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Summary

Nowadays, the old technological drivers underpinning the unceasing enhancement of
processing systems performance seem to be no longer sufficient to support the usual
growth exponential trend. One of the main issues is linked to the standard Von-
Neumann architectural organisation, based on a clear division between the CPU
and the memory. This layout implies a constant data stream between CPU and
data memory that, in turn, are affected by a significant performance gap. Then, the
resulting massive number of memory accesses entails wastes of both time and power.
This issue, known as memory wall, is even exacerbated in the lately demanded data-
intensive applications, leading to prohibitive energy expenses.

This thesis work presents the design of a novel architectural model based on an
alternative computing approach, i.e. the Logic-in-Memory (LiM). This paradigm
leverages the integration of processing elements inside the memory to reduce both
execution times and energy consumptions, entrusting parts of the required elabora-
tion directly to the memory itself. In particular, the LiM approach allows cutting
the number of memory accesses and the energy involved in the data travel between
memory and CPU and exploiting the total memory bandwidth to elaborate in par-
allel all the stored data. However, the already existing systems that embed the
LiM processing kind are customised for one specific application; therefore, new LiM
structures must be designed from scratch for each new demanded application.
Thus, during this thesis development, an efficient model to speed up the design
of LiM solutions was engineered by taking a cue from the already existing Pro-
grammable LiM (PLiM) template proposal developed at the Polytechnic University
of Turin. The PLiM suggests a pre-defined skeleton for a LiM system, which is easily
adaptable by the hardware designer to the specific tasks at hand. The basic struc-
ture comprises the LiM Array, i.e. the memory array composed of a sequence of word
locations, called Smart Rows, integrating both storing and computing elements, and
a control part handling the data processing inside the array. Furthermore, the Smart
Rows structure can be quickly modified by inserting custom blocks to tailor the ba-
sic LiM structure to the desired algorithm. Then, all the Smart Rows are driven by
the same control signals, so the PLiM devices work following the Single Instruction
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Multiple Data (SIMD) computing model, particularly suitable for the execution of
data-intensive algorithms.

This thesis study started with an analysis of the investigated PLiM model good-
ness in generating efficient LiM devices. Five different benchmarks, i.e. K Nearest
Neighbour (K-NN), Matrix-Vector Multiplication (MVM), K-means, mean and vari-
ance (µ&σ2), Discrete Fourier Transform (DFT), were chosen as target algorithms
and mapped onto the retrieved PLiM systems customised for each of them. The per-
formance achieved by the five devices pointed out the model suitability for producing
LiM systems capable of efficiently running highly parallel tasks while highlighting
the PLiM devices inadequacy for executing the more sequential procedures.

Hence, during this thesis, an improved architectural model, returning LiM systems
characterised by high programming generality and processing efficiency even for se-
quential tasks, was conceived and referred to as GP-LiMA (General Purpose Logic-
in-Memory Architecture). The GP-LiMA model was set up along the lines of the
PLiM, as shown in Figure 1. However, it moves away from the PLiM paradigm,
providing a grid-like arrangement of the Smart Blocks that further accommodates
a dense routing network to implement complex data exchanges. Moreover, the sin-
gle Smart Block is supplied with a default structure that, coupled with the flexible
interconnections, speeds up the processing times and maximises the GP-LiMA pro-
gramming generality, further easing the hardware designer’s task. Then, the LiM
device, generated from this model, can be inserted into a standard system, inter-
acting with the CPU either as data memory or as a Multiple-SIMD co-processor
enabling different Smart Blocks subsets to run different instructions simultaneously.

Finally, to verify the achieved performance and the programming generality, differ-
ent comparisons were made between a specific synthesis of the GP-LiMA structure
and the PLiM models for all the previously mentioned benchmarks. In particular,
the GP-LiMA Unit analysed was implemented through the 45 nm technology node.
It included 1344 bytes of memory addressable space and could elaborate up to 512
16-bits data in parallel, working at a maximum frequency of 232.55 MHz. Then, for
each of the mapped benchmarks, the results in terms of execution time and energy
consumptions were compared on a per-sample basis with the ones accomplished by
the customised PLiM devices. The GP-LiMA reached almost the same performance
as the customised PLiM architectures for the more parallel algorithms (K-NN and
K-means). In contrast, for the algorithms involving sequential procedures (µ&σ2,
DFT), the GP-LiMA showed an outstanding reduction of the execution times of
about 67% and 37% and energy savings of about 80% and 63%, respectively.
Ultimately, to highlight the benefits brought by the insertion of the GP-LiMA
paradigm inside a standard system, the energy consumed by the GP-LiMA was
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Figure 1: a) High-level view of the GP-LiMA Unit connected to the CPU. b) Insight
of the Smart Block structure.

compared with the one spent by a classical RISC-V architecture while performing
the memory accesses to the connected memory hierarchy. A clear gap between
the two systems stood out from results comparison on the same five benchmarks.
Running both systems with the same clock frequency (232.55 MHz), the GP-LiMA
showed massive energy savings with respect to the classical RISC-V memory hi-
erarchy ranging from about 49% in the worst case (DFT) to 91% in the best case
(K-means). Whereas, running the standard RISC-V architecture at a frequency four
times higher than the GP-LiMA one (1 GHz vs 232.55 GHz), the results still pointed
out competitive values concerning the GP-LiMA energy expenses, demonstrating to
win over the RISC-V memory hierarchy for some benchmarks. For algorithms that
can be easily parallelised (K-means), the GP-LiMA showed energy savings of 76%,
while for applications involving sequential operations that can be performed in a
reduction tree-like fashion (µ&σ2), it provided energy savings of about 52%.
It follows that the insertion inside a standard system of the LiM co-processor, gen-
erated from the GP-LiMA model, can successfully cope with the memory wall issue.
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Chapter 1

Introduction

For some years now, we are witnessing the sharp growth of a new field of applications

based on machine learning algorithms. This field is meant to become more and more

pervasive in our daily life. Its main feature lies in the massive amount of data to be

processed, ideally in parallel, to complete a single task. However, this poses a real

challenge for the hardware that is now more than ever required to support a heavy

data crunching rate. On the other side, applications like data search algorithms,

data encryption, or image compression could benefit from making the computer

architectures able to deal with this obstacle. Therefore, in the last decades, many

efforts have been spent to empower the architectures, integrating more and more

transistors into a single chip. Nevertheless, soon this solution is going to be no

longer sufficient to pursue this goal, as we are going toward the expected Moore’s

law ending.

In 2017, Thomas N. Theis and H.-S. Philip Wong came up with a careful discus-

sion [1] highlighting how, over the years, technological developments in Integrated

Circuits (ICs) design and manufacturing have managed to keep up with the far-

sighted Moore’s law (1965) [2]. This law stated that, for the same minimum cost

per component, the integration complexity would have increased by a factor of two

per year, resulting in an exponential increase of performance and a decrease in die

cost and dimension. Unfortunately, they also concluded that the same technolog-

ical drivers, which have underpinned this law up to now, will be no more valid to

prevent this trend from approaching a plateau, so alternative solutions will need to
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1 – Introduction

be explored.

To better understand why old technological drivers can no longer be exploited and

which are the new proposals the industry is going toward, it is helpful to recap the

evolution of the techniques implemented over the years.

The first mechanism to increase the integration density of silicon wafers was a

barely geometrical scaling protocol. It consisted of reducing the physical dimension

of the devices through the shrinking of the CMOS channel length. The gate length

reduction did not translate into a slowdown in systems performance but rather to

their improvement. The channel length shrinking involved an increase of the drain

current and a lowered gate capacitance, leading to a heavy drop of the CMOS

charging times with an exponential enhancement of the clock frequency and a heavy

reduction of circuits dissipated power.

On the other hand, the decrease of the device dimensions alone gave birth to

many issues, mainly due to a higher electric field along the channel, caused by a

non-scaled voltage drop on a smaller region. Examples are a lowered lifetime and

reliability due to breakdown occurrences and an increase in the dissipated power.

Therefore, the scaling procedure required to act, at the same time, on another factor

to compensate for the electric field growth, namely the operating voltage. Thus, the

actual scaling was performed following some predefined rules, named after Dennard,

who was one of the first researchers to mathematically claim how to limit the short

channel effects [3]. However, this way could not be pursued beyond a given bound.

The gate oxide thickness reduction coupled with the scaling of the voltage swing

could not be carried out indefinitely, since the former would have lead to excessive

exponential growth of the gate leakage current (due to tunneling effects), while the

latter would have resulted in either the switching speed slowdown or the rise of the

static power value [1].

Nevertheless, due to the unceasing technological research, the exponential trends

regarding the integration density and the device switching speed continued to be

further sustained by innovating both material and device structure. Howbeit, at

that point, the operating voltage had almost reached its scaling limit, so, to avoid

running into an unsustainable power and heat generation, the clock frequency was

prevented from keeping its exponential climbing. In order to overcome this obstacle
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1 – Introduction

in the performance escalation trend, the industry started to focus on architectural

solutions, taking advantage of the new achievements in lithography and integra-

tion capabilities. More cores started to be embedded in the same chip, aiming at

improving the overall performance by enhancing the throughput rather than the

single-core clock frequency. In this way, the architecture parallelism was exploited

to speed up the algorithms’ execution, splitting the workload onto multiple cores,

active simultaneously.

Although it allowed the process scaling economics to still hold for a while, the

multicore scaling led to increasingly power-constrained systems, to the point that,

today, the energy consumption of systems is doomed to keep worsening from one

technology generation to the next. This phenomenon is directly linked to the so-

called dark silicon issue, i.e. the amount of transistors under-utilization caused by

the non-ideal scaling [4]. On the one hand, most of the algorithms fail to fully exploit

the availability of hundreds, or even thousands, of cores. On the other hand, even if

some algorithms could ideally use the entire system, the dynamic and static power

consumption together with the related heat generation, caused by the enabling of

all the embedded devices at the same time, would be prohibitive, at least at full

frequency. Thus, only a subset of the multicore system can be safely switched on

at a given time [5]. Besides, this requires developing a set of methods to enable

only the parts needed for the algorithm execution efficiently. Moreover, the kind

of application and the required performance level must be taken into account while

carefully designing these procedures. Alternatively, to tackle this issue, also referred

to as utilization wall, other solutions exploit the die area availability to customize a

portion of the system for the applications at hand, to reduce the energy consumption

when the chip must be underclocked [6].

Despite these attempts and the improvements in the integration density and

amount of memory embedded in a die, since 2005, the performance gain across tech-

nology generations has muted, pointing out a slowdown in the systems performance

exponential trend [1]. The cause is traceable to both architectural and technological

aspects concerning the physical structure and the usage of the memory inside a sys-

tem. Nowadays, the most diffused system organization is a more complex adaption

of the Von Neumann paradigm, which is based on a clear division between process-

ing and storage elements [7]. On one side, there is the CPU, which is in charge of
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1 – Introduction

executing all the computations involved in a given application, while, on the other

side, there is the memory, which holds both input and output data that the CPU has

to elaborate. So, this structure relies on a heavy data flow connecting the memory

to the CPU and vice versa, implemented through a bus system. This data exchange

is the source of another performance-limiting issue, known as the memory wall [8].

Even though memories have undergone the scaling process over the years, increasing

their speed and storage capacitance, their performance improvement rate has failed

in keeping up the same pace of the microprocessors enhancements. It follows that

the CPU receives data at a rate much lower than the one at which it can run. It

means that all the efforts spent to empower the systems are partially wasted because

of the limited bandwidth of the memory (Von Neumann bottleneck).

To deal with this bottleneck, one of the leading solutions in modern systems

is the memory hierarchy implementation [9]. Since having larger memories means

slower data access time, instead of placing a single huge and slow memory that in-

terfaces with the CPU, data are distributed over a chain of different sized memories

(physically organized in progressive order: the smallest and fastest memory close to

the CPU, while the biggest one on the opposite side). During the algorithm execu-

tion, they are dynamically copied from one memory into another, according to their

access frequency and their relative physical position in the main memory. So, the

attempt is to have all the data that the CPU needs at a time stored in the smallest

memory to minimize the data access time as much as possible. However, it is not

always possible to meet this condition; that is the reason why the memory wall has

not been overcome yet [8]. Moreover, especially for the latest data-intensive appli-

cations, the miss rate (the rate at which the CPU needs to access data that are not

stored in the closest memory) can be very high. This because they require to process

a considerable amount of data (high data transmission bandwidth needed), which,

in addition, are typically distributed over an ample memory address space. It follows

that memory latency heavily affects the overall system performance. Furthermore,

this data exchange also negatively impacts power consumption, as each memory

access involves an energy expense. This energy changes according to the memory

size (grows as its square root), so the high miss rate, proper of heavy data crunching

applications, makes the memory access the main contributor for the dynamic power

consumption.
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Hence, to minimize the power expense, the memory at the lower level (the main

one, typically a DRAM, Dynamically Random Access Memory) should be kept, as

much as possible, in the idle state (issue referred to as dark memory [10]), so several

techniques regarding the algorithmic optimization, aiming to reduce the DRAM

accesses, are being developed. While, from the technology side, another proposed

item is the Hybrid Memory Cube (HMC) [11], [12]. It consists of the memory

bandwidth enlargement for the data transmission and the reduction of memory

access energy, carried out thanks to the design of a 3D DRAM memory. This

memory is characterized by a stack of heterogeneous die layers, each optimized for

speed and concurrency. The storage layers are interleaved with application-specific

logic dies in charge of efficiently handling the DRAM functionality. The 3D structure

allows having a memory with a large storage capacity coupled with a denser network

of interconnections, which helps in reducing the distance signals travel, resulting in

dropped memory access time (memory latency) and lowered energy consumption.

Besides, the compact nature of this memory suggests bringing as much memory as

possible close where the data manipulation occurs, for approaching even more low

power and high bandwidth systems.

However, again this approach is not conclusive to counteract Moore’s trend slow-

ing as a stand-alone solution, but, following this path, the last glimmer of light seems

marked by the strict integration and interaction between advancements in both tech-

nological and architectural aspects. Concerning the former, today, research is look-

ing for alternative technologies based on different operating principles which do not

suffer from the voltage scaling limit and allow, at the same time, the monolithic 3D

integration of processing and memory elements [1]. Nevertheless, this integration

implicitly requires the design of new architectural paradigms able, among others, to

effectively exploit the merging of computing and storage items.

In here, only the architectural side will be investigated, particularly deepening so-

lutions as the Processing-in-Memory (PiM) approach and the Coarse Grained Re-

configurable Architectures (CGRAs) (see chapter 2). Both ideas move away from

the classical Von Neumann organization, heading for a more distributed and het-

erogeneous way of performing the computations inside the new system, which can

count on various processing blocks of different nature, each fitting a set of functions
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marked by some well-known features.

CGRAs represent a more conservative way to tackle the performance scaling

issue. They fall in the middle way between general-purpose and Application Specific

Integrated Circuit (ASIC) solutions and do not require a complete revolution in

the system technology and organization. In general, there are different kinds of

CGRAs. However, most of them are typically exploited by inserting them in a

more complex system and used as hardware accelerators. They are dedicated to

executing the heaviest portions of an application, characterized by the frequent

repetition of the same set of complex operations applied on a large dataset. Most

of them are organized in regular structures, made up of different small blocks or

several instances of the same basic block, which can exchange data throughout an

interconnections network, whose properties vary according to the actual CGRA. The

elementary blocks can perform a variable set of functions and can run in parallel on

different data. From the systems performance enhancement perspective, the CGRA

winning weapon lies in the reconfigurability attribute of the single blocks (also called

Reconfigurable Cells) and interconnections. Thanks to the embedded statically or

dynamically configurable elements, it is possible to customize the hardware from

time to time, according to the application that the whole system has to execute.

In this way, the more specific time and power-consuming functions can be mapped

and run by the CGRA block, which can speed up their processing by relying on

the hardware implementation of these tasks. Then, further acceleration can be

obtained if, in parallel, the microprocessor in the system is forced to take care of the

simpler sequential algorithm parts for which it has been designed and optimized.

Acting in this direction, the execution time for a given application results lowered,

leading to a reduced total energy expense. Thus, up to some extent, to achieve

better performance, it becomes not strictly necessary to keep increasing the number

of transistors per unit area (which, by the way, would lead the power density to

explode), but it is sufficient to spatially reprogram the silicon to fit the requested

elaboration in time [13].

As opposed to CGRAs, Processing-in-Memory solutions strongly lean on the pro-

jected technology advancements in terms of convergence between logic and storage.

PiM represents one of the main themes research and industry have been focusing on

over the years; therefore, in literature, there is plenty of material and declinations
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of this concept (more detailed classifications are drafted in chapter 2). However, the

common ground lies in getting away from the CPU-centric computational paradigm

to move towards architectures where the boundary between memory and processing

becomes blurred. By either bringing the memory very close to the computational

logic or directly implementing a memory block provided with processing capabili-

ties, PiM systems aim at reducing the latency due to the data exchange between

the storage and the computing blocks and the related energy expense. Regarding

the more ”extreme” PiM approaches, which see simple logic functions performed

directly inside the memory cells, the goal is to bypass the data transmission. Data

do not need to be moved from the memory to the processing unit, which results

in the full exploitation of the internal memory bandwidth and the heavy drop of

latency and energy expense contributions, given by the memory accesses and the

data travel along with large distances [14]. Additionally, all the memory cells would

work simultaneously, processing in parallel a massive array of data, which could pro-

vide further improvements in terms of total algorithms execution time, especially

for data-centric applications [15].

Yet, all of this could be gained at the expense of generality loss, on the contrary of

well-established programming models (mainly developed for sequential algorithms)

which aim at abstracting the instruction set from the hardware, simplifying the soft-

ware designer task, the backward code compatibility, and so on [1]. For this reason,

it is important to underline that the final goal is not to replace the old frameworks

with the new proposals completely but to integrate both items into the same system

and make them interact. In this way, the advantages coming from both worlds could

be exploited to achieve the best performance ever, hoping for the birth of a new era

beyond Moore’s law one.

This thesis focuses on the design of a new architecture, called General Purpose

Logic-in-Memory Architecture (GP-LiMA), which embeds and combines both the

strengths of the mentioned approaches. The proposed system core is based on a

set of programmable elementary blocks (called Smart Blocks), organized in a mesh-

like fashion made of both processing and storage elements. So, following the PiM

paradigm, the GP-LiMA behaves as a smart memory array capable of elaborating

the data it holds, each time choosing the operation within a set defined by the
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processing elements included in the single blocks. However, these instructions can

be as complex as the ones performed by the Reconfigurable Cells. Then, similarly

to CGRAs, part of these processing elements can be reconfigured at will, e.g. each

Smart Block can be provided with a Look-Up-Table (LUT), whose content can be

statically configured before the memory is started in the processing mode. More-

over, always taking a cue from the CGRAs structures, the mesh of blocks (called

GP-LiMA Matrix) is filled with various programmable interconnections, aiming to

enhance the data exchange inside the smart memory. The interconnections and the

Smart Block reconfigurability result in a more flexible and finely customizable dat-

apath. Indeed, the achieved flexibility makes the GP-LiMA instructions set even

wider than the one usually affordable by common CGRAs, making it suitable to be

used as an actual co-processor. Hence, the ultimate idea is to insert the GP-LiMA

in a standard CPU-centric system environment, where the CPU can interact with

the GP-LiMA by accessing it as a standard data memory or enabling it to run in

the processing mode. An example of the general system behaviour could be the

following: when the whole system is required to execute a heavy data crunching

application, at the beginning, the GP-LiMA content is initialized with the data to

be massively processed, then the CPU starts the algorithm and entrusts the heav-

iest parallel parts of the code to the GP-LiMA, while it keeps running the simpler

and conditional parts. For this reason, the GP-LiMA Matrix is supported by a

control part which enables the architecture to work in the processing mode, run-

ning a real Multiple-Single Instruction Multiple Data (M-SIMD) sub-program by

itself without the need for intervention from the CPU or other control blocks. Con-

cerning the benefits the GP-LiMA usage aims to provide, they are the same as the

PiM solutions, i.e./ reduced memory accesses and data traffic between CPU and

memory, meaning lower total energy consumption and execution time, but without

losing in programming generality, thanks to the reconfigurability attribute and the

co-processor functional mode. Furthermore, the GP-LiMA stands out just for the

expected massive drop of the algorithm execution time that is carried out by relying

on multiple mechanisms: the straightforward Logic-in-Memory attribute almost ze-

ros the latency, due to the memory access time and the long-distance signals travel,

and allows to exploit the full data memory bandwidth for the heavy parallelization
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of data-intensive computational tasks (M-SIMD mode); then, the programmabil-

ity and reconfigurability features speed up the more complex functions, by making

feasible their hardware implementation, and cut down the number of instructions

needed for the algorithms execution; at last, the further processing parallelism due

to the tasks split between CPU and GP-LiMA adds up, still curtailing the total

processing time. Moreover, as a consequence of the decreased algorithm execution

latency, by using the GP-LiMA, even a further cutback in the total energy expense

could be reached.

Summing up, the idea behind this thesis is to design an M-SIMD co-processor based

on a Logic-in-Memory array, which is characterized by semi-reconfigurable macro-

cells that, in turn, are fully interconnected to guarantee a dense exchange of data and

the highest possible degree of programming flexibility, with the purpose of achieving

a massive reduction in the algorithms execution time and energy consumption.

Here, the thesis is organized according to the following outline:

� Chapter 2 - State of the Art is divided into two macro sections dedicated

to the taxonomy of CGRAs and PiM solutions, respectively. Both start with a

brief explanation of the general concept and then list the main developments

present in literature, dwelling on the more meaningful ones in view of the

new proposed architecture. The advantages and disadvantages linked to each

approach are highlighted to give a roadmap on the main points the GP-LiMA

focuses on to reach the final goal.

� Chapter 3 - Programmable LiM details an already existing architecture

(called PLiM), belonging to the PiM world, which represents the starting point

for the development of the actual GP-LiMA paradigm. At the beginning, the

PLiM general structure is described (referring to the original model), deepen-

ing all the composing blocks and the related aims, strengths, and weaknesses,

which were taken into account during the design of the GP-LiMA. Then, it

follows a sections showing how this architecture was handled at the beginning

of this thesis work so as to implement a set of benchmarks used to evaluate

the PLiM behaviour and the linked performance accomplished. This part will

9
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be addressed at the thesis work end while dealing with the GP-LiMA perfor-

mance and used as a comparison term to estimate the goodness of the achieved

results.

� Chapter 4 - GP-LiMA Paradigm shows the idea behind the GP-LiMA

developed during this thesis, starting from the environment in which it is sup-

posed to work in, then explaining the LiM Matrix composition, together with

the Smart Block structure, and deepening the programmable interconnections

and their possible implementations, taking into account the timing and power

constraints issue. The chapter ends by dealing with the control part and ex-

plaining the provided Instruction Set Architecture (ISA) and how the whole

architecture can be handled in the different functional modes (M-SIMD or

SIMD).

� Chapter 5 - GP-LiMA Performance focuses on a specific implementation

of the GP-LiMA paradigm in order to retrieve a synthesized structure on

which an estimation of the performance can be carried out. Here, all the

techniques applied to obtain an optimized netlist both after the synthesis and

the place&route are discussed. Then, the performances reached by the are

reported and compared with the ones accomplished by the PLiM architecture

on the same benchmarks, as already anticipated.

� Chapter 6 - Conclusions summarizes the main features of the GP-LiMA

and how it succeeds in reaching the target goals. At the very end, some open

questions are proposed that may lead to future enhancements for the designed

architecture.

10



Chapter 2

State of the Art

This chapter focuses on the proposals existing in literature to cope with the memory

wall issue. It deepens two macro architectural solutions from which this thesis work

lets inspiration, such as CGRA and PiM.

Both of them aim at reducing the execution time and the energy expense but tackling

different aspects of the standard Von-Neumann paradigm. The former introduces a

coarse level of hardware parallelism in a common CPU-centred system by inserting

a re-configurable block working alongside the CPU, while the latter directly heads

the memory issue by changing the role and functionality of the memory itself. This

last idea relies on a new kind of memory embedding processing capabilities that,

in the first place, allows to strongly reduce the number of memory accesses (main

cause for dynamic power consumption and latency) and provides a deeper level of

hardware parallelism. Both of these achievements contribute to strongly lower the

overall algorithm execution time, which, in turn, leads to further energy savings

besides the ones gained from the drop in memory accesses number.

Thus, this chapter revolves around the specific features of both CGRA and PiM

architecture, so laying the first foundations for understanding the GP-LiMA frame-

work.

The discussion is organized as follows:

� Section 2.1 - Reconfigurable Architectures deepens the Reconfigurable

Architectures principle, starting by briefly overviewing Field Programmable

11
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Gate Arrays (FPGA) and then proceeding by showing some examples of dif-

ferent types of CGRAs developed over time. The section concludes with a

specific CGRA, called Morphosys, which played a relevant role in the design

of this thesis architecture proposal.

� Section 2.2 - Processing-in-Memory deals with the PiM idea, pointing

out the different interpretations of this concept. As in the previous section,

a list describing the consequent implementations is drafted, emphasizing the

PiM derivation on which the GP-LiMA is based.

2.1 Reconfigurable Architectures

Reconfigurable Architectures systems category involves devices that tend to work

like ASIC but exploit, at the same time, the silicon plasticity to provide dynamic

functional reconfigurability [13]. Reconfigurable architectures aim to achieve the

computational efficiency proper of ASIC solutions while still retaining some func-

tional flexibility by adapting the hardware at compile time when the task to be run

changes. In this way, the limit of ASIC systems, which is the constraint to run

always a single specific application set during the design phase, can be mitigated up

to some extent while exploiting the ASIC potentiality to directly implement com-

plex functions in hardware, saving energy and time. Thus, thinking at the system’s

design solution space, built looking at programming flexibility and computational

efficiency, these systems are placed next to ASIC solutions (very high computational

efficiency but no programming flexibility) one step towards the general-purpose sys-

tems (maximized programming flexibility and low computational efficiency).

2.1.1 FPGAs: Field Programmable Gate Arrays

One of the well-known kinds of reconfigurable architectures is the FPGA. It is a pre-

fabricated electrically programmable device, which can be set to implement almost

any kind of digital function [16]. The programmability attribute consists of the abil-

ity to decide the function to be executed after the end of the silicon chip fabrication,

and it is retrieved by switching the technology (standard cells) used to implement

most of the common devices. In particular, one of the leading technologies employed

12
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in FPGAs is the SRAM (Static Random Access Memory). Moreover, to properly

fit a large set of tasks, the granted reconfigurability is at a very fine-grained level,

mostly at single bit granularity. For this reason, an FPGA is structured as an ar-

ray made up of different types of blocks. These ranges from programmable blocks

(Configurable Logic Blocks - CLBs), aimed at emulating simple logic operations, to

memory components and to more complex elements like DSP blocks (Digital Sig-

nal Processing blocks), which include multipliers, or even to a small microprocessor

[16]. All of these are immersed in a dense programmable routing network which

allows the blocks to be fully inter-connectable (see Figure 2.1). At the boundaries,

this array is surrounded by a frame composed of configurable input/output blocks

used to interface the chip with the outside world or even to make it work inside a

larger system. However, the main element on which the FPGA is built is the CLB,

which is the finer-grained component used to implement a simple combinational or

sequential function that defines a single bit signal, returned at the block output.

The insertion of a small SRAM LUT, typically on 4-6 inputs, makes the function

programmable and then runnable. This small memory stores all the values the 1-bit

output signal has to assume, one for each of the possible combinations of inputs

values, defined by the function the LUT is associated to [13]. Besides, the value of

the final CLB output can be further chosen by programming the selection signal of a

multiplexer which takes as inputs the LUT output, its complement, the output of a

memory element taking the LUT output, and again its complement. Once more, to

be programmed, the value of the control signal is stored in a 2-bit SRAM element.

The generic scheme of a CLB is depicted in Figure 2.1. Thus, by interconnecting

several CLBs, it is possible to accomplish an arbitrarily complex logical function.

The routing network comprises a considerable number of wires whose connections

are established thanks to programmable switch matrices put at each wires intersec-

tion for this scope. The content of small SRAM blocks drives the configurations

of the switches. It follows that the behaviour of an FPGA device is programmed

at compile-time by initializing the content of all the SRAM components, so almost

like a simple memory writing operation. Therefore, the function implemented by

the FPGA can be changed a considerable number of times after fabrication, always

before the start of the actual algorithm execution.
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Figure 2.1: The arrangement of the blocks surrounded by the routing network in
the FPGA framework is shown on the right. It is a simplified scheme that does not
include the actual number of CLBs, which is way higher. On the left, the internal
structure of a generic CLB is detailed.

Since FPGAs implement circuits running at a frequency two orders of magnitude

lower than the respective standard-cell ASIC solutions, they were initially thought

of only for prototyping purposes as a preliminary step before producing ASIC de-

vices. Nevertheless, in early 1990, they started to be also considered as a possi-

ble stand-alone solution to implement real working devices, especially employed in

high-performance computing, and even for general-purpose computing [13]. How-

ever, they are affected by several limitations which prevent them from being suitable

for all the possible kind of applications. First of all, the single bit-level granularity

makes the operations among multiple-bits data intricate to be performed. These

must be implemented through the composition of several processing units, which,

in turn, requires a massive usage of the programmable interconnections, leading to

a significant routing overhead and so to a device with low area usage and power ef-

ficiency. Furthermore, the high number of programmable elements (including CLBs

and routing switches) involves the need for a massive amount of configuration data

that must be permanently stored in a separate memory and loaded into the FPGA
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each time the device is switched on. This required data movement implies a further

overhead in the power consumption and slow configuration times compared with the

standard general-purpose systems. These drawbacks make them strongly unsuitable

for algorithms demanding a frequent change in the system configuration. At last,

the development of applications to be mapped on FPGAs cannot be carried out

using common high-level languages, like the one used for microprocessor-based sys-

tem, but it still requires the knowledge of hardware description languages (HDLs)

used for ASIC designs, which are prerogative of hardware experts [17]. Besides, the

FPGA Electronic Design Automation (EDA) flow takes longer compilation times

than the ones taken by software compilation tools [13]. Then, the low operational

frequency, intrinsic to the programmable technology, adds up to all of these limita-

tions.

Therefore, since the major problem seemed linked to the extreme fine level of bit

processing, another branch for the Reconfigurable Architecture was derived from

the FPGA paradigm, i.e. CGRAs.

2.1.2 CGRAs: Coarse Grain Reconfigurable Architectures

CGRAs are devices belonging to a particular branch of the more general reconfig-

urable architectures systems classification relying on a multiple-bit wide datapath.

CGRAs give up part of the flexibility given by the single bit-level configurability to

favour a more direct mapping of a more extensive set of applications on the provided

datapath by including already specialized complex operators directly in silicon. At

first, the goal is to avoid the routing overhead due to the connection of multiple

processing elements required to implement instructions running on common length-

wide data (more than 1-bit) [17]. Secondly, it also turns into the improvement of

the performance in terms of higher clock frequency allowed [13], due to the use of

logic macro blocks already optimized. However, consequently, the interconnections

are built upon multiple bits, which means a higher area usage. Howbeit, this con is

overcome by decreasing the number of processing elements inside the device, which

implies scaling back the size of the routing network [17]. This downsizing can be

done without affecting the number of applications that can be successfully mapped

on the CGRA since the single instances are more powerful at the processing level
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than FPGAs; therefore, fewer blocks are required to implement the same algorithm.

Indeed, the specialization of the small set of blocks composing the CGRA results in

the overall enhancement of both device generality and silicon utilization compared

with the FPGAs ones. Moreover, the drop in the number of processing blocks leads

to a smaller set of configuration data to be permanently stored and then loaded into

the device before it starts working. The implied data movement reduction results

in faster configuration times[13] which bring benefits to the device static configu-

ration process, but, more important, they even enable, in specific cases, dynamic

reconfigurability useful for algorithms asking for a steady change of the runnable

instructions. Lastly, the more defined composition of the datapath does not strictly

require the knowledge of HDLs to properly program the device when developing and

uploading the addressed applications.

It follows that CGRAs are reconfigurable devices made up of a limited set of spe-

cialized processing units running on multiple-bit data, which can be programmed

and interconnected at the user’s will both dynamically (the instructions they imple-

ment can change during the application lifetime) or statically (the device behaviour

is fixed and set before the application starts). Similarly to the FPGAs, the pro-

grammability attribute refers both to the single processing elements and the routing

network in which they are immersed. Just because of the actual specialization of

the basic blocks, different CGRAs have been developed over time, each more cus-

tomized for a particular target of applications. In general, they are based on an array

of programmable processing blocks, called Reconfigurable Cells (RCs), whose actual

composition and interconnections vary according to the specific CGRA, and are, in

practice, primarily used as hardware accelerators. They run in parallel to the CPU

of the system they belong to and are dedicated to the more complex and specific

algorithm parts or data-intensive portions, which can benefit from the availability

of multiple processing units (operating on different data at the same time) to speed

up the overall program execution. Therefore CGRAs can be used as co-processors,

with a customizable working mode.

A generic example of the internal structure of an RC is shown in Figure 2.2. The

core of the processing is represented by the ALU whose two operands are retrieved

from the multiplexers, driven by the configuration register, selecting among the data

coming from the interconnections with other RCs and the content stored in the small
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(SRAM) memory embedded in the same RC. The RC programmability is given by

the ability to choose which of the available operations the ALU must perform at

a specific time and to select the current operands it elaborates by exploiting the

configuration register. This register plays the same role as the SRAM elements

composing the CLBs of the FPGAs, so it is the element to be initialized during the

device configuration, aimed at customizing the CGRA for the application at hand.

The data stored in this register is divided into multiple fields, each associated with a

different element in the RC block, which needs to be appropriately driven (see Fig-

ure 2.2). Furthermore, early CGRAs often include a LUT configured together with

the configuration register to enlarge the set of implementable operations. Besides,

it is worth specifying that the configuration register can be made up of multiple

registers in order to save different configurations which can be dynamically applied

at run-time in sequence (cycled), or at will, according to the specific CGRA func-

tioning [13], or better to the particular flow-control of data it implements [13].

Figure 2.2: Generic internal architecture of a RC.
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In general, CGRAs can be classified relying on the following features [17], [18]:

� Granularity, namely the datapath width, which roughly ranges from 2-4 bits

to 32 bits (typical values are 16 and 32 bits). Some CGRAs are provided with

a mechanism to facilitate the composition of a datapath with higher width

like it happens for FPGAs, so, in practice, the user can choose among a set of

possible data length;

� Interconnection Structure, which can be shaped as

– a linear array, where all RCs are organized along a line and can inter-

act only with their neighbours (mainly thought of for mapping pipelines

without forks onto the CGRA);

– a mesh, that is the most diffused arrangement which sees all the blocks

placed according to a mesh-like topology where only blocks belonging to

the same row or column can exchange data, favoring efficient parallelism;

– a crossbar switch, that is the most flexible kind of interconnection which

enables all the possible routings among all the array blocks, which, how-

ever, leads to a high overhead in terms of area occupation;

� Programmability, i.e. the depth of the configuration registers, also called con-

text registers, embedded in the architecture. According to this parameter,

CGRAs can be distinguished in

– single-context systems, which are devices that can hold only one configu-

ration at run-time, so they are always limited to perform the same task

after the context registers are initialized during the context loading phase;

– multiple-context systems, whose context registers can store several con-

figurations at a time for the same CGRA. So doing, these kinds of de-

vices can change the function they implement even without repeating the

context loading phase, by simply pointing to a different location in the

configuration registers;

� Reconfigurability, that is when the CGRA can change its configuration and so

the instructions it performs. It can be:
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– static, the reconfiguration can only occur if the CGRA interrupts the

program execution; in which the RCs can be programmed only at compile-

time, before the start of the program execution;

– dynamic, the configuration registers content can change even at run-time;

that is typically feasible in multiple-context systems, where it is possible

to write locations that are not currently used to drive the CGRA logic

components;

� Computation Model, namely depending on its peculiar structure, each CGRA

can adapt to implement a certain set of functional modes, including SISD (Sin-

gle Instruction Single Data), SIMD (Single Instruction Multiple Data), MIMD

(Multiple Instruction Multiple Data), M-SIMD (Multiple Single Instruction

Multiple Data), linear array, VLIW, pipelined mode or other variants.

In the following, an overview of three specific CGRAs implementations is reported

together with Table 2.1, which summarises their features according to the mentioned

CGRA parameters. All architectures are examples of the early influential CGRAs,

which are more relevant for this thesis design. Notably, the last faced architecture

is the one that paved the way for the current GP-LiMA structure.

CGRA Granularity
Interconnection

Programmability Reconfigurability
Computation

Structure Model
DPGA [19], [20] 1 bit crossbar multiple context dynamic SISD, SIMD

PADDI [21] 16 - 32 bit crossbar multiple context static VLIW, SIMD
MorphoSys [18] 8 - 16 bit mesh multiple context dynamic M-SIMD

Table 2.1: Classification of the dealt CGRAs according to the listed features.

DPGA: Dynamically Programmable Gate Array

The DPGA [19], [20] is the link between FPGAs and CGRAs. It still supports a

bit-level computation paradigm, but, unlike FPGAs, it follows the multiple-context

programming paradigm coupled with a dynamic type of reconfiguration capability.

In practice, the DPGA can be seen as a hybrid architecture standing in the middle

between an FPGA and a SIMD array. In each of the programmable components,

they can concurrently reside up to 4 different configurations that can be switched
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at run-time thanks to the same global instruction, called context identifier (CID),

which is forwarded to all those elements. Notably, each reconfigurable element is

associated with its own DRAM context memory, composed of 4 registers, which is

addressed by the 2 bits CID signal. Then, the CID value can eventually change

at each clock cycle, and it points to the configuration data that have to drive the

logic elements inside the DPGA currently. These lasts are organized into nine macro

sections, called SubArrays, which are placed following a regular grid-like path and

exchange data through the first level of interconnections (called global interconnects)

implemented with crossbar switches (see Figure 2.3).These crossbar interconnects

(see Figure 2.4) are a set of multiplexers (one for each signal output by the crossbar

switch), each taking as inputs all the signals entering the crossbar switch and return-

ing one of the signals composing the final crossbar output. The selection performed

by the multiplexers can be programmed thanks to the context memory element in-

cluded in each interconnect block and driven by the broadcast CID.

