
POLITECNICO DI TORINO

Master degree course in Electronic Engineering

Master Degree Thesis

Advanced High-Level Synthesis
strategies for a Logic-in-Memory

exploration tool

Supervisors
Prof. Maurizio Zamboni
Prof.ssa Mariagrazia Graziano
Ph.D. Giovanna Turvani

Candidate
Alessio Nicola
ID: 264223

Academic year 2020 – 2021

“I’ve always believed that you should
never, ever give up and you should
always keep fighting even when
there’s only a slightest chance”
#KeepFightingMichael
[Michael Schumacher]

Summary

Nowadays, von Neumann architectures are reaching limitations in perfor-
mance, due to the differences in terms of technology between the Central
Processing Unit (CPU) and the memory: this critical condition is known
as von Neumann bottleneck.

New computational paradigms are emerging to overcome the problem.
Among them, the Logic-in-Memory (LiM) architectures that bring the
computations inside the memory itself, minimizing data transfers between
the memory and the CPU.

Octantis is a High-Level Synthesis tool, introduced in its first version in
2020 and developed within the VLSI Laboratory of Politecnico di Torino,
in order to support designers in the exploration and development of LiM
architectures. The program generates a Register Transfer Level (RTL)
design of a LiM architecture, which implements an input algorithm de-
scribed through a high-level programming language. The main advantage
in its use consists in reducing the effort and time required to design and
verify the whole architecture.

This thesis work has been focused on the Optimization, Code generator,
and Scheduling steps of Octantis.

Regarding the Optimization step, several optimization techniques, suit-
able for HLS and, especially, those that can exploit the capabilities of
Logic-in-Memory architectures, have been investigated and proposed.

5

The first version of Octantis when it was developed, followed the DEx-
IMA Input Reference Language guidelines of that time, now obsolete. The
software DExIMA has recently received a major update, in which it has
obtained a different and new Input Language. Accordingly, a new code
generator module in Octantis has been developed, to make it compatible
with the new DExIMA Input Reference Language. Furthermore, parts of
the source code of Octantis have been maintained, fixing bugs and intro-
ducing general optimizations to increase the capabilities and performances
of the tool.

The scheduling algorithm is one of the most important modules of a
High-Level Synthesis tool. It computes in which clock cycle the different
operations belonging to an algorithm must be performed, paying attention
to the data dependencies present and also, to the resource constraints of
the target architecture. Originally, Octantis only implemented an uncon-
strained ASAP algorithm, so it has been decided to expand its capabilities,
introducing a new scheduling algorithm. In particular, the objective was
to enforce the abilities of the scheduling, providing the tool with the ca-
pability to explore a larger design space during the elaboration and to
adopt advanced management of data dependencies. Furthermore, also the
introduction of the possibility to set some meaningful constraints suitable
for a LiM architecture has been considered. In this work, several schedul-
ing algorithms have been studied in depth and some of them have been
developed and introduced inside Octantis. Advanced strategies derived
from graphs theory have been considered too, in order to introduce the
support to a more flexible representation, analysis and elaboration of the
input algorithms. The scheduling algorithms implemented are all based
on the System of Difference Constraints (SDC) formulation, which allows
to manage new and advanced constraints during the synthesis process.

Several tests have been conducted to prove the effectiveness of the pro-
posed solutions. The considered algorithms revealed useful to verify the
correct management of the data dependencies problem, and the improve-
ments in terms of performance with respect to an ASAP scheduling algo-
rithm. The derived results have shown that the synthesized architectures
are well optimized according to the memory size constraint. In particular,
doing a comparison with the ASAP scheduling, it is noteworthy the over-
all reduction of the memory size by at least half, at the worst case cost of

6

doubling the clock steps necessary to complete the execution. The possi-
bility to constraint the memory size allows the designer to find the best
trade off between the occupied area and the performance of the digital
circuit.

From this Octantis update, some improvement could be brought. One
idea could be an update on the input module where can be specified the
scheduling preferences. Further, another idea could be to integrate in
Octantis, some technological libraries containing timing, and area infor-
mation of the logic gates. Allowing to expand the scheduling by including
timing constraint.

In conclusion, the new scheduling algorithms have improved in a tan-
gible way the output architecture generation, in addition constraining the
memory size.

7

Contents

List of Tables 11

List of Figures 12

1 Introduction 15

1.1 In-Memory computation 15

1.1.1 Logic-in-Memory 18

1.1.2 CLiMA architecture 18

1.2 LiM exploration tools . 20

2 Compiler 21

2.1 Introduction . 21

2.2 Compiler’s structure . 22

2.3 Conclusion . 25

2.3.1 Compiler classification 25

8

3 High-Level Synthesis 27

3.1 High-Level Synthesis’ structure 27

3.2 Octantis . 30

3.2.1 LLVM compiler infrastructure 31

3.2.2 Octantis’ main classes 33

4 High-Level Synthesis optimizations 37

4.1 Introduction . 37

4.2 Loop unrolling with cross iteration dependency 38

4.3 Tree height reduction . 38

4.4 Folding – Time multiplexing 40

4.5 If-Conversion . 41

4.6 Multi-threading . 41

5 Scheduling algorithms 43

5.1 Introduction . 43

5.2 Basic scheduling algorithms 45

5.2.1 As Soon As Possible scheduling algorithm 45

5.2.2 As Late As Possible scheduling algorithm 45

5.3 Resource Constrained scheduling slgorithms 47

5.3.1 List Scheduling algorithm 47

9

5.4 Time Constrained scheduling algo-
rithms . 48

5.4.1 Force Directed Scheduling 48

5.5 Miscellaneous scheduling algorithms 50

5.5.1 Force Directed List Scheduling algorithm 51

5.5.2 System of Difference Constraint based scheduling
algorithm . 52

5.5.3 Modulo SDC based scheduling algorithm 55

6 The optimizations introduced on Octantis 61

6.1 Octantis code generator 61

6.2 Octantis scheduling algorithm 62

7 Tests on the Scheduling Algorithms 67

7.1 Test algorithm 1 with data dependencies 67

7.2 Test algorithm 2 with data dependencies 69

7.3 XNOR Net for an approximated CNN 70

7.4 CLiMA CNN . 71

8 Conclusion and future works 73

Nomenclature 74

Bibliography 76

10

List of Tables

3.1 LLVM’s recognized instructions 35

7.1 Test algorithm 1 results 69

7.2 Test algorithm 2 results 69

7.3 XNOR Net algorithm results 71

7.4 CLiMA CNN algorithm results 72

11

List of Figures

1.1 von Neumann architecture. 15

1.2 Memory hierarchy. 17

1.3 In-memory computation classification [3]. 18

1.4 Configurable Logic-in-Memory Architecture [4]. 19

2.1 Compiler . 22

2.2 Compiler’s Phases . 22

3.1 High-Level synthesis basic blocks 29

3.2 Octantis’ general structure 32

3.3 Octantis’ Classes . 33

4.1 Accumulation example . 39

4.2 Tree height reduction example 39

4.3 Unfolded accumulation example 40

4.4 Folding example . 40

5.1 DFG example . 44

5.2 ASAP scheduling of DFG in Figure 5.1 46

12

5.3 ALAP scheduling of DFG in Figure 5.1 46

5.4 FDS time frames of DFG in Figure 5.1 50

5.5 Set of difference constraints 52

5.6 Graph SDC example . 53

5.7 Loop Graph — modulo SDC example 58

5.8 Scheduling — modulo SDC example 1 58

5.9 Scheduling — modulo SDC example 2 59

6.1 SDC based with memory constraint: Fixed size - Scheduling
algorithm . 64

6.2 SDC based with memory constraint: Upper Limit size -
Scheduling algorithm . 65

6.3 SDC based: Optimal -> Performance + Size - Scheduling
algorithm . 66

7.1 Graph test algorithm 1 . 68

7.2 Graph test algorithm 2 . 70

13

Chapter 1

Introduction

1.1 In-Memory computation

Nowadays’ architectures are mostly based on von Neumann architecture [1]
— also known as Princeton architecture — where data and instructions
share the memory section. The Central Processing Unit (CPU) fetches
the instructions from the memory, where it also reads and writes data by
using the shared bus, Figure 1.1. Hence, the CPU uses very frequently
the memory in order to execute the desired computations.

Memory CPU

Figure 1.1. von Neumann architecture.

The main problem of the von Neumann architecture is the bandwidth
limitation between the CPU and the memory, because the latter is not
able to quickly provide the amount of data required by the CPU. This
issue is called von Neumann bottleneck.

The von Neumann bottleneck is a limitation caused by performance

15

1 – Introduction

differences between the CPU and the memory. Since the CPUs can benefit
of CMOS technology scaling [2] and at the same time they become faster;
instead, the memories, being technologically different, do not benefit from
this scaling, and moreover they are big and slow.

The von Neumann bottleneck is a limitation caused by performance
differences between the CPU and the memory, for the reason that they
are technologically different. Although the CPUs become faster as long
as there will be benefits of CMOS technology scaling [2]; the memories,
since they are large, are very slow compared to the CPUs.

To partially fill the gap of frequency rate and to achieve comparable
speed between the CPU and the memory, the hierarchy of some levels of
memory is introduced, as depicted in Figure 1.2; thusly near the CPU
there is a small and fast memory, as much as the CPU speed. Gradually
moving away from the CPU, there are ever larger and slower memories.
In this way the slowness of the furthest and biggest memory become less
relevant, and the latency is hidden. The limitation on memory hierarchy
approach arises when it is needed to process a data intensive application,
because the power dissipated for data exchanging between the CPU and
the memory is not negligible, where the memory accesses power contribu-
tion has to be taken into account.

To overcome the von Neumann bottleneck and to stem the problems
before described, some research groups are exploring the in-memory com-
putation technology.

The in-memory computation technology is classified in different classes,
where the main difference consists on the use and integration of processing
elements’ logic within the memory cells:

• Computation-near-Memory (CnM): logic and memory are separated,
however implementing the 3D-SIC technology (3D Stacked Integrated
Circuit1) they are very close between them, Figure 1.3(A);

• Computation-in-Memory (CiM): computation is performed by periph-
eral circuitry. The memory array is not modified, the difference con-
sists on its analog peripheral circuitry (e.g. sense amplifiers) in order

16

1.1 – In-Memory computation

Register

Cache

Main memory

Disk

C
ost

C
apacity

Perform
ance

Figure 1.2. Memory hierarchy.

to compute information when the data is sensed inside the array, Fig-
ure 1.3(B);

• Computation-with-Memory (CwM): LUT-based memory for data pre-
computed, Figure 1.3(C);

• Logic-in-Memory (LiM): elementary logic gates are integrated inside
the memory cell, in this case the data do not have to go outside the
memory to perform basic operations since they can be computed by
the logic between the memory cells, Figure 1.3(D).

