the case only 20 are obscured,
because the algorithm also generates the transformations for the denied set (for the
2 and 80 addresses respectively that are not included between NAT sources). The
real discriminant is the fact that NAT exists or not (and therefore it is the number
of NATSs to influence), which must implies whether the transformation must be
introduced or not.

AVG COmputation time (ms)

100 REQ, 100 WC, 100 WS, 25 NAT, 25 FW, 10 100 REQ, 100 EC, 100 WS, 25 NAT, 25 FW, 10
FWRules, FALSE FWRules, TRUE

4750 2200

2156,86
0;700,36 4694,08

IS
N
il
&
S

4668,72 2110,68
4650
4600
2005,24

4550

4515,62 4518,5 1939,66 1930,54

4500

AVG Computation t
I
&
3

o
Q9
8
5]

4450 T80

4400 1800
10 NATSrcs 25 NATSrcs 50 NATSrcs 100 NATSrcs 200 NATSrcs 10 NATSrCS 25 NATSres 50 NATSrCS 100 NATSrcs 200 NATSrcs

Figure 7.13: Computation time VS number of NAT sources

We can see that times remain almost constant, both in the TRUE case and in

the FALSE case. They decrease slightly, but one again the causes are to be found
in how the network is built.

Number of generated AP

Generated atomic predicates FALSE Generated atomic predicates TRUE
20000 12000
130[}[}17744'06 17744,06 17744,06 17744,06 17744,06 10763,48 10763,48 10763,48 10763,48 10763,48
10000
16000
14000 %
- 8000
]
12000 ®
]
2
10000 % 6000
&
Q
8000 5
2
E 4000
6000 3
z
4000
2000
2000
0 o
10 NATSrcs 25 NATSrcs 50 NATSrcs 100 NATSrcs 200 NATSrcs 10 NATSrcs 25 NATSrcs 50 NATSrcs 100 NATSrcs 200 NATSrcs

Figure 7.14: Number of generated AP VS number of NAT sources

The number of generated atomic predicates instead remains exactly the same

in both cases.

Number of firewalls with TRUE configuration and their number of

rules. See above.

67

Tests on Atomic Flows

Progression tests

Computation time FALSE

1200000
1025248,86
1000000
M CASE-A: 100 REQ, 200 WC, 200 WS, 50 NAT,
50 PW, 20 NATSrcs, 20 FWRules
800000
B CASE-B: 150 REQ, 300 WC, 300 WS, 75 NAT,
Py 75 FW, 30 NATSrcs, 30 FWRules
m
-E. 500000 575736,56 W CASE-C: 200 REQ, 400 WC, 400 WS, 100
g NAT, 100 FW, 40 NATSrcs, 40 FWRules
L W CASE-D: 250 REQ, 500 WC, 500 WS, 125
P— NAT, 125 FW, 50 NATSrcs, 50 FWRules
W CASE-E: 300 REQ, 600 WC, 600 WS, 150
23834736 NAT, 150 FW, 60 NATSrcs, 60 FWRules
200000
94543,58
22479,34
0 S
Computation time TRUE
140000
128390,7
120000
W CASE-A: 100 REQ, 200 WC, 200 WS, 50 NAT,
100000 50 FW, 20 NATSrcs, 20 FWRules
W CASE-B: 150 REQ, 300 WC, 300 WS, 75 NAT,
75 FW, 30 NATSrcs, 30 FWRules
80000 73153,2
E W CASE-C: 200 REQ, 400 WC, 400 WS, 100
g NAT, 100 FW, 40 NATSrcs, 40 FWRules
£ e = CASE-D: 250 REQ, 500 WC, 500 WS, 125
NAT, 125 FW, 50 NATSrcs, 50 FWRules
40000 J6316,14 = CASE-E: 200 REQ, 600 WC, 600 WS, 150
NAT, 150 FW, 60 NATSrcs, 60 FWRules
20000 16057,66
5235,2
- [|

Figure 7.15: Computation time VS progression tests

Other tests

Time computing atomic flows (with different number of threads)

350000
300000 288674,42
250000
& 200000
E
E 143630,64
E 150000 X
8031,66
|
100000 38688,86
y | 66554,24
3716,76 7959,28 /
20000 385,5 L2262 13720,82 .‘ 29546,62 /32481,88
1349,62 | 31518 405\9’3 897,06 N | 308972 | 766,02 l
o >/ - - -
100 REQ 200 REQ 500 REQ 1000 REQ 5000 REQ 10000 REQ

H1THREAD M 5THREAD M 10THREAD

Figure 7.16: Computation time VS number of threads

This graph shows some statistics obtained exploiting parallelization for

atomic flows computation phase.

68

the

Tests on Atomic Flows

Percentage of requirements with information on ports and prototype

We found that an increase in the number of requirements that also contain informa-
tion on port numbers and L4 prototype has drastic influence on the total execution
time, because it drastically increases the number of generated APs. Let us con-
sider the base case which does not contemplate the information about ports and
prototype. It generates on average 11108 predicates, expressed by the quintuple
{IPSrc, *, IPDst, *, *}. If we introduce even just one port number Z for the source
of a requirement, this would be enough to double the number of generated atomic
predicates: they would be 11108 with source port equal to Z and 11108 with source
port !Z. This leads to an exponential increase in the number of generated atomic
predicates and therefore in the total time.

100 REQ, 100 WC, 100 WS, 25 NAT, 25 FW, FALSE 100 REQ, 100 WC, 100 WS, 25 NAT, 25 FW, TRUE
1200000
3000000
1000000 10219
2500000 2407645 _
2 £
gzcmooo % =
= 5
% 1500000 8 600000
] :
S— 979110,74 S 400000 40744526
o 2
z
500000 200000
156386,54 68356,76
(70038 1 5 []

0% 10% 25% 33% 10% 25% 33%

Figure 7.17: Computation time VS percentage of requirements with information
on ports and protocol type

Generated atomic predicates FALSE Generated atomic predicates TRUE

5000000 3500000
4535566 3125535

4500000
2000000

4000000
2500000
3500000

2883430,82
3000000

2000000 1768023,4

2500000

1500000
2000000

Number of generated AP
Number of generated AP

1500000 1000000

1000000
600654,04 500000 369695,6

500000
17744,06 10763,48
o 0

o% 10% 25% 33% 0% 10% 25% 33%

Figure 7.18: Number of generated AP VS percentage of requirements with infor-
mation on ports and protocol type

The problem is the fact that, if we have a requirement {IPSrc X, Z, IPDst Y,
* %}, it is not possible to associate source port Z only to predicates having source
address = X and destination address = Y. This information on the port number is
propagated to all other predicates having source and destination address different
from X and Y. This is how the model proposed by Yang and Lam is built. A solution
could be not considering the port numbers in the atomic predicate if, on the paths
of the requirements, there are not transformers working on port numbers. If the
transformer works only on IPAddresses, that we cannot consider the information
on port numbers for the computation of the set of atomic predicates.

69

Chapter 8

Maximal Flows

The second proposed approach consists of Maximal Flows. If with Atomic Flows
we tried to split as much as possible each traffic flow into minimal and disjoint
traffics, that can be subsequently identified with an integer identifier, with this
approach we try to do the opposite. That is, try to reduce the number of generated
flows, considering only a subset of them, which is smaller but equally representative:
the set of Maximal Flows.

definition

Definition 8.0.1 Mazimal Flows. Called F, the set of all possible flows of the net-
work, the corresponding set of Mazimal Flows FM matches the following definition:

EM={fMeFRRBfeF.(f# MnAFMChH}

The set FM is defined as a subset of F, that contains only the flows that are
not subflows of any other flow in F,. All the flows of F, that are not in FM are
subflows of flows that are in FM. This means we are trying to aggregate as much
as possible different flows into maximal flows representative for all the ones that
have been joined. All flows represented by the same maximal flow behave in the
same way when crossing the various nodes of the network, so that it is sufficient to
consider the maximal flow and not each single flow that it represents.

Also in this case, flows are modeled as a list of alternating nodes and Predi-
cates, representing the traffic traveling between two consecutive nodes. Predicates
contained inside a Maximal Flow are no longer necessary Atomic but express the
disjunction of several quintuples.

8.1 Approach

Before formulating the MaxSMT problem, FM is computed for each NSR 7 on the
basis of the transformation behaviour of network functions, by means of Algorithm
5.

Given the allocation graph, G4, the set paths(r,G4), containing the paths of
G 4 that satisfy 7.C' is computed (line 2). Each path is represented as a list of nodes

70

Maximal Flows

Algorithm 5 computation of M

Input: a requirement r, and an AG G4

Output: FM
1: F,M =0
2: for each p = [ng,n1,...,nm+1] € paths(r,G4) do
3: F <« {[no, t},n1, true, na, ..., true, ny,41)}
4: fori=1,2,....,m do
5: F(—{l—l—[bi/\b;,ni]+l/|l+[bi,ni]+l/GF,
6 b e (70,70}
7: F o {l+ b ANbj,ng) + 1| L+ [b,ni] +1 € F,
8: b; € {Di;}}
9: F + {l + [bi,ni, biy1 A ﬁ(bi),nﬂ_ﬂ + U |
10: [+ [bz, N, bit1, ni+1] +1' e F}
11: end for
12: F' + {l + [trm+1 A by, ’I’Lm+1] | [+ [berl, nm+1] S F}
13: fori=m,m—1,...,1do
14: '« {l + [bl VAN ﬁil(bprl), n;, bi+1] + U ’
15: l+ [b,‘,ni, bi+1] +1'e F'}
16: end for
17: if F + F’ then
18: F <« F’
19: goto line 4
20: end if
21 FM«— FMuF
22: end for

23: return FM

p = [ng,n1,n...] in which the endpoints, eg and ey, have the IPAddress equals
respectively to the IPSrc and IPDst expressed in the condition of the requirement.

For each path, all the corresponding Maximal Flows are computed and added
to the result set. This computation is performed iteratively. At each iteration, two
set of lists ' and F” are computed (these are lists of alternating nodes and packet
classes). The first set F initially contains only the list [ng, t1, 1y, true, ..., true, ng,1]
(line 3). In this list, t1 is equal to the Predicate {r.C.IPSrc, * r.C.pSrc, *, *}, rep-
resenting the largest traffic that satisfies the source component of r.C, while all the
other traffics inside the list are set to true (i.e., the class of all packets).

Then, at each iteration, a forward traversal and a backward traversal on the
path p are performed. In the forward traversal (lines 4-7), each list in F' is pro-
gressively updated to take into account the way the traffic is transformed by each
network function. For each node n; of the path, the predicate b;, representing the
ingress traffic for that node in the current list, is split into the largest homogeneous
subclasses of packets, by intersecting it with the forwarding domain ({/,, /;} and
the transformation domain ({D;;}) of the node. Then, the corresponding function
T is applied to each traffic that matches D;;. For each partition of the Predicate
b;, a new list is generated and added to the result set of Maximal Flows. In these

71

Maximal Flows

formulas, the operator + means list concatenation. Note that, for the packet fil-
ters in the APs (i.e., those whose configuration must be decided by the MaxSMT
solver), I, and I; at the moment are unknown, because their configuration is not
yet decided. For those nodes, I, and I;, are set respectively to true and false, i.e.,
no splitting occurs.

When the traffic arrives to the destination node, it is put in intersection, and
therefore restricted, with the predicate representing the destination components
of the requirement (i.e., {* r.C.IPDst, * r.C.pDst, r.C.tProto}). Starting from
the flows computed in the forward traversal, a backward traversal is executed,
which computes a new set of lists F’. F” is initialized to contain each element of
F, with its last traffic restricted to the largest traffic that satisfy the destination
components of r.C (line 8). So, with the backward traversal (lines 9-10), each
predicate representing the ingress traffic of a node is restricted by propagating the
restricted versions backwards.

The procedure stops when, after the last iteration, the flows in F' and F’ are
the same. If not, a new iteration starts with F' initially containing the flow present
in F' at the end of the previous iteration.

8.2 Example

Let us consider this simple example that includes a sub-net of clients (10.0.0.%,
corresponding to 10.0.0.0/24), a single transformer (NAT in 20.0.0.2), two allocation
places and one web server. The requirement requires reachability between the sub-
net of clients and the server. NAT performs Shadowing only on the IP address
10.0.0.1.