Furthermore, all SubArrays are made up of 16 RCs and are placed on composing a

4x4 matrix which is internally fully routed thanks to a mesh-like topology of connec-

tions (called local interconnects), as shown in Figure 2.5. Each array element, i.e.

the RC, works on a single bit and, like FPGAs, relies on a 4 inputs 1 output LUT

to implement the programmable logic function. Indeed, since the DPGA must allow

the user to choose at run-time the context to be run among four configurations,

inside each RC, 4 LUTs are inserted. All the LUTs outputs are forwarded to a

multiplexer driven by the context memory addressed with the CID value. Then, the

final RC output is chosen again by the context memory output that selects among

the multiplexer output and the output of a flip-flop that takes as input the same

signal coming from the previous multiplexer. Then, the 4 LUTs inputs are given by

the inputs selector 15-to-4 taking 15 1-bit signals: 8 coming from the global inter-

connects, 6 from the local ones, and one directly from the inside of the RC itself.

Again, the selector is driven by the related field in the pointed context memory

location. The RC internal architecture can be seen in Figure 2.6.

Summing up, thanks to the different context memories present in each of the config-

urable components, the RCs can concurrently run a different function on a different

data, as it happens for FPGAs, but the specific function they execute is pointed
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Figure 2.3: DPGA platform arrangement overview. The shown crossbar blocks
filling the SubArrays grid make up the global interconnects.

for all the RCs by the same CID instruction, as SIMD architectures behave. More-

over, concerning the programmability, to update the configuration memories content

(which can occur even at run-time for the unused locations), programming lines are

distributed all over the DPGA. At last, the presence of 2 levels of interconnections

confers on the DPGA a reasonably high degree of connectivity, which, in turn, im-

plies further programming flexibility.
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Figure 2.4: Internal structure of a programmable crossbar switch.

Figure 2.5: Internal layout of a SubArray composed of the RCs mesh and the local
interconnects.
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Figure 2.6: RC scheme.

PADDI: Programmable Arithmetic Devices for High-Speed Digital Signal

Processing

PADDI [21], [17] has been mainly thought of as a stand-alone system for prototyping

purposes of DSP applications that require multiple fast arithmetic units working in

concurrency and sharing a dense and flexible routing network. As DPGA, the cho-

sen interconnections paradigm leans on the dynamically controlled crossbar switch

type, which ensures a conflict-free data exchange aimed at maximizing the usage

efficiency of the programmable execution units (called EXUs, referred to as RCs in

a generic CGRA). The hardware platform has a granularity of 16 bits and is divided

into 4 clusters of 8 EXUs and eight local controllers (CTLs, i.e. the context memo-

ries) each, as shown in Figure 2.7.

The EXU is made up of 2 dual-port register files (RFs containing six registers each)

for concurrent read and write operations. Both RFs take their inputs from the

related multiplexer that selects among the data coming from the communication

network and the result of the previous operation from the same EXU. Then, the

RFs provide the inputs for the logical core (ALU), which implements a set of func-

tions given by the carry select adder (sum, subtraction), the logarithmic shifter
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Figure 2.7: On the left, the PADDI system overview is depicted. On the right, the
inside of a single cluster is zoomed.

(right shifts), and the hardwired comparator. Additionally, thanks to the recon-

figurability properties of the architecture, each EXU is provided with an optional

pipeline register which can be connected to the final output signal holding the se-

lected result from the ones gathered from the mentioned logical blocks. Moreover,

even though the datapath width is 16 bits, it is possible to concatenate two EXUs

to achieve an accuracy of 32 bits.

Regarding the programmability of the EXUs, the PADDI framework behaves like

a dynamically reconfigurable multiple-context system. Therefore, each EXU is as-

sociated with its own context memory, which drives all the embedded components

and can store up to 8 different configurations. Unlike the DPGA, all CTLs are

SRAMs that support static reconfigurability. Thus, they can be serially reconfig-

ured only during the context loading phase. To do this, CTLs are all connected

into the same scan chain, which behaves like a big serial shift register, so that, to

configure the whole chip, few external pins are needed (more in detail, eight scan

chains are instantiated, one for each different configuration data). While, similarly

to the DPGA, these memories are addressed by a 3 bits global instruction, handled

by the external global controller, which can change its value at run time even past

every clock cycle. It means that the overall PADDI functionality can vary during

the application lifetime in 8 different ways, even if these particular behaviours can-

not be changed at run time. Thus, the actual value of the eight configuration data

must remain fixed till the next setup phase. So, looking at the entire architecture,

by unifying the configuration data, output by all the single context memories in
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the EXUs in the face of the same broadcast global instruction, a VLIW operating

the PADDI functionality is obtained. Therefore, on the one hand, thinking of the

EXUs functional mode individually, each of them can implement at the same time

a unique function as it works for a MIMD system organization. While, on the other

hand, all the EXUs are globally driven by the same macro instruction, pointing out

a behaviour similar to SIMD architectures.

MorphoSys: Morphoing System

The Morphosys [18] framework represents the architectural solution that comes clos-

est to the GP-LiMA philosophy. It is proposed as an alternative hardware model to

support data-intensive algorithms, characterized by high regularity, intense through-

put demand, and especially heavy data parallelism. Examples for these applications

are: multimedia, data encryption, DSP, and discrete cosine transforms. In order

to fulfill this goal, the MorphoSys paradigm aims at adding to a standard general-

purpose system SIMD capabilities, helpful in shortening the execution times for

routines requiring the handling of a significant amount of data. Therefore, the idea

behind MorphoSys is to build a complete system combining a simple TinyRISC

[22] with a reconfigurable (SIMD-like) co-processor and a high-bandwidth memory

interface, used to properly move data between the external data memory and the

reconfigurable array. Here, the 32-bit RISC processor is in charge of executing the

most sequential and straightforward parts of a target application while properly

driving the co-processor to perform the high data-parallel portions. The arrange-

ment of the components embedded in the Morphosys chip and their logical goals are

outlined in Figure 2.8. Notably, the TinyRISC makes use of the context memory

associated with the reconfigurable array, together with new additional instructions

introduced in its ISA, to control the instruction flow the co-processor has to carry

out for a given application. Moreover, to load the memory configurations and start

all the data transfer procedures between the external memory and the co-processor,

the RISC also controls the high data bandwidth memory interface, composed of

the DMA (Direct Memory Access) controller and the frame buffer (FB). This last

embodies the real novelty brought by the MorphoSys framework. The frame buffer

acts as a data cache to make the data transfers transparent to the reconfigurable
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processor by accomplishing them in parallel during the regular computations.

Figure 2.8: General layout of the macro blocks composing the MorphoSys chip. The
grey wires indicate the control signals, while the yellow ones carry the actual data.

From the reconfigurable array standpoint, the overall structure follows the guidelines

of CGRAs. The core is based on a mesh of RCs with 16 bits granularity and is

filled with multi-level programmable interconnections. It is divided into four macro-

quadrants, each enclosing an 8x8 array of RCs, as shown in Figure 2.9. In order

to allow as much as possible a dense programmable data exchange while preventing

incurring an excessive routing area overhead, the communication network has been

divided into three hierarchical levels of interconnectivity (physically implemented

using three different metal layer technology):

� nearest neighbour (NN) level, where each RC is enabled to access the output

of the adjacent RCs, at most four signals;
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� mesh (or intraquadrant) level, which also includes parts of the interconnections

classified as the previous level, where RCs of the same quadrant can read the

data of the other RCs belonging with their same row or column (see Figure 2.9).

In this case, each RC can access any of the provided signals, independently on

which are the data the other RCs in the same interconnection want to make

access to at the same time;

� bus-like (or interquadrant) level, that is implemented exploiting another hard-

ware technique aiming at global connectivity among RCs of different quad-

rants, always included in the same row or column. Specifically, each row and

each column are associated with two buses, which the RCs are connected to

employing tristate buffers. Each bus has a preferred direction for the data

transfer, so one bus is written only by the RCs of one quadrant and is read

by the RCs of the other quadrant, and vice-versa for the other bus. Only one

RC at a time is enabled to write on the bus, while the 4 RCs of the other

quadrant connected to the same bus can concurrently take this data as input.

For this reason, during the program execution, the tristate buffers need to be

properly activated by the configuration data selected from the context memory.

The basic reconfigurable processing elements are designed to resemble conventional

microprocessor models, so they include a 16x12 multiplier, too. In order to accom-

modate MAC (multiply-accumulate) instructions, the ALU block is followed by an

output register and operates on 28 bits to be compliant with the possible overflow

occurrences due to the product’s execution. Among the usual logic and arithmetic

functions (it can perform up to 25 different functions), the ALU can also compute

the absolute value of a difference and the MAC instruction in a single clock cycle.

The RC is provided with some storage capabilities, i.e. it contains a register file (RF)

of 4 locations to save temporary data. Finally, the data the RC works on are picked

through two multiplexers taking data coming from the entire routing network, the

RF and the FB (for the RC internal structure see Figure 2.10).

Moreover, the driving of the processing components that constitute the RC is ac-

complished by leaning on a context register connected to the global context memory
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Figure 2.9: On the left, the RCs array partition into quadrants is shown. On the
right, there is a zoom on the internal arrangement of the RCs in a quadrant. The
delineated interconnections are only the mesh level type.

embedded in each RC. At every clock cycle, a new instruction output by the con-

text memory is loaded into this register. It means that the Morphosys architecture

can adapt its functional behaviour at run-time by picking the instruction to be per-

formed from a finite set of directives. Furthermore, this set, available in the context

memory, can be dynamically changed simply by overwriting the inactive locations.

Deepening the context memory organization, this was designed to be compliant with

the M-SIMD computation model. RCs belonging to the same row all compulsorily

perform the same instruction, while, at the same time, RCs of different rows can run

other instructions. Indeed, at compile-time, the user can decide whether he wants

to keep this arrangement or modify the context broadcast so that RCs belonging to

the same column are driven by the same instruction. For this reason, the context

memory is divided into two macro sections, each dedicated to one of these operating

modes. However, this means that the co-processor can perform up to 8 different

instructions on different data at a time, which is carried out by a further split of

every memory context block into eight sets, each connected to a different RCs row
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Figure 2.10: Internal structure of the single RC.

(or column). Then, in turn, each set can hold up to 16 different context words, from

which the RISC can draw out the current instruction that the related row (or col-

umn) must execute. Besides, further functional flexibility is given by the possibility

to enable even one single column for a certain time.

To conclude, the MorphoSys architecture has been one of the landmarks while de-

signing this thesis proposal. Indeed, the GP-LiMA framework has borrowed from it

the row-wise implementation of the M-SIMD computing model, the coupling of the

reconfigurable co-processor with a standard RISC dedicated to its control, the coex-

istence of different types of interconnections inside the RCs array, and the internal

composition of the RCs themselves.

29



2 – State of the Art

2.2 Processing-in-Memory

The memory wall issue, as the name suggests, is mainly linked to the required data

exchange between CPU and memory. Indeed, the memory brings along with it

some criticalities, like slow access times together with a notable power consumption

overhead, limited data transmission bandwidth, and working frequency slower than

the CPU one. For this reason, the generic PiM principle aims at shifting the research

focus on the use being made of the memory itself inside the system. However,

how this research and the consequent models are refined changes depending on

the different variations into which the PiM concept can turn. Some solutions take

advantage of the physical memory attributes to modify its actual functionalities,

while others concentrate on the arrangement of the memory inside the system.

Therefore, to bring some order and facilitate the understanding of the different

developments the PiM paradigm has undergone, [9] proposes a taxonomy that is

reported here. Four approaches are distinguished:

� Computing-with-Memory (CwM): it is not exactly a branch of the PiM

classification since it is basically an alternative technique that makes use of

memory elements to implement logic functions. However, it is worth men-

tioning CwM to clarify even more by contrast OF what PiM concepts consist

of. Indeed, CwM is what most FPGAs and CGRAs are based on, i.e. the

LUT item. A memory component (like the SRAM block in the FPGA case)

is employed as a processing element to perform the computation required by

a generic logic function. The memory is used to store all the values the out-

put of any function can assume for all the possible combinations of the inputs

values. Note that, in this case, the memory (LUT) does not hold the data to

be elaborated, but these, i.e. the inputs used to address the memory to gain

the computation results, must always be taken from another memory. Thus,

none of the cons related to the data movement between processing and storage

elements is dented.

� Computing-near-Memory (CnM): it is the first approach that starts going

toward the PiM principle. CnM is the most conservative proposal that queries

the memory position inside a system rather than its logical purpose. It aims
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at physically bringing the memory closer to the processing units so that both

the time and energy spent to transfer data from the memory to the CPU and

vice-versa are strongly lowered. In works [23] and [24], this is accomplished

by embedding the memory in the same CPU die. However, the most rep-

resentative devices for this PiM branch are the ones achieved thanks to the

recent advancements in the die stacking technology, as the commercialization

of the HMC confirms [15]. As already anticipated in chapter 1, the HMC is

a memory device that stacks multiple layers of memory and control logic to

form a 3D structure, where the distances among all the components embedded

in the same device are shortened. Then, further upgrades of this concept have

been carried out, leading to the current CnM devices. In these systems, layers

of storage elements are interspersed with layers characterized by processing

capabilities but still identifying separate entities. The 3D integration allows

exploiting the vertical interconnections (through-silicon vias) so that not only

the speed of the data fetching from memory is enhanced, but also the memory

bandwidth and the amount of implemented functionalities per silicon area are.

One of the most known examples for this kind of system is the Active Memory

Cube (ACM) [25], which inserts below the DRAM dies of the HMC a layer

filled with sophisticated processing elements [26].

� Computing-in-Memory (CiM): is what mainly is meant by PiM. This ar-

chitectural solution leverages the physical structure of the memory itself, like

the cell composition and the read/write control logic, to perform some simple

data computations directly inside the memory. The idea is to take advantage

of its analogue components (e.g. the sense amplifier in the peripheral circuitry

of SRAMs or DRAMs) by simply accessing the memory standard function-

alities differently so that it is possible to retrieve at the memory output the

result of a certain logic operation applied on the data stored in the activated

cells. In general, the set of functions a memory can emulate depends on the

specific technology it is made of. For instance, in the case of DRAM memories,

by just enabling the reading of multiple locations concurrently, the returned

output value represents the bitwise-and or the bitwise-or (depending on the

stored selection signal) of the data connected by the same bit line and held
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by the activated memory cells [27], [28]. Similarly, an SRAM memory can

be handled to execute bitwise-and or bitwise-nor operations by reading the

involved data locations concurrently [15]. Besides, it is possible to even carry

out a matrix-vector multiplication by properly driving with the vector values

the word lines associated with the cells storing the matrix values [29], [30],

[?]. Then, other memory technologies as resistance-based ones can be fur-

ther exploited for this purpose, such as Resistive RAM (RRAM) [31], [32],

Phase Change Memory (PCM) [15], [33], Magneto Resistive RAM (MRAM)

[34], [35]. Moreover, after a certain function has been computed, the CiM

paradigm provides for the memory to be handled so that the returned result is

written back in the same memory. It implies that, for some simple operations,

there is no need to bring the data out of the memory and inside the CPU, and

then vice-versa, but the processing of a set of data (which can even be as big

as the memory size) can occur directly inside the memory itself. Therefore,

unlike the previous solution, here the cons due to the memory accesses are

almost cut off, leading to lots of energy and latency savings together with a

drop in the total algorithm execution time, further pushed by the possibility

to exploit the whole internal memory bandwidth. The high data memory par-

allelism enables to perform the same operation concurrently on different data,

resulting in a sharp speed-up, especially of data-intensive algorithms. An ex-

ample of a device categorizable as CiM is the In-Memory Intelligence (IMI)

[25]. It is a SIMD architecture that, starting from a DRAM block, connects

one basic processing element (which performs XOR and NAND operations)

to each sense amplifier in the memory peripheral circuitry, all implemented

through standard DRAM structures.

� Logic-in-Memory (LiM): it is a branch derived from the CiM one, so it

brings pretty much the same advantages. The LiM approach consists of phys-

ically modifying the internal memory cell structure by inserting a small set

of logic ports connected to the storage part. In this way, besides the stan-

dard storage functionalities, the single cell is also provided with computing

capabilities, allowing building a more extensive set of logic functions inside

the whole memory. The goal is to introduce limited customized logic blocks
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each time, which can suit the operations required by the target application

in an ASIC fashion. Dissimilarly from the CiM systems, it comes easy to

execute functions working on data even belonging to different bit lines. Here

the data computations are enabled without moving data down to the memory

periphery (as, instead, it happens in the CiM devices), which translates into

even shorter processing times and reduced energy expense. However, like CiM

architectures, memory read and write operations are always required, but only

to enable some specific computations by shifting data between cells, and to

update the cells content with the new results, respectively. An example of

LiM architecture is the one introduced in [36], where a LiM model customized

for the implementation of a binary neural network (BNN) is examined. In

each memory cell (1 bit), the storage element output is connected to a xor

gate together with a further input signal, while the signal returned by the xor

is forwarded to an external logic block that completes the elaboration of the

data required by the target BNN.

An evolution of the LiM branch is represented by the PLiM architecture de-

scribed in chapter 3 which marked the start for the design of the LiM exposed

in this thesis. It unifies the LiM concept, namely the inclusion of logic ele-

ments inside each memory cell, to the programmability attribute. The PLiM

organizes the logic part to be embedded in the cell so that the functions it per-

forms can be changed during the algorithm execution. In this way, there is no

need to physically fabricate a different LiM architecture for each application

to be run, but the system can be initialized at compile-time with a different

program each time.

In order to learn more about PiM architectural solutions, two other systems proposed

in the literature are explored. Both hold within them and combine different qualities

of the PiM concept, meaning that they assemble more than one technique among

the upper listed ones, especially the last framework reviewed. Besides, the first

examined architecture is also stated because it gathers some functional similarities

with the GP-LiMA framework.
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GP-SIMD: General Purpose SIMD

The GP-SIMD [36] is an architecture aimed at seamlessly running machine-learning

algorithms, which are composed of a sequence of highly parallelizable subroutines

that elaborate a large set of data at a time. Here, the SIMD computing paradigm

is exploited to perform parallel tasks efficiently and is coupled with a standard core

that takes charge of the sequential parts. However, the massive amount of data

that these two parts need to exchange negatively impacts performance and power

dissipation issues. The GP-SIMD copes with this data synchronization issue by im-

plementing the SIMD processing part leveraging the PiM paradigm. It comprises

a standard CPU and a SIMD co-processor that communicate with the same shared

memory having two-dimensional accesses, which solve the data synchronization is-

sue. Thus, the GP-SIMD can be mainly categorized as CnM since, through the

SIMD co-processor that physically resides close to the memory array, a set of bit-

serial processing units, each associated with a different memory row, is available.

Therefore, the SIMD co-processor and the SRAM with modified memory cells com-

bination acts as a large memory integrating computing elements.

As the MorphoSys ecosystem, the GP-SIMD architecture provides a multi-level par-

allel processing capability. Besides the SIMD parallel operating mode applied on

the data in the shared memory, the CPU may start the SIMD co-processor, in a

non-blocking manner, to perform a task while it keeps running some sequential in-

structions. Concerning the actual layout of the GP-SIMD system, this is composed

of a sequential processor that exchanges data with the shared memory array through

an L1 cache and controls the SIMD co-processor. This co-processor is divided into

two sections. One is the datapath made up of all the processing units directly con-

nected to the shared memory array, which, in turn, are interconnected to each other

through a reduction tree network. The other section concerns the control of the

SIMD array itself performed by a microprogrammed sequencer, which is appropri-

ately driven by the CPU to start the programmed parallel tasks. In this way, no

coherency problems are encountered since the CPU can issue the wait() instruction,

through which the synchronization is achieved. The CPU waits for the sequencer to

finish the demanded tasks before proceeding with the processing of the remaining

sequential parts.
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Concerning in-memory-like kinds of operations, the related bit-serial processing units

(PUs) include a Full Adder (FA), a single bit block for the logic functions, and four

1-bit registers each. The operations occur in a bit-serial manner for each data, but

all data are elaborated by the PUs alongside. More in detail, the data are organized

in the shared memory so that one or more words can compose a single row to which

a different PU is connected. In general, if a function must be performed on all data

belonging to two different datasets, these datasets are stored so that all rows contain

one word from each of them. So the number of rows gives the dataset dimension.

The SIMD processor can read/write a bit slice at a time, corresponding to a 1-bit

wide memory column. An example of a possible computation is the vectorial sum

between A and B, each composed of N elements of K bits each. In this case, all A

elements are stored in the first K columns of the memory (one data for each row),

while the B ones in the following k columns, and, lastly, the results are stored start-

ing from the 2Kth column. The N elements sums are computed simultaneously,

but one bit of the result is elaborated by each PU at a time. Thus, the final N

elements resulting vector is obtained in about K clock cycles. Moreover, if, instead

of the vectorial sum, an N-words sum is required, the PUs are provided with an

interconnections network which allows performing that sum in a reduction tree-like

mode, saving time. For this purpose, each PU can access values in the other eight

neighbours, in both left and right directions, and are identified by the PUs at 1, 2,

4, and 8 positions of distances referred to the PU at hand.

CLiMA: Configurable Logic-in-Memory Architecture

The CLiMA [14] is a PiM architectural model that is proposed as a baseline frame-

work aimed at building a LiM device customizable for any algorithm. For this

reason, the CLiMA merges several macroblocks, each embodying one of the listed

PiM branches, so that all benefits brought by the different approaches can be con-

veyed and emphasized in a single architecture. Moreover, the coexistence of multiple

heterogeneous parts assures the model as much flexibility as possible in mapping a

wide range of applications. This is because, even within the same application, there

may be routines marked by different processing requirements, so each procedure may

need to be mapped on a computing block matching its specifications. Therefore, the
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CLiMA is split into two main communicating sections, one implementing the CnM

principle and the other carrying out the CiM and LiM approaches together, as illus-

trated in Figure 2.11. In particular, the former is based on a standard memory block

accompanied by a dedicated logic block, aimed at performing all the instructions

which do not fit an in-memory-like implementation. Instead, the latter is composed

of a set of LiM layers, each, in turn, surrounded by blocks of extra logic elements

(which behave like the peripheral circuitry in CiM systems), composing what in Fig-

ure 2.11 is called CLiM Array. More in deep, each layer of this array is composed of

CLiM cells which are LiM cells that embrace the configurability property, to make

this section suited for running different types of data-intensive applications, which

are the ones that best suit a LiM implementation. Besides, to fulfill the specific

data exchange required by the algorithm to be mapped on the CLiM Array, cells are

enabled to communicate, and their interconnection can be configured too. Then,

the CiM part is thought of for handling all the remaining operations on top of the

LiM processing.

Figure 2.11: High-level view of the CLiMA main composing parts [9].

Going deeper into the core of the CLiMA framework, i.e. the CLiM Array, this was

designed thinking of all the possible data exchange and manipulations that may be

required by most of the algorithms. Thus, its basic block, the CLiM cell working

on 1-bit data, is organized as depicted in Figure 2.12. It is divided into two areas:
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the storage one, represented by the actual memory cell, and the processing one,

composed, in turn, by two other blocks, one, i.e. the config block, which can be

configured to implement standard boolean logic operations and another, i.e. the

full adder, aimed at performing the sum. Besides these components, the cell is pro-

vided with further connections and input signals of primary importance for lending

maximum programming flexibility to the array. Specifically, the memory element is

forwarded to both the processing part and a multiplexer that, in addition, takes the

outputs from the computing blocks. Then, the returned signal is input to all the

other cells in the same column and the same row of the array. These interconnections

are used to implement different kinds of data manipulation inside the array. Intra-

row and intra-column data exchange are enabled that allow executing operations on

the data in the same row and the same column, respectively. Similarly, inter-row and

inter-column operations can be carried out, which fit bitwise-like functions between

two rows or columns, respectively. Moreover, another multiplexer is inserted, which

drives the input of the storage element, choosing between the result elaborated by

the same cell and a value coming from the bit line, used to initialize the memory

content from the outside in the standard memory mode. Concerning the processing

part, the second operand is provided by another multiplexer which chooses, in the

most complex case (which depends on the cell placement inside the array), among

an external data signal, the output of the above cell, the output of the left cell and

the neighbour one in the south-west diagonal. The last two connections together

with the carry chains (points 4 a 5 in Figure 2.12) enable the composition of more

complex computing blocks like a Ripple Carry Adder (RCA), implementable along

the row, and an Array Multiplier (AM), which can be composed exploiting the whole

array. In this last case, the RCAs on the rows can be used to evaluate the partial

products, which can then be added all together through the column interconnec-

tions.

Thus, it follows that the CLiMA structure allows implementing sums and products

directly inside the memory, which, as thoroughly explained, leads to sharp improve-

ments in both time and energy expense. Nevertheless, the components that can be

assembled on the CLiM array to perform those computations (i.e. the RCA and the

MA) do not represent the fastest hardware in those fields. Therefore, according to

the algorithm, it may be worth thinking of other optimized implementations to be
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Figure 2.12: Detail of the CLiM cells internal structure and their interconnections
[9].

embedded in the dedicated logic units outside the LiM block. In this way, some of

the available interconnections in the CLiM array (provided to implement the RCA

and the MA) may be cut so that the overall system performance may be further

enhanced.

It follows that although CLiMA well suits a wide set of algorithms, they can still

be identified some features that unite the algorithms for which the CLiMA imple-

mentation wins over the most common architectural solutions (as GP processors);

which are high level of data processing parallelism for simple operations and a great
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demand for the processing of vast data set. In [14] a platform running a Convolu-

tional Neural Network (CNN), specifically a ShiftCNN, is developed starting from

the CLiMA model. Through this benchmark, the CLiMA proved to be compliant

with the expected enhancements in terms of reduced data movement, speed-up of

data-intensive applications, and high adaptability to different algorithms. However,

a significant limitation is pointed out, which is linked to the control of data move-

ment. The availability of different paths that the data are allowed to travel requires

considerable efforts for the control part design, which has to be customized each time

for the specific application at hand and may even reach a high level of complexity

to prevent errors in the data exchange.
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Programmable LIM

Inside this chapter, it is deeply investigated another proposal of a PiM system taken

from the literature, i.e. the Programmable LiM (PLiM). It was examined to prepare

the basis for the development of this thesis subject. The PLiM marries the LiM

concept of processing elements integration inside the memory cells but moves away

from its ASIC feature to go toward a new LiM branch that winks programmable

systems. It means that, once the resulting device is fabricated, it can change at

run time the performed function (among the ones made available by the hardware

structure) depending on how the control signals going into the LiM array are driven.

Specifically, the PLiM is a LiM modular template that steals the reconfigurability

feature from the CLiMA model while trying to remedy its main limit. As stated

in chapter 2, the major drawback in the use of the CLiMA framework lies in the

request for the design of a specialized control unit (CU) from scratch, each time

a LiM device must be created for a new algorithm. This results in lots of efforts,

time, and resources wasted on building a system capable of only running a single

specific task that is decided upstream of the fabrication process. The PLiM tack-

les this issue by providing a design starting model for both the LiM array and the

control part that drives the data processing and exchange inside the array during

the application execution. The request for both a CU starting model and program-

ming capabilities convey in the same solution. Following the basic organization of

the GP-SIMD (chapter 2), the PLiM is provided with a microprogrammed machine

(uCU), which is in charge of handling the instructions flow the LiM has to run. The
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uCU picks the program instructions from the LiM Instruction Memory which can be

written at compile-time, providing programming flexibility. As long as the required

instructions set is made executable by the specific LiM array composition, there is

no need to physically fabricate a different LiM architecture for each application to

be run, but the system can be initialized at compile-time with a different program

each time. Moreover, the CU instantiation drastically reduces the LiM design time

if the PLiM model is used as a canvas. Even if the LiM array composition changes,

the uCU does not need to be redesigned or adapted.

The PLiM remains a modular template to build customizable LiM devices that fol-

low the SIMD computing model and retain some programming flexibility. The basic

LiM array is easy to be adapted. Thanks to the modularity granted by the PLiM

model, the user can easily insert inside the array combinational or sequential blocks

aimed at implementing new functionalities. Apart from the design of the new blocks

to be integrated, the rest of the architecture requires only few changes to be com-

pliant with the new ISA.

From the GP-LiMA design standpoint, the PLiM represents the basis for its defini-

tion. During this thesis work, the PLiM was first explored and then slightly changed

to enhance its programmability. Afterward, a set of benchmarks, selected to point

out the PLiM strengths and the weaknesses to be addressed during the GP-LiMA

design, was run on the architecture. The study is reported below according to the

following outline:

� Section 3.1 - PLiM Model presents the PLiM template, outlining the goal,

the general structure, together with the blocks that compose it, and how the

generated LiM can be integrated inside a bigger system.

� Section 3.2 - PLiM Performance on Benchmarks reviews all the bench-

marks chosen to test the LiM together with all the modifications made each

time on the starting PLiM template to generate the related specific archi-

tectures. Then, the performances (both post-synthesis and post-place&route)

achieved by the generated LiM devices are shown and compared for the related

benchmarks.

� Section 3.3 - Conclusions takes stock of the retrieved results, pointing
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out for which kind of algorithms the PLiM model guarantees an efficient im-

plementation and for which it does not. Then, in preparation for the next

chapter, all the weak points the GP-LiMA seeks to strengthen are listed and

discussed.

3.1 PLiM Model

The PLiM approach [37] is proposed as a replacement for the standard design flow

aimed at developing LiM architectures specialized for a target algorithm. It aspires

to reduce the LiM design complexity and the ASIC feature of the accomplished LiM

devices carved in stone. Thus, the PLiM architecture comes as a baseline template

allowing a hardware designer or a specialized tool to build LiM systems that can

suit new applications without requiring to set up from scratch brand-new LiM ar-

chitectures.

This model provides an already structured control part (which also gives programma-

bility to the generated LiM device) sided by a highly modular computing block, the

actual LiM array, which can be modified with a pretty high degree of freedom. The

memory block equipped with processing capabilities (LiM array) is organized so that

each location is composed of a compulsory storage unit connected to logic blocks

that can be easily inserted and removed (during the design phase) to make the re-

sulting LiM architecture compliant with the algorithm to be mapped. While the user

defines the memory location complexity, conversely, the data exchange among them

is fixed by the PLiM framework interconnections, which are already established.

Notably, this designing approach relies on a technology-independent library of RTL

components from which the user can draw and adequately combine the blocks he

needs to compose the target LiM device. Then, according to the created LiM skele-

ton, the specific ISA is derived so that the final user (the LiM system programmer)

can write and load the current program to be run. Therefore, adaptability and

user-friendliness are the keywords for this designing approach. Moreover, the PLiM

paradigm leverages the intrinsic parallelism of the memory structure to implement

LiM devices working following the SIMD computing model. Consequently, the gen-

erated architectures are particularly suited for executing data-intensive algorithms
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with a high degree of parallelization.

3.1.1 PLiM Overview

Since the LiM concept is born to tackle the memory wall issue in CPU-centric

systems, the specific devices generated from the PLiM template do not work as

stand-alone systems. Despite they are characterized by a considerable autonomy in

the processing of some code portions (thanks to the uCU), they still remain smart

memories that bring actual advantages to the applications executions when substi-

tute, or at least accompany, the standard memory in CPU-centric systems (that are

the ones they were designed for). For this reason, apart from the PLiM Unit itself,

that is the device gathered from the PLiM template, the whole PLiM framework

comprises at least a CPU, a scheduler, and an instruction memory more, as shown

in Figure 3.1.

This environment organization makes CPU and PLiM Unit interact as if this last

was a standard data memory. The scheduler unit insertion eases the CPU task,

which can work as a standard processor, completely neglecting the processing fea-

ture of the memory it works with. Indeed, the scheduler heads the overall PLiM

platform behaviour, reading the application program and decomposing it into code

portions to be executed by the CPU and portions to be entrusted to the PLiM Unit.

Besides choosing which unit is more suitable for processing each instruction, the

scheduler also takes care of the related time scheduling. It decides when certain

instructions can be executed and whether they can run in parallel to others by ex-

ploiting the intrinsic hardware parallelism of the structure. In practice, the PLiM

Unit is handled like a SIMD co-processor dedicated to the more parallel parts of the

code, while, simultaneously, the CPU is concerned with the sequential instructions.

Specifically, the scheduler interacts with the PLiM Unit through two signals: the

Start LiM and the LiM Program Address. The first one is used to start the PLiM

Unit in processing mode, while the second signal carries information about the re-

lated program the PLiM Unit has to run. Inside the PLiM platform, instruction

memory (IMem) is inserted, which is loaded at compile-time with all the possible

programs the PLiM Unit has to run. Each time the PLiM Unit has work in pro-

cessing mode, the scheduler sends to it through the LiM Program Address signal
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the address of the IMem location where the first instruction of the program to be

performed is stored. Then the LiM Unit correctly handles this address to access the

IMem and retrieve sequentially all the instructions composing the program that it

will then execute.

LiM control
signals

CPU

Scheduler

LiM Array

LiM Program
Address

uCU

nInstruction
DecodernCU

nInstruction

Start
LiM

ReqDone

PLiM Unit

Write Enable

Write Address

Read Address

Data Out

Data In

LiM
Instruc�on 

Memory

Figure 3.1: Overview of the ecosystem accommodating the PLiM and coarse insight
of the PLiM structure.

To do this, the PLiM Unit is composed of three macro-blocks: the microprogrammed

machine (uCU), the Nano Control Unit (nCU), and the LiM Array. The first two

units implement the control logic enabling the PLiM Unit to behave like a coproces-

sor, while the last one embodies the LiM datapath section, namely, where the data

are stored and processed at the same time. More precisely, the uCU takes care of

the instruction flow. It takes the starting address coming from the scheduler and

sends it to the IMem to fetch the first instruction. Once the instruction is obtained,

the uCU extracts the bits sequence bringing information about the data processing
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to be executed, and sends it to the nCU. The rest of the instruction is decoded

by the uCU itself to retrieve the address of the next instruction. This operation

is repeated till the program end, flagged by the value of a specific bit in the last

gathered instruction. While the uCU prepares the fetching of the next instruction,

the nCU works on the instruction portion (nInstruction) just received from it and,

according to its value, properly drives all the control signals that manage the data

elaboration inside the LiM array. Thus, this structure is organized in a 3-stages

pipeline form, as each of the mentioned operations takes one clock cycle. The uCU

is associated with the fetch stage, the nCU represents the decode one, while the LiM

array the execution and the intrinsic write-back of the data.

From here, it can be already seen as the PLiM framework guarantees remarkable

adaptability and user-friendliness. Even if the ISA implemented by the LiM Array

changes, only small parts of the nCU need to be modified accordingly, while the uCU

can remain unaltered, being independent of the array structure. Also, it results in

a simplified debug process for the LiM hardware designer and more accessible pro-

gramming for the PLiM user.

Moreover, concerning the interface between PLiM Unit and CPU, this reflects the

one of a standard two ports memory (one asynchronous read port and one syn-

chronous write port), and it is implemented inside the PLiM Unit leveraging on the

standard decoder mechanism.

3.1.2 PLiM Datapath: LiM Array

The real element on which the PLiM paradigm poses its foundations is the LiM

Array, which is the memory array composed of smart cells embedding both storing

and logic items. Unlike the GP-SIMD and most common PiM devices that host

more than one word in a single memory row, the LiM Array is logically organized

in a long stack of one N-bit word per row. Moreover, not all the memory cells

forming the LiM array are smart cells, as it is composed of a mix of standard and

smart ones to grant a good data storage capability without running into an extreme

overhead in terms of complexity and power consumption. As it can be seen from

Figure 3.2 the memory is divided into two macro sections: the smart section and the

standard section. The first section comprises an alternating sequence of standard
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locations and smart ones, called standard rows and smart rows. The smart rows are

the core of the LiM Array and are where the data elaboration inside the memory

occurs, while the adjacent standard rows act as further storage elements from which

the smart rows can draw other data or even insert some data when the demanded

computation requires it. Then, the second section is thought of for standard storage

purposes and usually is dedicated to holding constants involved in the execution of

common algorithms. If, on the one hand, the combination of smart and standard

rows make up the basic structure for the data processing, on the other hand, the

memory interface constitutes the interconnections network that enables the data

transfer inside that base, aiming at correctly fulfilling the algorithm at hand.

MEMORY
INTERFACE

(MI)

SMART 
SECTION

STANDARD 
SECTION

UP/DOWN ROW

UP ROW

UP/DOWN ROW

UP/DOWN ROW

DOWN ROW

SMART ROW
STANDARD ROW

Figure 3.2: General arrangement of the LiM array. Example for a PLiM with a
smart section on 8 smart rows and a standard section on 7 standard rows.

Going deeper into the LiM array philosophy, each smart row can perform single-

operands or two-operands instructions, and the data it works on can be taken from

either the storage elements inside the smart row itself or the standard rows. How-

ever, there is a difference in the possible usage of the standard row belonging to the
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smart section compared with the one included in the standard one; that is how the

smart row can retrieve the data from them. As already mentioned, the computing

model implemented by the PLiM reflects the SIMD one, this is because, given the

just detailed LiM array structure, it comes straightforward making all the smart

rows perform the same function in parallel on different data. Specifically, from Fig-

ure 3.2 the regular structure of the smart section stands out, which sees each smart

row surrounded by a standard up row and a standard down one. This organization

enables the smart rows to run the same instruction, each on a different set of data.