At VLSI Laboratory of Politecnico di Torino a great research effort has
been focused on LiM and CLiMA technology.

13D-SIC is a 3D integration technology where the silicon wafers are stacked one above
the other exploiting the vertical interconnection through-silicon vias (TSVs).

17

1 – Introduction

Figure 1.3. In-memory computation classification [3].

1.1.1 Logic-in-Memory

The Logic-in-Memory architecture allows to bring the computation inside
the memory, and it consists of memory cells linked together by elementary
logic circuits. Simple computations can be done within the memory itself,
moving data from one memory cell to another one, without transferring
data between memory and CPU, exploiting the full memory bandwidth,
saving time and energy.

1.1.2 CLiMA architecture

An example of an Logic-in-Memory computation architecture is the Con-
figurable Logic-in-Memory Architecture (CLiMA) [4], a flexible architec-
ture overcoming as much possible the limitations of a traditional von Neu-
mann system. The CLiMA architecture can process complex computation,
even those that are not suitable with LiM approach, using peripheral or

18

1.1 – In-Memory computation

complementary logic circuits, a concept schematic is depicted in Figure
1.4. In this way the flexibility is increased, and the architecture can be
tailor made to the algorithm, exploiting different In-memory computation
approaches if necessary. In CLiMA, between rows and columns, some data
manipulation can be performed; in particular there are five possibilities:

• Local;

• Intra-row;

• Intra-column;

• Inter-row;

• Inter-column.

Thus, between memory cells can be achieved operations such as AND,
OR, XOR, Ripple Carry Adder (RCA) and Array Multiplier (AM).

Definitely, in-memory computation is a promising technology especially
for parallel computing and data intensive applications, as highlighted in
[4, 5, 6].

Figure 1.4. Configurable Logic-in-Memory Architecture [4].

19

1 – Introduction

1.2 LiM exploration tools

To aid the exploration of Logic-in-Memory architectures, at VLSI Lab of
Politecnico di Torino, different tools have been developed. The tools of
interest are DExIMA [7] and Octantis [8].

DExIMA — Design Explorer for In Memory Architectures — is a per-
formance estimator that produces detailed analysis of a LiM architecture
in terms of area occupation, static and dynamic power consumption, and
timing analysis (e.g. critical paths computation). It gets in input a config-
uration file where the reference architecture and the finite state machine
of a Logic-in-Memory are described.

Octantis is a High-Level Synthesis (HLS) tool, introduced in its first ver-
sion in 2020 and developed within the VLSI Laboratory of Politecnico di
Torino, to support designers in the exploration of LiM architectures. The
synthesizer, starting from an input algorithm described in C programming
language, generates a complete design of LiM architecture, composed by
both a datapath and its control, and expressed through DExIMA descrip-
tion language. A deep study about Octantis follows in this dissertation.

Octantis and DExIMA are conceived to work in tandem. The per-
formances of the LiM architecture designed by Octantis are analysed by
means of DExIMA. Clearly, the process of understanding if an input al-
gorithm gains the advantages of a LiM implementation, is speeded up by
making the exploration process simpler for the user, reducing the effort
and the time required to design and verify the whole architecture.

20

Chapter 2

Compiler

This chapter introduces some notions on Compilers, deepening their struc-
ture and functionality, and at end is provided a classification. This study
is provided in order to understand the origins and the basic structure of
a High-Level Synthesis and, in particular, the one of Octantis.

2.1 Introduction

Many years ago, with the advent of the High-Level Language (HLL), the
Compilers have begun to be used in an overbearing way, due to the low-
level code — Assembly language — that requires in-depth knowledge of
the target hardware. Avoiding others issues arising from it, such as a more
difficult verification and the knowledge of different hardware machines.
The advantages to writing an algorithm in HLL are many, it is much
simpler and faster than any low-level languages.

The compiler allows to translate an HLL code into a low-level target
program (Figure 2.1), applying some optimizations and transformations
for a target hardware machine, not forgetting the capability to check and
find errors on the input source code.

21

2 – Compiler

CompilerHLL Code Low Level Code

Figure 2.1. Compiler

2.2 Compiler’s structure

The structure of a compiler is modular and follows some phases in order
to translate the source program [9], having as landmark the intermediate
representation of the input code; that divides logically the structure in
two parts: front end and back end. The front end takes care on translat-
ing into intermediate representation, moreover checks that there are not
syntactic and semantic errors, and in case of inaccuracy on the input code
an error message is provided to the user. On the other side, the back end
transforms the intermediate representation into a target machine code,
applying several optimization on the code. In Figure 2.2 the steps that
make up a compiler are depicted.

Lexical
Analyzer

Syntax
Analyzer

Semantic
Analyzer

intermediate representation

Intermediate
Code

Generator

Machine
Independent

Code
Optimizer

Code
Generator

Machine
Dependent

Code
Optimizer

HLL
code

Target-Machine
Code

Figure 2.2. Compiler’s Phases

The following sections describe each phase depicted in 2.2

22

2.2 – Compiler’s structure

Lexical analysis

The lexical analysis, or scanning, elaborates the data into tokens. The
analysis is performed reading and grouping the input stream into se-
quences named lexemes. After that, from the lexemes, the tokens are
produced. For example, the simple addition of the equation 2.1 becomes
into tokens as described in 2.2. A token is composed by two elements, the
first is the token name, the second one is the token entry.

c = a + b (2.1)

< id,1 > <=> < id,2 > < + > < id,3 > (2.2)

Syntax analysis

The phase after the lexical analysis is the syntax analysis or parser. In
this phase, it is created a parse tree from the first tokens’ element deter-
mining the order in which to perform the operations, moreover checking
the grammar correctness. In 2.3 is shown the parse tree of the previous
example.

=

/ \

< id,1 > +

/ \

< id,2 > < id,3 > (2.3)

23

2 – Compiler

Semantic analyzer

The semantic analyzer, from the parse tree, checks the semantic coherence
of the instructions. Moreover, in this phase the uniformity of the data’s
type is checked; for simple instructions, the compiler is able to apply a
conversion of type (e.g. from integer to floating point) in order to obtain
the correct compatibility.

Intermediate code generation

During the intermediate code generation phase a low level intermediate
representation of the input HLL code is generated; it must be easy to
generate and to use in order to produce a better target machine code.
There are some varieties of intermediate code representation, the most
common is the three-address code with three operands per instruction, as
for reduced instruction set computer (RISC) instruction set architecture
(ISA).

Machine-Independent code optimizer

The machine-independent code optimizer phase transforms the intermedi-
ate representation in order to improve and optimize the sequence of in-
structions. These optimizations are good for all types of machines, being
a machine-independent optimizer. Thus, examples of optimizations are a
faster code to execute, shorter lines code or less power code to execute.

Machine-Dependent code optimizer

The machine-dependent code optimizer applies optimization that depends
on the type of the hardware architecture, such as the CPU, memory size,
etc...

24

2.3 – Conclusion

Code generator

From the optimized intermediate representation, the code generator gen-
erates the target machine code. In this phase the allocation of registers
and memories is done, and also the instructions scheduling.

2.3 Conclusion

All these phases seen so far, can be grouped in Passes. For example,
the front-end pass can be made up from lexical analyzer to intermediate
code generator phases. The back-end pass with machine-dependent code
optimizer and code generator. The machine-independent code optimizer
sometimes is needless, in fact it is not confined in any front or back end.
The modular structure of the compiler allows an easier compilation using
the same target architecture with different programming languages using
a different front-end, or using the same algorithm for different hardware
architecture just changing the back-end.

2.3.1 Compiler classification

The compilers are classified in different ways [10], depending on the com-
bination of input code and output format code or better called target
platform.

• Native compiler: it is also called as hosted compiler, compiles from
HLL to the machine code suitable for the hosted computer and its
operating system (OS), where the the compiler itself is executed.

• Cross compiler: it compiles from HLL to a different output target
code of the hosted architecture and/or OS. It is mostly used to com-
pile for systems without an operating system, as for the bare metal
embedded systems.

25

2 – Compiler

• Source-to-Source compiler: it is also known as language transla-
tor, compiles from HLL to HLL. It is used to obtain the same algo-
rithm on different programming languages, or to apply some transfor-
mations and optimizations; such as an automatic parallelization of the
algorithm, in order to exploit multi-core execution with the applica-
tion programming interface (API) OpenMP (Open Multi-Processing).

• Just-in-time compiler: the JIT compiler or run-time compiler is
regularly inside the interpreters of scripting languages (e.g. JavaScript,
Matlab etc...), thus this compiler does not used to compile before the
execution, but the compilation is carried out in run-time.

• Assembler/Disassembler: it compiles from a low-level program-
ming language (e.g. Assembly language) to a target machine code.
The opposite compilation is obtained with a disassembler. This kind
of compilers overlaps the Source-to-Source typology.

• Decompiler: it compiles from a low-level programming language,
or even from a target machine code if supported, to a HLL code.
Basically, it is the opposite process of a simple compiler.

• Hardware compiler: it is better known as High-Level Synthe-
sizer , and it is used to translate a high level language into a hard-
ware description language or gate level. Hence, from some phases of a
generic compiler as studied in Chapter 2.2, it can be built a High-Level
Synthesizer.

26

Chapter 3

High-Level Synthesis

In recent years, to the develop increasingly complex digital design the in-
dustries moved on Electronic System-Level (ESL) methodology [11]. An
innovative technology among ESL methodology is the High-Level Synthe-
sis (HLS) one. A High-Level Synthesizer is an automatic compiler, that
is able to generate an RTL design from a high-level input code.

HLS aids in the development of a digital circuit, reducing the effort and
the time required to design from the scratch the whole digital architecture.
Furthermore, the design generated is correct by construction, thus, the
verification phase is also less expensive in terms of time and effort.

3.1 High-Level Synthesis’ structure

The development of complex digital circuits made these tools necessary to
raise the abstraction level, at the design moving from the Logic Synthesis
to the High-Level Synthesis (HLS) [12]. the transition between a High
Level Language to a Hardware Description Language (HDL) is called High-
Level Synthesis: for example from C/C++ code to VHDL/Verilog design.
Instead, the transition between the Register Transfer Level (RTL), using
a Hardware Description Language such as VHDL or Verilog, to the gate
level is known as Logic Synthesis.