Requirements:
- Reachability: ~ 10.0.0.%, *, 30.0.5.2, *, *

Web client AIIocatlon place AUQQQE!QH place Web server

/\ / \ / NAT \ l//”(\ /
_ﬂ\ / '\ / \ / Kk__

Src: 10.0.0.1

First, let us compute the input transformation classes for the NAT.

e D, = {10.0.0.1, * 110.0.0.1 A 120.0.0.2, *, *}
e D, = {110.0.0.1 A 120.0.0.1, *, 20.0.0.1, *, *}
e Dy = Dy U D3 = {10.0.0.1, *, 10.0.0.1, *, *} U {110.0.0.1, *, 110.0.0.1, *}

D1 represents the Predicate matching the input class for the Shadowing oper-
ation, it has a private source address and a public destination address (different

72

Maximal Flows

from the address of the NAT, 20.0.0.2). D, represents the Predicate matching the
input class for the Reconversion operation, it has a public source address, and a
destination address equals to the IP address of the NAT. Ds, instead, represents
all Predicates not included in D; and D,. In particular, in D3; we collect all the
Predicates having both IPSrc and IPDst as private addresses, and in D3y all the
Predicates having both IPsrc and IPDst as public addresses.

Now, let us compute all the paths that satisfy the requirement, that are the
paths whose endpoints have IP address respectively equal to the IPSrc and IPDst
expressed in the condition of the requirement. In this example, there exists a unique
path represented by the list p = [10.0.0.*, 20.0.0.3, 20.0.0.2, 20.0.0.1, 30.0.5.2].

Now let us run Algorithm 5

Forward traversal 1

Web client AIIocatlon place NAT Allocation place Web server
SE g il
—)1 —*
y W W r

Src: 10.0.0.1
{10-0-0-*. R

Source traffic exiting from the source node is generated. It matches with the
Predicate that has IPSrc and pSrc expressed by the condition of the requirement.
For now, we do not yet consider the destination components of the requirement.

Forward traversal 1

Web client Allocation place NAT Allocation place rver

_ \ "”"'\)
y

N

J— |

—4 @ =
\/_, \/\/

{1000* * * * *} {1000*'*’*1*'*

Src: 10.0.0.1

Once the allocation place is reached, the traffic is simply forwarded. As men-
tioned before, firewalls present in the allocation places are not yet configured, so
their domains I, and I, are respectively equal to true and false. Therefore, in this
phase, all the APs simply forward all the packets arriving them in input.

The predicate {10.0.0.%, * * *} arrives in input to the NAT. It is put in
intersection with the various transformation domains of the NAT. In particular:

e {10.0.0.% * * *} AND D; = {10.0.0.1, *, 110.0.0.1 A 120.0.0.2, *, *}, followed
by the Shadowing transformation that will modify the outgoing predicate in
{20.0.0.2, *, 110.0.0.1 A 120.0.0.2, *, *}

73

Maximal Flows

o {10.0.0.%, * * *} AND Dy = {10.0.0.% A 110.0.0.1, *, 20.0.0.2, *, *}, followed
by the Reconversion transformation that will modify the outgoing predicate
in {10.0.0.* A 110.0.0.1, *, 10.0.0.1, *, *}

e {10.0.0.% * * *} AND D3, = {10.0.0.1, *, 10.0.0.1, *, *}, simply forwarded

o {10.0.0.%, * * *} AND Dy, = {10.0.0.% A 110.0.0.1, *, 110.0.0.1, *, *}, simply
forwarded

Forward traversal 1

Web client Allocation pIa NAT Allocation P|ﬂCE Web server

/\/ _,
\/\/ __4

Src: 10.0.0.1

;;/
N

{10 0.0.%, %, % * *} b
{10.0.0.1, *, 110.0.0.1 AND !20.0.0.2, *, * {20.0.0.2, *, !10.0.0.1 AND 120.0.0.2, *, *

{10.0.0.* AND !10.0.0.1, *, 20.0.0.2, *, *} {10.0.0.* AND !10.0.0.1, *, 10.0.0.1, *, *
{10.0.0.1, *, 10.0.0.1, *, *} {10.0.0.1, *, 10.0.0.1, *, *}
{10.0.0.* AND !10.0.0.1, *, 110.0.0.1, *, *} {10.0.0.* AND !10.0.0.1, ¥, 110.0.0.1, *, *

Forward traversal 1

Web client

Allocation place AIIocatlon place Web server

/’ N ES(/W\ O£
/ N 4 \ /:\ 4

,,/' Src:10.0.0.1
{10.0.0.%, *, *, * *}

f {20002,*,r1ooo1ANDlzoooz,*,*
{10.0.0.1, *, 110.0.0.1 AND 120.0.0.2, *, * {10.0.0.* AND !10.0.0.1, ¥, 10.0.0.1, *
{10.0.0.* AND 110.0.0.1, *, 20.0.0.2, *, * {10.0.0.1, *, 10.0.0.1, *, *

{10.0.0.1, *, 10.0.0.1, *, *} {10.0.0.* AND !10.0.0.1, *, 110.0.0.1, *, *

The various Predicates arrive to the second AP, they are simply forwarded and
finally they reach the destination node. Here, they are put in intersection with the
Predicate representing the destination components of the requirement, in our case
with {*, * 30.0.5.2, *, *}. For those whose intersection does not give a null result,
the backward traversal begins. In particular,

e {20.0.0.2, ¥ 110.0.0.1 A 120.0.0.2, *, ¥} AND {*, * 30.0.5.2, *, *} = {20.0.0.2,
*30.0.5.2, *, *}

o {10.0.0.% A 110.0.0.1, *, 10.0.0.1, *, *} AND {*, * 30.0.5.2, *, *} = null. The
Predicate is then discarded.

e {10.0.0.1, * 10.0.0.1*, *} AND {* * 30.0.5.2, *, *} = null. Also this
Predicate is then discarded.

74

Maximal Flows

o {10.0.0.% A 110.0.0.1, *, 110.0.0.1, *, *} AND {*, *, 30.0.5.2, *, *} = {10.0.0.*
A 110.0.0.1, *, 30.0.5.2, *, *}

Only two Predicates have a not null intersection with the destination Predicate
and, therefore, they are propagated backward.

Backward traversal 1

Web client Allocation place Allocation place Web server

& 5006

Src: 10.0.0.1

{20.0.0.2, *, 30.0.5.2, *,
{10.0.0.* AND 110.0.0.1, *, 30.0.5.2, *, *

Backward traversal 1

Web client Allocation place Allocation place Web s server

Q- OO

Src: 10.0.0.1 ’

{20002'*,30052'*'* {20002*30052**}
{10.0.0.*¥ AND 110.0.0.1, ¥, 30.0.5.2, *, *} {10.0.0.* AND !10.0.0.1, *, 30.0.5.2, *, ¥}

The various Predicates arrive at the NAT, the 7! transformation is then ap-
plied. It is the inverse transformation to the one applied during the forward traver-
sal.

Backward traversal 1

Web client Allocation place NAT A”OCEUOH place Web server

@
"

y \ a \
/ \ AR
7 Sre: 10.0.0.1 {20002*30052**}

{10.0.0.1, *, 30.0.5.2, *, *} [{20.0.0.2, *, 30.0.5.2, *, *} {10.0.0.* AND !10.0.0.1, *, 30.0.5.2, *, *
{10.0.0.* AND !10.0.0.1, ¥, 30.0.5.2, *, *} {10.0.0.* AND 110.0.0.1, *, 30.0.5.2, *, *}

Forward traversal 2 + Backward traversal 2 = the iteration is repeated
a second time. During these two new traversals, the two remaining Predicates are
not affected by any new transformation by all the nodes on the path. So, at the
end of the second iteration, the Algorithm stops and returns the list containing the
final Maximal Flows.

The two resulting Maximal Flows are lists of alternating nodes and Predicates:

75

Maximal Flows

1. [10.0.0.%, {10.0.0.1, *, 30.0.5.2, *, *}, 20.0.0.3, {10.0.0.1, *, 30.0.5.2, *,
*}.20.0.0.2, {20.0.0.2, *, 30.0.5.2, *, *},20.0.0.1, {20.0.0.2, *, 30.0.5.2,
* %} 30.0.5.2]

2. [10.0.0.%, {10.0.0.* A !10.0.0.1, *, 30.0.5.2, *, *}, 20.0.0.3, {10.0.0.* A
110.0.0.1, *, 30.0.5.2, *, *},20.0.0.2, {10.0.0.* A !10.0.0.1, *, 30.0.5.2,
*%120.0.0.1, {10.0.0.% A 110.0.0.1, *, 30.0.5.2, *, *}, 30.0.5.2]

8.3 Advantages

e This Algorithm is much faster than the two used for computing Atomic Flows.
No initial computation time (to compute the set of Atomic Predicates) is
required and therefore performance is much better.

8.4 Disadvantages

e [t cannot be ensured that the Predicates generated by each Maximal Flows
are minimal and disjoint. Specifically, a Predicate computed for one require-
ment might intersect with a Predicate computed for another requirement.
So, for this reason, they cannot be assigned a unique integer, loosing all the
advantages of working with integers rather than with Java classes.

e Since we can no longer identify the Predicates with integers, we should con-
sider a class variable built ad hoc to give in input to z3. This variable, repre-
senting the Predicate class, is modelled with 13 fields: 4 integers representing
the four bytes of the source IP address, 4 integers representing the four bytes
of the destination IP address, 2 integers representing the range (min, max)
of source ports, 2 integers representing the range of destination ports and a
String representing the L4Prototype. So, as we can see, there are many more
variables to give in input to z3, and therefore it is required much more time
to solve the MaxSMT problem.

8.5 Maximal Flows VS Atomic Flows, introduc-
tion

The advantages and disadvantages of this approach are complementary to those
analysed for the Atomic Flows approach. With Maximal Flows we have a very low
flows generation time, but a higher time required to solve the MaxSMT problem.
With Atomic Flows, on the contrary, we have a relatively high flows generation
time, but a corresponding relatively low time taken by z3 (because it works with
integer variables). The real challenge between the two approaches lies here: can the
initial time taken to compute the set of all atomic predicates compensate and then
bring sufficient advantages to z37 A final complete analysis is done in Chapter 10.

76

Chapter 9

Tests on Maximal Flows

9.1 Test parameters

The same tests presented in the Chapter 7 have been performed. The only differ-
ence is in the true/false parameter indicating whether the configured firewall rules
were to be randomly generated on the basis of the requirements or not. Here, this
parameter is not longer necessary. According to some preliminary test, in fact,
the value of this parameter did not affect the execution time of Algorithm 5. The
configurable parameters are then: number of requirements, number of web
clients and web servers, number of allocation places, number of NATsSs,
number of FWs, number of sources within each NAT, number of config-
ured rules within an already existing firewall, percentage of requirements
with information also on port numbers and protocol type.

Also in this case, there are two approaches chosen for building the tests:

e The first kind of tests consist of selecting a “basic configuration” for all the
parameters, and then increase the value of one parameter at a time while
keeping all the other constants, in order to evaluate how much that parameter
affects the times. Here too, we have chosen for the “basic configuration” the
case with “100 REQ, 100 WC, 100 WS, 100 AP, 25 NAT, 25 FW, 10
NATSrcs, 10 FWRules”.

e The second kind of tests consist of increasing simultaneously the values of all
the parameters, in order to simulate a progressive enlargement of the network.

9.2 Analysis of test results

Let us see how single parameters affect the total execution time.

Number of requirements. As we can see from the graph below (Figure 9.1),
the number of requirements does not particularly affect the total execution time of
the Algorithm. It goes from 0.13 seconds (for the case with 100 requirements) to
10.6 seconds (for the case with 10 thousand of requirements). Although the number

77

Tests on Maximal Flows

of requirements has increased a lot, times are kept low. Let us remember that
with the Atomic Predicates approach, the average times with FALSE configuration
were 4.7 seconds (with 100 requirements) and 86 seconds (with 10 thousand of
requirements). Here, the increase in time is due to the fact that there are more
requirements for which the corresponding Maximal Flows must be computed. So,
Algorithm 5 is run more times, once for each requirement.

Number of web clients and web servers, number of allocation places.
As with the Atomic Predicates approach, here too the total number of WCs, WSs
and APs is irrelevant. It does not involve any increase in times, which are always
kept very low for all the cases (less than one second).

100 WC, 100 WS, 25 NAT, 25 FW 100 REQ, 25 NAT, 25 FW
12000 250
10622,2

10000 197,98

N
2
3

@
8
8

i

]

8

113,98

g
g

4979,54
91,38

g

80,96

a5
8
g

AVG Computation time (ms)

AVG Computation time {ms)

&

2000

1127,84
15,62 19,6
113,98 262,06

560,54
S . | , 1 I

100 REQ 200 REQ 500 REQ 1000REQ SO00REQ 10000 REQ 100 WCWS 200 WCWS 500 WCWS 10000 WCWS 5000 WCWS 10000 WCWS

Figure 9.1: Computation time VS number of requirements, Computation time VS
number of web clients and web servers

Number of NATs. The total number of NATSs is a determining parameter
in the increase of times. Looking at Algorithm 5 and at the Example described
above, we can see that each NAT, and in general each transformer, increase the
number of flows to be generated. Each flow entering a transformer, in fact, is split
into multiple flows according to the various intersections the incoming predicate
has with the transformation domains of the node. The more NATS there are, the
more intersection and therefore the more flows will be generated.