When the operand Up row or Down row is called, each smart row takes simultane-

ously the data from the standard row above or below it, respectively. On the other

hand, when the smart rows access the standard section, they can only perform, in

parallel, a function involving the same data taken from a pointed row in that sec-

tion, specified as Other row together with the address of the concerned location.

For this reason, when the PLiM Unit works in processing mode, the rows in the

standard section are accessible in read-only mode to prevent data conflict caused by

the writing of the same cell performed simultaneously by two different smart rows.

However, the CPU can initialize their content through a simple write operation,

seeing the LiM Array as standard data memory. Conversely, the smart section stan-

dard rows can be accessed by the smart rows in writing and reading mode. Thanks

to the SIMD computing mode, the writing can be handled in such a way that, at the

same time, the smart rows can all modified either their up row or their down row.

Therefore, it will never happen that the same row is driven by two different smart

rows simultaneously. However, two consecutive smart rows can write, at different

times, in the same standard row, as the down row for a smart row corresponds with

the up row of the following smart row in the array. This property can be used to

implement a complex data exchange that has a key role in speeding up applications

implying the execution of a given number of sequential operations, where each is

independent of the others and can be sequentially performed in parallel with the

other ones. An example is the Matrix-Vector Multiplication algorithm presented in

subsection 3.2.2, where u sequential sums are run in parallel.

As already amply explained, the PLiM Unit follows the SIMD paradigm. Therefore

all the smart rows composing the LiM Array have the exact same layout and work

simultaneously. However, the hardware designer can set the final array such that the
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LiM programmer can enable only a subset of smart rows during a certain computa-

tion. Specifically, the smart section can be divided into multiple macro-blocks (up

to a maximum of 4) that can be enabled independently from each other. Moreover,

the entire LiM array can be sized by the hardware designer, which can choose the

memory parallelism, the number of smart rows comprising the smart sections, the

number of standard rows making up the standard section, as well as the number of

smart rows included in each of the enabling macro-block groups.

Indeed, referring to the PLiM paradigm described in [37], different arrangements

for the LiM array are available. However, in this discussion, only a specific version

is investigated since it represents the one that better suits most of the algorithms. It

means that the general skeleton of the examined LiM array is the one just presented,

while the specific organization considered for the smart row (Figure 3.3) is the one

outlined in the following section 3.1.2. For further versions, refer to [37].

Smart Row

Starting diving deeper into the LiM array, the following relevant element to be

addressed is the smart row. As shown in Figure 3.3, it is composed of a customizable

chain of different blocks, which involves in order the row word, a sequence of generic

row interfaces (RIs), and the input and output buffer. This layout reflects how the

PLiM framework tackles the LiM approach. Here, the LiM idea is pursued on two

levels represented by the row word and the RIs. The first is used to implement the

LiM computation at the finer grain level, namely inside the single 1-bit memory cell,

whereas each RI guarantees the data elaboration inside the memory at the word level.

While the row word is the base around which the smart row is built, embodying the

more straightforward implementation of the LiM concept (the user cannot modify

cells), the RI is the novelty that characterizes this approach. It is what guarantees

modularity and so adaptability to the proposed PLiM template. The RIs allow the

introduction of further processing components inside the memory words, without

requiring single memory cell modifications. The hardware designer can easily insert

and remove RIs in the smart rows to adapt the processing capabilities of the array

to the demanded algorithm without needing to care about compatibility with the
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rest of the smart row components.

ROW WORD

ROW INTERFACE

ROW INTERFACE

ROW INTERFACE

INPUT/OUTPUT BUFFER

Figure 3.3: Insight of the internal layout of a generic smart row.

� Row Word & Arithmetic Cell (ACell)

The row word is where the word data associated with the smart row is stored

and where first simple data elaborations occur, like bitwise logic operations.

It guarantees the finer level of LiM as it is composed of a set of single 1-bit

LiM cells that represent the most elementary LiM items inside the array.

In the PLiM version taken as a case of study in this thesis, the kind of LiM Cell

making up the row word is the Arithmetic Cell (ACell). In Figure 3.4 the row

word composition is depicted together with the inside of a single ACell. Each

ACell is based on a 1-bit storage unit that constitutes the actual memory cell,

whose output goes into a Full-Adder (FA), passing through two multiplexers

whose purpose is to select the operands for each committed instruction prop-

erly. The FA acts as a programmable block for implementing simple logic

functions, as, by appropriately setting the value of the input carry, it is possi-

ble to retrieve from the sum and output carry signals the result either of the

XOR, the XNOR, AND, or the OR between the two input signals, respectively. Be-

sides, all the embedded elements are properly driven by configuration signals

coming from the nCU.
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_ext

Nbit
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a) b)

Figure 3.4: a) Row word composition. b) Detail of the internal structure of the
arithmetic cell representing the 1-bit elementary LiM cell on which the row word is
built.

For what concerns the overall row word, it is given by a number of ACell

equal to the memory parallelism (Nbit). In Figure 3.4 the row word inter-

face is shown, which provides information about the kind of connections and

operands on which it can work. The BL signal is used to initialize the row

content with the word value driven by the CPU when the LiM Array is used

in data-memory mode. However, data coming from the input/output buffer or

any of the rows belonging to the LiM array can also be saved inside the storage

units, through the extB and the memInt OUT signals, respectively. Then, the

data on which the row word can perform the mentioned operations are again

the ones brought by the extB and the memInt OUT signals and the data stored

in the row word itself that is also forwarded outside of the block through the

STDOUT signal. Moreover, the ACells are always coupled with a specific row

interface to which they are directly connected, namely the RCA&LOGIC RI.

This block is the one that, taking the Cout output signal from the row word,

returns the input carry signal (Cin) to all the FAs in the row word. In this

way, a carry chain connecting all the FAs is instantiated so generating a real
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RCA. Lastly, the value of the output signal S going inside the following RIs

can be chosen among the sum signal from the RCA and the content of the

storage units.

� Input/Output Buffer

The Input/Output Buffer is the item closing the smart row chain of blocks. It

serves as further storage space, mainly exploited for saving temporary values

resulting from the application running. As illustrated in Figure 3.5, this block

is composed of a set of two registers, called input buffer and output buffer,

and three multiplexers.

INPUT BUFFERCLK

rowOUT_OUT

reset

sizeCNFG_I_O_Buff(0)

sizeCNFG_I_O_Buff(1)

sizeCNFG_I_O_Buff(2)

sizeCNFG_I_O_Buff(4)

sizeCNFG_I_O_Buff(5)
sync_clear

EN
OUTPUT BUFFER

sync_clear

EN

memInt_IN

1 0

sizeCNFG_I_O_Buff(3)

1 0

extB

0

memInt

1

Figure 3.5: Composition of the I/O buffer.

As all the computing units included in the smart row, this block can be enabled

only in the PLiM processing mode. It is designed so that the input buffer can

only save values coming from the MI memInt OUT, namely the content of either

the standard rows or the row words in any of the smart rows composing the

LiM Array. In contrast, the output buffer is dedicated to holding the value

returned by the previous RI row OUT, which can be either the content of its
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related row word storage units or the result of the programmed computation

currently carried out by the smart row. Then, two output signal come out

from the block, one going inside the row word ext B and another forwarding

the data output of the whole smart row to the MI memInt IN. Specifically,

ext B can carry the content of either the input buffer or the output one, while

the MI can receive through memInt IN either the value of the registers or the

data brought by the row OUT signal.

� Row Interfaces (RIs)

While the row word and the input/output buffer are the compulsory extremes

of the chain composing the smart row and cannot be modified (in this LiM

Array version), the RIs are the blocks filling the inside of the queue. They can

be of various nature and number and can be embedded independently on each

other. The RI block typology contains processing logic customized for the ap-

plication the generated PLiM has to run. Thus, it represents the focus of the

PLiM paradigm and is what the modularity feature of the template consists

of. Each time the PLiM model is used as the canvas for a customized LiM

device design, the main user’s task is to create the specific RIs he needs and

enter them in a given order into the smart row skeleton. However, this task is

made simple by the standardization of the external interface of the generic RI.

It means that for each new designed RI, the input, the output and the control

signals going inside and outside the block are always fixed as constraints that

the user has to follow to make the PLiM Unit work properly. On the other

hand, this limitation offers the user greater freedom in the internal layout of

the specific RI. As pointed out in the scheme in Figure 3.6, each RI has 3 data

input signals: inRI that carries the output coming from the previous interface

(that can be either the row word content or the intermediate processing result),

fromMI extB that is connected to the extB signal output by the input/out-

put buffer, and fromMI ext that holds the data provided by the MI (that is

any word of the memory array). In the case of a two operands function, the

RI selects a specific combination of 2 of the possible inputs through 2 mul-

tiplexers driven by the 2-bit configuration signal S inLogic. Concerning the

fixed output signals, these are: towRI extB that copies the fromMI extB value,
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towMI ext that forwards to the output the fromMI ext signal, and outRI that

is driven by a multiplexer controlled by the S outRI noOut 1-bit configuration

signal that chooses its value between the data carried by the inRI input signal

and the result output by the computing logic comprising the RI. It follows

that for each new RI added to the chain, only two new control signals have

to be instantiated and driven, independently of its actual composition, which

makes the few modifications to be performed on the control part easy to be

implemented.

RI Opera�ng 
Func�on

S_inLogic
2
/ 000111 10 111000 01

10

inRI

outRI

fromMI
_extB

fromMI
_ext

towRI
_extB

towRI
_ext

S_outRI_noOut

Figure 3.6: Internal structure of a generic row interface.

As it can be noticed, the number of data inputs matches the output one; this

allows a direct connection of the RIs in cascade since each input signal has

its own counterpart in the output signal of the previous block and vice-versa.

Moreover, the output interface also matches the input one of the input/output

buffer. However, there is no direct correlation between the input interface of
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a generic RI and the output of the shown row word. This is why, in smart

rows with row words composed of ACells, it is mandatory to always insert

after the row word a specific RI called RCA&LOGIC. This block has twofold

utility. As already anticipated, it is exploited to generate an RCA leveraging

the already existing FAs, and, in addition, it acts as an adapter for the easy

insertion of other RIs in cascade after it. Its input interface is complementary

to the output one of the row word, while its output interface returns the usual

3-signal package to be connected to the following generic RI or the input/out-

put buffer. Lastly, the RCA&LOGIC block combined with the ACells allow

to implement most common and basic logic and arithmetic instructions that

are listed in Table 3.1.

RCA&Logic Operations

Instruction (FUNC) Instruction definition (OpA OP OpB)

SUM OpA + OpB
SUB1 OpA - OpB
SUB2 - OpA + OpB
SUB3 - OpA - OpB
ANDop OpA AND OpB
ORop OpA OR OpB
XORop OpA XOR OpB
XNORop OpA XNOR OpB
ORopV1 OpA OR NOT OpB
OR2opV2 NOT OpA OR OpB
OR3opV3 NOT OpA OR NOT OpB

Table 3.1: List of operations the RCA&Logic RI can implement. To correctly run
one of these operations, in the instruction, the OPCODE = RCA&LOGIC i must be
combined with the related value for the FUNC field (for the meaning of FUNC and
OPCODE see section 3.1.2).

Furthermore, it is worth examining a specific row interface, inserted in the

RTL components library, that was used for the implementation of some of the

algorithms tackled in section 3.2, that is the Temporary Storage RI depicted
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in Figure 3.7.

S_inLogic
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S_outSH_noOut

fromMI
_extB
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_ext

CLK
reset

EN
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outRI towRI
_ext

towRI
_extB

REGISTER

Figure 3.7: Design detail of the Temporary Storage RI.

The function of this RI is to provide the smart row with further storage ca-

pabilities for holding a larger number of temporary variables. The design of a

new block, characterized by a functionality similar to the already existing in-

put/output buffer, is preferred over the use of another same type block because

of the design complexity that the insertion of another input/output buffer in

the smart row would imply. The PLiM template is already prepared for the

easy integration of new RIs, while it is not set up to include blocks with a

different external interface. Thus, the designed temporary storage performs a

task comparable to the input/output buffer one while having the user-friendly

RI interface. This block can be controlled through only three 1-bit configu-

ration signals instead of six, like required by the input/output buffer, and it

is composed of a register that represents the RI operating function, an input
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multiplexer that selects the data input to be loaded through the S inLogic

signal and the usual RI output multiplexer providing the outRI signal. How-

ever, some tricks are present in this block design to comply with the stated

configuration signals interface. The same control signal S outSH noOut is con-

nected to both the output mux and the enable signal of the register. It means

that each time the content of the register is sent to the outRI signal, namely

when the temporary storage data is read, at the next clock cycle, the content

of the register will be updated with the value present at its input. So, to avoid

losing the temporary storage content after each reading, the output of the reg-

ister is brought back to the multiplexer that selects the input for the register

itself. In this way, when the LiM programmer needs to access the temporary

storage in reading mode, to prevent the register content loss, he has to drive

the S inLogic so that the register is overwritten with its same output data.

This is done by specifying the special operand write back in the OPERAND field

of the instruction that enables the temporary storage (see section 3.1.2).

Memory Interface: MI

So far, the main components constituting the processing part of the LiM Array

were reviewed. Howbeit, little was told about the path of the data along the ar-

ray. The Memory Interface represents the routing network in charge of handling the

data exchange between different smart rows and standard rows, following the SIMD

paradigm. It is mainly implemented through a set of multiplexers, each driving the

input data for a different row in the smart section. In Figure 3.8 two implementa-

tions for the MI connected to the array are depicted. The scheme on the left shows

the first MI proposed in [37], while the right one details the final structure made

up during this thesis. The issued modifications allow a more flexible data transfer

which speeds up the execution of the algorithms. The designed MI can implement

two kinds of data transfer: it can provide all the smart rows with either different

data or the same data from a specified array row, depending on what is indicated

by the performed instruction. Looking at the b) case in Figure 3.8, the first column

of multiplexers on the right of the LiM Array selects the required input for the

smart rows. When an instruction specifying the up row (or the down row) operand
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in the OPERAND field is demanded, all multiplexers simultaneously select the signal

output by the standard row above (or below) the smart row they drive (”different

data case”). While, when the instruction calls the other row operand, all the mul-

tiplexers select the same signal between the two registers outputs on the left of the

LiM Array (”same data case”). Each register, in turn, is driven by a multiplexer

connected to a memory array different half, so that it is possible to retrieve the

content of any location in the array.

a) b)
Figure 3.8: a) Detailed scheme of the initial MI block connected to the LiM array
core. Example for a PLiM with a smart section on 8 smart rows and a standard
section on 7 standard rows. b) Final structure of the modified MI.

In this case, the registers act as cache registers used to split the critical path. How-

ever, in the ”same data case”, they introduce a latency of one clock cycle more to

gather the actual content of the pointed row, leading to possible data hazards due

to the pipelined behaviour of the PLiM device processing. Specifically, the MI pro-

vides to the smart rows the wrong data value when the executed instruction takes
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as other row source operand the content of a location that is written by the in-

struction that precedes it. To avoid this kind of hazard, the LiM programmer must

insert a null instruction (textttnullOP) in the middle of the two to allow the correct

updating of the cache registers before accessing them.

Lastly, the last column of multiplexers on the right of the LiM array (see Figure 3.8)

is used during the writing of the standard rows in the smart section. When a store

instruction kind is called, all multiplexers select the signal output by the smart

row above or below the standard row they drive, depending on whether the value

specified in the OPERAND field corresponds to down row or up row, respectively.

Instruction Set Architecture (ISA)

From the drafted description of the architecture, it is evident how the device can

be handled to behave like SIMD coprocessors. Concerning the portion of the in-

struction directly related to data elaboration inside the LiM array (nInstruction,

see Figure 3.1), like most processors, it is divided into fields, each associated with a

different meaning for the instruction processing. In the following, the nInstruction

composition is detailed together with the meaning of the fields in order of appear-

ance:

� OPCODE: expresses the kind of instruction to be performed, typically by speci-

fying the sequence of RIs in the smart blocks that must be activated;

� OPERAND: specifies from which storage locations the data to be elaborated

must be taken or in which locations the data must be saved, depending on the

instruction in the OPCODE. All the possible combinations of source operands

are spelt out in Table 3.2;

� OUT BUFF: tells whether the output register in the input/output buffer must

load the data at its input. Indeed, the LiM Array is organized so that the

computation results cannot be directly saved in the rows storage units, but

first, they have to be temporarily stored in the output buffers. Afterwards,

through the next instruction, the output buffers content can be loaded into

either the standard rows or the row words;
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� ADDRESS: when the OPERAND field equals to other row, it holds the address

value of the involved LiM array row;

� FUNC: when the OPCODE field equals RCA&LOGIC i, it specifies which is the

particular operation to be performed. The set of functions among which it

can choose is listed in Table 3.1.

Operands Combinations

Operand A Operand B Operand A Operand B
Row word Row word Row word Up Row
Row word Output buffer Output buffer Up Row
Row word Input buffer Input buffer Up Row
Row word Down row Row word Other Row

Output buffer Down row Output buffer Other Row
Input buffer Down row Input buffer Other Row

Special operand in case of Temporary Storage RI
Write back

Table 3.2: List of all the possible two operands combinations for a generic operation
defined as Operand A OP Operand B.

Example nInstruction

RCA&LOGIC i RowWord UpRow StoreBuff nullAdd SUM

Instruction description
All the smart rows compute the sum between their row word content and the one
of the standard row above them and save the result in their output buffer.

Since the PLiM template can be exploited to generate programmable LiM devices

customized for the application at hand, the ISA changes according to the specific

LiM Array structure. The available ISA is defined by the smart row layout and,

specifically, it is given by the particular RIs embedded in the smart row. Apart from

the ever-present basis instructions (i.e. load, store etc...), all the other instructions

are identified by all the possible combinations of sequences of RIs that need to be

enabled. The only constrain is that, in a single instruction, the data path through

the enabled RIs must follow the only allowed order, which means that, in the same
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clock cycle, data can be elaborated and passed only from the first RIs to the physi-

cally next ones and not vice-versa. An example of the logic composition of a smart

row is showed in Figure 3.9, while in Table 3.3 the whole instruction set related to

this specific smart row is reported.

ROW WORD
(Arithmetic Cells)

RCA&LOGIC

ABS

MULTIPLIER

I/O BUFFER

X

BL

MI

STDOUT

Figure 3.9: Example of the internal composition of a smart row associated with the
ISA reported in Table 3.3.

In this example, there are no single instructions that can bring data coming from

the multiplier to the input of the absolute value block. The only way to execute

such an operation is to exploit two consequent instructions: first, the value at the

output of the multiplier is stored in the output buffer, then, the data is brought

back from the output buffer to the ABS block input. Therefore, to fully exploit

the potentialities of this architecture, the RIs inclusion order inside the smart row

assumes a fundamental role in the performance maximization for a target algorithm.
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ISA Example

Instruction (OPCODE) Instruction definition (OpA OP OpB)

Basic instructions

nullOP
Null instruction used to wait for one clock
cycle to handle data hazard occurrences.

store

Copies the content of the output buffer into
either the down row or the up row according

to the OPERAND field value.

storeI

Copies the content of the input buffer into
either the down row or the up row according

to the OPERAND field value.

load

Copies into the input buffer the content of
either the down row, the up row or a row in

the standard section according to the
OPERAND field value and the added address in

case a standard section row is selected.

RCA&LOGIC i

Execute one of the operations provided by
the RCA&LOGIC RI according to the value

of the associated FUNC: OpA RCA OpB.

RIs dependent instructions

ABS i |OpA|
MULTIPLIER i OpA × OpB

RCA&LOGIC ABS i |OpA RCA OpB|
RCA&LOGIC MULTIPLIER i (OpA RCA OpB) × (OpA RCA OpB)

ABS MULTIPLIER i |OpA| × |OpA|
RCA&LOGIC ABS MULTIPLIER i |(OpA RCA OpB)| × |(OpA RCA OpB)|

Table 3.3: ISA derived for the PLiM architecture identified by the specific smart
row in Figure 3.9. Note: OpA and OpB are always derived from the OPERAND field.

3.1.3 PLiM Control

The control part represents the other novelty, besides the modular RIs mechanism,

wrought by the PLiM approach, which strongly contributes to make up a flexi-

ble template for speeding up and facilitate the design of different customized LiM

devices. The idea is to provide the user (the hardware designer) with an already
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organized control part that needs only a few changes to be customized for a specific

algorithm. Specifically, the control is subdivided into two different stages (fetch and

decode) and, for each of them, a dedicated unit is instantiated, i.e. the micro-control

unit (uCU) and the nano-control unit(nCU), respectively. When the template must

be modified to map a specific application, the only block that must be adapted ac-

cordingly is the nCU. It is in charge of properly driving the configurations signals for

the LiM Array after decoding the instruction coming from the uCU. For this reason,

it needs to be compliant with the datapath it controls, so it must be modified to

implement the new required ISA. On the other hand, the uCU, which is the unit

that takes care of handling the instruction flow inside the PLiM Unit, can remain

unaltered since, thanks to this 2-stage control implementation, it is independent of

the LiM Array structure. In the PLiM Unit model, the uCU is given by a standard

micro-programmed machine that takes care of the instruction fetching from the LiM

instructions memory. In this way, the PLiM framework not only guarantees a pre-

designed base for the control part but also confers programming capabilities to the

produced LiM device. Moreover, the use of a uCU allows the implementation of

further instructions, besides the ones in the ISA, that handle the program progress

rather than the direct data computation.

In general, an entire PLiM instruction is composed of 2 macro fields: one entrusted

to the nCU (the nInstruction), that contains all the information about the com-

putation to be performed on the specified data (as described in section 3.1.2), and

one that is taken by the uCU to decide which is the next instruction to be exe-

cuted, if there is one. Hereinafter, for the sake of simplicity, this last portion will

be called uCU Instruction. The uCU Instruction is used to code programming

flow-concerning instructions that involve explicit addressing, namely the address of

the next instruction to be fetched is explicitly included in a dedicated field of the

instruction. In the default functioning mode, the uCU always prepares to fetch the

instruction stored in the IMem at the address specified in the just fetched instruc-

tion. In this way, jump instructions are straightforwardly implemented. Then, by

setting some pre-defined bits in the uCU Instruction also jump&link and return

instructions can be performed. Specifically, the uCU contains a mechanism that al-

lows saving the address of the instruction where to return after a return instruction

is called. The textttreturn instruction is identified by looking at the values assumed
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by the ”return” bits of the textttuCU Instruction.

Moreover, the uCU takes care of another major task aimed at the correct functioning

of the whole PLiM Unit. This block handles the two functioning modes of the PLiM

Unit: simple data memory mode and processing mode. Thus, it is composed of a

set of components, mainly registers, that is used to start the PLiM in the working

mode when the Start LiM signal, coming from the scheduler, is asserted. When

Start LiM toggles to 1, the uCU takes 3 clock cycles to fetch the first instruction.

Therefore, the total latency to retrieve the results for the first instruction is given

by the sum among the 3 clock cycles employed by the uCU for the initialization,

the 1 clock cycle required by the nCU for the decoding phase, the 2 clock cycles

taken by the LiM Array to perform the data computation and store the result. It

follows that the PLiM Unit overall latency equals 6 clock cycles. However, after the

initialization phase, namely, after the pipeline constituting the architecture is full, a

PLiM device completes one different instruction after each clock cycles. Therefore

it shows a throughput of 1 instruction per clock cycle. Nevertheless, if the data

throughput is considered, once the pipeline is full, this equals the number of smart

rows integrated into the LiM Array.

Lastly, as already said, the instruction decoding task is performed by the nCU block

that is mainly based on a set of small decoders, each dedicated to a different field

of the nInstruction. The output signals by all of these blocks directly go inside

the LiM Array, acting as control signals. Besides, the decoders are also connected

to the handler of the MI, called Mem Int Unit, that is the component, located in

the nCU, that controls the data exchange in the LiM Array based on the fetched

instruction, also by adequately handling the cache registers inside the MI.

For further details on the specific uCU and nCU schemes refer to [37].

3.2 PLiM Performances on Benchmarks

So far, the PLiM framework was outlined, as it was conceived in [37]. This section

illustrates the study conducted during this thesis about the applications for which

the PLiM template can be suited. The investigation goal is to track down the

strengths of this architecture and the cases where they are exploited to the full.

However, this also leads to standing out the counterpart, namely when the generated

63



3 – Programmable LIM

PLiM device fails to perform the tested algorithm efficiently. Hence, the features

that make the architecture work poorly are derived and treated, too.

Five benchmarks are covered:

� K-Nearest Neighbour

� Matrix-Vector Multiplication

� K-means

� Mean & Variance

� Discrete Fourier Transform

The first three are examples of algorithms with a high level of parallelism, like the

data-intensive applications, which can benefit from the combination of the SIMD

computation arrangement and the LiM attribute of the generated devices. In partic-

ular, the first benchmark can be fully parallelized, while the other two are composed

of both a code portion that fits well a SIMD implementation and a sequential part,

less compliant with the PLiM Unit idea. Then, the last two benchmarks are picked

to bring out the sore points of the PLiM model, so identifying which are the features

the algorithms that are poorly mapped on it share. These algorithms are basically

iterative routines characterized by data dependencies between different iterations.

The reported discussion is organized so that for each of the benchmarks, it is clear

which is the algorithm portion actually implemented by the PLiM device, how the

smart row is modified to customize the PLiM model for that application and how

the LiM Array content is properly initialized, and the logical steps that compose the

LiM program corresponding to the stated benchmark (for each step the number of

LiM instructions employed to perform it is noted). The benchmarks are approached

in a parametric way, meaning that the number of data samples they work on and

all the other possible algorithm parameters are not explicitly fixed to a particular

value but are kept in a generic form. It means that the number of instructions

involved for a certain benchmark is not stated as an absolute value but in terms

of the number of samples considered. From the execution time esteem standpoint,

the number of clock cycles needed to perform a generic benchmark is expressed as

the sum among the clock cycles taken to properly initialize the content of the LiM
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Array with the data to be elaborated, the number of LiM instructions required to

run that benchmark, and the overall latency of the PLiM architecture. The detail

of the single contributions in the total number of clock cycles for each benchmark is

specified in Table 3.9.

3.2.1 K-Nearest Neighbour (K-NN)

The K-NN belongs to the machine learning branch of algorithms, aiming at data

classification. Its goal is to classify a new incoming sample starting from a predefined

set of classes and a training dataset, where each sample is associated with one of

the known classes. The K-NN assigns the class to the query sample through a

majority vote, looking at the classes of the K nearest samples in the training dataset.

Generally, the data are d-dimensional, and the metric for evaluating the distances

between sample a and b is based on the Lp norm (or Minkowski distance):

Lp(a,b) =

(
d∑
i=1

|ai − bi|p
) 1

p

, (3.1)

where p defines the particular chosen norm.

Here, the PLiM structure is modified to implement all the distances computations

among each sample in the dataset and the new sample. Thanks to the SIMD process-

ing mode, the evaluation of the distances can be performed in very few instructions

independently of the dataset size.

Algorithm to be mapped

Given a bi-dimensional dataset (d = 2) composed of N samples (xi,yi) and the sample

to be classified (xs,ys), compute all the N distances Di between the dataset samples

and (xs,ys), using the Manhattan norm (p = 1):

Di = |xs − xi|+ |ys − yi| (3.2)
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PLiM Structure & Algorithm mapping

The K-NN mapping on the PLiM Unit is thought of to associate with each cou-

ple made of smart row with the related standard up row a different 2-dimensional

sample of the dataset, while the target sample is saved occupying two locations in

the standard section (one for xs and the other for ys). Specifically, the LiM Array

must be made of at least N smart rows and two standard section rows. Each of the

N row words is initialized with the associated xi value, while its up row contains

the yi value. Then, at the end of the benchmark execution, the results (i.e. all the

distances) will be stored in the standard down rows.

It follows that the CPU will take 2 × N + 2 clock cycles to correctly load all the

involved data in the memory array before the algorithm starts, using the standard

write mechanism for a one single write port data memory.

Moreover, to perform the required operations, the structure of the smart row em-

bedded in the LiM Array, beside the evergreen RCA&LOGIC RI, must include the

ABS RI, aimed at computing the absolute value involved in the distance formula.

The information about the cells initial content and the smart row layout is summa-

rized in Figure 3.10.

yi+1

yi
xi

I/O BUFFER
ABS

RCA&LOGICSmart Rowi

Standard Sec�on

Xc0

ys
yc0Xs

Smart Sec�on

Figure 3.10: Smart row composition and LiM array content initialization for the
K-NN benchmark.
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Steps #Instructions

1. Save into the input buffers all the yi values to free

the up/down rows.

1

2. Compute all the |xs − xi| terms and save them into

the down rows.

2

3. Compute all the |ys − yi| terms and save them into

the output buffers.

1

4. Compute the final sums and store them into the down

rows.

2

# Instructions K-NN 6

3.2.2 Matrix-Vector Multiplication (MVM)

The MVM function falls within the set of applications that can be successfully

mapped onto the PLiM since it is mainly based on a set of data multiplications

and sums that can be executed simultaneously if the data inside the LiM Array are

properly placed. The MVM operation is defined as:

Z = X × Y where X ∈ Ru×v,Y ∈ Rv×1,Z ∈ Ru×1 (3.3)

Even if the PLiM implementation of this benchmark is pretty much faster than the

standard processors one, unlike the K-NN, the number of LiM instructions needed

to perform it depends on the size of the elaborated data.
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Algorithm to be mapped

Given N matrices X ∈ Ru×v and N vectors Y ∈ Rv×1, compute N matrix multipli-

cations, each on a different couple of X and Y , evaluating for each product all the

u elements zi of the resulting vector Z ∈ Ru×1:

zi =
v−1∑
j=0

xi,jyj , with i = 0, 1, ..., u-1 (3.4)

PLiM Structure & Algorithm mapping

To fully exploit the SIMD elaboration capability of the PLiM Unit, the array has

to be initialized so that all the products contributing to the final vector elements

are computed in parallel, each through a different smart row. For this reason, the

X matrix elements are stored each in a different row word. Specifically, the first v

locations of the array contain the elements of the first X matrix row, then the fol-

lowing v row words hold the elements of the second X row, and so on. Besides, the

yj elements are saved multiple times inside the array to enable the direct execution

of all the products in a single LiM instruction. The Y is copied u times filling the

up rows, starting with the first up row that is initialized with the y0 element, then

the following one is filled with the y1 element, and so on. Once all the Y elements

are over, the next up row is driven again with the y0 element, going on with the

filling of following up rows by repeating the same previous association. It follows

that the LiM array must comprise at least u×v smart rows while no constraints are

present for the sizing of the standard section. Once the algorithm has been run, the

final values of the Z elements will be stored in the down rows, with the following

correspondence: the zi element will be contained in the (2× i)th down row.

Concerning the number of clock cycles required for the LiM Array content initial-

ization, this corresponds to 2× u× v.

From the smart row composition standpoint, apart from the RCA&LOGIC RI re-

quired for computing the final sums, a further RI aimed at performing the products

must be added, i.e. the multiplier, as shown in Figure 3.11.
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yj+1

yj
Xi,j

I/O BUFFER
MULTIPLIER
RCA&LOGIC

Smart Row

Smart Sec�on

Figure 3.11: Smart row composition and LiM array content initialization for the
MVM benchmark.

Steps #Instructions

1. Save into the input buffers all the yj values to free

the up/down rows.

1

2. Compute all the xi,jyj terms and save them into the

row words and in the down rows.

3

3. To compute in parallel all the final sums that gen-

erate the Z elements: execute each sequential sum

that returns the zi element by propagating along the

array the values of the related partial sums. Each

partial sum result is obtained by taking the previous

result stored in the up row, summing it to the row

word content and then saving it again into the down

row. This step is repeated for v− 1 times to gain the

final values of the Z elements.

2× (v − 1)

# Instructions MVM 4 + 2× (v − 1)
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3.2.3 K-means

Another machine learning application selected as a testbench for the LiM Unit is the

K-means. It is used for clustering a set of data into K groups based on similarities

that are common to the samples included in the same cluster. So, the K-means

performs a task that resembles the data classification one, but, differently from the

K-NN, it works in an unsupervised way. It means that, to classify a sample, it does

not rely on an already classified training dataset known at prior, but it relies on

the information on the data features identifying a specific class (or cluster) gathered

during its same execution. For this reason, it is an iterative algorithm, which con-

verges to the final composition of the data clusters by repeating the same routine

multiple times. The metric used to state if the samples are similar is again their

distance. Data that result close in the d-dimensional samples space are considered

similar and are assigned to the same group. K initial reference samples, called cen-

troids, are provided before the algorithm starts to perform the data clustering.

The K-means iterative routine is divided, in turn, into three subroutines: first, all

the distances between the dataset samples and all the centroids are evaluated, then

an initial clustering is proposed by assigning each data sample to the nearest cen-

troid. Once K groups of samples are gathered, the new reference point for each

cluster is retrieved by computing the mean among the samples belonging to that

specific cluster. These three steps are repeated until the composition of the clusters

at the end of the macro-routine remains the same as the one at the beginning of the

same step.

Here, the PLiM design is customized to map the first two subroutines of the macro

iterative step. The distances evaluation task can be massively sped up thanks to

the device processing parallelism. Moreover, the samples assignment task is carried

out in parallel for all the data. Therefore it can equally benefit from the PLiM

structure parallelism. However, it still remains a part to be run sequentially. All

the distances between the centroids and a specific dataset sample are sequentially

compared and, for each sample, the smallest distance is saved with the information

about the centroid (or the cluster) to which that distance refers.

It follows that, although most of the operations can be executed simultaneously, the

duration of the K-means still depends on the required clustering, and, specifically,
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it is proportional to the number of clusters in which the dataset must be grouped.

Algorithm to be mapped

Given a 2-dimentional dataset composed of N samples (xi,yi) and K centroids

(xcj,ycj), find for each of the sample the closest centroid and save both the related

distance value and the number of the centroid to which that distance refers.

Implement the requested task following the procedure below.

fa for j in K centroids (xcj, ycj) :

fammoc for i in N samples (xi, yi) :

fammocmoc Di = (xi - xcj)
2 + (yi - ycj)

2;

fammocmoc if j = 0 :

fammocmocmoc ClusterIDi = j;

fammocmocmoc SmallerDi = Di;

fammocmoc else :

fammocmocmoc if Di < SmallerDi-1 :

fammocmocmocmoc ClusterIDi = j;

fammocmocmocmoc SmallerDi = Di;

PLiM Structure & Algorithm mapping

To accomplish the K-means algorithm parallelizing the mentioned steps, like in the

K-NN case, each smart row of the LiM Array is dedicated to a different dataset

sample. In particular, the row word contains the yi sample value while the related

up row the xi one. Then, all the centroids are saved in the standard section with

their identification (ID) number. Therefore, the K-NN needs the LiM Array to in-

volve a standard section composed of at least 3 ×K locations and a smart section

characterized by N smart rows.

It follows that the array content initialization lasts for 2×N + 3×K clock cycles.

Concerning the centroid ID use, this is exploited to encode the final association be-

tween the samples and the centroids. More in deep, the data inside the algorithm are

handled to keep the most significant bits as a dedicated field that, once a distance

is computed, stores the centroid ID to which that distance refers. In this way, it is
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possible to keep track of the association between the smaller distances and the asso-

ciated centroids until the algorithm’s end. It means that the single data is composed

of two different fields: the one involving the MSBs is assigned to the ID information,

while the LSBs hold the distance value information. Therefore, for instance, if the

memory parallelism is of 16 bits and K equals 3, the first 2 MSBs will contain an ID

number, while the lower 14 bits will express a distance value. Moreover, the gener-

ation of this kind of data is performed through or-masking operations; therefore, in

the example, the initial ID values stored in the standard locations will be given by

the ID value shifted left by 14 positions.

Furthermore, at the end of the algorithm execution, the final results (that provide

for each sample the cluster it belongs to and the distance from the cluster centroid)

are stored each in the down row of smart row it was assigned originally.

Lastly, the smart row structure needs to be considerably extended by inserting a

series of further RI besides the RCA&LOGIC one, as illustrated in Figure 3.12.

xi+1

xi
yi

I/O BUFFER

MULTIPLIER
RCA&LOGIC

Smart Rowi
TEMPORARY STORAGE

TEMPORARY STORAGE
COMPARATOR

Standard Sec�on

Xc0
Xc0
yc0

Xc(k-1)
yc(k-1)

yc0

0 << (Nbit-log2 k)

k-1 << (Nbit-log2 k)

Smart Sec�on

Figure 3.12: Smart row composition and LiM array content initialization for the
K-means benchmark.

It must include a multiplier to perform the square function, a series of temporary

storages and a customized comparator. Since the K-means execution is organized

first to evaluate all the distances between all the dataset samples and the centroids

and then all the associations, further storage space is required inside the single

smart row to store all the distances between the sample smart rows stores and all

the centroids. Thus, inside each smart block, K temporary storages are instantiated.
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The comparator block is, instead, exploited during the association of the samples to

the closest centroid. It is a simple combinational block that takes two data input,

compares the two data portions holding the distance information and returns a data

containing in the LSBs the value of the smaller distance and in the MSBs the ID

centroid number referred to it.

Steps #Instructions

1. Save into the input buffers all the xi values to free

the up/down rows.

1

2. Compute all the (xi−xcj)2 terms and save them into

the down rows.

2

3. Compute all the (yi− ycj)2 terms and save them into

the output buffers.

1

4. Compute the final sums (distances) and save them

into the output buffers.

1

5. Apply a mask on the computed data to force their

MSBs to be equal to the centroid number they refer

to and save the results in the first Temporary Stor-

ages.

1

6. Repeat steps 2., 3., 4. and 5. for all the k centroids,

changing each time the Temporary Storages where

the final results are stored.

5× (K − 1)
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7. Compare the content of the first two Temporary Stor-

ages (excluding the MSBs identifying the centroid)

and save the lowest value, together with the ID it

refers, in the down row.