27

3 – High-Level Synthesis

The HLS generates a complete RTL design, composed by both the
datapath and its finite-state machine (FSM). Hence, the datapath is made
up of registers, functional units, ALUs, and etc... All these elements of the
datapath are timed and driven by the signals coming from FSM, where
also it reads the signals generated by the datapath.

The main motivation of their adoption is that the digital design become
easier and faster, exploring better the different solutions from the design
space and avoiding designing by hand from scratch. Furthermore, the ver-
ification phase, one of the most important phases together to the design,
gain all the advantages of using an HLS, decreasing the time required to
test the behaviour of the design, escaping from common mistakes.

HLS is an NP-hard combinatorial problem, and it takes in input an
algorithm written in a high-level language that contains only the algorithm
itself without any timing information and/or parallel instructions as can
be done in an RTL description.

To solve the HLS problem, it is divided in smaller individual blocks and
consequently in smaller problems, 3.1. The front-end takes in input the C
code and generate the intermediate representation. During the front-end
compilation, are done the lexical, syntax, and semantic analysis as seen in
chapter 2.

The optimization phase, after the analysis of the IR code, is relegated to
apply some techniques in order to have a more efficient code, for example
the dead code elimination, algebraic optimization, loop unrolling and other
techniques can be applied.

The core of an HLS is the back-end, made from the allocation, schedul-
ing and binding. These phases are executed one after the other. The
back-end together to the Code generator is able to produce the RTL ar-
chitecture, getting in input the intermediate representation optimized.

28

3.1 – High-Level Synthesis’ structure

C code (HLL)

intermediate
representation

Back-end

Scheduling

Allocation

Binding

Code generator

RTL architecture

Front-end

Configuration file

Optimization

Figure 3.1. High-Level synthesis basic blocks

Allocation

The Allocation step takes in input the optimized intermediate represen-
tation, and from it, the required hardware resources will be instantiated,
such as logic and registers. The configuration file is used to define sev-
eral compilation directives and constraints that the HLS must considers;
for example the optimization to apply, the memory size, the number of
functional units, or constraints in terms of speed and timing.

Scheduling

Once the allocation is completed, there is one of the most important steps
of a HLS, that is the scheduling. The scheduling computes in which control
step (clock cycle) an operator must be enabled, generating the FSM of
the architecture. When there are operators without any data dependency
between them, the sequential input code can be scheduled increasing the
actual parallelism and optimizing the overall performances. Otherwise, if

29

3 – High-Level Synthesis

operators have data dependencies, the inputs are correlated to the prior
outputs such that the code cannot be scheduled in parallel.

Binding

The binding is the step where the variables are assigned to the registers,
and the operations to the functional units. In order to optimize the output
architecture, the sharing of the hardware is implemented.

Code generator

The last stage of a HLS pipeline is the code generator, which uses the
allocation, scheduling, and binding information, to describe the datapath
and the FSM of the architecture in a hardware description language as
VHDL or Verilog.

3.2 Octantis

The last born tool is a high-level synthesis (HLS) tool called Octantis . It
takes in input a C code and generates in output a hardware design descrip-
tion DExIMA compliant. In this way, the exploration and the design of
Logic-in-Memory architectures become easier and faster and furthermore,
the verification phase is simplified. Octantis is written in modular C++,
in order to allow new improvements and experimentation on different HLS
algorithms easily. Octantis is developed as a Pass on the LLVM1 Compiler
Infrastructure framework [13].

1LLVM is not an acronym.

30

3.2 – Octantis

3.2.1 LLVM compiler infrastructure

The LLVM compiler infrastructure is a framework which provides a com-
plete and configurable compiler system. It is made in a way that the input
code goes through many layers, where several improvement and optimiza-
tion are executed. The advantages to use a compiler like this, is to have
a good infrastructure and some optimization algorithm ready to use, as
those machine-independent. Thus, can be developed compilers, or parts
of them, in a simple and modular way.

The most important aspect of the whole LLVM framework is the LLVM’s
Intermediate Representation (IR) [14], because it is the intersect point
between the input code and the optimized output code. LLVM’s Interme-
diate Representation is a machine-independent high-level assembly lan-
guage. It has some different forms of representation, however the “human
readable assembly language” is one of the most convenient because it is
easier to understand and for this reason the debug of the generated code
is facilitated. The LLVM IR instructions are expressed in Static Single
Assignment (SSA), overcoming problems on dependency’s analysis such
as write after write (WAW) and write after read (WAR), simply because
each variable is assigned only one time. For example if there is a multiple
use of a variable, it will be assigned as many times as the use with different
names and different memory locations.

The Octantis project is designed around the LLVM’s Intermediate Rep-
resentation, in a way that the input code is compiled into the LLVM IR and
then it is analysed by several optimization phases until the output code
is generated. Now, for simplicity are defined: Front-end – the parsing
process from the input code to LLVM IR, and Back-end – the optimiza-
tion and code generation process from LLVM IR to the output description
code; an in-depth study follows in next chapter. This kind of conception
allows to write the Front-end for any desired high level language, and the
Back-end for any target architecture.

In Figure 3.2 the general structure of Octantis is depicted: it takes
in input the C code, then the Intermediate Representation is generated,
and finally the DExIMA file configuration is produced. In particular, the

31

3 – High-Level Synthesis

Front-end Back-endC-code IR DExIMA

Figure 3.2. Octantis’ general structure

Front-end phase is implemented through the Clang2compiler; the Back-
end phase is addressed optimizing the input IR representation through
the LLVM Passes; and at the end the output DExIMA description is
generated.

The Back-end can be composed by several LLVM Passes [16], which
transform and optimize the Intermediate Representation, each of which
takes in input and puts in output always an IR file description. Each pass
can be used for a peculiar optimization algorithm. These Passes are used
one after the other in sequence, applying all the desired optimizations.

LLVM Compiler Infrastructure, as for the Pass, provides a suite of
libraries [17] that can be customized in order to translate the Intermediate
Representation in a specific target code; in Octantis the output code is
the DExIMA file description.

In conclusion, the Octantis’ Back-end is composed by some appropriate
Passes to increase the parallelism of the execution, being one of the main
features of LiM architectures. Furthermore, there are some phases — as
described in High-Level Synthesis chapter — that deal with doing the
allocation, the scheduling, the binding and the generation, in order to get
the LiM architecture and the finite state machine (FSM).

2Clang is a Front-end compiler able to compile C, C++, Objective C/C++. It is
compatible with OpenMP, OpenCL and CUDA frameworks [15].

32

3.2 – Octantis

3.2.2 Octantis’ main classes

Octantis is a LLVM Pass made up by different classes in order to un-
derstand the input Intermediate Representation (it doesn’t matter if it is
optimized or not), so that in output the LiM architecture and the FSM de-
scribed inside the DExIMA file configuration will be generated. In Figure
3.3 the organization of Octantis’ Classes is shown, where Octantis Pass is
at the top, which manages the correct execution of each sub classes and
methods, with the order:

1. As Soon As Possible (ASAP) Scheduling;

2. LiM compiler ;

3. Print DExIMA File.

LiM Compiler

Octantis Pass

FSM LiM ArrayInstruction
Table

Operation
Implemented

Instruction
Table

Additional
Logic Ports

ASAP
Scheduling

FSM LiM Array Operation
Implemented

Operation
Implemented

Operation
Implemented

Print DExIMA
File

Figure 3.3. Octantis’ Classes

Each of these classes in turn use other subclasses and methods, that will
be explained below.

Additional logic ports

The Additional Logic Ports class extends the LLVM Intermediate Rep-
resentation language introducing additional logic gates used in RTL de-
sign process which are not present, for example the negative logic gates:
NAND, NOR and XNOR.

33

3 – High-Level Synthesis

Instruction table

The Instruction Table class implements methods to store the scheduled
instructions in a data structure. Subsequently, these instructions are used
by LiM Compiler class.

Finite State Machine

The Finite State Machine (FSM) class includes a data structure where to
store the information about the scheduling of the architecture according
to the ASAP scheduling.

Logic-in-Memory array

The LiM Array class keeps information about the Logic-in-Memory struc-
ture to implement in hardware, with methods to add new memory rows, to
add new Logic-in-Memory rows, and to modify the logic between memory
rows.

Operation implemented

The Operation Implemented class checks that there are not any irregular
operations that could be unrecognized by Octantis and/or DExIMA tool.

As Soon As Possible scheduling

The As Soon As Possible Scheduling class identifies the input instructions
and it schedules them according to the ASAP algorithm. The LLVM’s
recognized instructions are listed in Table 3.1. The load instruction is
considered as definitions of new variables inside the LiM array, while the
store ones are needed when an elaborated data is available, and useful to
define the data dependency.

34

3.2 – Octantis

Instruction Description
alloca Allocate memory
load Read from memory
store Write to memory
binary Shift, AND, OR, XOR
ptr Get address
switch Multiplexer
ret Return control flow
br Branch
sext Sign extension
icmp Compare

Table 3.1. LLVM’s recognized instructions

Logic-in-Memory compiler

The LiM Compiler class extracts the information just saved by ASAP
Scheduling inside the data structure of Instruction Table and it generates
the Finite State Machine and the LiM architecture (LiM Array).

Print DExIMA file

The Print DExIMA File class, in turn reading the data just processed by
LiM Compiler, produces the DExIMA file configuration.

Octantis pass

Summarizing, the Octantis Pass starts with the ASAP Scheduling, where it
reads instruction by instruction and produces the Instruction Table. This
last structure is read by LiM Compiler in order to generate the FSM and

35

3 – High-Level Synthesis

the LiM architecture storing information respectively in data structures
on FSM class and on LiM Array class. At the end, Print DExIMA File,
from the last two, generates the output file.

36

Chapter 4

High-Level Synthesis
optimizations

The High-Level Synthesis make extensively use of optimization techniques
in order to improve the performance and the quality of the output archi-
tecture. Some of these optimizations are often used during the design of
a digital architecture, and they are not exclusively used by HLS tools.

In this chapter some optimization techniques that are suitable for a
HLS are explored and, especially, that can exploit the capabilities of the
Logic-in-Memory.