100 REQ, 100 WC, 100 WS, 25 FW 100 REQ, 100 WC, 100 WS, 25 NAT
250000 236319,5 160000

137768,76
140000

200000
120000

g
g
g

150000

©
8
8

100000

AVG Computation time (ms)
o
g
8

IS
8
8

27923,68

AVG Computation time (ms)

g
8

14648,68

514,76 2329,96 113,98 155,52 LA
113,98 2 l & ™
] -]

25 50 100 200 500 25 50 100 200 500
NAT NAT NAT NAT NAT Fw Fw FW FwW Fw

g
g

Figure 9.2: Computation time VS number of NATs, Computation time VS number
of Firewalls

Number of firewalls. As well as the number of NATSs, the total number of
firewalls determines an increase in times, even if less significant. Let us remember
that, in line 5 of Algorithm 5, the Predicate entering a node is placed in intersection

78

Tests on Maximal Flows

with its forwarding behaviour, I, and I;. In case of firewalls, I, and I; consist of
the set of all Predicates expressing the condition of the rules configured inside that
firewall. Each existing intersection with one of these Predicates, generates a new
Maximal Flow. Therefore, it determines an increase in times required by Algorithm
5 to complete.

Number of sources within each NAT. They do not particularly affect times,
all the tests considered took less than one second to complete. The real discrim-
inating factor is the number of NATSs present in the network, not the number of
sources present within them.

Number of rules configured within each existing firewall. Times increase
slightly. There are mainly two reasons for this. The first reason is because the more
rules configured inside each firewall, the more time to compute the set I, and I,
because there are more rules to process. However, this time has relatively little
effect on performance. The second and most significative reason is the fact that
more rules are configured inside each firewall, more predicates will be present inside
I, and I;, and so a greater probability of intersection for the predicate entering the
node. Remember that for each intersection, a new Maximal Flow is generated.

100 REQ, 100 WC, 100 WS, 25 NAT, 25 FW 100 REQ, 100 WC, 100 WS, 25 NAT, 25 FW
2500

606,64
582,92

600
2000 1918,02

407,92 1500

1128,84
293,86

AVG Computation time (ms)
=
8
s

AVG Computation time (ms)

o
<1
2

510,38

g

113,98

100 209,6
113,98
0

i |

10 NATSrcs 25 NATSrcs 50 NATSrcs 100 NATSrcs 200 NATSrcs 10 FWRules 25 PWRules

50 FWRules 100 FWRules 200 FWRules

Figure 9.3: Computation time VS number of NAT sources, Computation time VS
number of firewall rules

100 REQ, 100 WC, 100 WS, 25 NAT, 25 FW

230

~ ~ ~
B & N
=} S &

AVG computation time (ms)

~
=
5

205
0% 10% 25% 33%

Figure 9.4: Computation time VS percentage of requirements with information on
ports and protocol type

Percentage of requirements with information also on port numbers
and protocol type. With the Maximal Flows approach, this parameter does
not affect times. All the transformers considered in our examples, work mostly by

79

Tests on Maximal Flows

changing only the IP addresses of packets, so the information on ports and protocol
type is simply forwarded without being modified, The situation could be different
if we introduce in the network transformers that also modify port numbers and
protocol type.

Progression tests

Computation time

40000
35597,6
35000
T W CASE-A: 100 REQ, 200 WC, 200 WS, 50 NAT,
50 FW, 20 NATSrcs, 20 FWRules
G W CASE-B: 150 REQ, 300 WC, 300 WS, 75 NAT,
g 75 FW, 30 NATSrcs, 30 FWRules
m
s M CASE-C: 200 REQ, 400 WC, 400 WS, 100
g 17171,54 NAT, 100 FW, 40 NATSrcs, 40 FWRules
= mCASE-D: 250 REQ, 500 WC, 500 WS, 125
13000 NAT, 125 FW, 50 NATSrcs, 50 FWRules
CASE-E: 300 REQ, 600 WC, 600 WS, 150
oa0e 7534,16 NAT, 150 FW, 60 NATSrcs, 60 FWRules
2000 27356
704,98
0 E—

Figure 9.5: Computation time VS progression tests

80

Chapter 10

Atomic Flows VS Maximal Flows

This chapter deals with the final analysis about the comparison between the two
approaches. In particular, the results obtained by solving the entire Refinement
problem will be described. As described in Chapter 3, the work done by the Re-
finement tools can be mainly divided into two phases. The first phase consists of
computing all the Traffic Flows related to the requirements expressed in input by
the user. We have analyzed in detail the time taken for the computation of these
flows for both the two approaches in Chapters 7 and 9. The second phase instead
consists of giving the flows computed in the previous phase in input to a MaxSMT
solver - z3 in our case - , in order to find the optimal allocation and configuration
of the security mechanisms necessary to satisfy the expressed requirements. As
anticipated at the end of Chapter 8, this phase is critical not only for the number
of traffic flows that the solver could receive in input, but also for the type of class
used to represent them. With the approach of Maximal Flows, the solver receives in
input a complex class representing the five main fields of the IP header, and models
it using only the simple variable types supported by z3: 4 integers to represent the
four bytes of the source IP, 4 integers for the destination IP, 2 integers to represent
the range of source ports, 2 integers for the range of destination ports and a string
with the concatenation of protocol types, giving a total of 13 variables to express
each predicate within each Maximal Flow. With the approach of Atomic Flows, on
the other hand, the solver receives in input simple integers, which are the identifiers
of the predicates within each Atomic Flow, unique and disjoint within the network.
And this is the main advantage of Atomic Flows over Maximal Flows.

Concerning the number of generated flows, with the Atomic Flows approach a
higher number are generated. And this can be easily understood since with Atomic
Flows we try to slit each flow into minimal and simpler traffic flows (reaching a
higher level of granularity), while with Maximal Flows we try to aggregate as much
as possible the various flows into flows called Maximal that are equally expressive.
And this is therefore a point in favor of the second approach.

The last consideration that could play a relevant role is the time taken to com-
pute the traffic flows (phase 1). In the case of Maximal Flows, we have seen that the
computation is immediate, very short time is lost to carry out this phase since the
process of generating the flows is a simple recursive function (5), mostly paralleliz-
able. While for Atomic Flows, it is a particularly influential time. It corresponds

81

Atomic Flows VS Maximal Flows

to the initial time spent to compute the global set of atomic predicates, starting
from the ”interesting” predicates of the network (as described in Algorithm 3),
and the subsequent recursive function (Algorithm 4), which, in turn, computes the
corresponding Atomic Flows. This initial time spent on the computation of atomic
predicates could be a big disadvantage.

Consequently, we could summarized as follows:

e Phase 1 of the Refinement problem - i.e. computation of traffic lows - com-
putationally expensive for the approach with Atomic Flows, while irrelevant
for the approach with Maximal Flows

e Phase 2 of the Refinement problem - i.e. solving the MaxSMT problem -
much more expensive for Maximal Flows.

As written in the last section of Chapter 8, the real challenge between the two
approaches is precisely this: to evaluate how much weight phase 1 has compared to
phase 2, with respect to the total time spent for the Refinement problem. If phase
1 has a lighter weight than phase 2 (that means in proportion it takes less time
to be solved for both the two approaches), then it is worth spending some initial
time to compute the Atomic Predicates and assign them an integer identifier so
that phase 2 can be solved in a more flexible and faster way. On the contrary, if
phase 1 has a heavier weight than phase 2, then the initial time spent could prove
inconvenient.

10.1 Tests execution

What we have obtained by analyzing the results is mainly that phase 2 of the
Refinement problem (the MaxSMT phase) has a much greater impact than phase
1, and consequently the Atomic Flows approach is more advantageous than the one
with Maximal Flows. We have analyzed that the initial time spent to compute the
set of Atomic Predicates and the corresponding Atomic Flows, for the analyzed
networks, is not much greater than the one spent to compute the Maximal Flows,
but it brings enough advantages to make phase 2 significantly faster.

The parameters considered for the tests are the same described in Chapter 7
and Chapter 9. We will analyse a series of tests in which the network and the values
of all the parameters are progressively increased step by step and we will describe
how much time the two phases of the Refinement problem take to be solved, in
order to evaluate the weight of each phase with respect to the total time.

Since the percentage of requirements that bring information also on ports and
protocol type is particularly critical for the Atomic Flows approach (as we have
seen in the last section of Chapter 7), we analysed this approach in five different
scenarios: with 0%, 10%, 25%, 50% and 100% of requirements complete of the
information on ports and protocol types. Concerning the Maximal Flows approach
instead, we have seen in Chapter 9 that this parameter does not affect performances,
so for this approach we consider the case with 0%.

82

Atomic Flows VS Maximal Flows

10.2 Analysis of test results

10.2.1 Final results

The final results with the comparison of the two approaches can be summarized by
the following figure.

Comparison Progression tests

B4058,

As we can see, the approach with Maximal Flows takes much more time than all
the other five scenarios considered for the approach with Atomic Flows. Therefore
the latter seems to be the most convenient approach, despite the percentage of
requirements with information also on ports and protocol types is a very influential
parameter.

The figure seems to show a behavior that, at first sight, might be strange: the
case with AP 100% takes less time to complete than the case with AP 50%. In
reality, considering how Atomic Predicates and Atomic Flows are built, we can un-
derstand the causes of this behavior. They will be explained well in the next section,
which will analyze the time difference between the two phases of the Refinement
problem for all six considered cases.

10.2.2 Time division between the phases
Maximal Flows approach

As we can see from the following figure, the time taken with the Maximal Flows
approach is almost entirely to be attributed to the resolution of the MaxSMT
problem. Only few milliseconds are spent for the computation of the Maximal
Flows.

83

Atomic

Flows VS Maximal Flows

Time division MF

50000
To00m
50000
3
5
E
£ z000m
3 2000m
) 4286 it
1o00m _M4439E |
o 8 3656EEEET)
| . - 0,
b lm X
ot AR cAEC
BMFcompEme B WA tine

Atomic Flows approach

More interesting is to analyze the results

Flows.

Time division AP 0%

i

6837135933
243143,8333
133, 282533833
CAZED casEE

obtained

with the approach of Atomic

Time division AP 10%

5000 T AEREET o 611733333
000 000
5000
40l sEsEET
_ 5000 -
] £ anco
£ '}g' 2291, 733333
g o 0966 = 3
= / 5 3000
2 om / H
g EEEE 552 BedbET 5
H e B 233333
B | £ 2000
& 2000
- = mesmmE Y
AABERGEHGT =, 366565EET g A s 5, TEBGEEEET W
1000 i " 303,7333333 55,2333333 {179, 166EEET. 12,05566667 | 23,B5556E6T |- 228, 73 51z} 67
10,1BE6GEET i -, . g P
e i ceeEEEE] y | | 7 |3
i &7 °f Tguaam s I 8433333337 e b i ‘ II
o Al NV (I inf 0 —Le | i
o A cam A% e [=%2 camE case CosE =%
A B 3 o E A B c] E
mAPmmptime WAF comptime m MacSMT time mAPmmptime W AF camp Bme m MacSMT time
Time division AP 25% Time division AP 50%
12000
A 1850843333
i 205855 5842
3 767 45657
- 10000
16000
13000 .
g E
E1pooo gamo
E g
g £
8000 =
= = 3 ¥
655
E 579 0657 £ 38595,54137
5 k] 1265, GEEEET
- 385, 56E6GET 2 |
S 1685,366667 - gn3 4BGEEET 0m g3 e L e T
2, EERGEEEET 214,AE666ET i e iy
ooy por=s i N 22 e i 257 1674233333 BTN 1473
29,7333333 " ¥ gg,amaaas I / 2, asaBGseRET, O aTenidaany] I ESTE ot TN
o LS b i [I“ o Mif el [1 i n
=% s =2 e A CAE chs casE e e
A [C o e A 3 3 o E
BAFcomptime mAF compime mMEET time WAFcomptime W AF compime m MMEMT time
Time division AP 100%
90000
aTs
80000
70000
60000
Esnooo
‘Ea0000
g
E
3 13 {mAee0eT
] L)
20000 {
12 SGEEEEET 1215 6E22,433333 | 750,
| T30, IBESET { L
i 11-1-1.-13;33 f D, : I :
ma-, | B8 . | I5a333mm] [91533am -[II
0 Sede i - 4]] []
e casE =32 2 case
a] c) E

mAPcomptime WA complime mMamEMTETe

Time is more homogeneously divided between time to generate the Atomic pred-
icates and time to solve the MaxSMT problem. The recursive function to generate
Atomic Flows starting from Atomic Predicates, instead, is much immediate.