5

8. Repeat step 7 for other K - 2 times, taking each time

the data in the down row and the one in the next

Temporary Storage.

3× (K − 2)

# Instructions K-means 8×K − 1

3.2.4 Mean & Variance (µ&σ2)

Calculating the mean and the variance on a set of data represents the first faced ap-

plication that does not perfectly fit a PLiM implementation. The reason is that the

parallel processing potentiality of the PLiM architecture cannot be fully exploited

since this benchmark involves several interdependent sums, each on a number of

elements equal to the dataset size, which can only be performed one after the other

in a defined order. Moreover, it follows that the number of instructions employed

to perform both computations grows accordingly with the number of considered

samples.

Algorithm to be mapped

Given a set of N data, compute the mean µ and the variance σ2:

µ =
N−1∑
i=0

xi
N
vaffa; vaffaσ2 =

∑N−1
i=0 (xi − µ)2 − [

∑N−1
i=0 (xi−µ)]

2

N

N
(3.5)

PLiM Structure & Algorithm mapping

Like for all the benchmarks treated previously, the LiM array is initialized to keep

the usual association smart row - sample. Thus, each row word has to hold a differ-

ent data xi of the dataset. While, from the standard section standpoint, only two
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other values must be stored (0 and log2N) representing constants used during the

algorithm execution. Then, in the end, the resulting µ and σ2 values will be stored

in the down row and in the row word of the last smart row, respectively.

Hence, the LiM Array must be sized to include a standard section of at least 2 lo-

cations and a smart section on N smart rows, whereby the LiM Array initialization

will take N + 2 clock cycles.

Here, the smart row needs to be carefully designed to avoid an extreme overhead

in terms of complexity and power consumption. As outlined in Figure 3.13, four

other RIs are embedded, in the order: an AR Shifter, 2 Temporary Storages and a

Multiplier.

Smart Rowi

xi

I/O BUFFER

AR SHIFTER N POS
RCA&LOGIC

TEMPORARY STORAGE
TEMPORARY STORAGE

MULTIPLIER

0
yc0log2 n

Standard Sec�on

Smart Sec�on

Figure 3.13: Smart row composition and LiM array content initialization for the
µ&σ2 benchmark.

It is worth noting that, unlike previous benchmarks, the multiplier is put at the

tail. This is done to take full advantage of the smart row structure and use the last

Temporary Storage as if it were a standard source operand. Looking at the algo-

rithm steps listed below, in step 9, the temporary storage content can be directly

taken and passed to the multiplier. Then the produced result can be stored in the

output buffer, all during a single instruction. While, if the multiplier were inserted

above that temporary storage, two instructions would be required to perform the

same operations. Moreover, to perform the divisions by N , a programmable Nbit

positions arithmetical right shifter is inserted inside the smart row, meaning that

the generated PLiM cannot be used to perform this benchmark for any value of N ,
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but the size of the target dataset needs to be a power of 2. This constraint cannot

be avoided since, otherwise, one divisor block should be inserted into each smart

row, leading to a prohibitive area and power overhead.

Steps #Instructions

1. Compute
∑N−1

i=0 xi, by repeating for N times the ad-

dition between the content of the row word xi and

the up row and the storing of the result in the down

row.

2×N − 1

2. Compute the µ by shifting the result (contained in

the output buffer of the last smart row) of log2N

position towards right and save it into the down row.

2

3. Save into the first Temporary Storages all the xi val-

ues to free the row word locations.

1

4. Save in all the input buffers the computed µ. 1

5. Compute all the xi−µ terms and save them into the

rows and down rows.

3

6. Compute
∑N−1

i=0 (xi−µ), by repeating for N−1 times

the addition between the content of the row word

(xi − µ) and the up row followed by the storing of

the result in the down row. Save the result of the

last iteration in the other Temporary Storage (the

second one).

2×N − 3

7. Compute all the (xi − µ)2 terms and save them into

the rows and down rows.

3
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8. Compute
∑N−1

i=0 (xi−µ)2, by repeating for N−1 times

the addition between the content of the row (xi−µ)2

and the up row and the result storage into the down

row.

2× (N − 1)

9. Compute sum32

N
, by multiplying by itself the content

of the second Temporary Storage and then shifting

the result of log2N positions towards right. Save the

outcome into the output buffer of the last smart row.

2

10. Compute the final variance, by taking the content of

the last down row
(∑N−1

i=0 (xi − µ)2
)

and subtracting

the content of the output buffer
(
sum32

N

)
, then again

shift right the result of log2N positions and store the

final result into the last row word location.

3

11. Take the µ value contained in all input buffers and

copy it in the related down row.

1

# Instructions µ & σ2 6×N + 10

3.2.5 Discrete Fourier Transform (DFT)

The last tested benchmark is the DFT, whose PLiM implementation shows a per-

formance trend similar to one of the mean and variance algorithm. Here, the PLiM

Unit carries out the evaluation of a single frequency component, which is character-

ized by a first parallelized phase, followed by a more serial one.

It derives that, again, the instruction amount deployed in this benchmark grows

linearly with the number of timing samples. Although more efficient algorithms

are proposed to perform this function in the literature, here the straightforward

expression is implemented to pop the criticalities of the PLiM framework.
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Algorithm to be mapped

Given a set of N timing samples xi, compute the k-th frequency component Xk:

Xk =
N−1∑
i=0

xi ×
[
cos

(
2πik

N

)
− j sin

(
2πik

N

)]
(3.6)

PLiM Structure & Algorithm mapping

The LiM Array is organized so that the first half of the smart section is dedicated

to the computation of the real part of the frequency component, while the second

half processes the imaginary contribution, so that both terms can be elaborated in

parallel in the same array. For this reason, during the memory initialization phase,

the set of timing samples is entered twice in the array, one for preparing the pro-

cessing of the real value and one for setting up the imaginary part elaboration. For

each of the two macro-blocks in which the smart section is split, the row words

are filled with the i index value, namely 0 for the first row word, 1 for the second

and so on till the macro-block end. Then, in each up row, the value of the timing

sample, associated with the index i stored in the related row word, xi is stored.

As for the previous benchmark, the standard section is used to store 5 values of

constants that are: k, which identifies the required frequency component, 2*pi that

is a known value called in Equation 3.6, and log2N , 0, and 1 that are used by the

smart rows RIs to accomplish some specific functions, like the cosine, the sine and

the division by N functions. Concerning where the real and imaginary part results

will be available at the algorithm end, these will be retrieved from the last down

rows of both macro-blocks.

Summing up, the LiM Array must contain at least 2×N smart rows and 6 standard

section rows. Hence, initializing the LiM Array content 4 × N + 5 clock cycles is

needed.

Furthermore, Figure 3.14 portrays how the PLiM smart row has to be customized

for this benchmark.
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Figure 3.14: Smart row composition and LiM array content initialization for the
DFT benchmark.

The RIs chain is composed of the sequence of the standard RCA&LOGIC, exploited

to perform the final sums, a multiplier, for all the product operations, an arithmeti-

cal Nbit positions right shifter, to perform the division by N, a final customized 32x6

bits LUT block handled to implement the cosine and the sine functions. Once more,

there is a constraint on the N value that can be only equal to a power of two due

to the same reason as the previous benchmark. For the cosine and sine functions

implementation, the CwM technique is exploited. Sine and cosine are performed

in a discretized way. It means that several sampled values from the trigonometric

functions (16 for each of them) are saved in the LUT. In this way, when the LUT

is addressed with the data on which the function must be applied, the closest ap-

proximated sine or cosine value is returned. Despite the smart section is thought of

so that the first half has to perform only the cosine function while the second the

sine one, there is no way to diversify the smart row composition so that the smart

rows belonging to the first macro-block include a LUT only providing the cosine

function while the ones in the second macro-block embed a LUT implementing only
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the sine function. It means that the LUT block has to include both functions and,

to distinguish between the two, it must take two input data, one forwarding the

value on which the trigonometric function must be evaluated and one expressing if a

sine or a cosine processing is required. Note that a configuration signal cannot carry

this choice because the interface of the generic RI is fixed, as already explained.

Moreover, being the computing model a SIMD one, to correctly achieve the real and

the imaginary values, the enable per macro-blocks mechanism must be used. When

the first half of the LiM array has to evaluate the cosine, the second half must be

disabled, and vice-versa to avoid the overwriting of the other half results.

Steps #Instructions

1. Compute all the 2πik
N

terms and save them into the

output buffers.

3

2. Enable only the upper half of the smart section and

compute all the cos(2πik
N

) terms, by giving to the LUT

the content of the output buffer and the value 0,

taken from the standard section, and save them into

the output buffers.

1

3. Enable only the lower half of the smart section and

compute all the sin(2πik
N

) terms, by giving to the

LUT the content of the output buffer and the value

1, taken from the standard section, and save them

into the output buffers.

1

4. Compute all the xi × cos(2πik
N

) and xi × sin(2πik
N

)

terms, by multiplying the output buffers content with

the row word locations, and save the results in the

row words themselves.

2
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5. Save into the input buffers all the xi values to free

the up/down rows.

1

6. Store the value of the output buffers into the down

rows.

1

7. Compute the final sum, by repeating for N −1 times

the addition between the content of the row word and

the up row, followed by the storing of the result in

the down row. The final value of Xk will be stored

in the down rows of the last smart row of both smart

section macro-blocks.

2× (N − 1)

# Instructions DFT 2×N + 7

Algorithms
# LiM initialization # Algorithm # Algorithm

clock cycles instructions clock cycles
K-NN 2×N + 2 6 2×N + 14
MVM 2× u× v 4 + 2× (v − 1) (2 + 2× u)× v + 8

K-means 2×N + 3×K 8×K − 1 2×N + 11×K + 5
µ&σ2 N + 2 6×N + 10 7×N + 18
DFT 4×N + 5 2×N + 7 8×N + 18

Table 3.9: Detail on the number of clock cycles required by each tested benchmark
to complete its execution.

3.2.6 PLiM Performance Results

To complete the study and gather more realistic details about the performances

achieved by the customized PLiM devices, the generated architectures for all the

benchmarks were synthesized and then passed through the place&route process.

The results coming out from these analysis steps are reported in Table 3.10 and Ta-

ble 3.11, respectively. Note that the LiM Array was implemented through standard

cells using the Nangate45 library.
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Algorithms K-NN MVM K-means µ&σ2 DFT

Parameters N = 256
u = 16, v = 16 N = 256

N = 256 N = 128t = 1, N = 1 K = 3
Area

0.46 0.59 0.8 0.74 1.07[mm2]
Critical Path

4.2 4.68 5.28 6.43 5.77[ns]
Max Clock Frequency

238.09 212.76 188.67 153.84 172.41[MHz]
Power

60.56 60.99 79.78 61.68 119.99[mW]
Execution Time

526 552 550 1810 1042[#Clock Cycles]
Execution Time

2.2 2.59 2.91 11.76 6.04[µs]
Energy

0.13 0.15 0.23 0.72 0.72[µJ]

Table 3.10: Worst case performance achieved after the synthesis process for all the
benchmarks-customized architectures.

To better understand and compare the performance among the different bench-

marks, apart from the smart row composition that, as already said, is customized

for each application, the LiM Array size chosen is the same for all the synthesis.

LiM Array Structure

Standard Section: #Standard Rows = 159

Smart Section: fa #Standard Rows = 257 , #Smart Rows = 256

Smart Section: fa #Enabling Blocks = 4 , #Smart Rows ∀ Block = 64 Mac

# Total Rows = 672 , Memory Parallelism (Rows width) = 16 bits

=⇒ Addressable Space = 1344 bytes

Hence, the number of samples N on which the benchmarks were run was chosen to

maximize the use of all the smart rows. In this way, the throughput under the

same (worst case) power consumption is enhanced, causing, in turn, a drop in the

energy per sample expense. Therefore, each benchmark was run on the maximum

number of samples allowed by the combination of the LiM Array structure with the

initialization constraints for that benchmark (as described in the previous sections
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3.2.1, 3.2.2, 3.2.3, 3.2.4, 3.2.5). In the Parameters row of both Table 3.10 and Ta-

ble 3.11 the specific values set for all the parameters proper of each algorithm are

spelt out. As it can be noticed, most of the benchmarks work on a dataset on 256

samples, while the DFT processes a halved dataset due to the splitting of the result

in imaginary and real contributions. Lastly, the MVM represents a special case since

it runs on a different data typology, i.e. matrices and vectors. Nevertheless, all of

them succeed in exploiting all the available smart rows to parallelize and speed up

the execution of all the required tasks as much as possible.

Algorithms K-NN MVM K-means µ&σ2 DFT

Parameters N = 256
u = 16, v = 16 N = 256

N = 256 N = 128t = 1, N = 1 K = 3
Area

0.43 0.56 0.78 0.74 1.03[mm2]
Critical Path

4.01 3.92 4.08 4.11 4.21[ns]
Max Clock Frequency

243.9 250 243.9 238.09 232.55[MHz]
Power

246.13 430.05 604.4 578.74 614.85[mW]
Execution Time

526 552 550 1810 1042[#Clock Cycles]
Execution Time

2.15 2.2 2.25 7.6 4.48[µs]
Energy

0.52 0.94 1.35 4.39 2.75[µJ]

Table 3.11: Worst case performance achieved after the place&route process for all
the benchmarks-customized architectures.

The discussion here presented directly relates to the post place&route analysis since

it is the most faithful to the actual performance the devices could achieve due to

the more detailed technology models on which it works. Thus, taking a look at

Table 3.11, different information on each of the PLiM architectures, specifically

customized for each algorithm, can be retrieved, such as on-chip area occupation,

maximum allowed clock frequency, and worst-case power and energy consumption.

First of all, it must be highlighted that the values shown for the metrics in the last
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three tables rows were obtained with a clock rate equal to the maximum clock fre-

quency allowed. Then, it is worth first focus on the critical path and power metrics

that are tightly correlated to the smart row composition but disjointed from the size

of the considered dataset.

For all the benchmarks, the critical path covers both the MI, which, due to the initial

LiM Array setting, always has the same structure, and the entire smart row, since

it is mostly made up of chained combinational blocks, as the modular RI insertion

mechanism requires. So, the slowest PLiM architecture is the one performing the

DFT (Critical Path = 4.21 ns). Recalling the RIs series constituting the DFT smart

row, the critical path passes through a 16 bits RCA block, followed by a multiplier on

16 bits input data, a programmable 16 positions shifter (in practice given by a mul-

tiplexer with 16 inputs each on 16 bits), and a series of multiplexers that bypasses

the LUT (implemented through registers) and it ends into the MI. On the contrary,

the fastest device is the one returning the MVM results (Critical Path = 3.92 ns)

because the RIs inside the smart row are only given by the 16-bit RCA&LOGIC

block and a successive 16-bit multiplier. However, the speed difference between

these two architectures is relatively small (0.29 ns). This happens because, for all

the benchmarks, the main contributions to the total critical path are given by blocks

belonging to the compulsory starting base of the PLiM Unit, namely, by the collec-

tion of MI, row word and input/output buffer that take altogether about 1.5 ns and

by the RCA&LOGIC RI that employs about 1.3 ns. Moreover, another remarkable

contribution comes from the commonly used multiplier RI, which runs for about 0.6

ns. From here, the first weakness of the PLiM model emerges, as, differently to what

typically happens, the processing of sums operations takes double time compared

with the products one. The reason is that, while the multiplier block is instantiated

in its optimized form, the sums are performed through an RCA component, which is

the least efficient adder in terms of timing due to the carry chain which propagates

along all the FAs in the row word. It follows that the bigger the memory parallelism,

the longer the critical path. Moreover, the cascade-like development of the smart

row seems to be the leading cause for the significant length of the critical path,

which would result in a shorter version if the modular structure of the RIs were

designed to have all the RIs placed side by side instead of in sequence. Through

this arrangement, the critical path would be dictated by the slower RI component
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instead of the sum of all the embedded RIs. Estimating the DFT critical path case,

it would be reduced by about 1 ns, reaching a maximum clock frequency of 333 MHz

instead of 232 Mz. It must be noticed that, in this way, there would be no more

”composed” instructions in the ISA (the ones given by the enabling of multiple RIs

in sequence in the same clock cycle). Whereby, some of the operations which, in the

original version, require a single clock cycle to be processed, with this new smart

row composition, would need to be computed through a sequence of simpler instruc-

tions and employ more than one clock cycle. However, analyzing the LiM codes

associated with all the mentioned benchmarks, this kind of complex instructions

are very rarely used. Therefore, the benefit in terms of total algorithm execution

time, which would be gained because of the improved operating frequency, would

extensively compensate for the negligible increase in the total clock cycles required

to complete the application.

Summing up, the maximum clock frequency among all the customized devices ranges

from about 232 MHz to a maximum of 250 MHz, reached in the MVM case.

Then, from the worst-case power standpoint, the architecture performing worst is

once again the DFT one, even if it reaches a value similar to the ones of the k-

means and µ&σ2 devices (600 mW in the average). However, unlike the critical

path metric, the power range between the most and the least consuming systems is

significant and equals 370 mW. The reason for this remarkable difference lies again

in the structure of the single smart row, which, in the most efficient case (K-NN

with power = 246 mW), is only given by the RCA&LOGIC block and the abso-

lute value evaluator, while, in the least one (DFT with power = 614 mW), it is

composed of the RCA&LOGIC block, the multiplier, the programmable shifter and

the LUT (composed by 32 registers on 6 bits each). Support for this argument is

get by taking a look at the algorithms characterized by similar power consumptions

(K-means, µ&σ2, and DFT), as their related PLiM platforms all integrate smart

rows with similar structures, both concerning the number of included RIs and their

functionality. Moreover, it is worth mentioning that the power consumption di-

rectly grows with the clock frequency used to retrieve the circuit power estimation.

However, the set frequencies do not vary much from one benchmark to the other,

and, therefore, they do not affect the visible differences in the power consumptions.

Lastly, from Table 3.11 it can be seen that the area occupation among the different
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benchmarks follows the same trend of the power consumption, going from 0.43 mm2

in the best case (K-NN) to a doubled area occupation in the worst case (DFT, area

= 1.03 mm2). That is because, as the power, also the area is strictly related to

the structure of the smart rows, assumed that the number of rows forming the LiM

Array is the same for all the cases.

So far, all the results for the metrics uncorrelated with the number of processed sam-

ples were commented. However, for the remaining metrics, namely, the execution

time and the energy, the samples number plays a major role. How the execution

time depends on the dataset size changes according to the particular algorithm con-

sidered and, in Table 3.9, the expressions describing these relations are detailed for

all the benchmarks. Referring once again to Table 3.11, the execution time strongly

depends on the number of clock cycles required to execute the benchmarks rather

than the clock period. This could be expected since the difference in the benchmarks

clock period is not so relevant, as already highlighted. The slowest algorithm is the

µ&σ2 (7.6 µs) followed by the DFT (4.48 µs), while the remaining three benchmarks

show about the same time value. Both the slowest algorithms are characterized by

sums operations involving a number of elements equal to the dataset size and that,

as already explained, do not fit well the PLiM computing paradigm. While, for

the other benchmarks, the correlation between the instructions number and the

samples number is slight and, in particular, the total execution time is driven by

the memory content initialization phase. Indeed, for the fastest benchmark (K-NN,

execution time = 2.15 µs) the instructions number is totally disjointed from the

number of elaborated data. Furthermore, as summarizing metric to evaluate the

goodness of architectures derived through the PLiM model, the worst-case energy

consumption is computed, multiplying the execution time by the worst-case power.

The outlined trend replicates the execution time one, meaning that the execution

time has a leading role in the total energy consumption, representing the actual

issue to tackle when trying to improve the system performance. In conclusion, in

terms of energy costs, the least efficient system is the one generated for the µ&σ2

benchmark (4.39 µJ), while the most performing architecture is the one linked to

the K-NN algorithm (0.52 µJ).

Ultimately, since, as already stated, the number of considered samples differs for

each benchmark, to provide a further and fairer analysis on the suitability of the
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PLiM model for different algorithms, in Figure 3.2.6 the values for the execution

time, power and energy evaluated on a per-sample basis are reported, so gaining a

picture of the performance accomplished by the PLiM architectures that abstracts

from the specific dataset considered.

a) b)

c)

Figure 3.15: The PLiM devices performance trends across all the benchmarks, con-
cerning a) the execution time, b) the worst-case power, and c) the worst-case energy
consumption, are outlined on a per-sample basis.
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Starting from the power/sample, the trend across the different benchmarks reflects

the total power one since, as already said, the worst-case power has no direct de-

pendence on the number of samples. So, the best power consumption is achieved by

the structure that implements the K-NN (0.96 mW/sample) while the worst by the

DFT architecture one (4.8 mW/sample), returning a difference of 80% on the power

expense. Then, dealing with the metrics which are actively affected by the dataset

size, a turnaround is felt concerning the achievements of the last two benchmarks.

Both for the execution time and the energy metrics, the values on a per-sample

basis show performances that worsen in the DFT architecture compared with the

µ&σ2 case. The reason is that, while the DFT system processes a samples number

that is half the number of data elaborated by the µ&σ2 platform, the difference

both in the total execution time and in the energy consumption is less than half.

Anyway, the execution time/sample and the energy/sample graphs clearly point out

for which kind of algorithms the PLiM model acts as a perfect canvas to develop

customized solutions and for which it does not. The algorithms that profitably ex-

ploit the PLiM Unit processing parallelism (K-NN, MVM, K-means) perform about

70% - 80% better than the ones who do not (µ&σ2, DFT), reaching, in the best

case, about 8 ns/sample and 2 nJ/sample for the execution time and the energy, re-

spectively, while touching in the worst one 35 ns/sample and 21.48 nJ/sample values.

3.3 Conclusions

The PLiM framework represents a template for designing programmable LiM cus-

tom solutions that follow the SIMD computing paradigm.

From the analysis carried out on the performance results, it derives that, as expected,

algorithms requiring a considerable set of RIs converge to devices characterized by

higher clock periods and significant power consumptions. However, this does not

necessarily result in long execution times and heavy power consumptions per sam-

ple, as long as the algorithms processing can be fully parallelized (high throughput)

and the inserted RIs can be used to implement very customized instructions which

benefit from a hardware implementation. For this reason, the architectures derived

for running heavy data crunching applications, whose processing can be proficiently
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parallelized, are very efficient, especially in terms of execution time and energy con-

sumption.

Summing up, the PLiM approach strengths are tied back to the multiple-level of

provided computing parallelism, given by the SIMD PLiM Unit sided by a stan-

dard CPU implementing a sequential processing paradigm, and to the easiness of

customizability of the starting template, which translates into reduced efforts and

design time.

Nevertheless, it still suffers from some criticalities that can be tackled to develop

an improved paradigm with a next-level efficiency. As anticipated in the previous

subsection 3.2.6, if the energy consumption is picked as the metric assessing the

goodness of a device to enhance the performances, it is helpful to shorten the execu-

tion time. The timing reduction can be accomplished by addressing two aspects: the

critical path (meaning increasing the working frequency) and the number of instruc-

tions required to perform the algorithms. Concerning the first one, some ideas to cut

down the critical path length might be the parallel arrangement of the RIs inside the

smart row, replacing the sequential one, and the insertion of a time-optimized adder

component, different from the RCA one, as already explained previously. While, the

reduction of the instructions number per program could be very useful, especially in

the case of applications involving more sequential operations, like iterative routines

characterized by data dependencies among different iterations (examples are sums

or maximum/minimum search functions performed on a massive amount of data).

In this case, it could be helpful to streamline the data exchange mechanism inside

the LiM Array, which, for instance, could be done by implementing the direct writ-

ing inside the row words or the standard rows after a data elaboration (instead of

the compulsory passing through the output buffer) or incrementing the number of

temporary storage elements which can act as direct providers for source operands.

However, these are only a few hints on how the PLiM framework can be optimized to

achieve better performance while adapting to a broader set of algorithms. Another

final hint could be implementing a finer row enabling mechanism to compensate for

the SIMD behaviour when algorithms with a lower level of parallelism need to be

mapped on an architecture generated starting from this model.
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Chapter 4

GP-LiMA Paradigm

Here, the novelty brought by this thesis work is presented. A new model for devel-

oping programmable LiM architectures is outlined, called General Purpose Logic in

Memory Architecture (GP-LiMA), which takes a cue from both the PLiM approach

(deeply investigated in chapter 3) and the CGRAs platforms (see subsection 2.1.2).

The aim is to develop a general-purpose framework that merges the two approaches

to take advantage of the strengths coming from both worlds while compensating for

their weaknesses. Starting from the PLiM idea of providing a template for speed-

ing up the design process of LiM architectures, the proposed model is intended to

minimize as much as possible the effort required to develop customized LiM devices

for new applications, providing an already made LiM structure characterized by a

high level of programming generality. If required, the proposed architecture can be

still easily customized by the hardware designer before the fabrication phase, as it

happens for the PLiM approach. However, usually, only a few changes are involved

mostly related to the size of the memory array rather than the specific process-

ing capabilities. Thus, the task of mapping new algorithms on this architecture is

almost completely entrusted to the LiM programmer, which, after fabrication, at

compile-time, can count on a wider LiM ISA, designed ad hoc to be as general as

possible and suitable for most algorithms. The programming generality enhance-

ment is obtained by modifying the organization of the LiM Array in the PLiM

solution by making it resemble the arrangement of the RCs immersed in a routing

network typical of CGRAs. The merging of the PLiM architecture with the CGRAs
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characteristic structure comes quite straight since RCs and Smart Rows are both

essentially processing units that need to be interconnected in some way to enable the

data transfer required by the algorithm they run. Briefly, this integration gathers

benefits from both these solutions. From the CGRA it borrows the post-fabrication

reconfigurability features, which means flexibility in adapting to efficiently perform-

ing a more heterogeneous set of algorithms. Then, it also inherits the general LiM

approach advantages, which are the drastic cut of the execution time and the energy

expense, due to the sharp drop in the memory accesses number and the full utiliza-

tion of the memory data parallelism to speed up the processing of data-intensive

applications. Finally, it keeps the co-processor asset, so proving a further level of

processing parallelism between CPU and LiM Unit that contributes to lower even

more the total computing time, leading, in turn, to an additional decrease of the

power consumption.

The GP-LiMA paradigm is illustrated in this chapter throughout three sections,

following an organization similar to the one of the PLiM Model description (see

section 3.1):

� Section 4.1 - GP-LiMA Model outlines the general idea at the basis of

the proposed architecture, dealing with aspects such as the working mode, the

system environment in which it can be embedded and the macro units that

comprise it.

� Section 4.2 - GP-LiMA Datapath: LiM Matrix goes deeper into the

LiM Array composition and the data routing network, which altogether form

the LiM Matrix. Here, all the details about the processing capabilities of the

memory block are extensively treated, highlighting which are the structural as-

pects of the GP-LiMA that can be easily customized by the hardware designer,

when needed.

� Section 4.3 - GP-LiMA Control focuses on the control part of the GP-

LiMA model, deepening the blocks that comprise it and how the LiM program-

mer can actually map an application on the GP-LiMA through the develop-

ment of a LiM code, composed of a sequence of structured LiM instructions.
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4.1 GP-LiMA Model

The GP-LiMA is a model of a general-purpose programmable LiM architecture,

which makes programming flexibility and multiple-level processing parallelism its

strong points. As the overall basic structure, it traces the PLiM one, namely mem-

ory array composed of cells embedding processing elements (LiM array) driven by

a 2-steps control unit (uCU and nCU) and which can be started in two different

modes: the standard data memory mode in which the CPU interacts with the device

as if it were a bare data storage, and the processing mode in which the architecture

is enabled to actively process a real algorithm while the CPU is busy performing

conditional or pure sequential portions of the overall application committed to the

system where the GP-LiMA is embedded. However, the architecture can be handled

so that the processing mode can be implemented following not only the SIMD com-

puting model but also the Multiple SIMD one (typical of CGRAs). It means that

the LiM array is enabled to simultaneously run a different instruction on each dif-

ferent set of data. Thus, the architecture can be configured to run up to K different

concurrent instructions, where K is the level of instructions processing multiplicity

and depends on both how the architecture structure is configured during the pre-

fabrication phase and how it is programmed after the fabrication. The M-SIMD

feature is what brings the processing parallelism of this architecture to the next

level, returning a system with boosted algorithm adaptability and reduced execu-

tion times.

Indeed, the original idea (at the beginning of this thesis work) was to design an

adaptable and very user-friendly pre-fabrication model for producing LiM solutions

that could be customized for a wider set of algorithms thanks to the design and inte-

gration of an enhanced routing network. However, the LiM array dimension setting

and the customization of the internal structure of the processing units were still left

up to the hardware designer, as for the PLiM template. Nevertheless, despite this

initial objective, the final GP-LiMA paradigm, here proposed, is conceived so as to

avoid requiring as much as possible changes to the processing units composition.

Indeed, the model steals from the CGRA philosophy not only the density and flex-

ibility of the interconnections but also the generality of the RC. In particular, the

GP-LiMA mainly draws inspiration from the MorphoSys structure (see section 2.1.2)
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for the processing blocks layout, the M-SIMD computing model implementation and

the array arrangement, which involves multiple types of interconnections. Thus, the

GP-LiMA framework is provided with a default layout for the processing units which

well suits the implementation of most algorithms. This is the reason why the pro-

posed architecture is closer to a general-purpose LiM device solution rather than

a pre-fabrication template for the speeding up of customized LiM architectures de-

sign. Moreover, the default structure of the processing units exploits also the CwM

technique, integrating a LUT component to enable the hardware implementation of

some customized specific functions even after the fabrication process, as it happens

for FPGAs and CGRAs solutions. This technique confers to the GP-LiMA even

hardware reconfigurability properties, up to some extent. It follows that, if the LiM

array size, the memory parallelism and the M-SIMD mechanism are properly con-

figured, during the pre-fabrication phase, to be as general as possible, the gathered

architecture can efficiently map a wide set of applications, so the function it runs

can be changed theoretically infinite times by only re-writing the content of the LiM

instruction memory, as it occurs in general-purpose CPU-centric systems.

Nonetheless, it is worth mentioning that, if strictly required, the GP-LiMA process-

ing elements can still be customized by the hardware designer (before fabrication),

which can insert logic blocks designed ad hoc to map a specific application. From this

standpoint, the GP-LiMA is provided with a mechanism for facilitating the insertion

of further computing components inside the processing units (like the modular RIs

mechanism does in the PLiM model).

However, hereinafter, the pre-fabrication model with the default configuration for

the processing units layout will be thoroughly addressed.

4.1.1 GP-LiMA Overview

As broadly stated, the GP-LiMA is mainly intended as an architectural solution to

cope with the memory wall issue, so it must be inserted in standard systems in place

of the data memory with which the CPU interacts to retrieve and save data. How-

ever, thanks to its internal management of the processing mode, the GP-LiMA well

suits to be used as a real co-processor, too. In Figure 4.1 the system environment

hosting the GP-LiMA is shown. Although this system is reported in the basilar
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form, i.e. it only contains the compulsory blocks, it can be as complex as needed,

like real-world systems.

Figure 4.1: Outline of the GP-LiMA framework. The GP-LiMA internal macro-
arrangement is shown together with the connections with the external CPU and the
LiM instruction memory (IMem).

The main component interfacing with the GP-LiMA Unit is the CPU. Unlike the

PLiM framework, here the GP-LiMA computing capabilities are not hidden to the

CPU, which, instead, is in charge of starting the GP-LiMA in the processing mode

when required. For this reason, the CPU ISA must be customized, inserting a

few specific instructions aimed at correctly handle the GP-LiMA processing, as

done in the Morphoing System which includes a customized TinyRISC (refer to sec-

tion 2.1.2). Thus, here, the CPU external interface used to communicate with the
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GP-LiMA Unit is composed of 2 different sets of signals: one used to interact follow-

ing the standard double port data memory protocol (1 asynchronous reading port

and 1 synchronous writing port) and one exploited to control the GP-LiMA work-

ing mode. The first set includes the following signals: the Wen CPU, to enable the

writing inside the GP-LiMA memory, the Write Address, to specify the address of

the memory word where the new data must be store, the WORD CPU, which forwards

to the GP-LiMA the data to be written, the Read Address, to indicate the address

from where the read data must be taken, and the LiM WORD, which carries the read

data from the memory. While the other signals set is composed of the LiM Activate

signal, sent by the CPU to start the GP-LiMA Unit in the processing mode, the

LiM Program Address signal, output again by the CPU to tell the GP-LiMA which

is the next program it is demanded to execute, and the LiM Program END signal that

is asserted by the GP-LiMA Unit to flag the CPU that the results produced by the

previously committed program are ready and available inside the memory array.

Moreover, the overall system includes a LiM instruction memory (IMem), which is

asynchronously accessed in reading by the GP-LiMA Unit and which must be ini-

tialized with all the possible programs the GP-LiMA might be required to execute.

Thus, other two signals are present at the GP-LiMA interface: the PC signal that is

sent by the control part of the GP-LiMA itself to fetch the next instruction it has to

execute, by pointing to the address of the IMem where the instruction is stored, and

the Instruction signal that enters the GP-LiMA to provide the demanded LiM

instruction. Besides, to specify which program the GP-LiMA has to run, the CPU

drives the LiM Program Address so that it holds the address of the IMem where the

first instruction of the involved program is contained.

From the internal GP-LiMA overview perspective, the architecture is composed of

3 macro sections: the control section, the datapath, and the section dedicated to

carrying out the data exchange between the memory array and the CPU.

Concerning the datapath, it is the core of the GP-LiMA paradigm and is identified

by the cooperation between the LiM Array, namely the mesh of storage cells filled

with logic elements, and the set of different interconnections enabling the flexible and

programmable data exchange across the whole array. In particular, as illustrated in

Figure 4.1, the routing network comprises two different kinds of interconnections:

the Memory ones and the Reduction Tree ones. Then, the combination of these three
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components, i.e. the LiM Array, the Reduction Tree Interconnections (Rdt Int) and

the Memory Interconnections (MI) constitute what is called the LiM Matrix.

Furthermore, the control part was designed along the lines of the PLiM model. It

is given by 2 control units connected in sequence: the uCU, which regulates the

instruction flow, and the nCU, which translates the LiM instructions into config-

uration signals values that drive both the LiM Array and the routing network to

properly carry out the data elaboration required. It follows that, as the PLiM tem-

plate, also the GP-LiMA is a pipelined architecture, that splits the processing into

4 stages. Again the fetch and the decode stage are linked with the uCU and the

nCU, respectively, while the execution and the results saving are committed to the

LiM Matrix. In particular, the uCU is the control section part that handles the

communication with the IMem, so it is the unit that first receives the fetched LiM

instruction (from the Instruction signal). This Instruction is mainly composed

of 2 macro fields called uInstruction and VLIW nInstruction. The bits compos-

ing the uInstruction are directly taken by the uCU to prepare the fetching of the

new instruction from the IMem, while the remaining bits, which encode the specific

operation to be performed, are sent from the uCU to the nCU that adequately sets

the LiM Matrix for the processing scheduled for the next clock cycle. Moreover, due

to the M-SIMD computing model the GP-LiMA has to implement, the instruction

portion forwarded to the nCU is actually a Very Long Instruction Word (VLIW)

and so, in turn, it is divided into K fields, each containing one of the K instructions

(called nInstructions) the LiM Array has to run simultaneously. For this reason,

the nCU is, in practice, given by a set of K instruction decoders, each dedicated to

the translation of a different nInstruction driving a specific set of configuration

signals. The nCU decoders organization is depicted in Figure 4.3, while below the

referred Instruction partition is shown.

Instruction
uInstruction nInstruction 0 ....... nInstruction K-1

VLIW nInstruction

Lastly, the section enabling the GP-LiMA Unit to be used as a data memory involves

an address decoder and a simple huge multiplexer. The address decoder is used to

implement the memory write operation when the GP-LiMA is addressed by the
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CPU in the standard data memory mode. This component outputs all the enable

(Wen) signals for all the LiM Array locations. Then, when a write operation request

comes from the CPU (Wen CPU = ’1’), it actives only the enable signal connected

to the memory word associated with the address sent on the Write Address signal,

so that, at the next clock, the addressed location will be initialized with the value

forwarded by the WORD CPU. On the other hand, the multiplexer is used to implement

the asynchronous memory read operation. It takes as input all the signals holding

the content of each of the LiM Array words (STDout signals) and assigns to the

output signal LiM WORD the content value of the location pointed by the address

forwarded by the Read Address signal.

4.2 GP-LiMA Datapath: LiM Matrix

Diving into the GP-LiMA Unit, the first item to be investigated is the LiM Matrix,

i.e. where the data elaboration and storage take place thanks to the effective inter-

action between the LiM Array and the routing network. The Matrix LiM scheme

can be observed looking at Figure 4.2.

