
POLITECNICO DI TORINO

Master degree course in Electronic Engineering

Master Degree Thesis

SOT STT MTJ Architectures
for Logic-In-Memory

Computing

Supervisors
Prof. Marco Vacca
Prof. Maurizio Zamboni

Candidates
Michela Graglia

Academic year 2020 – 2021

This work is subject to the Creative Commons Licence

Ai miei genitori
e a tutti i miei cari

Summary

Von Neumann architectures are based on the information transfer between
the memory and the processing units: the associated computational effi-
ciency is hindered by the interconnection delay and by the fact that these
two CMOS units work at different speeds. Furthermore, the ongoing ad-
vancement in CMOS scaling makes the static power consumption become
higher and higher every year. For these reasons, Logic-in-Memory (LiM)
design is seen as a promising candidate for overcoming such limitations: it
consists in the introduction of some computational features inside the mem-
ory itself, in order to reduce the data transfer between memory and CPU,
increase processing speed and lower the power consumption. Moreover, the
exploration of Beyond–CMOS technologies for memory implementation aims
to find an efficient alternative to CMOS technology capable of solving the
leakage problem and providing better performance.
In this work it is designed, with a Beyond–CMOS technology, a LiM tar-
get application, the Hamming Distance (HD) counter1: this unit is able to
count, as analog value, the number of mismatches between external data and
pre-stored informations inside a memory. In particular, the memory is based
on a type of magnetoresistive technology, whose non-volatile storage element
is called Magnetic Tunnel Junction (MTJ).
The work starts from a Verilog-A Spin Orbit Torque Spin Transfer Torque
(SOT STT) MTJ model, found in literature2 and employed as basic storage
block inside a Cadence Virtuoso schematic. The peculiarity of this type of
MTJ is the fact that it exploits the double contribution of SOT and STT cur-
rents to enhance its switching speed. Through a series of parametric analysis

1[1] Rahimi, et al., A robust and energy-efficient classifier using brain-inspired hyper-
dimensional computing, 2016.

2[2] http://www.spinlib.com/STT_SOT_MTJ.html

4

http://www.spinlib.com/STT_SOT_MTJ.html

it is found the proper point of work (SOT and STT pulses duration and am-
plitude) that allows to minimize the writing delay. Then, it is implemented
the basic MRAM-like cell, shown in Figure 1, (a).
Peripherals —such as the Sense Amplifier and the Read and Write Drivers—
are designed for providing the correct read/write pulses to the schematic, fol-
lowing the chosen point of work. The input signal generation has been taken
into account by Cadence SPECTRE states, that allow to save the simulation
environment for each memory operation. Also a Python script has been writ-
ten and tested for providing the proper pulses to the cell. The peripherals are
then adapted to different sized cells arrays (8x8, 16x16, 32x32) and through
Cadence Calculator are defined the function for computing the delays and
power consumption (average power, peak power and energy) related to each
memory operations. A Python script has been written for calculating the
sum of all the power contributions, since the Cadence SPEC- TRE pwr func-
tion could not sense the consumption of the SOT STT Verilog-A blocks.
The evaluated performance of this first design are comparable, for what con-
cerns the read/write speed, to a CMOS Static RAM; however, the power
consumption associated to the SOT STT MTJ technology is much higher
than the one related to CMOS technology (Figure 1, (c) (d)).
Then, the memory design is properly modified for testing the feasibility of
different logic approaches: it is chosen the one most suited for the target
implementation of a HD Counter. The HD has to be evaluated between an
input word and pre-stored values inside each memory row: hence, each row
results in a different HD depending on the "similarity degree" that the row
has with respect to the input word. Two HD counting methods have been
tested, both based on CAM architecture: the search operation, in fact, can
be though as a bit-a-bit XNOR between the external data and the stored
informations. The first method, inspired by a memristive approach found
in literature3, evaluates the HD as different discharging times on the match
lines (Figure 1, (e)). The second one, instead, emulates the behaviour of an
analog adder: each (properly modified) CAM cell (Figure 1 (b)) is able to
generate or not a small amount of current depending on if an XOR = ’1’
(mismatch) or XOR = ’0’ (match) takes place. Then, all the currents of each
row are summed, and the total V/I can be measured on a load at the end of
the row. Such value is proportional to the number of mismatches associated
to each row, i.e. to the HD (Figure 1, (f)).

3[3] Abbas Rahimi et al., Exploring hyperdimensional associative memory, 2017.

5

Both the counting methods are implemented through the design of SOT STT
CAM cells, and then tested for increasing array sizes. As for the SOT STT
MRAM, the extracted performance show good speed results and significant
power consumption, coherently to the technology selection. It is demon-
strated that the analog adder approach is faster and hardware saving with
respect to the ML discharge one. Such design can be exploited, for exam-
ple, in combination to minimum value search paradigms, for selecting the
minimum HD (i.e. closest similarity) in HD Classifier algorithms, used for
text language recognition. The work has been preceded by an extensive re-
search on the Beyond–CMOS technologies working principles, their memory
architectures and Logic–in–Memory approaches based on them.

Figure 1. Designed SOT STTMRAM cell (a) and CAM-like cell (b), MRAM
evaluated delays (c) and average power consumption (d), ML discharge curves
(e) and analog adder LiM approach (f)

6

Contents
I State of the art 11

1 Emerging Memory Technologies:
State of the art 13
1.1 Introduction . 13

1.1.1 Beyond CMOS . 13
1.1.2 Explored technologies 14

1.2 Magnetoresistive
Random Access Memory (MRAM) 15
1.2.1 Conventional MRAM 15
1.2.2 Spin Transfer Torque MRAM improvements 17
1.2.3 STT–MRAM characteristics 20
1.2.4 Spin Orbit Torque MRAMs 22

1.3 Resistive Random Access Memory
(RRAM or ReRAM) . 24
1.3.1 ReRAM principles . 24
1.3.2 ReRAM classification 25
1.3.3 ReRAM advantages and constrains 27

1.4 Ferroelectric Random Access Memory
(FeRAM, F–RAM or FRAM) 29
1.4.1 FeRAM basics . 29
1.4.2 Capacitor–type FeRAM 30
1.4.3 FET–type FeRAM (FeFET):

advantages and constraints 32
1.4.4 FET–type FeRAM (FeFET): functioning 34

1.5 Phase Change Random Access Memory 36
1.5.1 PCM: basics . 36
1.5.2 Phase Change RAM operations 37
1.5.3 PCM performance . 38

1.6 NanoElectroMechanical Systems (NEMS) based memory . . . 40

7

1.6.1 NEM relays: basics . 40
1.6.2 NEMS–based memories: benefits and drawbacks 43

1.7 About Nano Magnetic Logic (NML) 44
1.8 Brief on EMT performance comparison 46
1.9 Conclusions . 49

2 EMT: arrays and peripheral circuits 51
2.1 Technology choice . 51
2.2 STT–MRAM:

towards a practical application 52
2.2.1 STT–MRAM: array and peripherals 52
2.2.2 Considerations on SAs for STT–MRAM 55

2.3 ReRAM: towards design level 55
2.3.1 ReRAM arrays . 55
2.3.2 ReRAM peripherals . 57
2.3.3 Biasing challenges of 0T1R cross–point structures . . . 59

2.4 PCM: towards design level . 64
2.4.1 PCM arrays . 64
2.4.2 PCM peripherals . 66

2.5 FeFET: towards design level 68
2.5.1 FeFET arrays . 68
2.5.2 FeFET peripherals . 69

3 EMT LiM 73
3.1 Why implementing LiM? . 73
3.2 STT–MRAM LiM . 74

3.2.1 STT–MRAM LiM peculiarities 74
3.2.2 STT–MRAM LiM, 1st example:

modified reading interface 75
3.2.3 STT–MRAM LiM 2nd example:

modified cell and column decoder 78
3.2.4 STT–MRAM LiM 3rd example:

voltage pulses approach 81
3.3 ReRAM LiM . 81

3.3.1 ReRAM IMPLY . 82
3.3.2 ReRAM MAD . 84
3.3.3 ReRAM MAGIC . 86
3.3.4 ReRAM LiM comparisons and other ReRAM LiM ap-

proaches . 91

8

3.4 PCM LiM . 95
3.4.1 PCM logic potential 95
3.4.2 PCM logic . 97

3.5 FeFET LiM . 100
3.5.1 Why FeFET LiM? . 100
3.5.2 FeFET logic approaches 100

II SOT STT LiM development 107

4 SOT STT Memory implementation 109
4.1 Technology choice . 109
4.2 The model . 109
4.3 SOT STT memory design . 116

4.3.1 The PMA SOT STT cell 116
4.3.2 The sensing interface 118
4.3.3 The WL and BL write drivers 124
4.3.4 The array organization 127
4.3.5 Testbench states . 132

4.4 Performance evaluation . 137
4.4.1 Delays computing . 137
4.4.2 Power consumption computing 140
4.4.3 Measurements and results 142

5 SOT STT Logic–in–Memory implementation 149
5.1 Logic approaches from literature 149
5.2 Logic approaches from literature 149

5.2.1 SOT stateful logic . 150
5.2.2 SOT STT logic–in–peripherals approach 152

5.3 The target algorithm . 153
5.4 Timing–based HD counter . 159

5.4.1 Memristive CAM SA approach 160
5.4.2 SOT STT CAM adaptation 161
5.4.3 Approach limitations 167

5.5 An analog adder approach . 170
5.5.1 New CAM–like cell . 170
5.5.2 Results . 175

5.6 Conclusions and future prospects 186

A Sense Amplifiers classification 189

9

B Python scripts 195
B.1 Python code for inputs generation 195
B.2 Python code for power consumption

computing in SOT STT MRAM arrays 199
B.3 Python code for power consumption

computing in SOT STT analog adder
CAM-like arrays . 200

Bibliography 203

10

Part I

State of the art

11

Chapter 1

Emerging Memory
Technologies:
State of the art

1.1 Introduction
This chapter is dedicated to the investigation of the main emerging tech-
nologies for implementing memory devices. Such innovative techniques are
necessary in order to overcome some of the possible physical limitations re-
lated to CMOS world.

1.1.1 Beyond CMOS
The most important Moore’s law, that well predicted the doubling number
of transistors per integrated circuit every 18 months, revealed its limits since
2000’s. From these years on, in fact, microprocessors performance signifi-
cantly bettered only due to new architectural structures. The main reason
is that, in practice, CMOS scaling leads to an non-negligible leakage current
increasing; it also implies reliability issues and heating problems.
So, especially in the last decade, researchers focused on innovative imple-
mentations of information storing mechanisms. This research field is known
as Beyond CMOS and it is included in the so–called more than Moore trend.
The aim is to find a technology that represents a valid alternative to CMOS–
based memories, offering at the same time better performance.

13

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

1.1.2 Explored technologies

Non–volatile devices represent the most promising candidate as valid alter-
native to CMOS–based memories. They are able to provide higher reliability,
together with reduced power consumption and new potential functionalities
[1].

Figure 1.1 shows all the investigated technologies for Non–Volatile Memo-
ries (NVM) presented in this chapter. Obviously they are just some of the
several solutions that are explored in recent years. For convenience, CMOS–
based memories are treated only for performance comparison with respect
to the new ones, as the attention would be otherwise deviated to another
unwanted focus.
Non–volatile memories are also divided into baseline, prototypical and emerg-
ing according to their maturity level (updated in March 2020, see [2]).

Figure 1.1. Explicative diagram of the analyzed emerging technologies.
Color legend on the bottom right.

14

1 – Emerging Memory Technologies:State of the art

The sequence in which they will be presented in the next sections is the
following: Megnetoresistive RAMs (MRAMs), divided into STT (Spin Trans-
fer Torque) and SOT (Spin Orbit Torque); Resistive RAMs, of which only
filament–type —the most common one— will be explored, while barrier–type
(e.g. Schottky) will not be treated; Ferroelectric RAMs (FeRAMs), divided
into capacitor–type and FET–type (FeFETs); Phase Change Memory (PCM,
but also referenced as PCRAM or PRAM), whose working principle is similar
to the resistive one: indeed, sometimes it is classified as a type of ReRAM
(dashed line in figure 1.1).
NanoElectroMechanical (NEM) relays based memory will also be explored;
however, since NEM relays are about 1000 times slower than solid state tran-
sistors, they will not be considered in this research for LiM applications.
Just a quick reference will be done for pNML memories, since currently they
have not achieved a performance level that can keep up with the other pre-
viously mentioned memories yet.

1.2 Magnetoresistive
Random Access Memory (MRAM)

1.2.1 Conventional MRAM
Magnetoresistive RAMs are non–volatile memories, whose state information
is codified as a resistance value. The fundamental block is a Magnetic Tun-
nel Junction (MTJ): a stack of ferromagnetic–insulator–ferromagnetic layers
constitutes its basic structure. One of the two ferromagnets has a free–to–
change magnetization, while the other one is fixed (Figure 1.2, top). When
the magnetizations of the two ferromagnets have the same direction (paral-
lel magnetizations) the resistance of the MTJ is low and for convention this
corresponds to a logic value “0”. A logic "1" is instead encoded when the two
magnetizations are antiparallel (i.e. with opposite directions), matching to
an high resistance state [3].
A significant parameter for MTJ is the Tunneling MagnetoResistance (TMR),
defined in [3] as:

TMR = RAP +RP

RP

and it quantifies how well the two logic states are distinguishable.
The conventional (or field–switched or only field) MRAM cell is depicted

15

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 1.2. Up: MTJ stack for P and AP configurations, down: STT
cell with currents directions.

Figure 1.3. Conventional (or field–switched) MRAM cell [4].

16

1 – Emerging Memory Technologies:State of the art

in Figure 1.3: here it is well visible the MTJ in series with the access tran-
sistor for bit selection during read operation. The MTJ is situated between
the bit line (BL) and the bipass line (orange in Figure 1.3). It is clear, just
by observing Figure 1.3, that MRAM cell area is down–limited not by MTJ
size but by the access transistor one.

Reading operation is performed as a simple measurement of the MTJ resis-
tance value. In order to write information to the cell, instead, two methods
are possible: the first one consists in applying an external field that forces a
certain state in the cell; the second one is to provide a spin–polarized electric
current pulse through the junction. This last one is at the base of the so–
called Spin Transfer Torque (STT) memory cell presented in section 1.2.2,
that also offers a more simplified and compact cell structure than conven-
tional MRAM [3].

MRAMs can offer a large range of benefits: they can be very fast (reaching
hundreds of ps), with an high data retention time (more than 10 years) and a
very low power consumption (both static and dynamic). Their endurance is
really high and comparable to CMOS–based SRAM and DRAM, being easily
above 1015 cycles [5]. Nevertheless, conventional MRAMs present some weak-
nesses: their basic cell is big and structurally complex. This point represent
the main reason for which in recent years research has been concentrated on
STT–MRAMs rather than field1 ones (see subsection 1.2.2).

1.2.2 Spin Transfer Torque MRAM improvements
As already anticipated in subsection 1.2.1, STT–MRAM cell has a simpler
structure than conventional MRAM one (see figure 1.4). This implies a more
compact structure and, hence, a lower fabrication cost. It also draws much
less power, and integrability increases since the achievable density is greater.
Since the write current scales down when reducing the cell dimensions, the
scalability can be high. Furthermore, STT–MRAM intrinsic STT mechanism
can provide a better write selectivity [7, 8].

Some reference values are reported in Table 1.1 [5]: it depicts all the perfor-
mance parameters of conventional MRAM with respect to the STT–type. It

1Conventional MRAMs are also called 1st generation MRAMs or field–switched
MRAMs

17

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

can be noticed that cell size (expressed in feature size F), as already said, is
reduced, leading to high density applicability. Moreover, the writing power
consumption decreases and the endurance is greater.

Figure 1.4. Conventional (a) versus Spin Transfer Torque (b) cell structure [6]

Features MRAM STT–MRAM
Cell size [F2] Large, ∼25 Small, ∼6÷20
Read time [ns] 3÷20 2÷20
Write time [ns] 3÷20 2÷20
Endurance > 1015 > 1016

Write power Mid to high Low
Non volatility yes yes
Applications Low density High density

Table 1.1. Comparison between conventional and STT MRAM performance [5].

Another table is extracted from [9] (Table 1.2): this time, STT–MRAMs
features are compared to the the well–known CMOS memories. It can be

18

1 – Emerging Memory Technologies:State of the art

Features SRAM DRAM NAND Flash NOR Flash STT–MRAM
Cell size [F2] >100 6 <4 (3D) 10 6÷20
Cell element 6T 1T1C 1T 1T 1(2)T1R
Voltage [V] <1 <1 <10 <10 <2
Read time ∼1 ns ∼10 ns ∼10 µs ∼50 µs <10 ns
Write time ∼1 ns ∼10 ns 100 µs ÷1 ms 10 µs ÷1 ms <5 ns

Write energy [J/bit] ∼fJ ∼10 fJ ∼10 fJ 100 pJ ∼0.1 pJ
Retention N/A ∼64 ms >10 y >10 y >10 y
Endurance > 1016 > 1016 > 104 > 105 > 1015

Non volatility no no yes yes yes

Table 1.2. Comparison between CMOS memories and STT–
MRAM performance [9].

noted that:

• STT–MRAM minimum cell size is comparable to DRAM and FLASH
memories;

• reading and writing times are good, much lower than FLASH memories,
although not at SRAM levels;

• endurace can be very high (can be greater than 1016).

Some of the STT–MRAMs outlines, e.g. their near–zero leakage and great
density, are making them an actual potential post–CMOS technology, mostly
for on–chips memories applications. Anyhow, their energy efficiency has a
limitation related to the STT switching energy necessary for writing and
reading [10].

However, STT–MRAMs have reached an advanced maturity level with re-
spect to other emerging Non–Volatile Memories (NVM), since they already
started to be commercially produced; for instance, Everspin Technologies
on December 23, 2019, announced its qualification to start producting STT–
MRAM chips for its first costumer. It further called out that “since it started
MRAM production, it shipped over 120 Toggle MRAM and STT–MRAM de-
vices” [7].
Another example is the Numem, developer of high–performance STT–MRAMs,
announcement regarding its selection for NASA AI project, done on 09 Oc-
tober 2020. Numem also stated that its memory allows for a 20÷50 times

19

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

lower standby power than SRAMs, and cell dimension can be made two–three
times smaller [7].

1.2.3 STT–MRAM characteristics
Once explained the main benefits of this technology (section 1.2.2), it is con-
venient to present in details its working principle.

STT–MRAM cell is shown in Figure 1.5, together with its circuital repre-
sentation.

Figure 1.5. STT MRAM cell structure: MTJ element is highlighted [12].

The conventional logic state association to RP, RAP is the same done for
field–switched MRAM. What differs between the two MRAM types is that
writing operation for STT memory is based on current injection: the spin
associated to electrons, that are flowing through the MTJ, exercise a torque
force that is able to modify the angular momentum of the free layer. This
change of magnetization implies a change of the cell logic state [11].
In details, write operations is performed with the injection of a current higher
than the MTJ critical switching current IC for a certain duration. Current
direction (IW RIT E0, IW RIT E1) forces a certain logic state in the cell, and it
depends on the polarity of the voltage between the BL and the Source Line
(SL). The amount of current to inject is also influenced by the MTJ geometry

20

1 – Emerging Memory Technologies:State of the art

and barrier material, and by the duration of the writing pulse.
On the other hand, reading implies the WL activation (that makes the nMOS
turn ON) and the application of a voltage VREAD between BL and SL (Fig-
ure 1.5). The resultant current is compared to a reference current by a sense
amplifier, in order to detect the value contained in the cell [11].
In Figure 1.2 it is clarified the direction of the various currents involved in
STT–MRAM operations.

Just few words about current research status —up to 2019— of STT–MRAMs
are spent in this paragraph.
An ultra-high performance MTJ has been developed by researchers of Na-
tional Taiwan University: it exploits a superlattice barrier layer and two
half–metallic magnets instead of usual ferromagnets. This new type of struc-
ture constitutes the basic block of the so–called SS–MRAMs (included in
STT–MRAM memory class) that is able to reach ultra–low power reads and
writes, high and very high writing speed and endurance, respectively [7].
Another significant datum is that antiferromagnetic materials (opposed to
the currently–used ferromagnetic ones) can be exploited to build STT–MRAMs,
leading to potential high density devices, with fast writes and low currents.
This last concept is nowadays investigated by researches from Northwestern
University, Illinois [7].

STT–MRAMs, however, present some physical problems that limit device
scaling and performance: one of these is the fact that the lower is the switch-
ing time (e.g. about nanoseconds), the higher will be the risk to damage the
MTJ barrier with high writing current densities. This is due to the fact that
switching speed is directly proportional to the switching current.
Moreover, since reading and writing follow the same path through the MTJ,
with STT–MRAM cell scaling the write current decreases but not at the
same rate of read one. So the difference between the two currents is reduced,
and this makes the sensing not so reliable since write errors might occur [1].

These two issues can be mitigated in Spin Orbit Torque (SOT) MRAMs,
explained in the next section (1.2.4).

21

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

1.2.4 Spin Orbit Torque MRAMs

Spin Orbit Torque (SOT) Magnetoresistive RAMs are introduced in this sec-
tion starting from their structure (Figure 1.6, (b)). Differently form STT–
MRAM cells (Figure 1.6, (a)), SOT–MRAM ones are based on an MTJ
placed on a layer of heavy metal, resulting in a three–terminals device.

Figure 1.6. Spin Transfer Torque (a) versus Spin Orbit Torque (b) cell structure

The particularity of SOT cell is that its content can be switched by let-
ting a current flow through the metal layer: thanks to the Spin Orbit Torque
effect, in fact, the magnetization of the free layer can change leading to a
logic status switch. This effect consist in a spin coupling induced by the spin
associated to electrons in the current flow; such coupling forces a certain
spin angular momentum direction in a particular region of space. In practice
this is a generic term that includes various mechanisms derived from SOT
interaction: if they rise up from the layer interfaces, they takes the name of
Rashba effect; if they take place from the bulk, they are referred to as Spin
Hall Effect (SHE). However, this classification is often just a convention since
it is difficult to distinguish between the complex contributions from bulk and
interfaces [1].

An additional key characteristic of SOT–MRAMs is the separation of read-
ing and writing paths (Figure 1.7). In fact, while for STT–MRAMs reads and
writes share the same path with currents perpendicularly injected through
the MTJ, in SOT memory cells they have different routes: writing operation
is performed through in–plane current injection, along the writing stripe —
the heavy metal film— as in Figure 1.7, (a); reading, instead, is the same
as STT–MRAMs one (Figure 1.7, (b)). This fundamental separation allows

22

1 – Emerging Memory Technologies:State of the art

Figure 1.7. SOT MRAM writing (a) and reading (b) paths.

SOT–MRAMs to mitigate MTJ tunnel barrier damaging and to reduce prob-
lems related to read/write disturbs.

Features STT–MRAM SOT–MRAM
ON/OFF Ratio 1.5÷2 1.5÷2
Write voltage <1.5 V <1.5 V
Write time <10 ns <10 ns
Read time <10 ns <10 ns

Stand–by power low low
Write energy [J/bit] ∼100 fJ <100 fJ

Drift No No
Integration density High High

Retention Medium Medium
Endurance 1015 > 1015

Table 1.3. Comparison between Spin Transfer Torque and Spin Orbit Torque
MRAM performance [13].

The emerging consideration that has to be done by observing Table 1.3 is
that endurance is surely greater than STT–MRAM one. This is due to the
fact that writing current, that is larger than the reading one, in this case does
not run across the magnetic tunneling junction, hence it does not damage
the barrier and the endurance can be very high.
Furthermore, SOT–MRAM switching duration can be reduced more than the

23

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

STT–MRAM one, reaching also some hundreds of picoseconds (experimen-
tally demonstrated, [1]). Also, power consumption decreases a little.
Nevertheless, the great constrain of SOT–MRAM is the large size of its cells:
they can easily reach 160 F2 [14], whereas STT cells are much smaller (6÷20
F2, Table 1.1). Consequently, SOT–MRAM integration density is lower with
respect to STT case.

In conclusion, SOT–MRAMs represent a valid and performing alternative
to STT–MRAMs, since they can offer higher speed and endurance; however,
they lead to a slightly deteriorated integration density.

Despite all the advantages that SOT–MRAM can provide, up to these days
difficulties have been found regarding the development of a material capable
of being an high electrical conductor with strong Spin Hall Effect. In 2018,
researchers at Tokyo Institute of Technology announced that they built a
topological insulator based on bismuth–antimony (BiSb), able of achieving
both a huge Spin Hall effect and strong conductivity, hence a potential can-
didate for SOT–memories implementation [15].

1.3 Resistive Random Access Memory
(RRAM or ReRAM)

1.3.1 ReRAM principles
Resistive RAMs are Non–Volatile Memories whose information storing ele-
ment is a capacitor–like structure called memristor, portmanteau of memory
and resistor (Figure 1.8). It consists in an insulating material (very thin,
usually 2–to–hundreds of nanometers) sandwiched between two metal elec-
trodes. The thickness and material of the insulating layer influences several
features such as ON–OFF resistance ratio, memristor working mechanism,
amount of voltage to use, etc.. By applying a proper voltage across the in-
sulator its conductivity can be changed: it this way the information —coded
as memristor resistance value— varies and a writing operation is performed.

It is considered to be in Initial High Resistance State (IHRS). In filament–
based memristors, if it is applied a sufficiently high differential voltage to the
electrodes, a soft breakdown into the insulator layer induces the creation of

24

1 – Emerging Memory Technologies:State of the art

Figure 1.8. Memristor C–like structure

a conductive path (filament) that electrically links the two metal layers (Fig-
ure 1.9). This process is known as electroforming (or just forming) and it
occurs at the so–called forming voltage (VF), which mainly depends on cell
area and dielectric thickness [9].
Once the filament is created, the memristor is switched to a Low Resistance
State (LRS), conventionally associated to a logic “1” (ON state). It is pos-
sible to switch the memristor to High Resistance State (HRS), through an
appropriate reset voltage, breaking–up the conductive path and leading to
a logic “0” (OFF). A set process, with its VSET voltage pulse, changes the
state back to a low resistance value re–forming the filament [13].
Hence, writing operation consists in changing the cell content through set
and reset operations; even after the voltage has been removed, the memris-
tor retains the information about its state (non–volatile device). Reading,
instead, is performed by applying a voltage pulse smaller than the ones used
for writing. In this way no write disturb occurs and the content of the cell
can be determined evaluating the resulting current.

Figure 1.9. Memristor forming, set and reset processes.

1.3.2 ReRAM classification
The previous paragraph made reference to filament–type ReRAMs, based on
creation and rupture of aforementioned conductive filaments to change the

25

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

resistive state of the memristor. Conduction path can take place thanks to
various physical mechanisms, such as movement of vacancies or ions.
As depicted in Figure 1.1, there are two main sub–categories of Resistive
RAMs: Oxide–RAM (OxRAM) and Conductive Bridge RAM (CBRAM),
also known as Electrochemical Memories (ECRAM or ECM) [16].

Oxide–RAM memristor is a stack of bottom electrode–oxide–top electrode
and oxygen vacancies in this oxide layer compose its conductive filament [17].
OxRAM can be further sub–divided into Valence Change ReRAM (VCRAM)
and Thermochemical ReRAM (TCRAM): the first ones are more developed,
but present stocastic parameters in forming process, require high current and
their scalability is problematic. Their theoretical endurance is high (1012) but
experimentally are demonstrated some order of magnitude less. The second
ones have a similar structure but exploit a current to break the filament
through heat; however, they present a much lower endurance.

Conductive Bridge RAMs switching behaviour is instead based on movement
of metal ions (usually Cu or Ag) into the solid–electrolyte. Their main ad-
vantage is that their ON/OFF resistance ratio can be pretty high (103÷106)
in comparison to OxRAMs (limited to 10÷100), at the cost of a reduced
endurance (< 104 cycles with respect to OxRAM 1012) [17]. In Table 1.4,
updated in 2020, are reported additional performance parameters to compare
these two technologies.

Features Metal–oxide ReRAM Conductive Bridge ReRAM
Speed [ns] 5 1

Operation voltage [V] ∼3 ∼7
Operation current [µA] 5 10
Endurance [cycles] 1012 106

ON/OFF ratio 107 107

Retention [s] @ 85°C 106 106

CMOS compatible Yes Yes
Fabrication Easy Easy
Scalability Good Good

Table 1.4. Comparison between Metal–oxide and Conductive Bridge
ReRAM performance [9].

26

1 – Emerging Memory Technologies:State of the art

Just for completeness, it is noticeable that besides filament–type, mem-
ristors can be also barrier type: they present the same structure, but the
working principle is based on the modulation of a physical barrier that leads
to a resistance change of the memristor. For instance, Schottky barrier–type
memristors can change their resistance value according to the potential dis-
tribution of their depletion layer [16].
However, this classification is just indicative to introduce memristors, since
they can be based on many other physical mechanisms (atomristors, ferro-
electric memristors, spintronic memristors, carbon nanotubes memristors are
just some examples). Nevertheless, filament–based memristors were exam-
inated more in details in this introdution just because they are the most
studied and developed type of memristors up to recent years.

1.3.3 ReRAM advantages and constrains
In terms of performance, ReRAMs are the most promising candidate as
CMOS–based memories replacement among all emerging memory technolo-
gies. This is due to their several benefits such as high speed (read and write
times <10 ns according to Table 1.5, which is the completion of Table 1.2
from [9]) and improved density thanks to small cell area (<4 F2, Table 1.5);
the related costs and power consumption are low; moreover they present
adaptability to various applications, also because they are CMOS compati-
ble [9], and they have been theoretically proved to have good endurance (106

to 1012, Table 1.5).

Features SRAM DRAM NAND Flash NOR Flash ReRAM
Cell size [F2] >100 6 <4 (3D) 10 <4 (3D)
Cell element 6T 1T1C 1T 1T 1T(D)1R
Voltage [V] <1 <1 <10 <10 <3
Read time ∼1 ns ∼10 ns ∼10 µs ∼50 µs <10 ns
Write time ∼1 ns ∼10 ns 100 µs ÷1 ms 10 µs ÷1 ms <10 ns

Write energy [J/bit] ∼fJ ∼10 fJ ∼10 fJ 100 pJ ∼0.1 pJ
Retention N/A ∼64 ms >10 y >10 y >10 y
Endurance > 1016 > 1016 > 104 > 105 ∼ 106 ÷ 1012

Non volatility no no yes yes yes

Table 1.5. Comparison between CMOS memories and ReRAM performance [9].

27

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

However, resistive RAMs still present some challenges that limit their effi-
ciency. First, the variability of the physical parameters involved in switching
process. Oxygen vacancies and metal ions (mentioned in subsection 1.3.2
as basic species of OxRAMs and CBRAMs respectively) follow a stochastic
behaviour when they move to form the filament. In this way, the shape of
the filament can change depending on the specific device and even on the
specific cycle in which we are operating. Such dependence influences a lot
the memristor resistance, so often write–verify techniques are necessary and
the sensing circuit can become more complex to design. This can have heavy
consequences on the latency, especially for Multi Level Cell operations. Prob-
lems can also arise when the thickness of the filament is too small (even if
the writing current involved is usually low, downto ∼10 µA), worsening in
this way data retention [17].
Furthermore, data in Table 1.5 for endurance and cell size may be in general
too optimistic. It happens frequently that the endurance reported in scien-
tific paper refers to the one of the single cell, and not to the one of the entire
array (also orders of magnitude lower): the number of cycles for which the
memory content is reliable is influenced by leakage, so when this parasitic
contribution becomes significant (as when increasing the number of cells in
the array) the endurance decreases. Commercial memristors present up to
106÷108 cycles of endurance.Tantalum–Oxide based ReRAMs can reach high
endurance but they have low data retention time [18].
Moreover, a cell size less than 4 F2 (Table 1.5) probably refers to a 0T1R–
array cell: different types of ReRAMs array will be presented in the next
chapter, but it is useful to anticipate that this type of cell is smaller since
it contains only one memristor without any access device. Unfortunately,
0T1R arrays are only theoretically developed, since no efficient implementa-
tion in practice is feasible yet. The main reason is to attribute to significative
leakage problems that preclude their fabrication.

28

1 – Emerging Memory Technologies:State of the art

1.4 Ferroelectric Random Access Memory
(FeRAM, F–RAM or FRAM)

1.4.1 FeRAM basics
In Ferroelectric Random Access Memories the information storing mecha-
nism is based on the hysteretic polarization–to–field dependence, typical of
ferroelectric materials.
Just as reminder, ferroelectricity is a property of certain media to intrinsi-
cally have a spontaneous electric polarization (formally, the dipole moment
per unit volume [C/m2]). When applying an external electric field, its direc-
tion can be reversed. In ferroelectrics the polarization is maintained even in
the absence of an electric field, and from this it is derived the non–volatility
of FeRAMs.

Figure 1.10. FeRAM cell structure (left), lattice element (middle), and
P–to–V characteristic (right) [19].

In Figure 1.10 is depicted a Fujitsu simplified capacitor–like cell represen-
tation (left), together with the atomic view of the crystal unit cell of its PZT
layer (center). The PZT (lead zirconium titanate) is a typical ferroelectric
material employed in FeRAMs. Zr/Ti ions shift up and down in the unit cell
according to the direction of the field applied between the top and bottom
electrodes: they can reach two stabilization points on the hysteretic loop
(right figure), corresponding to logic “0” and “1” stored in the memory cell.
As aforementioned, data are preserved also when the voltage that gives rise
to the electric field is no more applied [19].

29

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

FeRAMs can be classified in two main subcategories: Capacitor–type (1T1C
cell) and FET–type (1T cell). The second one is also called called FeFET and
it will be better described in subsection 1.4.2. The corresponding circuital
scheme of their basic cells is reported in Figure 1.11. A marked similarity
between Figure 1.11 (a) and a standard DRAM cell can be noted; the only
differences are the presence of an additional Plate Line (PL) and the fact
that the material inside the capacitor is ferroelectric instead of dielectric,
making it a so–called ferroelectric capacitor. In Figure 1.11 (b), instead,
ferroelectricity is detained by a thin layer of ferroelectric material plugged
in the gate stack of a MOSFET, obtaining a ferroelectric FET. Both C–type
FeRAM and FeFET physical structures are presented in Figure 1.12.

Figure 1.11. FeRAM classification: 1T1C (a) and 1T (b) cells.

Just for completeness, in the last years another type of FeRAM has been
developed, the Ferroelectric Tunnel Junction (FTJ). This technology will not
be presented here since it is too immature for our purposes, and some require-
ments that it needs, as a very low reading current, make it not commercially
feasible (yet).

1.4.2 Capacitor–type FeRAM
In C–type FeRAMs, as anticipated by Figure 1.10 and related description,
writing operation is accomplished by applying a proper voltage that stimu-
late a electric dipoles reorientation, changing the polarization of the material
between the electrodes.