4.1 Introduction

Once the input C code is acquired by the HLS, it is transformed into a
Intermediate Representation form by the front-end. As can be seen in
Figure 3.1, there is then a phase called Optimization. The Optimization
step is not mandatory, but a better output architectures could be obtained
through the subsequent processing applied by the HLS tool. Especially,
when these techniques are able to exploit some peculiar specification of
the target architecture. Several techniques are available as LLVM passes

37

4 – High-Level Synthesis optimizations

(e.g. dead code elimination, loop optimization, loop unrolling) that were
just studied in [8]. The techniques discussed in the following are oriented
to be used on a HLS for LiM technology.

4.2 Loop unrolling with cross iteration de-
pendency

Knowing the pros of a LiM architecture, the primary objective of a HLS
is to parallelize as much as possible the input code. When there is a cross
iteration dependency (e.g. loop accumulation) the Loop unrolling can
be applied, following the well-know technique of look-ahead expansion.
An example is provided where the Algorithm 1 can be optimized as in
Algorithm 2:

Algorithm 1: Cross iteration dependency example
1 for i← 0 to 4 do
2 sum += V[i]
3 end

Algorithm 2: Look-ahead applied on a cross iteration dependency
1 sum = V[0] + V[1] + V[2] + V[3] + V[4]

4.3 Tree height reduction

Computations and algorithms can be implemented in different ways ac-
cording to the design constrains: optimizing the performances or minimiz-
ing the number of resources at disposal are two typical examples which
move the designer from an implementation to another. Starting from the
algorithm example in Figure 4.1 the tree height reduction technique is used
to minimize the number of computational cycles, and the derived results
are shown in Figure 4.2. A chain of identical operators can be reordered as

38

4.3 – Tree height reduction

a tree of the same operators, and executing their computations in parallel
to save time. In the discussed example this technique allows to compute
the SUM in 2 cycles instead of 3.

The tree height reduction technique mathematically is nothing more
the union of simple commutative and associative properties. However, its
software implementation can be challenging due to the data dependencies
that should be upset.

+

+

+

A B

C

D

SUM

Figure 4.1. Accumulation example

+

A B

+

C D

+

SUM

Figure 4.2. Tree height reduction example

39

4 – High-Level Synthesis optimizations

4.4 Folding – Time multiplexing

When the area of a circuit has to be reduced or the number of available
resources are limited, the folding method can be applied. In Figure 4.4
a single adder is used to implement multiple sums. Applying the time
multiplexing, a feedback and an accumulator allows to perform the same
operation saving 1 adder, but at the cost of a small overhead and additional
control signals (e.g. multiplexers selectors). Therefore, while the original
system, depicted in Figure 4.3, needed 2 adders and 3 input registers,
the folded circuit shows 1 adder, 3 input registers, 1 accumulator and 2
multiplexers.

In terms of performances, the negative consequence of the time mul-
tiplexing technique is the decrease of the throughput due to the need of
more clock cycles (two in this example) to complete the same operation.

+ +

Figure 4.3. Unfolded accumulation example

+

Figure 4.4. Folding example

40

4.5 – If-Conversion

4.5 If-Conversion

To speed up the execution when the algorithm encounters an If-Else con-
struct, the If-conversion technique can be applied [18]. This technique
enables the execution of the predication, where the two execution paths
(both the ones following the If and Else statements) are scheduled in par-
allel and the choice of the correct final results is postponed at the end
of the two paths. Attention must be paid in the implementation of this
technique, as long as there is not any advantage if the two paths are not
balanced, because the choice is made once two paths have been completed.

4.6 Multi-threading

The multi-threading technique allows to execute multiple threads in paral-
lel, increasing the execution parallelism. There are different standards in
the panorama of high level programming languages: OpenMP, OpenCL,
CUDA. Each of these have pros and cons in their adoption, and the choice
on which one to consider mainly depends on the target architecture and
its features. OpenMP is ideal for CPUs, instead OpenCL and CUDA are
fitted to be used on GPUs. The advantages of using the multi-threading
are to increase the performance thanks to the parallel execution, and an
additional way to force additional design specifications inside the compi-
lation process.

41

Chapter 5

Scheduling algorithms

The scheduling algorithm is a very important component of a High-Level
Synthesis tool and it contributes to determine the goodness of the program
itself. It computes in which clock cycle an operation has to be performed,
paying attention to the data dependencies present in the code and to the
resource constraints of the target architecture. In this chapter, differ-
ent scheduling algorithms are presented, from the simplest (e.g. ASAP,
ALAP) to the optimal one based on the System of Difference Constraints
(SDC) formulation, which allows to manage advanced constraints during
the synthesis process.

5.1 Introduction

The goal of a scheduling algorithm is to reduce as much as possible the
control steps required to execute an input algorithm, trying to schedule
more instructions in the same time unit, thereby parallelizing at most the
instructions to execute. In this way, the performance of the output ar-
chitecture will be maximized. Obviously, this will not be always possible,
there can be some data dependencies that must be satisfied, otherwise
we loose the semantic of the input algorithm. In addition to timing con-
straints, when an architecture is developed, also some design specifications

43

5 – Scheduling algorithms

have to be taken into consideration, e.g. resource constraint, timing con-
straint and interfacing of the architecture.

A Data-Flow Graph (DFG) is generated by parsing the IR code. It is
used to analyze the dependencies among the instructions, and the schedul-
ing algorithms organize its structure considering the various constraints.
In Figure 5.1 an example of a DFG is depicted.

AND AND AND

OR

AND

+

AND

OR

<<

Figure 5.1. DFG example

The scheduling algorithms are classified in:

• Basic: As Soon As Possible (ASAP), As Late As Possible (ALAP);

• Resource Constraint (RC): List Scheduling (LS);

• Time Constraint (TC): Force Directed Scheduling (FDS), Integer
Linear Programming, Iterative Refinement;

• Miscellaneous: Simulated Annealing, Path-Based, Force Directed
List Scheduling (FDLS), FDS with FDLS, System of Difference Con-
straint (SDC) Based

The most significant scheduling algorithms are deepened in the sections
below, while further details of all mentioned scheduling algorithms can be

44

5.2 – Basic scheduling algorithms

found in [19, 20, 21, 22, 23, 24]. Instead, additional readings about other
scheduling algorithms that are not discussed in this thesis, can be found
in [25, 26, 27, 28, 29].

5.2 Basic scheduling algorithms

The basic scheduling algorithms, As Soon As Possible and the As Late
As Possible scheduling, are very useful to find two bounds for a feasible
scheduling. These algorithms consider infinite resources, as any resource
constraint can be applied, they must consider the data dependencies.

5.2.1 As Soon As Possible scheduling algorithm

The ASAP is one of the simplest scheduling algorithm, and it is used
to obtain the fastest possible execution: every instruction is allocated as
soon as it satisfies any dependency. The scheduling obtained uses the
minimum number of control steps, consequently the minimum execution
time. Algorithmically, it is obtained analyzing the graph from top to
bottom. In Figure 5.2 an example of an ASAP scheduling related to the
DFG discussed in the previous section in Figure 5.1.

5.2.2 As Late As Possible scheduling algorithm

As can be imaged, the ALAP scheduling algorithm is the opposite of the
ASAP one. In this scheduling, the instructions are scheduled during the
last control step available. The obtained scheduling takes the maximum
control steps possible. In this case, the graph is analyzed starting from
the bottom to the top. The example of ALAP scheduling applyied to the
DFG in Figure 5.1 is depicted in Figure 5.3.

45

5 – Scheduling algorithms

AND AND AND

OR

AND

+

AND

OR

<<

Figure 5.2. ASAP scheduling of DFG in Figure 5.1

AND AND

AND

OR

AND

+ANDOR

<<

Figure 5.3. ALAP scheduling of DFG in Figure 5.1

46

5.3 – Resource Constrained scheduling slgorithms

5.3 Resource Constrained scheduling slgo-
rithms

When we design an architecture, there are often some limitations in terms
of available hardware resources, and in these conditions the Resource Con-
straint (RC) Scheduling algorithms are necessary, taking into account both
the resource constraints and the data dependencies. An algorithm belong-
ing to the RC scheduling is the List Scheduling.

5.3.1 List Scheduling algorithm

The List Scheduling algorithm is based on a sorted/priority ready list of
the instructions to schedule.

The List Scheduling makes use of the results obtained from the exe-
cution of both the ASAP and ALAP algorithms, in order to obtain the
two scheduling bounds among which an operator is included. After, the
scheduling difference between the ALAP and ASAP scheduling is com-
puted. This quantity gives the mobility that characterizes each operator.
The mobility values are collected inside the ready list, that will be sorted
with the lowest mobility to the top. Once the ready list has been com-
pletely filled, the operators that are at the top of this list, have a higher
priority when the scheduling is performed.

Algorithm 3 gives the pseudo code of the list scheduling.

Algorithm 3: List Scheduling algorithm
1 ASAP Computation;
2 ALAP Computation;
3 Filling the list of ready operation computing the mobility of each

operator;
4 Sort the list with the lowest mobility of operators on the top;
5 Scheduling using the priority list;

47

5 – Scheduling algorithms

5.4 Time Constrained scheduling algo-
rithms

During the design of an architecture, if the objective is to complete the
execution of an algorithm in a fixed time, as happens for Digital Signal
Processors, the most effective scheduling algorithms are those known as
Time Constrained. In this case, the TC scheduling algorithms are able to
optimize the cost of the hardware for a given execution time target.

There are different approaches to develop a TC scheduling. The prob-
lem can be solved by Mathematical Programming (e.g. Integer Linear
Programming), Constructive heuristic1(e.g. Force Directed Scheduling),
or Iterative Refinement.

5.4.1 Force Directed Scheduling

The Force Directed Scheduling (FDS) is a heuristic algorithm. It is able to
minimize the number of operators necessary to execute an algorithm, given
a fixed execution time, as target. Furthermore, this scheduling manages
the concurrency, balancing in an uniform way, the number of the operators
assigned to each control step.

First of all, the ALAP and ASAP scheduling are computed, in order to
get the degree of freedom for each operator. The mobility information is
useful to find out the operators probability as Prob = 1/mobility. Then,
the FDS scheduling generates a distribution graph as in Equation 5.1, and
it computes the forces applied by each operator as in Equation 5.2.

DG(i) =
∑

OpnT ype

Prob(Opn, i) (5.1)

1A heuristic technique is an approach to solve the problem applying some simplifi-
cations in order to produce a solution that may not be optimal, but a reliable approx-
imation. Used mainly when the classic methods are too slow, or can’t be just solved.