As for the PLiM template, the LiM Array is the memory array that elaborates

the data it holds thanks to the processing elements that are integrated inside each

memory cell. Yet, unlike the PLiM Array, it is organized following the real layout

of standard memories; that is, in the same memory row more than one word are

placed one next to the other. Therefore, the resulting LiM Array is given by a

matrix of memory words, which, besides, reflects the arrangement of the RCs inside

the MorphoSys framework (see section 2.1.2). The reason for this design choice

is traceable to the easiness and flexibility this kind of processing units placement

implies in terms of data transfer. The interconnections that can be instantiated

inside this grid are denser and more punctually programmable, therefore, during

the algorithm execution, the data can be moved along a greater number of possible

paths across the entire array. This allows having more direct data transfers between

different processing elements, implying a reduction in the number of instructions

employed for the data preparation in sight of the next operation performing. As a

consequence, the total number of instructions composing the programs is decreased,

leading to a total lowering of the execution times as well as the energy spent in the
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ENcol(n-1)

MI

ENcol0 ENcol1 ENcol2

ENrow0

ENrow1

ENrow(m-1)

SMART
BLOCK

STANDARD
BLOCK

Figure 4.2: LiM Matrix scheme showing a generic LiM Array immersed in the routing
network. The orange and green arrows identify the rows and column interconnec-
tions, respectively, comprising the Reduction Tree Interconnections, while the pink
arrows represent the LiM Array connections to the MI.

process. Referring to Figure 4.2, the mesh-like topology layout of the memory words

pops out (each of the squared blocks is associated with one of the words composing

the memory array). Moreover, from here, it can be clearly seen the division of the

LiM Array into two sections. The upper one, called the smart section, encloses all

the memory word locations embedding both computing and storage elements, i.e.

the Smart Blocks. They are the key at the foundations of the GP-LiMA paradigm

since they are provided with a default scheme that makes them working like small

general-purpose processing units. While the other section, called the standard sec-

tion, comprises all the memory word locations only made of storage elements, which

from now on will be referred to as Standard Blocks. They are used to enlarge the
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data storage capacity of the LiM array while bounding the consequent increase in

the array complexity. Thus, they act as possible sources for data operands on which

the Smart Blocks can work. In particular, the elaboration inside the Smart Block

can involve both data hold in the block itself and data coming from any of the blocks

composing the LiM Array that are accessible thanks to the mentioned data com-

munication network. Moreover, while the word contained in the smart blocks can

be read and modified during the LiM processing, the memory locations constituting

the standard section can be read by the Smart Blocks, while their writing can be

performed only by the CPU accessing the GP-LiMA in the standard data memory

mode, to initialize the LiM Array content before the algorithm starts.

Dealing with the routing network, it involves two kinds of interconnections: the

Reduction Tree Interconnections and the Memory Interconnections. Looking at

Figure 4.2, the orange and green arrows identify the row and column interconnec-

tions, respectively, that belong to the first cited type, while the pink arrows outline

the MI that belongs to the other category. Each row interconnection enables the

data transfer among the smart blocks belonging to the same row, while the single

column interconnection stretches over the standard section too, allowing the smart

blocks to take data from any of the blocks placed along the same column. Instead,

the MI extends all over the LiM Array so that, through it, each Smart Block can

retrieve the data it wants from any block. However, the two interconnection kinds

do not stand out for the set of blocks they make communicating, but rather differ

for how they distribute the data among the different blocks. The Rdt Int kind al-

lows all the smart blocks attached to the same connection to take simultaneously

a different data even if they are driven by the same instruction, while the MI type

is used when blocks controlled by the same instruction all need to pick the same

word coming from a specific block in the LiM Array. More details about the routing

network functioning will be provided in subsection 4.2.2.

Furthermore, the new mesh-like arrangement of the blocks composing the LiM Array

has a twofold utility. Besides accommodating a more dense and flexible intercon-

nection network, it also allows to easily design a more precise enabling system for

the Smart Blocks of the array. Unlike the PLiM Array where the smart section is

divided at most into 4 macro sections that, during the execution of a given instruc-

tion, can be enabled one independently of the others, the GP-LiMA smart section is
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provided with an enabling system that allows specifying more punctually the Smart

Blocks that need to be enabled at a time without asking for the LiM programmer

to explicitly list for each instruction of the program which are the blocks to be

activated and which are not. This leads also to a reduced overhead in terms of

wires needed to carry the information about the Smart Blocks enabling, and IMem

size. In particular, this system is organized leveraging the grid shape of the LiM

Array. It provides a number of enable signals equal to the sum between the columns

number and the smart rows number (namely the number of the rows inside the

smart section composed of Smart Blocks) and it associates each enable signal with

a different Smart Blocks column or row, as shown in Figure 4.2. It follows that

each Smart Block is connected to 2 enable signals, so, if one of them is not active,

that Smart Block will be disabled. Thus, the Smart Blocks enabling is performed

following a battleship game-like mechanism. In this way, the LiM programmer, for

each instruction, has to specify the enabling state only for each row and column not

for all the single Smart Blocks composing the array. Moreover, it is worth noting

that this enabling system allows to activate even a single Smart Block at a time and

its management is designed to be compatible with the M-SIMD computing model

proper of the GP-LiMA paradigm.

So, concerning the implementation of the M-SIMD working mode, as already antici-

pated, this provides for integrating into the GP-LiMA Unit a number of instruction

decoders equal to the number of different concurrent running instructions involved

in the M-SIMD paradigm to be implemented on the GP-LiMA at hand. Then, the

LiM Array is organized so that Smart Blocks belonging to the same row are always

driven by the same instruction, while Smart Blocks placed in different smart rows

can be controlled by different instructions. This is carried out by connecting to the

same instruction decoder all the smart rows which always have to run simultane-

ously the same instruction, as illustrated in Figure 4.3.

Finally, since the GP-LiMA framework still remains a pre-fabrication model to pro-

duce different LiM devices, it grants some degrees of freedom for the overall LiM

Matrix layout. Indeed, the hardware designer can choose the size of the LiM Array,

fixing the number of columns, smart rows and standard rows (namely rows inside

the standard section composed of Standard Blocks), and the memory parallelism.

He can decide the maximum level of M-SIMD processing, i.e. the maximum number
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Figure 4.3: Enable signals arrangement for a generic M-SIMD LiM Array processing
up to K different instructions simultaneously.

(K) of different instructions that can be run simultaneously, and how it is performed

on the architecture. For each instruction decoder, he has to set the number of smart

rows it drives and specify which are these. Note that the number of driven smart

rows can change from one instruction decoder to the other, however, each of them

can only control consecutive smart rows. It follows that, by connecting all the smart

rows to the same instruction decoder before the device fabrication or specifying the

same instruction in all the fields of the VLIW nInstruction during the GP-LiMA
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programming, the architecture computing mode can be easily reduced to a SIMD

model. Similarly, the GP-LiMA can carry out a MIMD processing, if the hardware

designer sets the GP-LiMA model parameters so that each instruction decoder con-

trols a single row and all the rows are composed by one block only. However, in

general, because of the structure of the instantiated interconnections, the optimal

layouts for the LiM Array, in terms of the limited latency and power consumption,

are the ones that try to equal the rows number with the columns one. Therefore,

if a considerable set of Smart Blocks needs to be driven by the same instruction, it

is worth distributing the blocks over multiple rows handled by the same instruction

(same instruction decoder) rather than keeping all of them on the same line.

To know which are in practice the parameters the hardware designer has to set on

the GP-LiMA model to generate the target GP-LiMA system, refer to section A.1

of the User’s Manual.

4.2.1 Smart Block

Going down into the LiM Array, it stands out the basic block starting from which

the whole GP-LiMA paradigm was engineered, i.e. the Smart Block detailed in Fig-

ure 4.4. The Smart Block identifies the unit component of the LiM Array that

performs operations on the data it holds or on the data forwarded by the routing

network taken from the other blocks of the array. Thus, it is a memory location

holding a memory word, which, besides the standard storage capability, is provided

with processing functionalities. However, the single Smart Block default composi-

tion is quite complex, involving lots of elements that go beyond the simple processing

logic that is usually involved in standard LiM solutions. Indeed, the Smart Block

emulates the behaviour of a small processor and it is what confers to the GP-LiMA

the general-purpose-like processing capability.

Giving a quick overview of the Smart Block layout in Figure 4.4, the fundamental

element is represented by the Block Word, that is where the word associated to that

Smart Block is located and simple bitwise logic functions are computed. However,

the Smart Block is also provided with further storage elements aimed at saving the

temporary results produced during the LiM program execution. It includes a small

Register File (RF), with two asynchronous read ports and one synchronous write
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Figure 4.4: Smart Block scheme.

port and that comprises 4 registers in the default Smart Block version (refer to sec-

tion A.1 to see how the RF size can be changed), and another single register called

Bypass Storage. In particular, this last register, besides acting as a data saving com-

ponent, is the provider for the data the Reduction Tree Interconnections have to pass

to the other Smart Blocks. While, the more complex elaboration capabilities of the

Smart Block are given by a set of blocks underneath the Block Word, which act
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similarly to the Row Interfaces of the PLiM. All these blocks work in parallel taking

as operands the data filtered by the Block Word, which, in turns, receives part of the

data it handles from the output of two multiplexers connected to most of the input

signals of the Smart Block. Therefore, in general, the Smart Block can operate on

the data stored in the Block Word itself (STDout), on the ones coming from its RF

(RFA, RFB), on the value forwarded by the Memory Interconnections (MI), and on

the data brought by the row and the column interconnections (Col int, Row int).

Also the content of its Bypass Storage can be elaborated. Nevertheless, to reduce

the wires congestion inside the Smart Block, there is no a direct internal connec-

tion between the output of the Bypass Storage and the input multiplexers, so to

retrieve that register value, it must be propagated through either the column or the

row interconnections and then taken from the related signals Col int or Row int.

Then, to know all the possible 2-operands combinations on which the Smart Block

functions can run refer to ??. While, summing up, all the possible destination com-

ponents where the computation result can be sent are the Block Word itself, the RF

and the Bypass Storage, and they are all driven by the same Result signal output

by the middle multiplexer, which, for each instruction, properly select one of the

signals coming out from the logic blocks implementing the more complex functions,

placed underneath the Block Word.

Concerning this set of blocks, it represents the portion of the Smart Block that can

be customized by the hardware designer. Apart from the ALU and the RShifter,

that cannot be removed or modified, the designer can choose to insert the logic

blocks he needs, or to remove the unused ones, to customize the generated GP-

LiMA for the applications he wants. The insertion of a new component is rather an

easy task, as, looking at Figure 4.4, it only requires connecting OpB and OpA signals

to the block inputs and enlarging the multiplexer that returns the Result signal to

make it receiving as further input the output of the new block. In the case the new

block requires some configuration signals, it can directly exploit the ones already

instantiated for the ALU. Similarly, also the removal of a component can be easily

performed, since it only implies a few actions: erasing the component instance inside

the Smart Block, reducing the Result multiplexer size of one signal less, and setting

some constant values to adjust the new association between the multiplexer inputs

and the configuration signal values. By the way, the details on how the user (HW
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designer) can modify the GP-LiMA template to enter a new block, or take out an

already instantiated block, are spelt out in the User’s Manual at section A.2. How-

ever, as already anticipated, the GP-LiMA model comes with a default configuration

for the logic units characterizing the Smart Block, which were chosen while keeping

in mind the final goal of architecture programming generality. Figure 4.4 displays

the predefined Smart Block layout which includes: the RShifter block, integrated

to allow the execution of a small set of divisions, the ALU component, intended to

perform basic arithmetic operations and comparisons functions, a 16x4 bits LUT,

exploited to customize the GP-LiMA hardware platform even after fabrication, and

the Multiplier, which performs the signed product between two data. In particular,

in order to limit the Smart Block complexity, the multiplier instantiated takes as

input signals only the lower half of OpA and OpB in order to provide a final result

on a number of bits equal to the memory parallelism (that matches OpA and OpB

width). However, this design choice requires the LiM programmer to comply with

a constraint to prevent wrong results occurrences, i.e. the data values to be mul-

tiplied must be representable on a number of bits that is half the memory parallelism.

In the following, the Smart Block components which deserve to be addressed more

carefully are investigated, such as: the Block Word, the ALU, the RShifter, and the

LUT.

Block Word & Arithmetic Cell & ALU

The core of the Smart Block is represented by the Block Word that borrows the

idea of the Row Word inside the PLiM Smart Row. It encloses a given number of

the most elementary LiM units, namely the 1-bit memory cells embedding simple

logic gates aimed at processing the lowest level operations. As for the PLiM model,

these special cells are called Arithmetic Cells (ACells) and their number inside a

single Block Word matches the LiM Array parallelism. The composition of a single

ACell is outlined in Figure 4.5. The memory feature of the ACell is embodied by the

Storage Unit, while the processing capability is implemented through a Full Adder

followed by an XOR gate.

The Storage Unit can load either the value produced by the current instruction
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Figure 4.5: ACell scheme.

performed by the Smart Block, through the Resulti signal (GP-LiMA activated in

processing mode), or the data directly coming from the CPU carried by the BLi

signal (standard data memory GP-LiMA usage). Then, the Storage Unit content is

both forwarded to the output of the ACell through the STDouti signal, to allow the

CPU to read the stored data whenever it wants, and propagated inside the ACell,

to accomplish the data processing inside the memory.

The Full Adder can operate logical bitwise functions on the data selected by the

two middle multiplexers (see Figure 4.5), which take the memory content (STDouti)

and two input signals (in1i and in2i) that come from the previous selection at the

input of the Smart Block. While the multiplexers at the Smart Block input are used

to perform a preliminary selection of the data to be elaborated by the Smart Block,

the two multiplexers inside the ACell are used to finalise this choice and to define
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the order with which these operands must be considered, namely which is the first

term (OpAi) and which is the second one (OpBi) of a generic operation (particularly

useful for the subtraction where the order of the operands changes the operation

outcome). Thanks to these multiplexers, lots of possible operands combinations can

be specified through a LiM instruction (see ??). Moreover, as already anticipated,

the selected data are sent to the logic blocks below the Block Word through the

OpA and OpB signals. Then, the ACell outputs other two signals direct entering the

ALU block, i.e. Couti and Si. According to the values of the control signals Cin and

inv op and the data selection performed by the multiplexers, Si can carry the result

of a XOR or a NOR operation, while Couti can forward the outcome of the AND, the

NAND, the OR, the NOR or the NOT operation. Moreover, the FA can also be handled

so that at the Couti output the value of one of the selected data is reported without

changes (used in case of a Load operation, see Table 4.2). Specifically, in this case,

both multiplexers select the same value for OpAi and OpBi and the selection signals

are driven so that Couti delivers the AND between the two signals.

Furthermore, the Block Word must be necessarily accompanied with the ALU block,

which both completes the set of provided arithmetic and logic functions and forwards

to the final Smart Block multiplexer the outcome of the Block Word when required.

Looking at Figure 4.6 the schematic of the ALU can be viewed. It takes as inputs

the Nbit OpA and OpB signals coming from the Block Word and it can be divided

into 3 macro-sections. The one on the upper left, comprising one signed adder, one

signed subtractor and a 2-inputs multiplexer, is used to compute either the sum, the

subtraction or the absolute value function. While, the section on the upper right,

composed of a set of logic gates and a 4-inputs multiplexer, implements all the com-

parison functions (> , < , = , 6=). Finally the lower section, made up of 3 2-input

multiplexers, performs the selection of the ALU output signal, which can assumes

either the outcome of one of the functions computed by the ALU logic or the value

of one of the signals produced by the Block Word (S or Cout). In Table 4.1 there

is summarized the set of all the executable functions, given by the combinations of

the operations implemented by the Block Word and the ones achieved by the ALU,

together with the correspondent values for the configuration signals.
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Figure 4.6: ALU scheme.
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ACell & ALU Operations

Configuration signals (CNFG FUNC[3-0]) Operation
Add notLogic Cin inv op S notCout Result = OpA OP OpB

0 0 0 0 Result = OpA AND OpB

0 0 0 1 Result = OpA XOR OpB

0 0 1 0 Result = OpA NAND OpB

0 0 1 1 Result = OpA XOR OpB

0 1 0 0 Result = OpA OR OpB

0 1 0 1 Result = OpA XNOR OpB

0 1 1 0 Result = OpA NOR OpB

0 1 1 1 Result = OpA XNOR OpB

1 0 0 0 Result = OpA + OpB

1 0 0 1
Result = 1 if OpA = OpB

Result = 0 if OpA 6= OpB

1 0 1 0 Result = |OpB|

1 0 1 1
Result = 1 if OpA 6= OpB

Result = 0 if OpA = OpB

1 1 0 0 Result = OpA - OpB

1 1 0 1
Result = 1 if OpA > OpB

Result = 0 if OpA ≤ OpB

1 1 1 0 Result = OpA - OpB

1 1 1 1
Result = 1 if OpA < OpB

Result = 0 if OpA ≥ OpB

Table 4.1: List of the executable functions, implemented by the ALU block and the
ACells, together with the related values for the configuration signals. Result refers
to the signal at the output of the ALU block (see Figure 4.4).

LUT

In the default layout of the Smart Block, one of the logic blocks inserted below the

Block Word is the LUT block. It belongs to the kind of blocks that can be either

removed or modified by the hardware designer before the fabrication phase (refer

to section A.1 to see how the LUT size can be changed). It is essentially a memory

composed of 16 locations of 4 bits each, which is addressed by a 4-bit input signal.

This component allows the user to implement in hardware a customized function

even after the whole GP-LiMA unit has been manufactured, by exploiting the CwM
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approach. At compile-time, the content of all the LUTs inside the LiM Array Smart

Blocks can be initialized to fulfil the implementation of the wanted function, as ex-

plained in chapter 2.

In particular, even if the entire Nbit OpA signal enters the LUT component, only

the lower 4 bits of the OpA signal are connected to the four 1-bit input values of the

LUT instance. Then, the returned 4-bit data is extended to reach the width of the

data handled by the Smart Block and is sent to the Smart Block multiplexer as the

LUT block outcome. Moreover, the LUT component takes also a 1-bit configuration

signal that is used to choose the kind of extension for the output data, which can

be signed or unsigned.

Furthermore, all the LUTs are provided with a mechanism for their initialization,

which allows to specify the content value for each single LUT location, independently

of the others. It means that different Smart Blocks can include LUTs holding differ-

ent values and so performing different functions. In this way, when the instruction

involving the LUT usage is called, even Blocks driven by the same control signals

(same instruction decoder) can simultaneously execute different operations. The

initialization mechanism leverages the daisy chain connection. It allows to write all

the LUTs locations without incurring in complexity overhead. All the LUTs inside

the whole LiM Array are connected sequentially into a chain so that the output of

a LUT represents the input of the following one. An example for the chain orga-

nization is illustrated in Figure 4.7. Each LUT is implemented through a set of

registers, each having the input signal connected to the output of the register below.

Then, the LUTs writing occurs following a sequential procedure, where at each clock

cycle a new data to be written in the LUTs is entered inside the chain. Thus, to

initialize all the LUTs, only two input external pins for the GP-LiMA are needed:

the Input LUT Daisy Chain signal that is used to insert a new data at each clock

cycle, and the En LUT Daisy Chain signal that enables the LUTs writing. As long

as the En LUT Daisy Chain signal is at 1, each LUTs register updates its content

with the value coming from the previous register. It follow that, to initialize the

entire set of LUTs inside the LiM Array, the number of clock cycles needed is equal

to the product between the number of Smart Blocks and the number of locations

inside a single LUT. In the design, the chain starts from the last location of the

LUT contained in the last Smart Block and ends in the first LUT register of the
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first Smart Block. In this way the first data to be entered inside the chain must be

the content of the first location of the first LUT, then, following the order, the last

data input must be the one to be associated with the last register of the last Smart

Block LUT.

Figure 4.7: Example of the LUT daisy chain connection for a smart section composed
of 2 columns and 2 rows. The chain passes through the LUTs in all the Smart Blocks.

RShifter

Although the RShifter is introduced as one of the logic blocks placed below the Block

Word, it differs from the other processing components since the data it elaborates

is not released by the Block Word but is directly gathered from the set of the

Smart Block inputs. The aim of this component is to assure the LiM Array with

some division processing capabilities without inserting a real divisor in each Smart

Block which would certainly lead to a massive overhead in terms of area and power

consumption. However, even including a programmable right shifter component, to

implement divisions by numbers that are powers of 2, was considered an excessive
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waste of resources for the default version of the Smart Block. So, the RShifter inside

each Smart Block is a very slight component, made up of only a set of parallel wires,

able to perform 1-bit right shift of the input data, programmable with the signed

or unsigned extension. However, to implement a wider set of possible divisions all

the single RShifters belonging to the Smart Blocks in the same row are connected

in sequence, creating a chain of shifts as depicted in Figure 4.8.

Figure 4.8: Chain Connection among the RShifter components belonging to the
Smart Blocks of the same row. Example for a generic smart row composed of 3
Smart Block.

So, a part from the RShifters embedded in the Smart Blocks at the extremes of a row,

all the other RShifters take as input the signal coming from the RShifter on their left

and return the shifted version of it to the RShifter on their right. At the same time,

for each Smart Block, the signal produced by the integrated RShifter goes in input to

the multiplexer that, according to the current issued instruction, chooses the data to

be stored in one of the possible destinations. It follows that, each time an instruction

involving the RShifter is called, all the multiplexers in the same smart row select as

value for the Result signal the outcome from their RShifter, so the first Smart Block

will store the value of the specified source operand divided by 2, the second Smart
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Block the same value divided by 4, the third Smart Block the value divided by 8

and so on till the end of the row. In this way the programmer can specify the kind

of division he wants to operate by simply enabling the Smart Block associated to

that division type. Then, the data that each smart row elaborates can derive from

either the MI or the row interconnection, as the RShifter input of the first Smart

Block is output by a multiplexer connected to these two routing networks. It means

that the division operation is handled at the smart row granularity level instead of

at the Smart Block one, namely, the Smart Blocks in the same row all work on the

same data instead of on a different data each. Moreover, the possibility to select as

data to be shifted the one coming from the row interconnections allows smart rows

driven by the same instruction to elaborate simultaneously different data. Thus,

when the same RShifter operation is sent to all the smart rows, coupled with the

source operand coming from the row interconnections, the number of divisions on

a different data performed in the same clock cycle is equal to the number of smart

rows composing the LiM Array. In addition, for each of these data, a set of divisions

is directly computed in parallel. The number of available divisions for each data

equals the number of Smart Blocks included in a row and the set of provided divisors

values is given by all the numbers that are a power of 2 in increasing order, starting

from 2 up to 2#LiM Array Columns. However, it is worth highlighting that the values

of the divisors can only be constants known at programming time. It means that a

given data cannot be divided by the value of a data computed during the previous

LiM instructions. Nevertheless, when this kind of operation is strongly required

by a specific application, the hardware designer can still modify the Smart Block

composition, inserting a dedicated component before the GP-LiMA realization.

4.2.2 GP-LiMA Interconnections

The programmable routing network that branches throughout the whole LiM Array

constitutes one of the turning points of the GP-LiMA model for its overall program-

ming flexibility. It leverages two different kinds of interconnections which differ on

the type of instructions that allow performing:

� the Memory Interconnection (MI), which provides to all the attached

Smart Blocks the exact same data;
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� the Reduction Tree Interconnection (Rdt Int), which forwards at the same

time a different data for each of the Smart Blocks it is connected to.

In Figure 4.9 an example for the LiM Matrix arrangement is detailed. Here, there

Figure 4.9: Interconnections filling a LiM Array composed of 32 columns, 16 smart
rows and 5 standard rows, working in the M-SIMD mode with K = 3. The orange
and green arrows represent the reduction tree interconnections, in particular, the
row and the column ones, respectively. The M-SIMD MI outputs K signals, each
going inside all the smart blocks of one of the 3 sub-sections that is driven by a
different nInstruction.

are outlined all the interconnections filling a LiM Array that is composed of 32

columns, each enclosing 16 Smart Blocks and 5 Standard Blocks, and that can be

programmed to perform up to 3 different instructions simultaneously. All the hor-

izontal orange arrows and the green vertical ones represent the connections among
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the blocks in the same row or in the same column, respectively, and are imple-

mented through the reduction tree type. While, the pink, the yellow, the light blue

and the violet arrows compose the M-SIMD Memory Interconnection which extents

across the whole LiM Array. From Figure 4.9, it can be already seen that there is

a correlation between the degree of the involved M-SIMD computing mode and the

interconnections structure, as it directly determines the number of signals output

by the Memory Interconnection. The Smart Blocks driven by the same instruction

(instruction decoder) are all connected to the same data signal coming from the

M-SIMD MI.

Memory Interconnections

The M-SIMD Memory Interconnections intent is to enable the Smart Blocks to take

one data from any of the Blocks inside the LiM Array, without constraints on its

placement. To do this, the generic memory interconnection has to take the content

of all the Blocks, namely both the values inside the Block Words of all the Smart

Blocks and all the data stored by the Standard Blocks, and select one single value.

For this reason, the straightforward implementation for this entity is a massive mul-

tiplexer with a number of inputs equal to the number of Blocks composing the LiM

Array, each on a width matching the memory parallelism. Nevertheless, since the

GP-LiMA works following the M-SIMD model, different instructions could access

the same MI specifying different block addresses, leading to conflicts. Therefore, to

cope with this issue, the M-SIMD MI is composed of a set of multiplexers, each one

representing a different SIMD MI and dedicated to one of the simultaneous instruc-

tions. In Figure 4.10 an example for the connection of the M-SIMD MI to a small

LiM Array is shown together with the insight of the internal interconnection com-

position. The depicted LiM Matrix can perform up to 2 different instructions at the

same time, each carried out by one different smart row composed of 2 Smart Blocks.

Then the LiM Array includes also one standard row of 2 blocks. As expected, the

MSIMD MI comprises two SIMD MIs each driven by a different instruction decoder.

The SIMD MIs is identified by a multiplexer taking 6 Nbit inputs and returning one

Nbit signal that is then brought at the input of all the Smart Blocks driven by the

same instruction that controls that multiplexer.
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Figure 4.10: On the left, it is reported an example for the M-SIMD MI on a LiM
Array composed of 2 columns, 2 smart rows and 1 standard row, working in the
M-SIMD mode with K = 2. On the right, it is shown the basic implementation for
the single SIMD MI block making up the M-SIMD MI in the example.

Summarizing, the M-SIMD MI is used each time the Smart Blocks driven by the

same instruction have to elaborate simultaneously the same data, which can be

specified inserting the address of the LiM Array location that stores it.

However since usually the LiM Array is composed of a significant number of blocks,

the resulting multiplexers could become very complex components, determining the
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Figure 4.11: Pipelined implementation of a multiplexer on N IN input signals each
on Nbit. This kind of implementation matches the one of both the SIMD MI block
and the GP-LiMA Unit output multiplexer that returns the LiM WORD signal to the
CPU.

GP-LiMA performance limiting factor, especially in terms of maximum allowed op-

erating frequency. For this reason, the final implementation for each N Blocks in-

puts multiplexer instantiated in the GP-LiMA model consists of a pipelined version,

where the critical path is split in two. Figure 4.11 outlines the new multiplexer
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structure embedding pipe registers in the middle. Note that this pipelined structure

is exploited to implement also the GP-LiMA output multiplexer providing the read

data signal (LiM WORD) to the CPU.

Lastly, it is worth mentioning a possible issue that can arise while dealing with

this pipelined version of the MI. Because of the registers insertion, a data hazard

can occur when an instruction uses this interconnection to access a data that was

updated in the previous instruction. When this happens, the updated value of the

data is firstly saved inside the interconnections pipe registers, meaning that it is

not present at the output of the multiplexer when the Smart Blocks need to fetch

that value for the required elaboration. Thus, to prevent wrong data elaborations,

another instruction or a null operation must be inserted between the instruction

that updates the data value and the one that wants to elaborate the updated value.

Reduction-Tree like Interconnections

The programmable Reduction Tree Interconnections kind represents the item of

the GP-LIMA paradigm which strongly impacts on its programming generality at-

tribute. The employment of these kind of interconnections is particularly thought of

for both facilitate the moving of large data blocks inside the LiM Array and speed-

ing up the sequential portions of common algorithms, such as sequential sums or

maximum/minimum searching functions to be performed on high number of data.

For the second goal, the intent is to exploit the high level of the LiM Matrix process-

ing parallelism to implement the sequential functions following a reduction tree-like

organization that can reduce the total number of LiM instructions encoding that

type of computations.

In Figure 4.12 a black box scheme of the Rdt Int connecting 8 Smart Blocks is

shown. The main requirement for this kind of interconnections, to help carrying out

the reduction tree like processing mechanism, is to be able to take N data, one from

each of the attached blocks, and to distribute them at the inputs of the same blocks

in a different order, forwarding to each block a different data. To explain the kind

of data transfer implemented among the Smart Blocks linked to the same Rdt Int,

in Figure 4.13 an example of a sequential sum computation on 8 data accomplished

following a reduction tree-like execution is reported.
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Figure 4.12: Black box scheme of a reduction tree interconnections among 8 blocks.

Figure 4.13: Usage example of the reduction tree interconnection for computing a
sum among 8 data, each contained in one of the 8 smart blocks attached to the same
interconnection.

Before the sum starts, all the 8 data must be saved inside the Bypass Storages of

the 8 Smart Blocks. During the first instruction, 4 sums are computed in parallel

each on a different couple of the starting 8 data. To do this, all the Smart Blocks

at the even positions (namely the one containing the X0 data, the one storing the

X2, the one holding the X4 and the one containing X6) are enabled to take the

content of the Smart Block that is on their right, sum it to the content of their

Bypass Storage and updating the same Bypass Storage with the sum result. Then,

during the second instruction two parallel sums are evaluated, by enabling only the

first and the fifth Smart Blocks to sum their Bypass Storage content with the value

stored in the Smart Block that is two positions right. Again the operation results are

used to overwrite the linked Bypass Storages content. Lastly, the third instruction

activates only the first Smart Block that sums its value with the one coming from

the fifth Smart Block. In this way the whole 8 data sum operation is performed into
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3 instructions, each taking one clock cycles. It follows that for a generic sum on N

data the total number of clock cycles involved is equal to log2N instead of N-1 as

it would be following the standard execution of a sequential algorithm, namely one

sum on 2 data for each clock cycle.

As already anticipated, to guarantee this kind of data elaboration, the reduction

tree interconnection kind is used to implement all the row and column interconnec-

tions instantiated inside the LiM Matrix. Each of them retrieves the data from the

Bypass Storages inside the Smart Blocks to which it is connected and brings back

them in a shifted order to the inputs of the same Smart Blocks.

� Basic implementation for the Column interconnections

The most straightforward way to implement the Rdt Int accomplishing the

mentioned data transfer is through the use of multiplexers. As shown in Fig-

ure 4.14, the single Rdt Int component is made up of a set of multiplexers,

each driving the input of a different Smart Block. Then, all the embedded

Figure 4.14: Example for the basic implementation of a reduction tree interconnec-
tion among 8 blocks. This kind of implementation matches the column intercon-
nections one. Note that, for each multiplexer, the first input signal from the left is
selected when Sel = 0, the second when Sel = 1, and so on up to the last signal
that is selected when Sel = 7.

multiplexers receive in input the signals output by all the Smart Blocks that
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the same Rdt Int feeds. It follows that a generic Rdt Int interconnecting a line

of N Smart Blocks is composed of N multiplexers each on N inputs of Nbit

each, where, in this case, Nbit is the LiM array parallelism. In general, each

multiplexer could be potentially driven by a different selection signal, since,

for each multiplexer, the control signal is generated by the same instruction

decoder that drives the Smart Block to which that multiplexer is attached.

This organization takes into account the case in which the Smart Blocks at-

tached to the same Rdt Int are not driven by the same instruction, i.e. for

the column interconnections involved in the GP-LiMA Unit with a M-SIMD

processing mode degree greater than 1. The association between each of the

N Rdt Int input signals and the position of the related multiplexer entry is

different for all the multiplexers. In particular, for each multiplexer, the value

of the selection signal matches the number of distance positions towards the

right at which the Smart Block from where the data must be taken is placed

with respect to the Smart Block that the multiplexer drives. It means that

when the selection signal equals 0 the multiplexer outputs the value coming

from the same Smart Block it feeds, while if it equals 1 the output of the Smart

Block on the right of the Smart Block that multiplexer drives is selected and

so on. In the case in which there are no more Smart Blocks left on the right

of the driven Smart Block the next output chosen is the one of the first Smart

Block of the line and so on in a circular way. Note that for the column inter-

connections the same organization is carried on addressing the outputs of the

Smart Blocks below the considered one rather then the ones on the right.

However, this Rdt Int implementation results in a significant complexity over-

head that grows linearly with the memory parallelism and quadratically with

the number of Blocks that are attached to the interconnection.

Thus, to try limiting the complexity introduced in the design only for the

row interconnections an optimized implementation for the Rdt Int is used,

illustrated in Figure 4.15.

� Optimized implementation for the Row interconnections

A special case for the Rdt Int is represented by the row interconnections,
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since the Smart Blocks attached to each Rdt Int are always driven by the

same instruction. A special case for the Rdt Int is represented by the row

interconnections, since the Smart Blocks attached to each Rdt Int are always

driven by the same instruction. In this case the Rdt Int acts as a programmable

circular left shifter that takes a big data composed of the concatenation of the

outputs of all the Smart Blocks to be interconnected and returns this data

shifted of a number of positions equal to the value assumed by the configuration

signal. This behaviour allows to develop the single row interconnection on two

level of multiplexers. Each level includes a number of multiplexers equal to

the number of Smart Blocks to be interconnected, but each characterized by a

lower number of inputs. The first level carries out a coarse grained shift of the

composed data input, while the second level refines the final data making it

matching the actual number of shifted demanded through the interconnections

configuration signal. Looking at the row interconnection example reported in

Figure 4.15, the first level of interconnections shifts the data either of 0 or 4

positions, while the second level can shift the data output by the first level

either of 0, 1, 2 or 3 positions. Thus, for example, if the selection signal equals

6, the first level of multiplexers performs a shift of 4 positions, while the second

level a shift of 2.

This kind of Rdt Int implementation allows to reduce the overall introduced

complexity that results to be half the complexity of the previously shown

basic implementation. However, the more the dimension of the multiplexers

belonging to the different levels is similar the more the reduction in terms of

complexity is. Note that the GP-LiMA design model is organized so that the

hardware design can tune the division among the number of shifts performed

by both levels.

Ultimately, it is worth to highlight that, due to the excessive length of the involved

critical path, the outputs of all the row and column interconnections immersed in the

LiM Array are followed by pipeline registers. This means that, to avoid data hazard

issues like the ones encountered for the MI, between the instruction that writes in

the Bypass Storages of a group of Smart Rows and the one that wants to read the

content of the same set of Bypass Storages another generic instruction or a null one
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must be inserted. It follows that, for the execution of the sequential operations that

exploit the reduction tree-like mechanism, as the sum among N data, the actual

number of instructions (or clock cycles) needed is equal to 2*log2N-1.

4.3 GP-LiMA Control

Up to now, the internal composition of the LiM Matrix was thoroughly investigated,

highlighting its processing potentialities and how they can be exploited to efficiently

run a generic algorithm. However, almost nothing was told about how the GP-LiMA

manages to perform a whole LiM program. Thus, this section overviews all the main

points of the GP-LiMA control part, specifically stating the LiM Instruction struc-

ture and how the LiM programmer can develop code allowing the mapping of a target

application onto the GP-LiMA Unit.

As hinted in subsection 4.1.1, the control part is divided into two different units each

representing one stage of the GP-LiMA pipeline. At first, there is the uCU that takes

care of both initializing the system in the desired mode, allowing to choose between

the processing or the standard data memory mode, and handling the instruction

flow. Therefore, it interfaces with both the CPU and the IMem and is dedicated to

the implementation of the instruction fetch stage. Then, the uCU is followed by the

nCU that is the unit in charge of the instruction decoding, interacting with the uCU

from one side and with the LiM Matrix on the other. It takes a subsection of the

instruction, properly cropped by the uCU, and elaborates it to gather the values to

be assigned to the configuration signals. These signals are the ones that, in the next

clock cycle, enter the LiM Matrix to make it performing the computation demanded

through the analysed LiM instruction on the addressed data.

So, the entire LiM Instruction aimed at programming the GP-LiMA, is split into

multiple nested fields. From an high level view, there are 2 macro slices: the

first one, called uInstruction that is acquired by the uCU, containing informa-

tions such as the next instruction to be fetched or when the end of the program is

reached, and the second one, i.e. the VLIW nInstruction, that is directly forwarded

to the nCU to handle the algorithm computations in the M-SIMD mode. Then the

VLIW nInstruction is in turn composed of K fields, each called nInstruction and

containing one of the simultaneous instructions that the GP-LiMA can perform.

124



4 – GP-LiMA Paradigm

Lastly, the single nInstruction is made up of multiple fields, each associated with

a subset of the control signals driving a fixed group of Smart Blocks that are dedi-

cated to the execution of that specific instruction.

In the following, the description of the GP-LiMA control part is organized into two

sections: one for the uCU and the other for the nCU. Then, both sections provides an

insight on the composition of the instruction slice the related control unit processes.

Thus, in the uCU section all the fields comprising the uInstruction are detailed,

deepening how the LiM Programmer has to initialize them to define the specific

LiM program instructions flow. While, in the nCU section the single nInstruction

structure is exhaustively illustrated, providing a guide for the LiM Programmer

on how to set all the nInstruction fields to make the GP-LiMA performing the

wanted computation. In particular, all the possible values the nInstruction fields

can assume are explicitly listed together with their meaning in terms of involved

LiM Matrix actions. However, to see a complete and detailed example of a real

LiM program refer to subsection 5.2.1 where the LiM code for mapping the K-NN

algorithm on the GP-LiMA is reported.

4.3.1 Micro Control Unit (uCU) & uInstruction

As for the PLiM model, the uCU is implemented through a microprogrammed ma-

chine, outlined in Figure 4.16. It exchanges information both with the CPU and the

nCU to determine the actions that the GP-LiMA Unit has to perform.

Concerning the interface with the CPU, apart from the signals already mentioned

in subsection 4.1.1, as the LiM Activate, for starting the LiM in the processing

mode, the LiM Program Address, to specify the exact LiM program to execute, and

the LiM Program END, which flags the end of the LiM algorithm execution, the uCU

takes three others input signals more, used to properly set the architecture before

the processing: the waitADD, the waitLoadEn and the queueWen. These signals are

the ones that allow the CPU to compose at run-time a bigger LiM program made

up of a sequence of smaller pieces of code saved in different parts of the IMem. In

this way, it is not strictly necessary to write the IMem for each new LiM application
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Figure 4.16: uCU scheme.
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to be run, but it can be initialized at compile-time with all the possible code pieces

that may be used by the addressed applications.