30

1 – Emerging Memory Technologies:State of the art

Figure 1.12. FeRAM (a) and FeFET (b) cell structures.

Readout is instead achieved by forcing through the transistor a certain logic
state into the memory cell. If, for instance, a ’0’ is strained, the value ’1’
that is possibly contained in the cell before the forcing is sensed as a current
pulse on the bit line. The problem is that such current is due to the charges
that were stored by the ferroelectric capacitor, which is in this way emptied.
So reading operation is destructive and the information must be rewritten to
avoid data loss. On the contrary, in case of a stored “0” no variation on the
bit line occurs, and this distinguishes the two (bitwise) reading results.
In subsection 1.4.4 it will be explained why for FeFETs data loss is not an
issue, since reading is not destructive.

From Table 1.6 (completion of Table 1.3, [13]), it can be noticed that reading
and writing times for FeRAM arrays are much lower than FLASH memories
ones. Furthermore, they offer lower power consumption and a much greater
read/write endurance (about 1010 for C–FeRAMs, some order of magnitude
less for FeFETs).
However, both FeRAMs types present some issues related to scaling: ferro-
electricity tends to disappear in too thin materials, and charge density may
be too low to be detected. Obviously this depends on the choice of the ferro-
electric material. In [20] it is stated that perovskite capacitor–type FeRAMs
cannot be scaled under the 130 nm node. Exploiting PZT, scaling can be
improved downto 70 nm, that is still not enough compared to CMOS tech-
nology. These limitations have prevented traditional C–FeRAM to be widely

31

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

industrialized, because they lead to lower storage densities and higher costs.
A promising implementation is represented by Hafnium–dioxide (HfO2) fer-
roelectric capacitors, since they are CMOS compatible and suited for Atomic
Layer Deposition (necessary for reaching lower nanometric nodes). Again in
[20] Stefan Müller, chief executive of Ferroelectric Memory Co., stated that
HfO2 ferroelectric films could be thinned downto 5 nm, reaching in this way
the latest technology nodes.
Apart from this, research is moving towards 3D integration and stacking for
scalability improvement. Furthermore, another interesting field of research is
the one of FeFETs, a more recently–developed technology that aims to over-
come C–FeRAM limitations, and that will be presented in the next sections
(1.4.3, 1.4.4).

Features NOR Flash NAND Flash C–FeRAM FeFET
ON/OFF Ratio 104 104 102 ÷ 103 5÷ 50
Write voltage <10 V >10 V <3 V <5 V
Write time 1÷ 10 µs 0.1÷1 ms ∼30 ns ∼10 ns
Read time ∼50 ns ∼10 µs <10 ns ∼10 ns

Stand–by power low low low low
Write energy [J/bit] ∼100 pJ ∼10 fJ ∼100 fJ <1 fJ

Drift No No No No
Integration density High Very high Low High

Retention Long Long Long Long
Endurance 105 104 1010 > 105

Table 1.6. Comparison between FeRAMs (C–type and FET–type) and
CMOS Flash memories performance [13] (completion of Table 1.3).

1.4.3 FET–type FeRAM (FeFET):
advantages and constraints

Ferroelectric Field Effect Transistor–based cell circuital scheme is reported
in Figure 1.11 (b). They are theorized as a type of FET in which a ferro-
electric film simply substitutes the oxide layer of a traditional MOSFET, as
shown in Figure 1.12 and reported for convenience in Figure 1.13 (a). How-
ever, this structure leads to fabrication problems due to interdiffusion —into
Silicon— of traditional ferroelectric materials [21]. So, in general, more com-
plex structures are employed: an insulating layer between the substrate and

32

1 – Emerging Memory Technologies:State of the art

the ferroelectric material (Figure 1.13 (b)) or a ferroelectric–metal–insulator
stack (Figure 1.13 (c)) can mitigate interface problems but also heavily limits
retention time.

A structure like Figure 1.13 (c) is for example exploited in [22] for imple-
menting a non–volatile and energy efficient Logic–in–Memory application:
in fact, since this structure is simply modeled as a ferroelectric capacitance
(the yellow layer between two metals) in series with a MOS capacitance (the
stack below), the related CFERROELECTRIC/CMOS ratio allows to suitably fit
position and width of hysteresis loop for the aimed purposes.

The usage of Hafnium–dioxide (HfO2) can provide better performance, like
for C-FeRAMs, but the consequent retention time is still too limited. Some
improvements have been proposed: for instance, in Figure 1.13 (d) is shown a
standard Metal–Ferroelectric–Insulator–Semiconductor (MFIS) FeFET, with
silicon–doped hafnium dioxide as ferroelectric layer. In the related article
[23] the thin dielectric layer of SiO2 is annealed to obtain SiON, which pro-
vides higher permittivity: this allows for lower FeFET switching voltage,
mitigated tunneling effect which leads to higher endurance (due to reduced
charges trapped in ferroelectric layer), and higher retention time.
Another solution to interface issues consists in exploiting ferroelectric poly-
mers: since they can be deposited at room temperatures, interdiffusion may
be reduced. They represent a flexible and cheap alternative to standard Fe-
FETs, but the switching time is much lower [21]. Relatively to this approach,
in [24] a hybrid SnO–polymer FeFET reached 5000 s retention time.

Referring to Table 1.6, it is evident how FeFETs can provide —with re-
spect to C–FeRAMs— higher write speed, lower write energy (in the order
of femtoJoule) and greater integration density, also due to the reduced cell
dimensions. As stated in [25], the reduced writing latency and energy can be
attributed to the fact that FeFET switching is field driven (differently from
current–driven MRAM, PCM and ReRAM) at the gate, where leakages are
smaller. Hence FeFETs can be employed for high–density, fast storage and
minimal leakage applications. Moreover, especially HfO2–based FeFETs yield
good CMOS compatibility and scalability, and so thay have a true potential
for in–memory computing. GlobalFoundries has already verified 28 nm HfO2
FeFETs advantages and feasibility [26].

33

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 1.13. Some of the possible FeFET stacks

Nevertheless, a note must be done regarding FeFETs maturity: differently
from capacitor–based FeRAMs, FET–types are a relatively “new” technol-
ogy, since almost all implementations are still in research phase. Anyway,
few commercial products are attempted to be created: in 2017 Ferroelelectric
Memory Company stated that hafnium dioxide FeFETs, scalable to the last
technologic node, were in development [20].

Furthermore, even counting all the benefits that this tecnology can provide,
a huge limitation is related to their endurance.

1.4.4 FET–type FeRAM (FeFET): functioning
In FeFETs, the ferroelectric layer in the gate stack is responsible for retain-
ing the transistor state (ON/OFF) even when the external voltage is no
more applied. Exactly like in C–FeRAMs, in fact, the ferroelectric hysteretic
polarization–to–electric field dependence presents two stable points for logic
information.

34

1 – Emerging Memory Technologies:State of the art

In Figure 1.14 is displayed a simple n–FeFET schematic of polarization states:
in low Vt state (left figure), the polarization of the ferroelectric layer is down–
directed and the electrons invert the channel region, making the FeFET turn-
ing on. This case corresponds to the left branch of the hysteretic loop. On
the other hand, when polarization instead is up–directed (center figure), it
is formed a permanent accumulation, turning off the ferroelectric transistor.
In the hysteresis loop this corresponds to the right (high–Vt) branch [20].
These two polarization states represent the two possible logic states stored in
the cell. So, writing operation simply consist in the reversal of the ferroelec-
tric polarization through an appropriate electrical field, applied by a proper
voltage Vg to the gate stack. In such sense, it is very similar to the approach
used for C–FeRAMs switching.
What instead differenciate FET and C–FeRAM types is the nature of read-
ing mechanism: this time, logic data can be non–destructively read simply
sensing if a drain current is present or not (so if the FeFET is ON or OFF,
Figure 1.14).

Figure 1.14. FeFET polarization states and hysteresis loop [20].

35

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

1.5 Phase Change Random Access Memory

1.5.1 PCM: basics

The Phase Change Random Access Memory (PCRAM or PRAM), also called
CRAM (chalcogenide RAM) or simply Phase Change Memory (PCM), is
a non–volatile memory whose working principle is based on the particular
properties of chalcogenide glasses. Such materials are capable of changing
their physical state, from amorphous to crystalline and vice versa, when
they are heated. In memory applications, heat is applied through electrical
pulses. The most known phase change material for memories is germanium–
antimony–tellurium (GeSbTe or GST). The large range of resistance values
associated to the switching physical state is at the basis of data storage [27].

Conventionally, the high resistance state (HRS) is associated to a logic “0”,
and this corresponds to the case in which the chalcogenide material is in
amorphous state (high electrical resistivity). Vice versa, when it switches
to a low–resistivity crystalline state, a logic “1” is stored into the cell (see
Figure 1.15).

Figure 1.15. Amorphous (HR) and crystalline (LR) states for PC materials.

A standard PCM cell is the so–called 1T1R cell: the transistor “T” is
a n–type access MOS while a variable resistance (“R”) is used to represent
the phase–change chalcogenide glass. A basic circuital scheme is reported in
Figure 1.16.

36

1 – Emerging Memory Technologies:State of the art

Figure 1.16. PCM standard cell.

1.5.2 Phase Change RAM operations

Writing PCM cells needs different heating/cooling steps depending on the
process, SET or RESET, that is performed.
Taking as example the GST glass in an initial crystalline state, it can be
heated above its melting point —usually over 600°C— in order to partially
break the lattice strong atomic bonds. In this way the material stops be-
ing crystalline and, once cooled down, its atomic disorder is frozen into the
so–called amorphous state (HRS, “0”). This procedure is known as RESET,
and the related current pulse (RESET pulse) is relatively short in time and
with a quite high amplitude (minima: tRESET,MIN , IRESET,MIN).
In the SET process, on the other hand, the crystalline state (LRS, “1”), is
obtained by applying a current pulse wider than the previous one
(t > tSET,MIN > tRESET,MIN) but with lower amplitude
(ISET,MIN < I < IRES,MIN). This is motivated by the fact that the GST
material requires a proper time interval to accumulate enough energy for
organizing atoms in an ordered structure, and an amplitude such that the
corresponding temperature will be above the crystallization point but below
the melting temperature.

In order to read out the information stored by PCRAM cells, instead, it is

37

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

simply sensed the current after having applied a small voltage (VREAD) be-
tween the electrodes. The voltage pulse is high enough to have a sensible cur-
rent but not too much to prevent writing errors (IREAD<ISET,MIN<IRES,MIN),
and it is usually shorter than the SET pulse.
Set, reset and read operation are well described in [27, 28, 29]. The associ-
ated current pulses, as results of Joule heating, correspond to temperature
pulses as depicted in Figure 1.17.
In Figure 1.18, instead, is shown a couple of Phase Change RAM cells, re-
spectively in crystalline LRS and amorphous HRS.

Figure 1.17. Temperature pulses corresponding to reset, set and read processes.

1.5.3 PCM performance
From Table 1.7 it is possible to have an estimation about PCM performance.
Reading and writing times are comparable to the other explored memory
technologies, so much lower with respect to FLASH memories. Besides, en-
durance is rather good (106 − 109) and the small PCM cell size (4÷20 F2,
[9]) allows for high integration density.

38

1 – Emerging Memory Technologies:State of the art

Figure 1.18. Section view of a couple of PCRAM cells.

Features PCM
ON/OFF Ratio 102 ÷ 104

Write voltage <3 V
Write time ∼ 50 ns
Read time <10 ns

Stand–by power Low
Write energy [J/bit] 10 pJ

Drift Yes
Integration density High

Retention Long
Endurance 106 ÷ 109

Table 1.7. Phase Change Memory performance [13] (completion
of table 1.3 and 1.6).

However, PCRAMs present degradation with usage, as for FLASH mem-
ories (although for different causes), but they their degradation rate is much
slower. PCM lifetime is reduced by peculiar physical mechanisms, as the
fact that phase–change glasses, while thermally expanding in programming,
degrade the memory; moreover, they could lose adhesion with the adjacent

39

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

dielectric due to different expansion rates. At high temperatures, the dielec-
tric may present leakage issues; also, metal migration is a problem.

Furthermore, high current required by programming (especially for reset op-
eration) may lead to high energy consumption.

Nevertheless, the main issue in PCRAMs is maybe their long–term threshold
voltage and resistance drift, as stated in [30] and mentioned in table 1.7: with
time, the resistance associated to the phase–change material in amorphous
condition tends to increase. This is a limiting factor for multilevel operations,
due to the risk of mixing up different resistance intermediate states. Also
the threshold voltage presents a similar behaviour, bringing possible failures
even in standard operations.

1.6 NanoElectroMechanical Systems (NEMS)
based memory

1.6.1 NEM relays: basics
In this section NanoElectroMechanical (NEM) relays (or NanoElectroMe-
chanical Systems, NEMS) for memory implementations are investigated, al-
though, as anticipated in the introduction (subsection 1.1.2), their switching
speed is not even comparable with the technologies already presented, and
so they will be not considered for an application for in–memory computing
in this case of study.

Figure 1.19. Three–terminals NEM relay structure.

40

1 – Emerging Memory Technologies:State of the art

The conventional three–terminals structure of a NEM relay is shown in
Figure 1.19: source (S) and drain (D) are the so–called input and output
terminals, while the gate (G) is known as the actuation terminal [31]. Also
two and four terminals structures are possible, however here the focus is cen-
tered on three terminals configuration since it is simpler than the structure
with four terminals and allows for a better control than two terminals devices.

A three–terminals (plus bulk one) NEMS can circuitally mimic a MOSFET,
but obviously with different performance and physical characteristics [32, 33].
Since it is in principle both a switch and a memory element at the same time,
it can be treated more or less in a similar way as FeFETs, at least for what
concerns the basic 1T cell circuit (Figure 1.11, (b)), and, in theory, the non–
destructively read–out method (just by sensing drain–source current).

In literature there are a lot of other different solutions for NEMS–based cells;
however, from now on, it is taken in consideration a “1T” cell (where “T”
this time stands for NEM relay and not transistor) as proposed for example
in [34], for having a clearer and simpler view of the technology.
Just for curiosity, a CMOS circuit implemented with only NEMS is called
CNEM [33],

Referring to Figure 1.19, a countilever beam, attached only by one side to
the source region (S) of the substrate, can be flexed under the application of
a proper electrostatic or magnetostatic force. Through such deformation an
electrical connection can be formed between the beam itself and the drain
(D). Hence this device simply consists in an electrically actuated switch,
which can be employed in memory cells as data storing element [31].

A writing operation in memory cells based on NEM relays simply consist
in applying the proper voltage between the beam and the gate region (VGB).
The cantilever rest (or OFF) position occurs when an air gap separates the
beam and the gate; if it is applied a VGB greater than the so called Pull–In
voltage (VP I), the corresponding electrostatic force overcomes the elastic one
associated to the beam. Hence the beam itself is bent and put in contact
with the drain region (ON position). Such operation is conventionally called
Pull–In, and makes a “1T” cell store a logic “1” (NEM relay ON).
On the contrary, a Pull–Out process takes place when a voltage VGB lower
than VP O (Pull–Out voltage) is not sufficient to maintain the contact be-
tween the beam and the drain. From a physical point of view, this is due to

41

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

the fact that the adhesion force alone —since this time the electrostatic one
is weak— between the beam and the drain is not capable of facing the elastic
force, which tends to make the beam returning in rest position. In this way
the connection is lost and a logic “0” is stored in a “1T” cell.
VP I and VP O points are highlighted in the hysteretic dependence of the drain
current from the applied voltage in Figure 1.20. The beam–drain voltage
VGB can be also called VGS since the source is electrically and physically con-
nected to the beam. The hysteresis loop is at the basis of the non–volatile
information storing mechanism, since each voltage value in the range between
VP I and VP O is not capable of making the NEM relay switch its logic content.
This characteristic is particularly relevant for Random Access Memories ap-
plications [31].

Figure 1.20. NanoElectroMechanical relays sharp hysteresis loop.

Reading operation in “1T” cell instead is simply performed by sensing if
the drain current (so the bit line current) of the NEM relay is present or not
(NEM relay ON or OFF), exactly as said for FeFETs in subsection 1.4.4.

42

1 – Emerging Memory Technologies:State of the art

1.6.2 NEMS–based memories: benefits and drawbacks

NEMS–based memories can benefit of some unique properties related to the
mechanical nature of such devices. In particular, NEM relays are able to
overcome one of the main bottlenecks of CMOS technology: leakage issues.
In fact, when NEM relays are in OFF position, an air or vacuum gap acts
as physical separation between the flexible beam and the drain region. Such
opening nullifies leakage in the device (Figure 1.20). This leads to high
ION/IOFF ratio, zero OFF–state energy dissipation, and higher retention time:
all advantages that are much aspired for next generation technologies.
Referring again to Figure 1.20, it can be noticed that another peculiar char-
acteristic in NEMS is their “sharp” hysteresis loop: the transition between
OFF and ON states (and vice versa) is abrupt, since no intermediate states
are possible —the contact occurs or not— given the mechanical essence of
NEMS [31].

All the advantages notwithstanding, NEMS intrinsic nature can be a double–
edged sword: mechanical delays are much greater than electric ones, such that
NEMS switching speed can be orders of magnitude lower than solid state re-
lays one [32]. This is the main reason for having neglected this technology
as valid candidate for this work: with NEMS fast computation in memory
is almost impossible. However, their relatively low resistance may allow for
chains of multiple NEM relays performing, with simultaneous switches, a
single but complex computation: so a computing system is feasible for ap-
plications at low clock frequency that aims to carry out large operations.

Furthermore, NEM relays have to deal with nanoscale effects, such as surface
adhesion forces (with special reference to Van Der Waals force), that become
problematic when scaling the devices. This last side effect must be taken
into account by optimizing growth conditions and geometry of the mechan-
ical switch, as suggested in [35]: in this article, it is presented a singular
memory implementation based on NEM switched capacitor structure built
with vertical multiwalled carbon nanotubes (CNT), that is able to reach low
power consumption and reduced cell size (due to vertical structure develop-
ment), but with predicted switching speed limited by the natural oscillating
frequency of the CNTs.

All the difficulties notwithstanding, some studies still focus on this tech-
nology trying to find some speed improvements for memory applications.

43

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

In [36] it is claimed to have designed a 4÷6 F2 NanoElectroMechanical diode
device for RAM applications capable of performing writing in 0.27 ns but
with limited endurance (>104).
In [37] instead it is proposed a NV–NEMory (Non–Volatile NEM Memory)
for energy–efficient data searching with a further access transistor, that with
its 8 F2 size can reduce programming and reading times respectively under
10 ns and 0.1 ns. However, these predictions may be a little too optimistic
since —as aforementioned— electro–mechanical switches are far slower than
solid state ones, and usually speed–improved NEM applications sacrifice some
other performance aspect to become faster.

1.7 About Nano Magnetic Logic (NML)
In this section it is done just a very quick review on the current state of Nano
Magnetic Logic technology.
In few words, rectangular nano–magnets are used as bitwise informations
storing elements, since their magnetization assumes only two possible direc-
tions; perpendicular (pNML) and in–plane (iNML) configurations are possi-
ble depending on the orientation of the magnetization (Figure 1.21). Infor-
mation propagation is basically achieved by exploiting an external magnetic
field together with a clock mechanism, and the direction of data flow is set
by the nucleation center: this allows in practice to build all possible types of
logic.

A standard pNML RAM cell is designed in [38]: however, due to the re-
quired high level of interconnections for row/word selection, area and delays
could increase too much. In the same article is proposed a distributed version
of such cell, but its performance are not able to keep up with other EMTs:
cell size is far greater (about 1280 µm2) than average EMT cells, while read-
ing and writing times are not so good, respectively about 35.2 µs and 24 µs.
However, this can be seen as a consequence of the fact that NML technology
is still at a lower degree of maturity and few articles in literature are focus-
ing on NML memory applications. For such reasons, it will be not further
presented for Logic in Memory implementations in this work.

44

1 – Emerging Memory Technologies:State of the art

Figure 1.21. Magnetic binary representation for iNML (top) and
pNML (bottom).

45

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

1.8 Brief on EMT performance comparison
In order to conclude this first introductive chapter, in the following pages are
reported four graphs that summarize the presented technologies (excluding
NEM relays–based and NML ones) following four different parameters: cell
dimensions, reading and writing times, and endurance. Almost all data are
taken from the tables reported in the previous sections (Table 1.1, 1.2, 1.3,
1.4, 1.5, 1.6, 1.7), that, as can be seen from the references, are taken from
articles published in 2020. The only values not updated up to this year are
specified in the next paragraphs.

Figure 1.22. Graph comparing EMT memories dimensions.

In graph 1.22 are reported cell size values in feature size units [F2]. What
is immediately evident is that —for dimensions— Spin Orbit Torque MRAM
is comparable to CMOS SRAM ([14], 2018), having a cell size greater than
the other presented memory technologies, which are instead comparable to
CMOS DRAMs. In particular, standard ReRAM offers the smallest cell
(<4 F2, Table 1.5), close only to FeFET size (4 F2, according to [39], 2010).

46

1 – Emerging Memory Technologies:State of the art

Figure 1.23. Graph comparing EMT memories read times.

Figure 1.24. Graph comparing EMT memories write times.

47

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 1.25. Graph comparing EMT memories endurance.

Also STT MRAM and PCM are characterized by rather small cell dimen-
sions (respectively Table 1.2 and article [9], 2020).

Graphs in Figure 1.23 and Figure 1.24, instead, show the average values
of reading and writing times, respectively. It can be noticed that the read
times are similar for all the analyzed memory technologies, and comparable
to DRAM ones (units of nanoseconds, so much lower than FLASH memories
ones). NAND FLASH read time is in the order of microseconds (∼ 10 µs,
Table 1.2) so its value is saturated in order to make the graph more read-
able. The same is done also for NAND and NOR FLASH memories write
times (respectively ∼ 0.1÷1 ms and ∼ 1÷10 µs, Table 1.6). Again, from
Figure 1.24 it is clear that writing is performed with almost the same speed
for all presented EMTs, besides capacitor–type FeRAM and PCM, that can
reach several tens of nanoseconds (∼ 30 ns for C–FeRAMs and ∼ 50 ns for
PCMs, Table 1.6 and Table 1.7). For both reading and writing operations,
however, Static RAMs still remain the fastest memories.

Last but not least, in Figure 1.25 are illustrated the indicative values of
endurance in logarithmic scale (base 10). What is important to highlight is
the limited number of cycles of Resistive RAMs and FET–types FeRAMs:

48

1 – Emerging Memory Technologies:State of the art

this is significant also because these two technologies are maybe the most
promising candidates for computing–in–memory applications. It is to remind
that a low endurance represent a huge limitation for non–volatile memories
development. However, both ReRAMs and FeFETs endurance can be the-
oretically improved up to 1012, as reported respectively in Table 1.5 and in
[40].

1.9 Conclusions
This chapter aims to briefly introduce the state of the art of the currently
most developed emerging memory technologies, both in working principle as
well as in benefits and constrains that they could provide for a future LiM
application. The focus is centered on physics and parameters of the different
memories at cell–level. Obviously there are a lot of other possible technolo-
gies that are arising in research field (Figure 1.1), such as Mott, Q–dot based,
Racetrack, Carbon Nanotube (as seen in subsection 1.6.2 it can be consid-
ered as a type of NEMS–based memory), molecular, etc.; nevertheless they
will not be considered in this work because of both their maturity level and
their performance, that are still not comparable to the presented EMT.

A study for peripheral circuits will be done in chapter 2, while chapter 3
will be dedicated to logic applications exploiting EMTs. As will be discussed
in section 3.1, in the next chapters four technologies will be selected among
the analyzed EMTs since considered the most promising candidate for in–
memory computing.

49

50

Chapter 2

EMT: arrays and
peripheral circuits

2.1 Technology choice

All the presented emerging solutions for CMOS substitution in memory im-
plementations are valid and could reach high level of production in few years
from now. Nevertheless, for a better analysis, a choice must be done in se-
lecting only few technologies among them: in fact, it would be too long —for
the aim of this work— to take all of them into consideration for a LiM ap-
plication.
Hence, from this point on, only four technologies will be further discussed:
Magnetoresistive RAMs, Resistive RAMs, Phase change RAMs (that can be
classified as a type of ReRAMs) and Ferroelectric RAMs (in particular, the
one based on FeFETs). This selection is determined not only by discussions
on performance and benefits/constraints (made in the last chapter for each
technology), but also with respect to the maturity level associated to such
memory implementations.

In this context, in Figure 2.1 it is presented a possible EMT distribution
at hierarchical level, at least for what it is predicted for the short–term fu-
ture: while most of PCMs, RRAMs and MRAMs are currently employed
as non–volatile embedded memories, future prospects tend to see them oc-
cupying an intermediate level between Solid State Drives (SSD) and main
memories (DRAM), called Storage Class. Within few years, MRAM may be
employed also in lower Cache levels; instead, for L1–L2 Chache memories,

51

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 2.1. Hierarchical memory classification, with past/current sta-
tus and future predictions.

CMOS SRAMs still maintain the leading role [3].
In addition, also Ferroelectric FETs will be further investigated, due to all
the benefits —presented in subsection 1.4.3— that they offer for a possible
LiM application.

2.2 STT–MRAM:
towards a practical application

It is well known that memory chip organization can be simply divided in
cell array and peripheral circuitry: this last one includes row and column
decoders, multiplexer, timing control, write driver and sense amplifier (etc.),
as discussed for a standard Spin Transfer Torque MRAM architecture in [41].
This subject will be further explored, for STT–MRAMs, in subsection 2.2.1
and subsection 2.2.2, including the considerations about sense amplifier clas-
sification done in Appendix A.

2.2.1 STT–MRAM: array and peripherals
A conventional 1T1MTJ STT–MRAM array is depicted in Figure 2.2: it can
be noted that such structure is very similar to the one of a DRAM array,
since both present transistors that allow access to the content of the cell. The

52

2 – EMT: arrays and peripheral circuits

two arrays differ only for the distinct storage elements, capacitor for DRAM
and MTJ for STT–MRAM [42].

In literature, it is more frequently considered an in–plane magnetized MTJ
(iMTJ, as the one in Figure 2.2) for array cells implementation. However,
according to [42], the perpendicular magnetized MTJ (pMTJ, as depicted in
Figure 1.5) is a more recent MTJ variant that needs a much lower current
for writing operation than iMTJ one.
The consequences of adopting an iMTJ rather than a pMTJ are further
investigated in [43]. The two configurations only have different magnetic
anisotropy and do not depend on the shape of the free layer.

Figure 2.2. Conventional 1T1MTJ STT–MRAM array.

On the other hand, peripheral circuitry design strongly influences all the
operations that take place in the memory. The reading performance of a
STT MRAM cell, for example, is heavily dependent on the choice of the
Sense Amplifier (SA), for which different implementations are possible (see
Appendix A), or on the picked reference cell (the standard one is shown in
Figure 2.3).

53

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

For instance, in [44]1 it is presented a very simple cell programming/reading
circuit; however, the low number of employed components and signals may
lead to poor control and/or approximate results. In the same article it is re-
ported also a modified sense amplifier (Chung SA, based on current latched
SA, see Appendix A), able to provide rather high sensing speed, and that
even models parasitic contributions for a more accurate simulation.
In [45]2, instead, it is tested a more complex circuitry for reading and writing,
able to provide a reference current IREF equal to IAP or IP —if the stored
information is 1 or 0, respectively— thanks to two reference cells3. This
improves a lot sensing accuracy, and a better control is offered by means of
supplementary signals (Clamping, Precharge, both reading/writing enables);
however, the additional components lead to a greater cell area.

Figure 2.3. Standard reference cell, used in SA circuits to provide the proper
reference current for distinguishing —through a comparison with the sensed
current— between LRS and HRS. The MTJs bi–parallel on the left is equiv-
alent, in terms of resistance, to the MTJ on the right, i.e. to the average of
the resistances of the two (parallel P and antiparallel AP) MTJ states [44].

Obviously, also physical conditions have some impact on memory pro-
cesses: for instance, the switching circuit works faster at higher temperatures,
since their effect is to turn down the energy barrier associated to the MTJ
insulating layer. Moreover, a greater voltage between bitline and source line
can decrease switching delay, since it increases the current involved in the
re–orientation of MTJ magnetization; however, a too high bias could cause

1It is intended figure no.7, at p.3 of article [44].
2It is intended figure no.10.a, at p.4 of article [45].
3In this case they are simple MTJs in P and AP states.

54

2 – EMT: arrays and peripheral circuits

breakdown of the MTJ barrier. Another parameter is the so–called Tunnel
MagnetoResistance (TMR) (introduced in subsection 1.2.1): the higher is the
distinguishability between MTJ states, the faster —and with a lower power
consumption— is reading operation [44].

2.2.2 Considerations on SAs for STT–MRAM
STT–MRAMs are maybe the most flexible technology4 in terms of choices for
sense amplifiers: they do not have the constraint of low operating voltage as
for memristor crossbar arrays (see subsection 2.3.2) and do not require com-
pensation mechanisms for GST material peculiarities as for Phase Change
Memories (see subsection 2.4.2).

For instance, in [41] it is proposed a basic voltage latch–type SA for STT–
MRAM implementation, while in [44] (as already mentioned in subsection 2.2.1)
it is reported a "Chung" SA, which is simply a fast current latched SA that
includes parasite capacitances for more realistic results.
In [49] a latch–based SA, called Pre–Charged Sense Amplifier (PCSA), is
claimed to be capable of high–reliable, low–voltage sensing operation and
considered as a good candidate for mixed CMOS/MTJ hybrid logic.

Hence, depending on the performance trade–off (e.g. low voltage/high speed,
or other parameters) that is set at design level, there is a wide range of pos-
sible choices for STT–MRAM sense amplifiers.

2.3 ReRAM: towards design level
2.3.1 ReRAM arrays
Differently from STT–MRAMs, whose cell in general requires a transistor to
access MTJ content, memristive memories can adopt three different types of
array: 1T1R, 0T1R (or 0D1R) and 1D1R, where "R" stands for memristor
(since it is, in practice, a variable resistor).

A typical 1T1R array is depicted in Figure 2.4 (a) [50]. The dedicated
access MOSFET guarantees an easier control of the cell, but it also increases

4Among the ones selected in the current chapter.

55

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

its size; actually, cell dimensions will be dependent on transistor ones, since
memristors are usually much smaller than MOSFETs. This is further ag-
gravated considering that ReRAM access transistors are usually bigger than
DRAM ones due to the much higher operating current. Moreover, a larger
cell area implies higher fabrication costs.
Besides that, the access MOS offers an optimal insulation of the selected cell
avoiding disturbs on other array cells [50, 51]. As a consequence, 1T1R array
provide better energy efficiency and lower access time with respect to other
arrays.

0T1R and 1D1R (Figure 2.4, (b) e (c)) are instead named crossbar (Xbar)
structures, since the ReRAM cells are located at each cross–point of the
array; such layout is much simpler than 1T1R, since the cells are just sand-
wiched between two mutually perpendicular metal wires, but it also induces
higher sneak currents and worse noise margin [50, 51].

Figure 2.4. ReRAM 1T1R (a), 0T1R (b) and 1D1R1 (c) arrays [50].

The only–memristors array (0T1R) offers the smallest cell structure at all.
In absence of any device for accessing the cell, such task is relegated to the
intrinsic nonlinear characteristic of memristors. Unfortunately this leads to
difficult target cell insulation, since current tends to flow in unselected cells,
i.e. considerable sneak currents are present in the array. This contributes in

56

2 – EMT: arrays and peripheral circuits

augmenting energy request per area unit [50, 51] and increases the probabil-
ity of reading errors. To mitigate such issue, usually special bias schemes are
employed, see subsection 2.3.3.

The 1–diode 1–memristor crossbar cell array is depicted in (Figure 2.4, (c)).
A bi–directional diode acts as access device to the cell, but with much lower
area occupation than 1T1R. With size similar to 0T1R structure, 1D1R ar-
ray presents the advantage of reducing significantly sneak currents. However,
its main limitation is the voltage requested for programming, that is higher
than the one for 1T1R and 0T1R arrays. For such matter, charge pumps
—that elevate voltage level— are usually employed, but they increase area
and design complexity [50, 51]. Also Phase Change 1D1R array presents the
same issue (see subsection 2.4.1).

Even if, in ReRAM arrays, the memristor is often represented as a resistor (or
variable resistor), its conventional symbol is the one depicted in Figure 2.5.
This representation takes into account also the polarity of the device, repre-
sented by a thick black line at one of the edges. An example of 0T1R Xbar
array that employs such symbol is reported in Figure 2.6.

Figure 2.5. Conventional memristor symbol.

2.3.2 ReRAM peripherals
As stated in subsection 2.2.1 for STT–MRAMs, the design of reading/writing
interface plays a main role in influencing memory switching and sensing
speed. Hence it is important to understand, for example, if there are de-
sign constraints that affect only some types of ReRAM arrays.

In [52] it is stated that ReRAMs have to face some criticities in design-
ing peripheral circuits; in particular, a reliable sensing margin is hard to

57

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

maintain due to its high sensitivity to process–voltage–temperature (PVT)
variations, especially with the scaling of the device.
Furthermore, high-density ReRAMs —with several cells integrated on the
same bitline— involve very high BL parasitic capacitance, which worsens
sensing speed. For these reasons, in ReRAMs current–mode sense ampli-
fiers are usually adopted, rather than voltage SA. Nevertheless, basic current
SA (so excluding ACLSA and High–speed low–power LSA described in Ap-
pendix A) cannot work at a too low VDD, especially when sensing speed and
margin are reduced.

Moreover, further limitations on the choice of ReRAM sense amplifiers are
found for crossbar arrays, as it will be explained in the following. 1T1R
structure, instead, seems to be the most flexible for SA choice.
Again in [52] it is reported the scheme of a current SA conventionally em-
ployed in 1T1R ReRAMs. In the same article, some modifications to such cir-
cuit are introduced (as Amplifier–Assisted load PMOS, AAP, and Dynamic
Pre–charge Circuit, DPC), turning it into a so-called Reference Clamping
Current Sense Amplifier (RC–CSA). This modified sensing scheme offers im-
proved operating speed and can work at lower VDD.
With reference to 1T1R ReRAMs, in [53] it is proposed a current–mode SA
based on a current mirror and thin and thick oxide transistors respectively
for accelerating BL charging and for supply shield. What is interesting in
this example are the three possible operating modes (sense, set/reset verifi-
cation) that allow also to verify the cell states during programming.

1D1R arrays —as mentioned in subsection 2.3.1— usually need charge pumps,
due to the higher voltage level required for programming. Such circuits make
the design more complex and increase peripherals area [51]. For instance, in
[54] it is proposed a charge pump control system that tries to optimize power
efficiency in 1D1R array.
In the same article, it is also presented a write circuit with leakage compen-
sation: leakage is in fact particularly significative when more cells on the
same bitline are programmed into LRS, and may cause sensing errors. In
this case the SA simply samples the leakage current before the writing pulse
arrives, producing a BL compensation current.