84

Atomic Flows VS Maximal Flows

We can state that time to solve the MaxSMT problem is directly related to the
number of predicates the solver receives in input. In the cases with 0% and 10%, the
resolution of the MaxSMT problem is very fast and the most of the time is taken
to compute the Atomic Predicates. Increasing the percentage, more time is taken
for the computation of Atomic Predicates (as we have seen in the last section of
Chapter 7) but also to solve the MaxSMT problem, because it will receive in input
more predicates and flows. In the case with 50% the time taken for the resolution
of the MaxSMT problem becomes predominant. The time taken to solve the case
with 100% is an expected exception.

Let us see a clarifying example.

Let us consider a case with 10 requirements and 50% of requirements with
information also on source port (we consider only source port for simplicity but the
issue could be extended also to destination port and protocol type).

In this case, we will have 5 requirements with a specific source port (i.e., port
a,b,c,d,e) and 5 requirements that express the information on source port through
the wildcard (that means, any source port value is allowed).

The resulting set of Atomic Predicates could be, in turn, divided into 6 main
groups. The first group for Atomic Predicates with source port equals to a, the
second with source port equals to b, the third with source port equals to ¢ etc. The
sixth group with source port with a value different from a, b, c, d, e.

Now let us consider the resulting Atomic Flows, built on this set of Atomic
Predicates. Each one of the requirements that bring information also on source
port will be defined by a single Atomic Flows starting with the Predicate {source
IP 2, dest IP y, source port a/b/c/d/e, dest port *}. So in this case, only one
Predicate will be included in the set By for Algorithm 4, that is precisely the one
with the specific value for the source port expressed by the requirement. For the
other requirements, which does not have information on source port (i.e., all source
ports allowed), the starting set By will include 6 predicates: regardless of the other
information present in the predicate, we will have the predicate with source port
equals to a, the predicate with source port equals to b, the predicate with source
port equals to ¢ etc. The last one corresponds with the predicate having source
port value different from a,b,c,d,e. The disjunction of these six predicates will
represent any predicate related to the requirement, with all possible values for the
source port. Therefore, each one of the requirements with no information on source
port will generate at least 6 different Atomic Flows.

The total number of generated flows would be = 5*1 4+ 5*6 = 35 Atomic Flows
to give in input to the MaxSMT solver (minimum number).

A case with 20% of requirements with information also on source port (2 require-
ments against 10 considered) will generate 3 different groups of Atomic Predicates
grouped by source port. The total number of atomic flows will be 2*1 + 8*3 = 26
Atomic Flows.

A case with 90% of requirements with information also on source port (9 re-
quirements against 10 considered) will generate 9*1 + 1*10 = 19 Atomic Flows.

A case with 100% of requirements with information also on source port (10
requirements against 10 considered) will generate 10*1 = 10 Atomic Flows.

85

Atomic Flows VS Maximal Flows

And this is the reason why the case with 100% takes much less time to solve
the MaxSMT problem, that is because the total number of Atomic Flows to give
in input to the solver will be lower.

The time to generate the atomic predicates will always increase in any case with
the increase of the percentage of information on ports and protocol types, because
more information must be taken into consideration and therefore a greater number
of atomic predicates will be generated, as we have seen in last section of Chapter 7
and as we can see considering the red lines in the last graphs. Instead, the number
of generated Atomic Flows to give in input to the solver, and consequently the time
to solve the MaxSMT problem, does not increase proportionally with the increase
in the percentage of information on ports and protocol type, but, as we have seen,
arrived at a certain percentage there is a turnaround and it begins to decrease.
This is why, in the first graph shown in this Chapter, the total time was lower in
the 100% case than in the 50% case.

10.2.3 Stressing the Atomic Predicates approach

We have also tried to stress the approach with Atomic Flows considering a medi-
um/large size network and a very high number of requirements. The network con-
sisted of 25 Web clients, 25 Web servers, 25 allocation places, 10 NAT, 10 Firewalls,
10 NAT sources and 10 rules configured in each firewall. For these tests, we have
considered the case with 0% of requirements with information also on ports and
protocol types, so actually the Refinement problem becomes a Reachability prob-
lem, having only information on IP sources and IP destinations. We have seen that
the approach that makes use of Atomic Flows performs very well and its behavior
can be summarized in the following graph.

25 WG, 25 WS, 25 AP, 10 FW, 10 NAT, 10 NATSrcs,
10 FWRules
40000

35000
30000
25000
20000

15000 }

10000

5000
"
T T

4]
50 REQ 100 REQ 250 REQ 500 REQL 750 REQ 1000 REQ

86

Chapter 11

Conclusions

With this Chapter, we complete the work done for this thesis. Let us try to sum-
marize what has been done.

First of all, we analyzed what is the state-of-the art in traffic lows and network
functions modelling, focusing on its importance in solving, between the many, the
Refinement problem. This problem aims to find the optimal allocation and configu-
ration of security mechanisms (such as firewalls) on the basis of requirements, that
are expressed by the network designer in a high-level language. We then moved
on to propose a new model to represent predicates that was Java compatible and
therefore usable within the VEREFOO framework, which aims to solve the afore-
mentioned Refinement problem. We called this new class Predicate.

At this point we studied and proposed two new models to describe traffic flows
and network functions, fully complementary and alternative, one based on Atomic
Flows and one based on Maximal Flows, which make use of the class Predicate
to describe the predicates of the network. Each one of these models must be able
to represent the behavior of the network, in order to predict how any packet that
is introduced into the network is treated and possibly modified by the various
nodes it crosses. In the Appendix of this thesis a possible implementation of the
main algorithms for the two proposed approaches, described in Chapter 6 and
Chapter 8, is shown and that is also the implementation used within VEREFOO.
Having defined and implemented each model, it was therefore necessary to test
it, to evaluate how efficient it was in the context of real network scenarios, and
to study its behavior varying not only the size of the network, but also the value
of each single parameter that we have considered for the tests (number of nodes
in the network, number of transformers, number of requirements expressed, etc.).
The evaluation of the tests must take into account the total time taken by each
approach to solve the Refinement problem, which can be mainly divided into two
phases: the first phase which computes all the possible classes of traffic that can
travel through the network, concerning the requirements expresssed by the user,
and the second one that solves a weighted and partial MaxSMT problem to find
the optimal allocation and configuration of the firewalls, in order to satisfy the
above requirements. As we showed in Chapter 10, we got interesting results with
the Atomic Flow method.

This work done lends itself very well to being extended. Future works may

87

Conclusions

concern both the definition of new models to describe other network functions (for
now we have considered only firewalls and nats but both approaches are well suited
to describe any network function), and optimization techniques to further improve
the obtained performance.

And this is all, thank you for the attention.

88

Bibliography

1]

8]

D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov, “Towards
a fully automated and optimized network security functions orchestration,”
in 2019 4th International Conference on Computing, Communications and
Security (ICCCS), Rome, Italy, October 10-12, 2019. 1EEE, 2019, pp. 1-7.
[Online]. Available: https://doi.org/10.1109/CCCS.2019.8888130

I. Pedone, A. Lioy, and F. Valenza, “Towards an efficient management
and orchestration framework for virtual network security functions,” Secur.
Commun. Networks, vol. 2019, pp. 2425983:1-2425983:11, 2019. [Online].
Available: https://doi.org/10.1155/2019/2425983

D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov,
“Automated optimal firewall orchestration and configuration in virtualized
networks,” in NOMS 2020 - IEEE/IFIP Network Operations and Management
Symposium, Budapest, Hungary, April 20-24, 2020. 1EEE, 2020, pp. 1-7.
[Online]. Available: https://doi.org/10.1109/NOMS47738.2020.9110402

——, “Introducing programmability and automation in the synthesis of
virtual firewall rules,” in 6th IEEE Conference on Network Softwarization,
NetSoft 2020, Ghent, Belgium, June 29 - July 3, 2020, F. D. Turck,
P. Chemouil, T. Wauters, M. F. Zhani, W. Cerroni, R. Pasquini,
and Z. Zhu, Eds. IEEE, 2020, pp. 473-478. [Online]. Available:
https://doi.org/10.1109/NetSoft48620.2020.9165434

E. Karafili and F. Valenza, “Automatic firewalls’ configuration using
argumentation reasoning,” in Emerging Technologies for Authorization and
Authentication - Third International Workshop, ETAA 2020, Guildford, UK,
September 18, 2020, Proceedings, ser. Lecture Notes in Computer Science,
A. Saracino and P. Mori, Eds., vol. 12515. Springer, 2020, pp. 124-140.
[Online]. Available: https://doi.org/10.1007/978-3-030-64455-0-8

P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12). San Jose, CA: USENIX
Association, Apr. 2012, pp. 113-126. [Online]. Available: https://www.usenix.
org/conference /nsdil2/technical-sessions/presentation /kazemian

P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18). Lombard, IL: USENIX Association, Apr. 2013,
pp. 99-111. [Online]. Available: https://www.usenix.org/conference/nsdil3/
technical-sessions/presentation /kazemian

A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:

89

https://doi.org/10.1109/CCCS.2019.8888130
https://doi.org/10.1155/2019/2425983
https://doi.org/10.1109/NOMS47738.2020.9110402
https://doi.org/10.1109/NetSoft48620.2020.9165434
https://doi.org/10.1007/978-3-030-64455-0_8
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/kazemian
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/kazemian

Bibliography

[13]

[14]

[16]

Verifying network-wide invariants in real time,” in 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 13). Lombard,
IL: USENIX Association, Apr. 2013, pp. 15-27. [Online]. Available: https://
www.usenix.org/conference/nsdil3/technical-sessions/presentation/khurshid

F. Valenza, “Modelling and analysis of network security policies,” Ph.D. dis-
sertation, Doctoral Dissertation Doctoral Program in Computer Engineering
(29th cycle ..., 2017.

G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov, “A framework for
verification-oriented user-friendly network function modeling,” IEEE Access,
vol. 7, pp. 99349-99 359, 2019.

L. Durante, L. Seno, F. Valenza, and A. Valenzano, “A model for the analysis
of security policies in service function chains,” in 2017 IEEE Conference on
Network Softwarization (NetSoft). TEEE, 2017, pp. 1-6.

H. Yang and S. S. Lam, “Real-time verification of network properties using
atomic predicates,” IEEE/ACM Transactions on Networking, vol. 24, no. 2,
pp. 887-900, 2016.

——, “Scalable verification of networks with packet transformers using atomic
predicates,” IEEE/ACM Transactions on Networking, vol. 25, no. 5, pp. 2900—
2915, 2017.

E. Wong, “Validating network security policies via static analysis of router acl
configuration,” 2006. [Online]. Available: https://apps.dtic.mil/sti/citations/
ADA462558

D. Bringhenti, G. Marchetto, R. Sisto, S. Spinoso, F. Valenza, and J. Yusupov,
“Improving the formal verification of reachability policies in virtualized net-
works,” IEEE Transactions on Network and Service Management, vol. 18,
no. 1, pp. 713-728, 2021.

M. Cheminod, L. Durante, L. Seno, F. Valenza, and A. Valenzano, “A
comprehensive approach to the automatic refinement and verification of
access control policies,” Comput. Secur., vol. 80, pp. 186199, 2019. [Online].
Available: https://doi.org/10.1016/j.cose.2018.09.013

[17] ——, “A comprehensive approach to the automatic refinement and verification

of access control policies,” Computers € Security, vol. 80, pp. 186-199, 2019.

90

https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
https://apps.dtic.mil/sti/citations/ADA462558
https://apps.dtic.mil/sti/citations/ADA462558
https://doi.org/10.1016/j.cose.2018.09.013

Appendices

91

Appendix A

Implementation Atomic Flows

This appendix shows a possible implementation in Java of the main functions for the
computation of Atomic Predicates and Atomic Flows, described by Algorithms 2, 3
e 4. The following described implementation is the one used within the framework
VEREFOO.

All the functions shown in this Appendix make use of the class Predicate and
the operations over Predicates described in the Chapter 4.