To do this, the uCU embeds a set of registers, which are the lastOPFF and the

istrueQueue that is actually composed of a chain of registers (5 in the GP-LiMA

default structure). All of them must be properly initialized before the GP-LiMA

starts working in the processing mode. The instrQueue is used to keep the infor-

mation about the list of the single small LiM programs that have to be run one after

the other, creating the required bigger application. During the GP-LiMA initializa-

tion phase, the CPU has to insert inside the instrQueue, in the desired order, the

address of the first instruction for each of the LiM programs to be run in sequence.

Thus, the size of the instrQueue defines the number of LiM programs that can be

consequently run without the intervention of the CPU. Also in this case, if needed,

the hardware designer can choose to change this parameter before the architecture

realization (see section A.1). So, to initialize the instrQueue content the CPU has

to set to ’1’ the enable signal queueWen and assign to the LiM Program Address

one address value for each clock cycle. Note that even if the final LiM Program is

composed of a number of subprograms lower than the size of the instrQueue the

CPU has to force the remaining registers with the address 0. It means that in any

case the queueWen signal must be set to 1 for a number of clock cycles equal to the

number of registers inside the queue minus 1. Then, once the instrQueue is filled,

the CPU has to drive the LiM Program Address with the 0 value even during the

GP-LiMA processing mode. Moreover, to inform the uCU about which is the last

program that it has to execute, all the addresses inserted in the queue are comple-

mented with a further bit that equals always ’0’ except for the address of the last

program, where it is set to ’1’. In addition, to allow the GP-LiMA to properly con-

clude the macro-program execution, the CPU has to initialize the lastOPFF register

by setting for one clock cycle the waitLoadEn signal to ’1’ and driving the waitADD

signal with the address value of the IMem location where a special instruction, called

wait, is stored. This instruction is a compulsory one that must be always called as

last instruction before the end of the LiM processing mode.

Furthermore, to accomplish the LiM macro-program execution, the uCU is provided

with further registers such as uAreg, lastFlagDFF IR and lastFlagDFF thisInstr.

The last two store the value of the last bit of the address at the output of the
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instrQueue and are used to properly synchronize the end of the LiM processing

mode when the address of the last program to be run is shifted out by the registers

queue. While, when the GP-LiMA is run in the execution mode, the uAreg register

always holds the address of the new LiM program to be run, if any. Thus, during

the GP-LiMA processing, each time the last instruction of a middle sub-program is

fetched, the EnFetchReg signal goes to one for one clock cycle, so enabling, at the

next clock cycle, the shifting of the instrQueue and the update of the uAreg with

the old value output by the registers queue.

However, the core of the uCU is given by a sequencer, that is actually a cascade

of two multiplexers, the uPC register, the uRAR register and a simplified adder. All

of these components are used to control the instruction flow inside the GP-LiMA

during the actual LiM program execution. The uPC is the register holding the ad-

dress of the LiM instruction to be fetched from the IMem, while the sequencer is

the component that selects the next address to be provided to the uPC input. In

general, the uCU together with the uInstruction exploit the explicit addressing for

dictating the evolution of the current program. It means that, in each uInstruction

there is a dedicated field reporting the address value for the next instruction to be

fetched. In this way also the jump instruction is implicitly implemented since it is

enough writing in that field the address of the instruction where to jump. Moreover,

the uCU is also supplied with the mechanism for performing the call to a function,

by means of the jump&link and the return instructions. They are implemented

leveraging the mentioned uRAR register and simplified adder. When a jump&link

instruction is called, the input of the uPC is updated with the next address value

specified by that instruction, while the uRAR register loads the address of the in-

struction inside the IMem that is subsequent to the jump&link, taking it from the

output of the adder that sums 1 to the address of the currently fetched instruction.

Then, when the return instruction is fetched, at the next clock cycle, the content

of the uPC is updated with the value stored inside the uRAR. Note that this kind of

organization does not allow to perform nested calls to subroutines, meaning that,

after a jump&link instruction has been called, before issuing a further jump&link,

the return from the previous function must have been already called necessarily.

Summing up all the steps required for a whole LiM macro-program execution, at

compile-time the LiM programmer has to initialize the IMem with all the useful
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LiM sub-programs and load a special instruction at the address 0 that allows the

GP-LiMA to start correctly after the reset. Then, before the GP-LiMA is started in

the processing mode, the CPU has to initialize the instrQueue with the sequence of

the LiM subprograms to implement and the lastOPFF with the address of the wait

instruction, and, if needed, it can fill the LiM Array with the data to be processed.

After the initialization phase is completed, the CPU can assert the LiM Activate

signal to flag the GP-LiMA that it can start performing the addressed programs.

Note that this signal must be kept at ’1’ for the entire duration of the macro-program

execution. Then, as soon as the LiM Activate switches to ’1’, at the first active

clock edge, the instrQueue shifts out the address of the first program to run. At

the next clock cycle, the uAreg takes the data previously output by the instructions

queue while the sequencer selects the uAreg content as the next value to be loaded

inside the uPC register. One clock cycle after, the uAreg loads the value of the next

program address, the instrQueue outputs the value of the third program address,

and the uPC is updated with the address of the first program. In this way, the

first instruction is fetched through the PC signal, which sends the address to the

IMem, and the Instruction signal that returns to the uCU the entire fetched LiM

instruction. Then, this instruction is split in two sub-portions: the uInstruction,

that is used to drive the sequencer to fetch the next instruction, and the remaining

slice composed of the VLIW nInstruction, the Request and the enCol that are sent

to the nCU. At the next clock cycle the second instruction is fetched and so on

till when the last sub-program instruction is reached. At the next clock cycle after

the fetching of the subprogram last instruction, the uPC is updated with the value

of the second sub-program address stored in the uAreg, while both the uAreg and

the instrQueue are updated with the next addresses values. Then this process is

repeated till when the last instruction of the last subprogram is reached. In this

case, at the next clock cycle the uPC is updated with the value of the wait address

stored inside the lastOPFF register. The clock cycle after, the uPC returns to the

0 address, namely at the resest configuration. Then, after two clock cycles, the

LiM Program END signal is set to 1 for one clock cycle to flag to the CPU that the

GP-LiMA terminated the demanded applications. Note that only at this point the

LiM Activate signal can be disabled.
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To make the uCU able to implement the desired instruction flow, the LiM program-

mer has to properly set the bits belonging to the uInstruction portion inside all

the LiM instructions saved in the IMem. Thus, in the following, it is described how

to initialize the fields composing the uInstruction in order to obtain the wanted

GP-LiMA behaviour.

uInstruction

uSEQcnfg nextADD uIR fetchEN last uOP enCol Request

� uSEQcnfg:

– "00" → for the wait and the last instruction of a sub-program;

– "11" → for the jump&link instruction;

– "10" → for the return instruction;

– "01" → for all the other instructions (jump or sequential).

� nextADD uIR: contains the address of the next instruction to be fetched. Note

that in the case of a return instruction it can assume any value.

� fetchEN:

– "1" → for the last instruction of a sub-program and for the one saved at

address 0;

– "0" → for all the other instructions.

� last uOP:

– "1" → for the wait instruction;

– "0" → for all the other instructions.

� enCol: contains the enable signals for the Block columns inside the LiM Array.

Each bit of the enCol field is associated with a specific column, starting with

the first bit that drives the first column on the left and so on in an increasing

order.
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� Request:

– "0" → for the wait instruction and for the one saved at address 0;

– "1" → for all the other instructions.

4.3.2 Nano Control Unit (nCU) & nInstruction

As already anticipated, the nCU is the linking unit between the uCU and the LiM

Matrix that is dedicated to the handling of the data transfer and processing inside

the GP-LiMA following the M-SIMD computing paradigm. As it can be seen from

Figure 4.17, it is a quite simple block that mainly encloses a number of instruction

decoders equal to the maximum number of different operations that the LiM Matrix

has to perform simultaneously on different data.

Figure 4.17: Overview of the internal structure of the nCU.

The nCU input interface is given by 3 input signals coming from the uCU, which are:

the Request signal, that informs the nCU when it can start the decoding process, the

enCol, containing the enable signals for the Block Columns of the LiM Array, and

the VLIW nInstruction, holding the LiM instruction portion that the nCU has to
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decode. All of these signals are sampled at the beginning of the block by the decode

stage pipe registers and the returned Request and enCol signals are both directly

sent to the LiM Matrix, while the resulting VLIW nInstruction is portioned into

smaller sub-parts, each forwarding a different nInstruction to its dedicated instruc-

tion decoder. Then, each instruction decoder outputs a set of configurations signals

that is sent to the LiM Matrix and that comprises the CNFG Smart Rows i, which

controls the processing inside a generic Smart Block, the CNFG MI i, which drives

one specific SIMD MI block inside the MSIMD MI, the Enable Smart Rows set i,

for enabling some smart rows, the CNFG Row int i and the CNFG Col int i, which

control a subset of row or column interconnections, respectively. In particular, each

CNFG Smart Rows i drives all the Smart Blocks belonging to the smart rows which

are associated with the instruction decoder that outputs it. In the same way, the

CNFG Row int i and the CNFG Col int i signals act as the selection signal for the

column or the row interconnections that must be controlled by the same instruction

processed by the instruction decoder that generates them.

Furthermore, looking at Figure 4.17, it can be noticed that the single instruction

decoder is a very simple block, mainly implementing signals associations. It takes

the nInstruction and properly generates the control signals, by directly connect-

ing, in most of the cases, the bits associated to a specific field to the correspondent

control signal. This straightforward association is feasible thanks to a proper code

assignment organized for the values that each field can assume. It means that, in

most of the cases, the code value requiring a specific operation directly corresponds

to the values that the configuration signals must assume to drive that operation

execution inside the Smart Block.

To understand which fields of the nInstruction drive which components of the

Smart Block it is enough to match the control signals names between Figure 4.17 and

Figure 4.4. Moreover, to know how the LiM Programmer can set the nInstruction

fields to properly dictate the wanted data processing inside the LiM Matrix, in the

following a thorough insight on the nInstruction structure is proposed.
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nInstruction

EN ROW OPCODE SOURCE OP DEST OP ADDR S1 ADDR S2 ADDR D FUNC

� EN ROW: defines which are the smart rows that have to be enabled for the exe-

cution of that specific nInstruction, among the rows driven by the instruction

decoder in which this nInstruction enters. To each row a different bit of the

EN ROW field is dedicated in an increasing order, starting from the first bit that

is linked to the row with the lowest identification number (namely, looking at

Figure 4.3, the closest smart row to the upper part of the LiM Array).

� OPCODE: specifies the kind of instruction to be performed. A part from the null

and load instructions, all the other values for the OPCODE field are identified by

the names of the logic blocks under the Block Word inside the Smart Block.

So, to perform a target operation, the OPCODE of the nInstruction must be

initialized with the name of the logic block that can perform it. In the case

the enabled logic block implements multiple functions, to select the wanted

specific operation the FUNC field must be set, too.

In Table 4.2 the ISA associated with the default configuration of the GP-LiMA

is reported, detailing all the possible combinations of values for the OPCODE

and FUNC fields that identifies all the programmable executable operations.

� SOURCE OP: indicates from where the operands for the demanded computa-

tion have to be taken. In the case of an nInstruction involving two operands,

their insertion order inside the SOURCE OP field defines the association with the

first and the second operand, namely the values assumed by the Smart Block

signals OpA and OpB, respectively. However, in some cases other complemen-

tary informations must be added to precisely identify the data that has to be

elaborated; e.g. when the MI is specified as source operand, the address of the

block from which the data must be taken has to be specified too. For this

reason, the SOURCE OP field is coupled with other 2 fields, i.e. ADDR S1 and

ADDR S2, used to specify these additional informations for both the operands.

In Table 4.3 all the possible combinations of operands, i.e. all the feasible

values for the SOURCE OP field and related settings for the ADDR S1 and ADDR
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S2 fields, are described.

Note that all the listed operands can be used for any of the available operations

(OPCODE values) expect for the right shift operation (OPCODE = OP RShifter)

which accepts as source operand only a data coming from either the row in-

terconnections (Row int) or the MI(MI).

� DEST OP: specifies the destination storage component inside the Smart Block

where the outcome of the demanded operation has to be saved. Also the DEST

OP is complemented with another nInstruction field, i.e. the ADDR D, which

provides, when needed, further information about the particular addressed

storage element.

Table 4.4 illustrates all the possible values for the DEST OP and its correct

usage together with the ADDR D field.

� ADDR S1: is associated with the SOURCE OP field and, when needed, contains

the address for one of the two specified operands. It reports a valid address

only in case either RFA or Col int is indicated as a source operand, regardless

of whether it is specified as the first or the second operand. In particular, RFA

indicates a generic register inside the RF, while Col int tells that the data to

be processed must be retrieved from the Smart Block input connected to the

column interconnection.

The details on the ADDR S1 usage are provided in Table 4.3.

� ADDR S2: is associated with the SOURCE OP field and, when needed, contains

the address for one of the two specified operands. It reports a valid address only

in case either RFB, Row int or MI is indicated as a source operand, regardless

of whether it is specified as the first or the second operand. In particular, RFB

indicates a generic register inside the RF, while Row int and MI tell that the

data to be processed must be retrieved from the Smart Block input connected

to the row interconnection or to the MSIMD MI, respectively.

The details on the ADDR S2 usage are provided in Table 4.3.

� ADDR D: used only when the destination storage component specified in the

DEST OP field corresponds to the RF. In this case, ADDR D must be initialized

with the address identifying the particular register inside the RF that must be
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written.

The details on the ADDR D usage are provided in Table 4.4.

� FUNC: is used, coupled with the OPCODE value, to specify, only when needed,

the particular function the logic block set in the OPCODE field has to perform.

In Table 4.2 all the possible FUNC values are listed for each of the available

OPCODE values.

ISA

OPCODE FUNC

Instruction definition

Res = OpA OP OpB

Res = OP(Op)

nullOP nullFunc
Null instruction used to wait for one clock cy-

cle to handle data hazard occurrences.

OP Load nullFunc

Copy the value of any source operand into

the specified destination (Block Word, Bypass

Storage or Register File).

OP ALU AND OP Res = OpA AND OpB

OP ALU XOR OP Res = OpA XOR OpB

OP ALU SUM OP Res = OpA + OpB

OP ALU SUB OP Res = OpA - OpB

OP ALU ABS OP Res = |Op|
OP ALU OR OP Res = OpA OR OpB

OP ALU NAND OP Res = OpA NAND OpB

OP ALU NOT OP Res = NOT Op

OP ALU NOR OP Res = OpA NOR OpB

OP ALU XNOR OP Res = OpA XNOR OpB

OP ALU EQ OP
Res = 1 if OpA = OpB

Res = 0 if OpA 6= OpB

OP ALU NOT EQ OP
Res = 1 if OpA 6= OpB

Res = 0 if OpA = OpB

OP ALU GT OP
Res = 1 if OpA > OpB
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Res = 0 if OpA ≤ OpB

OP ALU LT OP
Res = 1 if OpA < OpB

Res = 0 if OpA ≥ OpB

OP Multiplier nullFunc Res = OpA × OpB

OP LUT nullFunc Res = "0...0"&LUT(Op)

OP LUT Sign ext LUT OP
Res =

"LUT(Op)(MSB)...LUT(Op)(MSB)"&LUT(Op)

OP RShifter Logic RShift OP Res = ’0’& Op(MSB)& ... &Op(1)

OP RShifter Arith RShift OP Res = Op(MSB)& Op(MSB)& ... &Op(1)

Table 4.2: ISA associated with the default Smart Block structure. All the operations
executable by the single Smart Block are listed and described.

Source Operands Mechanism

SOURCE OP ADDR S1 ADDR S2 Instruction description

Mem Mem, Mem nullADDR S1 nullADDR S2
Both OpA and OpB take the

value stored in the Block Word.

Mem RFA RF Address nullADDR S2

OpA forwards the content of the

Block Word while OpB carries

the value held by the register

inside the RF pointed by the

address specified in the ADDR

S1 field of the instruction.
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Mem Row int nullADDR S1

Row Int

Shifts

Number

OpA forwards the content of the

Block Word while, for each

Smart Block, OpB carries the

content of the Bypass Storage

inside the Smart Block placed

at the right of the current

Smart Block of a number of

positions equal to the value

specified in the ADDR S2 field

of the instruction.

Mem Col int

Col Int

Shifts

Number

nullADDR S2

OpA forwards the content of the

Block Word while, for each

Smart Block, OpB carries the

content of the Bypass Storage

inside the Smart Block placed

below the current Smart Block

of a number of positions equal

to the value specified in the

ADDR S1 field of the

instruction.

Mem MI int nullADDR S1
LiM Array

Address

OpA forwards the content of the

Block Word while OpB takes

the value output by the MI

that fetches the Block Word

data pointed by the LiM Array

address specified in the ADDR

S2 field of the instruction.
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RFA Mem RF Address nullADDR S2

OpA carries the value held by

the register inside the RF

pointed by the address

specified in the ADDR S1 field

of the instruction while OpB

forwards the content of the

Block Word.

RFA RFA RFA RF Address nullADDR S2

Both OpA and OpB assume the

value stored in the register

inside the RF pointed by the

address specified in the ADDR

S1 field of the instruction.

RFA RFB RF Address RF Address

OpA takes the value from the

register inside the RF pointed

by the address specified in the

ADDR S1 field of the instruction

while OpB assumes the value

stored in the RF register

pointed by the address

specified in the ADDR S2 field

of the instruction.
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RFA Row int RF Address

Row Int

Shifts

Number

OpA takes the value from the

register inside the RF pointed

by the address specified in the

ADDR S1. For each Smart

Block, OpB carries the content

of the Bypass Storage inside

the Smart Block placed at the

right of the current Smart

Block of a number of positions

equal to the value specified in

the ADDR S2 field of the

instruction.

RFA MI int RF Address
LiM Array

Address

OpA takes the value from the

register inside the RF pointed

by the address specified in the

ADDR S1. OpB takes the value

output by the MI that fetches

the Block Word data pointed

by the LiM Array address

specified in the ADDR S2 field

of the instruction.

139



4 – GP-LiMA Paradigm

RFB Col int

Col Int

Shifts

Number

RF Address

OpA assumes the value stored in

the RF register pointed by the

address specified in the ADDR

S2 field of the instruction,

while, for each Smart Block,

OpB carries the content of the

Bypass Storage inside the

Smart Block placed below the

current Smart Block of a

number of positions equal to

the value specified in the ADDR

S1 field of the instruction.

Row int Mem nullADDR S1

Row Int

Shifts

Number

For each Smart Block, OpA

carries the content of the

Bypass Storage inside the

Smart Block placed at the

right of the current Smart

Block of a number of positions

equal to the value specified in

the ADDR S2 field of the

instruction, while OpB forwards

the Block Word content.
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Row int RFA RF Address

Row Int

Shifts

Number

For each Smart Block, OpA

carries the content of the

Bypass Storage inside the

Smart Block placed at the

right of the current Smart

Block of a number of positions

equal to the value specified in

the ADDR S2 field of the

instruction. OpB takes the

value from the register inside

the RF pointed by the address

specified in the ADDR S1.

Row int Row int

Row int
nullADDR S1

Row Int

Shifts

Number

For each Smart Block, both

OpA and OpB carry the content

of the Bypass Storage inside

the Smart Block placed at the

right of the current Smart

Block of a number of positions

equal to the value specified in

the ADDR S2 field of the

instruction.
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Row int Col int

Col Int

Shifts

Number

Row Int

Shifts

Number

For each Smart Block, OpA

carries the content of the

Bypass Storage inside the

Smart Block placed at the right

of the current Smart Block of a

number of positions equal to

the value specified in the ADDR

S2 field of the instruction,

while OpB carries the content of

the Bypass Storage inside the

Smart Block placed below the

current Smart Block of a

number of positions equal to

the value specified in the ADDR

S1 field of the instruction.

Col int Mem

Col Int

Shifts

Number

nullADDR S2

For each Smart Block, OpA

carries the content of the

Bypass Storage inside the

Smart Block placed below the

current Smart Block of a

number of positions equal to

the value specified in the ADDR

S1 field of the instruction,

while OpB forwards the content

of the Block Word.
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Col int RFB

Col Int

Shifts

Number

RF Address

For each Smart Block, OpA

carries the content of the

Bypass Storage inside the

Smart Block placed below the

current Smart Block of a

number of positions equal to

the value specified in the ADDR

S1 field of the instruction. OpB

assumes the value stored in the

RF register pointed by the

address specified in the ADDR

S2 field of the instruction.

Col int Row int

Col Int

Shifts

Number

Row Int

Shifts

Number

For each Smart Block, OpA

carries the content of the

Bypass Storage inside the

Smart Block placed below the

current Smart Block of a

number of positions equal to

the value specified in the ADDR

S1 field of the instruction,

while OpB carries the content of

the Bypass Storage inside the

Smart Block placed at the right

of the current Smart Block of a

number of positions equal to

the value specified in the ADDR

S2 field of the instruction.
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Col int Col int

Col int

Col Int

Shifts

Number

nullADDR S2

For each Smart Block, both

OpA and OpB carry the content

of the Bypass Storage inside

the Smart Block placed below

the current Smart Block of a

number of positions equal to

the value specified in the ADDR

S1 field of the instruction.

Col int MI int

Col Int

Shifts

Number

LiM Array

Address

For each Smart Block, OpA

carries the content of the

Bypass Storage inside the

Smart Block placed below the

current Smart Block of a

number of positions equal to

the value specified in the ADDR

S1 field of the instruction. OpB

takes the value output by the

MI that fetches the Block Word

data pointed by the LiM Array

address specified in the ADDR

S2 field of the instruction.

MI int Mem nullADDR S1
LiM Array

Address

OpA takes the value output by

the MI that fetches the Block

Word data pointed by the LiM

Array address specified in the

ADDR S2 field of the

instruction, while OpB forwards

the content of the Block Word.
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MI int RFA RF Address
LiM Array

Address

OpA takes the value output by

the MI that fetches the Block

Word data pointed by the LiM

Array address specified in the

ADDR S2 field of the

instruction. OpB takes the

value from the register inside

the RF pointed by the address

specified in the ADDR S1.

MI int Col int

Col Int

Shifts

Number

LiM Array

Address

OpA takes the value output by

the MI that fetches the Block

Word data pointed by the LiM

Array address specified in the

ADDR S2 field of the

instruction. OpB carries the

content of the Bypass Storage

inside the Smart Block placed

below the current Smart Block

of a number of positions equal

to the value specified in the

ADDR S1 field of the

instruction.

MI int MI int

MI int
nullADDR S1

LiM Array

Address

Both OpA and OpB assume the

value output by the MI that

fetches the Block Word data

pointed by the LiM Array

address specified in the ADDR

S2 field of the instruction.

Table 4.3: All possible combinations of source operand kinds are listed together with
their usage in case of addresses to be specified. Note that OpA and OpB refer to the
couple of data on which each Smart Block performs the required operations.
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Destination Operand Mechanism

DEST OP ADDR D Instruction description

DEST Mem nullADDR D

The value assumed by the Result signal inside
the Smart block, i.e. the outcome of the

demanded operation, is stored inside the Block
Word itself.

DEST Bypass nullADDR D

The value assumed by the Result signal inside
the Smart block, i.e. the outcome of the

demanded operation, is stored inside the Bypass
Storage.

DEST RF RF Address

The value assumed by the Result signal inside
the Smart block, i.e. the outcome of the

demanded operation, is stored inside the register
inside the RF pointed by the address specified in

the ADDR D field of the instruction.

Table 4.4: All possible destination operand kinds are listed together with their usage
in case of addresses to be specified.
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Chapter 5

GP-LiMA Performance

Finally, in this chapter the performance achieved by the proposed GP-LiMA are esti-

mated to verify whether the expected improvements for the applications executions

are accomplished. In particular, being the GP-LiMA essentially an architectural

model, here, the synthesis for a specific configuration of it is analysed, which has

the values set for the LiM Matrix size and the M-SIMD degree parameters that lead

to a GP-LiMA version that is as general as possible for the mapping of different

kinds of algorithms. Afterwards, the gathered performance achievements are com-

pared with the ones of already existing LiM and standard CPU-centric solutions.

Specifically, the chapter outline develops into two sections:

� Section 5.1 - GP-LiMA Layout & Performance Evaluation illustrates

the composition of the specific investigated GP-LiMA device and reports the

post-synthesis and post-place&route results for the performance parameters

that do not depends on the specific algorithm run on the architecture, such

as the maximum operating frequency, the area occupation and the worst case

power consumption.

� Section 5.2 - Benchmarks Mapping on the GP-LiMA &

Comparisons with other Architectures is divided into multiple subsec-

tions. The first one deals with all the benchmarks used to test the GP-LiMA

in terms of programming generality and execution efficiency. In particular,
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here all the benchmarks used to estimate the PLiM performance are consid-

ered and, for each of them, the way they can be mapped onto the synthesized

GP-LiMA is explained. Besides, for the most simple benchmark, i.e. the K-

NN, the actual LiM code is provided as a guided example to understand how a

generic algorithm can be translated into a sequence of GP-LiMA instructions.

Then, the following subsection, focus on the post-place&route performances

associated with each tested algorithm, i.e. the benchmark execution time, the

back-annotated power consumption and both the worst case and the back-

annotated energy expenses. Then, the execution time, the worst case power

and energy consumptions achievements are compared on a per-sample basis

with the ones reached by the PLiM customized architectures retrieved for

each benchmark. Finally, the last subsection presents a further comparison

that sees the GP-LiMA back-annotated energy attainments juxtaposed with

the energy values spent by a standard CPU-centric system, i.e. the RISC-V

connected to its standard memory hierarchy. Here, the benefits gained thanks

to the employment of the LiM approach in terms of algorithms execution ef-

ficiency are highlighted, validating the worthiness for future investigations of

this new computing paradigm.

5.1 GP-LiMA Layout & Performance Evaluation

To assess the goodness of the designed architectural model, an analysis of the ac-

cessed performance must be carried out. However, being the GP-LiMA a model for

speeding up the design time of LiM architectural solutions, to gather estimations, at

first a specific architecture must be produced by setting the tunable parameters of

the GP-LiMA model. Since the GP-LiMA is intended to lead to programmable LiM

devices with a high level of programming generality, just to validate this feature,

the chosen values for these parameters aim at identifying a LiM Matrix structure

that further maximizes the adaptability to different algorithms. In Figure 5.1 the

final arrangement of the specific version of the GP-LiMA considered for the per-

formance evaluation is depicted. In particular, the image details the LiM Array

layout together with the connections to the nCU. While, in the box below, all the

architectural features that characterize the specific structure of the GP-LiMA under
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study are summarized.

LiM Array Structure

# Columns = 32

Standard Section: #Rows = 5 a=⇒ #Standard Blocks = 160

Smart Section: fi #Rows = 16 =⇒ #Smart Blocks = 512

Smart Section: f #MSIMD Instructions = 3

Smart Section: f Instruction 0 drives smart rows: 0,1,2,3,4

Smart Section: f Instruction 1 drives smart rows: 5,6,7,8,9

Smart Section: f Instruction 2 drives smart rows: 10,11,12,13,14,15

# Total Rows = 672 , Memory Parallelism (Blocks width) = 16 bits

=⇒ Addressable Space = 1344 bytes

Figure 5.1: LiM Matrix arrangement set for the GP-LiMA device to be synthesized.
The blu squares identify the Smart Blocks, while the cream-colored ones represent
the Standard Blocks.

For most of the algorithms, the number of Smart Blocks composing the LiM Array

determines the total number of samples on which the application can run. For this
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reason, in the identified GP-LiMA, the number of Block columns and smart rows

is sized trying to find the right trade-off between memory array storage capacity

and device efficiency while making the maximum number of processable samples

be a power of 2, i.e. 512. This is also thought of for algorithms involving division

operations on the stored data by the number of total samples, which in this way can

be performed by leveraging the RShifter mechanism across the smart rows already

provided with the Smart Block default version. Moreover, to maximize the archi-

tecture efficiency for the chosen number of total LiM Array Blocks, the number of

Blocks included in a single row is higher than the one composing an array column.

This because, as already explained in section 4.2.2, the row interconnections imple-

mentation is optimized compared with the column one, so the row interconnections

can host more blocks than the column ones under the same complexity. Then, to

promote mapping generality the architecture is structured so that it can perform

up to 3 different instructions simultaneously, each on a different set of data stored

inside the LiM Array. Besides, the M-SIMD processing mode is organized inside

the LiM Array so that the number of data that can be processed in parallel by the

same instruction is quite balanced among the three different simultaneous instruc-

tions. In particular, the first 2 instructions drive 5 smart rows each, while the last

instruction controls the remaining 6. Furthermore, it is worth highlighting that, for

most algorithms, the number of considered samples directly impacts the computing

precision. The bigger the processed dataset is, meaning the higher the number of

LiM Array Smart Blocks is, the higher the chance to incur data overflow during the

algorithm’s execution is. This is one of the reasons why, in the GP-LiMA at hand

with memory parallelism of 16 bits, the number of smart rows and columns is sized

so that the total number of Smart Blocks equals 512, rather than 1024. Besides,

this design choice also points to limit the complexity of the overall structure as well

as the energy and the power consumption.

5.1.1 Synthesis

After having set the model parameters looking for a trade-off among storage capac-

ity, programming generality and energy efficiency, the resulting GP-LiMA device

150



5 – GP-LiMA Performance

was synthesized to retrieve a first estimation for the values of the performance met-

rics that are independent of the run application.

The Synopsys tool was used to perform multiple synthesis based on standard cells,

one for a different technology node: 45 nm, 28 nm, and 15 nm. Moreover, to further

minimize the GP-LiMA power consumption, the tool was set to obtain the equiv-

alent of the GP-LiMA netlist embedding the clock gating mechanism. The clock

gating is a technique exploited in low power systems which aims at reducing the

power consumption by disabling the clock signal individually for each of the regis-

ters in the design when that specific element does not have to be updated during

that generic clock cycle. To do so, the clock entry for each register is fed by a control

block which disables the signals according to the values of the registers enable signals

and the general clock signal. In this way, the power consumed by each flip flop due

to the clock signal switching is strongly cut resulting in significant power savings.

The commands used in the Synopsys script to force the clock gating insertion are

reported below in the colour blue.

set clock gating style

analyze ...

set compile clock gating through hierarchy true

elaborate ...

compile -gate clock

report clock gating -ver -gating -gated -multi stage >

init clock gating DUT.txt

ungroup -all -flatten

write ...

In Table 5.1 the outcomes of the performance analysis on the post-synthesis netlists

generated using all the mentioned technologies are summarized. Indeed, for each

technology node, two syntheses of the GP-LiMA version previously declared were

carried out, each with different memory parallelism, i.e. 16 bits and 32 bits, to have

a rough hint on the performance scaling according to the word precision.

As expected, the metrics values improve with the scaling of the technology node,

while worsen with the increasing of the memory parallelism.
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Technology 45 nm 28 nm 15 nm Nbit

Critical path
3.89 ns 1.78 ns 0.53 ns 16

3.88 ns 1.85 ns 0.53 ns 32

Area
1.78 mm2 1.27 mm2 0.47 mm2 16

3.57 mm2 2.52 mm2 0.96 mm2 32

% Gated registers
93.32% 93.32% 93.32% 16

92.28% 92.28% 92.28% 32

Maximum clock frequency
256.41 MHz 555.55 MHz 1.66 GHz 16

256.41 MHz 526.31 MHz 1.66 GHz 32

Worst case power
158.06 mW 132.03 mW 255.58 mW 16

259.4 mW 196.79 mW 380.43 mW 32

% Interconnections area 22.97 % 23.49 % 25.77 % 16

GP-LiMA area 23.12 % 23.27 % 26.04 % 32

% Interconnections power 51.19 % 51.19 % 56.68 % 16

GP-LiMA power 62.2 % 65.54 % 74.41 % 32

Table 5.1: GP-LiMA synthesis results for different technologies and for memory
parallelism equal to 16 and 32 bits. Note that the power values refer to the GP-
LiMA maximum clock frequencies.

In general, the maximum operating frequency allowed ranges from about 256 MHz,

with the 45 nm technology, to 1.66 GHz with the 15 nm, showing an improvement

of 548%, while the area occupation decreases of 73%. Only the worst case power

seems to worsen passing from 158 mW to 255.58 mW for the 16 bits versions. How-

ever, it is not a real deterioration since the estimations for the power consumptions

are all retrieved fixing the clock frequency to the maximum value allowed. It can

be seen that the enhancements reached in terms of maximum operating frequency

(548%) are way more significant than the worsening of the power results (61% for

16 bits and 45% for 32 bits). Thus, another metric merging the impact of the two

contributions should be considered, such as the energy/clock cycle. In the case of

16 bits, the energy/clock cycle for the 45 nm technology node equals 616.43 pJ, for

the 28 nm it equals 237.65 pJ, while for the 15 nm it equals 153.96 pJ, pointing out
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a total improvement of 75% (from the 45 nm to the 15 nm).

Concerning the performance trend according to the memory parallelism, when the

number of bits composing the word doubles, the critical path remains almost the

same, while, as expected, the area doubles and the power consumption increases of

about 64%.

Furthermore, since, as already saw in subsection 4.2.2, the interconnections repre-

sent a key point of the GP-LiMA paradigm for the programming flexibility but also

for the complexity overhead introduced in the LiM Matrix, a procedure for esti-

mating their actual impact on both the total area occupation and power expense

of the architecture was conducted. In particular, an aside entity was created and

then synthesized embedding all the possible interconnections branching in the LiM

Array of the synthesized GP-LiMA. Specifically, it included 16 row interconnections,

each interfacing 32 Smart Blocks, 32 column interconnections on 21 blocks each and

one MSIMD MI composed of 3 SIMD MI, each connected to all the 672 Blocks in

the LiM Array. Then, the results on the interconnections impact are reported at

the bottom of Table 5.1 and are computed as: (Interconnections Area/GP-LiMA

Area)×100 and (Interconnections Power/GP-LiMA Power)×100. It derives that,

for all the technologies and the memory parallelisms, in the average the intercon-

nections represent about 24% of the GP-LIMA total area, while they consume a

power amount of the total GP-LiMA power that ranges from about 51% in the best

case (16 bits with the 45 nm) to 74% in the worst one (32 bits with the 15 nm).

Thus, these results clearly confirm the massive role that the interconnections play

in terms of added complexity to the whole design.

5.1.2 Place & Route

After the synthesis, a place&route procedure was performed only on the netlist

synthesized with the 45 nm technology and representing the 16 bit version of the

indicated GP-LiMA. As for the PLiM performance evaluation (subsection 3.2.6),

this further step aimed at gather more precise estimations of the considered perfor-

mance metrics, especially for the actual impact of the interconnections on the whole

GP-LiMA. The results of the analysis both post-place&route and post-synthesis are

reported in Table 5.2. Moreover, to verify the gain in terms of power consumption
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obtained thanks to the clock gating insertion, the same 16 bit GP-LiMA version was

at first synthesized using the 45 nm technology without forcing the clock gating and

then passed through a place&route process. The final metrics outcomes are shown

always in Table 5.2.

While, in Figure 5.2 it is highlighted the critical path after the place&route process

for the clock gated GP-LiMA.
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Figure 5.2: Post-Place&Route GP-LiMA critical path.

As expected, the critical path passes through the single Smart Block. It starts af-

ter the pipe registers of a single SIMD MI inside the M-SIMD MI, then it enters

the Smart Block and passes through the right input multiplexer, the multiplexer
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driving the OpA signal inside a single arithmetic cell and the ALU block, crossing

the subtractor and 3 multiplexers, and finally it ends at the Bypass Storage input

passing through the multiplexer returning the Result value. Note that the critical

path passes through the ALU rather than the multiplier. This happens just because

while the substractor is on 16 bits the multiplier instantiated takes as inputs signals

on 8 bits (returning an output on 16 bits).

Synthesis Place & Route

Clock gating insertion YES NO YES NO
Critical path 3.89 ns 3.89 ns 4.29 ns 4.38 ns

Area 1.78 mm2 1.83 mm2 1.85 mm2 1.87 mm2

Clock frequency 232.55 MHz 227.27 MHz 232.55 GHz 227.27 MHz
Worst case power 146.82 mW 264.7 mW 690.79 mW 1201.77 mW

% Interconnections area
GP-LiMA area

22.97 % 22.38 % 25.11 % 24.78 %

% Interconnections power
GP-LiMA power

50.58 % 29.5 % 29.25 % 16.45 %

Table 5.2: GP-LiMA synthesis and place&route results using the Nangate45 library
and for memory parallelism equal to 16 bits. The table reports the achieved perfor-
mance for both the architecture exploiting the clock gating technique and the one
which does not. Note that the power values refer to the specified clock frequency
values.

Looking at Table 5.2, first of all, it can be noticed that, for the clock gated GP-LiMA

version, the metrics values after the place&route worsen as the minimum clock pe-

riod changes from 3.89 ns to 4.29 ns, showing a worsening of 10%, while the area

occupation grows from 1.78 mm2 to 1.85 mm2. However, the greatest difference

is found for the worst case power consumption that after the place&route process,

under the same clock frequency value, (232.55 MHz) reaches 690.79 mW, pointing

out a deterioration of 370%.

Furthermore, always looking at the power values, the contribute of the clock gating

insertion to the overall GP-LiMA power saving stands out. After the place&route

the GP-LiMA netlist exploiting the clock gating technique consumes around 42%

fewer than the one without clock gating.

Lastly, as already anticipated, the post-place&route estimation of how the inter-

connections affect the overall area occupation and power consumption of the final
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architecture can be seen in the lower part of Table 5.2. While the result about the

area percentage changes slightly from the post-synthesis value (the interconnections

occupy about 25% of the total area), the power outcomes undergo a significant re-

duction, passing from 50% to 29%. However, although the post place&route results

provide a better prediction about the interconnections power consumption percent-

age on the overall GP-LiMA expense, the value remains still quite high.