48

5.4 – Time Constrained scheduling algo- rithms

Force(i) = DG(i) ∗ p(i) (5.2)

In Equation 5.1, Prob(Opn, i) is the probability to use an operator in
a given time step i. Instead in Equation 5.2, p(i) is the probability of an
operator in control step i, and its sign is negative if it is being removed,
or it is positive if it is just added. At the end, when all the forces are
computed, starting from the least force operator the scheduling can be
done.

Using as example the DFG in 5.1 and helping using the FDS time frames in
Figure 5.4, the force of the last AND gate on the right is calculated in this way:

mobility = 2
Probability = 1/mobility = 1/2 = 0.5
DG(1) = Prob(AND′,1) + Prob(AND′′,1) + Prob(AND′′′,1) = 1 + 1 + 0.5 = 2.5
DG(2) = 1 + 0.5 + 0.5 = 2
Force(1) = (DG(1)∗p(1))+(DG(2)∗p(2)) = (2.5∗(+0.5))+(2∗(−0.5)) = +0.25
Force(2) = (DG(2)∗p(2))+(DG(1)∗p(1)) = (2∗(+0.5))+(2.5∗(−0.5)) = −0.25

Algorithm 4 gives the pseudo code of the Force Directed Scheduling.

Algorithm 4: Force Directed Scheduling algorithm
1 ASAP Computation;
2 ALAP Computation;
3 Mobility computation of each operator to evaluate the possible

time frames. For each time frame is associate the probability
(Uniform probability);

4 Distributed graph and Force computation for each operator;
5 Scheduling of the operators that all together give the lowest force;

49

5 – Scheduling algorithms

AND AND

AND

OR

AND

AND

+

<<

OR

Figure 5.4. FDS time frames of DFG in Figure 5.1

5.5 Miscellaneous scheduling algorithms

In this section, the miscellaneous scheduling algorithms are able to opti-
mize a larger space of constraints, for example both resource and timing
constraint. Obviously, the performances are not always as good as the
ones that can be obtained using a more specific algorithms (TC and RC
scheduling algorithm). However the solutions scheduled are often very
close to them. The algorithm able to consider more than one constraint
is preferred to find out the optimal solution. Reaching a good trade-off
implementation. The Scheduling Algorithms among this family are the

50

5.5 – Miscellaneous scheduling algorithms

Force Directed List Scheduling, and the System of Difference Constraint
Based, discussed in the following.

5.5.1 Force Directed List Scheduling algorithm

The Force Directed List Scheduling Algorithm is able to solve the schedul-
ing problem taking into account both timing and resource constraints.
In details, it takes the best aspects from the List Scheduling and Force
Directed Scheduling algorithms. The priority ready list is no more deter-
mined by the operator’s mobility, but from the force of each operator as
done in Force Directed Scheduling. The difference of FDLS from FDS, is
that there isn’t a target execution time, and the algorithm tries to mini-
mize the control steps, given resource constraints.

The Algorithm 5 follows the main phases like the list scheduling, mod-
ifying the way of how the priority list is computed and filled.

Algorithm 5: Force Directed List Scheduling Algorithm
1 ASAP Computation;
2 ALAP Computation;
3 Mobility computation of each operator to evaluate the possible

time frames. For each time frame is associate the probability
(Uniform probability);

4 Distributed graph and Force computation for each operator;
5 Filling the list of ready operation whit all forces.;
6 Sort the list whit the lowest force of operators on the top;
7 Scheduling following the priority ready list taking into account the

resource constraints;

A more powerful scheduling algorithm [21] can be obtained chaining the
FDS and FDLS algorithms. Thus, at the beginning, the FDS is applied,
setting a target execution time, and obtaining an architecture that is op-
timized from the timing point of view, with a balance between the load
of the operators and, consequently, the hardware costs. Then, working in
a smaller design space, the FDLS algorithm is performed, trying to de-
crease the execution time while the resource constraints are also optimized

51

5 – Scheduling algorithms

in order to reduce the area.

5.5.2 System of Difference Constraint based schedul-
ing algorithm

The heuristic scheduling algorithms seen so far, are not able to find the
optimal scheduling, because they are prone to approximations. Instead,
for large problems the optimal scheduling algorithms are often too slow.

The System of Difference Constraint Based scheduling algorithm can
solve most of the previous problems. A different approach to the problem
is introduced, solving a mathematical system where all the dependencies
and constraints are described, relying to a mathematical framework called
System of Difference [22].

Since we used a mathematical environment, we can used several con-
straints, spanning from the data dependencies, resource constraints, tim-
ing constraints, I/O Buses, to the clock frequency specification.

Given a connected graph as depicted in Figure 5.5, the formulation is
as in Equation 5.3. In particular, tu and tv are respectively the scheduling
time of the source node and the destination node; C is the transition time
between tu and tv.

Figure 5.5. Set of difference constraints

tv − tu ≥ C (5.3)

An example of the SDC system is shown: given the algorithm 6, we
produced the graph as in Figure 5.6. Furthermore, from the graph all the

52

5.5 – Miscellaneous scheduling algorithms

data dependencies are easily visible. The system 5.4 reproduces the graph
5.6 inside the framework SDC.

Algorithm 6: Example code
1 C = A ·B
2 D = A + C
3 E = C ·D

AND

B

0 0

1

A

C

OR

0

D

AND

1

E

0

10

0

Figure 5.6. Graph SDC example

53

5 – Scheduling algorithms

tAND1 − tB ≥ 0
tAND1 − tA ≥ 0
tOR − tA ≥ 0
tC − tAND1 ≥ 1
tOR − tC ≥ 0
tD − tOR ≥ 1
tAND2 − tC ≥ 0
tAND2 − tD ≥ 0
tE − tAND2 ≥ 1

(5.4)

Since the Constants are integers, the matrix of the system is totally
unimodular2. Taking into account also that a totally unimodular matrix
has the property that every square submatrix has a determinant 0, -1 or
1, the system can be solved in linear programming (LP) [30, 31, 32] and in
polynomial time, obtaining the scheduling result as timing integer values.

The results of the SDC system provides the scheduling time for each
operator. Moreover, the SDC scheduling is very flexible because it allows
to obtain the ASAP, as well as the ALAP scheduling. Setting as objective
the minimum as in Equation 5.5, the ASAP scheduling time will be gen-
erated; vice versa, setting as objective the maximun as in Equation 5.6,
the ALAP scheduling time will be generated.

Other constraints can be set, consider [22] for further options.

min
∑

i

opi (5.5)

max
∑

i

opi (5.6)

2A unimodular matrix is a square matrix with integer values having determinant +1
or -1.

54

5.5 – Miscellaneous scheduling algorithms

5.5.3 Modulo SDC based scheduling algorithm

The input code given into the HLS, written in a high level coding language,
often makes extensive use of for loops. To enable optimizations on these
iterative constructs, we introduced the Modulo SDC Based Scheduling Al-
gorithm, [33, 34]. The modulo scheduling is a kind of scheduling that takes
care to apply the loop pipelining together with other optimizations. This
scheduling is able to execute different loop iterations in parallel, increasing
the parallelism and performance.

In a modulo scheduling there are several difficulties to overcome. In
addition to the data dependencies, we introduced a new data dependency
called cross-iteration dependency, and it occurs when there is a depen-
dency between two different loop iteration. This kind of dependenciy can
affect heavily the performances. The cross-iteration dependencies do not
allow to start a new loop iteration in parallel, until the data required by
the dependency is ready. Moreover, the modulo scheduling has to meet
the resource constraints, because it could allocate a lot of resources trying
to execute the loop iterations in parallel.

Modulo scheduling arranges the different operations in a way that can
be repeated at a fixed iteration time (called Initiation Interval (II)) and
avoiding all the problems deriving from the data dependencies, cross-
iteration dependencies, and resources constraints. For example, if the
II is equal to one, the architecture is able to start a new loop iteration
at each control step. Instead, if the II is equal to three, the architecture
begin a new loop iteration at every three control step. It’s easy to under-
stand that, ideally at every control step a new loop iteration should start
to obtain the maximum performances.

In order to reach the maximum performances, the modulo scheduling
algorithm must be able to schedule the instructions with the lowest II pos-
sible, considering that the II is bounded by constraints and dependencies.

To find the Minimum Initiation Interval (MII) [35], the Minimum Re-
currence Constrained Initiation Interval (recMII) and the Resource Con-
strained Minimum Initiation Interval (resMII) must be calculated. RecMII

55

5 – Scheduling algorithms

is a limitation caused by the cross-iteration and data dependencies. In-
stead, ResMII is a limitation resulted by the resource constraints.

The recMII can be found following the Equation 5.7: for every loop
recurrence i, two quantities have to be evaluated, i.e. the delayi to cover
the loop itself, and the value that indicates how many iterations of the
loop separate the cross-iteration dependency, called just distancei of the
recurrence.

recMII = max

⌈
delayi

distancei

⌉
(5.7)

The resMII equation reported in 5.8, verifies the limitation due to the
resource constraint, where #opsi is the number of times that an operator
is required inside the loop iteration, while #FUi is the number of available
resources of that operator. This is performed for every resource type i.

resMII = max

⌈#opsi

#FUi

⌉
(5.8)

The scheduling is feasible if the II is greater than or equal to the MII.
MII is the minimum allowed Iteration Interval that guarantees the schedul-
ing to obtain correct results, so as in Equation 5.9.

MII = max(resMII, recMII) (5.9)

To implement the modulo SDC scheduling, the SDC dependency equa-
tions must be modified, introducing the information about the loop recur-
rence, as in Equation 5.10. After that the scheduling can start to work,
and in particular it tries to schedule the loop using the MII precomputed.
If it fails to find a feasible scheduling, then the MII will be incremented
and the scheduler repeat the scheduling process.

(tv + MII)− tu ≥ C (5.10)

56

5.5 – Miscellaneous scheduling algorithms

The modulo SDC scheduling uses the backtracking technique to con-
sider also the resource constraints. The resource constraint introduces a
non linearity to the linear SDC system, and the backtracking represents
a workaround to ensure this linearity. Thus, during the execution of the
algorithm when the modulo SDC scheduling can not schedule the instruc-
tions due to unavailable resources, it un-schedules them by means of the
backtracking, and then attemps a new scheduling, modifying the SDC
system. In [34], the algorithm related to the modulo SDC scheduling can
be found.

An example of a modulo SDC scheduling is provided, not related to the
LiM principle but useful to understand how the modulo SDC scheduling
works.