Memristive–only crossbar arrays (0T1R) require in general high resolution
sensing circuits; to handle this, methods for offset cancellation are proposed,

58

2 – EMT: arrays and peripheral circuits

but they usually induce area increasing and matching issues. Moreover, mem-
ristors reading operation can be performed only at low voltages, and this adds
more limitations to the design of a proper sense amplifier [48].
Hence, in order to obtain a fast sensing at low VDD and very low BL volt-
ages, the best solution for memristor–only cells seems to be a VLSA–like
sense amplifier (see Appendix A), as stated in [48]. In this article it is de-
signed, indeed, a slightly–modified voltage latched SA in order to deal with
0T1R crossbar array requirements. Here it also claimed that many other SA
layouts were experimented, and that several Monte Carlo simulations were
performed to support their design.

Other considerations still must be done concerning an SA design suitable
for Xbar 0T1R arrays.
Firstly, given the great difference between very small memristor–only cells
and SA circuits, it is unreasonable to deliver a dedicate sense amplifier for
each ReRAM bitline (e.g. in contrast to DRAMs reading interface). In order
to manage such matter, some solutions are proposed. For example, sense
amplifiers located between adjacent arrays may be shared between these ar-
rays themselves. In [48], for example, it is specified that one SA needs to
be shared between each pair of array columns. Another possibility consists
in sensing only a small portion of cells of the selected row, by exploiting BL
multiplexers [51].
Secondly, reading informations stored into a ReRAM cell is less accurate
when no insulating access device is present, as in 0T1R cells [55]; for this
reason complex SA are often employed to provide at the same time both
high sensing accuracy and high access speed [56].

In the next section, other 0T1R design implications are presented, but this
time they do not directly regard peripherals layout: instead, they are biasing
methods necessary for reliably operate with Xbar arrays.

2.3.3 Biasing challenges of 0T1R cross–point structures
In this section the focus will be only on 0T1R Xbar arrays and the expedients
that must be adopted in order to perform reliable operations on them. The
reasons for concentrating on such arrays are summed up at the end of this
section.

The absence of an access device —such as a diode or a transistor— makes

59

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

the insulation of the selected cell very difficult. For example, when applying
a certain write voltage on the wordline of the target cell, it happens that also
other unselected cells of the same WL are biased [51]. To mitigate this ef-
fect, specific writing bias schemes such as V/2 and V/3 are usually employed.
They are discussed here in order to understand their benefits and constraints.
Also the effects of a floating line configuration are taken into consideration.
The analysis, however, is done without considering wire resistances in the
array.

First of all, for better clarity, it is necessary to divide the array cells into
groups, as done in [57]. Group classification is depicted in Figure 2.6: be-
sides the selected cell (whose WL is at writing voltageV and BL is grounded),
it is possible to distinguish among unselected and half–selected cells. Half–
selected cells share the same bitline or wordline of the selected cell.
This subdivision is just done to simplify the analysis of the bias schemes.

Figure 2.6. 0T1R ReRAM array cells groups.

In floating line configuration, writing operation is performed applying
VW RIT E and 0 V respectively on the wordline and bitline of the selected cell,
while all the other lines are left floating.
As it can be seen from Table 2.1, half–selected and unselected cells undergo a

60

2 – EMT: arrays and peripheral circuits

certain voltage drop that depends on the geometry of the array. This writing
disturb voltage can be kept under VW RIT E/2 only when the number of rows
(m) and columns (n) is equal, hence for an array with 1:1 aspect ratio. In
this way, the correct functioning of such scheme is heavily dependent on the
array structure. Moreover it needs to be mentioned that a voltage near to
VW RIT E/2 may cause unwanted switching of cells after a certain time [57].

Floating Line Scheme Voltage Differential
Selected cell VWRITE

Half–selected cell on selected BL VWRITE(m-1)/(m+n-1)
Half–selected cell on selected WL VWRITE(n-1)/(m+n-1)

Unselected cells VWRITE/(m+n-1)

Table 2.1. Voltage drop related to cells groups in Floating Line Scheme [57].

It can be noticed that half–selected cells are the ones that have the bigger
spurious voltage drop across them (Table 2.1); due to this partial write bias,
they leak current, contributing in increasing sneak currents in the crossbar
array.
To mitigate leakage, V/2 and V/3 biasing methods are usually adopted. The
efficiency of such schemes is given by the fact that, depending on the V–I
non–linearity of the memristive element, even a small reduction of voltage
drop across half selected and unselected cells may lead to significant decrease
of sneak current [50].

V/2 method is the most known scheme used in crossbar arrays to reduce
sneak currents.
It consist in supplying both unselected wordlines and bitlines with VW RIT E/2,
with selected row and column respectively atV and 0 V. This limits the volt-
age drops across half–selected cells to VW RIT E/2, while unselected cells are
subjected to a null differential (Table 2.2).
Hence, half selected cells are the only ones, in this scheme, to undergo spuri-
ous voltage drop. They represents less than the 50% of the total mxn array.
However, the probability of write disturbs is still quite high in V/2 scheme,
since errors may occur specially when such differential voltage (VW RIT E/2)
is maintained for a certain amount of time [57].

V/3 bias scheme, instead, consists in applying again VW RIT E and 0 V
respectively to the selected WL and BL, but this time unselected rows are

61

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

V/2 Bias Scheme Voltage Differential
Selected cell VWRITE

Half–selected cell on selected BL VWRITE/2
Half–selected cell on selected WL VWRITE/2

Unselected cells 0 V

Table 2.2. Voltage drop related to cells groups in V/2 Bias Scheme [57].

biased with VW RIT E/3 and unselected columns are at 2VW RIT E/3. This leads
to the voltage drops reported in Table 2.3: the maximum voltage drop above
half selected cells is reduced to VW RIT E/3, but the number of cells with such
spurious voltage increases, since also unselected cells are subjected to it. So
in V/3 scheme more cells contribute to sneak currents, but the probability
of write disturbs is reduced with respect to V/2 method.
Although V/3 scheme seems the best option among the proposed biasing
methods, it has to face an heavy power consumption due to the increased
number of "sneaky" cells and to the necessity of switching a lot between
VW RIT E/3 and 2VW RIT E/3 voltages.

V/3 Bias Scheme Voltage Differential
Selected cell VWRITE

Half–selected cell on selected BL VWRITE/3
Half–selected cell on selected WL VWRITE/3

Unselected cells VWRITE/3

Table 2.3. Voltage drop related to cells groups in V/3 Bias Scheme [57].

The three schemes are summarized in Table 2.4, considering this time
selected/unselected rows and columns (instead of the initially adopted sub-
division groups) together with the associated voltage bias.
Another table is reported in [57]5, which completes this discussion providing
specific formulas for minimum and maximum voltages, leakage currents and
number of disturbed cells.

Unfortunately, leakage–limiting bias schemes are not the only design impli-

5Table no. 4 in the article

62

2 – EMT: arrays and peripheral circuits

Floating Line Scheme V/2 Scheme V/3 Scheme
Selected row VWRITE VWRITE VWRITE

Selected column 0 V 0 V 0 V
Unselected row Floating VWRITE/2 VWRITE/3

Unselected column Floating VWRITE/2 2VWRITE/3

Table 2.4. Voltage associated to rows/columns for the presented bias schemes.

cation that memristive Xbar arrays require.
Problems arise also when multiple cells are selected on the same row. In this
case it is difficult to find a correct value for unselected lines, risking unwanted
set or reset operations; furthermore, these two cannot be performed at the
same time in a Xbar array. About this, two solutions are proposed in [58],
one based on the separation in time of set and reset processes, the other one
on erasing the cell before a reset operation.
Another issue regarding 0T1R crossbar array is related to reading operation.
Up to now have been considered only the effects of leakage on writing to the
array; the problem is that leakage associated to half selected cells may cause
also reading errors. A critical case is when the target cell in in HRS while
half selected cells are in LRS. Again in [58], two possible solving options are
described: one consists in supplying with the same voltage the unselected
rows and the column containing the target cell. The other one, more at pe-
ripheral level, involves the isolation, through 2–steps sampling, of the sneak
current of half–selected cells.

At this point, a spontaneous question arise: why centering the focus on
0T1R crossbar ReRAM, if they imply so much complications?
The answer is simple: even considering all 0T1R ReRAM drawbacks as ar-
ray (subsection 2.3.1), in peripheral implementation (subsection 2.3.2) and
in biasing schemes (subsection 2.3.3), they still represent a huge aspiration
for future memory implementations.
Not only among other ReRAM arrays, but among all the emerging memory
technologies, 0T1R cells in Xbar arrays can —in theory— reach the smallest
area ever. Due to prospective of great integration density, and rather high
sensing and switching speed, they are probably the most promising alterna-
tive to CMOS technology by far. Unfortunately, for now this advantage is
only theoretical, since, as anticipated in subsection 1.3.3, significative leakage
problems make them not feasible in practice, yet.

63

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

2.4 PCM: towards design level

2.4.1 PCM arrays
As anticipated in subsection 1.1.2, Phase Change Memories are sometimes
classified as a type of ReRAMs. Differently from them, however, the ma-
jority of optimized PCM architectures do not even consider the possibility
for crossbar arrays without access devices [50]. Hence, phase change RAMs
commonly exploit arrays whose cells have dedicated selectors, such as MOS-
FETs, BJTs and diodes.

Among all selector devices, diodes can offer the minimum 4 F2 size; BJTs,
that usually occupy about 8 F2, can reach 5.5 F2 by sharing their base con-
tact with multiple cells. MOSFET area is instead heavily dependent on the
amount of current necessary for programming the cells.

PC memories needs, in general, high RESET current: this is in fact neces-
sary, for the crystalline phase change material, for reaching —thanks to Joule
heating— the melting point temperature, in order to be successively cooled–
down into amorphous high resistance state (HRS). Temperature pulses are
indicatively depicted in Figure 1.17.
Given that, PCM cells generally require high quality BJT and diodes or quite
large MOSFETs for facing such current [59]. Examples of 1T1R and 1D1R
PCRAM arrays are depicted in Figure 2.7.

Thanks to their potential for higher integration density, diodes seem to
be the best option for implementing PCM arrays. It needs to be considered,
however, that such devices require an accurate array and peripheral design in
order to mitigate the parasitic effects, including the vertically and laterally
formed BJTs and thermal crosstalk. Leakages also arise in the cell due to
the fact that current directly flows —through the PC material and the 2–
terminal diode— from the the selected BL to a grounded WL.
Moreover, diodes in general operate at higher writing and reading voltage
than MOSFETs. The difference between the operating voltages of the two
devices is about 1 V, as it can be noticed from Figure 2.8 [60].

Furthermore, it can be quite challenging to seek out good diodes featuring
both high ON/OFF ratio and large programming current. An alternative
could be to search for materials or other typologies of access devices that can
provide a proper degree of nonlinearity between low and high voltage levels

64

2 – EMT: arrays and peripheral circuits

Figure 2.7. PCRAM 1T1R (a) and 1D1R (b) arrays. The variable resistor
represents the phase change material.

Figure 2.8. BL current–voltage characteristic of MOSFET and diode switches.

[59]. However, reasearch on PCMs has confidence on new (future) methods
for providing enough heating to the cells for trying to minimize the high
current request. Also, phase change material–only crossbar arrays (0T1R)
would be a huge step forward for PCRAMs design [59].

65

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

2.4.2 PCM peripherals

High write current requirement for PCMs may be an issue for the design of
peripheral circuitry.
To deal with this, a possible approach may be to exploit an external power
supply (on–chip or off–chip). However, the usage of charge pump circuits
for elevating the voltage level seems to be the best solution: firstly, because
PCRAMs need, in general, more than one boosted voltage level in different
memory components. This requires the presence of numerous external power
rails, that implies the addition of several chip pins, which, in turn, leads to an
higher chip implementation cost. Secondly, because a precise and fast control
is required for the involved write voltages, and this can not be provided by
external power supplies [61].

Charge pump systems are used for turning a lower input voltage into higher
output voltages, and are employed both for 1T1R and 1D1R arrays.
In [62], charge pumps operate for increasing the voltage level for the write
driver (from 1.8 V to about 4.5 V) during writing in a MOSFET–based PCM
array; otherwise, with only an external 1.8 V voltage, the resulting write cur-
rent would be too low to guarantee a correct switch, due to the presence of
parasitic resistances. Boosted voltages are also applied to the gates of selec-
tion MOS to lower their channel resistances.
In [60], instead, it is discussed a charge pump system for a diode–based PCM
array. A boosted voltage is used as basic voltage for reading and writing op-
erations in the array: it is higher than MOSFETs supply voltage (VDD) by
1 V, difference that takes into consideration the built–in voltage of diodes
(Figure 2.8). In a read process, such voltage is reached through a 2–steps
operation, that consists in precharging the line to an intermediate VDD level:
this reduces the burden of charge pumps.

Unfortunately, charge pumps introduce several issues at design level.
A tipical charge pump circuit includes rather large cascaded capacitors and
transistors, that contribute in making the voltage rise, step by step. Such
elements imply the presence of large parasitic capacitances, which, during
charge and discharge cycles, make the power consumption increase quite a
bit. Furthermore, due to the presence of wide transistors and internal high–
voltage nodes, leakage power may be significant in the circuit. Another
contribution to power consumption is provided by charge pump related pe-
ripherals (i.e. drivers, clock signal handling, control elements, etc.) [61].

66

2 – EMT: arrays and peripheral circuits

As a consequence of all these dissipative effects, power efficiency (output
power /input power) decreases a lot. According to [60], during reset oper-
ations on a diode–based PCRAM with 0.6÷1 mA writing current, only a
20% power efficiency has been obtained. It is to say that, in reset processes,
charge pumps operate with larger parasitic power loss.
Moreover, to satisfy high current request a single charge pump unit may be
not sufficient, an this leads to additional chip area occupation.
In addition, charge pumps present high latency of charging (to a target out-
put voltage) process, because of their big load capacitance. Sometimes, dis-
charge/charge operations at each memory access end/request are forced for
improving the reliability: in fact, frequent charging/discharging can decrease
the time interval in which they are exposed to possible dielectric breakdown
of their inner gates oxides. Such phenomenon is particularly problematic in
charge pumps, since they work with voltages higher than VDD [61].

In [61], simulation results —on proposed PCM design— show that 81% of
total power consumption is associated to charge pumps, with 60% related to
parasitic contributions. For this reason, in the same article it is discussed a
method for decrease power dissipation, called RESET scheduling. It consists
in lowering the power peak for writing in PCM arrays by scheduling the reset
operation along all the duration of the writing. It is demonstrated that such
technique leads to a 70% decrease of charge pumps area and dissipated power.

In summary, charge pumps are suggested for handling the high writing cur-
rent request by both 1T1R and 1D1R PCM arrays, and an optimized design
helps in limiting area occupation and power consumption.

Some other considerations can be done about PCRAM peripherals.
For instance, in [63] it is proposed a modified writing/reading interface, which
takes into account the bitline resistance (RBL) dependency on the distance
that separates the write driver from the PCM cells.
For what concerns sense amplifier design, different solutions for PCRAMs
were observed. Among all, one is particularly relevant for its considerations
about PCM requirements in reading process: in [64], in fact, it is proposed an
high performance SA that takes into account some peculiarities of PCRAM
sensing. It is stated that the chalocogenide material (e.g. GST) suffers of
possible "destruction" of its phase state when the heating caused by the cur-
rent flow overcomes heat dissipation rate of the PCM cells. Another fact
may be problematic: when the phase change material is in amorphous high

67

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

resistance state, a voltage greater than threshold one may cause breakdown
in the material. In this case, the PCM cell abruptively changes to low re-
sistance state even if the phase change material is still in amorphous state.
In order to mitigate such effects, a specific SA is designed; however, the re-
sulting circuit it more complex and occupies greater area than "conventional"
ones (presented in Appendix A).

In conclusion, PCRAMs present array layouts very similar to ReRAM ones
(with the exception of 0T1R crossbar); for what concerns peripheral circuits,
they usually employ charge pumps and have some peculiarities that may af-
fect the sense amplifier design. High power consumption is one of the main
issues of PCM design.

2.5 FeFET: towards design level

2.5.1 FeFET arrays
The last memory technology explored in this chapter is the FET–type FeRAM.

FeFET memory arrays strictly remind FLASH ones, with the only difference
that a ferroelectric FET is at the basis of the cell, instead of a conventional
MOSFET.
Nowadays, FeFET array analysis is focused on AND and NAND types. The
first architecture is maybe the most studied one [25]: its structure is analogue
to a NOR FLASH, differing for the presence of multiple souce lines (SLs), as
shown in Figure 2.9. The voltage is directly applied to the FeFETs terminals
without the need for selector devices.
The second one (Figure 2.10), differently from AND type, requires selecting
transistors at the beginning and at the end of each "string". A string is just
a series of all FeFETs on the same column. Such selectors are necessary in
order to provide a better insulation from the BL and the Common Source
Line (CSL). Hence, only the voltage applied to FeFETs gates is applied di-
rectly through the WLs [65].
In particular, NAND arrays —with respect to AND type— allow for smaller
FeRAM cell area. This implies the possibility for higher integration density;
moreover, NAND array can be used for 3D stacking, as done in [65].

68

2 – EMT: arrays and peripheral circuits

Figure 2.9. FeFET AND array.

FeFET arrays, however, require peculiar biasing schemes in order to min-
imize the disturb effects associated to writing operation. Such schemes are
very similar to the ones exploited in ReRAM crossbar arrays (see subsec-
tion 2.3.3).
For instance, V/2 and V/3 biasing for AND arrays are well explained in [66]:
exactly as for crossbar ReRAMs, spurious voltage drop in half selected and
unselected cells is reduced to V/3 in the homonymous scheme, but in such
case the number of disturbed cells is higher than for V/2 bias pattern. For
AND FeFET array, the respective biases at each row (WL) and column (BLs
and SLs) of the array are the same of Table 2.4.
However, in the aforementioned bias scheme, positive/negative WLs voltages
are applied for programming/erasing the cell, neglecting the body influence
[25]. To take this effect into consideration, and, at the same time, to pre-
vent such scheme from using negative gate voltages, a peculiar drain–erase
all–positive bias scheme is proposed in [65] for both AND and NAND arrays.

2.5.2 FeFET peripherals
Only few examples of peripheral circuits specifically designed for FeFETs
memories have been found in literature. The wide range of applications of
such devices makes difficult to find articles that are focused on this topic,

69

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 2.10. FeFET NAND array.

if there are any. For instance, a sense amplifier design for a FeFET mem-
ory is described in [40]; however, such circuit is non–conventional, since it
is expressly modified for a computation–in–memory application. Another
example can be found in [67], where for "FeFET peripheral" is intended a
reading pheripheral (again a sense amplifier) implemented with FeFETs in-
stead of standard MOSFETs.

Hence, examples of FeFET–memory peripheral circuits have been found only
in articles where the attention has been focused on other aspects of the de-
sign, and, for this reason, they were poorly commented or their design has
been taken for granted. For instance, in [66], it is stated that, for a 1T–
FeFET AND array, a typical choice of sense amplifier is the current–mode
one, without justifying why. A rather simple circuit of such SA is reported
in the same article, without further descriptions.
In [68], an even simpler SA circuit is presented: in this case, however, the

70

2 – EMT: arrays and peripheral circuits

choice of a current mode SA is explained as for "tap" the significant differ-
ence between the drain currents of the FeFETs in ON and OFF states. It is
also claimed that, for the described architecture, such choice would minimize
sneak currents in unselected cells.

Even if the considerations about peripheral design in FeFET memories are
relatively limited, the application flexibility of FeFETs makes them very use-
ful in implementing logic–in–memory; this is mainly due to the fact that, in
practice, a FeFET works in a way similar to MOSFETs, but with the addi-
tional capability of nonvolatile storage of information. Such concept will be
better explained in section 3.5.

71

72

Chapter 3

EMT LiM

3.1 Why implementing LiM?
The growing requirement for fast and high–volume data transfer in advanced
applications is constrained by the so–called “memory wall”: a performance–
limiting barrier, mainly caused by the difference between memory and pro-
cessor speed, the transfer bandwidth between them, and the related commu-
nication delay [40, 69].
An innovative solution is represented by Logic–in–Memory (LiM), considered
as a valid alternative to conventional Von Neumann architectures [70].
It consists, in practice, in a memory device in which some logic operations,
normally carried out by processing units, can be implemented directly into
the memory itself. In this way, a smaller amount of data needs to be trans-
ferred and, as a consequence, lower latency and energy are involved. For
such reasons, LiM is useful especially in data–intensive and/or power–critical
memory implementations. However, the range of tasks that LiM is able to
perform is still very narrow [40].

LiM implementations with the four technologies selected in section 2.1 will
be presented in this chapter; each technology offers peculiar features for
in–memory computation. Furthermore, the computations themselves can be
performed in various ways. For instance, some approaches are based on mod-
ifications on reading/writing interface or on other peripheral circuits; others
directly adapt the array cells to make them compute the target operations;
furthermore, others do not modify the memory circuitry, and exploit proper
current/voltage pulses schemes for logic implementation.

73

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

3.2 STT–MRAM LiM

3.2.1 STT–MRAM LiM peculiarities

In addition to the limitations presented in ??, Spin Transfer Torque MRAMs
suffer from the fact that a low TMR (defined in subsection 1.2.1) sensibly
affects the reliability of reading operations. Unfortunately, this is even wors-
ened for logic–in–memory applications, but proper correction mechanisms
can be exploited to handle it by strengthening the STT–LiM steadiness
against process variations [11].

Besides, some unique properties associated to magnetoresistive memories
may be useful in LiM design. For instance, their basic cell element, the
MTJ, can grow on top of MOSFETs without affecting the cell footprint: this
allows magnetoresistive LiM to reach a significative integration level [70].
Furthermore, STT–MRAM basic cells are resistive, and the current involved
in writing operation is usually much bigger than reading current. Such fea-
tures make it possible for multiple array wordlines to be activated at the
same time, and, as a consequence, to directly dispose of the results of logic
operations by simply reading the informations contained in multiple WLs.
Hence, with just one access to the memory, a logic computation can be per-
formed thanks to a properly modified sensing and reference circuitry. This is
the case of the first example of LiM application presented in subsection 3.2.2.
On the contrary, due to the elevated risk for short–circuits through the array
and the resulting information loss, enabling multiple WLs is not feasible in
CMOS static RAMs [11].

The simplest way to introduce STT logic is through a series of confrontations
among related works: in this sense, in subsection 3.2.2, subsection 3.2.3 and
subsection 3.2.4 are presented three selected approaches to introduce STT–
LiM.

74

3 – EMT LiM

3.2.2 STT–MRAM LiM, 1st example:
modified reading interface

The first example of STT in–memory computation (CiM) is taken from
[11]. In this article it is considered a STT–MRAM featuring a conventional
1T1MTJ array, and with modified sensing and global reference generator cir-
cuits. Such design exploits the aforementioned (subsection 3.2.1) property
of STT MRAMs to allow for multiple wordlines enabling. According to [71],
the multiple WLs assertion can be exploited to perform a large range of logic
computations in just one single memory access: this represents a strong point
for STT–LiM, since it improves performance and energy efficiency. On the
contrary, several intermediate access cycles are required by logic approaches
such as MAGIC in ReRAMs (subsection 3.3.3).

In Figure 3.1 a couple of standard STT–cells are presented, whose MTJs
are modeled by a varying resistance. These represent two target cells that
can be read by activating the related wordlines (WLi, WLj) and by applying
a read voltage VREAD. Table 3.1 reports the four possible combinations of
resistances (Ri, Rj) associated to two standard STT cells. The corresponding
currents (Ii, Ij) are summed, and the resulting current ISL, in turn, assumes
four possible values. P and AP labels stand for parallel and antiparallel MTJ
states, respectively.

Figure 3.1. Couple of conventional STT–MRAM cells.

75

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

(Ri,Rj) ISL

(RP ,RP) IP −P

(RP ,RAP) IP −AP

(RAP ,RP) IAP −P

(RAP ,RAP) IAP −AP

Table 3.1. Source Line current (ISL) values for the resistance combi-
nations of two STT MTJs.

In this implementation, bitwise OR and AND operations —together with
their negations— are obtained as result of a comparison between the sensed
current and specific reference values.
For instance, in order to perform an OR operation, ISL and IREF,OR are
put at the input of a comparator. IREF,OR is chosen as an intermediate
value between IAP,AP and IAP,P (same as IP,AP), as depicted in Figure 3.2
(c); hence, the only case for which ISL is lower than IREF,OR is when both
the STT cells are in HR antiparallel state (ISL = IAP,AP), resulting in a
logic ’0’ as result at the positive output of the comparator. In all the other
cases, the result is a logic ’1’, as expected from an OR operation. The
corresponding negated function (NOR) is obtained at the negative output of
the comparator, with the same reference current Figure 3.2 (a).
An AND function is implemented again as result of a comparation, but this
time the reference IREF,AND is in the middle of the IAP,P (IP,AP) to IP,P

current range. A logic ’1’ can be obtained at the comparator positive terminal
when the ISL is higher than IREF,AND, i.e. only if both the selected cells are
in LR parallel configuration. NAND operation, obtained at the negative
output of the comparator, exploits IREF,AND as well (Figure 3.2 (b)).

Figure 3.2. a) Bitwise OR sensing scheme, b) Bitwise AND sensing
scheme, c) Reference currents.

76

3 – EMT LiM

A potential design complication may be the fact that three different levels
of ISL current (IAP,AP , IAP,P=IP,AP , IP,P) must be distinguished in order
to perform a reliable LiM operation, and not only two as for conventional
reading: this means that two reading margins must be considered (instead
of one), and that the probability of decision failure increases. Simulations in
[11] demonstrate also that the two read margins are different and that the
one between IAP,P and IP,P is more predisposed for decision failures.

AND/OR functions can be combined to easily perform more complex opera-
tions, such as XOR and ADD. For example, XOR is implemented combining
the two comparators in Figure 3.2, such that AND and NOR outputs are
given in input to a CMOS NOR gate. Equation 3.1 sums up the correspond-
ing notation.

An, Bn = nth bit of words A, B
OAND = An ·Bn

ONOR = An +Bn

OXOR = An ⊕Bn = OAND +ONOR

(3.1)

A full ADD operation includes a carry input/output (Cn−1/Cn) and a sum
output (Sn). Since XOR and AND functions (Figure 3.2) can be performed
at the same time, only one single access to the STT array is necessary for re-
alizing a full ADD. The details of this operation are recapped in Equation 3.2.

Sn = (An ⊕Bn)⊕ Cn−1 = OXOR ⊕ Cn−1

Cn = ((An ⊕Bn) · Cn−1) + (An ·Bn) =
= (OXOR · Cn−1) +OAND

(3.2)

The overall customized sensing circuit —able to perform OR, AND (and
their negations), XOR and ADD— is depicted in Figure 3.3.
On the contrary, no modifications are done to the sense amplifier circuit, that
is a Voltage Latched SA (Figure A.3) with additional enable signals.

The principal advantages and disadvantaged of this LiM implementation can
be listed as:

3 logic function are simply results of comparations between sensed and
reference currents;

77

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

3 more complex LiM functions (such as XOR and ADD) can be easily
obtained combining basic functions;

3 logic operations are performed by a modified sensing circuitry, hence no
changes are done on the standard STT array;

3 since the sensing circuit occupies only a small portion of the overall
memory area and power consumption, all the modifications on it do not
imply large increase in area occupation and/or power consumption;

7 an additional input signal1 has to be addressed at each memory access,
which defines the wanted reference current (rwl, rwr signals in [11]2) and
specifies the type of LiM operation (sel signal in Figure 3.3);

7 three current levels are required, hence the reduced read margins increase
the probability for decision failures.

3.2.3 STT–MRAM LiM 2nd example:
modified cell and column decoder

Another example of in–memory computation with STT–MRAMs is described
in [70].
Logic operations, such as AND and OR, can be performed by comparing the
equivalent resistance (RMT J1+RMT J0) of two in–series STT–MRAM cells
(cell1, cell0) and the sum between a reference cell resistance (RREF) and a
logic selection (logic–sel) cell resistance (RMT J,L). The last one is responsible
for deciding the type of logic function that has to be performed: if RMT J,L

is equal to RAP , an AND operation is selected, while if it is equal to RP , an
OR operation takes place.

The main difference between this LiM implementation and the one presented
in subsection 3.2.2 is that in this example the operand cells (cell1, cell0),
as well as the logic–sel cell, have a modified architecture, so they can not
be considered conventional cells. The modified cell structure is depicted in
Figure 3.4: two additional lines (CL and GL) are required to regulate the
current flow from the bitline, and their connection to the MTJ is controlled

1Called CiMType in the reference article [11].
2Referring to the overall scheme in Fig. 6 of [11].

78

3 – EMT LiM

Figure 3.3. Overall modified sensing circuitry for (N)OR, (N)AND, XOR
and ADD operations in STT–MRAMs.

by a couple of MOSFETs. The wordline and sourceline are responsible for
the transistor switching on/off.

The main disadvantage of such implementation is the use of non–standard
array cells. The doubled number of MOSFETs, above all, contributes in in-
creasing the overall area and delay. Moreover, the proposed STT–based LiM
requires a modified column controller that manages negated logic and more
complex functions such as XOR and ADD. As mentioned before, in fact, only
basic AND and OR operations are implemented at cell level.
In practice, what is different with respect to the previous case (subsec-
tion 3.2.2) is that here all the computations are handled by unconventional
cells together with a customized column controller, instead of a modified

79

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 3.4. Modified STT–MRAM cells for in–memory computing, divided
in operand cells (on the left) and reference cells (on the right); ref cell is a
standard reference cell, as the one in Figure 2.3.

sensing circuitry. In both examples, standard latched sense amplifiers are
employed (see Appendix A).

The main benefits and constraints of the presented LiM design are:

3 logic functions are results of comparations between sensed and reference
currents;

7 the modified cell with larger area and delay (due to the additional tran-
sistor) is at the basis of the STT array;

7 additional control logic in the column selector is required.

80

3 – EMT LiM

3.2.4 STT–MRAM LiM 3rd example:
voltage pulses approach

An alternative approach to STT–logic is presented in [72].
It is based on the application of voltage pulses in a certain sequence, de-
pending on the logic operation to perform. In comparison with the previous
examples (subsection 3.2.2, subsection 3.2.3) it does not need modified array
cells, nor requires additional dedicated peripherals for implementing logic.
Hence, a big benefit related to it is the fact that no extra hardware is neces-
sary.

Such LiM application is usually called IMPLY (or just IMP) logic. The
reason behind its name is that all the logic operations that can be imple-
mented through it are a combination of logic implications.
For example, a NOR function can be performed in three steps: one state
switching (from parallel to antiparallel magnetizations) and two imply oper-
ations, through the application of proper voltage/current on the WL/BL of
the considered cells.
The previous statement, however, already reveals one of the main constraints
of IMPLY logic: even basic functions require multiple serialized operations.
This means that such approach may be heavily time–consuming.
Nevertheless, it is noteworthy that IMPLY logic is able to realize a complete
set of Boolean operations. IMPLY logic is also employed in crossbar ReRAM
LiM applications, as it will be discussed in subsection 3.3.1.
The presented advantages and disadvantages of this approach can be summed
up as:

3 no extra hardware nor modifications on standard array cells are required;

3 it can implement a complete set of Boolean functions;

7 it is a high latency approach, due to the high number of steps necessary
for performing an operation.

3.3 ReRAM LiM
Due to the relatively good sensing and switching times (Table 1.5), and for
the prospective of very high integration density (specially with Xbar arrays,
subsection 2.3.1), resistive memories appear to be an attention–getting op-
tion for LiM implementations.

81

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Almost all the articles related to this topic are focused on crossbar 0T1R
ReRAMs, reconfirming the growing attention on this type of array, as antic-
ipated in subsection 2.3.3.

Several logic designs can be realized through memristors. IMPLY, MAD,
MAGIC, hybrid–CMOS, CRS, Zhang et al., are just some of the various
ReRAM LiM approaches. Among them, the first three are the most known,
and are discussed in subsection 3.3.1, subsection 3.3.2 and subsection 3.3.3,
respectively.
Finally, in subsection 3.3.4 it is reported a overall confront among all cited
LiM approaches, with Table 3.3 and Table 3.4 comparing the number of steps
and the area occupation required to perform basic Boolean operations.

3.3.1 ReRAM IMPLY
In IMPLY approach, all logic functions are based on the homonymous imply
operation (reported, for convenience, in Table 3.2); the fundamental mem-
ristive circuit able to perform it is depicted in Figure 3.5 (a), together with
the corresponding adaptation on a ReRAM 0T1R Xbar array (b).

Case p q p ⇒ q
1 0 0 1
2 0 1 1
3 1 0 0
4 1 1 1

Table 3.2. Imply truth table.

Referring to Figure 3.5, the inputs of the imply gate are the initial states
of memristors p and q. Just as reminder, in ReRAMs a high resistance state
(HRS) conventionally corresponds to a logic ’0’, while low resistance state
(LRS) to a ’1’. The output of the logic implication is stored back into mem-
ristor q: due to the input overwriting, IMPLY approach is considered as a
destructive operation [73].

In practice, a logic implication is performed by applying proper voltage
pulses, VCOND and VSET , respectively to p and q memristors. The volt-
age magnitudes must satisfy the relation |VCOND| < |VSET |.
If both the memristors are in HRS (p=0, q=0), when applying the voltage

82

3 – EMT LiM

Figure 3.5. IMPLY logic gate (a) and its ReRAM Xbar mapping (b).

pulses the common node remains at very low voltage, and the drop on q is
close to VSET ; in this way, q undergoes a set process and switches to LRS
(q=1).
Instead, when q is already in LRS and p in HRS (p=0, q=1), the voltage
(∼VSET) across q leaves it unalterated (q=1).
Finally, when p is in LRS (p=1), the voltage on the load resistor RG is
approximately VCOND, and this leads to a voltage drop on q equal to the
difference between the two voltages (VCOND – VSET). Hence, either if q is in
HRS or in LRS (respectively cases 3 and 4 in Table 3.2), the voltage across
it is small enough to prevent a change of state [73].

IMPLY logic design is already described in brief in subsection 3.2.4 for STT
MRAMs.
What differs from STT case —besides the employed technology— is that,
instead of having a dedicated cell to store the information as for the STT ex-
ample, this time the operation result overwrites one of the input memristors.
Moreover, exactly as for STT case, the great limitation of this approach is
the fact that each operation is based on the logic imply, increasing a lot the
latency: for example, according to [74], a NAND operation requires three
imply steps, as shown in Equation 3.3 (a) and reported in Table 3.3.
For more complex operations, like XOR (Equation 3.3, (b)), even 8 steps
are required: only four imply operations are necessary, but when p ⇒ q is
performed, q is rewritten with the implication result. Hence, an interme-
diate step, that copies the original value of q, is implemented through two

83

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

consecutive NOT operations (i.e. two ⇒ 0 operations). The same is done
for p, leading to a total of four additional logic implications. This results in
an overall amount of 8 imply steps, as reported in Table 3.3.