A.1 Algorithm 2: Atomic Predicates computa-
tion

public List<Predicate> computeAtomicPredicates(List<Predicater> atomicPredicates,
List<Predicate: predicates){
List<Predicate> newAtomicPredicates = new ArraylList<:();
Predicate first = null;
List<Predicate> firstNeg = null;
int count = -1;

for(Predicate sp: predicates) {
f/If sp is the first predicate to transform and atomicPredicates is empty
if(atomicPredicates.isEmpty() && count == -1) {
first = sp;
firstNeg = neg(sp);
count = 1;

else if(count == 1) {
//There is already a predicate in the list, and this is the second
Predicate spl = computeIntersection(first, sp);
if(spl != null) atomicPredicates.add(spl);

for({Predicate s: firstheg) {
Predicate sp2 = computeIntersection(s, sp);
if(sp2 != null) atomicPredicates.add(sp2);

for(Predicate s: neg(sp)) {
Predicate sp3 = computeIntersection(first,s);
if(sp3 != null) atomicPredicates.add(sp3);

92

Implementation Atomic Flows

for(Predicate s1: neg(sp)) {
for{Predicate s2: firstNeg) {
Predicate sp4 = computeIntersection(sl,s2);
if(sp4 != null) atomicPredicates.add(sp4);

}

count = -1;
} else {
//there are already more then 2 predicates
for{Predicate prevSp: atomicPredicates) {
Predicate resl = computeIntersection(prevSp, sp);
if{resl != null) newAtomicPredicates.add(resl);

Predicate res2 = computeIntersection(prevsp,s);

for{Predicate s: neg(sp)) {
if(res2 != null) newAtomicPredicates.add(res2);

b
¥
atomicPredicates = new ArraylList<>(newAtomicPredicates);

newAtomicPredicates = new Arraylist<»();

}

if{count == 1) {
firstNeg.add(first);
return firstNeg;

}

return atomicPredicates;

This function receives in input a set of already computed Atomic Predicates
(atomicPredicates) and a set of Predicates (predicates), not yet atomic, to convert
and add to the set. For each predicate within predicates, the corresponding list
representing its negation is computed through the function neg (??), according to
lines 1-3 of Algorithm 2. At this point, the predicate itself and each predicate
representing its negation are placed, one at a time, in intersection with each of the
predicates already present in the list atomicPredicates. 1f the intersection exists,
then, it is added to the list of resulting atomic predicates, according to lines 4-6
of the Algorithm. At the end, the resulting updated list of atomic predicates is
returned.

A.2 Algorithm 3: ”Interesting” Predicates and
corresponding Atomic Predicates computa-
tion

This is the algorithm in charge of collecting the "interesting” predicates for the
network, on the basis of the requirements specified in input, and subsequently
converting them into the corresponding set of atomic predicates, using the function
described above.

93

Implementation Atomic Flows

A.2.1 Interesting predicates for source and destination traf-
fic of each requirement

For the first part of Algorithm 3 (lines 1-4), ”interesting” predicates related to
source and destination traffic for each requirement are computed.

private HashMap<Integer, Predicate> generateAtomicPredicateNew()}{
List<Predicate> predicates = new Arraylist<»();
List<Predicate> atomicPredicates = new ArrayList<:();
List¢string» srcList = new ArrayList<>();
List<String> dstlList = new ArrayList<>()};
List«<String> srcPlist = new Arraylist<»();
List<String» dstPList = new ArraylList<»();
List<L4ProtocolTypes> dstProtoList = new ArrayList<»()};

/fGenerate predicates representing source and predicates representing
/fdestination of each requirement
for(SecurityRequirement sr : securityRequirements.values()) {
Property property = sr.getOriginalProperty()};
String IPSrc = property.getSrc(};
String IPDst = property.getDst();
String pSrc = property.getsrcPort() != null 88 Iproperty.getSrcPort()}.equals("null™)
? property.getsrcPort() : "*";
String pDst = property.getDstPort() != null 8& !property.getDstPort().equals("null™)
? property.getDstPort() : "*";
L4ProtocolTypes proto = property.getlv4Proto() != null ?
property.getLvdProto() : L4ProtocolTypes.ANY;
srclist.add{"*"}; dstlist.add({"*"}; srcPList.add("*"); dstPList.add("*"};
dstProtolist.add(L4ProtocolTypes. . ANY) ;

//if we have already inserted this source into the list, we can skip it
if(!srclist.contains(IP5Src) || !srcPlList.contains(pSrc)) {
if(!srcList.contains(IPSrc))
srclist.add(IPSrc);
else IPSrc = "*";
if(!srcPList.contains(p5rc))
srcPList.add(pSrc);
else psrc = "*";

Predicate srcPredicate = new Predicate(IPSrc, false, "*", false,
psre, false, "*", false, L4ProtocolTypes.ANY);
predicates.add(srcPredicate);

}

//if we have already inserted this destination into the list, we can skip it
if(!dstList.contains(IPDst) || !dstPList.contains(pDst)
|| !dstProtolList.contains(proto}) {

if(!dstList.contains(IPDst)) dstlist.add(IPDst);

else IPDst = "*";

if(ldstPList.contains(pDst))} dstPList.add(pDst);

else pDst = "*";

if(!dstProtolist.contains(proto}) dstProtolist.add(proto);

else proto = L4ProtocolTypes.ANY;

Predicate dstPredicate = new Predicate("*", false, IPDst, false, "*",
false, pDst, false, proto);
predicates.add(dstPredicate);

To avoid redundancy and, in this way, speed up the algorithm that will subse-
quently compute the corresponding set of atomic predicates, if a field of an inter-
esting predicate is already present in predicates, thus it is not added anymore.

94

Implementation Atomic Flows

A.2.2 Interesting predicates for forwarding behaviour and
transformation input domains

For the second part of Algorithm 3 (lines 5-6), ”interesting” predicates related to
the forwarding behaviour {I,, I;} and to the transformation input domains of each
node, encountered along the path of at least one requirement, are computed. For
the moment, we only consider Firewalls and NATs.

Firewalls

The forwarding behaviour for pre-existing firewalls is computed on the basis of the
conditions of the rules that are already configured within it. According to Algorithm
1, it is possible to convert an ACL into a set of corresponding predicates, and this
is exactly what is done in our implementation.

if(node.getFunctionalType() == FunctionalTypes.FIREWALL) {

List<Predicate> allowedlist = new Arraylist<»();
List<Predicate: deniedList = new ArrayList<»();

boolean deniedlListChanged = false;
for(Elements rule: node.getConfiguration().getFirewall().getElements(}) {
if({rule.getAction().equals(ActionTypes.DENY)) {
[ldeny <--- deny V rule-i
deniedlList.add{new Predicate(rule.getSource(), false, rule.getDestination(), false,
rule.getSrcPort(), false, rule.getDstPort(), false, rule.getProtocol()));
deniedListChanged = true;
} else {
J//allowed <--- allowed V (rule-i AND !denied)
Predicate toAdd = new Predicate(rule.getSource(), false, rule.getDestination(), false,
rule.getSrcPort(), false, rule.getDstPort(), false, rule.getProtocol()});
List<Predicater allowedToAdd =
aputils.computeAllowedForRule(tofdd, deniedList, deniedListChanged);
for{Predicate allow: allowedToAdd) {
if('aputils.isPredicateContainedIn(allow, allowedList))
allowedList.add(allow);

}
}
//Check default action: if DENY do nothing
if({node.getConfiguration().getFirewall().getDefaultAction().equals{ActionTypes.ALLOW)) {
Predicate toAdd = new Predicate(™*", false, "*", false, "*",
false, "*", false, L4ProtocolTypes.ANY);
List<Predicater allowedToddd =
aputils.computeAllowedForRule(toAdd, deniedList, deniedListChanged);
for{Predicate allow: allowedToAdd) {
if('aputils.isPredicateContainedIn(allow, allowedList))
allowedList.add(allow);

For each rule configured within the firewall, if the rule has a deny action, then
the corresponding predicate is computed and directly added into deniedList, which
is the list containing the conditions for the rules having action equal to deny. If
the rule, instead, has an allow action, the corresponding predicate is computed
and added to allowedList only after removing the part of the condition that pos-
sibly intersects with an already scanned deny predicate (to respect the first-match
criterion with which the rules are inserted inside firewalls).

95

Implementation Atomic Flows

Function computeAllowedForRule, which execute the logic operation (rule; A
—denied), is implemented by the following piece of code.

List<Predicate> negDeniedRulelist;
public List<Predicate> computeAllowedForRulef{Predicate toAdd,
List<Predicate> deniedList, boolean deniedListChanged)}{
List<Predicate> retlist = new Arraylist<»()};
List<Predicate> tmpList = new ArrayList<>();
retlist.add(toAdd);

if(deniedlist.isEmpty()) return retlist;

for(Predicate deniedRule: deniedList) {
//compute !denied
if({deniedlistChanged)
negleniedRulelist = neg(deniedRule);
for(Predicate pl: retList) {
for(Predicate p2: negDeniedRulelist) {
Predicate res = computeIntersection(pl, p2};
if(res != null} {
tmpList.add(res);
¥

¥

h

if(tmpList.isEmpty()) {
//no intersection exists
return new Arraylist<:();

1 else {
retlist = new ArrayList<>(tmpList);
tmpList = new ArraylList<x();

¥

i

return retList;

At this point, all the predicates present inside allowedList and deniedList are
added to predicates, which is the set of ”interesting” predicates of the network
computed so far.

NATSs

Let us now compute the transformation input domains for the NATs. With the
following piece of code, the input domains for Shadowing, Reconversion and the
corresponding inverse functions are computed.

for{Node node: transformersiode.values()} {
if(node.getFunctionalType() == FunctionalTypes.NAT) {
//Compute list of shadowed and reconverted (only those related to requirements sources),
//considering MAT source addresses list
List<String> shadowedAddressesListSrc = new ArrayList<>();
List<String> shadowedAddressesListDst = new Arraylist<»();
for(String shadowedAddress: node.getConfiguration().getNat().getSource()) {
for(String ips: srcList) {
if(shadowedAddress.equals(ips)
|| aputils.isIncludedIPString(shadowediddress, ips)) {
shadowedAddressesListsrc.add(shadowedaddress);
break;

96

Implementation Atomic Flows

for(String ipd: dstList)} {
if(shadowedAddress.equals(ipd)
|| aputils.isIncludedIPString(shadowedtddress, ipd)) {
shadowedAddresseslistDst.add(shadowedAddress);
break;

¥
i
//aenerate and add shadowing predicates
for(string shadowed: shadowedAddressesListsrc) {
if(!srcList.contains(shadowed)) {
Predicate shpred = new Predicate(shadowed, false, "*", false, "*",
false, "*", false, L4ProtocolTypes.ANY);
predicates.add(shpred);
}
i
/faenerate and add reconverted predicates
for(string shadowed: shadowedAddressesListDst) {
if(!dstList.contains(shadowed)) {
Predicate rcvedpred = new Predicate("*", false, shadowed, false, "*",
false, "*", false, L4ProtocolTypes.ANY);
predicates.add(rcvedpred);

¥

fu—

/fReconversion predicate
if(ldstList.contains(node.getName())) {
Predicate rcpred = new Predicate("*", false, node.getName(), false, "*",
false, "*", false, L4ProtocolTypes.ANY);
predicates.add(rcpred);

//Add shadowed predicate: this is enough, all the others have already been added
predicates.add(new Predicate(node.getName(), false, "*", false, "*",
false, "*", false, L4ProtocolTypes.ANY));

From ”interesting” predicates to atomic predicates

The set of atomic predicates, based on the ”interesting” predicates computed so
far, is computed calling the function computeAtomicPredicates, described at the
beginning of this Chapter.

atomicPredicates = aputilslcomputEAtomicPPedicates{atomicPPedicates, predicates);

A.2.3 Applying transformations

After the computation of the ”interesting” predicates for the source and destina-
tion traffic of the requirements and for the forwarding behavior and transformation
input domains of the nodes encountered along the path, and after having converted
them into atomic predicates (line 7 of Algorithm 3), we can now apply the trans-
formations. This operation (lines 8-15) consists of taking each predicate within the
set of atomic predicates and compute how it is transformed after it has crossed each
transformer.

In our case, which includes only NATSs as transformers in the network, all the
predicates resulting from the transformation are already present within the set of

97

Implementation Atomic Flows

already computed atomic predicates. So the if condition at line 11 is already true
at the first iteration and the Algorithm stops immediately.