In Figure 5.7 a graph that contains a loop dependency is depicted.
Here, it is considered that the latency of the memory to perform a load is
equal to 2, and to perform a store is equal to 1. The first example shows
the scheduling of the loop graph in Figure 5.7 when the memory has three
ports and we can read and write in parallel from it, so for this example 1
there isn’t any resource constraint.

The MII is computed in order to set the loop constraint to the SDC
system 5.11.

recMII = max
⌈

delay
distance

⌉
= max(3

1) = 3

resMII = max
⌈ #ops

#F U

⌉
= max(3

3) = 1

MII = max(resMII, recMII) = 3

tC − tA ≥ 2
tC − tB ≥ 2
tD − tC ≥ 0
(tA + MII)− tD ≥ 1

=>

tA = 0
tB = 0
tC = 2
tD = 2

(5.11)

The solution of the system 5.11 is computed by using a LPsolve3and

57

5 – Scheduling algorithms

+

load b[i]load a[i]

store a[i+1]

A B

C

D

2 2

0

1

Figure 5.7. Loop Graph — modulo SDC example

it is represented graphically in Figure 5.8, where we can easily see that
every three cycles a new loop iteration is executed.

load a[0]

load b[0]

0 1 2 3 4 5 6 7 8

load a[1]

store a[1]

+

load b[1]

load a[2]

store a[2]

+

load b[2]

store a[3]

+

Figure 5.8. Scheduling — modulo SDC example 1

Instead, if it is decided that the memory can have only one input/output
port as resource constraint, the #FU of the equation useful to compute

3LPsolve is a Mixed Integer Linear Programming (MILP) solver.

58

5.5 – Miscellaneous scheduling algorithms

the resMII become equal to 1, as follow:

recMII = max
⌈

delay
distance

⌉
= max(3

1) = 3

resMII = max
⌈ #ops

#F U

⌉
= max(3

1) = 3

MII = max(resMII, recMII) = 3

tC − tA ≥ 2
tC − tB ≥ 2
tD − tC ≥ 0
(tA + MII)− tD ≥ 1

=> ...backtracking... =>

tA = 2
tB = 0
tC = 4
tD = 4

(5.12)

Before finding a feasible solution, the algorithm tries several times to
apply the backtracking technique to un-schedule the unworkable schedul-
ing of the graph. The solution is shown in Equation 5.12 and depicted in
Figure 5.9.

load b[0]

load a[0]

0 1 2 3 4 5 6 7 8

load b[1]

store a[1]

+

load a[1]

load b[2]

+

store a[2]

load a[2]

Figure 5.9. Scheduling — modulo SDC example 2

Looking at Figure 5.9, a new loop iteration begin every three cycles,
even if the latency of this scheduling corresponds to two more cycles,
however, as a matter of performances, this is not important as it would
be for the throughput.

59

Chapter 6

The optimizations
introduced on Octantis

Octantis is a software recently born, and it presents several areas that
can be improved and optimized. The areas of focus for the present thesis
work are the ones corresponding to the Code Generator and to Scheduling
phase, as outlined in 3.1. Together with these specific improvements, also
other parts of the source code of Octantis have been maintained, fixing
bugs and introducing general optimizations to increase the capabilities
and performances of the tool.

6.1 Octantis code generator

The first version of Octantis was compliant with an older version of the
DExIMA Input Reference Language, now obsolete. In fact, the software
DExIMA has recently received a major update [7], where a new imput
interface has been designed.

Accordingly, the code generator of Octantis has been rewritten following
the new guidelines of DExIMA Input Reference Language.

61

6 – The optimizations introduced on Octantis

Recalling, the code generation stage, depicted in Figure 3.1, is respon-
sible to generate the RTL architecture of the final description from the
elaborated information in the previous steps.

6.2 Octantis scheduling algorithm

As seen in Chapter 3, one of the most important phases of an HLS is
the scheduling algorithm. Since Octantis implemented only an uncon-
strained ASAP algorithm, it has been decided to expand its capabilities,
introducing a new scheduling algorithm. In particular, the objective was
to enforce the abilities of the scheduling, providing a larger design space
during the elaboration and advanced management of data dependencies.
Furthermore, also the introduction of the possibility to set some meaning-
ful constraints suitable for a LiM architecture has been considered.

The first version of Octantis was able to schedule according to the ASAP
scheduling, but was not conceived to work with graph data structures.
Thus, the first thing to do was to redesign the ASAP scheduling. The
Intermediate Representation once acquired, is saved in a directed graph
as data structure, as in this way the elaboration of the data dependencies
becomes easier and it allows to apply several graph strategies/analysis.

Thanks to the ASAP scheduling, can be obtained the fastest possible
unconstrained architecture. To obtain the slowest possible architecture,
the ALAP scheduling was developed, mainly used by more elaborated
scheduling algorithms.

Before choosing the best scheduling algorithms that are able to exploit
the main characteristic of a LiM architecture, among those described in
Chapter 5, it is better to describe the capabilities that the scheduler should
have.

During the design, in a LiM architecture the possibility to define the
memory size is important. So, the first resource constraint that can be
chosen in Octantis is the memory size. In addition the possibilities to
manage loop recurrences should be taken into account in order to exploit

62

6.2 – Octantis scheduling algorithm

the for loops written in C language.

The most promising scheduling algorithms for a LiM architecture pur-
pose were revealed:

• FDLS scheduling algorithm;

• FDLS used in combination with FDS scheduling algorithm;

• SDC based scheduling algorithm

They allow to constrain resource and timing. At the end, the choice fell
on the SDC based scheduling algorithm with some adjustments, as for
its extreme flexibility in the introduction of further constraints consistent
with continuous evolution of the LiM technology. Furthermore, it allows
to manage cross dependencies between different loop iterations reaching
very good quality of scheduling performances.

To summarize, the scheduling algorithms implemented in Octantis, and
that can be chosen by the user, are:

• ASAP;

• ALAP;

• SDC based with memory constraint: Fixed size;

• SDC based with memory constraint: Upper limit size;

• SDC based: Optimal -> performance + size;

SDC based scheduling algorithms allow to give in input as constraint the
memory size. The constraint memory size indicates the desired dimension
of the LiM. The three algorithms use this constraint in a different way
from each other, in order to obtain the best scheduling according to the
designer objectives. These three share the first part of the algorithm,
where first of all they compute the ASAP and ALAP by means the SDC
framework. Once they are obtained, the scheduling calculates the mobility

63

6 – The optimizations introduced on Octantis

for each operator, filling a list of ready operations. When all mobilities
are computed, they will be sorted with the lowest mobility on the top.
From this point, the three algorithms follow a different algorithm. In the
subsequent sections the three SDC based algorithms are described.

SDC based with memory constraint: fixed size

The scheduling algorithm “SDC based with memory constraint: Fixed
Size” allows to obtain a scheduling that uses as much as possible the
whole memory space, even if there are operators that are still available.
The scheduling start to reuse the operators just allocated when the mem-
ory is totally allocated. If the scheduling become infeasible, the scheduler
tries to extend the execution by adding a new constraint, and then it ex-
ecutes the scheduling process again from the beginning (ASAP, ALAP,
mobility list and etc...). The algorithm is depicted in Figure 6.1.

Figure 6.1. SDC based with memory constraint: Fixed size -
Scheduling algorithm

64

6.2 – Octantis scheduling algorithm

SDC based with memory constraint: upper limit size

The scheduling algorithm “SDC based with memory constraint: Upper
Limit Size” has a different approach, compared to the previous one. In
fact, before allocating a new hardware resource, it verifies if there are
some allocated free resources. In this way, this algorithm tries to use the
memory as little as possible. If there are not free resources, the scheduler
allocates a new memory row, until the memory is full. If it happens
that the scheduling is infeasible, the scheduler adds a new SDC constraint
in order to extend the execution time, and avoids to use more times an
operator in the same time step. The algorithm just described is shown in
Figure 6.2.

Figure 6.2. SDC based with memory constraint: Upper Limit size
- Scheduling algorithm

SDC based: Optimal -> performance plus size

The “SDC based: Optimal -> performance + size” generates a scheduling
where there is not the memory size constraint, but the objective consists
in obtaining the best possible scheduler in terms of area and performances.
The algorithm constantly check if there are free hardware operators to be
reused. The algorithm is depicted in Figure 6.3.

65

6 – The optimizations introduced on Octantis

Figure 6.3. SDC based: Optimal -> Performance + Size -
Scheduling algorithm

66

Chapter 7

Tests on the Scheduling
Algorithms

To prove the effectiveness of the proposed scheduling algorithms, sev-
eral tests have been conducted. In particular, it has been checked if the
output architectures correctly implemented the input algorithms. Some
algorithms have been developed for debug purpose in order to check the
correctness of data dependencies analysis, instead others have revealed
useful to have a benchmark with the previous version of Octantis, where
the capabilities of the new scheduling algorithms can be put into evidence.
The correctness of the obtained results has been verified by inspection.

7.1 Test algorithm 1 with data dependen-
cies

The first test algorithm with data dependencies (Listing 7.1) implements
an algorithm for debug purpose, where simple logic operators, with differ-
ent data dependencies are present. The related graph is pictured in Figure
7.1.

1 void algorithm1 ()
2 {

67

7 – Tests on the Scheduling Algorithms

3 // Allocation of the data
4 unsigned A, B, C, D, E;
5

6 C = A & B;
7 D = A | C;
8 E = C & D;
9 }

Listing 7.1. Test algorithm 1 with data dependencies

AND

B

0 0

1

A

C

OR

0

D

AND

1

E

0

10

0

Figure 7.1. Graph test algorithm 1

In Table 7.1 the results of all the newly implemented scheduling algo-
rithms are compared. The three SDC scheduling options are able to reuse
(reducing the size memory of 40% with respect to the results derived from
the ASAP) the memory rows allocated without any performance loss. In
particular, for this algorithm two LiM rows are enough: one that is en-
riched with AND gates and the other with OR gates. An additional simple
memory row is required to save the result.

68

7.2 – Test algorithm 2 with data dependencies

ASAP (ref) ALAP SDC – Fix:4 SDC – Fix:3 SDC – UP:5 SDC – Opt
#MemRows 5 5 4 3 (-40%) 3 (-40%) 3 (-40%)
#ClkSteps 4 4 4 4 (+0%) 4 (+0%) 4 (+0%)

Table 7.1. Test algorithm 1 results

7.2 Test algorithm 2 with data dependen-
cies

Also the second test algorithm Listed in 7.2, with different data depen-
dencies, has been considered for debug purposes, where the simple logic
operators are not fully constrained with null mobility. The related graph
is pictured in Figure 7.2.