(a) p · q = (p⇒ (q ⇒ 0))⇒ 0
(b) p⊕ q = (p⇒ q)⇒ ((q ⇒ p)⇒ 0)

(3.3)

In conclusion, IMPLY logic in crossbar 0T1R ReRAM share the same
characteristics reported in subsection 3.2.4 for STT–MRAM, with the addi-
tional constraint related to the overwriting of input memristors.
This section has discussed in details such approach in order to have a clearer
view of it and to offer the opportunity for an overall comparison with other
ReRAM LiM designs (see subsection 3.3.4).

3.3.2 ReRAM MAD
Memristors–As–Drivers (MAD)[74] has been initially developed with the aim
of overcoming some limitations of IMPLY logic, such as the high latency re-
lated to serialized steps for performing an operation.
MAD approach is based on a combination of IMPLY approach and threshold
logic. An example of circuitry for MAD operation is depicted in Figure 3.6,
where an AND gate is implemented through two driver signals (VCOND,
VSET), three memristors (p, q and s), pull–down resistors (RG) and a switch
[74].

Figure 3.6. ReRAM MAD AND gate.

In MAD logic, two memristors (p, q) act as operands while the third (s)
store the result of the operation. For this reason, differently from IMPLY

84

3 – EMT LiM

approach, the logic operation is non–destructive.
The AND operation is implemented by applying a proper sense voltage
VCOND to the p and q series. Depending on the resistive state of the two
memristors, a certain voltage value is sensed at node VSW . Such voltage, if
greater than the threshold of the switch linked to memristor s, can make the
switch close: consequently, a voltage VSET drops on the ouput memristor.
In this way, memristor s undergoes a set process and switches to LRS (logic
’1’). This happens only if both the input memristors were originally in LRS,
thus making VSW sufficienly high to activate the switch.
In all the other cases, the switch stays opened and memristor s does not
change its resistive state. The same gate circuit of Figure 3.6 can also be
employed for performing an OR operation, just by changing the threshold
level of the switch [74].

As for IMPLY approach, MAD logic can be mapped to a crossbar array.
The mapping, however, is not so direct: in a crossbar array, all rows con-
nects memristors at the same terminal3; the opposite terminals, instead, are
connected by the array columns.
At this point, it is evident that the standard MAD AND gate of Figure 3.6
must be slightly modified. The modified circuit is shown in Figure 3.7 (b).
The red line follows the path of voltage VCOND, and it is the only part that
differs from Figure 3.7 (a): the two input memristors are not connected in
series anymore, and share the same terminals at node VSW . Even if, from
a circuital point of view, the two gates in Figure 3.7 are not equivalent, the
performed logic operation does not change: in fact the AND output depends
only on the resistive value stored in memristor q. This implies that only the
switch threshold and the voltage at node VSW determine the switching of q
state. Hence, a proper design of the pull–down resistors (RG) and choice of
the switch threshold allow the correct logic function implementation [74].

The final mapping of the AND gate on a Xbar array is depicted in Fig-
ure 3.8. Blue and green lines correspond to VSW and VSET signals paths,
respectively. When performing the logic operation, both p and q BLs and
WLs are selected, with VCOND applied to their BLs and with their WLs con-
nected to ground. Then the sensed voltage VSW drives the the column and

3It is intended one of the two edges of the memristor; conventionally, memristors are
connected to the WLs on the black side (as in Figure 2.6), which marks the memristor
polarity (the thick black line in Figure 2.5)

85

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 3.7. VCOND (red), VSW (blue) and VSET (green) voltage
paths on ReRAM MAD gate (a) and circuit modifications for en-
abling Xbar mapping (b).

row access transistors of the target memristor (s) that stores the result.
The same crossbar mapping can be employed also for implementing XOR
and XNOR functions, with a slight modification: the voltages at the nodes
connecting p and q to the respective BLs are the ones that drive the access
transistors of the output memristor BL and WL, respectively [74].

As for IMPLY logic, MAD approach is able to implement a complete set of
Boolean operations. However, as it can be noted from Table 3.3, the amount
of steps required for performing an operation is generally lower than IMPLY
one. Also the area occupation in Xbar arrays is smaller for almost each logic
function.
Furthermore, thanks to the dedicated output memristor, MAD logic avoids
the overwriting of input memristors and it is considered, for this reason, a
non–destructive LiM approach. Other considerations on MAD benefits are
discussed in subsection 3.3.4.

3.3.3 ReRAM MAGIC
Memristor Aided LoGIC (MAGIC) [74] is maybe the most known approach
for memristor–only logic. Differently from IMPLY, but in a similar way than
MAD approach, it exploits a dedicated output memristor for storing the re-
sult of the logic operation.

86

3 – EMT LiM

Figure 3.8. ReRAM Xbar mapping of MAD AND gate.

From a computational point of view, MAGIC design can implement almost
all Boolean equations: the XOR operation, in fact, cannot be performed with
standard MAGIC gates. Hence, sometimes a hybrid–CMOS solution is used
to implement such operation [74].

However, this is not an issue for Logic–in–Memory applications. As IM-
PLY and MAD logic paradigms, also MAGIC can be mapped to a crossbar
ReRAM array; through a Xbar, MAGIC can implement a complete Boolean
logic set, including XOR operation.
An explanation is necessary. In MAGIC, only the NOR function can be
mapped succesfully to a Xbar array. Together with NOT, NOR function is
able to implement a complete set of logic operations: it means that a proper
combination of only NOT and NOR gates can set up all logic functions, in-
cluding XOR. Even if this may be seen as a solution, in practice it turns into
a huge constraint: since a sequence of NOT and NOR operation is needed

87

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

for MAGIC LiM operations, the related latency increases a lot. Even if not
quantified, in [74] it is claimed that MAGIC delays in Xbar implementations
are much higher than MAD ones (see Table 3.3).
Hence, although MAGIC and MAD logic gates are similar in latency and
complexity, their Xbar counterparts are very different; in addition to the in-
creased delays, also the area occupation of MAGIC LiM is higher than MAD
one.
In addition, according to [71], MAGIC approach needs several intermediate
access cycles that limit LiM performance.

Figure 3.9. NOT (1.) and NOR (2.) symbols (a.), MAGIC gates (b.) and
mapping on ReRAM Xbar array (c.); (i) and (ii) indicate the two versions of
logic NOR implementation.

88

3 – EMT LiM

The two fundamental MAGIC gates, NOT and NOR, are depicted in Fig-
ure 3.9, together with their crossbar mapping.
The NOT gate, for example, exploits a simple voltage divider between the
input (p or q) and output (s) memristors. The structure consists in a series
of such memristors with opposite polarity (Figure 3.9, 1.b.). The output
memristor is initialized to a logic ’1’. Then, a voltage V0 is applied to the
series: if the input memristor is in HRS (logic ’0’), the voltage drop on it is
greater than the output memristor one, which remains under the switching
threshold. This prevents memristor s from undergoing reset process, thus
keeping it in LRS (logic ’1’). Instead, if the input memristor is in LRS, most
of the V0 voltage drops on the output memristor, making it switch its resis-
tive state to a logic ’0’.

The NOR gate, on the other hand, is based on a parallel between the in-
put memristors, which is connected to a third memristor that stores the
result (Figure 3.9, 2.b.i). The output memristor is initialized to a logic ’1’.
When a voltage V0 is applied, the output memristor is crossed by an amount
of current that strictly depends on the two memristors resistance. If both the
inputs are in HRS (’0’), the current pulse is not sufficient to make the output
memristor change its state (’1’). In all the other cases, the current overcomes
the threshold of the output memristor, making it switch to an HRS (’0’) [75].

An alternative NOR implementation is reported in [76], where the output
memristor and the inputs parallel are swapped, as shown in Figure 3.9 2.b.ii;
this configuration is adopted for implementing the AND gate of Figure 3.10,
explained in the following.
Crossbar mapping of MAGIC NOT, NOR gates are shown in Figure 3.9, 1.c.
and 2.c. (i and ii versions), respectively [75].

For the sake of completeness, in Figure 3.10 is reported an example of gate
that combines both NOT and NOR functions: the AND gate, in fact, can be
implemented with a NOR gate with negated p and q as inputs (Figure 3.10,
a.). Consequently, not only the amount of steps for performing the opera-
tion is greater, but also the number of required memristors is increased. Two
additional memristors, n1 and n2, are in fact necessary for storing the inter-
mediate outputs of NOT gates. This leads to a total of 5 memristors needed
for AND operation (Figure 3.10, b. and c.). More complex operations, such
as XOR and XNOR, require 7 and 8 memristors, respectively. Hence, the

89

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

implementation of MAGIC approach needs a significantly large area occu-
pation in Xbar ReRAMs: from Table 3.3 it can be observed that the area
required for each logic operation is generally larger than MAD logic one and
similar to IMPLY logic one.

Figure 3.10. MAGIC AND obtained by combining NOT and NOR functions:
in symbols (a.), as memristive gate (b.) and crossbar mapping (c.)

The complete set of Boolean functions mapped to crossbar arrays is pre-
sented in [76]. In this article it is also proposed a compact Xbar mapping, that
allows for a more uniform distribution of the operating memristors thanks to
a so–called transpose array.
Besides the compact mapping, that is not described here, it may be worthy
to spend some words on transpose crossbar arrays. In conventional Xbar
arrays, the access to the memory cells is done only from one direction. This
is due to the fact that decoders and sensing circuits are usually linked just
to one side of the array. For instance, a MAGIC NOR gate is mapped to a
row in a conventional Xbar array. On the contrary, transpose arrays exploits
extra pheripherals in order to increase the flexibility of the array, allowing
access to the cells from both rows and columns. In this sense, a MAGIC
NOR gate becomes mappable also to columns [76, 77].
Such array design may be useful in LiM implementations even for technolo-
gies different than resistive memories.

90

3 – EMT LiM

3.3.4 ReRAM LiM comparisons and other ReRAM
LiM approaches

The aim of this section is to sum up benefits and constraints of the pre-
sented ReRAM LiM approaches, and to discuss in a more quantitative way
some of their aspects. In particular, latency and area occupations are uti-
lized as comparative parameters. Table 3.3 and Table 3.4 quantify them
respectively as amount of steps required to perform the logic operation and
as number of involved memristors. The logic designs to which they refer
are the —previously described— IMPLY (subsection 3.3.1), MAGIC (sub-
section 3.3.3), MAD (subsection 3.3.2), together with two new approaches,
Complementary Resistive Switch (CRS) and Zhang et al.. These last ones
will be only briefly treated, for the reasons explained later in this section [74].

As discussed in subsection 3.3.1, for the IMPLY approach each operation
different from IMPLY4 requires more than one step to be performed; besides
the latency, also the number of employed memristors is quite large, since
each operation is a combination of logic implications. For instance, an XOR
function implemented on an Xbar array needs 8 steps and 7 memristors.
Another constraint of IMPLY logic is that the result of the logic operation is
stored back into one of the two input memristors; besides implying the loss
of input data (destructive operation), this makes it necessary, for input and
output memristors, to lie on the same row of the array.
Nevertheless, IMPLY logic is computationally complete and can be entirely
mapped to Xbar arrays [74].

Also the MAD approach is able to perform a complete set of Boolean op-
erations mappable to crossbar ReRAMs. Differently from IMPLY, however,
MAD logic is not based on serialized operations, and thus the number of
steps required for performing logic is kept low (2 steps for each operation,
see Table 3.3).
Furthermore, MAD logic does not need any memristor to store the partial
results of intermediate logic steps: the only memristors involved in a logic
operation are the memristors storing input and output data of that gate.
Such feature allows MAD to occupy a very low area on crossbar arrays: for
all Boolean operations, just 3 memristors are necessary (2 input and 1 out-
put), with the exception of NOT gate that requires only 2 memristor (since

4Including logic NOT, which is simply an IMPLY 0 operation.

91

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

NOT is a single input gate), as shown in Table 3.4). On the contrary, logic
approaches such as IMPLY, MAGIC and CRS need several dedicated mem-
ristors to store intermediate results. Such memristors are a sort of phantom
cells that do not store any useful data, occupy additional array area and
contribute to increase the power consumption. For these reasons, MAD logic
design is considered as a low–latency and low–area approach for both logic
gates and LiM applications.
Moreover, thanks to a dedicated output memristor, MAD logic avoids in-
put overwriting when storing the operation result. In this way, the input
memristors maintain their information and can be read or reused again for
other logic operations. This also allows in/out memristors to be located on
different rows and BLs; however, the activation of multiple rows in the Xbar
array may cause the sneak currents to increase. In contrast, IMPLY, Zhang
et al. and CRS are input–destructive approaches.

Another comparative factor, significant for memory design, is the usage of
multiple voltages. The voltage sources required by MAD logic are three:
VCOND, VSET and VRESET , as for IMPLY. For Zhang et al. and CRS, in-
stead, the number increases to four. MAGIC NOR only needs one voltage
signal, but it is to remind that all MAGIC LiM operations are based on NOR
gate, hence the number of voltages may vary depending on the operation to
perform.
However, a possible constraint is related to the fact that MAD logic requires
different switch threshold voltages, according to the implemented logic opera-
tion. This introduces additional complexity on the crossbar array design [74].

Finally, both IMPLY and MAD approaches may exploit the concept of
pipelined operations for reducing their latency. According to [74], this is
possible thanks to the fact that they exploit a logic based on voltage drivers:
the results of operations and driven voltage pulses move through the system,
allowing for immediate reuse of computational elements just after the end of
their operation.

As anticipated in subsection 3.3.3, MAGIC and MAD gates have similar
latency and complexity, with the exception of XOR operation that cannot
be implemented through MAGIC. At array level, instead, the differences
between the two logic approaches becomes substantial: the only MAGIC
function that a crossbar array can map is NOR, while MAD has at its dis-
posal a complete set of Boolean operations. Hence, the only way for which
MAGIC can be mapped to a Xbar array is through a combination of NOR

92

3 – EMT LiM

Operations IMPLY MAD MAGIC CRS Zhang et al.
p NAND q 2 2 N/A 3 3
p AND q 3 2 N/A 6 2
p NOR q 5 2 1 3 3
p OR q 4 2 N/A 6 2
p XOR q 8 2 N/A 6 N/A
NOT p 1 2 N/A 3 2

Table 3.3. Latency comparison among the presented ReRAM LiM ap-
proaches, measured in number of steps. All the values are taken from [74]. As
explained in subsection 3.3.4, data in MAGIC column are missing since the
reference article does not consider the possibility of combining NOT/NOR
gates for deriving all the other Boolean operations.

Operations IMPLY MAD MAGIC CRS Zhang et al.
p NAND q 3 3 6 6 2
p AND q 4 3 5 8 2
p NOR q 6 3 3 6 2
p OR q 6 3 4 8 2
p XOR q 7 3 7 8 N/A
NOT p 2 2 2 6 2

Table 3.4. Area occupation comparison among the presented ReRAM LiM
approaches, measured in number of involved memristors. All the values are
taken from [74], except from the ones in MAGIC column, taken from [76].

and NOT functions, that, together, are able to implement all Boolean oper-
ations. The combination of logic gates makes both latency and number of
memristors involved for MAGIC LiM to increase.
The results of such considerations are reported in Table 3.3 and Table 3.4;
even if not quantified, in [74] it is stated that MAGIC latency in Xbar imple-
mentations is much higher than MAD one. Unfortunately, no specific latency
values were found in literature: this is also due to the fact that some articles
do not even consider the NOT/NOR approach, claiming the impossibility
for MAGIC to be mapped to a Xbar. Instead, data regarding the area oc-
cupation in crossbar arrays were taken from [76], counting the number of
memristors for each NOT/NOR combination. Such number is quite large

93

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

also because, differently from MAD, MAGIC approach requires the afore-
mentioned "phantom" memristors to store the result of intermediate steps.
Furthermore, MAGIC exploits a dedicated output memristor for performing
non–destructive logic operations.

Complementary Resistive Switch (CRS) and Zhang et al. LiM approaches
are also mentioned; these are considered only for area and delay comparison
with respect to other logic designs, without going into details. This is jus-
tifiable since the CRS is based on non–standard 0T1R memory cells, while
Zhang et al. is not able to implement a complete set of Boolean functions.
Furthermore, this chapter is only a state of the art on LiM approaches, and
their discussion would not follow the aims of this thesis.

CRS exploits a cell based on a series of two memristors in opposite polarity
configuration. Such approach is able to perform only AND, OR and their
negations, hence all other Boolean operations must be derived through their
combinations. As a consequence, each logic function is completed in N+2
steps, with N equal to the number of NAND and NOR operations. This
contributes in increasing the delays, together with the fact that all operands
need to be initialized before a logic operation. Also, the area occupation
is quite large, being for certain operations more than the double of MAD
logic one (see Table 3.4). Furthermore, CRS approach is input destructive
since one of the input memristors is overwritten for storing the result of logic
operation [74]. However, an advantage of such approach is that a NAND
operation with n inputs requires only 3 steps, in contrast with n+1 steps
necessary in other logic approaches [78].

Zhang et al. LiM approach aims to optimize the number of memristor in-
volved in logic operations. It has been originally introduced in [79]. It is
based on the combination of a newly–designed OR gate —mappable to a
Xbar array— with IMPLY NOT and AND gates, for implementing all other
Boolean functions. This approach is promising in terms of latency and area
occupation on the array. The amount of steps needed for performing an
operation is the same of MAD one, with the exception of NAND and NOR
functions, for which it is required an additional step (Table 3.3). Moreover,
for each logic operation only 2 memristors are involved (Table 3.4). How-
ever, Zhang et al. approach is not Boolean–complete (XOR/XNOR is not
implemented) and it is input–destructive.

94

3 – EMT LiM

This section proposed a comparison, based on few performance parameters,
among different types of ReRAM LiM approaches. Hybrid–CMOS logic de-
signs were not treated, in order to entirely focus on emerging memory tech-
nologies. The confrontation does not pretend to be complete, since there
are a lot of other criteria that may influence the choice of a certain logic
approach: for instance, the values of driven voltages, switch thresholds, and
pull–down resistances play an important role at design level. However, this
may be a good starting point for a future LiM design.

3.4 PCM LiM

3.4.1 PCM logic potential
There are two main features that make Phase Change Memories a good can-
didate for logic–in–memory applications.

Firstly, the so–called analog storage capability, that consists in the skill
of assuming a continuum of resistance values, instead of just two resistive
states. This is possible thanks to the volumetric phase transition of the ma-
terial: differently from filament–type ReRAMs, for which HR-to-LR switch
—associated to the conductive filament formation— is quite abrupt, in PCMs
it is possible to obtain a series of intermediate R values just by the application
of proper current pulses with varying amplitude5, as shown in Figure 3.11
(a). The depicted curve (called programming curve) is bidirectional, in the
sense that such pulses are able to make the resistance increase or decrease,
depending on their current modulation.
The analog storage capability is particularly useful for enabling matrix–vector
multiplication. For instance, in Ax = b computation the elements of matrix
A are mapped to the conductances of crossbar PCM cells, while vector x
elements are mapped to the durations or amplitudes of read voltage pulses
applied to PCM WLs. The vector b, containing the results of multiplication,
is obtained by sensing the BLs currents of the array [80].

The second PCM property that can be exploited for LiM applications is the

5In filament ReRAM this would be —in practice— almost impossible, since the transi-
tion is more or less comparable to the one of a switch: the intermediate resistance values
could be achieved only with infinitely precise and small current pulses.

95

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

so–called accumulative behaviour. It consists in the capability of reducing
the resistance value in a progressive way, by applying an increasing number
of current pulses with the same amplitude. The corresponding resistance
curve (reported in Figure 3.11 (b)) is called accumulation curve, and it is
unidirectional.
Accumulative behaviour enables in–memory computations such as addition,
multiplication, division and subtraction, with simultaneous processing and
storing of the results. For instance, an sum operation may be performed
by encoding the addends values with the corresponding number of voltage
pulses, and setting a certain conductance threshold corresponding to the nu-
merical base of the addition; in this way, when the threshold is reached, the
number of additional pulses will give the result.
However, accumulative behaviour involves a certain degree of randomness
caused by crystallization dynamics. This contributes in increasing the vari-
ability of HR ad LR states values, particularly relevant for large arrays [80].

Figure 3.11. Programming curve (a) and accumulation curve (b) [80].

96

3 – EMT LiM

3.4.2 PCM logic

A very useful concept for discussing PCM LiM is statefulness. Such term is
used to describe all types of logic applications for which the information is
encoded as resistive state: in this sense, approaches like IMPLY, MAD and
MAGIC —already introduced for ReRAM LiM applications— can be con-
sidered stateful designs. In such approaches, the same elements (memristors)
are exploited for inputs/outputs storing and for logic computing.
It often happens that stateful logic is considered only a type of memristive
logic; however, such concept can be employed also in PCM logic applica-
tions, even if not so many related articles can be found in literature. As a
consequence, IMPLY, MAD and MAGIC can be in theory used also for PCM
LiM.
Nevertheless, PCMs are even able to perform a non–stateful logic, by ex-
ploiting their control properties over physical processes (crystallization and
melting), as explained in subsection 3.4.1. Non–stateful logic differs from
stateful one for the fact that the inputs are provided as external voltage
pulses, and only the outputs are stored as resistive states. For this reason,
in order to carry out consecutive computations, a resistance–to–voltage con-
version is required. However, an advantage of this type of logic is that is it
possible to perform different computations with the same PCM cells, just by
changing the applied pulses [80].

Another method for implementing PCM logic is through an enhanced sense
amplifier, i.e. a sense amplifier able to distinguish very small differences of
resistance in PCM cells. In this way, operations like AND/OR can be exe-
cuted juts by reading, at the same time, multiple memory cells attached to
the same SA. As consequence, the number of times the cells are programmed
is considerably reduced, and the relatively low endurance of PCMs is no
longer an issue [80]. However, the design of the modified SA may be chal-
lenging (see subsection 2.4.2).

Examples of stateful logic have already been presented in subsection 3.3.1,
subsection 3.3.2 and subsection 3.3.3.
On the other hand, an implementation of non–stateful logic is presented in
[81]. In this application, the phase change material is considered to be in an
initial crystalline state, and the applied pulses modulate the melting process.
Two Boolean operations, NOR and NAND, are presented respectively in Fig-
ure 3.12 (a)–(c) and (b)–(d). The logic inputs are mapped as a sequence of

97

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

voltage pulses, for which a low amplitude (LO) corresponds to a logic ’0’,
and vice versa an high amplitude (HI) represents a logic ’1’.
In this way, the set of pulses LO–LO, LO–HI, HI–LO, HI–HI corresponds to
logic inputs ’00’, ’01’, ’10’, ’11’. If the pulses are not separated by any time
interval (Figure 3.12 (a)), a NOR operation is performed. Instead, if a time
interval (of about 100 ns) separates the two inputs (Figure 3.12 (b)), a NAND
is computed. This is due to the fact that the two pulses configurations make
the ouput PCM cell undergo phase transition in two volumetrically different
ways. In other words, different portions of volume of the phase change mate-
rial are melted, corresponding to different resistive values. Such resistances
are then classified as HRS or LRS, depending on if they are above or below
a certain threshold (RREF). In PCM logic, conventionally, HRS corresponds
to a logic ’0’, while LRS to a logic ’1’ [81].

Such logic approach is advantageous for the re–usability of the PCM cells,
able to perform different operations just by changing the input pulses. How-
ever, it is to consider that a certain amount of time is necessary for applying
the logic pulses, for both pulses duration and eventual time separation. As a
consequence, the overall latency required for the logic operations increases.
For this reason, non–stateful logic is usually considered as a high latency
approach.

In conclusion, volumetric switching is a point of force for PCM cells, since it
is controllable by properly applied pulses. Such controllability is at the basis
of the two fundamental properties of PCMs, i.e. the analog storage capabil-
ity and the accumulative behaviour, introduced in subsection 3.4.1. These
properties are exploited in non–stateful logic approaches, where inputs are
given as voltage pulses and the output is the resulting resistance state of the
target PCM cell. However, such approach would lead to a time consuming
LiM application. Other possible PCM LiM options are stateful logic (IM-
PLY, MAD, MAGIC discussed for ReRAMs) and enhanced SA approaches
(that may make complex the design of the SA).

98

3 – EMT LiM

Figure 3.12. Input voltage sequence without (a) and with (b) a time sepa-
ration for implementing NOR (c) and NAND (d) operations; the resistance
states represent the computing outputs [81].

99

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

3.5 FeFET LiM
3.5.1 Why FeFET LiM?
Ferroelectic FETs present unique characteristics that distinguish them from
all other technologies: since they can be exploited, in practice, both as tra-
ditional transistors and for non–volatile information storage, they represent
a good candidate for low power and high density LiM implementations.
In addition to the FeFETs structural similarity with respect to MOSFETs,
both transistors share the same order of magnitude of ION/IOF F ratio (∼106).
This allows FeFET based memories to adopt simpler (and less expensive)
voltage–mode sensing schemes (see Appendix A).
Furthermore, the three–terminals structure of FeFETs offers separate paths
for reading and writing: such operations are performed respectively through
IDS sensing and VGS application (for switching the ferroelectric polariza-
tion), as described in subsection 1.4.4. This could represent an advantage
for FeFET LiM, since, differently from two–terminal resistive memories (like
STT–MRAM, ReRAM and PCM), no current is necessary in write oper-
ations: such feature reduces considerably the writing energy consumption
(Table 1.6), since, in resistive memories, write currents are usually large in
order to mitigate read disturbs [40].

In comparison with the STT LiM implementation in subsection 3.2.2, FeFET
LiM guarantees an high distinguishability between its logic states, mitigat-
ing the issues related to multiple WLs assertion. Unfortunately, single–phase
computations in FeFET memories are possible only with the use of bipolar
voltages, thus reducing the energy efficiency. Furthermore, FeFET LiM of-
ten needs multiple references for sensing and computing, increasing design
complexity [71].

3.5.2 FeFET logic approaches
Many different approaches to FeFET logic are possible: some of them are
based on modifications of standard FeFET memory cells, others delegate
logic computations to the sensing circuitry. Various articles even propose
the substitution, with FeFETs, of regular MOSFET for implementing logic
in SRAMs; 3D implementations are also feasible [65, 82, 83, 87].
In this section, it is discussed a type of FeFET logic that exploits conven-
tional FeFET memory cells (see Figure 1.11 (b)) and that can be integrated

100

3 – EMT LiM

on AND or NAND FeFET arrays (presented in subsection 2.5.1). Then,
it is proposed a qualitative classification that lists some examples of other
FeFET logic approaches that can be found in literature (of the last few years).

The first example of FeFET logic is described in [82]. Such approach is
based on the consideration that, together with the gate voltage Vg, the po-
larization state of the ferroelectric (FE) layer can be exploited as input of the
logic operation. Hence, the first input is a pre–initialized non–volatile FE
polarization, that corresponds to a certain transistor threshold level (VT).
Conventionally, high threshold (VT,H)/low threshold (VT,L) stand for logic
’0’/’1’, respectively. This can be clearly seen looking at the hysteretic Id–Vg

characteristic of the FeFET (Figure 3.13): the first input (input A) repre-
sents one of the two branches of the hysteresis. The second input (input B),
instead, corresponds to the gate voltage Vg on the horizontal axis: this time,
a low/high voltage level results in a logic ’0’/’1’. The output of the logic
function is the sensed drain current of the FeFET.
In particular, in Figure 3.13 (a) it is depicted the hysteresis loop correspond-
ing to a (N)OR operation: Id is maintained high (logic ’1’ at output) if at
least one of the two inputs are logic ’1’, i.e. when the threshold voltage is low
and/or when the Vg level is high. Otherwise, the FeFET current is heavily
reduced (logic ’0’ at output, Id1). This behaviour maps an OR function. If,
instead of Id, it is measured the corresponding output voltage, an inverted
signal is obtained: hence, a NOR operation can be obtained starting from
the same inputs and the same FeFET by sensing the output voltage instead
of the current. However, in order to measure the voltage of the gate, a pull–
up element (a resistor or a pMOS in resistive region) must be connected in
series to the FeFET, as shown in Figure 3.14.
In Figure 3.13 (b) it is depicted the FeFET hysteresis loop for implementing a
(N)AND logic function. The loop is obtained simply by horizontally shifting
the one in Figure 3.13 (a) with the application a proper source voltage Vs or
back bias voltage Vbb. When applying Vs>0 or |Vbb|>0, the FeFET conducts
a different amount of current Id for the same6 voltage Vg applied to its gate.
In this configuration, the drain current results high (logic ’1’, Id4) only if
both the logic inputs are ’1’, i.e. if the threshold voltage is low and the gate
voltage is high. In all the other cases, a low Id is obtained (Id1, Id2, Id3). In
this way, a logic AND is implemented when sensing the drain current, while

6i.e. of the (N)OR case

101

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

a NAND function is obtained by observing the output voltage.
The truth table corresponding to (N)OR and (N)AND configurations is re-
ported in Table 3.5, together with the involved current and voltage signals.

Figure 3.13. Hysteresis loop related to FeFET logic (N)OR (a) and
(N)AND (b) operations.

Figure 3.14. Electrically reconfigurable FeFET logic NAND/NOR gate. Vin

corresponds to the gate voltage (Vg) of the n–type FeFET, while Vs represents
the source bias and PU the pull–up device.

The described FeFET logic approach offers a great computational poten-
tial: with just one single FeFET, together with a pull–up device, up to four
Boolean operations can be implemented (OR, NOR, AND, NAND). This is
due to the FeFET intrinsic reconfigurability that such design exploits: just
by applying a Vs or Vbb voltage, the Id–Vg FeFET characteristic is shifted, al-
lowing to increase the number of logic functions that can be implemented [82].

102

3 – EMT LiM

In FE (N)OR (N)AND
Out Out Out Out

Vg Id Vout Id Vout

0 0 0 1 0 1
0 1 1 0 0 1
1 0 1 0 0 1
1 1 1 0 1 0

Table 3.5. Truth table of (N)OR and (N)AND FeFET operations, to-
gether with the involved signals.

The logic potential is even higher when connecting two FeFETs in paral-
lel or in series. The connection of multiple FeFETs introduces an additional
level of computing: for example, when two parallel FeFETs in AND con-
figuration are connected in parallel, an OR operation is performed between
them. The resulting function is (A · B) + (C · D), with (A,C) internal Fe-
FETs polarization states and (B,D) externally applied Vg voltages. Then,
if (C,D) are substituted by (A,B) respectively, an XNOR operation is per-
formed between (A,B) inputs (Figure 3.15, (a)).
On the other hand, a XOR function can be implemented by connecting in
series two OR FeFETs7, such that (A+B) · (C+D), and then by substituing
(C,D) with (A,B) (Figure 3.15, (b)). In this way, multiple input AND and
OR gates simply consists in parallel AND FeFETs and in series OR FeFETs,
respectively. Such results are obtained by measuring the output current Iout,
while negated functions are implemented by observing the output voltage
Vout.
The described FeFET logic gates can be mapped to AND and NAND mem-
ory arrays (depicted in subsection 2.5.1). For structural reasons, parallel
connected FeFETs are better arranged to AND arrays, while NAND arrays
are preferable for mapping in series FeFETs [83].

Also 3D FeFET memories are feasible, as anticipated in subsection 2.5.1.
In [65] it is discussed a 3D NAND FeFET array for high density storage re-
quired by deep neural network applications. The structure of a single memory

7i.e. two FeFET, each implementing an OR function.

103

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 3.15. FeFET logic XNOR (a) and XOR (b) functions are obtained
by measuring the output current Iout; negated operations —XOR (a) and
XNOR (b)— are implemented by measuring the output voltage Vout.

block can be described considering a reference xyz space: multiple NAND
arrays are aligned in parallel to yz planes, with all FeFETs oriented in z direc-
tion8. All the bitlines are parallel to y direction, while wordlines are aligned
to x direction, and all the gates of FeFETs in the same xy plane share the
same WL. String and ground select transistors are located at the structure
top and bottom xy planes, respectively: all bottom select transistors gates
share a common ground select line (GSL), while different string select lines
(SSL) links the gates of the homonymous transistors. Both GSLs and SSLs
are aligned to x direction. The overall 3D array, for a single memory block,
is depicted in Figure 3.16. The BLs of one block are connected to the BLs of
another block, respecting their enumeration (BL0 of block1 to BL0 of block2,
etc.). WLs are instead independent among different blocks.
Such structure is described here since it is very useful for a particular in–
memory computation: the vector–matrix multiplication (VMM). In order to
implement the VMM, a voltage vector is given in input to the WLs asso-
ciated to FeFETs sharing the selected xy layer, in multiple memory blocks.
The weight matrix simply corresponds to the FeFETs channel conductances.
The resulting output vector is obtained by sensing the BLs currents from the
various blocks [65].

8i.e. with S and D of a single FeFET sharing the same line along x direction.

104

3 – EMT LiM

A VMM performed by a 3D NAND FeFET array is also described in [84].
However, as discussed in the following, such operation can also be imple-
mented in 2D memories, with proper modifications of the conventional Fe-
FET cell.

Figure 3.16. 3D FeFET NAND array for VMM operation [65].

In some cases, logic functions can be introduced in a FeFET–based mem-
ory through the sensing circuitry. For example, in [40] it is described a
modified latched sense amplifier able to perform (N)AND, (N)OR, X(N)OR,
NOT and ADD operations. The designed SA is capable of working both
in current mode and in voltage mode, in order to implement more efficient
FeFET LiM functions.

However, a consistent number of FeFET LiM implementations is based on
modification of the standard 1FeFET cell.
For instance, in [85] two different design of ternary content addressable mem-
ory (TCAM) cells are proposed. Such memory is able to carry out parallel
searches among tables of saved data for finding a match with a certain given
data. For such capability, TCAMs are considered as a type of LiM circuit.
However, both the presented TCAM designs completely revolutionize the
structure of the conventional FeFET memory cell: up to 5 regular MOS-
FETs and 2 FeFETs assemble a cell, and one of the two designs also requires
an additional voltage rail for negative supply.
An interesting FeFET LiM implementation is described in [86]. The designed
2D FeFET array, with properly modified memory cell, is able to perform

105

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

a VMM9 in the signed ternary regime: the costumized FeFET cells, called
ternary compute–enabled memory cells (TeC–Cells), allow for ternary weight
storing and massively parallel signed VMM between the stored weights and
ternary inputs, through the assertion of multiple WLs. Such design can be
employed in ternary Deep Neural Network (DNN) applications.