5.2 Benchmarks Mapping on the GP-LiMA &

Comparisons with other Architectures

To gather informations about the average values for the execution times and the

energy expenses characterizing the synthesized GP-LiMA and to eventually compare

the attained performances with the ones of other architectural solutions, a set of

benchmarks to be mapped on the GP-LiMA was selected. Specifically, the same

benchmarks used for the PLiM validation were run onto the GP-LiMA to both

verify its programming flexibility and have a more direct comparison to make. As

for the PLiM, the size of the involved dataset for each benchmark was chosen so as to

maximize the number of Smart Blocks already instantiated inside the LiM Array that

contribute to the elaboration of the algorithm results, with the aim of both speeding

up the execution and improving the performance in terms of energy/sample.

In the following, for each benchmark, a dedicated subsection is reported explaining

how the associated application can be successfully implemented by the GP-LiMA.

Each subsection starts with the definition of the specific algorithm that must be

mapped onto the architecture, then it includes two figures: one showing how the

LiM Array content has to be initialized with the starting dataset for preparing the

GP-LiMA to the execution of the demanded algorithm and another displaying in

which memory array locations the final results will be stored at the end of the

execution. Note that in the lower-left corner of each figure a legend is present

indicating the association between each colour and the data it represents. Finally,

each subsection ends with the explanation of the algorithm implementation that is

organized in macro step, each providing information about the main operations the

GP-LiMA performs and their goal together with the number of LiM instructions
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needed to perform that step. Note that the instructions count is specified in a

parametric way, namely keeping, in the final expression, the number of processed

dataset samples as a variable.

5.2.1 K-NN: K Neirest Neighbour

Given a bi-dimensional dataset (d = 2) composed of N samples (xi,yi) and the sample

to be classified (xs,ys), compute all the N distances Di between the dataset samples

and (xs,ys), using the Manhattan norm (p = 1):

Di = |xs − xi|+ |ys − yi| (5.1)

Figure 5.3: Synthesized LiM Array content for the K-NN benchmark.
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Figure 5.4: Results placement inside the LiM Array for the K-NN benchmark.

Here, the K-NN LiM program is explicitly reported as a quick guided example for

pointing out the functioning of the GP-LiMA Unit and how an algorithm can be

translated into an GP-LiMA program. The explanation is organized so that first

the specific LiM instruction is declared and then it follows a comment illustrating

the operations and data transfers implied inside the LiM Matrix. So, a list of all

the program instructions is drafted, and for each of them the different Instruction

macro-fields are highlighted according to this colour association: uInstruction ,

nInstruction 0 , nInstruction 1 , and nInstruction 2 .

� Step 1 : Compute all the xs − xi terms and save them into the RF1s (RF1:

register at address 0 inside the RF).
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init instructions(1) <=

in "01"&std logic vector(to unsigned(2,SIZE uROM Address))&

inin ’0’&’0’&All Col Enabled&’1’&

in "11111"&OP ALU&MI int Mem&DEST RF&nullADDR S1&

inin std logic vector(to unsigned(640,SIZE ADDR S2))

ininin &std logic vector(to unsigned(1,SIZE ADDR D))&SUB OP&

in "11111"&OP ALU&MI int Mem&DEST RF&nullADDR S1&

inin std logic vector(to unsigned(640,SIZE ADDR S2))

ininin &std logic vector(to unsigned(1,SIZE ADDR D))&SUB OP&

in Disable instr dec last;

Since all the xi values are contained in the first 10 smart rows, nInstruction 0

and nInstruction 1 enable them setting the bits in their EN ROW field to 1.

To complete their enabling, all the bits in the enCol field of the uInstruction

are also set to 1. While, the entire set of smart rows controlled by the last

n Instruction, i.e. the last 6 smart rows, is disabled ( nInstruction 2 =

Disable instr dec last). Then, all the Smart Blocks belonging to the first

10 smart rows have to perform the same action, that is why nInstruction 0

and nInstruction 1 are equal. Each enabled Smart Block selects as value

for the Result signal the one at output of the ALU (OPCODE = OP ALU),

which, in turn, is the outcome of a subtraction (FUNC = SUB OP) between

the content of the Block Word, i.e. xi, and the value forwarded by the MI

(SOURCE OP = MI int Mem), i.e. xs. In particular, the MI provides the con-

tent of the Block at address 640 (ADDR S1 = std logic vector(to unsigned

(640,SIZE ADDR S2))). Then, the Result value is stored into the register in-

side the RF (DEST OP = DEST RF) pointed by the address written into the

ADDR D field (specifically, into the register at address 1, being ADDR D =

std logic vector(to unsigned(1,SIZE ADDR D))).

Then, in the uInstruction the next instruction to be executed is coded

through a combination of values of different fields. The uSEQcnfg is set to

"01", meaning that the address for accessing the IMem must be taken from

the nextADD uIR field, that in this case points to the location at address 2.
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Besides, the Request field is set to ’1’ while the last uOP to ’0’, explicating

that the current instruction is not a wait one. Lastly, the fetchEN field is

fixed at ’1’ to indicate that the program will last at least for one instruction

more.

� Step 2 : Compute all the |xs − xi| terms and save them into the RF1s.

init instructions(2) <=

in "01"&std logic vector(to unsigned(3,SIZE uROM Address))&

inin ’0’&’0’&All Col Enabled&’1’&

in "11111"&OP ALU&RFA&DEST RF&

inin std logic vector(to unsigned(1,SIZE ADDR S1))&nullADDR S2&

ininin std logic vector(to unsigned(1,SIZE ADDR D))&ABS OP&

in "11111"&OP ALU&RFA&DEST RF&

inin std logic vector(to unsigned(1,SIZE ADDR S1))&nullADDR S2&

ininin std logic vector(to unsigned(1,SIZE ADDR D))&ABS OP&

in Disable instr dec last;

Also during this instruction, only the Smart Blocks in the first 10 smart

rows are enabled to take the outcomes of the ALUs and save them into

the RF1s. However, in this case, the function performed is the absolute

value (FUNC = ABS OP) of the RF1 content (SOURCE OP = RFA , ADDR S1 =

std logic vector(to unsigned(1,SIZE ADDR S1))) that is xs − xi.

� Step 3 : Load all the yi values into the related Bypass Storages to make them

accessible by the upper Smart blocks through the Rdt Int.
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init instructions(3) <=

in "01"&std logic vector(to unsigned(4,SIZE uROM Address))&

inin ’0’&’0’&All Col Enabled&’1’&

in Disable instr dec&

in Disable instr dec&

in "111111"&OP Load&Mem&DEST Bypass&nullADDR S1&nullADDR S2&

inin nullADDR D&nullFunc;

To prepare the data for the parallel computation of all the |ys − yi| terms,

carried out by the Smart Blocks inside the first 10 smart rows, the data delivery

mechanism of the reduction tree interconnections must be exploited and so

initialized. In particular, in the next instructions, the column interconnections

are used by the first 320 Smart Blocks to fetch in parallel all the values yi

stored in the 320 Blocks below them (each of the first Smart Blocks will take a

different yi value). For this reason, the last 6 smart rows Bypass Storages, that

are the registers from which the Red Int take the input data, must be updated

with the yi values saved in the associated Block Words. If follows that during

this LiM instruction the first 10 smart rows will be disabled ( nInstruction 0

= nInstruction 1 = Disable instr dec&) , while the last 6 smart rows

will copy the content of the Block Word into the Bypass Storage (DEST OP =

DEST Bypass).

� Step 4 : Preserve the LiM Array content of the Smart Blocks that will over-

write their Block Word with the values of the final results. Copy the content

of these Block Words into the associated RF0.
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init instructions(4) <=

in "01"&std logic vector(to unsigned(5,SIZE uROM Address))&

inin ’0’&’0’&All Col Enabled&’1’&

in "11111"&OP Load&Mem&DEST RF&nullADDR S1&nullADDR S2&

inin std logic vector(to unsigned(0,SIZE ADDR D))&nullFunc&

in "11111"&OP Load&Mem&DEST RF&nullADDR S1&nullADDR S2&

inin std logic vector(to unsigned(0,SIZE ADDR D))&nullFunc&

in Disable instr dec last;

Here, again, only the Smart Blocks belonging to the first 10 smart rows are en-

abled. Since the Op load instruction is called specifying Mem as source operand

and DEST RF as destination, all the enabled Smart Blocks copy the data stored

in their Block Work into the RF0.

� Step 5 : Compute all the ys − yi terms and save them into the Block Words.

init instructions(5) <=

in "01"&std logic vector(to unsigned(6,SIZE uROM Address))&

inin ’0’&’0’&All Col Enabled&’1’&

in "11111"&OP ALU&MI int Col int&DEST Mem&

inin std logic vector(to unsigned(10,SIZE ADDR S1))&

ininin std logic vector(to unsigned(641,SIZE ADDR S2))&

inininin nullADDR D&SUB OP&

in "11111"&OP ALU&MI int Col int&DEST Mem&

inin std logic vector(to unsigned(10,SIZE ADDR S1))&

ininin std logic vector(to unsigned(641,SIZE ADDR S2))&

inininin nullADDR D&SUB OP&

in Disable instr dec last;

Each of the Smart Blocks in the first 10 rows takes a different yi value from the

column interconnections and subtract it to the ys value forwarded by the MI

(OPCODE=OP ALU, FUNC=SUB OP, SOURCE OP=MI int Col int). Thanks to the

column interconnections, simultaneously, each enabled smart row takes the
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content of the row that is placed 10 position below, as specified through

the ADDR S2 field of nInstruction 0 and nInstruction 1 that is equal

to std logic vector (to unsigned(10,SIZE ADDR S1)). While the same ys

term is forwarded to all the enabled Smart Blocks thanks to the MI that fetches

it from the Block at address 641 ADDR S1 = std logic vector(to unsigned

(641,SIZE ADDR S2)). Then, all the results ys − yi are saved in all the Block

Words of the first N Smart Blocks (DEST OP = DEST Mem).

� Step 6 : Compute all the |ys− yi| terms and save them into the Block Words.

init instructions(6) <=

in "01"&std logic vector(to unsigned(7,SIZE uROM Address))&

inin ’0’&’0’&All Col Enabled&’1’&

in "11111"&OP ALU&Mem&DEST Mem&nullADDR S1&nullADDR S2&

inin nullADDR D&ABS OP&

in "11111"&OP ALU&Mem&DEST Mem&nullADDR S1&nullADDR S2&

inin nullADDR D&ABS OP&

in Disable instr dec last;

All the first N Smart Blocks take the content in their Block Word (SOURCE

OP = Mem) and pass it to the ALU that returns its absolute value (OPCODE =

OP ALU, FUNC = ABS OP) that is then saved again into the Block Word (DEST

OP = DEST Mem).

� Step 7 : Compute all the |xs− xi|+ |ys− yi| terms saving the results into the

Block Words.
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init instructions(7) <=

in "00"&std logic vector(to unsigned(14,SIZE uROM Address))&

inin ’1’&’0’&All Col Enabled&’1’&

in "11111"&OP ALU&Mem RFA&DEST Mem&

inin std logic vector(to unsigned(1,SIZE ADDR S1))&

inin nullADDR S2&nullADDR D&SUM OP&

in "11111"&OP ALU&Mem RFA&DEST Mem&

inin std logic vector(to unsigned(1,SIZE ADDR S1))&

inin nullADDR S2&nullADDR D&SUM OP&

in Disable instr dec last;

All the Smart Blocks in the first 10 rows take the associated |ys − yi| value

from their Block Word and sum it to the |xs − xi| saved in the related RF1

and, finally, write back the result into their Block Word.

Then, in the uInstruction , to flag that this is the last instruction of the

program, the fetchEN bit is set to ’1’ and the uSEQcnfg field to "00", while

the nextADD uIR field points to the location where the wait instruction is

stored.

� Wait Instruction

init instructions(14) <=

in "00"&std logic vector(to unsigned(14,SIZE uROM Address))&

inin ’0’&’1’&All Col Enabled&’0’& nullNinstr;

Above, the compulsory wait instruction that closes all the LiM programs

is presented. It is specified through a specific setting for the fields of the

uInstruction fields: the Request bit must be set to ’0’, last uOP to ’1’,

uSEQcnfg to "00" and fetchEN to ’0’, while the nextADD uIR must contain

the address of the wait instruction itself.
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5.2.2 MVM: Matrix-Vector Multiplication

Given N matrices X ∈ Ru×v and N vectors Y ∈ Rv×1, compute N matrix multipli-

cations, each on a different couple of X and Y , evaluating for each product all the

u elements zi of the resulting vector Z ∈ Ru×1:

zi =
v−1∑
j=0

xi,jyj , with i = 0, 1, ..., u-1 (5.2)

Figure 5.5: Synthesized LiM Array content for the MVM benchmark.
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Figure 5.6: Results placement inside the LiM Array for the MVM benchmark.

Tabella con gli step.

Steps #Instructions

1. Computation of all xi,j ∗ yj products, one smart row

at a time. In the first Instruction the Smart Blocks

belonging to the first smart rows multiply the con-

tent of their Block Word, i.e. x0,j, by the value com-

ing from the Column interconnections which forward

the content of the first standard row, namely the

yj values. The outcomes are then stored in the

Bypass Storages of the first smart row. The next

Instruction drives the same operations that this

time are performed only by the second smart row, so

taking the x0,j values. The following Instructions

repeat the same step for all the remaining xi,j values.

u
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2. LiM content preservation. The values contained in all

the Block Words are copied into the related RF0s.

1

3. Final sums computations to retrieve the zi values.

Each smart row performs in parallel to the others the

sum on N values exploiting the row interconnections

to implement the operation following the reduction

tree organization. In the first Instruction each of

the Smart Blocks in the even columns take the con-

tent of the Smart Block on their right and sum it to

the one of their Bypass Storage. Then the result is

stored again in their Bypass Storage. In the following

instruction all the Smart Blocks in the columns that

are multiples of 4 will sum the content of their By-

pass Storage to the value of the Bypass Storage in the

Smart Block placed at 2 positions right from them.

This operations are repeated for log2v times to reach

the zi final values. Note that all the instructions are

interleaved with a nullOP Instruction to avoid the

data hazard linked to the row interconnections usage.

2× log2v − 1

# Instructions MVM u+ 2× log2v
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5.2.3 K-means

Given a 2-dimentional dataset composed of N samples (xi,yi) and K centroids

(xcj,ycj), find for each of the sample the closest centroid and save both the related

distance value and the number of the centroid to which that distance refers.

Implement the requested task following the procedure below.

fa for j in K centroids (xcj, ycj) :

fammoc for i in N samples (xi, yi) :

fammocmoc Di = (xi - xcj)
2 + (yi - ycj)

2;

fammocmoc if j = 0 :

fammocmocmoc ClusterIDi = j;

fammocmocmoc SmallerDi = Di;

fammocmoc else :

fammocmocmoc if Di < SmallerDi-1 :

fammocmocmocmoc ClusterIDi = j;

fammocmocmocmoc SmallerDi = Di;
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Figure 5.7: Synthesized LiM Array content for the K-means benchmark.

Figure 5.8: Results placement inside the LiM Array for the K-means benchmark.

169



5 – GP-LiMA Performance

Steps #Instructions

1. LiM matrix initialization. The xi values inside the

Block Words of the first 5 smart rows are copied into

the related Bypass Storages.

1

2. LiM content preservation. The data hold by the

Block Words of the first 5 smart rows are saved inside

the related RF0.

1

3. Simultaneous computation of all the |xcj −xi| terms.

In the first Instruction, each of the first N Smart

Blocks will take the xi value from its Block Word

and subtract it to the xc0 value forwarded by the MI,

saving then the result into the RF1. While, each of

the following N Smart Blocks will take the xi value

from the column interconnections and subtract it to

the xc1 value forwarded by the MI, saving the result

into the RF1, and so on for all the remaining cen-

troids. In the next Instruction all the xcj − xi will

be taken from the RF1 and their absolute value will

be computed and stored in the Bypass Storages.

2

4. Computation of the |ycj − yi| terms for all the cen-

troids at the same time. This step is performed sim-

ilarly to the previous one with the exception that for

all the Smart Blocks the yi values are retrieved from

the Column interconnections. The final results will

be stored in the RF1s.

2
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5. Simultaneous distances evaluation (|xcj −xi|+ |ycj −
yi|) for all the centroids. Each Smart Block takes the

content of its Bypass Storage from the column inter-

connections and sums it to the data held by the RF1.

Then all the smart rows connected to the first instruc-

tion decoder save the result into the RF1, while the

others into the Bypass Storage.

1

6. Association of each distance with the centroid it

refers to. All the Smart Blocks insert in the MSB

of the distance data they hold the ID value to which

that distance is referred, by performing an OR-

masking operation between the data and the specific

ID value, stored in the last smart rows, properly for-

warded by the MI. The final values are, then, saved

inside the RF2s.

1

7. Distances comparison to associate each sample to the

nearest centroid. For each sample the distances com-

parisons are performed according to the reduction

tree mechanism, exploiting the column interconnec-

tions, so that the total number of instructions in-

volved are proportional to log2K. Then, all the com-

parisons are performed in parallel for each sample

independently on the others.

8× dlog2Ke − 1

# Instructions K-means 8× dlog2Ke+ 7
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5.2.4 Mean & Variance

Given a set of N data, compute the mean µ and the variance σ2:

µ =
N−1∑
i=0

xi
N
vaffa; vaffaσ2 =

∑N−1
i=0 (xi − µ)2 − [

∑N−1
i=0 (xi−µ)]

2

N

N
(5.3)

Figure 5.9: Synthesized LiM Array content for for the µ&σ2 benchmark.
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Figure 5.10: Results placement inside the LiM Array for the µ&σ2 benchmark.

Steps #Instructions

1. Data preparation for the
∑N−1

i=0 xi operation. All the

xi values contained in the Block Words are saved into

the related Bypass Storages.

1

2. LiM content preservation. Block Word data are saved

into the RF0s.

1
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3. Evaluation of
∑N−1

i=0 xi performed through the re-

duction tree computing mechanism, as done for the

MVM benchmark. At first, all the smart rows com-

pute in parallel the sum among the data in the Smart

Blocks they include by using the row interconnec-

tions. In the end, the final results will be saved

in the Bypass Storages of the first column. Then,

all these values will be summed up leveraging the

column interconnection, so that the final sum value

will be stored in the Block Word of the first Smart

Block. It follows that the entire step 3 is made up of

log2N Instructions, all interleaved with a nullOP

Instruction to prevent the occurrence of data haz-

ards.

2× log2N − 1

4. µ evaluation through the RShifter mechanism. The

OP RShifter operation is called taking as source

operand the content of the first Block Word through

the MI. The outcome is then saved inside the Block

Word. For N = 512, the actual value for µ will be

contained in the Smart Block at address 8.

2

5. Computation of all the xi − µ terms. All the Smart

Blocks take the µ value from the MI and subtract it to

the content of the RF0s, i.e. xi, saving the results into

the Bypass Storages. Note that before performing

the subtractions, a nullOP must be inserted to allow

the MI to fetch the updated value from the Block

Word.

2
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6. Storage of the xi−µ terms inside the RF1s. All xi−µ
are recomputed and saved into the RF1s to keep their

values ready for the computation of
∑N−1

i=0 (xi−µ)2 .

1

7. Computation of
∑N−1

i=0 (xi − µ) performed following

the same procedure at step 3. The final result is

stored in the Block Word of the first Smart Block.

2× log2N − 1

8. Evaluation of
[∑N−1

i=0 (xi − µ)
]2

. Only the first Smart

Block is enabled, which takes the content of the Block

Word and multiplies it by itself storing, then, the

result into the Bypass Storage.

1

9. Evaluation of
[
∑N−1

i=0 (xi−µ)]
2

N
carried out following the

same procedure of step 4. The outcome is saved into

the RF2 of the Smart Block at address 8.

2

10. Simultaneous computation of the (xi − µ)2 terms.

Each Smart Block takes the RF1s value and mul-

tiply it by itself and store the result into the related

Bypass Storage.

2

11.
∑N−1

i=0 (xi−µ)2 is evaluated following the sum reduc-

tion tree procedure at step 3. The result is saved into

the Block Word of the first Smart Block.

2× log2N − 1

12. The
[
∑N−1

i=0 (xi−µ)]
2

N
value contained in the RF2 of the

9th Smart Block is loaded the associated Bypass

Storage.

1
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13. Evaluation of
∑N−1

i=0 (xi−µ)2− [
∑N−1

i=0 (xi−µ)]
2

N
. The first

Smart Block takes the content of the Bypass Storage

in the Smart Block placed at a distance of 8 positions

to its right and subtracts it to the value contained in

its RF2. The outcome is then saved into the Bypass

Storage of the first Smart Block.

2

14. Final σ2 computation performed exploiting the

RShifter mechanism in step 4. The final result will

be available from the Block Word of the first Smart

Block.

4

# Instructions µ & σ2 6× log2N + 16

5.2.5 DFT: Discrete Fourier Transform

Given a set of N timing samples xi, compute the k-th frequency component Xk:

Xk =
N−1∑
i=0

xi ×
[
cos

(
2πik

N

)
− j sin

(
2πik

N

)]
(5.4)
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Figure 5.11: Synthesized LiM Array content for the DFT benchmark.

Figure 5.12: Results placement inside the LiM Array for the DFT benchmark.
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Steps #Instructions

1. Data preparation and LiM content preservation. All

the xi values present in the Smart Blocks belonging

to the left half of the LiM Array are copied into the

Block Words of the right half passing through the

Bypass Storages connected to the row interconnec-

tions. In the first Instruction the content of the

Block Words in the LiM Array left half is copied into

the Bypass Storages. Then, a nullOP is instantiated

before the Instruction that enables only the first N

Smart Blocks of the LiM Array right half to take from

the row interconnections the contents of the Bypass

Storages on the left half and save them into their

Block Words. The last Instruction preserves the

content of the first Block Word, i.e. x0, that will be

overwritten at the end of the algorithm, by copying

that value into the RF0.

4

2. Evaluation of the i× k terms. All the first N Smart

Blocks in the LiM Array left half are enabled to take,

through the column interconnections, the i values

contained in the N Bypass Storages of the Smart

Blocks below and multiply them by the k value for-

warded by the MI. The results are then stored in the

first N Bypass Storages belonging to the LiM Array

left half.

1
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3. Computation of all the 2πik
N

terms. In this step only

the left half of the smart section is enabled. All rows

work in parallel and each of them computes a single
2πik
N

value each 3 Instructions exploiting the RShifter

mechanism. At the end all the final results are con-

tained in the Bypass Storages of the first N Smart

Blocks in the left half of the LiM Array.

3
2
×#LiMCols

4. Evaluation of the sin
(
2πik
N

)
terms in parallel. These

are computed by the first N Smart Blocks in-

side the right half of the smart section. The first

Instruction is a nullOP one to allow the row inter-

connections to forward, in the next instruction, the

updated values of the Bypass Storages in the first half

of the LiM Array. Then, in the second Instruction

all the enabled Smart Blocks save in their RF3 the

outcomes from the LUTs, which implement the dis-

cretized sine function and which are addressed by the

values 2πik
N

retrieved from the row interconnections.

2

5. Evaluation of the cos
(
2πik
N

)
terms in parallel. These

are computed by the first N Smart Blocks inside

the left half of the smart section. All the enabled

Smart Blocks save in their RF3 the outcomes from

the LUTs, which implement the discretized cosine

function and which are addressed by the values 2πik
N

retrieved from the row interconnections.

1
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6. Evaluation of all the xi×cos
(
2πik
N

)
and xi×sin

(
2πik
N

)
terms in parallel. All the first 2 × N Smart Blocks

take the value stored in their Block Word, i.e. xi, and

multiply it by the RF3 content, saving the result in

the Bypass Storage.

1

7. Simultaneous computation of the real part and the

imaginary part of Xk. The real term is obtained sum-

ming the content of all the first N Bypass Storages

inside the left half of the smart section, while the

imaginary term is given by the sum on all the val-

ues held by the first N Bypass Storages inside the

smart section right half. Both sums are computed in

parallel exploiting the reduction tree mechanism, as

done for the sums on N data involved in the µ& σ2

benchmark. At the end, the real part of Xk will be

contained in the Block Word of the first Smart Block,

while the imaginary part in the one of the first Smart

Block inside the right half of the smart section.

2× log2N

# Instructions DFT
3
2
×#LiMCols +

2× log2N + 9

5.2.6 GP-LiMA Performances & Comparisons with the PLiM

Once all the benchmarks are defined and mapped onto the GP-LiMA it is possible to

retrieve the total number of clock cycles taken for each execution so that other per-

formance metrics can be taken into account. Table 5.7 summarizes the computation

of the total number of clock cycles required to perform on the synthesized GP-LiMA

each of the benchmarks previously investigated for a generic dataset. Besides, it also

provides as reference the number of clock cycles taken for each benchmark to be run

on the customized PLiM architectures. Note that for both the PLiM and the GP-

LiMA the total number of clock cycles associated with an algorithm is computed

summing the clock cycles taken by the memory initialization with the number of
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instructions mapping that algorithm and the total latency of the pipelined archi-

tecture (6 clock cycles: 2 for the starting the GP-LiMA processing mode, 1 for the

instruction fetch, 1 for the decoding, 1 for the data elaboration, and 1 for the results

saving inside the LiM Array itself). Note that, in all the cases, the term which

strongly contributes to the total amount of required time is given by the number

of clock cycles employed to initialize the LiM array content, that is when the LiM

Array is used as a standard data memory.

Algorithms LiM
# LiM init.
clock cycles

# Algorithm
instructions

# Algorithm
clock cycles

K-NN
PLiM 2×N + 2 6 2×N + 14

GP-LiMA 2×N + 2 7 2×N + 15

MVM
PLiM 2× u× v 4 + 2× (v − 1) (2+2×u)×v+8

GP-LiMA N × v × (u+ 1) u+ 2× log2v
N×v× (u+1)+
u+ 2× log2v+ 6

K-means
PLiM 2×N + 3×K 8×K − 1 2×N+11×K+5

GP-LiMA 2×N+3×K+2 8× dlog2Ke+ 7
2×N + 3×K +
8×dlog2Ke+ 15

µ&σ2
PLiM N + 2 6×N + 10 7×N + 18

GP-LiMA N 6× log2N + 16
N + 6×
log2N + 22

DFT
PLiM 4×N + 5 2×N + 7 8×N + 18

GP-LiMA 2×N + 1
1.5× #LiMCols
+2× log2N + 9

2×N + 1.5×
#LiMCols

+2× log2N + 16

Table 5.7: Detail on the number of clock cycles required by each tested benchmark
to complete its execution on the GP-LiMA and on the PLiM devices.

Then, the results for the post-place&route analysis concerning the algorithm-dependent

metrics for the synthesized GP-LiMA (with clock gating and memory parallelism of

16 bits) are reported in Table 5.8. For each benchmark, the first row specifies the

values for the parameters defining the specific dataset taken into account, chosen to

make the most of the GP-LiMA processing potentialities. Then, the remaining rows

specify the execution times, obtained fixing the clock frequency to the maximum

value allowed (232.55 MHz), and the worst case energy values being the GP-LiMA

worst case power equal to 690.79 mW. However, at a first glance nothing can be con-

cluded for the GP-LiMA processing efficiency just by referring to the performance
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Algorithms K-NN MVM K-means µ&σ2 DFT

Parameters N = 320
u = 16, v = 16 N = 160

N = 512 N = 128t = 1, N = 2 K = 3
Execution Time

655 574 360 588 334[#Clock Cycles]
Execution Time

2.81 2.46 1.54 2.52 1.43[µs]
Worst Case Energy

1.94 1.69 1.06 1.74 0.99[µJ]

Back Annotated Power
86.14 102.01 121.55 88.23 165.05[mW]

Back Annotated Energy
242.05 250.94 187.18 222.33 236.02[nJ]

Table 5.8: Performance achieved by the GP-LiMA after the place&route process for
all the benchmarks, with: Minimum Clock Period = 4.3 ns and Worst Case Power
= 690.79 mW.

values achieved for different benchmark. This because the number of elaborated

samples strongly affects the execution time of the whole algorithm, especially due

to the (at least) linear dependence of the memory initialization time with the num-

ber of samples composing the dataset to be stored, which, besides, has nothing to

do with the actual processing capabilities of the GP-LiMA Unit. Thus, since the

considered datasets size heavily changes depending on the run algorithm, to make

a critical analysis on the actual GP-LiMA performance and its programming flexi-

bility, the execution time and the worst-case energy values for each benchmark are

next reported on a per-sample basis and compared with the ones accomplished by

the PLiM customized architectures (see Figure 5.13 and Figure 5.15, respectively).

However, from Table 5.8 they can still be retrieved some information about the

expenses averages of the GP-LiMA architecture when it is exploited to the full.

Concerning the execution times, between the fastest and the slowest algorithm,

there is a difference of 1.38 µs on an average value of 2.15 µs, while for the energy

consumption the values range from 0.99 µJ to 1.74 µJ showing a mean value of

1.48 µJ. Furthermore, to have more realistic estimations about the actual energy

consumptions, the back annotated power values for each benchmark, together with

the resulting back annotated energy values, are detailed at the bottom of Table 5.8.

The power goes from a minimum of 86.14 mW to a maximum of 165.05 mW, with
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an average value of about 112 mW that corresponds to 16% of the worst-case esti-

mation. Similarly, also the back annotated energy average value (227.7 nJ) is about

15% of the worst-case value.

Figure 5.13: Comparison between the GP-LiMA and the PLiM architecture based
on the execution time reached by all the run benchmarks on a per-sample basis.
The results refer to a clock period of 4.3 ns in case of the GP-LiMA values, while
in case of the PLiM architectures the clock period ranges from 3.92, in case of the
MVM benchmark, to 4.21 in case of the DFT.

As previously anticipated, Figure 5.13 and Figure 5.14 illustrate the GP-LiMA ex-

ecution time and the power consumption trends, respectively, according to the run

benchmarks on a per-sample basis.

Concerning the timing values, they range from 4.53 ns/sample for the MVM algo-

rithm to 11.22 ns/sample for the DFT. The benchmarks can be divided into two

main groups: one including K-NN, K-means, and DFT, and another given by the

MVM and the µ&σ2. The first is the one characterized by execution times per sam-

ple that doubles the ones of the benchmarks enclosed in the second group. However,

the main cause for this timing difference does not lie in the actual GP-LiMA pro-

cessing adaptability, but again it is traceable to the memory initialization phase

contribute. Indeed, the first benchmarks group collects algorithms dealing with a
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Figure 5.14: Comparison between the GP-LiMA and the PLiM architecture based
on the worst case power consumed by all the run benchmarks on a per-sample basis.

two-dimensional dataset, meaning that for each sample two values have to be stored

inside the LiM Array, while both the MVM and the µ&σ2 save only one value for each

sample. It follows that to compute the execution time/sample for the algorithms

belonging to the first group, the total execution time is divided by a number that is

half the one of the second group benchmarks, under the same number of samples.

Thus, if only the number of LiM instructions employed to map each benchmark

is taken into account, the actual benchmarks order organized according to the re-

lated GP-LiMA processing efficiency is given by: K-NN, MVM, K-means, µ&σ2,

and DFT. In fact, the K-NN requires only 7 instructions, independently of the elab-

orated dataset size, while the DFT requires a number of instructions equal to 1.5×
#LiMCols +2× log2N+9, with N that is the number of analysed samples. It follows

that, as it can be expected because of the M-SIMD computing mode, the GP-LiMA

performs to its best for algorithms that can be fully parallelized, while it is still able

to quite efficiently manage applications also involving sequential procedures.

Concerning the worst-case power consumptions per sample in Figure 5.14 they range

from 1.26 mW/sample, for the MVM, to the 5.39 mW/sample, for the DFT. How-

ever, since the GP-LiMA used to map all the benchmark is the same, which in the

184



5 – GP-LiMA Performance

worst-case consumes always about 690 mW, the difference between these power/sam-

ple values is due only to the different dataset sizes considered for each benchmark.

It follows that, in general, the same GP-LiMA structure can elaborate more samples

when the MVM and the µ&σ2 are run compared with the ones processable in case

of the K-means and DFT.

Furthermore, to have a clearer idea of the actual GP-LiMA performances trends, the

comparisons with the PLiM paradigm provided in Figure 5.13 and Figure 5.14 need

to be taken into account. However, before starting the analysis some details must

be stressed. While for testing the GP-LiMA paradigm the exact same structure was

used to implement all the benchmarks, for the PLiM model, the achieved perfor-

mances all refer to a different architectural structure customized ad-hoc for the spe-

cific benchmark at-run. Moreover, even if the addressable space of the synthesized

GP-LiMA matches the one of all the PLiM architectures, the amount of smart loca-

tions composing the GP-LiMA doubles the one included in all the PLiM instances.

Nevertheless, only the GP-LiMA Unit integrates the clock gating technique, which is

why, looking at Figure 5.14, the GP-LiMA power values show in the average to keep

up with the consumptions retrieved from the customized PLiM devices. Besides,

always concerning the structural features of the synthesized GP-LiMA and all the

specific PLiM architectures, it is worth mentioning that the GP-LiMA has a critical

path that differs by only 0.24 ns with respect to the average of the PLiM solutions

(4.3 ns vs 4.06 ns).

So, coming back to the timing analysis, looking at Figure 5.13, it can be derived

that for the almost purely parallel benchmarks (K-NN and K-means) the GP-LiMA

follows about the same behaviour of the PLiM, even if it is slightly worse, while

for all the other algorithms including sequential procedures, in particular the sum

of all the dataset samples, the GP-LiMA outperforms the customized PLiM solu-

tions. From here, it stands out the importance of the reduction tree interconnections

that make the GP-LiMA execution times be half the PLiM ones in the worst case

(MVM) or even one-sixth in the best case (µ&σ2). Besides, it must be noticed that

the GP-LiMA succeeds in achieving lower execution times even if its maximum clock

frequency does not reach exactly the values of the PLiM devices. This means that

the number of LiM instructions needed to run a generic algorithm in the case of the

GP-LiMA is usually much lower than the one required by the PLiM solutions.
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Then, the gain reached by the GP-LiMA in terms of cut execution times directly

reverses in the energy/sample values, which show performances considerably en-

hanced compared with the LiM case for the sequential algorithms, as Figure 5.15

depicts. For the GP-LiMA, the values for the worst-case energy/sample range from

Figure 5.15: Comparison between the GP-LiMA and the PLiM architecture based
on the worst case energy spent by all the run benchmarks on a per-sample basis.

3.12 nJ/sample, in the case of the MVM, to 7.75 nJ/sample for the DFT benchmark.

Since the worst-case values are considered, which refer to the total worst-case power

that is constant for all the benchmarks, the GP-LiMA energy/sample trend accord-

ing to the algorithms traces the same of the execution time/sample. Moreover,

although in the case of the PLiM model the power consumption changes depending

on the algorithm, the GP-LiMA energy trend with respect to the PLiM solutions

again follows the same behaviour of the execution time/sample one; namely for the

K-NN and the K-means the PLiM architectures result to be more efficient than the

GP-LiMA implementation, while for the MVM, but especially for the µ&σ2 and the

DFT the GP-LiMA energy values are way better than the PLiM ones. In particu-

lar, the DFT energy presents an improvement of 63% while in the case of the µ&σ2

the GP-LiMA achieves a reduction of 80% with respect to the PLiM architecture

energy. It follows that the enhancements achieved by the GP-LiMA, in terms of

186



5 – GP-LiMA Performance

strongly reduced execution times, succeed in counteracting the considerable power

consumption amount leading to a cut in the total energy expense/sample. This ap-

plies specifically for the benchmarks involving sequential procedures (see DFT and

µ&σ2) where the reduction tree interconnections play a major role in the processing

time shrinking. This means that, even if the interconnections massively impact the

total power expense, consuming about 29% of the total GP-LiMA power, their in-

tegration is justified by the advantages they bring in terms of decreased processing

times that, in turn, result in overall remarkable gains of energy savings.

Summarizing, the outcome of the performance comparison points out that the GP-

LiMA outperforms the PLiM model in the case of more sequential algorithms, while

it still retains the same PLiM advantages in terms of computing efficiency for the par-

allel algorithms. However, the main advantage brought by the GP-LiMA paradigm

is that it succeeds in efficiently running a wider range of algorithms without requir-

ing any hardware modification of the architectural structure, proving to hit the goal

of programming flexibility combined with processing efficiency.

5.2.7 Energy comparison with a classical architecture:

GP-LiMA vs RISC-V Memory Hierarchy

Finally, to demonstrate the benefits brought by the LiM paradigm usage to the

GP-LiMA computing efficiency with respect to a standard CPU-centric system, in

this section, the comparison with a classical von Neumann architecture based on a

RISC-V ISA is discussed. The goal of a LiM architecture is to reduce the communi-

cation bottleneck between the CPU and the memory, because this unceasing motion

of data implies a waste of both power and computational time. In this study, the

same benchmarks tackled before are re-proposed in two different contexts: a classi-

cal von Neumann RISC-V architecture, communicating with its memory hierarchy,

and a RISC-V based system embedding and using the GP-LiMA as both standard

data memory and co-processor. Performance comparisons between these two so-

lutions are reported. Since the intent is to highlight the effort required to access

the memories, here, the energy values referring to the standard RISC-V system are

only given by the memory accesses energy, while the processing part contribution is
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completely neglected. While, for the hybrid RISC-V/GP-LiMA solution, the GP-

LiMA total energy consumption is estimated considering both the energy involved

for accessing the LiM Array in the standard memory mode and the energy spent

during the data processing. It follows that the proposed comparison represents a

best-case scenario for the RISC-V, since only the memories consumptions are con-

sidered, while it represents a worst-case scenario for the GP-LiMA, because both

memory and computational units are taken into account.