All that remains is to build the ”transformation map” for each transformer,
that is the function that describes the correspondence between the atomic predicate
as it arrives in input and the relative atomic predicate (or predicates) eventually
transformed and forwarded as it exits in output (e.g., ”atomic predicate x crosses
the NAT and is transformed into the atomic predicate y”). The implementation of
this function is as follows.

for(Node node: transformersNode.values()) {
HashMap<Integer, List<Integer>> resultMap =
allocationNeodes.get(node.getName()).getTransformationMap();
if(node.getFunctionalType() == FuncticnalTypes.NAT) {
HashMap<5tring, List<Integer>»> shadowingMap = new HashMap<>(); //grouped by dest address
HashMap<String, List<Integer»> shadowedMap = new HashMap<>(); //grouped by dest address
HashMap<String, List<Integer:> reconversionMap = new HashMap<>()}; //grouped by source address
HashMap<5tring, List<Integer>> reconvertedMap = new HashMap<:(); //grouped by source address
List<Integer> notChaingingPredicatelist = new ArrayList<>{);
List<IPAddress» natIPSrcAddressList = new Arraylist<»();
for(String src: node.getConfiguration().getNat().getSource())
natIPsrcAddressList.add(new IPAddress(src, false));
IPAddress natIPAddress = new IPAddress(node.getName(), false);

for(HashMap.Entry<Integer, Predicate: apEntry: networkAtomicPredicates.entrySet()) {
Predicate ap = apEntry.getValue();
//if source jp address list or dest ip address list have size != 1, it means it is a
{fcomplex predicates so it can not be a shodowing/reconversion predicates
if(ap.getIPSrclistSize() != 1 || ap.getIPDstlListSize() != 1) continue;
if(ap.hasIPDstNotIncludedIn{natIPsrcAddressList)
8& !ap.hasIPDstEqual(natIPAddress)) {
if(ap.hasIPSrcEqual{natIPAddress)) {
//2*: if dest is not a srpg address of the MAT (so it is a public address)
/fand ip source = ip NAT, this is a shadowed predicate
//{IP NAT, public address}
if(!shadowedMap.containsKey(ap.firstIPDstTostring(})) {
List<Integer> list = new Arraylist<»();
list.add{apEntry.getkey());
shadowedMap.put(ap.firstIPDstToString(), list);
T else {
shadowedMap.get(ap.firstIPDstToString()).add(apEntry.getkey());
¥
¥

else {
f/1*: if dest is not a srg address of the NAT (so it is @ public address),
//while sre is a srg address of NAT (private address),
//this is a shadowing predicates {private address, public address}
if(ap.hasIPSrcEqualOrIncludedIn(natIPSrcAddresslist))
if(!shadowingMap.containsKey(ap.firstIPDstTostring())) 1
List¢Integer> list = new ArrayList<»()};
list.add{apEntry.getkey()};
shadowingMap.put{ap.firstIPDstToString(), list);
} else {
shadowingMap.get(ap.firstIPDstToString()}).add(apEntry.getkey()});
¥

} else if(ap.hasIPSrcNotIncludedIn(natIPSrcAddressiist)
88 l!ap.hasIPsrcEqual(natIPAddress)) {
if(ap.hasIPDstEqual{natIPAddress)) {

//3*: src not included in NAT srg, dest = IP NAT

/f-> reconversign predicate {public address, IP NAT}

if{!reconversionMap.containsKey(ap. firstIPsreTostring())) [
List<Integer> list = new ArrayList<>();
list.add{apEntry.getkey());

98

Implementation Atomic Flows

reconversionMap.put{ap.firstIPsrcToString(), list);
1 else {
reconversionMap.get(ap.firstIPSrcToString()).add(apEntry.getkey());

} else if(ap.hasIPDstEqualOrIncludedIn(natIPsrcAddressLlist)) {

//4*: sre not included in NAT srg, dest included in NAT srg

/f-> reconverted predicate {public address, private address}

if(!reconvertedMap.containsKey(ap.firstIPSrcToString())) {
List<Integer> list = new ArrayList<»();
list.add{apEntry.getkey());
reconvertedMap. put(ap.firstIPSrcToString(), list);

} else {
reconvertedMap.get(ap.firstIPSrcTostring()).add(apEntry.getkey());

¥

} else if(ap.hasIPSrcEqualOrIncludedIn({natIPSrcAddressiist)
88 ap.hasIPDstEqualOrIncludedIn(natIPSrcAddressList)) {
//5%: srg included in NAT srg (private) and dst included in NAT srg (private)
//-» predicate is just forwarded without transformation
notChaingingPredicatelist.add (apEntry.getkey());

A.3 Algorithm 4: Atomic Flows computation

Let us now analyse the code that generates atomic flows, starting from the list of
requirements and the set of computed atomic predicates, according to Algorithm 4.
As mentioned in Chapter 6, this algorithm can be easily parallelized. In our case,
we used a threadPool and a Runnable object to model the function as a task to be
run by any thread inside the pool.

public void run() {
Property prop = requirement.getOriginalProperty();
String pSrc = prop.getSrcPort() != null 82
Iprop.getSrcPort().equals("null™} ? prop.getSrcPort()
/fget all atomic predicates that match IPSrc and PSrc
Predicate srcPredicate = new Predicate(prop.getSrc(), false, "*",
false, psrc, false, "*", false, L4ProtocolTypes.ANY);
List<Integer> srcPredicatelist = mew ArrayList<>();
for{HashMap.Entry<Integer, Predicate> apEntry: networkfAtomicPredicates.entrySet()}) {
Predicate intersectionPredicate =
aputils.computeIntersection(apEntry.getValue(), srcPredicate);
if(intersectionPredicate != null
&& aputils.APCompare(intersectionPredicate, apEntry.getValue())
&& lapEntry.getValue().hasIPDstOnlyNegs()) {
/fSystem.out.print(apEntry.getkey() + ™ "); apEntry.getValue().print();
srcPredicatelist.add(apEntry.getkey());

W,
r

I

J/System.out.println("Destination predicates™};
List<Integer> dstPredicatelList = mew ArraylList<>();
String pDst = prop.getDstPort() != null &8
Iprop.getDstPort().equals("null™) ? prop.getDstPort() : "*";
Predicate dstPredicate = new Predicate("*", false, prop.getDst(), false, ™*",
false, pDst, false, prop.getlvd4Proto());
/fget all atomic predicates that match IPDst and PDst and prototype
for(HashMap.Entry<Integer, Predicate> apEntry: networkAtomicPredicates.entrySet()) {
Predicate intersectionPredicate =
aputils.computelntersection(apEntry.getValue(), dstPredicate);

if(intersectionPredicate != null
&& aputils.APCompare(intersectionPredicate, apEntry.getValue()}}) {
f/5ystem.out.print(apEntry.getkey() + ™ "); apEntry.getValue().print();

99

Implementation Atomic Flows

dstPredicatelist.add(apEntry.getkey({));

¥

//aGenerate atomic flows
for(FlowPath flow: requirement.getFlowsMap().values()) {
List<AllocationMode> path = flow.getPath();
List<List<Integer>> resultlist = new Arraylist<:();
List<list<Integer>> resultlistToDiscard = new ArrayList<>(};
{//now we have the requirement, the path and the list of source predicates
//-» call recursive function
int nodeIndex = 8;
for(Integer ap: srcPredicatelist) {
List<Integer> currentlist = new ArraylList<>(};
recursiveGenerateAtomicPath({nodelndex, requirement, path, ap, dstPredicatelList,
resultlist, resultListToDiscard, currentlList);

¥

for{List<Integer> atomicFlow: resultlist) {
Tlow.addAtomicF low{atomicId.incrementAndGet(), atomicFlow);

for{List<Integer> atomicFlowToDiscard: resultlistToDiscard)
flow.addAtomicFlowToDiscard{atomicId.incrementAndGet(), atomicFlowToDiscard);

This function is run once for each requirement. First the set By, described in
the Algorithm as the set of all the atomic predicates matching with the input traffic
of the requirement (IPSrc, pSrc), is computed. The same is done for the set of the
atomic predicates matching with the destination traffic of the requirement (IPDst,
pSrc, protoType). At the end, for each path of the requirement, the recursive
recursive Generate AtomicPath function is called.

private void recursiveGenerateAtomicPath(int nodelIndex, SecurityRequirement sr,

List<AllocationMode> path,
int ap, List{Integer» dstPredicatelList, List<List<{Integer»: atomicFlowsList,
List<List<Integer>> atomicFlowsListToDiscard, List<Integer: currentList) {

AllocationMode currentMode = path.get(nodeIndex);

Predicate currentPredicate = networkAtomicPredicates.get(ap);

Predicate currentNodeDestPredicate = new Predicate("*", false,

currentiNode.getIpAddress(), false, "*", false, "*", false, L4ProtocolTypes.ANY);

if{nodeIndex == path.size() -1) {

//last node of the path

if(dstPredicatelist.contains(ap)) {
J/ALL OK, new atomic Tlow found
atomicFlowsList.add(currentlist};
return;

} else {
f/Discard path
currentList.add(ap);
atomicFlowsListToDiscard.add(currentlist);
return;

¥

Predicate intersectionPredicate =
aputils.computeIntersection(currentPredicate, currentNodeDestPredicate);
if(intersectionPredicate != null && aputils.APCompare(intersectionPredicate, currentPredicate)
&% (currentNede.getTransformationMap().isEmpty() //not NAT
|| (lcurrentNode.getTransformationMap().containskey(ap)))) {
//it is NAT but does not transform the predicate
//Discard path: destination reached without reaching destination of the path
currentList.add(ap);

100

Implementation Atomic Flows

atomicFlowsListToDiscard.add(currentlist);
return;

}

//Apply transformation and filtering rules
if(transformersiode. containsKey(currenthode.getIpAddress()) &&
transformersNode.get(currentiode. getIpAddress())
.getFunctionalType().equals(FunctionalTypes.NAT)) {
if{currentNode.getTransformationMap().containskey(ap))} {
for(Integer newfp: currentNode.getTransformationMap().get(ap)) {
List<Integer®> newCurrentList = new ArrayList<>(currentList);
newCurrentList.add(newap);
recursiveGenerateAtomicPath(nodeIndex+l, sr, path, newdp,

dstPredicatelist, atomicFlowsList, atomicFlowslListToDiscard, newlurrentlist)

1
} else {
[/simple forwarding
List<Integer> newCurrentlist = new Arraylist<>(currentlist);
newCurrentList.add(ap);
recursiveGenerateAtomicPath(nodeIndex+l, sr, path, ap,
dstPredicatelist, atomicFlowsList, atomicFlowsListToDiscard, newCurrentlList};

b

else { //normal node
List<Integer> newCurrentList = new Arraylist<>(currentList);
newCurrentList.add(ap);
recursiveGenerateAtomicPath(nodeIndex+l, sr, path, ap,
dstPredicatelist, atomicFlowsList, atomicFlowsListToDiscard, newCurrentlList};

In the first lines, the function checks if we have reached the end of the path.
If we are in the destination node, then we check if the input predicate belongs to
the destination traffic allowed for the requirement and computed above. In case it
does, then the current atomic flow we are considering is added to the resulting set
of atomic flows, atomicFlowsList. At the contrary, if it does not belong, then the
current atomic flow is discarded and added to the set atomicFlowsListToDiscard.

At each step along the path, the destination IP of the incoming Predicate is
put in intersection with the IP of the current node, to understand if the packet has
reached its destination without reaching the destination of the requirement. In this
latter case, the current atomic flows we are considering is discarded.

The incoming Predicate is also put in intersection with the transformation input
domains of the node (in the case the node is a NAT). In case the intersection
exists, then the Predicate is transformed into one or more new Predicates and the
recursion continues in the following node. recursiveGenerateAtomicPath is called
once for each new Predicate representing the result of the transformation.

In case the node is not a transformer, the Predicate is simply forwarded to the
next node along the path without being affected by any transformation.

101

Appendix B

Implementation Maximal Flows

This Appendix shows a possible implementation in Java of Algorithm 5, described
in Chapter 8. As for the implementation of the Atomic Flows, all the functions
shown in this Appendix make use of the class Predicate described in Chapter 4.

B.1 Algorithm 5: Atomic Flows computation

The preliminary phase of the Algorithm, not shown in 5, consists of computing for
each firewall the corresponding sets {I,, I}, and for each transformer (NATSs in
our case) the corresponding transformation input domains. In the case of {I,, 14},
the procedure is exactly the same as the one done for Atomic Flows and also the
code differs only slightly, so for the description we refer to the section A.2.2.