1 void algorithm2 ()
2 {
3 // Allocation of the data
4 unsigned IN1 , IN2 , IN3 , IN4;
5 unsigned P1 , P2 , P3 , P4 , P5;
6

7 P1 = IN1 & IN2;
8 P2 = P1 & IN3;
9 P3 = P1 | IN4;

10 P4 = P2 ^ P3
11 P5 = ~ P2
12 }

Listing 7.2. Test algorithm 2 with data dependencies

ASAP (ref) ALAP SDC – Fix:8 SDC – Fix:6 SDC – UP:5 SDC – Opt
#MemRows 9 9 8 6 (-33%) 5 (-44%) 6 (-33%)
#ClkSteps 4 4 5 5 (+25%) 5 (+25%) 4 (+0%)

Table 7.2. Test algorithm 2 results

In this case, the three SDC scheduling options, compared to the ASAP
scheduling, are able to considerably reduce the memory size, paying a lit-
tle penalty as drawback in terms of the time required to execute the whole
algorithm. However, if the user want to obtain an architecture character-
ized by the maximum performance, the memory reduction is still high,

69

7 – Tests on the Scheduling Algorithms

AND

IN1

0 0

1

IN2

P1

AND

P2

XOR

1

P4

0

1

0

OR

0

1

P3

NOT

1

P5

0

IN3IN4

0

00

Figure 7.2. Graph test algorithm 2

approximately of −33%, compared to the results derived from the ASAP
scheduling. The output LiM architecture is made of both LiM memory
cells including all the necessary operators (AND, OR, XOR, NOT), to-
gether with a simple memory row.

7.3 XNOR Net for an approximated CNN

To compare the new scheduling algorithms with a benchmark, the tests
used to verify the first version of Octantis have been used again. We recall
that the first version of the tool allowed to compile the input algorithm
only according to the ASAP scheduling.

This test uses, as input algorithm the Listing 7.3, a circuit in XNOR
Net for an approximated CNN [5] as explained in [8].

70

7.4 – CLiMA CNN

1 // Code for the implementation of a XNor Net
2 void XNOR_Net (){
3

4 // Allocation of the weight
5 unsigned weight;
6 // Allocation of the matrix for the input data
7 unsigned dataMatrix [5];
8 // Allocation of the rows for the output results
9 unsigned outData [5];

10

11 // Execution of the Xor operations on the data
12 for(int i=0;i <5;++i)
13 outData [i] = ~ (weight ^ dataMatrix [i]);
14

15 }
Listing 7.3. XNOR Net input algorithm

ASAP (ref) ALAP SDC – Fix:6 SDC – UP:6 SDC – UP:5 SDC – Opt
#MemRows 11 11 6 6 (-45%) 5 (-55%) 10 (-9%)
#ClkSteps 2 2 3 3 (+50%) 4 (+100%) 2 (+0%)

Table 7.3. XNOR Net algorithm results

The results of the XNOR Net algorithm, reported in Table 7.3, shows
the flexibility of the different SDC scheduling applied. Comparing the
results to the ones obtained through the ASAP scheduling, a reduction
of 55% of the memory size can be achieved, at the cost of doubling the
required clock cycles to execute the algorithm. This means that the SDC
scheduling allows the designer to minimize the memory size if the timing
constraint is not the main issue; otherwise the designer can find a good
trade-off between the memory size and the execution time. In table 7.3, as
well as in the previous results, only the most relevant memory size cases
are shown.

7.4 CLiMA CNN

The benchmark Listed in 7.4 is a CNN algorithm, which implements a
Quantized Convolutional Neural Network exploiting the capabilities of a

71

7 – Tests on the Scheduling Algorithms

CLiMA architecture [4].
1 // Code for the implementation of the CNN algorithm
2 void CNN (){
3

4 // Allocation of the LiM rows for the pixels
5 int pixels [9];
6 // Allocation of the map for the input weights
7 int weights [9];
8 // Allocation of the vector for the partial results
9 int partial [9];

10 // Allocation of the row for the result of accumulation
11 int result =0;
12

13 // Definition of the shift operations and computation
14 //of the partial results
15 for(int i=0; i <9; ++i)
16 partial [i]= pixels[i] >> weights [i];
17

18 // Accumulation of the generated partial results
19 for(int j=0; j <9; ++j)
20 result += partial [i];
21

22 }
Listing 7.4. CLiMA CNN algorithm

ASAP (ref) ALAP SDC – Fix:34 SDC – Fix:13 SDC – UP:10 SDC – Opt
#MemRows 35 35 34 13 (-63%) 10 (-71%) 10 (-71%)
#ClkSteps 10 10 10 10 (+0%) 10 (+0%) 10 (+0%)

Table 7.4. CLiMA CNN algorithm results

The properties of the architectures generated by the different scheduling
algorithms are shown in Table 7.4. The results are very interesting because
the SDC based scheduling is able to save a huge part of the memory, even
up to 71% compared to the ASAP scheduling. For example, the SDC
– Optimal is able to use just 3 Shift LiM, 2 Adder LiM, and 5 simple
memory rows; while the ASAP scheduling based implementation of the
[4] algorithm needed 9 Shift LiM and 6 Adder LiM.

72

Chapter 8

Conclusion and future
works

Octantis is a tool with a lot of potential. It aids to design a Logic-in-
Memory architecture, avoiding design errors, speeding up the overall pro-
cess, and in addition reducing the effort to verify the generated architec-
ture.

Octantis is an HLS tool able to translate an input algorithm imple-
mented in C language into a digital circuit architecture. The focus of
this thesis was to improve the quality of the output architecture, through
scheduling algorithms with higher performances.

In particular, while the previous version of Octantis implemented only
an unconstrained ASAP scheduling algorithm, the new scheduling algo-
rithms studied and implemented in this work are based on the SDC math-
ematical framework, introducing the size memory as resource constraint.
In this way the LiM architecture generated, noticeably improved its per-
formance in terms of performance and area, and its memory size has been
reduced.

The overall reduction of the memory size up to 50% was achieved at
the worst case cost of doubling the clock steps necessary to complete the

73

8 – Conclusion and future works

execution. The possibility to reduce the memory size allows the designer
to find the best trade-off between the occupied area and the performance
of the digital circuit.

In future, the areas of improvement where Octantis could be benefit are
the following:

• introducing a wider customization from the configuration file, allowing
the designer to choose the scheduling algorithm;

• development of an alternative code generation module in order to have
the possibility to generate the VHDL/Verilog, useful on two fronts.
The first one is to have the description architecture in a standard
HDL, the second one is to consent using the commercial tools to test
in depth the output architecture.

Instead, improvements related to the scheduling phase could be:

• integrating in Octantis some technological libraries of the logic gates
containing information like the timing, the area, and the power. Al-
lowing to expand the scheduling by including timing constraints (i.e.
critical paths, frequency, execution time);

• improving the binding module in order to fully benefit the new schedul-
ing potential.

74

Nomenclature

ALAP As Late As Possible

AM Array Multiplier

API Application Programming Interface

ASAP As Soon As Possible

CiM Computation-in-Memory

CLiMA Configurable Logic-in-Memory Architecture

CMOS Complementary Metal-Oxide Semiconductor

CnM Computation-near-Memory

CPU Central Process Unit

CwM Computation-with-Memory

DExIMA Design Explorer for In Memory Architectures

DFG Data-Flow Graph

ESL Electronic System-Level

FDLS Force Directed List Scheduling

FDS Force Directed Scheduling

FSM Finite-State Machine

HDL Hardware Description Language

75

NOMENCLATURE

HLL High Level Language

HLS High-Level Synthesis

II Initiation Interval

IR Intermediate Representation

ISA Instruction Set Architecture

JIT Just-In-Time

LiM Logic-in-Memory

LS List Scheduling

LUT Lookup Table

MII Minimum Initiation Interval

OpenMP Open Milti-Processing

OS Operating System

RC Resource Constraint

RCA Ripple Carry Adder

recMII Minimum Recurrence Constrained Initiation Interval

resMII Resource Constrained Minimum Initiation Interval

RISC Reduced Instruction Set Computer

RTL Register Transfer Level

SDC System of Difference Constraint

SSA Static Single Assignment

TC Time Constraint

WAR Write After Read

WAW Write After Write

76

Bibliography

[1] M.D. Godfrey and D.F. Hendry. “The computer as von Neumann
planned it”. In: IEEE Annals of the History of Computing 15.1
(1993), pp. 11–21. doi: 10.1109/85.194088.

[2] R. Stanley Williams. “What’s Next? [The end of Moore’s law]”. In:
Computing in Science Engineering 19.2 (2017), pp. 7–13. doi: 10.
1109/MCSE.2017.31.

[3] Giulia Santoro. “Exploring New Computing Paradigms for Data-
Intensive Applications”. PhD thesis. Politecnico di Torino, 2019.
url: http://hdl.handle.net/11583/2737673.

[4] Giulia Santoro, Giovanna Turvani, and Mariagrazia Graziano. “New
Logic-In-Memory Paradigms: An Architectural and Technological
Perspective”. In: Micromachines 10.6 (2019). issn: 2072-666X. doi:
10.3390/mi10060368. url: https://www.mdpi.com/2072-666X/
10/6/368.

[5] Andrea Coluccio, Marco Vacca, and Giovanna Turvani. “Logic-in-
Memory Computation: Is It Worth It? A Binary Neural Network
Case Study”. In: Journal of Low Power Electronics and Applications
10.1 (2020). issn: 2079-9268. doi: 10.3390/jlpea10010007. url:
https://www.mdpi.com/2079-9268/10/1/7.

[6] Milena Andrighetti et al. “Data Processing and Information Classi-
fication—An In-Memory Approach”. In: Sensors 20.6 (2020). issn:
1424-8220. doi: 10.3390/s20061681. url: https://www.mdpi.
com/1424-8220/20/6/1681.