To set up the addressed comparison, the classical RISC-V architecture was modelled

with the Gem5 simulator [38], using a simple single-core In-Order CPU (TimingSim-

pleCPU) and 2 level of caches. The first cache level is made of two set-associative

separated caches (instruction and data) of 1kB each and associativity equal to 2,

while the second level is given by a single 8-way set associative shared cache of

256kB size (see Table 5.9).

Memory Size Associativity Access time [ns] Technology
L1DCache

1kB 2 0.207022 40nmL1ICache
L2SCache 256kB 8 2 40nm

Table 5.9: Parameters characterizing the memory hierarchy connected to the clas-
sical RISC-V system simulated.

Then, for all the benchmarks, the equivalent C codes were implemented and tested

with Gem5, obtaining meaningful performance parameters of the modelled architec-

ture: among them, the total number of memory accesses for each cache, as reported

in Table 5.10.

Algorithm
# L1 Cache Accesses

# L2 Cache AccessesData Cache Instruction Cache
K-NN 3890 24153 56
MVM 6488 35534 40

K-means 16766 98133 71
µ& σ2 12000 56440 45
DFT 3674 19006 43

Table 5.10: Number of memories accesses required to perform each benchmark inside
the classical RISC-V system.
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Afterwards, a tool that thoroughly models caches and memories, i.e. Cacti by HP

[39], was employed to estimate the memory consumption. Thus, the RISC-V caches

were implemented on Cacti, which returned the values for both the read and write

energy/access and the memory leakage (see Table 5.11).

Memory
Energy/Access [pJ]

Leakage/Access [mW]Read Write Average
L1DCache

2.68525 3.48643 3.08584 3.3368L1ICache
L2SCache 365 407 386 313.698

Table 5.11: Energy values involved by the RISC-V memory hierarchy described in
Table 5.9.

Then, as previously anticipated, the classical RISC-V system energy consumption

for a given algorithm was evaluated as merely memory access energy: # memory

accesses × average energy/access. However, to have a fairer comparison with

the GP-LiMA, also the memory leakage effect was added in the final energy com-

putation. In particular, its contribution was considered only for the time period in

which the memory was used, namely during a memory access. For this reason, the

added leakage contribution was evaluated as: leakage × # memory accesses ×
clock period.

Moreover, it is worth to point out that not only the data memory accesses were in-

volved in the energy estimation, but also the energy spent for fetching the data from

the instruction memory was considered. Thus, the final energy amount consumed

by the classical RISC-V architecture to perform a certain benchmark was computed

as (referring to the data reported in Table 5.11 and Table 5.10):

# L1D accesses× (L1 average energy/access + L1 leakage/access× Tclock)+

# L1I accesses× (L1 average energy/access + L1 leakage/access× Tclock)+

# L2S accesses× (L2S average energy/access + L2S leakage/access× Tclock)

Then, concerning the energy consumption estimated for the GP-LiMA, the back

annotated energy values reported in the previous section were taken into account.
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These values already involve the contributions of both the data memory access en-

ergy and the data elaboration. However, they miss the instruction memory accesses

contribution. Thus, to complete the GP-LiMA energy expense estimation, the en-

ergy spent for fetching the instructions from the memory was evaluated modelling

the GP-LiMA IMem through Cacti. For an IMem of 20352 bytes, the value retrieved

for the average energy/access was 9.079835 pJ, while the expense in terms of leakage

energy/access was 4.316641 pJ for a clock period of 4.3 ns (value matching the one

used to gather the GP-LiMA back annotated power values). So, the final energy

amount consumed by the hybrid RISC-V/GP-LiMA solution to perform a certain

benchmark was computed as:

# Algorithm LiM Instructions×(average energy/access+L1 leakage energy/access)

Figure 5.16 and Figure 5.17 present all the energy values related to the tested bench-

marks and gathered for both the classical RISC-V memory hierarchy and the GP-

LiMA. In particular, Figure 5.16 illustrates the performance achieved by fixing the

Figure 5.16: Energy comparison between the GP-LiMA and the RISC-V memory
hierarchy for all the run benchmarks, under the same clock period (4.3 ns).

clock frequency to 232.55 MHz for both the architectures, while Figure 5.17 reports
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Figure 5.17: Energy comparison between the GP-LiMA and the RISC-V memory
hierarchy for all the run benchmarks. The GP-LiMA values refer to a clock period
equal to 4.3 ns, while the RISC-V memory hierarchy energies are obtained with a
clock period equal to 1 ns.

the values obtained setting the GP-LiMA clock frequency to 232.55 MHz and the

RISC-V system clock frequency to 1 GHz. Moreover, note that, unlike the GP-LiMA

vs PLiM comparison, here there is no need of providing the energy values on a per-

sample basis since the RISC-V system was programmed to perform each benchmark

on a dataset matching the one used during the mapping of that benchmark on the

GP-LiMA system.

Already at a first glance, it is evident how the GP-LiMA outperforms the RISC-

V system under the same clock frequency. The hybrid RISC-V/GP-LiMA system

shows power savings with respect to the classical RISC-V memory hierarchy rang-

ing from about 49% in the worst case (DFT benchmark) to 91% in the best case

(K-means algorithm). While, if the comparison is made between the energy con-

sumptions of the RISC-V architecture run at 1 GHZ and the GP-LiMA run at 232.55

MHz, the results balance changes, as shown in Figure 5.17. Although in this new

scenario the GP-LiMA improvements are reduced, for three out of five benchmarks
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the GP-LiMA framework still demonstrates to work better than the classical CPU-

centric architecture, bringing to a power saving of about 76% in the best case and

to a worsening of 34% in the worst case. However, it must be highlighted that GP-

LiMA energy achievements are obtained with a clock frequency 4 times lower than

the one set for the RISC solution one and that they correspond to a physical imple-

mentation exploiting a quite old technology node (45 nm). It means that if more

advanced technology are used to implement the same GP-LiMA structure, even bet-

ter performance can be achieved both in terms of maximum allowed clock frequency

and power consumption, as already seen from the post-synthesis comparison made

among different technology nodes outcomes in subsection 5.1.1, where between the

15 nm and the 45 nm there is an energy/clock cycle reduction of 75%.

However, from the performance comparison it follows that the GP-LiMA wins over

the RISC-V systems for the benchmarks that allow to fully exploit its massive pro-

cessing parallelism, including both algorithm that can be easily parallelised (K-

means, MVM) and algorithms involving sequential operations that can be performed

in a reduction tree-like fashion (µ&σ2, MVM).

Finally, it must be noticed that among the various terms composing the memory

hierarchy RISC-V energy, the one linked to the memory instructions fetch is the

one contributing to the most to the total energy consumption. Indeed, the num-

ber of memory accesses performed to the L1 Instruction Cache is about one order

of magnitude higher than the data memory access one. On the other hand, the

GP-LiMA that was initially thought of for cutting the number of data memory ac-

cesses, here demonstrates to be even more efficient in making the energy linked to

the instruction memory accesses negligible. Figure 5.18 shows the difference in the

number of instruction memory accesses performed by the classical RISC-V system

and the GP-LiMA solution, while Figure 5.19 compares both architectures in terms

of number of data memory accesses.
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Figure 5.18: Comparison between the GP-LiMA and the RISC-V systems in terms
of number of instruction memory accesses for each of all the tested benchmarks.

Figure 5.19: Comparison between the GP-LiMA and the RISC-V systems in terms
of number of data memory accesses for each of all the tested benchmarks.
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Chapter 6

Conclusions

The predicted stop of the growth curve of the processing systems performance,

nowadays, requires finding new ways to keep retaining the usual desired exponential

trend. The causes for this slowdown can be summarized into two main conceptual

walls: the utilization wall and the memory wall. The last issue is the one that this

thesis design proposes to tackle. The memory wall is strongly related to the archi-

tectural side of standard systems and, in particular, is caused by the high data traffic

involved between the CPU and the memory, which, indeed, are two separate enti-

ties. This unceasing data movement entails both timing and power wastes, which

are further exacerbated by the performance gap between the highly efficient pro-

cessing units and the available memory units. Moreover, the systems performances

are particularly undermined by lately demanded data-intensive applications, which

heavily stress the communication between CPU and memory.

To cope with this problem, here, a new architectural model was engineered relying

on the novel Logic-in-Memory computing paradigm, whose basic principle lays in

providing the data memory with processing capabilities so that part of the required

computation can be performed directly in memory, allowing to:

� avoid the massive data movement towards and from the CPU,

� exploit the full memory bandwidth to elaborate in parallel all the stored data,

� leverage the memory processing capability to further parallelize the application

execution between the CPU and the memory itself.
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However, the weakness of the already existing LiM solutions is that they are all

customized for the application the system is intended to run, thus long design times

are required to create new LiM components for each new application. Therefore,

the design presented in this thesis is proposed as a model to develop LiM solu-

tions, extremely reducing hardware designer’s time and efforts. Taking a cue from

the already exiting model called PLiM, the GP-LiMA was intended to provide a

more general template allowing to produce LiM architectures characterized by high

programming generality and improved processing efficiency for data-intensive appli-

cations and even for algorithms including more sequential procedures.

The resulting GP-LiMA Unit comprises two macro sections: the LiM Matrix, rep-

resenting the configurable data memory integrating logic blocks and the set of uCU

and nCU dedicated to driving the LiM algorithm execution inside the LiM Ma-

trix. Then, the final GP-LiMA instance can be inserted into a standard system,

working alongside the CPU that can start it either in the standard data memory

or in the LiM processing mode, making it act as a co-processor. In this last mode,

the GP-LiMA component works following the M-SIMD computing model, mean-

ing that, when needed, it can execute up to K different instructions at the same

time on different data sets, where K is the degree of M-SIMD set by the hardware

designer. This working mode coupled with the LiM Matrix structure is the fea-

ture that bestows the programming flexibility to the GP-LiMA. In particular, the

LiM Matrix is composed of general-purpose Smart Blocks working on a word level

and placed following a grid-like fashion. This arrangement further accommodates a

dense routing network that allows performing various and complex data exchanges

among the blocks, heavily contributing to speed up the algorithms execution. Two

kinds of interconnections are actually embedded inside the LiM Matrix constitut-

ing, on the one hand, the turning point for maximizing the programming generality

and, on the other hand, the main cause for the GP-LiMA complexity and power

overheads. Nevertheless, the final GP-LiMA design still represents an architectural

model that needs to be properly configured before fabrication by a hardware de-

signer. However, it is very easy to modify and indeed requires very few changes that

are generally linked to the size of the dataset to be processed rather than to the

algorithm processing requests, as instead, it happens for the PLiM model. Indeed,

if the GP-LiMA is configured to be wide enough, it can successfully run different
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kinds of algorithms without needing to be re-synthesized for each new application,

as confirmed by the final tests performed on a specific synthesized configuration of

the GP-LiMA framework.

At the end of this thesis work, the same GP-LiMA structure was used to map 5

different benchmarks (K-NN, MVM, K-means, µ&σ2, DFT), so retrieving informa-

tion about the processing efficiency and the algorithm adaptability achieved. The

specific GP-LiMA Unit analysed was implemented through the 45 nm technology

node and included 1344 bytes of memory addressable space. It could elaborate up

to 512 16-bits data in parallel, working at a maximum frequency of 232.55 MHz.

For each of the mapped benchmarks, the results in terms of execution time and en-

ergy consumptions were compared on a per-sample basis with the ones achieved by

customized devices all retrieved starting from the PLiM model (one for each bench-

mark). Then, the comparison outcome confirmed the achievements of the objectives

set out at the beginning of the GP-LiMA design. The GP-LiMA confirmed to reach

almost the same performance of the customized PLiM architectures for the more

parallel algorithms (K-NN and K-means), while for the ones involving sequential

procedures (especially for the µ&σ2 and the DFT) it demonstrated to outperform

the PLiM solutions leading to a reduction of the execution times of about 67% and

37%, respectively, and to energy savings of about 80% and 63%, respectively. These

trends allowed to justify the integration of the complex routing network (consuming

about 29% of the total GP-LiMA power), being the main reason for the sequential

algorithms speeding up and resulting energy savings.

Finally, to highlight the benefits in terms of improved processing efficiency brought

by the insertion of the GP-LiMA paradigm inside a standard system, the energy

results achieved by the GP-LiMA were compared with the ones retrieved through a

classical CPU-centric system for the same 5 benchmarks. In particular, the energy

values taken into account were the ones consumed only for accessing the memory

hierarchy connected to the RISC-V architecture during the benchmarks execution

(neglecting the energy spent by the RISC-V for the algorithm computation). From

the results comparison, a clear gap between the two systems stood out, if run at the

same clock frequency value (232.55 MHz). The GP-LiMA showed massive power

savings with respect to the classical RISC-V memory hierarchy ranging from about
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49% in the worst case (DFT benchmark) to 91% in the best case (K-means algo-

rithm). While, running the standard RISC-V architecture at a frequency 4 times

higher than the GP-LiMA one (1 GHz vs 232.55 GHz), the results still pointed out

competitive values concerning the GP-LiMA energy expenses. In particular, the

GP-LiMA demonstrated to still win over the RISC-V memory hierarchy in case of

benchmarks that allow to fully exploit its massive processing parallelism, including

both algorithms that can be easily parallelised (K-means), showing energy savings

of 76%, and algorithms involving sequential operations that can be performed in a

reduction tree-like fashion (µ&σ2), providing energy savings of about 52%.

Summing up, it was proved that the GP-LiMA paradigm succeeds in efficiently

mapping a wide range of algorithms, without requiring in most cases any hard-

ware modification of the architectural structure, demonstrating to hit the goal of

programming flexibility combined with a remarkable processing efficiency.

6.1 Future perspectives

To further test the programming generality of the proposed GP-LiMA model, other

more complex algorithms could be mapped onto the architecture, such as the con-

volutional neural network LeNet-5, the advanced encryption algorithm (AES128)

and the approximate message passing (AMP), belonging to the compressed sensing

algorithms. In this way, the performance achieved by the GP-LiMA could be even

compared with the ASIC solutions present in the literature implementing the pro-

posed algorithms.

Moreover, place&route processes exploiting smaller technology nodes could be run

on the GP-LiMA netlist to gather more realistic and up to date estimations of the

accomplished performances.

Ultimately, as a further future perspective, the actual insertion of the GP-LiMA

Unit inside a standard system could be addressed, specifically making the CPU and

the GP-LiMA interact to run a whole application requiring both units to cooperate

for reaching the final algorithm result.
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GP-LiMA Model User’s Manual

Here, there are set out all the modifications the hardware designer can make on the

VHDL code describing the GP-LiMA model to gather the customized LiM device

he desires. The GP-LiMA features customization is organized into two different

sections:

� Section A.1 - Overall LiM Matrix Structure Configuration addresses

all the straightforward settings, such as the LiM Array size, the specs about

the M-SIMD mode implementation, and the size of components inside the

Smart Block.

� Section A.2 - Smart Block Deeper Customization instructs the user on

how to make deep-rooted changes, such as variations to the default composition

of the Smart Block entity.

A.1 Overall LiM Matrix Structure Configuration

Since the available GP-LiMA model is designed in a parametric way, changing the

general features, such as the LiM Matrix size or the instructions concurrency degree

(K), is quite easy. The user has only to properly set the values of some predefined

constants that are listed in the dedicated VHDL file: myTypes.vhd.
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A.1.1 LiM Matrix Size Settings

This section provides a list of all the possible generic LiM Matrix features which can

be tuned. For each feature a table is reported explicating all the constants that need

to be set to correctly carry out its implementation. The first column of each table

contains the parameters real name, the second one specifically reports the usage of

that constant inside the GP-LiMA design, while the last column shows the values

assumed by these parameters in the case of the synthesized GP-LiMA discussed in

chapter 5.

Set the memory parallelism

Parameter Meaning
GP-LiMA

Example

nbit LiM Array parallelism. 16

log nbit It must be equal to dlog2nbite. 4

Table A.1: List of constants used to define the memory parallelism.

Set the number of LiM Matrix columns

Parameter Meaning
GP-LiMA

Example

n Row Blocks
Number of Blocks for each row of the

LiM Array.
32

SIZE CNFG Row int

Number of bits constituting the

selection signal for the row

interconnections. It must be set equal

to dlog2n Row Blockse.

5

nInputBlockMux

Inputs number of the single

multiplexer composing the second

muxes layer of the row

interconnection. Refer to section 4.2.2

to know how to set the proper value.

4
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SIZE sel CrossBarMux

Number of bits constituting the

selection signal for the first muxes

layer of the row interconnection. Refer

to section 4.2.2 to know how to set the

proper value.

3

SIZE LiM ADDR

Number of bits composing the address

signal for the LiM Array. It must be

set equal to dlog2(n Row Blocks×
(n Smart Rows+n Standard Rows))e.

10

SIZE ADDR S1

Number of bits composing the ADDR

S1 field of the nInstruction. It must

be set equal to dlog2MAX BIT ADDR S1e,
with MAX BIT ADDR S1 =

MAX{n Smart Rows +

n Standard Rows, SIZE RF}.

5

SIZE ADDR S2

Number of bits composing the ADDR

S2 field of the nInstruction. It must

be set equal to dlog2MAX BIT ADDR S2e,
with MAX BIT ADDR S2 =

MAX{n Row Blocks × (n Smart Rows

+ n Standard Rows), SIZE RF}.

10

Table A.2: List of constants used to define the LiM Matrix columns number.

Set the number of LiM Matrix smart rows

Parameter Meaning
GP-LiMA

Example

n Smart Rows
Number of rows composing the LiM Array

smart section.
16

200



A – GP-LiMA Model User’s Manual

SIZE CNFG Col int

Number of bits constituting the selection

signal for the column interconnections. It

must be set equal to

dlog2(n Smart Rows+n Standard Rows )e.

5

SIZE LiM ADDR

Number of bits composing the address

signal for the LiM Array. It must be set

equal to dlog2(n Row Blocks×
(n Smart Rows+n Standard Rows))e.

10

SIZE ADDR S1

Number of bits composing the ADDR S1

field of the nInstruction. It must be set

equal to dlog2MAX BIT ADDR S1e, with

MAX BIT ADDR S1 = MAX{n Smart Rows +

n Standard Rows, SIZE RF}.

5

SIZE ADDR S2

Number of bits composing the ADDR S2

field of the nInstruction. It must be set

equal to dlog2MAX BIT ADDR S2e, with

MAX BIT ADDR S2 = MAX{n Row Blocks ×
(n Smart Rows + n Standard Rows),

SIZE RF}.

10

Table A.3: List of constants used to define the rows number inside the LiM Matrix
smart section.

Note that each time the number of smart rows changes, besides the re-definition

of the set of constants in Table A.3, also the procedure for the M-SIMD mode

configuration, illustrated in subsection A.1.2, must be performed to make sure that

its organization is consistent with the new smart section one.

Set the number of LiM Matrix standard rows

Parameter Meaning
GP-LiMA

Example
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n Standard Rows
Number of rows composing the LiM Array

standard section.
5

SIZE CNFG Col int

Number of bits constituting the selection

signal for the column interconnections. It

must be set equal to

dlog2(n Smart Rows+n Standard Rows )e.

5

SIZE LiM ADDR

Number of bits composing the address

signal for the LiM Array. It must be set

equal to dlog2(n Row Blocks×
(n Smart Rows+n Standard Rows))e.

10

SIZE ADDR S1

Number of bits composing the ADDR S1

field of the nInstruction. It must be set

equal to dlog2MAX BIT ADDR S1e, with

MAX BIT ADDR S1 = MAX{n Smart Rows +

n Standard Rows, SIZE RF}.

5

SIZE ADDR S2

Number of bits composing the ADDR S2

field of the nInstruction. It must be set

equal to dlog2MAX BIT ADDR S2e, with

MAX BIT ADDR S2 = MAX{n Row Blocks ×
(n Smart Rows + n Standard Rows),

SIZE RF}.

10

Table A.4: List of constants used to define the rows number inside the LiM Matrix
standard section.

Set the size of the RF inside the Smart Block

Parameter Meaning
GP-LiMA

Example

SIZE RF Number of registers composing the RF. 4

SIZE Address RF

Number of bits of the address signals

for the RF. It must be equal to

dlog2SIZE RFe.
2
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SIZE ADDR S1

Number of bits composing the ADDR

S1 field of the nInstruction. It must

be set equal to dlog2MAX BIT ADDR S1e,
with MAX BIT ADDR S1 =

MAX{n Smart Rows +

n Standard Rows, SIZE RF}.

5

SIZE ADDR S2

Number of bits composing the ADDR

S2 field of the nInstruction. It must

be set equal to dlog2MAX BIT ADDR S2e,
with MAX BIT ADDR S2 =

MAX{n Row Blocks × (n Smart Rows

+ n Standard Rows), SIZE RF}.

10

Table A.5: List of constants used to define the Smart Block RF size.

Set the size of the LUT inside the Smart Block

Parameter Meaning
GP-LiMA

Example

Nbit LUT

Number of bits of the data in each

LUT row, namely, the number of LUT

columns.

4

N inputs LUT Number 1-bit LUT inputs. 4

Table A.6: List of constants used to define the Smart Block LUT size.

Adapt the GP-LiMA structure to interact with a bigger external IMem

Parameter Meaning
GP-LiMA

Example

SIZE uROM

Number of rows, i.e. maximum number of

LiM instructions, composing the external

LiM Instruction Memory.

1024
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SIZE uROM Address

Number of bits composing the address

signal for the IMem. It must be set equal

to dlog2SIZE uROM Addresse.
10

Table A.7: List of constants used to make the GP-LiMA Unit compatible with the
external IMem size.

Set the size of the uCU LiM instructions queue

Parameter Meaning
GP-LiMA

Example

size Queue
Number of registers composing the LiM

instructions queue inserted in the uCU.
5

Table A.8: Constant used to define the uCU LiM instructions queue size.

A.1.2 Configuration of the M-SIMD computing mode

To fix the M-SIMD computing mode degree K, i.e. the maximum number of different

concurrent instructions which can be properly run by the GP-LiMA Unit, and to

determine for each row which is the instruction that drives it, four constants sets

must be initialized. In the following, the constants meanings and how to correctly

handle them is explained and the values set for the GP-LiMA Unit synthesized in

chapter 5 are reported as example.

� n INSTR DEC: constant that identifies the value for K (M-SIMD computing

mode degree). The GP-LiMA Unit is organized so that K instruction decoders

are instantiated, each working on a different instruction to be performed by

the LiM Matrix. Each instruction decoder drives a subset of smart rows and

is associated with a unique ID number going from 0 to K-1. The instruction

decoder with ID = 0 drives the first set of smart rows, the one with ID = 1

controls the second subset, and so on till the last set with ID = K-1.

GP-LiMA Example

constant n_INSTR_DEC: integer:=3;
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The smart section of the resulting LiM Matrix is composed of 3 subsets

of smart rows each driven by a different instruction decoder. It follows

that the generated nCU is made up of 3 instruction decoders with ID

equal to 0, 1, 2, respectively.

� MSIMD array init: array of constants used to determine the association be-

tween the K instructions and the smart rows. Each array element refers to

a different smart row and must be initialized with the ID of the instruction

decoder that has to drive that smart row.

GP-LiMA Example

type MSIMD_array is ARRAY(0 to n_Smart_Rows-1) of

integer range 0 to n_INSTR_DEC-1;

constant MSIMD_array_init :

MSIMD_array := (0,0,0,0,0, 1,1,1,1,1, 2,2,2,2,2,2);

In this example, the smart section is composed of 16 rows which are

driven according to the following association: the first 5 smart rows are

connected to the first instruction decoder (ID = 0), the next 5 rows are

driven by the second instruction decoder (ID = 1), while the remaining

6 smart rows are attached to the last instrustion decoder (ID = 2).

� MSIMD N INSTR DEC array init: array of constants used to implement the

connection between each of the K instruction decoders and the related smart

rows subset. Each array element refers to a different instruction decoder and

must be initialized with the number of smart rows it has to drive.

GP-LiMA Example

type MSIMD_N_INSTR_DEC_array is ARRAY(0 to n_INSTR_DEC-1) of

integer range 0 to n_Smart_Rows;

constant MSIMD_N_INSTR_DEC_array_init :

MSIMD_N_INSTR_DEC_array := (5,5,6);
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It follows that, as expected, the instruction decoders with ID equal to 0

and 1 drive 5 smart rows each, while the remaining one (ID = 2) controls

6 smart rows.

� SUM MSIMD N INSTR DEC array init: array of constants used to complete the

connection between each of the K instruction decoders and the related smart

rows subset. This array contains K elements (one for each instruction decoder)

that need to be initialized in this way: the first one must be equal to the

number of smart rows driven by the first instruction decoder, while each of all

the other elements must be set equal to the sum between the previous element

content and the number of smart rows handled by the specific instruction

decoder that element refers to.

GP-LiMA Example

type SUM_MSIMD_N_INSTR_DEC_array is ARRAY(0 to n_INSTR_DEC-1) of

integer range 0 to n_Smart_Rows;

constant SUM_MSIMD_N_INSTR_DEC_array_init :

MSIMD_N_INSTR_DEC_array := (5,10,16);

In this example, the first instruction decoder drives 5 smart rows, thus

the first array element is equal to 5, then the second element is given

by the sum between 5 and the number of smart rows controlled by the

second instruction decoder, that is again 5, and, finally, the last element

is set equal to the sum between 10 and 6 that is the number smart rows

connected to the last instruction decoder.

A.2 Smart Block Deeper Customization

Although the composition of the Smart Block inside the LiM Matrix was engineered

to be as more general as possible to efficiently suit the mapping of most the algo-

rithms, the GP-LiMA model still provides the user with the possibility to insert or

remove the logic blocks under the Block Word, which are conceived to the elabora-

tion of the more complex or customized operations.

In this section, both the procedures for entering a new logic block and taking out
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an optional logic block are illustrated complemented by an example. Note that the

RShifter and the ALU blocks cannot be touched.

A.2.1 New Logic Block Insertion Procedure

Before starting the insertion procedure the user has to implement on a separate

VHDL file the logic block he wants to enter. This new block can have a maximum

of two input operands and one single output signal, each on a number of bits equal

to the LiM array parallelism. Then, it can have an arbitrarily long input configura-

tion signal.

Suppose that a logic block (called Example Block) having the following interface

(entity) must be inserted as further computational unit in parallel with the default

ones.

entity Example_Block is

port(-- Two input data signals

operand_A: in std_logic_vector(nbit-1 downto 0);

operand_B: in std_logic_vector(nbit-1 downto 0);

-- Configuration signal

cnfg_Example_Block:

in std_logic_Vector(SIZE_cnfg_Example_Block-1 downto 0);

-- Output data signal

result: out std_logic_vector(nbit-1 downto 0)

);

end Example_Block;

The procedure to successfully introduce this new block inside all the LiM Matrix

Smart Blocks is made up of the following steps:

1. Open the SMART BLOCK.vhd file and insert the Example Block in the

list of the components inside the Architecture section of the SMART BLOCK.
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architecture structural of SMART_BLOCK is

component Example_Block

port(-- Two input data signals

operand_A: in std_logic_vector(nbit-1 downto 0);

operand_B: in std_logic_vector(nbit-1 downto 0);

-- Configuration signal

cnfg_Example_Block: in

std_logic_Vector(SIZE_cnfg_Example_Block-1 downto 0);

-- Output data signal

result: out std_logic_vector(nbit-1 downto 0)

);

end component;

[...]

begin

2. Instantiate the Example Block connecting the 2 input signals to OpA and OpB,

the configuration signal to the correct SIZE cnfg Example Block bits-slice of

the CNFG FUNC, and the output signal to the next available input signal of the

multiplexer returning the Result signal, that is BI MUX inputs(4).

begin

[...]

-----------------------------------------------------------------

-- INSTATIATION of the Example_Block logic block

-----------------------------------------------------------------

Example_Block_comp: LUT_BI

port map(operand_A=>OpA, operand_B=>OpA,

cnfg_Example_Block=>

CNFG_FUNC(SIZE_cnfg_Example_Block-1 downto 0),

result=>BI_MUX_inputs(4));

[...]

end architecture structural;

3. Open the myTypes.vhd file to adjust the constant values accordingly to the
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changes made to the Smart Block.

4. Find the constant section regarding the Smart Block and increment by one

the value of the n SMART BLOCK BI constant representing the number of logic

blocks underneath the Block Word.

5. Set the value of the SIZE Sel active BI constant to dlog2n SMART BLOCK BIe,
which specifies the number of bits of the selection signal for the Smart Block

multiplexer returning the Result signal.

6. Update the value of SIZE CNFG FUNC constant which must be equal to the

number of bits of the widest configuration signal among the ones of the logic

blocks under the Block Word.

--------------------------- SMART BLOCK ---------------------------

--

-- Number of logic blocks composing the SMART BLOCK:

-- RShifter, Adder, Multiplier, LUT, Example_Block

constant n_SMART_BLOCK_BI: integer:= 5;

-- Size of the control signal of the SMART BLOCK multiplexer

-- selecting the output of one of the logic blocks

constant SIZE_Sel_active_BI: integer:= 3;

-- Size of the instruction field defining the specific function to

-- the executed by the involved logic block, specified by the

-- OPCODE field value:

-- SIZE_CNFG_FUNC = max {SIZE_CNFG_FUNC_ADDER_LOGIC = 4,

-- SIZE_CNFG_FUNC_RSHIFTER = 1,

-- SIZE_CNFG_FUNC_MULTIPLER = 0,

-- SIZE_CNFG_FUNC_LUT = 1,

-- SIZE_cnfg_Example_Block = 5}

constant SIZE_CNFG_FUNC: integer:= 5;

7. Find the constants section regarding the list of values for the OPCODE field

of the nInstruction and add a new constant representing the OPCODE value
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associated to the new Example Block. Note that the value associated to its

OPCODE must be equal to the value that the control signal for the multiplexer

inside the Smart Block has to assume for connecting the Result signal to the

output of that logic block.

-------------------------------------------------------------------

-- OPCODE VALUES

-------------------------------------------------------------------

constant OP_RShifter: std_logic_vector(SIZE_OPCODE-1 downto 0) :=

std_logic_vector(to_unsigned(0, SIZE_OPCODE));

constant OP_Load, OP_Logic_Adder, nullOP:

std_logic_vector(SIZE_OPCODE-1 downto 0) :=

std_logic_vector(to_unsigned(1, SIZE_OPCODE));

constant OP_Multiplier: std_logic_vector(SIZE_OPCODE-1 downto 0) :=

std_logic_vector(to_unsigned(2, SIZE_OPCODE));

constant OP_LUT: std_logic_vector(SIZE_OPCODE-1 downto 0) :=

std_logic_vector(to_unsigned(3, SIZE_OPCODE));

constant OP_Example_Block: std_logic_vector(SIZE_OPCODE-1 downto 0)

:= std_logic_vector(to_unsigned(4, SIZE_OPCODE));

8. In the case the new block needs a control signal to select one of the functions it

can perform, as for the example shown, add in the constants section dedicated

to the values for the FUNC field of the nInstruction the list of all the new

FUNC constants for the Example Block.
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--------------------------------------------------------------------

-- FUNC VALUES

--------------------------------------------------------------------

constant AND_OP, nullFunc, Logic_RShift_OP :

std_logic_vector(SIZE_FUNC-1 downto 0) :=

std_logic_vector(to_unsigned(0, SIZE_FUNC));

constant XOR_OP, Arith_RShift_OP, Sign_ext_LUT_OP :

std_logic_vector(SIZE_FUNC-1 downto 0) :=

std_logic_vector(to_unsigned(1, SIZE_FUNC));

constant SUM_OP : std_logic_vector(SIZE_FUNC-1 downto 0) :=

std_logic_vector(to_unsigned(8, SIZE_FUNC));

constant SUB_OP : std_logic_vector(SIZE_FUNC-1 downto 0) :=

std_logic_vector(to_unsigned(12, SIZE_FUNC));

constant ABS_OP : std_logic_vector(SIZE_FUNC-1 downto 0) :=

std_logic_vector(to_unsigned(10, SIZE_FUNC));

constant OR_OP : std_logic_vector(SIZE_FUNC-1 downto 0) :=

std_logic_vector(to_unsigned(4, SIZE_FUNC));

constant NAND_OP, NOT_OP : std_logic_vector(SIZE_FUNC-1 downto 0) :=

std_logic_vector(to_unsigned(2, SIZE_FUNC));

constant NOR_OP : std_logic_vector(SIZE_FUNC-1 downto 0) :=

std_logic_vector(to_unsigned(6, SIZE_FUNC));

constant XNOR_OP : std_logic_vector(SIZE_FUNC-1 downto 0) :=

std_logic_vector(to_unsigned(5, SIZE_FUNC));

constant EQ_OP : std_logic_vector(SIZE_FUNC-1 downto 0) :=

std_logic_vector(to_unsigned(9, SIZE_FUNC));

constant NOT_EQ_OP : std_logic_vector(SIZE_FUNC-1 downto 0) :=

std_logic_vector(to_unsigned(11, SIZE_FUNC));

constant GT_OP : std_logic_vector(SIZE_FUNC-1 downto 0) :=

std_logic_vector(to_unsigned(13, SIZE_FUNC));

constant LT_OP : std_logic_vector(SIZE_FUNC-1 downto 0) :=

std_logic_vector(to_unsigned(15, SIZE_FUNC));
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-- Add here the list of the FUNC values for the Example_Block

constant Example_Block_FUNC_0_OP :

std_logic_vector(SIZE_FUNC-1 downto 0) :=

std_logic_vector(to_unsigned(0, SIZE_FUNC));

constant Example_Block_FUNC_1_OP :

std_logic_vector(SIZE_FUNC-1 downto 0) :=

std_logic_vector(to_unsigned(1, SIZE_FUNC));

[...]

constant Example_Block_FUNC_31_OP :

std_logic_vector(SIZE_FUNC-1 downto 0) :=

std_logic_vector(to_unsigned(31, SIZE_FUNC));

A.2.2 Logic Block Removal Procedure

The removal of a logic block is a quite simple routine that mainly consists of erasing

the component at issue and adjusting the signals connection to the multiplexer inside

the Smart Block generating the Result signal. This last step is required only when

the logic block output is connected to one of the multiplexer input signals that is

located in an intermediate position.

Suppose to have to take out the Multiplier block from the Smart Block in the default

configuration. The procedure to be carried out is made up of the following steps:

1. Open the SMART BLOCK.vhd and remove the logic block by commenting

the logic block instance inside the Architecture section of the SMART BLOCK.

begin

[...]

------------------------------------------------

-- INSTATIATION of Multiplier logic block

------------------------------------------------

-- Multiplier_BI_comp: Multiplier_BI

-- port map(operand_A=>OpA, operand_B=>OpB,

-- result=>BI_MUX_inputs(2));
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2. Adjust the Result multiplexer inputs connections shifting all the signals mak-

ing them occupy at first all the lowest positions. In this specific case, only the

output of the LUT logic block must be shifted to a lower position of the mul-

tiplexer input signals, that is the one just released from the Multiplier block:

BI MUX inputs(2).

architecture structural of SMART_BLOCK is

[...]

begin

[...]

---------------------------------------------------------------

-- INSTATIATION of the LUT logic block

---------------------------------------------------------------

LUT_BI_comp: LUT_BI

port map(operand_LUT=>OpA, CLEAR=>reset, CLK=>CLK,

Input_LUT_Daisy_Chain=>Input_LUT_Daisy_Chain,

Output_LUT_Daisy_Chain=>Output_LUT_Daisy_Chain,

En_LUT_Daisy_Chain=>En_LUT_Daisy_Chain,

Ext_cnfg=>CNFG_FUNC(0), Result=>BI_MUX_inputs(2));

[...]

end architecture structural;

3. Open the myTypes.vhd file to adjust the constants value as done for the

previous logic block insertion procedure.

4. Find the constant section regarding the Smart Block and decrement by one

the value of the n SMART BLOCK BI constant representing the number of logic

blocks underneath the Block Word.

5. Set the value of the SIZE Sel active BI constant to dlog2n SMART BLOCK BIe,
which specifies the number of bits of the selection signal for the Smart Block

multiplexer returning the Result signal.

6. Update the value of SIZE CNFG FUNC constant which must be equal to the

number of bits of the widest configuration signal among the ones of the re-

maining logic blocks under the Block Word.
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--------------------------- SMART BLOCK ---------------------------

--

-- Number of logic blocks composing the SMART BLOCK:

-- RShifter, Adder, LUT

constant n_SMART_BLOCK_BI: integer:= 3;

-- Size of the control signal of the SMART BLOCK multiplexer

-- selecting the output of one of the logic blocks

constant SIZE_Sel_active_BI: integer:= 2;

-- Size of the instruction field defining the specific function to

-- the executed by the involved logic block, specified by the

-- OPCODE field value:

-- SIZE_CNFG_FUNC = max {SIZE_CNFG_FUNC_ADDER_LOGIC = 4,

-- SIZE_CNFG_FUNC_RSHIFTER = 1,

-- SIZE_CNFG_FUNC_LUT = 1}

constant SIZE_CNFG_FUNC: integer:= 4;

7. Find the constants section regarding the list of values for the OPCODE field of

the nInstruction and adjust the values related to all the logic blocks. Note

that, for each logic block, the value associated to its OPCODE must be equal to

the value that the control signal for the multiplexer inside the Smart Block

has to assume for connecting the Result signal to the output of that logic

block. In this case, only the LUT OPCODE needs to be modified.

------------------------- OPCODE VALUES -------------------------

constant OP_RShifter: std_logic_vector(SIZE_OPCODE-1 downto 0) :=

std_logic_vector(to_unsigned(0, SIZE_OPCODE));

constant OP_Load, OP_Logic_Adder, nullOP:

std_logic_vector(SIZE_OPCODE-1 downto 0) :=

std_logic_vector(to_unsigned(1, SIZE_OPCODE));

constant OP_LUT: std_logic_vector(SIZE_OPCODE-1 downto 0) :=

std_logic_vector(to_unsigned(2, SIZE_OPCODE));
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