Another possible approach to FeFET LiM consists not only in modifying the
cell structure, but also the FeFET device itself: in [71] it is proposed a 4T–
R10 memory cell that includes two access transistors and two cross–coupled
reconfigurable FeFETs (R–FEFETs). The cross-coupled configuration —not
easily implemented with conventional FeFETs— is possible for R–FeFETs
due to their capability of switching between volatile and non–volatile modes.
Such features is enabled through a modification of the ferroelectic layers in
the gate stack of standard FeFETs.
Furthermore, the presented memory design allows for differential access to
the cell, which improves the sense margin during reading; in addition, AND
and NOR operations between two cells are achievable just asserting two WLs
and sensing the cell outputs. All the other Boolean operations can be per-
formed through a proper compute module, such as the one designed in the
reference article.

Lastly, it must be noticed that, sometimes, it is considered a type of Fe-
FET logic also the case in which FeFETs substitute regular MOSFETs in
standard CMOS logic gates. While the logic circuits remain the same, pecu-
liar FeFET properties (e.g. non–volatile information storage) are introduced
in the design. With this approach, in [87] logic NOT and NAND functions
are implemented for building an all–FeFETs BL and block selector for a
ferroelectric NAND memory array.

9already mentioned for 3D FeFET.
10Acronym for 4 Transistors Reconfigurable.

106

Part II

SOT STT LiM
development

107

Chapter 4

SOT STT Memory
implementation

4.1 Technology choice
Among all the in–memory logic approaches presented in chapter 3, a
magnetoresistive–based one has been selected for a more practical applica-
tion. In this chapter, the following steps will be described:
1. the research of a Verilog–A model for simulate in Cadence Virtuoso

environment (section 4.2);

2. the development of a memory array and writing/peripherals without
computational features (section 4.3);

3. the discussion of simulations results of such memory design (section 4.4).

4.2 The model
Interesting Verilog–A models, developed by Spintronics Interdisciplinary Cen-
ter (SIC) of Beihang University, are presented in [88].

Initially, a traditional Spin Transfer Torque Perpendicular Magnetic Anisotropy
(STT PMA) MTJ model has been investigated [89]: after some simulations,
however, it has been noticed a discontinuity in the current across the MTJ,
even when the resistive state is stable; this peculiarity is predicted by the
model manual, but it is present even if no resistance or switching dura-
tion variations are introduced; furthermore, relatively long (≥ 10 ns) writing

109

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

pulses are required for achieving a complete state switching.

For these reasons, but also for the attractive perspective offered by a Spin
Orbit Torque (SOT) switching (already presented in subsection 1.2.4), an-
other model —found in [90]— has been selected.
Such model exploits the combined action of STT and SOT effects to enhance
MTJ switching speed, as qualitatively displayed in Figure 4.1: for identi-
cal STT input currents amplitudes, the SOT STT–assisted switching (blue
curve) is much faster than the STT–only switching (purple curve). Further-
more, the required STT pulse duration is, in the first case, much shorter
(2 ns) than the second case one (5.5 ns). The complete MTJ switching can-
not be achieved by SOT–only case (green curve), since the SOT current only
plays an assisting role in the perpendicular MTJ STT switching.

Figure 4.1. Practical simulations performed in Cadence Virtuoso by append-
ing the Tmz (z–component of magnetization of the MTJ free layer) curve of
three different simulations (with only SOT, only STT, both STT and SOT
inputs) done on the same MTJ.

A SOT–MRAM based on PMA MTJs faces some difficulties in reaching
a stable perpendicular magnetization: for this reason, it usually exploits
the contribution of a magnetic field for achieving the complete switching.
However, the field assistance to SOT in–plane current (for MTJ switching)

110

4 – SOT STT Memory implementation

increases the device complexity and lowers the thermal stability of the MTJ
[91].
Another way for breaking the magnetization asymmetry is the one proposed
by [90], where the STT current substitutes the role of the magnetic field in
enhancing SOT switching. This allows to inherit the SOT advantage of low
power consumption1 and, at the same time, to speed up the STT–only MTJ
switching. The model takes into account only the Spin Hall Effect (SHE)
contribution to SOT current since "the Rashba Effect"2 —as declared— "is
still subjected to debate" [91].

The original SOT STT PMA MTJ model [90] consists in a Verilog–A script
associated to a symbol, testable into Cadence Virtuoso environment. Three
versions of the model are provided: a first standard one, a second one where
some deviation factors are introduced, and a third one where a testbench is
set up to simulate some cases of study.

The basic 3–terminals SOT STT element, equal for all the three model ver-
sions (except for some Verilog-A parameters), is reported in Figure 4.2. It
includes a PMA MgO–barrier MTJ over a a β–W Heavy Metal (HM) strip,
whose default sections are circular (that corresponds to the Verilog-A param-
eter shape = 2, settable through the Component Description Format (cdf)
in Cadence) and rectangular, respectively. The MTJ section can be also set
to rectangular or elliptical by changing shape to 0 or 1, respectively. All the
physical and geometrical parameters adopted for simulations are reported in
the model manual [90], while the system of equations describing the model
(modified Landau–Lifshitz–Gilbert (LLG) equations) behaviour is discussed
in [91].

The SOT STT device can be seen as a trio of resistances: the variable
one represents the MTJ, while the other two corresponds to the HM layer
and are set to 0.5 kΩ. The RMT J —in the two logic states— is computed
through the Cadence calculator by considering the current flowing through
it and the voltage between T1 and TC points: in this way, the resistance of
both parallel and anti–parallel magnetization states can be measured.
T1, T2 and T3 are the real pins corresponding to the three terminals of the

1With respect to STT one.
2Spin Hall and Rashba effects were briefly introduced in subsection 1.2.4.

111

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 4.2. SOT STT MTJ model representation (left) together with its
equivalent resistive circuit (right) [90].

device, while TC and Tmz are virtual pins: the first one is used to detect the
voltage in C point, while the second one indicates the perpendicular (along
z) magnetization state. A Tmz = −1 V matches a parallel configuration
between the free and fixed MTJ magnetizations (LRS, logic ’0’), while the
anti–parallel states corresponds to a Tmz = 1 V (HRS, logic ’1’).

The provided testbench schematic is shown in Figure 4.3: the SOT and
STT currents are supplied by ideal current generators, while T3 is connected
to a dc voltage set to 0 V in order to avoid an eventual model bug when con-
necting it directly to ground (reported also by the manual [90]). Four preset
states are associated to the testbench: asymmetry, field–like, only–SHE and
only–STT. Unfortunately, the states of the testbench were locked and not di-
rectly usable into Cadence, hence the parameter values for each states have
been set in new states by observing the provided (but not usable) states files.

The asymmetry configuration takes into account the different propensity
of STT current to write ’0’ or ’1’, by regulating the cfd parameter asy (when
set to 1 no asymmetry is introduced, otherwise it is considered for 1.05÷1.1)
and SAS (when 1 it takes into account the asy factor, if 0 it does not).
A field–like simulation is instead set up by modifying the fac_FL cfd param-
eter that allows to decide if a field–assisted torque is considered or not.
The parameter Bext offers the possibility to introduce an external magnetic
field and regulate its size (if Bext is equal to 0, a purely electrical simulation
takes place).

For the sake of completeness, variations of the oxide (tox) and free layer (tsl)

112

4 – SOT STT Memory implementation

Figure 4.3. Pre–set testbench provided by [90] for simulating the SOT STT
MTJ model. The voltage generator on T3 is set to vdc = 0 and it is present
only for preventing a model bug discussed in the model manual.

thicknesses and of the TMR can be introduced by setting the STDS parame-
ter to 1 (uniform distribution) or 2 (Gaussian distribution) and by regulating
the respective percentage variations (DEV_tox, DEV_tsl, DEV_TMR).

All these parameters are discussed in the model manual [90], and the various
states were tested on the Cadence Virtuoso schematic to verify the device
functioning. In particular, only–STT and only–SHE configurations (without
asymmetry and field assistance) confirmed the trend in Figure 4.1.

However, the most interesting configuration —i.e. the SOT STT one— is
not provided among the testbench input states. The article related to the
model [91] is useful in order to have an idea of the pulses used for this case.
In Figure 4.4 it is shown the SOT STT MTJ behaviour when applying SOT
and STT pulses of different duration: it can be noticed that the switching
speed is directly dependent on the SOT pulse duration, hence such pulse
must be shortened as much as possible. The article proposes a STT duration
of 4 ns and a SOT one of 0.5 ns.

On the other hand, the amplitudes of SOT and STT pulses adopted by
the article are dependent on the setting of the geometric parameters (i.e. the
sizes of the MTJ and the HM layer), that slightly larger than the ones used
in the model manual; it has to be considered that the geometric setting used
in this work is the same of the one reported in the manual [90].

113

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 4.4. Magnetization along z for different duration of SOT STT pulses [91].

Nonetheless, the pulses durations adopted by the manual are different than
the ones of the article (only SOT is specified in the manual, 0.75 ns long);
hence, a re–computation of the working point has been performed not only
to replicate the right functioning of the device, but also to try to optimize
the pulses duration with respect to the switching delay and the power con-
sumption.

With a series of parametric analyses, a good compromise is found by adopt-
ing 1.5 MA cm−2 · 2 ns / 50 MA cm−2 · 0.5 ns for STT / SOT pulses: a SOT
current density higher in modulus with respect to the one of the article [91]
and shorter than the one of the manual, but that allows the STT pulse to
be reduced to 2 ns (instead of 4 ns) with the same amplitude of the one pro-
posed in the paper. As it can be seen from Figure 4.5, it is evident that the
switching duration is comparable to both the article and the manual one,
with shorter STT pulse. The STT current polarity determines the direction
of the Tmz switching, and, hence, the resistive state of the MTJ. The SOT
current, instead, plays an assisting role in the switching process regardless of
its direction.

114

4 – SOT STT Memory implementation

Figure 4.5. Tmz curves and input current pulses for write ’0’ (a, c) and write
’1’ operation (b, d). The ordinate axis is related to the current pulses, while
the Tmz voltage axis (hidden in the figure) goes from −1 V (logic ’1’) to 1 V
(logic ’0’). The initial MTJ logic state (PAP) is equal to 1 for a),d) and to
0 for b),c). The c) and d) plots display the slight Tmz oscillation that takes
place when a writing operation is performed on a MTJ that already has the
target logic value (i.e. a write ’0’/’1’ on logic ’0’/’1’).

115

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

However, with the introduction of the real drivers (subsection 4.3.3) and
the logic implementation (chapter 5) it has been is preferred to provide volt-
age inputs instead of current ones, adopting the same pulses duration and
an equivalent working point.

In this work it is adopted the second version of the MTJ model
(PMA_SOT_STT_DEV), but no deviation of the parameters is introduced
during the simulations. However, it is left the possibility to introduce pa-
rameter variations at cell and array level, as discussed in subsection 4.3.5.

4.3 SOT STT memory design
In this section it is described the design and testing of a SOT STT MTJ–
based memory, without logic functions implemented in the array. The de-
sign includes the basic cell (subsection 4.3.1), organized into arrays of differ-
ent sizes (8x8, 16x16, 32x32, subsection 4.3.4), the sensing interface (Sense
Amplifier and read driver, subsection 4.3.2) and the write drivers (subsec-
tion 4.3.3). The complete architecture is tested for read and write operations,
with delays and power consumption results discussed in section 4.4.

All the simulations are performed in Cadence Virtuoso employing the ST
FD–SOI 28nm technological library.

4.3.1 The PMA SOT STT cell
The adopted cell design is reported in Figure 4.6: it is inspired by SOT
MRAM cell proposed in [92], although the working principle is different.
The cell employs a couple of nMOS transistors for accessing two of the three
MTJ terminals. The n–MOSFETs aspect ratio is as small as possible to
maximise the switching speed, even at the cost of an higher resistance in ON
state, and for limiting the cell area.

In a standard SOT cell, the RBL (Read Bit Line)–to–SL (Source Line)
and the WBL (Write Bit Line)–to–SL represent the two separate signal paths
for reading and writing, respectively. This is also the reason for which some
SOT cell designs [93, 94] adopt separate WWL (Write Word Line) and RWL
(Read Word Line) instead of an unique WL to activate the access transistors.
In SOT STT case, instead, both RBL–to–SL and the WBL–to–SL paths are

116

4 – SOT STT Memory implementation

Figure 4.6. Proposed SOT STT MTJ cell.

employed for performing a write operation, and correspond to the STT and
SOT currents paths, respectively. On the other hand, only RBL–to–SL path
is necessary for a reading operation. Both operations are summarized in
Table 4.1.

Operations Write "1" ("0") Read
WL Vdd Vdd
RBL VSTT>0 V (<0 V) Isense
WBL VSOT>0 floating
SL 0 0

Table 4.1. Overview of the voltages and currents involved in writing
and reading operations.

When performing a write operation, proper voltages are applied to both
RBL and WBL. As anticipated in section 4.2, it is the polarity of the STT
pulse (on RBL) that determines the resulting logic state of the cell. In stan-
dard SOT cells, the negative writing voltage is provided by applying the
corresponding positive voltage to the SL while grounding the opposite line:
this is possible since only one current is employed for writing, hence the re-
sistive path between the lines is symmetrical.
In SOT–STT case, instead, both the access transistors are turned on, and

117

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

both RBL andWBL are supplied: since the resistive path is no more symmet-
rical, the negative voltage has to be provided by a dedicated negative supply
rail and adapted by properly designed write drivers (subsection 4.3.3).
From this point on, in almost all memory and LiM operations, the shared
SL will be mainly used only for giving a ground reference.

4.3.2 The sensing interface
The sensing interface includes both Sense Amplifier (SA) and read driver
design.

As anticipated in Table 4.1, a reading operation in SOT STT cell consists
in activating the WL while providing a proper sense current (Isense or Iref)
that flows from the RBL to the (grounded) SL of the selected cell.
The WBL is left floating during such operation, as it can be seen from the
WBL driver description in subsection 4.3.3; this is due to the fact that, differ-
ently from SOT cells like the ones in [93, 94], in the proposed design there is
not a dedicated WWL signal that makes the WBL access transistor turn off
during reading. Hence, the direct grounding of WBL would add in parallel
to the 1/2·RHM resistance between Tc and T3 terminals (Figure 4.2) the Rn

+ 1/2·RHM series3 of the WBL–to–Tc path.
The WBL grounding, however, would not completely preclude the read oper-
ation, but would decrease the already small sensed voltage of the cell (Vsense).
This is also one of the reasons for which the simulation results discussed in
subsection 4.4.3 are directly referring to the use of "real" drivers, and not
just voltage generators: in the second case, in fact —during both writing
(after the 0.5 ns pulse) and reading— the WBL would be put to ground by
the turned off voltage generator, and not disconnected from the cell.

The overall read interface is represented in Figure 4.7. For convenience,
it is depicted only the selected cell, instead of the entire column to which the
SA is attached.
As previously discussed, a sensing current Isense is provided to the cell through
the RBL: this current generates a voltage Vsense on the RBL that is propor-
tional to the resistance of the MTJ (i.e. its logic value) and that can be
sensed by the SA. The second input to the sense amplifier is the voltage
Vref produced by the same Isense current flowing on a fixed resistance, that

3Rn is the ON resistance of the WBL nMOS access transistor.

118

4 – SOT STT Memory implementation

represents the reference cell.
With respect to the standard STT reference cell discussed in Figure 2.3, a
parallel of SOT STT MTJ is not directly feasible, unless by leaving floating
one of the two heavy metal resistances; furthermore, a simple fixed resistance
involves much smaller dimensions. The resistance is sized such that the volt-
age on it falls approximately in the middle of the interval between the high
and low sensing voltages on RBL, i.e. Vref ≈ (Vsense,H + Vsense,L)/2. In this
way, the SA provides a logic ’1’ only when Vsense > Vref , otherwise a logic
’0’, as it can be seen in Figure 4.8.
The read driver is the circuitry that provides the proper Isense current to
both the reference cell and the selected SOT STT cell.

Different circuits for the SA were tested. In particular, the proposed SOT
STT memory requires a voltage–mode SA (Appendix A) capable of distin-
guish between low voltages (few hundreds of millivolts). The fastest voltage
sensing is achieved by latch–based SAs, as the VLSA in Figure A.3 which is
often employed in SRAM sensing. However, in this SA scheme the inputs are
provided at the gates of a couple of nMOS: hence, due to the small amplitudes
of the voltages (Vsense, Vref) involved in reading operation, the discharging
time of such transistors may be quite long (several hundreds of picoseconds)
and heavily affects the sensing delay. For this reason, it is preferred a SA
circuit which provides the input voltages directly to the latch, through the
source–drain path of two couples of access nMOS–pMOS (M5–M6, M7–M8 in
Figure 4.9). The SA circuit is taken from [95]: however, the original scheme
provided a Sense Enable (SE) signal as supply voltage of the latch, while in
this work it is preferred to provide a Vdd supply voltage through a pull–up
pMOS enabled by the negated SE.

This SA circuit is particularly suited for working with very low input volt-
ages and a small voltage difference between these. The design proposed in
the article [95] is based on a 65 nm CMOS process, hence all transistor di-
mensions are adapted for a 28 nm process. The final sizing is reported in
Figure 4.9: here, the access transistors (M5,M6,M7,M8) are equally–sized in
order to make nMOS transistors stronger than pMOS ones, since the input
voltages are closer to ground voltage than supply one.

119

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 4.7. Sensing interface, that includes both the read driver and the
sense amplifier, which are shared by all the cells of the column.

The nMOS transistors M10–M11 are exploited for discharging the SA
outputs to ground, in order to avoid any possible voltage bias after a read
operation. Since the output nodes and the input ones are separated by the

120

4 – SOT STT Memory implementation

Figure 4.8. Example of reading operation for PAP = ’0’ (left) and PAP
= ’1’ (right), where PAP is the initial MTJ logic state. The curves are
directly extracted from a read simulation on a single cell performed in
Cadence Virtuoso.

S–D path of the access transistors, that are in ON state when the SE is dis-
abled, the M10–M11 transistors are useful for discharging the RBL line when
no operation is performed in the array (i.e. an idle state). For this reason
the discharge pulse duration is extended for the whole idle cycle, instead of
just a single small spike at the end of the reading operation4.

For the proposed SA scheme, no precharge to Vdd of the output lines is
necessary. After activating the selected WL, a small time interval (about
tens of picoseconds) is required for sampling the input voltage on the inter-
nal nodes of the latch, during which the SE is disabled. Such interval (called

4Differently from [95].

121

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 4.9. Adopted sense amplifier, adapted from [95].

WL–to–SE delay) is longer for larger arrays, hence it contributes in increas-
ing the overall read delay, as shown in subsection 4.4.3. When the SE is
activated, the SA connection to the RBL and reference cell is removed, and
the sampled voltage —already present in the latch— is amplified, leading to
logic ’1’ or ’0’ at the SA outputs.

The initial design of the read driver consisted in a parallel between a refer-
ence resistance and an ideal current generator (Isense): the resulting voltage
across the resistance (Vref) represented the second input of the SA, along
with Vsense of the selected cell.
With such configuration, however, a problem occurrs when computing the
leakage power during read operation. In theory, if a sensing is performed
on a single selected cell in the array, the power consumption increases with
the increasing of the array size, due to leakage contribution. When using an
ideal current generator, instead, such power contribution seems to decrease
for larger arrays. This is due to the fact that, in each memory column, the un-
selected cells represent a parallel of very high resistances: when adding more

122

4 – SOT STT Memory implementation

cells in parallel, the equivalent resistance decreases, while the current Isense

(provided by the read driver to each column) is constant since the current
generator is ideal. In this way, the resulting power consumption P = R · I2

(where R is the equivalent resistance of the cells in the column and I is the
sensing current), computed by Cadence, decreases for larger array height (i.e.
larger number of cells in the column).
Such scenario does not occur when the input is directly provided by an ideal
voltage generator, instead of a current one. In this case, in fact, the fixed
V input and decreasing column resistance R makes the power consumption
P = V 2/R higher for longer columns.

For this reason, in order to have a reliable estimation of the power con-
sumption, it is necessary to adopt a current source whose value depends on
the load to which it is attached (i.e. the column resistance). In order to pro-
vide such a "real" current input, a pre–amplifier circuit as the one proposed in
[96] is adopted: a current mirror with ad additional couple of nMOS which,
in this work, are exploited just for enabling or not the current supply5. The
enable signal of these transistors is called SE_2 since it represents a second
Sense Enable, that differs from the first one6 since it has not to be delayed
with respect to the activation of the WL (the previously discussedWL–to–SE
delay); this is due to the fact that when SE_2 = 1, the same sensing current
is made flowing through both the selected cell and the reference cell, thus
generating the Vsense and Vref SA inputs respectively. Hence, Vsense and Vref

must be already available at the SA latch input before the SE (enable signal
of the SA) is activated.

The read driver circuit scheme is reported in Figure 4.10; the "strong" and
"weak" sides of the current mirror are equally sized in order to guarantee
the same Isense to both the cells. The pMOS are sized as small as possible
(higher resistance) since the sensing current is quite very low, for avoiding
unwanted writing operations.

5Instead of clamping function as described in the article.
6The first SE is the one in input to the SA.

123

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 4.10. Read driver used to provide the proper Isense to both the
reference cell (Rref) and the selected cell (through the corresponding
RBL), generating the two SA inputs Vref and Vsense, respectively. In
the schematic, the SE2 signal (Table 4.2) is linked to the EN input. It
has been adapted from [96].

4.3.3 The WL and BL write drivers
Real drivers for both RBL/WBL write inputs generation (hereinafter called
BL write drivers) and WL access are introduced in this section for two main
reasons:

1. if ideal voltage generators on both the bitlines are used during write
operations, they are turned off when a reading is performed, since such
operation is current–based. As a consequence, both RBL and WBL are
grounded, interfering with the path of the sensing current generated by
the read driver (subsection 4.3.2): if RBL is connected to ground, a
Vsense = 0 is fixed at the input of the SA, hence the reading operation
cannot be fulfilled;

2. since the read operation is already based on a real driver (for the reasons
explained in subsection 4.3.2), more coherent results can be obtained in
the performance evaluation (subsection 4.4.3) by using real drivers also
for writing and accessing the cell.

The WL driver is designed as a simple buffer consisting in a couple of invert-
ers; no enable signal has to be provided to the driver since the WL voltage
must be always defined for turning on/off the cell access transistors. The

124

4 – SOT STT Memory implementation

reference scheme is reported in Figure 4.11.

Figure 4.11. A simple buffer for wordline activation.

The RBL write driver is responsible for generating the proper STT write
pulse, as the ones in Figure 4.5. The circuital scheme is shown in Figure 4.12:
it consists in a double inverter stage provided with an enabling signal.
The particularity of such driver is the bipolar supply: a negative rail Vss=−0.5 V
must be given to the driver in order for it to generate the desired nega-
tive/positive write voltage pulses. The negative voltage requirement for SOT
STT cell writing is discussed in subsection 4.3.1. The IN signal corresponds
to the word bit that has to be written in the cell.
The nMOS and pMOS sizing is decided, after a series of tests, to be the one in
Figure 4.12 for ensuring the optimal inputs amplitude in order to minimize
the MTJ switching duration. If an higher dynamic is required (for exam-
ple, in other driver applications), it is sufficient to increase the transistors
size, or to put additional MOSFETs in parallel to the pull–up or pull–down
transistors of the second inverting stage, for decreasing the RBL–to–Vdd/Vss

resistive paths.
Another peculiarity of such circuit is that both the enable signal EN and the
input IN must be bipolar as well (i.e. Vdd/Vss for logic ’1’/’0’); otherwise,
when the enable is at 0 V, the pulldown nMOS sees a Vgs = Vss that prevents
it from turning off, and the RBL remains dependent on the IN value even if
the driver is disabled.

The function of the WBL write driver, on the other hand, is to provide
the correct 0.5 ns–long SOT voltage pulse for speeding up the MTJ switching

125

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 4.12. RBL write driver: the nMOS and pMOS ad hoc sizing
(higher/lower R) controls the amplitude of STT writing voltages (∼ −300 mV
to write ’0’, ∼ 500 mV to write ’1’)

operation (Figure 4.5).
The circuit is depicted in Figure 4.13. The pMOS connected to Vdd is the
one that delivers the necessary SOT voltage to the WBL.
Two signals control the behaviour of the driver: the enable WBL_EN (dif-
ferent from the one of RBL driver) and the discharge WBL_disch. The
WBL_disch signal has a role similar to the discharge signal provided to the
sense amplifier7 (Figure 4.9): it can be used to discharge the WBL when no
operation is performed (i.e. idle state). Hence, during a writing operation, it
is usually set to ’0’. The WBL_EN signal, instead, is the one that activates or
disables the pull–up pMOS: since the SOT pulse duration (0.5 ns) is shorter
than STT one (2 ns), when EN is put to 0 —after the 0.5 ns pulse— it turns
off the pMOS, disconnecting the driver from the WBL (since the nMOS is
already detached by WBL_disch = 0).

7In that case, the discharging is performed on the RBL.

126

4 – SOT STT Memory implementation

Figure 4.13. WBL write driver: the pMOS sizing controls the amplitude of
SOT writing voltage (∼ 800 mV for both write ’0’ ad ’1’). The discharge
signal allows to put the WBL to ground when no operation is performed

4.3.4 The array organization

The SOT STT cells were firstly tested in a single 8–bit column and a single
8–bit row with all ideal drivers. Then, for the reasons discussed in sub-
section 4.3.3, real drivers were introduced, and their functioning has been
verified in 8x8, 16x16 and 32x32 array configurations together with all the
other designed peripherals.

A qualitative representation of the array organization is shown in Figure 4.14.
As it can be seen from the figure, RC circuits are introduced in order to sim-
ulate the interconnection parasitics. The RC interconnections represent an
important contribution to delays in all the operations performed in the mem-
ory: for example, a cell placed at the end of the row (i.e. farthest from the
WL drivers, see Figure 4.17) is the last one to be accessed by WL signals,
while a cell in the last row (i.e. farthest from the BL drivers) is the slowest
to be written, and so on. However, the parasitic resistances and capacitances
are sized to be small (5 Ω and 100 aF respectively) for preventing the delays
measures to be overturned by the presence of interconnections and obtain
more significant results.

Firstly, an 8x8 array is designed with 64 bit–cell SOT STT components,
by repeating the previously designed 8–bit row patterns and connecting them

127

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 4.14. Parasitic contributions (due to the interconnections) dis-
tributed in all the lines of an 8x8 array.

with each other8.
Then, a block representation (symbol) of the array is extracted through Ca-
dence (Figure 4.15): wordlines/bitlines pins are added in top–bottom/left–
right positions of the array for leaving the possibility of connecting the array
(ex. with other ones) in both vertical and horizontal directions, respectively.
Data pins (Tmz) of all the bit–cells of the array are also made available as
outputs (for check purposes), even if only first and last row Tmz are consid-
ered for evaluating the array performance.

8For "pattern" is intended the row schematic, and not its symbol; in fact, for conve-
nience, the 8–bit row symbol has not been created, since some tests have been done by
modifying a single cell in the entire array for verifying the correct functioning of all the
memory operations in different parts of the array.

128

4 – SOT STT Memory implementation

Figure 4.15. Cadence symbol of the SOT STT 8x8 array

In order to obtain a 16x16 array, four 8x8 array symbols were combined
as shown in Figure 4.16.

The overall schematic for testing the memory is reported in Figure 4.17.
The real drivers are linked to the top of the bitlines and provide the correct
voltage/current inputs to the array. The sense amplifiers read the voltage
Vsense at the bottom of the array. The WL drivers, instead, are attached to
the left side of the array.

129

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 4.16. 16x16 array obtained by combining 8x8 arrays components.

130

4 – SOT STT Memory implementation

Figure 4.17. SOT STT memory array and peripherals organization.

131

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

4.3.5 Testbench states
The signals that control the functioning of the memory are listed in Table 4.2,
together with a brief description. Such signals represent the entire list of
inputs that must be provided to the schematic for testing all the memory
operations. They are supplied through a series of ideal voltage generators
whose parameters (delay, width and value, see Table 4.4) are left as variables
and then set in the Cadence simulation environment. The simulation settings
are then saved as states (for all memory operations) that can be reused for
successive simulations.

Signal Write "0" Write "1" Read Idle Signal description
V_WL Vdd Vdd Vdd 0 wordline activation
IN Vss Vdd Vss Vss data input (to be written)

RBL_EN Vdd Vdd Vss Vss RBL write driver enable
WBL_EN Vdd Vdd 0 0 WBL write driver enable
WBL_disch 0 0 0 Vdd WBL discharge (WBL write driver)

SE 0 0 Vdd 0 SA enable
SE2 0 0 Vdd 0 RBL read driver enable
disch 0 0 0 Vdd RBL discharge (SA)

Table 4.2. Input signal values for all the memory operations.

The WBL_EN signal in Table 4.2 is the only one that has to be provided
for a duration lower (0.5 ns) than the other ones (2 ns), since it corresponds
to the duration of the SOT pulse. The write operation requires a minimum
of 2 ns to be performed (for the Tmz to be switched completely), while the
read cycle can be reduced down to 1 ns. All the signals presented in Ta-
ble 4.2 are considered for power consumption calculation, as discussed in
subsection 4.4.2.

The other signal of interest are listed in Table 4.3, followed by a brief de-
scription and the indication of the operation for which they are relevant to
be observed for. Tmz, SAO/n and Vref correspond to output signals of
the single cell, sense amplifier and read driver, respectively; V _RBL and
V _WBL are instead voltages taken directly from the bitlines of interest.
The signals in both Table 4.2 and Table 4.3 can be observed in the Cadence
output waveform plots after running the state corresponding to the selected
operation.

132

4 – SOT STT Memory implementation

Signal Relevance Signal description
V_WBL write SOT voltage pulse
V_RBL write/read STT voltage pulse/Vsense
Vref read Voltage on reference cell
SAO read Sense Amplifier output
SAOn read Negated Sense Amplifier output
Tmz write/read* MTJ magnetization state

Table 4.3. Other signals of interest involved in memory operations. Note:
*It may be interesting to observe the Tmz for checking that no state disturbs
occur during reading operation.

In Table 4.4 are listed all the variables that can be set in the selected
simulation state.
The PAP parameter is particularly relevant since it allows to change the
initial logic state of the SOT STT MTJ: for example, when loading ’write1’
state, Figure 4.5 (b) is obtained for PAP = ’0’ while Figure 4.5 (d) for
PAP = ’1’. The same procedure is valid for ’read 0’ (PAP = ’0’) or ’read 1’
(PAP = ’1’) operations (Figure 4.8). This variable is equally set for all the
cells of the array.

The fall_ris_time variable represents the falling and rising time of all the
waveforms generated by ideal voltage generators in the schematic. Rref is
the value of the reference cell resistance and, if changed, it modifies the min-
imum WL–to–SE_delay discussed in subsection 4.3.2, since it introduces an
asymmetry in the read 1/0 operations9.
The last three variables of Table 4.4 are referred to a generic signal of Ta-
ble 4.2: in fact, in the simulation states are set all the input signals (WL, IN ,
WBL_EN etc.) amplitudes according to Table 4.2 together with their du-
ration (WL_pulse_width, IN_pulse_width, WBL_EN_pulse_width etc.)
and their delay (WL_delay, IN_delay, WBL_EN_delay etc.).

The IN signal amplitudes are specified for each column and row by an ap-
pendix with the corresponding column/row number, for leaving the possibil-
ity of testing all possible input word to be written: for example, in an 8x8

9Due to the fact that it changes the Vref , that is set to be exactly in the middle of
high–low Vsense interval.

133

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

array, a word = "01000111" can be written in the selectedWL by loading the
write simulation state and simply changing the variables IN_0 = −0.5 V,
IN_1 = 1 V, IN_2 = −0.5 V, ... , IN_7 = 1 V. When an _all appendix
follows the signal name, it means that the amplitude is set equally to all
columns/rows without a numerical appendix: for example, in the 8x8 array,
SE_all corresponds to the sense enable amplitude for all the column SA
from 0 to 6, while SE_7 is specified for the last column SA. This is done
for leaving the possibility to quickly activating all the SE values (SE_all =
1, SE_7 = 1) or just the last one (SE_all = 0, SE_7 = 1), in order to
compute the performance of reading operation on one single cell10. However,
if there is any doubt, by selecting the wanted variable in the loaded state
and clicking "find", Cadence will immediately visualize the location of the
selected variable in the schematic.

The asy,Bext, fac_FL, SAS, SDTS parameters are already described in
section 4.2 and are left as variable in case of, in future, device variation fac-
tors are wanted to be taken into account at array level 11. The seedin variable
is a parameter required by the SOT STT model, and it is used as random
number to initialize a random distribution function inside the Verilog-A file.

A Python script (section B.1) for input waveforms generation has been
written and successfully tested in a SOT STT cell schematic, simulating all
the possible memory operations in a single time analysis; the results are
shown in Figure 4.19. Light blue and orange vertical stripes corresponds to
write ’0’/’1’ and read ’0’/’1’, respectively. The white stripes that separate
writing and reading cycles are 0.5 ns–long idle cycles, useful for exploiting
both RBL and discharge signals12 for removing any residual bias voltage. It
is chosen a Tck = 0.5 ns that allows the generation of the SOT writing pulse
(WBL_EN), and the read cycle is reduced at its minimum (1 ns) for testing
how much it can be shortened. For the results reported in subsection 4.4.3,
instead, it is chosen a 2 ns–long read cycle, since the increasing WL–to–SE
delay w.r.t. the array size may cause read errors for too short reading pulses.
It is interesting to note how the sense amplifier output (SAO) is dependent
on the RBL voltage (during writing cycles it sees exactly the writing voltage

10The one on the last column for the reasons explained in subsection 4.4.1.
11As stated in section 4.2, no device deviation is considered for all the performed

simulations.
12see subsection 4.3.2 and subsection 4.3.3.

134

4 – SOT STT Memory implementation

Variable Value Variable description
PAP 0/1 Initial MTJ logic state

Cparasitic 500 aF Interconnection parasitic C
Rparasitic 5 Ω Interconnection parasitic R
fall_ris_time 50 ps All signal falling and rising time

Rref 18 kΩ Fixed R of reference cell
Vdd 1 V Positive supply voltage
Vss −0.5 V Negative supply voltage
asy 1 section 4.2
Bext 0 section 4.2
fac_FL 0.5 section 4.2
SAS 0 section 4.2
SDTS 0 section 4.2
seedin 10 section 4.2
signal Table 4.2 Signal of Table 4.2 amplitude

signal_pulse_width 0.5 ns/2 ns* Signal of Table 4.2 pulse width
signal_delay 2 ns** Signal of Table 4.2 delay

Table 4.4. Complete list of all the variables used for simulating the designed
SOT STT memory in Cadence. Notes: *the only signal 0.5 ns–long is the
WBL_EN, as explained before. **2 ns of delay is just set for convenience,
since during testing phase it has been observed also the signal values before
the performed operation: it can be freely changed together with the simu-
lation time interval [note: the delay–to–stop–time interval of the simulation
regulates the integration interval for power consumption calculation.

pulses driven by the RBL driver, subsection 4.3.3): this is self–evident by
observing that only an activated pMOS separates the RBL from the SAO
(Figure 4.9).