The procedure to compute the input domains for NATS, instead, changes. With
this approach, transformations must no longer be modeled on the atomic predicates
identifiers (”atomic predicate x is transformed into atomic predicate y”) but on
general predicates described by the class Predicate. It is therefore necessary to
describe the various input domains for NATSs as a disjunction of Predicates.

for{Node node: transformersMode.values(}) {
if(node.getFunctionalType() == FunctionalTypes.NAT) {

List<IPAddress> sourceNatIPAddressList = new Arraylist<»();

List<IPAddress»> notSourceNatIPAddressList = new ArraylList<»();

for(String ipSrc: node.getConfiguration().getNat().getSource()) {
IPAddress natSrcAddress = new IPAddress(ipSrc, false);
sourceNatIPAddressList.add(natSrcAddress);
notsourceNatIPAddressList.add(new IPAddress{ipsrc, true));

}

notSourceNatIPAddressLlist.add(new IPAddress(node.getName(), true));

/fcompute D1 transformation map

List<Predicate> DIList = new ArraylList<:();

for(IPAddress privateSrcAddress: sourceNatIPAddressList) {
Predicate newPredicate = new Predicate("*", false, "*", false, "*",

false, "*", false, L4ProtocolTypes.ANY);

List<IPAddress> srcIPList = new ArrayList<>();
srcIPList.add(privateSrcAddress);
newPredicate.setIPSrcList(srcIPList);

102

Implementation Maximal Flows

newPredicate,setIPDstListfnotSDurceNatIPﬁddressList);
DlList.add(newPredicate);

b

natDlmap.put({node.getName(), DlList);

//compute D2 transformation map

Predicate D2Predicate = new Predicate("*", false, node.getName(), false, "*",
false, "*", false, L4ProtocolTypes.ANY);

D2Predicate.setIPSrclist(notSourceNatIPAddressList);

natD2map.put(node.getName(), D2Predicate);

//compute D31 transformation
List<Predicate> D31List = new Arraylist<>();
for(IPAddress privateSrcAddressl: scurceNatIPAddressList) {
for(IPAddress privateSrcAddress2: sourceNatIPAddressList) {
if(!privatesrcAddressl.equals(privatesrcAddress2)) {
List<IPAddress> srclist = new Arraylist<>();
List<IPAddress: dstList = new ArrayList<>();
srcList.add(privatesrcAddressl);
dstlist.add(privatesSrcAddress2);
Predicate newPredicate = new Predicate("*", false, "*", false,
false, "*", false, L4ProtocolTypes.ANY);
newPredicate.setIPSrcList(srcList);
newPredicate.setIPDstList({dstList);
D31list.add(newPredicate);

wag
¥

b

;

natD31map.put{node.getName (), D31List);

//Compute reconverted predicates

List<Predicate> reconvertedList = new ArraylList<>();

for(IPAddress privateSrcAddress: sourceNatIPAddresslist) {
List<IPAddress: dstList = new Arraylist<>();
dstList.add(privatesrcAddress);
Predicate newPredicate = new Predicate("*", false, "*", false, "*",

false, "*", false, L4ProtocolTypes.ANY);

newPredicate.setIPSrcList(notSourceNatIPAddressList);
newPredicate.setIPDstList({dstList);
reconvertedList.add(newPredicate);

b

natReconvertedMap.put(node.getName(), reconvertedList);

//Compute D32 transformation

Predicate D32Predicate = new Predicate("*", false, “*", false, "*",
false, "*", false, L4ProtocolTypes.ANY);

D32Predicate.setIPSrcList({notSourceNatIPAddressList);

D32Predicate.setIPDstlist{notSourceNatIPAddresslist);

natD32map.put(node.getName(), D32Predicate);

B.1.1 Generate maximal flows

The function that generates the Maximal Flows starts by allocating a temporary
list with Predicates of only wildcards, each one representing the class of all packets.
Then the predicate for the source traffic of the requirement is generated and this
will be forwarded along the considered path. As the Predicate progresses into the
network, it is transformed and consequently the Maximal Flow list is updated.

103

Implementation Maximal Flows

private void generateMaximalFlows() {
for(FlowPath flow : trafficFlowsMap.values()) {
Property property = flow.getRequirement().getOriginalProperty();
String pSrc = property.getSrcPort() != null &8 !property.getSrcPort().equals("null”™} ?
property.getsrcPort() : "*";

//Generate source predicate
Predicate predicate = new Predicate(property.getSrc(), false, "*",
false, pSrc, false, "*", false, L4ProtocolTypes.ANY);
List¢Predicate> currentMaximalFlow = new ArrayList<»();
currentMaximalFlow.add(predicate);
/fpreallocate the maximal flow list
for{int i=1; i<flow.getPath().size(}; i+) {
Predicate voidPredicate = new Predicate("*", false, "*", false, "*",
false, "*", false, L4ProtocolTypes.ANY);
currentMaximalFlow.add(voidPredicate);

}

if(flow.getPath().size() > 1) {
recursiveGenerateMaximalFlowsForwardUpdate(l, flow.getRequirement(),
flow.getPath(), predicate, flow, currentMaximalFlow, false);

For each requirement and for each path belonging to the requirement, the func-
tion recursiveGenerate MaximalFlowsForwardUpdate, that starts the forward traver-
sal, is called.

B.1.2 Forward traversal

private void recursiveGenerateMaximalFlowsForwardUpdate(int nodeIndex, SecurityRequirement sr,
List<AllocationMode> path, Predicate inputPredicate,
FlowPath currentFlowPath, List<Predicate>» currentlist,
boolean somethingChanged) {

if(nodeIndex »>= path.size()) {
return;

¥

AllocationMode node = path.get{nodeIndex);

if(nodeIndex == path.size() -1) {

//We are in the last node of the path

//Compute intersection with destination

String dstPort = sr.getOriginalProperty().getDstPort() != null
8% !sr.getOriginalProperty().getDstPort().equals("null"™)
? sr.getOriginalProperty().getDstPort() : ™*";

L4ProtocolTypes proto = sr.getOriginalProperty().getLv4Proto() != null ?
sr.getOriginalProperty().getlvdProto() : L4ProtocolTypes.ANY;

Predicate destPredicate = new Predicate("*", false, node.getIpAddress(), false,
"**, false, dstPort, false, proto);

Predicate intersectionPredicate = aputils.computeIntersection(destPredicate, inputPredicate);

if(intersectionPredicate != null) {
currentList.set(nodeIndex, intersectionPredicate};
f/start backward traversal
recursivegenerateMaximalFlowsBackwardUpdate(nodeIndex-1, sr, path, intersectionPredicate,
currentFlowPath, currentList, false);

¥

return;

104

Implementation Maximal Flows

if(natDimap.containskey(node.getIpfAddress())) {

//Node is a NAT

{/check if input Predicate has sourceIP == to pat IP

List<IPAddress> natIPAddressList = new Arraylist<»();

natIPAddresslist.add(new IPAddress(node.getIpAddress(), false));

if(aputils.APComparelPAddressList(inputPredicate.getIPSrcLlist(), natIPAddressiist)) {
//the predicate has already been shadowed in previous traversals, so simply
//change destination and forward
Predicate newPredicate = new Predicate(currentlist.get(nodeIndex));
newPredicate.setIPDstList(inputPredicate.getIPDstList());
newPredicate.setpDstList(inputPredicate.getphstList());
newPredicate.setProtoTypelist(inputPredicate.getProtoTypelist());
currentList.set(nodeIndex, newPredicate);
recursive@enerateMaximalFlowsForwardUpdate (nodeIndex+l, sr, path, newPredicate,

currentFlowPath, currentlList, somethingChanged});

return;

X

{/check if it is a regonverted predicate. In that case forward the input packet
//saved in this node changing only source
boolean isReconverted = false;
for(Predicate reconvertedPredicate: natReconvertedMap.get(node.getIpAddress())) {
Predicate intersection =
aputils.computeIntersection(inputPredicate, reconvertedPredicate);
if(intersection != null &8& aputils.APCompare(intersection, inputPredicate}) {
if(aputils.APCompareIPAddressList(currentlist.get(nodelndex).getIPDstList(),
natIPAddressList)} {
iszReconverted = true;
break;

h

:

if(isReconverted) {
Predicate newPredicate = new Predicate(currentList.get(nodeIndex));
newPredicate.setIPSrcList({inputPredicate.getIPSrcList())};
newPredicate.setpDstList(inputPredicate.getpDstList());
newPredicate.setProtoTypelist(inputPredicate.getProtoTypelist())};
currentList.set(nodeIndex, newPredicate);
recursive@enerateMaximalFlowsForwardUpdate(nodeIndex+1l, sr, path, newPredicate,

currentFlowPath, currentlList, somethingChanged});

return;

}

//Compute intersection with D1
for(Predicate D1Predicate: natDlmap.get(node.getIpAddress())) {
Predicate intersectingDlPredicate =
aputils.computeIntersection(DlPredicate, inputPredicate};
if(intersectingDlPredicate != null)} {
/ /Do shadowing and generate a new flow
List<Predicate> newCurrentList = aputils.deepCopy(currentlList);
//change this node new input
newCurrentList.set(nodeIndex, intersectingDlPredicate};
/fGenerate new recursion with shadowed predicate as next
/finput predicate (to subsequent node)
Predicate shadowedPredicate = new Predicate(intersectingDlPredicate);
List<IPAddress> srcList = new ArrayList<>();

shadowedPredicate.setIPSrcList(srclist);
recursiveGenerateMaximalFlowsForwardUpdate(nodeIndex+l, sr, path, shadowedPredicate,
currentFlowPath, newCurrentList, true);

}

//Compute intersection with D2
Predicate intersectingD2Predicate =
aputils.computelntersection(natD2map.get(node.getIpAddress()), inputPredicate);

105

Implementation Maximal Flows

if(intersectingD2Predicate != null) {
/fDo reconversion and generate new flows
for(string natSrc: node.getNode().getConfiguration().getNat().getSource()) {
List<Predicate> newCurrentlist = aputils.deeplopy({currentList);
/fchange this node new input
newCurrentList.set(nodeIndex, intersectingD2Predicate);
//Generate new recursion with reconverted predicate as next
J/input predicate (to subsequent node)
Predicate reconvertedPcredicate = new Predicate(intersectingD2Predicate);
IPAddress natSrcAddress = new IPAddress(natSrc, false);
List<IPAddress» dstList = new ArrayList<>();
dstlList.add(natSrcAddress);
reconvertedPoredicate.setIPDstList(dstList);
recursiveGenerateMaximalFlowsForwardUpdate (nodeIndex+l, sr, path,
reconvertedPgredicate, currentFlowPath, newCurrentList, true);
b
1
//Compute intersection with D31
for(Predicate D31Predicate: natD3lmap.get(node.getIpAddress(})) {
Predicate intersectingD31Predicate =
aputils.computeIntersection(D31Predicate, inputPredicate};
if(intersectingD31Predicate != null) {
//change this node with new input
List<Predicate> newCurrentlist = aputils.deeplopy(currentList);
newCurrentList.set(nodeIndex, intersectingD31Predicate);
/fcontinue recursion without transformation
recursiveGenerateMaximalFlowsForwardUpdate(nodeIndex+l, sr, path,
intersectingD31Predicate, currentFlowPath, newCurrentlList, somethingChanged);

i

//Compute intersection with D32
Predicate intersectingD32Predicate =
aputils.computeIntersection(natD32map.get(node.getIpAddress()), inputPredicate);
if(intersectingD32Predicate != null) {
//change this node with new input
List<Predicate> newCurrentlist = aputils.deeplopy(currentList);
newCurrentList.set(nodeIndex, intersectingD32Predicate);
/fcontinue recursion without transformation

recursiveGenerateMaximalFlowsForwardUpdate(nodeIndex+l, sr, path, intersectingD32Predicate,

currentFlowPath, newCurrentlList, somethingChanged});

i

else if (allowedFirewallPredicates.containsKey(node.getIpAddress())) {
//Check intersection with allowed and denied list
List<Predicate> trasformedPredicates = new Arraylist<>();
for(Predicate allowedPredicate: allowedFirewallPredicates.get(node.getIpAddress())) {
Predicate intersectionAllowed =
aputils.computeIntersection(allowedPredicate, inputPredicate});
if(intersectionAllowed != null &&
laputils.APCompare(intersectionAllowed, inputPredicate))
trasformedPredicates.add(intersectionAllowed});
b
for(Predicate deniedPredicate: deniedFirewallPredicates.get(node.getIpAddress())) {
Predicate intersectionDenied =
aputils.computeIntersection(deniedPredicate, inputPredicate);

if(intersectionDenied != null &&
laputils.APCompare(intersectionDenied, inputPredicate))
trasformedPredicates.add(intersectionDenied);

b

//Generate the new flows
if(trasformedPredicates.size() > 8) {
for(Predicate newPredicate:trasformedPredicates) {
List{Predicate* newCurrentlList = aputils.deepCopy(currentList);
newCurrentList.set(nodeIndex, newPredicate};

106

Implementation Maximal Flows

J/continue recursion without transformation
recursiveGenerateMaximalFlowsForwardUpdate (nodeIndex+l, sr, path,
newPredicate, currentFlowPath, newCurrentList, somethingChanged);

h
} else {
/fsimply forward the packet
currentList.set(nodeIndex, new Predicate(inputPredicate))};
recursiveGenerateMaximalFlowsForwardUpdate(nodeIndex+l, sr, path, inputPredicate,
currentFlowPath, currentList, somethingChanged});

b

}

else {
/fnode is a simple forwarder, just forward the predicate
currentList.set(nodeIndex, new Predicate(inputPredicate));
recursiveGenerateMaximalFlowsForwardUpdate(nodeIndex+l, sr, path, inputPredicate,

currentFlowPath, currentList, somethingChanged});
h

First of all, the function checks if the predicate has reached the destination of
the requirement (last node in the path). In case it does, then the predicate is put
in intersection with the destination part of the requirement (IP destination, port
destination, protocol type). If the intersection exists, then the backward traversal
is called. Otherwise the current maximal flow is discarded.