77

https://doi.org/10.1109/85.194088
https://doi.org/10.1109/MCSE.2017.31
https://doi.org/10.1109/MCSE.2017.31
http://hdl.handle.net/11583/2737673
https://doi.org/10.3390/mi10060368
https://www.mdpi.com/2072-666X/10/6/368
https://www.mdpi.com/2072-666X/10/6/368
https://doi.org/10.3390/jlpea10010007
https://www.mdpi.com/2079-9268/10/1/7
https://doi.org/10.3390/s20061681
https://www.mdpi.com/1424-8220/20/6/1681
https://www.mdpi.com/1424-8220/20/6/1681

BIBLIOGRAPHY

[7] Loris Mendola. “DExIMA A synthesis tool and performance esti-
mator for Logic-in-Memory architectures”. MA thesis. Politecnico
di Torino, 2021. url: https://webthesis.biblio.polito.it/
17852/.

[8] A. Marchesin. “Octantis - A High-Level Explorer for Logic-in-Memory
architectures”. MA thesis. Politecnico di Torino, 2020. url: http:
//webthesis.biblio.polito.it/15852/.

[9] Alfred V Aho et al. Compilers: Principles, techniques, and tools
second edition. Pearson Education Addison Wesly New York, 2007.
isbn: 0321486811.

[10] Wikipedia. Compiler. url: https://en.wikipedia.org/wiki/
Compiler.

[11] Yao-Wen Cheng Wang Laung-Terng Chang and Kwang-Ting. Elec-
tronic Design Automation - Synthesis, Verification, and Test. Else-
vier, 2009. isbn: 978-0-12-374364-0.

[12] Philippe Coussy et al. “An Introduction to High-Level Synthesis”.
In: IEEE Design Test of Computers 26.4 (2009), pp. 8–17. doi: 10.
1109/MDT.2009.69.

[13] Chris Lattner. “LLVM: An Infrastructure for Multi-Stage Optimiza-
tion”. MA thesis. Urbana, IL: Computer Science Dept., University
of Illinois at Urbana-Champaign, Dec. 2002. url: https://llvm.
org/pubs/2002-12-LattnerMSThesis.html.

[14] LLVM Language Reference Manual. LLVM Documentation. url:
https://llvm.org/docs/LangRef.html.

[15] Clang Compiler User’s Manual. Clang Documentation. url: https:
//clang.llvm.org/docs/UsersManual.html.

[16] LLVM’s Analysis and Transform Passes. LLVM Documentation. url:
https://llvm.org/docs/Passes.html.

[17] The LLVM Target-Independent Code Generator. LLVM Documen-
tation. url: https://llvm.org/docs/CodeGenerator.html.

[18] Razvan Nane et al. “A Survey and Evaluation of FPGA High-Level
Synthesis Tools”. In: IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 35.10 (2016), pp. 1591–1604. doi:
10.1109/TCAD.2015.2513673.

78

https://webthesis.biblio.polito.it/17852/
https://webthesis.biblio.polito.it/17852/
http://webthesis.biblio.polito.it/15852/
http://webthesis.biblio.polito.it/15852/
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Compiler
https://doi.org/10.1109/MDT.2009.69
https://doi.org/10.1109/MDT.2009.69
https://llvm.org/pubs/2002-12-LattnerMSThesis.html
https://llvm.org/pubs/2002-12-LattnerMSThesis.html
https://llvm.org/docs/LangRef.html
https://clang.llvm.org/docs/UsersManual.html
https://clang.llvm.org/docs/UsersManual.html
https://llvm.org/docs/Passes.html
https://llvm.org/docs/CodeGenerator.html
https://doi.org/10.1109/TCAD.2015.2513673

BIBLIOGRAPHY

[19] S. GOVINDARAJAN. “Scheduling Algorithms For High-Level Syn-
thesis”. In: Technical paper (1995). url: https://ci.nii.ac.jp/
naid/10014961176/en/.

[20] P.G. Paulin and J.P. Knight. “Algorithms for high-level synthesis”.
In: vol. 6. 6. 1989, pp. 18–31. doi: 10.1109/54.41671.

[21] P. G. Paulin and J. P. Knight. “Scheduling and Binding Algorithms
for High-Level Synthesis”. In: Proceedings of the 26th ACM/IEEE
Design Automation Conference. DAC ’89. Las Vegas, Nevada, USA:
Association for Computing Machinery, 1989, pp. 1–6. isbn: 0897913108.
doi: 10.1145/74382.74383. url: https://doi.org/10.1145/
74382.74383.

[22] J. Cong and Zhiru Zhang. “An efficient and versatile scheduling algo-
rithm based on SDC formulation”. In: 2006 43rd ACM/IEEE Design
Automation Conference. 2006, pp. 433–438. doi: 10.1145/1146909.
1147025.

[23] Daniel D Gajski et al. Embedded system design: modeling, synthesis
and verification. Springer Science & Business Media, 2009.

[24] Petru Eles, Krzysztof Kuchcinski, and Zebo Peng. System synthesis
with VHDL. Springer Science & Business Media, 2013.

[25] R.A. Bergamaschi et al. “Control-flow versus data-flow-based schedul-
ing: combining both approaches in an adaptive scheduling system”.
In: IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems 5.1 (1997), pp. 82–100. doi: 10.1109/92.555989.

[26] B. Ramakrishna Rau. “Iterative modulo Scheduling: An Algorithm
for Software Pipelining Loops”. In: Proceedings of the 27th Annual
International Symposium on Microarchitecture. MICRO 27. San Jose,
California, USA: Association for Computing Machinery, 1994, pp. 63–
74. isbn: 0897917073. doi: 10.1145/192724.192731. url: https:
//doi.org/10.1145/192724.192731.

[27] S. Katkoori and R. Vemuri. “Scheduling for low power under resource
and latency constraints”. In: 2000 IEEE International Symposium
on Circuits and Systems (ISCAS). Vol. 2. 2000, 53–56 vol.2. doi:
10.1109/ISCAS.2000.856256.

79

https://ci.nii.ac.jp/naid/10014961176/en/
https://ci.nii.ac.jp/naid/10014961176/en/
https://doi.org/10.1109/54.41671
https://doi.org/10.1145/74382.74383
https://doi.org/10.1145/74382.74383
https://doi.org/10.1145/74382.74383
https://doi.org/10.1145/1146909.1147025
https://doi.org/10.1145/1146909.1147025
https://doi.org/10.1109/92.555989
https://doi.org/10.1145/192724.192731
https://doi.org/10.1145/192724.192731
https://doi.org/10.1145/192724.192731
https://doi.org/10.1109/ISCAS.2000.856256

BIBLIOGRAPHY

[28] S. Amellal and B. Kaminska. “Scheduling of a control data flow
graph”. In: 1993 IEEE International Symposium on Circuits and
Systems. 1993, 1666–1669 vol.3. doi: 10.1109/ISCAS.1993.394061.

[29] Stephanie Soldavini, Sonia López Alarcón, and Marcin Łukowiak.
“Using Reduced Graphs for Efficient HLS Scheduling”. In: 2020 IEEE
International Symposium on Circuits and Systems (ISCAS). 2020,
pp. 1–5. doi: 10.1109/ISCAS45731.2020.9181274.

[30] G. Ramalingam et al. “Solving Systems of Difference Constraints
Incrementally”. In: Algorithmica 23.3 (Mar. 1999), pp. 261–275. issn:
1432-0541. doi: 10.1007/PL00009261. url: https://doi.org/10.
1007/PL00009261.

[31] LP Solve. url: http://lpsolve.sourceforge.net/5.5/.
[32] LP Solve API Reference. url: http://lpsolve.sourceforge.net/

5.5/lp_solveAPIreference.htm.
[33] Zhiru Zhang and Bin Liu. “SDC-based modulo scheduling for pipeline

synthesis”. In: 2013 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). 2013, pp. 211–218. doi: 10.1109/ICCAD.
2013.6691121.

[34] Andrew Canis, Stephen D. Brown, and Jason H. Anderson. “Modulo
SDC scheduling with recurrence minimization in high-level synthe-
sis”. In: 2014 24th International Conference on Field Programmable
Logic and Applications (FPL). 2014, pp. 1–8. doi: 10.1109/FPL.
2014.6927490.

[35] B. Ramakrishna Rau. “Iterative modulo Scheduling: An Algorithm
for Software Pipelining Loops”. In: Proceedings of the 27th Annual
International Symposium on Microarchitecture. MICRO 27. San Jose,
California, USA: Association for Computing Machinery, 1994, pp. 63–
74. isbn: 0897917073. doi: 10.1145/192724.192731. url: https:
//doi.org/10.1145/192724.192731.

80

https://doi.org/10.1109/ISCAS.1993.394061
https://doi.org/10.1109/ISCAS45731.2020.9181274
https://doi.org/10.1007/PL00009261
https://doi.org/10.1007/PL00009261
https://doi.org/10.1007/PL00009261
http://lpsolve.sourceforge.net/5.5/
http://lpsolve.sourceforge.net/5.5/lp_solveAPIreference.htm
http://lpsolve.sourceforge.net/5.5/lp_solveAPIreference.htm
https://doi.org/10.1109/ICCAD.2013.6691121
https://doi.org/10.1109/ICCAD.2013.6691121
https://doi.org/10.1109/FPL.2014.6927490
https://doi.org/10.1109/FPL.2014.6927490
https://doi.org/10.1145/192724.192731
https://doi.org/10.1145/192724.192731
https://doi.org/10.1145/192724.192731

	List of Tables
	List of Figures
	Introduction
	In-Memory computation
	Logic-in-Memory
	CLiMA architecture

	LiM exploration tools

	Compiler
	Introduction
	Compiler's structure
	Conclusion
	Compiler classification

	High-Level Synthesis
	High-Level Synthesis' structure
	Octantis
	LLVM compiler infrastructure
	Octantis' main classes

	High-Level Synthesis optimizations
	Introduction
	Loop unrolling with cross iteration dependency
	Tree height reduction
	Folding – Time multiplexing
	If-Conversion
	Multi-threading

	Scheduling algorithms
	Introduction
	Basic scheduling algorithms
	As Soon As Possible scheduling algorithm
	As Late As Possible scheduling algorithm

	Resource Constrained scheduling slgorithms
	List Scheduling algorithm

	Time Constrained scheduling algo-rithms
	Force Directed Scheduling

	Miscellaneous scheduling algorithms
	Force Directed List Scheduling algorithm
	System of Difference Constraint based scheduling algorithm
	Modulo SDC based scheduling algorithm

	The optimizations introduced on Octantis
	Octantis code generator
	Octantis scheduling algorithm

	Tests on the Scheduling Algorithms
	Test algorithm 1 with data dependencies
	Test algorithm 2 with data dependencies
	XNOR Net for an approximated CNN
	CLiMA CNN

	Conclusion and future works
	Nomenclature
	Bibliography