However, a different type of simulation flow is adopted, that correspond to
the one illustrated in Figure 4.18. The Cadence simulation environment can
be saved into a state, which includes the whole variables setting, the type of
analysis, the outputs to plot and all the functions that have to be computed
(ex. delays, power consumption etc.) in a single file. Different states are
saved for performing an operation each: by simply loading and running the
state write1, for example, all output waveforms and performance evaluation
corresponding to the homonymous operation will be displayed in Cadence.

135

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

The reasons behind the choice of such type of simulation flow are the follow-
ing:

1. a lot of time is saved when one operation at time is performed, since the
simulation duration can be reduced a lot (minimum of 1 ns for a read
cycle): a loaded state directly sets the analysis interval for the desired
operation and, in addition, it plots only the output signals of interest
corresponding to such operation;

2. the state approach allows to perform parametric simulation with time
parameters, such as delays and pulse widths, since they are saved as
variables in the schematic. This is a crucial point, for example, for eval-
uating the minimum WL–to–SE_delay: different parametric analyses
are performed by slowly changing the SE delay (and the corresponding
pulse width) and observing the SA outputs during a read operation.
The minimum SE_delay that makes the SA read the correct cell value
corresponds to the WL–to–SE_delay of the selected schematic13.
This approach is also useful in deciding a proper point of work with
different pulse widths of SOT and STT pulses (see section 4.2).

3. for performing the simulations of point 2), all the input voltage genera-
tors are already set for each array schematic. Such generators must have
specific names for being considered by the Python script used in power
consumption evaluation (see subsection 4.4.2). If it is considered that
just a single cell requires up to 8 signals (Table 4.2), each provided by a
dedicated generator, it is evident how much time–expensive would be to
substitute all the generators (ex. in a 32x32 array design) considering
that:

• the newly introduced generators are vpwlf components, able to take
the time information from a file of a given folder path. The correct
folder path and file name have to be provided to each vpwlf generator
introduced in the schematic.

• the new generators must maintain the same component names of the
previous ones in order to avoid problems with the Python script for
memory consumption computing.

13As anticipated in subsection 4.3.2, the WL–to–SE_delay is dependent on the array
size

136

4 – SOT STT Memory implementation

For such reasons, a state approach is preferred for providing inputs to the
Cadence schematic.

Figure 4.18. Simulation flow.

4.4 Performance evaluation
This section is committed to explain how the delays and power consump-
tion are computed for all the memory operations. In both cases, dedicated
functions are defined in Cadence environment and directly computed by the
program when simulating an operation.

4.4.1 Delays computing
The read delay is defined as the 50% delay between the WL activation signal
and the SA output (SAO if a logic ’1’ has to be read, SAOn for ’0’, Fig-
ure 4.20).
As anticipated in subsection 4.3.4, the location of the selected cell in the ar-
ray is important: increasing the distance from both the WL drivers and
the SAs/write drivers, it increases the capacitive load associated to the
row/column, hence it increases the delay of the involved signals. It is good

137

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 4.19. All the memory operations performed in a single time simula-
tion through Python generated inputs (section B.1). The plotted signals are
selected among the ones listed in Table 4.2 and Table 4.3.

practice, for this reason, to evaluate the worst case delay for both reading
and writing operation.

The write delay definition is displayed in Figure 4.21 for both write ’0’/’1’
cases. It corresponds to the 50% delay between the WL activation signal

138

4 – SOT STT Memory implementation

Figure 4.20. Read "0" (left) and read "1" (right) delays example for an 8x8
array. The read "1" delay is sligthy lower than the read "0" delay for all the
tested array sizes, as reported in Figure 4.23.

and the Tmz (vertical magnetization state) signal. Since the Tmz dynamic
covers a [−1 V ÷ 1 V] interval, the delay indicates the time distance between
the 50%WL (WL = 0.5 V) and the Tmz that reaches 0 V with rising (write
’0’) or falling (write ’1’) edge.

The largest write delay has to be evaluated in the last row of the array,
since, in this memory organization, it represents the farthest point from the
write drivers; moreover, it is to be considered the last cell (the rightmost
one) of the row since it is the farthest from the WL drivers.

The same concepts can be applied for the worst read delay, considering the
highest distance from the SAs (at the bottom of the array) and the WL
drivers. Hence, it is to consider the last cell (the rightmost one) of the first
row. In this case, it can be noticed that also the RBL read drivers (subsec-
tion 4.3.3) —located on the top of the array— are involved in the reading
operation; however, the SE2 signal (responsible for the activation of the read
drivers) is activated at the beginning of the reading cycle, before the activa-
tion of the SE (enable signal of the SAs) 14. Hence, the cell–to–SAs distance
represents the higher contribution to read delay.
Both delays are set up as functions with Cadence calculator and directly
computed when simulating an operation.

14The SE, in fact, has to be delayed according to the WL–to–SE_delay.

139

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 4.21. Write "0" (left) and write "1" (right) delays example for an 8x8
array. The write "1" operation is generally faster than the write "0" operation
for all the tested array sizes, as reported in Figure 4.22.

4.4.2 Power consumption computing

In order to have an estimation of the power consumption of each memory
operation, four functions have been defined with Cadence calculator and com-
puted when simulating: instantaneous power p(t), average and peak power
consumption, and energy consumption.

By default, Cadence simulator allows to extract the instantaneous power
resulting from a "tran" (temporal) analysis: in practice, the instantaneous
power of the entire schematic can be plotted after running a simulation by
simply displaying the pwr function automatically generated in Cadence Re-
sult Browser tool.
However, after a series of tests on the schematic, one can notice that the
consumption associated to all the Verilog–A–defined components (i.e. all the

140

4 – SOT STT Memory implementation

SOT STT MTJs) is equal to zero. In order to bypass this problem, the in-
stantaneous power is computed as summation of the power contribution of all
the generators in the schematic. To deal with this sum, that for a small array
starts to have a consistent number of terms, a Python script (section B.2)
is employed, which is capable of generating the correct function (to insert in
Cadence calculator) for different array sizes.
The script is based on the fact that the schematic is organized in such a way
that all wires of one type (ex. the ones connecting RBL_EN signals to the
read drivers) are named with the same iterated label (ex. RBL_EN<0>...<n>),
and that the generators that supply those wires have the same iterated names
(ex. V_RBL_EN0...n). This is due to the fact that the script writes on a
file the summation of all V · I power contributions considering V = voltage
on the wire attached to the generator and I = current on the "minus" pin
of the generator15 (ex. VT("/RBL_EN<0>")*IT("/V_RBL_EN0/MINUS")
+ ... etc.). Hence, if the wires attached to the generators or the generators
names of the schematic are re–named, the Python script has to be modified
accordingly.

In order to compute the average power consumption related to a single op-
eration, the avg special function is set in Cadence calculator. This function
calculates the integral of the instantaneous power p(t) over the entire range
for which it is defined, and it divides the integral for the same range. It means
that, by setting the simulation time equal to the operation cycle duration,
it is computed the average power of that single operation. If it is desired
to weigh such value with respect to the total average power, it is sufficient
to multiply it for the operation duration and divide it for the simulation time.

The peak power is evaluated by simply applying the ymax calculator special
function to the instantaneous power; it computes the maximum value of p(t)
inside the simulation interval. It has to be noticed that the peak power is
dependent on the falling and rising time of the input signals. In fact, when
this parameter has a lower power, the signal edge transition is slower and
"relaxed" in a larger interval: this means that also the instantaneous power
is more distributed, hence its maximum value is lower.
The energy consumption is instead calculated through the integ function,
that integrates the instantaneous power along the specified range (set equal

15Such pin is chosen according to the current sign convention in Cadence schematic: if
taken on the "plus" pin of the generator, the current would be with negative sign

141

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

to the operation interval). It can be also obtained by multiplying the opera-
tion average power for the operation cycle duration.

4.4.3 Measurements and results
The performance measurements related to the single cell and different array
sizes are reported in this section.

The results are obtained by applying the functions discussed in section 4.4
for each memory operation.
Both write ’0’ and ’1’ performance are discussed due to the slight asymmetry
of the Tmz switching curve in the two cases.
Also the reading operation is considered for low and high state, since the
Vref voltage (subsection 4.3.2) is only approximately at the midpoint of the
Vsense,L ÷ Vsense,H interval. This is mainly due to the choice of the reference
cell resistance and the read driver design: with the adopted scheme, for higher
Rref it decreases the current exiting from the read driver, hence it decreases
the Vsense,L ÷ Vsense,H interval. This is due to the fact that the current mirror
(at the basis of the read driver) is dependent on its load. In this way, when
decreasing the Rref value, the Vsense dynamic enlarges but the Vref is no more
at the exact middle of such dynamic, hence it enhances the asymmetry of
read ’0’/’1’ delays. The chosen Rref is a good compromise for maintaining a
relatively low asymmetry and an appreciable Vsense dynamic (see Figure 4.8).

Except from when it is specified differently (ex. Figure 4.30), all the perfor-
mance evaluation in this section are computed for all the cells in the same row
performing the same operation: for example, the results in Figure 4.22 (left)
are referring to all the cells on the bottom row16 are performing a write ’0’
operation, i.e. when a "00...00" word is written in the last row. This is done
for taking into account the worst (or best) case for each memory operation.

From Figure 4.22 it is noticed that the write ’1’ operation tends to be
faster than the write ’0’ one; this may be due to different reasons, such as
the dependence of the TMR (defined in subsection 1.2.1) on the bias voltage,
or the difference among positive/negative voltage amplitudes in output from
the RBL write drivers.

16For the reasons explained in subsection 4.4.1.

142

4 – SOT STT Memory implementation

Figure 4.22. Delays results related to write ’0’ and ’1’ operations,
for different array sizes

Figure 4.23. Delays results related to read ’0’ and ’1’ operations,
for different array sizes

The Figure 4.23 confirms the asymmetry of reading operations discussed
at the beginning of this subsection. The read delay, in particular, is heavily

143

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

dependent on the WL–to–SE delay (discussed in subsection 4.3.2), that in-
creases for larger arrays.

Figure 4.24. Average power consumption related to both writing cases,
for increasing array size

The average power consumption during writing operation (Figure 4.24) is
similar for both ’0’ and ’1’ cases, and it is higher than the one associated
to the reading operation. This is predictable since the writing pulses (SOT,
STT) required for switching the MTJ state have an higher amplitude with
respect to the STT one used for reading the logic state: hence, the (WBL,
RBL) write drivers spend much more energy than the (RBL) read drivers.
The MTJ itself requires a certain amount of power for changing state, that
is taken into account when following the procedure for power calculation dis-
cussed in (subsection 4.4.2).
The same considerations can be done referring to Figure 4.26 and Figure 4.27.

The output data extracted by Cadence when computing the power con-
sumption include also the average power associated to the Vdd and Vss rails,
evaluated by computing the V · I product of the relative dc voltage genera-
tors. Such values may be interesting for noticing, for example, the amount
of power consumption associated to the negative voltage rail during a write

144

4 – SOT STT Memory implementation

Figure 4.25. Average power consumption related to both reading
cases, for increasing array size

’0’ operations, due to the fact that in such case the STT pulses (driven by
the write peripherals that are connected to Vss) have a negative amplitude.

The peak power (Figure 4.28, Figure 4.29), as discussed in subsection 4.4.2,
is dependent from the rising and falling time of the signal involved in the op-
eration. In order to maintain it in a reasonable range, a fall_ris_time = 50 ps
is used in all the simulations. Otherwise, if fall_ris_time is decreased downto
1 ps, the peak power can reach maximum values around 20 mW.

In general, the designed SOT STT memory has good performance for
what concerns the speed of the operations (especially in the read case), that
is comparable to a CMOS Static RAM. The main weakness of such design is
the great amount of power required for performing the memory operations,
particularly for writing the SOT STT cells. This may be due to technology
itself or the selected point of work, that is chosen with the aim of optimizing
the operations speed.
However, the energy values seem to be coherent to the ones reported in Ta-
ble 1.2 and Table 1.3, for what concerns the "write energy" field of a single
memory cell.

145

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 4.26. Energy consumption evaluation for write ’0’ and ’1’ cases

Last but not least, from Cadence Virtuoso are extracted also the power con-
sumption results relative to a single cell (in all the array) that performs the
selected operation. This is done in order to highlight the leakage power due
to all the unselected cells of the array. As it can be seen from Figure 4.30,
the leakage contribution is small, also because it is limited by the fact that
both the discharge signals (on the RBL, subsection 4.3.2, and WBL subsec-
tion 4.3.3) are activated for all the other unselected columns, eliminating any
residual bias from the lines.

146

4 – SOT STT Memory implementation

Figure 4.27. Energy consumption evaluation for write ’0’ and ’1’ cases

Figure 4.28. Peak power related to both writing cases, for different array sizes

147

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 4.29. Peak power related to both reading cases, for different array sizes

Figure 4.30. Only one cell in the whole array is selected and performs the
specified operation: this is done in order to highlight the average leakage
power that increases for higher array sizes

148

Chapter 5

SOT STT
Logic–in–Memory
implementation

5.1 Logic approaches from literature
This chapter discusses possible Logic–in–Memory solutions with the SOT
STT magnetoresistive technology discussed in chapter 4, starting from logic
approaches found in literature for STT–only or SOT–only based memories
(section 5.2); in the same section are also proposed potential implementa-
tions with the SOT STT memory designed in section 4.3.
Then, it is presented an algorithm of interest (section 5.3), together with
a SOT STT implementation (subsection 5.4.2) inspired by a memristive ap-
proach found in literature (subsection 5.4.1); finally, it is proposed an entirely
new approach for the implementation of the target algorithm (section 5.5).

5.2 Logic approaches from literature
The SOT STT MTJ–based memory is an hybryd of the more known STT–
only or SOT–only1 magnetoresistive technologies. Hence, with the exception
of the article related to the model [92], no specific approach for the introduc-
tion of logic in this type of technology has been found in literature. However,

1more frequently named simply as STT or SOT

149

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

since it is a magnetoresistive technology, in theory all the approaches pre-
sented in section 3.2 for a STT–only memory can be adopted for introducing
logic capabilities.
Nonetheless, due to the higher structural affinity (3–terminals component),
SOT–only memory is further investigated for searching proposed logic ap-
proaches in literature. It is found that the proposed SOT LiM solutions can
be subdivided into two main categories:

1. stateful2 reconfigurable boolean logic approach [92];

2. logic–in–peripherals (mainly sense amplifiers) approach [11].

The two logic approaches are presented in subsection 5.2.1 and subsection 5.2.2
respectively, together with a proposed implementation with the SOT STT
technology.

5.2.1 SOT stateful logic
The first SOT LiM approach is presented in [92]. It consists, in practice, in
providing a proper sequence of writing pulses that emulate the logic inputs;
the result of such combination is the final resistive state of the SOT MTJ.
According to the article, a complete set of boolean functions can be imple-
mented through such approach: True/False, Transfer, NOT, (N)OR, (N)AND,
(N)IMP, X(N)OR, etc. The operations are performed by inizializing the MTJ
in a target logic state, and then re–write it according to the provided input
voltages, that represents the variables In1 and In2. The complete combi-
nation of initial state/writing pulses is reported in [92] (table I) for all the
listed operations.

Such approach can be implemented in the SOT STT memory designed in
section 4.3: the input pulses correspond to SOT and STT writing pulses,
with In1 = VSOT and In2 = VST T . In particular, In1 = 0 / 1 for VSOT =
0 / >0, while In2 = 0 / 1 for VST T <0 / >03. With this configuration, all
the aforementioned operations can be performed: just for illustrative pur-
poses, (N)AND and (N)OR functions, together with the corresponding volt-
age pulses, are displayed in Table 5.1. The operations of Table 5.1 are also

2see subsection 3.4.2.
3The amplitude of both VSOT , VST T can be equal to the ones proposed in subsec-

tion 4.3.3 (Figure 4.12, Figure 4.13) for maximizing the switching speed.

150

5 – SOT STT Logic–in–Memory implementation

tested into a memory cell for verifying its functioning, and the results confirm
the feasibility of this logic approach for the designed memory.

Function Initialization PAP Writing FinalIn1 In2 In1 In2 state

AND 1→ VSOT>0 0→ VSTT<0 → 0 p

0→ 0

q

0→ VSTT<0 0
0→ 0 1→ VSTT>0 0

1→ VSOT>0 0→ VSTT<0 0
1→ VSOT>0 1→ VSTT>0 1

NAND 1→ VSOT>0 1→ VSTT>0 → 1 p

0→ 0

q

1→ VSTT>0 1
0→ 0 0→ VSTT<0 1

1→ VSOT>0 1→ VSTT>0 1
1→ VSOT>0 0→ VSTT<0 0

OR 1→ VSOT>0 1→ VSTT>0 → 1 p

1→ VSOT>0

q

0→ VSTT<0 0
1→ VSOT>0 1→ VSTT>0 1

0→ 0 0→ VSTT<0 1
0→ 0 1→ VSTT>0 1

NOR 1→ VSOT>0 0→ VSTT<0 → 0 p

1→ VSOT>0

q

1→ VSTT>0 1
1→ VSOT>0 0→ VSTT<0 0

0→ 0 1→ VSTT>0 0
0→ 0 0→ VSTT<0 0

Table 5.1. Some of the boolean functions that can be performed with stateful
approach into the designed SOT STT memory. The PAP field refers to the
MTJ state after the initialization cycle.

The main advantage of such approach in a SOT STT memory is the fact
that it can exploit its fast switching for performing boolean operations. On
the other hand, two write cycles (initialization+writing) are necessary for
performing almost all the functions4.
However, the great weakness of the stateful logic solution is that it is de-
structive. It is, in practice, a writing–based approach, which overwrites the
initial cell content with the function result.

This logic approach shares the same working principle of the STT–based one
discussed in subsection 3.2.4, although there are some differences (serialized

4The basic ones, such as NOT, require only the initialization cycle.

151

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

steps, IMPLY–based approach).

5.2.2 SOT STT logic–in–peripherals approach
The introduction of logic inside the peripheral circuitry is the most widespread
SOT LiM approach among the explored articles. Most of the time, the logic
implementation concerns the sensing circuitry; in this sense, such approach is
very similar to the one presented in subsection 3.2.2 for STT–only memories
[11].

The basic mechanism of this type of logic is to employ different voltage
thresholds (ex. Vref,OR, Vref,AND) as second input to the sense amplifier5

according to the operation that has to be performed.
AND and OR functions can be implemented with a single SA that uses dif-
ferent resistances (ROR, RAND) to weigh the Vref value in order to provide
the wanted threshold. Their negation (NAND, NOR) are obtained at the
negated output (SAOn) of the SA.
More complex operations, such as the XOR, can be performed by adding
CMOS logic gates at the output of two SAs connected to the same column:
in this way, the XOR can be computed with the combination XOR = NOR
(NOR, AND) (alternatively XOR =AND(NAND, OR)).

The main advantage of this approach is that it exploits the possibility of
magnetoresistive memories for multiple rows activation without loss of data;
in this way, the SA represents a good mean for logic introduction, since it is
shared by all the cells of a single column.
With the aim of maximize the LiM parallelism (i.e. the number of rows pro-
cessed at once), a possibility would be to perform the same boolean operation
to all the cells of the same row, such as an m–inputs AND gate with just a
single SA. In this case, the RBL read driver (see subsection 4.3.2) should be
modified in order to supply a proper sensing current, due to the high number
of cells to read6.

Another interesting improvement to such approach would be to exploit the

5The first one remains the Vsense read on the RBL, that is dependent on the MTJ state
of the selected cell, see subsection 4.3.2.

6A m–long column with all the cells selected represents a parallel of m resistances, that
behaves as current divider for the Isense.

152

5 – SOT STT Logic–in–Memory implementation

SA output to perform a writing operation, depending on the result of the
logic operation. This approach has been successfully tested with a bipolar–
supplied SA, taking into consideration a couple of SOT STT cells; with the
logic state of the two cells as input of two sense amplifiers (for performing the
aforementioned XOR), a third cell can be written with the function result
by exploiting the same read cycle.
This is achieved by connecting the XOR (2 SAs + CMOS gate) output to the
RBL write driver (as enable signal) (see subsection 4.3.3), which performs
a write ’0’ or ’1’ on the third cell according to the XOR result. According
to the requirements of the write driver, the XOR output must be bipolar as
well (i.e. XOR = Vss for logic ’0’ and XOR = Vdd for logic ’1’, as shown in
Figure 5.2) for enabling a writing operation.
The proposed design for such approach is reported in Figure 5.1.

In Figure 5.2 are reported the waveforms of interest for showing the correct
working of the schematic. At the top of the figure are displayed the four
combinations of magnetization states of the two SOT STT cells. Then, in
the middle, the related output of the designed XOR. At the bottom, it is
depicted the magnetization state of the third cell (Tmz3), for an initial logic
state ’0’ (PAP = 0) in all the cases. The same results can be obtained for
PAP =1.

5.3 The target algorithm
In this section it is presented an algorithm of interest, that has to be per-
formed though LiM approach with the same technology discussed in chap-
ter 4.

The algorithm is taken from [97]. It consists in a language classifier based
on the so–called hyperdimensional computing: highly dimensional vectors
(hypervectors, with dimensions in the thousands) are exploited to encode
samples of text for language recognition.

From a practical point of view, the aim is to demonstrate the feasibility
of such approach without operating with so large vectors. This is mainly due
to the fact that the algorithm will be implemented by hand through Cadence
Virtuoso, which is time–consuming (in terms of schematic setup and simu-
lations) already for a "small" 32x32 array. However, the proposed solutions

153

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 5.1. Design of the SA–based logic approach implemented in Ca-
dence Virtuoso for implementing (N)OR, (N)AND, and XOR between
two SOT STT cells (Tmz1,2) with writing of a third one (Tmz3) with
the XOR result in the same cycle The reference SOT STT cell is the one
designed in subsection 4.3.1.

154

5 – SOT STT Logic–in–Memory implementation

Figure 5.2. Cadence simulation plots related to the implementation of the
SA–based XOR (all cases) between a couple of SOT STT cells (Tmz1,2), and
writing of a third cell (Tmz3) with the XOR result exploiting the same cycle.

155

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

take into account the prospect of highly dimensional vectors, making consid-
erations by observing the results of increasing array sizes (1x1, 8x8, 32x32).

In particular, the classifier is divided into two main modules: the encoder
and the search module (Figure 5.3).
The first one is responsible for the coding of a series of trigrams (i.e. a group
of three letters) into a final text hypervector. The letters (corresponding to
randomly associated hypervectors) are given in input to this module one at
time; the encoder performs a series of multiplications (·) and permutations
(ρ), for obtainining a unique final trigram hypervector that takes into account
the order with which the letters are provided (ex. trigram A–B–C is different
from B–A–C). The multiplication between D–long hypervectors is computed
through D XOR gates7, while the permutation consist in a rotation of the
hypervector in the space: the hypervector undergoes a right shift by 1 posi-
tion of all its components. A double–rotated hypervector (ρρ(L)) is shifted
to right by two positions.
The resulting function performed by the encoding module is ρρ(L1)·ρ(L2)·L3
for the trigram L1–L2–L3. All the trigrams hypervectors are then summed
up in a text hypervector. Such vector represents the query hypervector in
input to the search module.

The search module has the function to find the text sample that has the
closer similarity with respect to known languages. In practice, the module
stores a group of so–called language hypervectors (one for each row) that are
pre–computed by the encoding module during an initial training phase; they
simply consists in text hypervectors created from known languages.
The search operation consists in a comparation of the encoded query hyper-
vector with respect to all the language hypervectors.

The same article ([97]) proposed a method for finding the closer query–to–
language match based on the estimation of the so called Hamming Distance
(HD). This quantity can be defined as the number of bits of which two binary
number (in this case, hypervectors) differ.
The HD is computed through a number of XOR gates equal to the dimension
of the hypervectors (hence, a very big number). Furthermore, the search is

7Since the hypervectors under study are binary.

156

5 – SOT STT Logic–in–Memory implementation

Figure 5.3. HD classifier proposed in [97].

done comparing just one element for each clock cycle, resulting in O(D) cy-
cles for counting the HD between two hypervectors. This XOR block, called
similarity measurement block, is repeated in the search module a number of
times equal to the number of its rows, as shown in Figure 5.3.
After all the comparisons, the search module selects the language hypervec-
tor that has the minimum HD from the query one.

The most interesting part of the algorithm to consider for a LiM approach is
the design of the similarity search module. This module can be implemented
through a memory storing all the pre–computed text samples. It is clear
that such design, for being efficient, requires an high degree of parallelism:
the aim is to realize a module that perform a XOR bit a bit in parallel in
all the cells, between an external data (the query text hypervector) and a
pre–stored data (the language hypervectors).

The stateful approach presented in subsection 5.2.1 is a writing–based logic:
this means that the XOR operation — required for computing the HDs —
would be performed in one row at time, covering a number of cycles equal to
(Nrows) · (twritecycle + tinitializationcycle

8).

8explained in section subsection 5.2.1

157

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Moreover, the XOR would be computed between two external data (writing
pulses) that would overwrite the search module content with the result of
the operation.

Also the peripheral–based logic discussed in subsection 5.2.2 does not repre-
sent the best solution: even if non destructive, such approach would require
(Nrows) · (treadcycle) time for search in all the memory. Furthermore, since
a SA-based logic requires the operands to be stored in the same columns,
it would be necessary to store the external data (query hypervector) in the
search module as well. The "good" news is that the SAs (two for each column
for performing an XOR operation) can be re–used for XOR operation in all
the rows of the memory: hence, there is no need for replicating them Nrows

times as the aforementioned similarity measurement block.

A good idea for maximising the XOR parallelism would be to introduce
logic at cell level: similar approaches are usually based on the fact that one
or more transistors, placed inside each cell, can be activated or turned off
depending on the logic state of the storing element.
In this sense, the magnetoresistive technology proposed in chapter 4 has some
constraints: a single SOT STT MTJ can provide a low voltage dynamic9, lim-
ited by the TMR10 and the fact that too high voltages may cause write errors.
This is also the reason for which almost all the logic approaches related to
STT and SOT technologies are based on introducing logic at peripheral level
or exploiting destructive writing–based solutions (see subsection 3.2.4, sub-
section 5.2.1).
These limitations are in part mitigated when working with Content Address-
able Memory (CAM) cells: since their basic cells includes a couple of storing
elements (ex. two memristors in the design proposed in subsection 5.4.1, two
SOT STT MTJs in subsection 5.4.2) the aforementioned voltage dynamic
can be increased to exploitable values.

The first proposed design (subsection 5.4.2) — for implementing the pre-
sented algorithm — takes inspiration from the memristive logic approach
discussed in (subsection 5.4.1), but with some modifications (in primis, the

9Not sufficient for turning on/off a transistor.
10The Tunnel MagnetoResistance is defined in subsection 1.2.1.

158

5 – SOT STT Logic–in–Memory implementation

different technology requirements). As described in subsection 5.4.3, how-
ever, it remains a limited approach for different reasons.
A second design is instead discussed in section 5.5; the efficiency of such
approach is discussed in subsection 5.5.2.

Both the proposed solutions are based on CAM arrays. CAMs, in fact,
are capable of searching an input word in parallel to all the memory: the so–
called Match Line (ML), that links all the cells of the same row, is discharged
to ground or is kept at a pre–charged voltage depending on the result of the
bit–a–bit "match" (i.e. if the word bit is equal to the cell content). In this
way, the ML that remains in high voltage state is the one associated to the
"all–matches" case, hence it corresponds to the row containing the searched
word.
The match (or search) operation can be thought as a XNOR operation: if
the input and stored data are different, the ML is discharged to logic ’0’,
otherwise it remains at ’1’.

In this sense, a CAM works as a zero Hamming Distance finder : it is ca-
pable of locate only the row associated to a ’HD = 0’, that corresponds to
the high–state ML (all matches). On the other hand, the search module de-
sign intended by the algorithm has to work as a minimum Hamming Distance
finder : the language hypervector (stored in the memory) with the closer sim-
ilarity to the query one corresponds to the row with the maximum number
of matches.

In the proposed approaches (subsection 5.4.2 and section 5.5) it is designed
what can be called as a Hamming Distance counter, that in practice imple-
ments the core function of a minimum HD finder : in fact, the fist step has
to be the computation (counting) of all the HDs of each row, and only then
it can be chosen the best suited minimum–search algorithm.

5.4 Timing–based HD counter

This section discusses the memristive CAM–based HD counting method
found in literature (subsection 5.4.1), and a proposed SOT–STT CAM design
(subsection 5.4.2) for verifying the feasibility of such approach with magne-
toresistive technology.

159

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

5.4.1 Memristive CAM SA approach
As anticipated in section 5.3, this approach is based on a memristive CAM
array presented in [98]. It exploits the idea that the CAM MLs discharge
faster or slower depending on the number of matches in each row: in this
sense, it can be considered as a "timing–based" HD counter.
The discharging time is measured through a set of SA attached to the same
row, each responsible for identifying a certain HD. In fact, SAs11 work as
threshold comparators for a given time instant: when the sense enable (SE)
is activated, they amplify the two voltages that are in input in that precise
moment. Any input variation after the SE activation (during the same read
cycle) is not considered. Hence, each SA is able to detect different numbers
of mismatches (i.e. the HD) if its enable signal is properly delayed.
The reference design is reported in Figure 5.4.

Figure 5.4. Memristive CAM discharge approach [98].

This working principle is applied to the memristive CAM by dividing the
array in 4 bit wide blocks, and connecting 4 SAs for each row of such blocks:
in this way, each SA samples 1 bit of HD. Then, all the SAs outputs are
connected to a counter located at the end of each memory row. The counter
will take in account the sum of all HDs of the 4–bit wide blocks, and a final
set of comparators will evaluate the lower HD among all the rows.

11It is to be intended the latch–based sense amplifiers; ex. differential amplifiers have a
different working principle.

160

5 – SOT STT Logic–in–Memory implementation

Such approach is clearly hardware expensive: in order to count all the bit mis-
matches of a single row, it is required one SA for each memory cell. However,
it is worthwhile to test its feasibility with the SOT STT magnetorestistive
technology discussed in chapter 4; furthermore, it may be interesting to ob-
serve the behaviour of the MLs discharging when considering blocks larger
than 4 bits (ex. 32 bit long rows), trying to proposing new solutions.

5.4.2 SOT STT CAM adaptation
In order to test the working of the approach proposed in subsection 5.4.1
with SOT STT technology, it is necessary, first of all, to design a SOT STT
CAM cell.

A SOT STT MTJ shares a higher structure similarity with respect to SOT
MTJs (three terminals, heavy metal layer presence) than to STT MTJs12.
For this reason, it would be very useful to start from a SOT CAM cell for
implementing a SOT–STT CAM. However, no articles are found in litera-
ture proposing a SOT CAM design, and very few related to STT CAMs:
one of them [99], however, is very useful in order to understand the basic
working principle of magnetoresistive CAM, that is displayed in Figure 5.5.
The two variable resistances represent two STT MTJs, one in opposite logic
state with respect to the other. They represent a voltage divider for the
differential voltage on the search lines (SL and SLn). If VH and VL are the
high and low voltages in input to the search lines, the voltage at point V o
can be computed as:

V oH = V H + VL − VH

2 + TMR

V oL = VL + VH − VL

2 + TMR

(5.1)

where V oH > V oL, TMR defined in subsection 1.2.1.
The obtained V o dynamic may be quite small, or insufficient to completely
turn on/off the nMOS transistor, depending on the MTJ TMR.

12Both STT and SOT MTJs structures are reported in Figure 1.6

161

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 5.5. STT CAM working principle [99]

For this reason, in [99] it is proposed the introduction of a couple of
pMOS/nMOS transistors between the two MTJ in order to amplify the V o
dynamic. This idea is based on the Rp/Rn dependence on the Vgs of each
transistor, that at its time depend on the search lines voltage and the MTJs
resistance. Unfortunately, this approach has not been successfully realized
since, when introduced in the circuit, the pMOS presents a much higher re-
sistance than the nMOS one, even if the pMOS is set to a larger size. It
is as if, in both high and low SL input cases, a residual Vgs on the pMOS
does not allow it to turn on completely: hence the voltage partition remains
unbalanced for the high and low logic states, preventing a correct voltage
dynamic amplification.
This does not represent a real problem since the the SOT STT MTJs have
a sufficient TMR for turning on/off the nMOS ML transistor, even if the
on–switching is slower with respect to a properly biased transistor. Indeed,
the slower switching is useful for the implemented timing–based approach,
since it allows a better distinction among ML discharging curves. However,
for the new CAM cell designed in section 5.5, an inverter stage — which
introduces the same number of transistors of the approach proposed in [99]
— is linked to the V o point for amplifying the voltage dynamic.

The (first) SOT STT CAM cell design is shown in Figure 5.6, consider-
ing the resistive equivalent of the two SOT STT MTJs. The cell structure
is "similar" to the one proposed in the last chapter (Figure 4.6) in the sense
that a single WL signal turns on/off the access transistors on the write and
read bitlines. The RBL is split into two lines, which allows to provide the
correct write pulses to both the MTJs. The nMOS between the second MTJ

162

5 – SOT STT Logic–in–Memory implementation

and the SL13 allows to detach the ground reference from the cell when a
search operation is performed: in this way, it is obtained almost the same
circuit as the one in Figure 5.5, for search_n = 0. The nMOS connected to
the ML is activated only when the pre_n signal is high, hence when the ML
precharging phase is concluded.

Figure 5.6. SOT STT CAM cell designed for implementing the
timing–based approach discussed in section 5.4, with transistors sizing
and MTJs resistive equivalent

The cell is able to perform writing and reading operations in a similar
way with respect to the cell presented in subsection 4.3.1, by exploiting the
same reading interface (SA, read driver in subsection 4.3.2) and WBL write
driver (for the SOT pulse generation, subsection 4.3.3); the STT write volt-
age pulse, this time, is provided by ideal voltage generators on both RBLa
and RBLb lines. With the proper pulses duration (0.5 ns for SOT and 2 ns
for STT, exactly as done in Figure 4.5) and voltages amplitude (for SOT

13The SL is different from the one in Figure 5.5, since, as in Figure 4.6, it is used to
provide the ground reference to the memory.