If the node is not the last node of the path, it is an intermediate node, so we
have to consider how this node can transform the predicate that arrives in input.
There are mainly three considered cases for intermediate nodes: the node is a NAT,
a firewall, or a simple allocation place (in this case the predicate is simply forwarded
because the potential firewall allocated there is not yet configured).

In case the node is a NAT, the function must check if some intersection be-
tween the input predicate and the transformation domains of the NAT exists. For
example:

e If the predicate has IP source equals to the IP of the NAT, this means that
the predicate has already been shadowed by a previous forward traversal, so
we have only to update the information related to the destination part of the
predicate.

e If the predicate has already been reconverted by a previous forward /backward
traversal, at the contrary, it is forwarded after updating its source part.

e If the predicate has intersection with D, the predicate is shadowed and re-
cursion continues.

e If the predicate has intersection with Dy, then it is reconverted and new
recursions starts (one for each possible reconverted predicate for the NAT).

e Finally, if the predicate has intersection with D3; and Dss, this means that
no transformations are needed, so the predicate is simply forwarded.

In case the node is a firewall, the function must check if the intersection between
the predicate and some filtering rules (expressed in Predicates as described above)

107

Implementation Maximal Flows

exists and if it is necessary to split the flow in different sub-flows. Then for each
generated sub-flow, a new recursion starts.

Example:
the input predicate is {10.0.0.%, * * *} and there exists a filtering policy that
blocks only {10.0.0.1, *, * *}. In this case, the current considered flow is split
into two different sub-flows, one with {10.0.0.1, *, * *} as predicate in output, the
other with {10.0.0.% A 110.0.0.1, *, *, *}.

In case the node is a simple forwarder, the predicate is simply forwarded
without modifications.

B.1.3 Backward traversal

The function that executes the backward traversal is very similar to the one related
to the forward traversal. The only main difference is what happens when the
predicate reaches the last node of the path (the first one in the forward traversal). In
this case, the function must check if something has changed in the list of the current
Maximal Flow for the previous forward and backward traversals. If no modifications
have occurred, then there is no need for other forward and backward traversals and
the algorithm can stop. Otherwise, if the boolean variable somethingChanged is
set to true, this means that some modifications have occurred so it is necessary to
start a new forward traversal which will be followed by a new backward traversal.

private void recursiveGenerateMaximalFlowsBackwardUpdate(int nodeIndex, SecurityRequirement sr,
List<AllocationNode> path, Predicate inputPredicate,
FlowPath currentFlowPath, List<Predicate* currentlList, boolean somethingChanged) {

if(nodeIndex ¢ @)
return;

AllocationNode node = path.get(nodeIndex);

if(nodeIndex == 8) {

//We are in the last first node of the path

Predicate newPredicate = new Predicate(inputPredicate};

currentList.set(nodeIndex, newPredicate);

if(somethingChanged) {
//start new forward update
recursiveGenerateMaximalFlowsForwardUpdate(l, sr, path, inputPredicate,

currentFlowPath, currentList, false);

T else {
currentFlowPath.addMaximalFlow(maximalFlowId, currentlist);
maximalF lowId++;

}

return;

}

if(natDlmap.containskey(node.getIpAddress())) {

{fNode is a MAT

/fcheck if input Predicate has sourceIP == to pat IP

List<IPAddress> natIPAddressList = new ArraylList<»();

natIPAddressList.add({new IPAddress(node.getIpAddress(), false));

if(aputils.APCompareIPAddressList(inputPredicate.getIPSrclist(), natIPAddresslist)) {
/fthe predicate has already been shadowed in previous traversals,
//so simply change destination and forward
Predicate newPredicate = new Predicate(currentlList.get(nodeIndex));

108

Implementation Maximal Flows

newPredicate.setIPDstList(inputPredicate.getIPDstList());
newPredicate.setpDstList(inputPredicate.getphstlist());
newPredicate.setProtoTypelist(inputPredicate.getProtoTypeList());
currentlist.set(nodeIndex, newPredicate);
recursiveGenerateMaximalFlowsBackwardUpdate (nodeIndex-1, sr, path,

newPredicate, currentFlowPath, currentList, somethingChanged};
return;

b

Jlcheck if it is a regonverted predicate. In that case forward the input
//packet saved in this node changing only source
boolean isReconverted = false;
for(Predicate reconvertedPredicate: natReconvertedMap.get(node.getIpAddress())) {
if(aputils.computeIntersection(inputPredicate, reconvertedPredicate) != null) {
if(aputils.APComparelPAddressList{currentList.get({nodeIndex)
.getIPDstList(), natIPAddresslist)) {
isReconverted = true;
break;

}

if(isReconverted) {
Predicate newPredicate = new Predicate(currentlist.get(nodeIndex));
newPredicate.setIPSrcList(inputPredicate.getIPSrcList());
newPredicate.setpDstList(inputPredicate.getphstlist());
newPredicate.setProtoTypelist(inputPredicate.getProtoTypeList()});
currentlist.set(nodeIndex, newPredicate);
recursiveGenerateMaximalFlowsBackwardUpdate (nodeIndex-1, sr, path,

newPredicate, currentFlowPath, currentList, somethingChanged};

return;

b

J/Compute intersection with D1
for(Predicate D1Predicate: natDlmap.get(node.getIpAddress(}))} {
Predicate intersectingDlPredicate =
aputils.computeIntersection(D1Predicate, inputPredicate);
if{intersectingDlPredicate != null} {
//Do shadowing and generate a new flow
List<Predicate> newCurrentlist = aputils.deeplopy(currentlist);
/fchange this node new input
newCurrentList.set(nodeIndex, intersectingDlPredicate);
//Generate new recursion with shadowed predicate as next input predicate
Predicate shadowedPredicate = new Predicate(intersectingDlPredicate);
List<IPAddress> srcList = new ArrayList<>();
srclist.add(new IPAddress(node.getIpAddress(), false));
shadowedPredicate.setIPSrcList(srclist);
recursiveGenerateMaximalFlowsBackwardUpdate (nodeIndex-1, sr, path,
shadowedPredicate, currentFlowPath, newCurrentList, true);
b
b
//Compute intersection with D2
Predicate intersectingD2Predicate =
aputils.computeIntersection(natD2map.get(node.getIpAddress()), inputPredicate);
if(intersectingD2Predicate != null} {
/fDo reconversion and generate new flows
for(String natsrc: node.getMode().getConfiguration().getNat().getSource()})) {
List<Predicate> newCurrentList = aputils.deepCopy(currentlList);
f/change this node new input
newCurrentList.set(nodeIndex, intersectingD2Predicate);
//Generate new recursion with reconverted predicate as next input predicate
Predicate reconvertedP¢redicate = new Predicate(intersectingD2Predicate);
IPAddress natSrcAddress = new IPAddress(natSrc, false);
List<IPAddress:> dstlList = new ArrayList<:();
dstlList.add({natsrcAddress);

109

Implementation Maximal Flows

recursiveGenerateMaximalFlowsBackwardUpdate (nodeIndex-1, sr, path,
reconvertedPgredicate, currentFlowPath, newCurrentList, true);
by
i
//Compute intersection with D31
for(Predicate D31Predicate: natD3lmap.get(node.getIpAddress())) {
Predicate intersectingD31Predicate =
aputils.computeIntersection(D31Predicate, inputPredicate};
if{intersectingD31Predicate != null) {
/fchange this node with new input
List<Predicate» newCurrentlList = aputils.deeplopy(currentList);
newCurrentList.set(nodeIndex, intersectingD31Predicate};
/fcontinue recursion without transformation
recursiveGenerateMaximalFlowsBackwardUpdate (nodeIndex-1, sr, path,
intersectingD31Predicate, currentFlowPath, newCurrentList, somethingChanged);
b
I

/fCompute intersection with D32
Predicate intersectingD32Predicate =
aputils.computeIntersection(natD32map.get(node.getIpAddress()), inputPredicate};
if(intersectingD32Predicate != null) {
/fchange this node with new input
List<Predicate» newCurrentlList = aputils.deeplopy(currentList);
newCurrentList.set(nodeIndex, intersectingD32Predicate);
//continue recursion without transformation
recursiveGenerateMaximalFlowsBackwardUpdate (nodeIndex-1, sr, path,
intersectingD32Predicate,
currentFlowPath, newCurrentlList, somethingChanged});

b

else if(allowedFirewallPredicates.containskey(node.getIpAddress(})) {
J/we are in a firewall
//Check intersection with allowed and denied list
List{Predicate> trasformedPredicates = new ArraylList<:>();
for(Predicate allowedPredicate: allowedFirewallPredicates.pget(node.getIpAddress())) {
Predicate intersectionAllowed =
aputils.computeIntersection(allowedPredicate, inputPredicate);
if(intersectionAllowed != null 8%
laputils.APCompare(intersectionAllowed, inputPredicate})
trasformedPredicates.add(intersectionAllowed);
I
for(Predicate deniedPredicate: deniedFirewallPredicates.get(node.getIpAddress())) {
Predicate intersectionDenied =
aputils.computeIntersection(deniedPredicate, inputPredicate);
if(intersectionDenied != null &&
laputils.APCompare(intersectionDenied, inputPredicate)})
trasformedPredicates.add(intersectionDenied);

}

/fGenerate the new flows
if{trasformedPredicates.size(} » @) {
for(Predicate newPredicate:trasformedPredicates) {
List<Predicate> newCurrentlist = aputils.deepCopy(currentlist);
newCurrentList.set(nodeIndex, newPredicate);
/fcontinue recursion without transformation
recursiveGenerateMaximalFlowsBackwardUpdate(nodeIndex-1, sr, path,

newPrEdicaté, currentFlowPath, currentList, soﬁething[hanged};

h
}
else {
//Just forward the predicate
Predicate newPredicate = new Predicate(inputPredicate);
currentList.set(nodeIndex, newPredicate);
recursiveGenerateMaximalFlowsBackwardUpdate(nodeIndex-1, sr, path,
newPredicate, currentFlowPath, currentlist, somethingChanged);
i

110

	List of Figures
	Listings
	Introduction
	Thesis introduction
	Thesis description

	Traffic flows modelling (BACKGROUND I)
	Predicates
	How can be a Predicate modelled?
	BDD

	Atomic Predicates

	Refinement Problem (BACKGROUND II)
	VEREFOO, general presentation
	VEREFOO, in more details
	Service Graph VS Allocation Graph
	Network Security Requirements
	Generating traffic flows phase
	Description of constraints for the MaxSMT problem

	Thesis objective
	Introduction to two novel approaches for defining traffic flows

	New Predicate Model
	IPAddress
	PortInterval
	L4ProtocolType
	Predicate
	Operations on Predicate (implementation)

	Atomic Flows
	Approach
	Example
	Advantages
	Disadvantages
	Other considerations

	Tests on Atomic Flows
	Test parameters
	Tests execution
	Analysis of test results

	Maximal Flows
	Approach
	Example
	Advantages
	Disadvantages
	Maximal Flows VS Atomic Flows, introduction

	Tests on Maximal Flows
	Test parameters
	Analysis of test results

	Atomic Flows VS Maximal Flows
	Tests execution
	Analysis of test results
	Final results
	Time division between the phases
	Stressing the Atomic Predicates approach

	Conclusions
	Bibliography
	Implementation Atomic Flows
	Algorithm 2: Atomic Predicates computation
	Algorithm 3: "Interesting" Predicates and corresponding Atomic Predicates computation
	Interesting predicates for source and destination traffic of each requirement
	Interesting predicates for forwarding behaviour and transformation input domains
	Applying transformations

	Algorithm 4: Atomic Flows computation

	Implementation Maximal Flows
	Algorithm 5: Atomic Flows computation
	Generate maximal flows
	Forward traversal
	Backward traversal