163

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

see Figure 4.13, while for STT −200 mV/500 mV or 500 mV/−200 mV on
RBLa/RBLb for write ’0’/’1’ cases) a writing operation can be performed si-
multaneously on both MTJs. In fact, for SOT STT CAM cells the two MTJs
must be in a differential configuration (i.e. in opposite resistive states) for
representing a logic state; in particular, a logic ’0’ corresponds to the first
MTJ in LRS14 (’0’) and the second one in HRS15 (’1’), viceversa MTJ1 =
HRS and MTJ2 = LRS for a logic ’1’. Hence a write ’0’ operation, for ex-
ample, writes a ’0’ in the first MTJ, while the second one is written to ’1’; a
write ’1’ operation writes ’1’ and ’0’ in the first and second MTJ, respectively.

The input voltages and currents used for writing and reading the cell are
summed up in Table 5.2: for these operations, the search_n signal is kept
high, in order to provide (through SL) the proper ground reference to the
cell circuit.

Line Operations
Write ’0’ Write ’1’ Read

WL Vdd Vdd Vdd
RBLa −200 mV 500 mV IREF
RBLb 500 mV −200 mV 0
WBL ∼ 800 mV ∼ 800 mV floating
SL 0 0 0

Table 5.2. List of the involved voltages and currents for writing and reading
operations; the RBL pulses are provided by ideal voltage generators, while
WBL ones are generated by the WBL write driver shown in Figure 4.13. For
both writing and reading, the search_n signal is kept equal to Vdd.

The high and low V o states referred to Figure 5.6 can be computed as:

V oH = V H − (VH − VL) · Rn +RMT Ja,L +RHM

RMT Ja,L + 2RHM +Rn +RMT Jb,H

V oL = VL + (VH − VL) · Rn +RMT Ja,L +RHM

RMT Ja,L + 2RHM + 2Rn +RMT Jb,H

(5.2)

Since it is evident the V oH ,V oL dependence on the access nMOS resistances,
such transistors must be sized properly for maximising the V o dynamic. The

14Low Resistance State.
15High Resistance State.

164

5 – SOT STT Logic–in–Memory implementation

designed sizing is reported in Figure 5.6.
The four match cases can be realized through the signal configuration re-
ported in Table 5.3.

In1 In2 In1 In2 Vo MLPAPa PAPb V_RBLa V_RBLb
0 0 0 1 0 500 mV L 1
0 1 0 1 500 mV 0 H 0
1 0 1 0 0 500 mV H 0
1 1 1 0 500 mV 0 L 1

Table 5.3. Search (or match) operation for all the possible input combina-
tions. The two inputs are the initial logic state of the MTJ (PAP) and the
voltage pulses configuration on the RBLs (V_RBLa, V_RBLb). For ’H’ and
’L’ in the V o field are intended the high and low extremis of Vo dynamic; the
ML field reports the logic value associated to the voltage on the match line
(’0’ corresponds to 0 V, while ’1’ corresponds to the ML pre–charge voltage).

Practical results can be observed in Figure 5.7, where is shown the be-
haviour of the pre–charged ML related to a single cell for all the cases listed
in Table 5.3. In order to obtain it, the voltage pulses on RBLa, RBLb must
be 4 ns–long; if shorter (ex. 2 ns) the match is performed correctly but a
higher bias voltage (∼ 100 mV) remains as residual at the end of the ’ML =
0’ cases. This is due to the aforementioned "slow" ML discharge: it is however
an advantage for this timing–based method, since the ML goes in input to a
buffer (shared with all the cells of the same row) that works as amplifier: the
buffer output switches to ’0’ (for all the cases except from the "all matches"
case) at different time instants, that are further apart from each other (for
all the HD cases) when the ML discharge is slower.

For the single cell simulation, a match (’ML=1’) between the initial MTJs
state and the RBL voltage pulses corresponds to a zero Hamming Distance
contribution16, while a mismatch (’ML=0’) represents 1 bit contribution to
HD.

The logic approach is then tested in rows of 8 bits and 32 bits; the row

16In the sense that, when the cell will be introduced in a row, its contribution to the
total HD is zero.

165

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 5.7. Cadence results extracted from a parametric analysis for all the
possible match cases, corresponding to Table 5.3.

structure is qualitatively shown in Figure 5.8. This is done for analyzing
the effects on the ML for rows longer than the 4 bits one proposed in the
reference memristive CAM article [98].

Figure 5.8. SOT STT CAM row organization (design suited for the
timing based–approach).

In Figure 5.9 it is displayed the Cadence simulation result for a parametric

166

5 – SOT STT Logic–in–Memory implementation

analysis on a 8 bit row: the RBL voltage pulses (in2) are made varying in
such a way that all the possible HD cases (from HD = 0 to HD = 8) are
reported in the plot. In the upper part, it is shown the behaviour of the
pre–charged (to 500 mV17) ML, for the different discharging times: in almost
all the cases the ML do not reach the 0 V voltage in the 4 ns interval, but this
is not a problems, since the ML is fed to an buffer (a double inverter located
at the end of the row). The output of such buffer is displayed in the bottom
part of Figure 5.9, where the different discharging times are well defined for
all the HD cases.
Hence, an 8 bit row still performs well with respect to the presented logic
approach.

The timing–based approach is then implemented in a 32 bit row.
Unsurprisingly, the ML discharging curves associated to the different HDs be-
come more and more closer to each other. This is problematic for a timing–
based approach: at this point, it is almost impossible to distinguish and
count the number of mismatches, especially for the "worst cases" of near–to–
maximum HDs displayed in Figure 5.10 (left).
In particular, Figure 5.10 includes a couple of Cadence simulation plots for
the eight "worst" (left) and "best" (right) cases for the counting of mismatches,
i.e. for HD = 24÷32 and HD = 0÷8, respectively. As for Figure 5.9, the up-
per part of Figure 5.10 reports the ML discharging curves, while the bottom
one corresponds to the buffer (at the end of the ML) output.

5.4.3 Approach limitations
The feasibility of the timing–based approach proposed in [98] has been suc-
cessfully verified in subsection 5.4.2 for the SOT STT magnetoresistive tech-
nology; the approach, as in the reference article, is however limited by the
following aspects:

1. for increasing memory row sizes, the shared ML discharging curves get
closer and closer to each other. Hence, if an horizontal threshold is given

17It is chosen 500 mV instead of 1 V to make easier the sizing of the buffer attached to
the ML: in fact, the buffer has to be designed in such a way that its threshold falls just
under the "all matches" case, that corresponds to the ML that remains at the precharge
voltage.

167

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 5.9. Cadence simulation of timing–based approach for 8 bit–long
SOT STT CAM row: ML discharging curves (upper part) and buffer output
(bottom part) for all HD parametric. The red curve represents the all matches
case, while the maximum HD distance corresponds to the orange curve.

(ex. by a buffer at the end of the ML), the faster curves (Figure 5.10, left)
are almost indistinguishable among them. The same is also tested for
other types of threshold: for example, it is designed a simple differential
amplifier whose inputs are the ML voltage and a "triangular"18 reference
voltage. The result is that the amplifier outputs are more equally time–
spaced than the buffer outputs; however, for increasing row length, they
still remain very close to each other.
For this reason, it is confirmed the same limitation of the memristive
CAM approach (subsection 5.4.1) also for SOT STT magnetoresistive
CAM approach (subsection 5.4.2).
The timing–based approach represents a good solution if the ML is

18It is intended an ideal linearly increasing voltage.

168

5 – SOT STT Logic–in–Memory implementation

Figure 5.10. The eight worst (left) and best (right) cases —obtained through
a parametric analysis— in a 32 bit SOT STT CAM row. In the upper part
are shown the ML discharging curves, while in the bottom one the buffer
output for all the cases. The red curve represents the all matches case, while
the maximum HD distance corresponds to the orange curve.

shared only among a reduced number of cells (ex. 4÷8 bit). A pos-
sible implementation may be the the design of a memory in which the
wordlines/bitlines are connected as for a "normal" CAM array for the
whole row/column length, but in which the match lines are subdivided
in 4÷8 bit–long segments connected to dedicated sampling SAs and then
to a final counter (similarly to the design proposed by [98]).

2. Both memristive and magnetoresistive CAM approaches are quite heavy
in terms of hardware requirements: in fact, in addition to the developed
CAM structure, it is necessary an hight amount of extra circuitry, like
the sampling SAs and counters mentioned in subsection 5.4.1, for finally
obtaining a working HD classifier.

169

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

5.5 An analog adder approach
A new solution for implementing the Hamming Distance counter discussed
in section 5.3 is proposed.
As the approach presented in section 5.4, it exploits the working principle of
CAMs for performing a bit–a–bit XOR between the text hypervector (input
RBL voltages) and the language hypervector (stored data).
This time, however, the HD counting method is not based on the SAs time
sampling of the match lines discharging curves. Instead, the basic idea is to
measure the HD of each memory row as a voltage/current value on a load
attached to the end of the line. That is to say that on this load it is wanted
a V/I proportional to the number of mismatches between the input RBL
data and the stored values. For this reason, from this point on, this will be
referenced as the analog adder approach.

5.5.1 New CAM–like cell
The design of the CAM–like cell used to implement the aforementioned ana-
log adder approach is shown in Figure 5.11. It is based on the CAM principle
displayed in Figure 5.5, for which the V o voltage is low (L) or high (H) ac-
cording to Table 5.4. The V o amplitude is in the order of few hundreds of
millivolts for both L and H cases; for this reason, an inverter stage is intro-
duced for amplifying the V o voltage in order to be able to turn on/off the
pull–up pMOS transistor19. This transistor behaves like a generator acti-
vated by the V o value: if V o is ’L’, it means that the inverter output is a
logic ’1’, which keeps the pMOS off. As a consequence, and a zero current is
present on the Current Line (CL).
On the contrary, when the V o voltage is ’H’, the inverting stage output is ’0’,
which turns on the pull–up pMOS: this links the supply voltage Vdd to the
source of a second pMOS. Such transistor has a "weighting" role: it behaves
like a fixed resistance whose value can be regulated by a proper gate input
voltage. In all the simulations, such voltage has been kept equal to 0.4 V.
The to–Vdd resistive path formed by the two pMOS generates a current on
the CL.

19In the design proposed in Figure 5.6, it was not necessary to enlarge the V o dynamic
since the nMOS was capable of turning on/off (with a slower switching) even without an
amplification.

170

5 – SOT STT Logic–in–Memory implementation

Since V o is dependent on the match operation result, it means that the de-
signed schematic behaves like a CAM cell that is able to generate or not a
certain I/V (on its output CL) according to whether the 1–bit HD contribu-
tion is 0 or 1, respectively.

Figure 5.11. New SOT STT CAM cell design for implementing the
analog adder approach.

In1 In2 In1 In2 Vo CLi XORPAPa PAPb V_RBLa V_RBLb
0 0 0 1 250 mV 550 mV L 0 0
0 1 0 1 550 mV 250 mV H ∼1.7 µA 1
1 0 1 0 250 mV 550 mV H ∼1.7 µA 1
1 1 1 0 550 mV 250 mV L 0 0

Table 5.4. XOR operation cases for all the input combinations: the XOR =
’1’ cases are traduced as a little amount of current flowing on the CL. The
CL current value is the one corresponding to the selected sizing and supply
of the weight pMOS (inside the cell) and the load nMOS attached to the end
of the row; PAPa/b, instead, are the logic states of MTJa/b, respectively.

171

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

The XOR = ’0’ and XOR = ’1’ cases, for PAPa = 0 and PAPb= 1 con-
figuration, are shown as example in Figure 5.12

Figure 5.12. Cadence simulation plot for the first two cases of Table 5.4,
with the cell displayed in Figure 5.11. The start of the search cycle is at 2 ns
(arbitrary value): it is evident that the XOR operation is quite fast.

The other operations (write, read) are exactly the same as the ones de-
scribed in subsection 5.4.2 and summed up in Table 5.2.

A noticeable difference between the cell in Figure 5.11 and the one in Fig-
ure 5.6 is the splitting of the wordline into read and write wordlines (RWL,
WWL); in fact, when not divided, the single WL is responsible for the ac-
tivation of both RBL and WBL access transistors. This does not represent
a problem duting writing and reading since these operations are performed
by activating only one WL at time20. However, the search operation imple-
mented in CAM arrays has to be performed in parallel to all the rows: this
means that all the wordlines must be activated, for providing the same RBL
search pulses (Table 5.4) to each CAM cell of the same column. By doing
this, also the WBL is shared among all the cells of the same column: this
fixes a certain voltage on the MTJ ’T2’ terminals (Figure 5.11) of each cell,
precluding the implementation of a correct search operation.

20In fact, in the RAM–like SOT STT cell described in subsection 4.3.1, the WL has not
been split into RWL and WWL.

172

5 – SOT STT Logic–in–Memory implementation

Instead, when the WL is divided into RWL and WWL, it is possible to cor-
rectly implement the search operation in all the CAM in parallel: in this
case, while activating the RWLs, the WWLs can be turned off detaching all
the MTJ ’T2’ terminals from the shared WBL21.

The designed CAM–like cell is then tested for 8x8 and 32x32 arrays. The
array organization is shown in Figure 5.13; the current lines of the cells of
the same row are linked all together and fed to a properly–sized load nMOS.
The CAM–like performance evaluation, for all the operations (read, write,
XOR) is discussed in subsection 5.5.2 for the designed arrays.

The gate voltages of both the cells weigth pMOS transistors (p_weigth)
and the row load nMOS (n_load) can be regulated in order to control the
current divider, together with their sizing. It is important to force a
Rp_weigth >> Rn_load, in order to maintain low the leakage current that
goes inside XOR = ’0’–performing cells.

21This has not been noticed before since the cell designed in Figure 5.6 has been tested
only for different sized rows, and not for arrays.

173

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 5.13. SOT STT CAM array organization for implementing the analog
adder approach. The basic cell is the one displayed in Figure 5.11.

174

5 – SOT STT Logic–in–Memory implementation

5.5.2 Results
In this section are presented the results of the HD counting method imple-
mented by the analog adder approach and the related performance evaluation
(delay, power consumption) for 1 cell, 8x8 and 32x32 arrays.

All the results are obtained through the same simulation flow discussed in
subsection 4.3.5. The Python script for the power function computation is
reported in section B.3.
The signals that have to be provided to the schematic are listed in Table 5.5,
together with a brief description. The other signals of interest are the same
of Table 4.3, in addition to the current on the load at the end of the CL
(I_load) that is relevant for search operation.
Also the list of simulation variables is the same of Table 4.4 with the unique
difference that, in this case, Rref is equal to 15 kΩ.

Signal Write’0’ Write’1’ Read Search’0’ Search’1’ Idle Signal description
V_RWL Vdd Vdd Vdd Vdd Vdd 0 RBL nMOS activation
V_WWL Vdd Vdd 0 0 0 0 WBL nMOS activation
V_RBLa −200 mV 500 mV 0 250 mV 550 mV 0 RBLa input (ideal)
V_RBLb 500 mV −200 mV 0 550 mV 250 mV 0 RBLb input (ideal)
WBL_EN Vdd Vdd 0 0 0 0 WBL write driver enable
WBL_disch 0 0 0 0 0 Vdd WBL discharge

SE 0 0 Vdd 0 0 0 SA enable
SE2 0 0 Vdd 0 0 0 RBL read driver enable
disch 0 0 0 0 0 Vdd RBL discharge (SA)

search_n Vdd Vdd Vdd 0 0 Vdd Search nMOS activation*
Vg_pMOS Vdd Vdd Vdd 0.4 V 0.4 V Vdd Vgate of weigth pMOS*
Vg_load 0 0 0 Vdd Vdd 0 Vgate of load nMOS

Table 5.5. Complete list of signals that have to be provided to the CAM
schematic, for all the operations. Note: *The search nMOS and weigth pMOS
are present inside each cell, see Figure 5.11.

The simulation plot resulting for a search operation performed in parallel
to all the 8x8 array is reported in Figure 5.14. It shows the I_load currents
related to all the possible HD cases (only the ’0’ case is missing, because the
HD=0÷8 cases counts 9·I_load curves for 8 rows). This plot can be obtained

175

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

in two ways:
1. by performing a parametric analysis on an array with all equal PAPa,b22

for all the RBLa, RBLb input search voltage combinations (Table 5.4),
in such a way that I_load on the first row (I_load0) has the maximum
number of mismatches (i.e. of XOR = ’1’ cases) and the I_load on the
last row (I_load7) has the minimum (not zero) number of mismatches.
This method is quite time consuming for increasing array sizes (just for
the 32x32 array, such parametric simulations is very slow);

2. by performing a unique simulation on a properly designed array (just for
testing purposes), as the one displayed in Figure 5.15: it consists in an
array with half of the total cells (plus the ones on the diagonal) with ini-
tial MTJs states equal to the variables PAPa,b that can be directly set in
the simulation state. The lower part of the array cells (under the diago-
nal) is instead set to PAP0,1 variables. This allows to obtain all the HD
cases (from 1 to 8 or 0 to 7, depending on how the PAPa,b and PAP0,1
are set) in just one single simulation with the same RBLa,b search in-
put voltages. For convenience, it is chosen this method, for both 8x8
and 32x32 arrays, since much faster than 1) after having implemented
Figure 5.15.

In Figure 5.16 it is instead reported the simulation plot for the 32x32 ar-
ray.
In both cases, the results are good and the design correctly realizes the tar-
get task described in the introduction to section 5.5: the HD is translated to
an analogue current (or voltage) value following the analog adder approach.
This means that a working analog HD counter has been realized. The cur-
rents (or voltages) on the row loads can be fed to an ADC stage that converts
them into digital voltages, or other additional peripherals for selecting the
lower current value for finding the minimum HD. Hence, this HD counter
module can be exploited for implementing the basic function of the search
module discussed in section 5.3.

The main advantages of such implementation are the following:
1. as it can be seen from Figure 5.14 and Figure 5.16, the HD count is very

fast: the mismatch delay is quite small and remains under the hundred

22Initial a,b MTJs logic state.

176

5 – SOT STT Logic–in–Memory implementation

Figure 5.14. All HD cases (except ’0’) corresponding to different current
values on the 8x8 array CLs.

Figure 5.15. Image for clarifying the PAP variables (PAP0,1 and PAPa,b)
distribution on the array elements, used for for plotting all the I_load HD
cases in both 8x8 and 32x32 arrays (Figure 5.14, Figure 5.16).

of picoseconds for all the tested array sizes. It has to be noticed that
no parasitic contributions are inserted in the CLs since the load nMOS
could be attached, for example, at the middle of the row (instead of at
the end) and so the path that the current has to cross would be reduced.

177

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 5.16. All HD cases (except ’0’) corresponding to different current
values on the 32x32 array CLs.

Hence, it is preferred to estimate only the ideal mismatch delay without
considering parasitic contributions;

2. the realized approach is hardware–saving with respect to the one pro-
posed in section 5.4: even if an ADC would be inserted at the end of
each row, it would be however less invasive than inserting almost one
time–sampling SA for each bitcell, as instead done for the timing–based
approach.

For the performance evaluation are valid the same considerations done in
subsection 4.4.3; the measurements —extracted from Cadence simulations—
include delays, average and peak power consumption and energy consump-
tion for all the analog adder–like CAM operations (write, read, XOR). The
simulated array sizes are 1x1 (1 cell), 8x8 and 32x32.

In Figure 5.17 are reported the delays computation for the two write cases.
It can be noticed that, in both cases, the results are generally better than
the ones obtained in Figure 4.22 for the MRAM–like arrays: this may be due
to the fact that, for the CAM designed in section 5.5, the RBLa and RBLb
write voltages are driven by ideal voltage generators, instead of the RBL real

178

5 – SOT STT Logic–in–Memory implementation

driver designed in subsection 4.3.3.

Figure 5.17. Delays results for both writing cases, for increasing array size

The read delays reported in Figure 5.18 are instead slightly higher than
the ones computed in the memory without logic (Figure 4.23). One of the
reasons may be the different Rref (i.e. reference cell resistance) setting, that
changes a little the amplitude of the current generated by the read driver.

The XOR = 0/1 delay results are not reported in table format for the
reasons explained previously in this section: no parasitic contributions are
introduced in the CLs, hence the delays results for different array sizes are
ideal. However, as it can be seen from Figure 5.12, Figure 5.14 and Fig-
ure 5.16, the XOR operation is fast: if the XOR delay is defined as the 50%
delay between the WL activation signal and the I_load current signal, the
maximum HD case is associated to a 85.8 ps÷87.3 ps delay.

Both write (Figure 5.19) and read (Figure 5.20) average power consump-
tion are comparable to the ones in subsection 4.4.3. The write power, for
both ’0’/’1’ cases, is slighly higher than the one in Figure 4.24: this is due
to the fact that, for equal array sizes, a doubled number of MTJs has to be
written in the analog adder CAM.
The read average power consumption is instead very similar to the one of
Figure 4.25.

179

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 5.18. Delays results for both reading cases, for increasing array size

Figure 5.19. Average power consumption related to both writing cases,
for increasing array size

The average power consumption associated to the XOR operation in-
creases faster —for higher array sizes— than the other operations, as it can

180

5 – SOT STT Logic–in–Memory implementation

Figure 5.20. Average power consumption related to both reading
cases, for increasing array size

be seen from Figure 5.21: the reason is that a search operation is performed
on all the memory cells in parallel, and not only with one wordline activated
for cycle, as done instead for reading and writing operations. However, the
XOR = ’1’ (mismatch) operation performed on a single CAM cell consumes
less than 7 µW: a lower average consumption than both read and write op-
erations.

The same considerations done about the average power consumption can
be applied also for the energy consumption results (Figure 5.22, Figure 5.23,
Figure 5.24).

In Figure 5.25 and Figure 5.26 are reported the peak power results for write
and read operations, respectively. The falling and rising time of all the signals
involved in the operations is set to 50 ps, exactly as done in subsection 4.4.3:
for this reason, the results of the two designs are comparable. Moreover, by
observing Figure 4.28 and Figure 4.29, it can be noted a remarkable similarity
between the two couples of plots.
In Figure 5.27, instead, is displayed the plot of the peak power consumption
related to the XOR operation cases. As for the XOR average power plots
(Figure 5.21), the high consumption that can be observed for the 32x32 array
is justifiable since it is to consider that all the 1024 cells perform the XOR
operation simultaneously.

181

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 5.21. Average power consumption related to both XOR cases,
for increasing array size

Figure 5.22. Energy consumption evaluated for write ’0’ and ’1’ cases

182

5 – SOT STT Logic–in–Memory implementation

Figure 5.23. Energy consumption evaluated for read ’0’ and ’1’ cases

Figure 5.24. Energy consumption evaluated for XOR =’0’ and ’1’ cases

183

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure 5.25. Peak power related to both writing cases, for different array sizes

Figure 5.26. Peak power related to both reading cases, for different array sizes

184

5 – SOT STT Logic–in–Memory implementation

Figure 5.27. Peak power related to both XOR cases, for different array sizes

185

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

5.6 Conclusions and future prospects
This work is divided into two parts.
The first one is dedicated to the understanding of the working principle of
Beyond–CMOS memory technologies (chapter 1), the analysis of their archi-
tectures and peripherals (chapter 2), and the research of feasible Logic–in–
Memory approaches exploiting such technologies (chapter 3).
The second one includes the development, through Cadence Virtuoso, of
a magnetoresistive RAM–like memory without logic functions (chapter 4).
Starting from this first design, a CAM–based LiM (chapter 5) for the count-
ing of Hamming Distance (HD) has been realized, following two different
approaches: the timing–based one (section 5.4) and the analog adder (sec-
tion 5.5) one.

The magnetoresistive (in particular, based on both Spin Transfer Torque
and Spin Orbit Torque effects) technology choice allows to realize a memory
that is very fast in both reading and writing operations, but that involves
a consistent power consumption (especially for writing), with respect to a
Static RAM realized through CMOS technology (subsection 4.4.3).
Almost the same characteristics are obtained with the development a SOT
STT CAM; such design allows to exploit the additional search operation for
counting the number of mismatches, through properly modified CAM cells.
This peculiarity can be exploited for implementing the core function of a HD
classifier, presented in section 5.3.

The HD classifier has been taken into account as LiM case of study for
the selected SOT STT magnetoresistive technology.
The design proposed in section 5.5, in particular, is able to count the HDs
—between external data and stored information inside the memory— as an
analog value; this is done in parallel to all the CAM rows and results in a
very fast operation subsection 5.5.2. Such approach is faster than the mem-
ristive one found in literature subsection 5.4.1; moreover, it heavily reduces
the hardware requirement, since it does not need the presence of one Sense
Amplifier per cell23 for the HD counting.

23See explanation in subsection 5.4.1.

186

5 – SOT STT Logic–in–Memory implementation

However, different improvements can be introduced:

• the optimization of the SOT and STT pulses combination for reducing
the power consumption during read operation;

• the realization of real RBL drivers for the SOT STT CAM designed in
section 5.524;

• the synthesis of the designed Cadence schematics into a program able to
simulate them for larger array sizes

• the development of a minimum analog value search algorithm optimized
for finding the lower HD among the ones computed by the designed HD
counter ;

• the research and test of other target algorithms for comparing the effi-
ciency of such approach.

Thank you for the attention!

24The real drivers has been realized for the SOT STT MRAM design in section 4.3, but
not for the SOT STT CAM.

187

188

Appendix A

Sense Amplifiers
classification
A discussion about SA typologies is introduced since, as mentioned in sub-
section 2.2.1, peripherals give a great contribution to memories performance;
it is worthwhile to do some considerations, anyway:

1. the presented classification is valid for all memory technologies, since it
is derived from basic analog electronics;

2. it makes reference to standard SA circuits. Quite often in literature mod-
ified or hybrid SA implementations are found, but their basic scheme can
(almost) always be referred to one typology included in such classifica-
tion. In this way it is possible to find out if a certain EMT presents a
trend in selecting a specific SA;

3. by understanding the benefits and limitations of the various SA types, it
will be simpler to make a choice when designing a target LiM application;

4. one way to implement in–memory computation is, actually, to introduce
logic at the level of SA, so it is good to know advantages and constraints
of the various typologies.

In Figure A.1 it is summarized a SA categorization according to the work-
ing mode (voltage, current or charge transfer based); it can be further sub-
divided if we consider the analog circuit (differential, latch, current mirror,
and modifications) at the basis. All the related circuital schemes and work-
ing principles can be found in [46].

189

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure A.1. SA simplified classification.

Voltage mode Sense Amplifiers are based on the comparison between the
voltage on the bitline VBL and a reference voltage VREF . They are usually
characterized by an higher BL input impedance than current SA , that make
possible to offer an high voltage gain with rather simple circuits. Nonetheless,
for large arrays, so with increased BL capacitance and limited voltage swing,
voltage SA could become less reliable and require higher power.
The most common types of voltage SA1 are the following:

• Basic Differential Voltage SA: due to its high offset, high power con-
sumption and limited speed it is usually not employed in memory appli-
cations;

• Positive Feedback Differential (also called Conventional Latch Type)
Voltage SA (Figure A.2): thanks to its positive feedback, it provides
really high differential gain that increases sensibility and sensing speed.
It can also rewrite data that are read in a destructive way. It is employed
for example in [41] for STT–MRAM, see subsection 2.2.2;

• Latch Type Voltage Sense Amplifier (VLSA, Figure A.3): it offers high

1According to the classification proposed in [46, 47]

190

A – Sense Amplifiers classification

speed with low power dissipation, and for this reason it is often utilized
as SA for LiM applications. It is usually employed when it is required
fast sensing at low supply voltage and with BL voltages near to ground
level. It is however sensible to noise [46, 47, 48]. For instance, a VLSA
is described in [48] for 0T1R ReRAM, see subsection 2.3.2.

Current mode Sense Amplifiers are instead based on the comparison be-
tween the sensed current ICELL and a reference current IREF . Their input
impedance, smaller than voltage SA one, allows them to have lower delays
and cross–talk, together with smaller substrate currents.
They are commonly classified2 as:

• Current Mirror Sense Amplifier (CMSA, Figure A.4): it can be easily
controlled, and it can be sped up by enhancing the operating current (so
with more power); for these reasons it is often employed in memories.
Examples of SAs that exploit current mirror (CM) stage can be found
—more or less— for all the EMTs selected in chapter 2. However, it is
not certain that an SA including a CM can be classified as a CMSA: this
is justified by the fact that, frequently, the CM is not the basic element
of the circuit and other stages contribute in defining the final behaviour
of the SA.

• Current Latched Sense Amplifier (CLSA)3: it cannot work at too low
voltage, since otherwise the differential current would be reduced to the
point that it could not be used for fast sensing anymore. To avoid this,
pre–charge is needed to rise BL voltage close to VDD to keep the input
nMOS transistors in saturation [48]. Nonetheless, this type of SA has
reduced power dissipation. STT–MRAM Chung’s SA, discussed in [44],
can be classified as a CLSA.

• Advanced Current Latched Sense Amplifier (ACLSA): it has a more
complex structure, but requires lower power dissipation and, through
switching circuits, it can operate at smaller voltage.

• High speed low power latch type sense amplifier: in theory it has the
same power dissipation of CLSA, but it provides both improved perfor-
mance and lower operating voltage. In terms of same power consump-
tion, it can work faster than ACLSA and CLSA. Nevertheless, it has a

2According to the classification proposed in [46, 47]
3According to [46], its circuit is the same of VLSA but with current inputs

191

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

large number of transistors and it is subjected to process variations and
current mismatch, that may lead to sensing errors.

Finally, Charge Transfer Sense Amplifiers (CTSA) working principle is
the redistribution of charge, taken from the high BL capacitance to the low
output capacitance of the SA. This mechanism intrinsically offers high speed
and requires low power. It is faster and consume less energy than a voltage
SA. The great disadvantage of charge transfer SAs is, however, the complex-
ity of design [46, 47].

Due to the increased speed, higher than voltage sense amplifiers one, current
mode SAs seem to be the best choice for reading interface for fast emerging
memory implementation.
Charge transfer SAs could be a good alternative but their complexity repre-
sents a challenge not so easily manageable.

However, sometimes VSA are still used —for instance— when a high voltage–
swing is required (for better accuracy) despite the higher energy required, or
when high speed is required at low voltage levels, e.g. in 0T1R ReRAM (see
subsection 2.3.2).
When a fast speed of operation is required, latch–type CSAs are usually em-
ployed, but they are not good for low voltage applications. This is due to the
fact that CLSA needs a voltage on the BLs close to VDD in order to maintain
the input nMOS pair in saturation: out of such region, CLSA works much
slower and so it loses its main benefit [48].

In chapter 2 some examples of SAs for EMTs are presented; obviously, they
do not pretend to be the only solutions for a specific EMT, also because the
articles from which they are extracted may be application–driven (i.e. high
speed, low voltage required by the case of study, etc.). The reading key is
the trend in using that SA, instead of others, for that EMT in last year ap-
plications (2015–2020), trying to explain the reasons for each choice, in order
to understand which sensing scheme is the most appropriate for the target
application.

192

A – Sense Amplifiers classification

Figure A.2. Positive Feedback Differential (or Conventional Latch
Type) Voltage Sense Amplifier.

Figure A.3. Latch type Voltage Sense Amplifier (VLSA).

193

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Figure A.4. Current Mirror Sense Amplifier (CMSA).

194

Appendix B

Python scripts

B.1 Python code for inputs generation
The following Python code is able to drive the proper signal pulses to the
SOT STT MRAM cell (subsection 4.3.1) Cadence schematic following the
specified operations sequence operations (line 60).
In practice, it writes into different files (1 file for each signal generator) a list
of time values and amplitude values that describe the signals. These files are
taken in input by vpwlf generators (i.e. generators in the Cadence schematic
that take the input from a file), which drive the proper signal durations and
amplitudes.
The script is adapted from the one reported in [100] for CMOS SRAM input
generation. With this script, it is obtained the signals plot in Figure 4.19.

1 # Python script for input signal generation for all the memory operations
2

3 vdd = 1
4 vss = -0.5
5 T_ck = 5e-10 # 0.5ns, if larger, the 0.5ns-long SOT pulse is a glitch
6 fall_ris_time = 1e-12
7

8 op = "idle"
9 jmax = 0 # used to set the cycle duration with respect to T_ck

10 WL_to_SE_delay = 4e-11 # 40ps
11

12 #cycles for writing the signal values to files
13 def write_generators_files(i, k, genfile_ptr, value):

195

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

14 print(i)
15 jmax = 1
16 if (signal_set[key] == signal_set['SE']) and (op == "read"): # it

consider the WL_to_SE delay↪→

17 if i == 0:
18 genfile_ptr.write('0' + " " + '0' + "\n")
19 genfile_ptr.write(str(i * T_ck + WL_to_SE_delay) + " " + '0' +

"\n")↪→

20 genfile_ptr.write(str(i * T_ck + WL_to_SE_delay + fall_ris_time) +
" " + str(value) + "\n")↪→

21 else:
22 if i == 0:
23 genfile_ptr.write('0' + " " + str(value) + "\n")
24 else:
25 genfile_ptr.write(str(i * T_ck + fall_ris_time) + " " +

str(value) + "\n")↪→

26 if op == "write0" or op == "write1": # since the write cycle is 4*T_ck
= 2ns long↪→

27 jmax = 4
28 elif op == "read": # since the read cycle is 2*T_ck = 1ns long
29 jmax = 2
30 for j in range(jmax): # writes all the signals
31 print(j)
32 if (signal_set[key] == signal_set['WBL_EN']) and (op == "write0"

or op == "write1") and (j == 1):↪→

33 value = 0
34 genfile_ptr.write(str((i+1) * T_ck + fall_ris_time) + " " +

str(value) + "\n")↪→

35

36 else:
37 genfile_ptr.write(str((i + 1 + j) * T_ck) + " " + str(value) +

"\n")↪→

38 return jmax
39

40 # create the group of signals as a dictionary in python:
41 signal_set = {'WL0': {'genfile_ptr': None, 'value': 0, 'default': 0},
42 'RBL': {'genfile_ptr': None, 'value': vss, 'default': vss},
43 'RBL_EN': {'genfile_ptr': None, 'value': vss, 'default':

vss},↪→

196

B – Python scripts

44 'RBL_disch': {'genfile_ptr': None, 'value': vdd, 'default':
vdd},↪→

45 'WBL_EN': {'genfile_ptr': None, 'value': 0, 'default': 0},
46 'WBL_disch': {'genfile_ptr': None, 'value': vdd, 'default':

vdd},↪→

47 'SE': {'genfile_ptr': None, 'value': 0, 'default': 0},
48 'ref_EN': {'genfile_ptr': None, 'value': 0, 'default': 0}}
49

50 path = "C:\\Users\\HP\\Desktop\\PYTHON\\gen_files_python\\" # the path to
the folder where the files are saved↪→

51

52 # open all files in writing:
53 for key in signal_set:
54 signal_set[key]['genfile_ptr'] = open((path+key+".csv"), "w+") # open

files for both reading and writing↪→

55 # print(key)
56

57 # -->open RBL.csv, WBL.csv, SE.csv, etc.
58

59 # tupla for including all memory operations:
60 operations = ("write0", "idle", "read", "idle", "write1", "idle", "read",

"idle") # example operations sequence↪→

61

62 #other example sequences:
63 # operations = ("read", "idle", "read")
64 # operations = ("write0", "idle", "read", "idle")
65

66 i = 0 # first cycle
67 j = 0
68

69 for op in operations: # it associated the proper signal value depending on
the selected operation↪→

70 for key in signal_set:
71 signal_set[key]['value'] = signal_set[key]['default']
72 if op == "write0":
73 signal_set['WL0']['value'] = vdd
74 signal_set['RBL_EN']['value'] = vdd
75 signal_set['RBL_disch']['value'] = 0
76 signal_set['WBL_EN']['value'] = vdd

197

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

77 signal_set['WBL_disch']['value'] = 0
78

79 elif op == "write1":
80 signal_set['WL0']['value'] = vdd
81 signal_set['RBL']['value'] = vdd
82 signal_set['RBL_EN']['value'] = vdd
83 signal_set['RBL_disch']['value'] = 0
84 signal_set['WBL_EN']['value'] = vdd
85 signal_set['WBL_disch']['value'] = 0
86

87 elif op == "read":
88 signal_set['WL0']['value'] = vdd
89 signal_set['RBL_disch']['value'] = 0
90 signal_set['WBL_disch']['value'] = 0
91 signal_set['SE']['value'] = vdd
92 signal_set['ref_EN']['value'] = vdd
93

94 elif op == "idle": # keeps the signals to their default values
95 pass
96

97 else:
98 print("Error")
99 exit(1)

100

101 for key in signal_set:
102 print(key)
103 print(op)
104 jmax = write_generators_files(i, k,

signal_set[key]['genfile_ptr'], signal_set[key]['value'])↪→

105 i = i + jmax
106

107 for key in signal_set: # close all the files
108 signal_set[key]['genfile_ptr'].close()

198

B – Python scripts

B.2 Python code for power consumption
computing in SOT STT MRAM arrays

The following Python script is used for generate the power function —that
has to be included among the Cadence simulation outputs— for compute
the power consumption of the SOT STT MRAM memory, as discusses in
subsection 4.4.2.

1 # Python script for generating the sum of all the V*I contribution in the
SOT STT MRAM schematic (for all array sizes)↪→

2 import sys
3

4 array_size = int(sys.argv[1])
5

6 file_ptr =
open(("power_calc_no_logic_"+str(array_size)+"x"+str(array_size)+".txt"),
'w')

↪→

↪→

7 for i in range(array_size):
8 file_ptr.write("VT(\"/WL<"+str(i)+">\")*IT(\"/V_WL"+str(i)+"/MINUS\")

+ ")↪→

9 file_ptr.write("VT(\"/IN<" + str(i) + ">\")*IT(\"/V_IN" + str(i) +
"/MINUS\") + ")↪→

10 file_ptr.write("VT(\"/RBL_EN<" + str(i) + ">\")*IT(\"/V_RBL_EN" +
str(i) + "/MINUS\") + ")↪→

11 file_ptr.write("VT(\"/WBL_EN<" + str(i) + ">\")*IT(\"/V_WBL_EN" +
str(i) + "/MINUS\") + ")↪→

12 file_ptr.write("VT(\"/WBL_disch<" + str(i) + ">\")*IT(\"/V_WBL_disch"
+ str(i) + "/MINUS\") + ")↪→

13 file_ptr.write("VT(\"/disch<" + str(i) + ">\")*IT(\"/V_disch" + str(i)
+ "/MINUS\") + ")↪→

14 file_ptr.write("VT(\"/SE<" + str(i) + ">\")*IT(\"/V_SE" + str(i) +
"/MINUS\") + ")↪→

15 file_ptr.write("VT(\"/SE2<" + str(i) + ">\")*IT(\"/V_SE2_" + str(i) +
"/MINUS\") + ")↪→

16 file_ptr.write("VT(\"/vdd!\")*IT(\"/V_vdd/MINUS\") + ")
17 file_ptr.write("VT(\"/vss!\")*IT(\"/V_vss/MINUS\")")
18

19 file_ptr.close()

199

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

B.3 Python code for power consumption
computing in SOT STT analog adder
CAM-like arrays

The following Python script is used for generate the power function —that
has to be included among the Cadence simulation outputs— for compute
the power consumption of the SOT STT analog adder CAM-like arrays (sec-
tion 5.5).

1 # Python script for generating the sum of all the V*I contribution in the
SOT STT CAM-like schematic for the implemntation of the analog adder
LiM approach (for all array sizes)

↪→

↪→

2 import sys
3

4 array_size = int(sys.argv[1])
5

6 file_ptr = open(("power_calc_"+str(array_size)+".txt"), 'w')
7 for i in range(array_dim):
8

file_ptr.write("VT(\"/RWL<"+str(i)+">\")*IT(\"/V_RWL"+str(i)+"/MINUS\")
+ ")

↪→

↪→

9 file_ptr.write("VT(\"/WWL<" + str(i) + ">\")*IT(\"/V_WWL" + str(i) +
"/MINUS\") + ")↪→

10 file_ptr.write("VT(\"/RBLa<" + str(i) + ">\")*IT(\"/V_RBLa" + str(i) +
"/MINUS\") + ")↪→

11 file_ptr.write("VT(\"/RBLb<" + str(i) + ">\")*IT(\"/V_RBLb" + str(i) +
"/MINUS\") + ")↪→

12 file_ptr.write("VT(\"/WBL_EN<" + str(i) + ">\")*IT(\"/V_WBL_EN" +
str(i) + "/MINUS\") + ")↪→

13 file_ptr.write("VT(\"/WBL_disch<" + str(i) + ">\")*IT(\"/V_WBL_disch"
+ str(i) + "/MINUS\") + ")↪→

14 file_ptr.write("VT(\"/search_n<" + str(i) + ">\")*IT(\"/Vsearch_n" +
str(i) + "/MINUS\") + ")↪→

15 file_ptr.write("VT(\"/disch<" + str(i) + ">\")*IT(\"/V_disch" + str(i)
+ "/MINUS\") + ")↪→

200

B – Python scripts

16 file_ptr.write("VT(\"/SE<" + str(i) + ">\")*IT(\"/V_SE" + str(i) +
"/MINUS\") + ")↪→

17 file_ptr.write("VT(\"/SE2<" + str(i) + ">\")*IT(\"/V_SE2_" + str(i) +
"/MINUS\") + ")↪→

18 file_ptr.write("VT(\"/vg_load\")*IT(\"/Vvg_load/MINUS\") + ")
19 file_ptr.write("VT(\"/vg_pMOS!\")*IT(\"/Vvg_pMOS/MINUS\") + ")
20 file_ptr.write("VT(\"/vdd!\")*IT(\"/V0/MINUS\")")
21

22 file_ptr.close()

201

202

Bibliography

[1] Guillaume Prenat, Kotb Jabeur, Gregory Di Pendina, Olivier Boulle,
Gilles Gaudin, Beyond STT-MRAM, Spin Orbit Torque RAM SOT-
MRAM for High Speed and High Reliability Applications, Introduction,
2015.

[2] Valery Lapshinsky, L. N. Patrikeev, Emerging resistive random-access
memory for ’fog’ computing and IoT: materials and structural options
taxonomy, International Journal of Nanotechnology, March 2020.

[3] Dr. Meng Zhu, Dr. Roman Sappey, Jeff Barnum,
MRAM Process Development And Production Brief-
ing, 10 March 2020. https://semiengineering.com/
mram-process-development-and-production-briefing/

[4] Gan Fuxi, Wang Yang, Data Storage at the Nanoscale -Advances and
Applications, p. 284, 2015.

[5] Jagan Singh Meena, Simon Min Sze, Umesh Chand, Tseung-Yuen Tseng,
Overview of emerging nonvolatile memory Technologies, 25 September
2014.

[6] Gan Fuxi, Wang Yang, Data Storage at the Nanoscale -Advances and
Applications, p. 311, 2015.

[7] MRAM-Info: the MRAM experts, STT-MRAM: Introduction and market
status, 19 February 2019.

[8] Y. Huai, Spin-Transfer Torque MRAM (STT-MRAM): Challenges and
Prospects, 2008.

[9] Furqan Zahoor, Tun Zainal Azni Zulkifli, Farooq Ahmad Khanday, Resis-
tive Random Access Memory (RRAM) an Overview of Materials, Switch-
ing Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling,
and Applications, 22 april 2020.

[10] Ashish Ranjan, Swagath Venkataramani, Zoha Pajouhi, Rangharajan

203

https://semiengineering.com/mram-process-development-and-production-briefing/
https://semiengineering.com/mram-process-development-and-production-briefing/

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Venkatesan, Kaushik Roy, Anand Raghunathan, STAxCache: An Ap-
proximate, Energy Efficient STT-MRAM Cache, Purdue University, (Ab-
stract), 2017.

[11] Shubham Jain, Ashish Ranjan, Kaushik Roy, Anand Raghunathan,
Computing in Memory with Spin-Transfer Torque Magnetic RAM, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 26, No. 3,
70-483, 2017.

[12] Avalanche technology, MRAM Technology, 2020. https://www.
avalanche-technology.com/technology/mram-technology/

[13] Valerio Milo, Gerardo Malavena, Christian Monzio Compagnoni, Daniele
Ielmini, Memristive and CMOS Devices for Neuromorphic Computing, 1
January 2020.

[14] Tetsuo Endoh, Hiroaki Honjo, A Recent Progress of Spintronics Devices
for Integrated Circuit Applications, Tohoku University, 13 November 2018.

[15] MRAM-Info: the MRAM experts, SOT-MRAM: introduction and mar-
ket status, 17 September 2020.

[16] S. G. Hu, S. Y. Wu, W. W. Jia, Q. Yu, L. J. Deng, Y. Q. Fu, Y. Liu,
T. P. Chen, Review of Nanostructured Resistive Switching Memristor and
Its Applications, 2014.

[17] Shimeng Yu and Pai-Yu Chen, Emerging Memory Technologies -Recent
Trends and Prospects, 21 June 2016.

[18] W. Kim, S. Menzel, D. J. Wouters, R. Waser, V. Rana, 3-Bit Multi
Level Switching by Deep Reset Phenomenon in Pt/W/TaOX/Pt-ReRAM
Devices, 2016.

[19] Fujitsu>Memory Products, What is FRAM?, 2020.
https://www.fujitsu.com/global/products/devices/
semiconductor/memory/fram/overview/structure/

[20] Mark Lapedus, What Are FeFETs?, Semiconductor Engineering, 16
February 2017.

[21] H. Kohlstedt, Y. Mustafa, A. Gerber, A. Petraru, M. Fitsilis, R. Meyer,
U. Böttger and R Waser, Current status and challenges of ferroelectric
memory devices, 2005.

[22] Xunzhao Yin, Ahmedullah Aziz, Joseph Nahas, Suman Datta, Sumeet
Gupta, Michael Niemier, Xiaobo Sharon Hu, Exploiting Ferroelectric
FETs for Low-Power Non-Volatile Logic-in-Memory Circuits, 2016.

[23] T. Ali, P. Polakowski, S. Riedel, T. Büttner, T. Kämpfe, M. Rudolph,
B. Pätzold, K. Seidel, D. Löhr, R. Hoffmann, M. Czernohorsky, K. Küh-
nel, P. Steinke, J. Calvo, K. Zimmermann, J. Müller, High Endurance
Ferroelectric Hafnium Oxide-Based FeFET Memory Without Retention

204

https://www.avalanche-technology.com/technology/mram-technology/
https://www.avalanche-technology.com/technology/mram-technology/
https://www.fujitsu.com/global/products/devices/semiconductor/memory/fram/overview/structure/
https://www.fujitsu.com/global/products/devices/semiconductor/memory/fram/overview/structure/

Bibliography

Penalty, 2018.
[24] J. A. Caraveo-Frescas, M. A. Khan, H. N. Alshareef, Polymer ferroelec-

tric field-effect memory device with SnO channel layer exhibits record hole
mobility, 2014.

[25] Panni Wang, Zheng Wang, Wonbo Shim, Jae Hur, Suman Datta, Asif Is-
lam Khan, Shimeng Yu, Drain-Erase Scheme in Ferroelectric Field-Effect
Transistor-Part I: Device Characterization, February 2020.

[26] FMC -The ferroelectric Memory Company, Major differentiation to
competition, 2020. https://ferroelectric-memory.com/technology/
major-differentiation-to-competition/

[27] O.D. Alao, J.V. Joshua, D.O. Kehinde, E.O. Ehinlafa, M.O. Agbaje,
J.E.T Akinsola, Emerging Memory Technologies, p.63, Babcock Univer-
sity, 2016.

[28] Scott W. Fong, Christopher M. Neumann, and H.-S. Philip Wong,
Phase-Change Memory—Towards a Storage-Class Memory, 2017.

[29] Stefania Braga, Alessandro Cabrini and Guido Torelli, An Integrated
Multi-Physics Approach to the Modeling of a Phase Change Memory De-
vice, University of Pavia, 2008.

[30] I. V. Karpov, M. Mitra, D. Kau, G. Spadini, Y. A. Kryukov, V. G.
Karpov, Fundamental drift of parameters in chalcogenide phase change
memory, Journal of Applied Physics, 2007.

[31] Kerem Akarvardar, H.-S. Philip Wong, Nanoelectromechanical Logic and
Memory Devices, Stanford University, 2009.

[32] Fred Chen, Hei Kam, Dejan Markovic, Tsu-Jae King Liu, Vladimir Sto-
janovic, Elad Alon, Integrated Circuit Design with NEM Relays, 2008.

[33] Dimitrios Tsamados, Adrian Ionescu, Kerem Akarvardar, H.-S. Philip
Wong, Elad Alon, Tsu-Jae King Liu, Nanoelectromechanical Switches
(NEM Relays NEMFETs), 2008.

[34] Tasuku Nagami, Yoshishige Tsuchiya, Ken Uchida, Hiroshi Mizuta,
Shunri Oda, Scaling Analysis of Nanoelectromechanical Memory Devices,
Tokyo Institute of Technology, 2010.

[35] Jae Eun Jang, Seung Nam Cha, Young Jin Choi, Dae Joon Kang, Tim
P. Butler, David G. Hasko, Jae Eun Jung, Jong Min Kim, Gehan A. J.
Amaratunga, Nanoscale memory cell based on a nanoelectromechanical
switched capacitor, 23 December 2007.

[36] W. Kwon, Nano-electromechanical random access memory (RAM) de-
vices, University of California Berkeley, 2014.

[37] Kimihiko Kato, Vladimir Stojanovic, Tsu-Jae King Liu, Non-Volatile
Nano-Electro-Mechanical Memory for Energy-Efficient Data Searching,

205

https://ferroelectric-memory.com/technology/major-differentiation-to-competition/
https://ferroelectric-memory.com/technology/major-differentiation-to-competition/

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

January 2016.
[38] Antonino Ferrara, Umberto Garlando, Luca Gnoli, Giulia Santoro, Mau-

rizio Zamboni, 3D Design of a pNML Random Access Memory, Politec-
nico di Torino, 2017.

[39] Jason Hoffman, Xiao Pan, James W. Reiner, Fred J. Walker, J. P. Han,
Charles H. Ahn, T. P. Ma, Ferroelectric Field Effect Transistor for Mem-
ory Applications, 2010.

[40] Dayane Reis, Michael Niemier, X. Sharon Hu, Computing in memory
with FeFETs, Proceedings of the International Symposium on Low Power
Electronics and Design, 2018.

[41] Gan Fuxi, Wang Yang, Data Storage at the Nanoscale -Advances and
Applications, pp. 327-328, 2015.

[42] Kazi Asifuzzaman, Rommel Sánchez Verdejo, Petar Radojkovic, En-
abling a Reliable STT-MRAM Main Memory Simulation, Proceedings of
the International Symposium on Memory Systems, 2017.

[43] Insik Yoon, Ashwin Chintaluri, Arijit Raychowdhury, EMACS: Efficient
MBIST architecture for test and characterization of STT-MRAM arrays,
2016 IEEE International Test Conference (ITC), IEEE, 2016.

[44] Jin Woong Kwak, Andrew Marshall, Harvey Stiegler, 28nm STT-MRAM
Array and Sense Amplifier, 2019 8th International Conference on Modern
Circuits and Systems Technologies (MOCAST), IEEE, 2019.

[45] Jongyeon Kim, An Chen, Behtash Behin-Aein, Saurabh Kumar, Jian-
Ping Wang, Chris H. Kim, A Technology-Agnostic MTJ SPICE Model
with User-Defined Dimensions for STT-MRAM Scalability Studies, 2015
IEEE custom integrated circuits conference (CICC), IEEE, 2015.

[46] Meenu Rani Garg, Anu Tonk, A Study of Different Types of Voltage
Current Sense Amplifiers used in SRAM, International Journal of Ad-
vanced Research in Computer and Communication Engineering 4, No. 5,
30-35, 2015.

[47] Subhodip Maulik, Mili Sarkar, Srismrita Basu, Comparative Study on
Different Types of Sense Amplifiers for Delay and Power Dissipation Cal-
culation.

[48] Mesbah Uddin, Garrett S. Rose, A Practical Sense Amplifier Design for
Memristive Crossbar Circuits (PUF), 31st International System-on-Chip
Conference (SOCC), Arlington, VA, USA, September 2018.

[49] Weisheng Zhao, Claude Chappert, Virgile Javerliac, Jean-Pierre Noz-
ière, High Speed, High Stability and Low Power Sensing Amplifier for
MTJ/CMOS Hybrid Logic Circuits, IEEE Transactions on Magnetics,
Vol. 45, No. 10, October 2009.

206

Bibliography

[50] Cong Xu, Dimin Niu, Naveen Muralimanohar, Rajeev Balasubramonian,
Tao Zhang, Shimeng Yu, Yuan Xie, Overcoming the Challenges of Cross-
bar Resistive Memory Architectures, 2015.

[51] Dimin Niu, Cong Xu, Naveen Muralimanohar, Norman P. Jouppi, Yuan
Xie, Design of Cross-point Metal-oxide ReRAM Emphasizing Reliability
and Cost, 2013.

[52] Jiahao Yin, Chunmeng Dou, Danian Dong, Jie Yu, Xiaoxin Xu, Qing
Luo, Tiancheng Gong, Lu Tai, Peng Yuan, Xiaoyong Xue, Ming Liu,
and Hangbing Lv, A 0.75 V reference clamping sense amplifier for low-
power high-density ReRAM with dynamic pre-charge technique, IEICE
Electronics Express, Vol.16, No.12, 1-6, 2019.

[53] Richard Fackenthal, Makoto Kitagawa, Wataru Otsuka, Kirk Prall, Du-
ane Mills 1 , Keiichi Tsutsui, Jahanshir Javanifard, Kerry Tedrow, Tomo-
hito Tsushima, Yoshiyuki Shibahara, Glen Hush, A 16Gb ReRAM with
200MB/s Write and 1GB/s Read in 27nm Technology, 2014 IEEE Inter-
national Solid-State Circuits Conference, 2014.

[54] Tz-yi Liu, A 130.7-mm2-Layer 32-Gb ReRAM Memory Device in 24-nm
Technology, IEEE Journal od Solid-State Circuits, Vol. 49, No. 1, January
2014.

[55] Frederick Perner, Sense amplifier for reading a crossbar memory array,
U.S. Patent No. 8,472,262, 25 June 2013.

[56] Yi-Chung Chen, Hai (Helen) Li, Wei Zhang, A Novel Peripheral Circuit
for RRAM-based LUT, 2012 IEEE International Symposium on Circuits
and Systems (ISCAS), IEEE, 2012.

[57] Adedotun Adeyemo, Abusaleh Jabir, Jimson Mathew, Minimising Im-
pact of Wire Resistance in Low-Power Crossbar Array Write Scheme,
Journal of Low Power Electronics 13, No. 4 , pp. 649-660, 2017.

[58] Cong Xu, Xiangyu Dong, Norman P. Jouppi, Yuan Xie, Design Impli-
cations of Memristor-Based RRAM Cross-Point Structures, 2011 Design,
Automation Test in Europe, IEEE, 2011.

[59] H-S. Philip Wong, Simone Raoux, SangBum Kim, Jiale Liang, John
P. Reifenberg, Bipin Rajendran, Mehdi Asheghi, Kenneth E. Goodson,
Phase change memory, Proceedings of the IEEE 98, No. 12, 2201-2227,
2010.

[60] Kwang-Jin Lee, Beak-Hyung Cho, Woo-Yeong Cho, Sangbeom Kang,
Byung-Gil Choi, Hyung-Rok Oh, Chang-Soo Lee et al., A 90 nm 1.8
V 512 Mb diode-switch PRAM with 266 MB/s read throughput, IEEE
Journal of Solid-State Circuits 43, No. 1, 150-162, 2008.

207

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

[61] Lei Jiang, Bo Zhao, Jun Yang, Youtao Zhang, A low power and reli-
able charge pump design for phase change memories, ACM SIGARCH
Computer Architecture News 42, No. 3, 397-408, 2014.

[62] Sangbeom Kang, Woo Yeong Cho, Beak-Hyung Cho, Kwang-Jin Lee,
Chang-Soo Lee, Hyung-Rok Oh, Byung-Gil Choi et al., A 0.1 µm 1.8 V
256 Mb Phase-Change Random Access Memory (PRAM) With 66 Mhz
Synchronous Burst-Read Operation, IEEE Journal of Solid-State Circuits
42, No. 1, 210-218, 2006.

[63] W. Y. Cho, B. H. Cho, B. G. Choi et al., A 0.18 µm 3 V 64 Mb Non-
Volatile Phase-Transition Random Access Memory (PRAM), ISSCC-
Digest of Technical Papers 2.1., 2004.

[64] Xi Li, Hou-Peng Chen, Zhi-Tang Song, Design and analysis of a high-
performance sense amplifier for Phase-Change Memory, 2011 3rd Inter-
national Conference on Computer Research and Development, Vol. 3, pp.
318-321. IEEE, 2011.

[65] Panni Wang, Wonbo Shim, Zheng Wang, Jae Hur, Suman Datta, Asif Is-
lam Khan, Shimeng Yu, Drain-Erase Scheme in Ferroelectric Field Effect
Transistor -Part II: 3-D-NAND Architecture for In-Memory Computing,
IEEE Transactions on Electron Devices 67, No. 3, 962-967, 2020.

[66] Kai Ni, Xueqing Li, Jeffrey A. Smith, Matthew Jerry, Suman Datta,
Write disturb in ferroelectric FETs and its implication for 1T-FeFET
AND memory arrays, IEEE Electron Device Letters 39, No. 11, 1656-
1659, 2018.

[67] Ya Qin, Ying Xiong, Kai Li, Minghua Tang, Simulation of FeFET-based
basic logic circuits and current sense amplifier, In 2014 12th IEEE In-
ternational Conference on Solid-State and Integrated Circuit Technology
(ICSICT), pp. 1-3. IEEE, 2014.

[68] Sumitha George, Kaisheng Ma, Ahmedullah Aziz, Xueqing Li, Asif
Khan, Sayeef Salahuddin, Meng-Fan Chang et al., Nonvolatile memory
design based on ferroelectric FETs, In Proceedings of the 53rd Annual
Design Automation Conference, pp. 1-6, 2016.

[69] Pilin Junsangsri, Jie Han, Fabrizio Lombardi, Logic-in-memory with a
nonvolatile programmable metallization cell, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 24, No. 2, 521-529, 2015.

[70] Dooho Cho, Kyungmin Kim, Changsik Yoo, A Programmable Logic-in-
memory (LiM) based on Magnetic Tunneling Junction (MTJ), Journal of
Semiconductor Technology and Science 18, No. 5, 586-592, 2018.

[71] Sandeep Krishna Thirumala, Shubham Jain, Anand Raghunathan,

208

Bibliography

Sumeet Kumar Gupta, Non-volatile memory utilizing reconfigurable fer-
roelectric transistors to enable differential read and energy-efficient in-
memory computation, In 2019 IEEE/ACM International Symposium on
Low Power Electronics and Design (ISLPED), pp. 1-6. IEEE, 2019.

[72] Hiwa Mahmoudi, Thomas Windbacher, Viktor Sverdlov, Siegfried Sel-
berherr, MRAM-based logic array for large-scale non-volatile logic-in-
memory applications, In 2013 IEEE/ACM International Symposium on
Nanoscale Architectures (NANOARCH), pp. 26-27, IEEE, 2013.

[73] Shahar Kvatinsky, Guy Satat, Nimrod Wald, Eby G. Friedman, Avinoam
Kolodny, Uri C. Weiser, Memristor-based material implication (IMPLY)
logic: Design principles and methodologies, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 22, No. 10, 2054-2066, 2013.

[74] Sundarapandian Vaidyanathan, Christos Volos, eds., Advances in mem-
ristors, memristive devices and systems, Vol. 701, pp. 131-156 , Springer,
2017.

[75] Shahar Kvatinsky, Dmitry Belousov, Slavik Liman, Guy Satat, Nimrod
Wald, Eby G. Friedman, Avinoam Kolodny, Uri C. Weiser, MAGIC -
Memristor aided logic, IEEE Transactions on Circuits and Systems II:
Express Briefs 61, No. 11, 895-899, 2014.

[76] Rahul Gharpinde, Phrangboklang Lynton Thangkhiew, Kamalika
Datta, Indranil Sengupta, A scalable in-memory logic synthesis approach
using memristor crossbar, IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems 26, No. 2, 355-366, 2017.

[77] Nishil Talati, Saransh Gupta, Pravin Mane, Shahar Kvatinsky,
Logic design within memristive memories using memristor-aided loGIC
(MAGIC), IEEE Transactions on Nanotechnology 15, No. 4, 635-650,
2016.

[78] Yuanfan Yang, Jimson Mathew, Salvatore Pontarelli, Marco Ottavi, Dhi-
raj K. Pradhan, Complementary resistive switch-based arithmetic logic
implementations using material implication, IEEE Transactions on nan-
otechnology 15, No. 1, 94-108, 2015.

[79] Yang Zhang, Yi Shen, Xiaoping Wang, Yanwen Guo, A novel design for
a memristor-based or gate, IEEE Transactions on Circuits and Systems
II: Express Briefs 62, No. 8, 781-785, 2015.

[80] Abu Sebastian, Manuel Le Gallo, Evangelos Eleftheriou, Computational
phase-change memory: Beyond von Neumann computing, Journal of
Physics D: Applied Physics 52, No. 44, 443002, 2019.

[81] Desmond Loke, Jonathan M. Skelton, Wei-Jie Wang, Tae-Hoon Lee,

209

Michela Graglia et al. SOT STT MTJ Architectures for Logic-In-Memory Computing

Rong Zhao, Tow-Chong Chong, Stephen R. Elliott, Ultrafast phase-
change logic device driven by melting processes, Proceedings of the Na-
tional Academy of Sciences 111, No. 37, 13272-13277, 2014.

[82] E. T. Breyer, H. Mulaosmanovic, T. Mikolajick, S. Slesazeck, Recon-
figurable NAND/NOR logic gates in 28 nm HKMG and 22 nm FD-SOI
FeFET technology, In 2017 IEEE International Electron Devices Meeting
(IEDM), pp. 28-5. IEEE, 2017.

[83] Evelyn T. Breyer, Halid Mulaosmanovic, Stefan Slesazeck, Thomas
Mikolajick, Demonstration of versatile nonvolatile logic gates in 28nm
HKMG FeFET technology, In 2018 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1-5. IEEE, 2018.

[84] Panni Wang, Feng Xu, Bo Wang, Bin Gao, Huaqiang Wu, He Qian, Shi-
meng Yu, Three-dimensional NAND flash for vector-matrix multiplica-
tion, IEEE Transactions on Very Large Scale Integration (VLSI) Systems
27, No. 4, 988-991, 2018.

[85] Xunzhao Yin, Xiaoming Chen, Michael Niemier, Xiaobo Sharon Hu, Fer-
roelectric FETs-based nonvolatile logic-in-memory circuits, IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 27, No. 1, 159-
172, 2018.

[86] Sandeep Krishna Thirumala, Shubham Jain, Sumeet Kumar Gupta,
Anand Raghunathan, Ternary compute-enabled memory using ferroelec-
tric transistors for accelerating deep neural networks, In 2020 Design,
Automation Test in Europe Conference Exhibition (DATE), pp. 31-36,
IEEE, 2020.

[87] Xizhen Zhang, Mitsue Takahashi, Shigeki Sakai, FeFET logic circuits for
operating a 64 kb FeNAND flash memory array, Integrated Ferroelectrics
132, No. 1, 114-121, 2012.

[88] School of Microelectronics, Beihang University, Spinmodel Library,
Know more about spin!, http://www.spinlib.com/index.html.

[89] School of Microelectronics, Beihang University, Spinmodel Library,
Know more about spin!, http://www.spinlib.com/STT_PMA_MTJ.html.

[90] School of Microelectronics, Beihang University, Spinmodel Library,
Know more about spin!, http://www.spinlib.com/STT_SOT_MTJ.html.

[91] Wang, Zhaohao, Weisheng Zhao, Erya Deng, Jacques-Olivier Klein,
and Claude Chappert, Perpendicular-anisotropy magnetic tunnel junction
switched by spin-Hall-assisted spin-transfer torque, Journal of Physics D:
Applied Physics 48, no. 6 (2015): 065001.

[92] Zhang, He, Wang Kang, Lezhi Wang, Kang L. Wang, and Weisheng

210

http://www.spinlib.com/index.html
http://www.spinlib.com/STT_PMA_MTJ.html
http://www.spinlib.com/STT_SOT_MTJ.html

Bibliography

Zhao, Stateful reconfigurable logic via a single-voltage-gated spin Hall-
effect driven magnetic tunnel junction in a spintronic memory, IEEE
Transactions on Electron Devices 64, no. 10 (2017): 4295-4301.

[93] He, Zhezhi, Shaahin Angizi, Farhana Parveen, and Deliang Fan, High
performance and energy-efficient in-memory computing architecture based
on sot-mram, In 2017 IEEE/ACM International Symposium on Nanoscale
Architectures (NANOARCH), pp. 97-102. IEEE, 2017.

[94] Fan, Deliang, and Shaahin Angizi, Energy efficient in-memory binary
deep neural network accelerator with dual-mode SOT-MRAM, In 2017
IEEE International Conference on Computer Design (ICCD), pp. 609-
612. IEEE, 2017.

[95] Uddin, Mesbah, and Garrett S. Rose, A practical sense amplifier design
for memristive crossbar circuits (PUF), In 2018 31st IEEE International
System-on-Chip Conference (SOCC), pp. 209-214. IEEE, 2018.

[96] Na, Taehui, Seung H. Kang, and Seong-Ook Jung, STT-MRAM Sensing:
A Review, IEEE Transactions on Circuits and Systems II: Express Briefs
(2020).

[97] Rahimi, Abbas, Pentti Kanerva, and Jan M. Rabaey, A robust and
energy-efficient classifier using brain-inspired hyperdimensional comput-
ing, In Proceedings of the 2016 International Symposium on Low Power
Electronics and Design, pp. 64-69. 2016.

[98] Imani, Mohsen, Abbas Rahimi, Deqian Kong, Tajana Rosing, and Jan
M. Rabaey, Exploring hyperdimensional associative memory, In 2017
IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA), pp. 445-456. IEEE, 2017.

[99] Xu, Wei, Tong Zhang, and Yiran Chen, Spin-transfer torque magne-
toresistive content addressable memory (CAM) cell structure design with
enhanced search noise margin, In 2008 IEEE International Symposium
on Circuits and Systems, pp. 1898-1901. IEEE, 2008.

[100] Graziano, Mariagrazia, Marco Vacca, Maurizio Zamboni, and Fabrizio
Ottati, ALiAS-Analog Logic-in-Memory Arrays Synthesizer, 2020.

211

	I State of the art
	Emerging Memory Technologies: State of the art
	Introduction
	Beyond CMOS
	Explored technologies

	Magnetoresistive Random Access Memory (MRAM)
	Conventional MRAM
	Spin Transfer Torque MRAM improvements
	STT–MRAM characteristics
	Spin Orbit Torque MRAMs

	Resistive Random Access Memory (RRAM or ReRAM)
	ReRAM principles
	ReRAM classification
	ReRAM advantages and constrains

	Ferroelectric Random Access Memory (FeRAM, F–RAM or FRAM)
	FeRAM basics
	Capacitor–type FeRAM
	FET–type FeRAM (FeFET): advantages and constraints
	FET–type FeRAM (FeFET): functioning

	Phase Change Random Access Memory
	PCM: basics
	Phase Change RAM operations
	PCM performance

	NanoElectroMechanical Systems (NEMS) based memory
	NEM relays: basics
	NEMS–based memories: benefits and drawbacks

	About Nano Magnetic Logic (NML)
	Brief on EMT performance comparison
	Conclusions

	EMT: arrays and peripheral circuits
	Technology choice
	STT–MRAM: towards a practical application
	STT–MRAM: array and peripherals
	Considerations on SAs for STT–MRAM

	ReRAM: towards design level
	ReRAM arrays
	ReRAM peripherals
	Biasing challenges of 0T1R cross–point structures

	PCM: towards design level
	PCM arrays
	PCM peripherals

	FeFET: towards design level
	FeFET arrays
	FeFET peripherals

	EMT LiM
	Why implementing LiM?
	STT–MRAM LiM
	STT–MRAM LiM peculiarities
	STT–MRAM LiM, 1st example: modified reading interface
	STT–MRAM LiM 2nd example: modified cell and column decoder
	STT–MRAM LiM 3rd example: voltage pulses approach

	ReRAM LiM
	ReRAM IMPLY
	ReRAM MAD
	ReRAM MAGIC
	ReRAM LiM comparisons and other ReRAM LiM approaches

	PCM LiM
	PCM logic potential
	PCM logic

	FeFET LiM
	Why FeFET LiM?
	FeFET logic approaches

	II SOT STT LiM development
	SOT STT Memory implementation
	Technology choice
	The model
	SOT STT memory design
	The PMA SOT STT cell
	The sensing interface
	The WL and BL write drivers
	The array organization
	Testbench states

	Performance evaluation
	Delays computing
	Power consumption computing
	Measurements and results

	SOT STT Logic–in–Memory implementation
	Logic approaches from literature
	Logic approaches from literature (1)
	SOT stateful logic
	SOT STT logic–in–peripherals approach

	The target algorithm
	Timing–based HD counter
	Memristive CAM SA approach
	SOT STT CAM adaptation
	Approach limitations

	An analog adder approach
	New CAM–like cell
	Results

	Conclusions and future prospects

	Sense Amplifiers classification
	Python scripts
	Python code for inputs generation
	Python code for power consumption computing in SOT STT MRAM arrays
	Python code for power consumption computing in SOT STT analog adder CAM-like arrays

	Bibliography

