
1

POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Elettronica

Tesi di Laurea Magistrale

Proposal for a multi-technology,
template-based quantum circuits

compilation toolchain

Relatori:
Prof. Maurizio Zamboni
Prof. Mariagrazia Graziano
Prof. Giovanna Turvani

Candidato:
Manfredi Avitabile

Luglio 2021

Summary

The promising branch of quantum computing has made some significant advances
in the last decade. With quantum hardware becoming larger in scale and more
reliable, quantum circuits are growing in size and becoming more complex in their
implementations. In order to face the challenge of achieving optimality for these
circuits, the state-of-the-art in quantum computing has taken inspiration from clas-
sical computing by employing automated design tools for optimizing and mapping
quantum circuits. Each of these tools are based on one specific strategy used to
determine the most ideal improvements to be applied.

In this thesis work, the use of a template-based approach for quantum circuits
optimization purposes is explored, and the proposal of a modular toolchain, com-
patible with three of the most mainstream quantum implementation technologies
(NMR, Trapped Ions, Superconducting), is presented. The Toolchain optimizes
quantum circuits described in OpenQASM intermediate language, and takes in-
spiration from the current state-of-the-art workflow of automated design applied to
quantum computing. The Toolchain was divided in steps, designed to accommodate
a comprehensive template database for quantum circuit identities and other smart
optimization methods proposed in the last few years, and then implemented with a
modular Python library. The performance of this toolchain was benchmarked on a
set of quantum circuits and compared to the ones of other state-of-the art compilers.
The toolchain was designed as a “first proposal”, and as such it was made able to
accommodate further expansion and support for new quantum technologies.
This work is not intended to be classified as “entry level” in the quantum com-
puting’s subject: thus, the reader should be advised that in this thesis no in-depth
explanations of complex linear algebra applied to quantum mechanics, wavefunctions
and quantum state’s properties will be found, because this work is not intended to
be an introduction to the mysteries of quantum computing for anyone.
With the perspective of analyzing the proposed toolchain, a quick overview of some
basic concepts of quantum computing is presented in Chapter 1. This overview
does not go into detail in some theoretical concepts in order to avoid redundancy,
but is instead focused on making clear the “computer architecture-level” method of
tackling the problem on which the Toolchain is based, and presents a description on
the Toolchain’s target technologies, which were picked for the mainstream role they
had in the last years in the quantum computing industry and research field, and on
the current state-of-the-art automated design Toolchains’ structure.
In Chapter 2, after an introduction to the concept of template-based optimizations

I

on which the whole proposed design process revolves, the general structure of the
implemented Quantum Toolchain, along with its caveats, and a detailed overview of
its Step 1 are presented. Step 1 is the first, technology-agnostic part of the quantum
circuit optimization procedure, and is described in detail along with its correlated
Toolchain’s libraries. This Step was implemented as the one in which most of the
template identities of the database are exploited, through a reiterative structure.
An accurate report of both the functions contained in its correlated libraries and of
the circuit equivalences used in its database is presented.
In Chapter 3, the Toolchain’s Step 2, concerning the technology-based translation
process and the second part of the quantum circuit optimization procedure, and
its libraries are presented. This step was designed in order to be able to handle
the fundamental sets of gates of each target technology and to operate a circuit
decomposition and translation into base gates. This step also features a series of
fine-grain optimizations used to merge these base gates and consolidate the circuit’s
compaction. Once again, an in-depth description of this Step’s functions and of
their inner workings, alongside with an explanation of the used merging optimiza-
tion methods, is presented.
Chapter 4 describes the Toolchain’s final Step 3, that allows device-specific Lay-
out Synthesis. This step was designed to tackle the arduous task of managing the
optimizations regarding two-qubit gates in the target device. A description of the im-
plemented methods of two-qubit gates decomposition into technology-specific gates
and of their related template-based optimization process, involving their mirroring
and distribution, is then presented.
In the final chapter, the results of each optimization step, as well as the overall
performance of the Toolchain, are presented through a series of benchmarks. This
benchmark procedure was carried out along the development of the Toolchain’s
software. A brief summary of the testing methods used to prove the toolchain’s
performance is reported, followed by graphical representations of a series of data
obtained by testing a subset of complex quantum circuits both on the Toolchain
and on two of the finest state-of-the-art compilers, IBM’s Qiskit and Cambridge
Quantum Computing’s T-Ket. The results are then compared and analyzed (Chap-
ter 5).
Even though the current Toolchain can still be expanded further and improved to
support more quantum technologies and a fully-fledged Layout Synthesis, the results
obtained are quite encouraging, and they prove how the Toolchain can be competi-
tive in quantum circuits’ optimization when compared to the state-of-the-art’s finest
compilers, especially when dealing with single-qubit gates. As a final note, some fu-
ture perspectives are proposed to expand the Toolchain’s actual capabilities in the
future.

II

Table of contents

Summary I

1 Basic Concepts 1
1.1 Qubits . 2

1.1.1 Superposition and Entanglement 3
1.1.2 Bloch Sphere . 5

1.2 Quantum gates . 6
1.2.1 Definition and properties . 6
1.2.2 Most important quantum gates - single qubit 8
1.2.3 Most important quantum gates - Multiple qubits 12
1.2.4 Physical implementation of quantum gates 15
1.2.5 Virtual implementation of RZ gates 16

1.3 Quantum technologies and devices . 17
1.3.1 Fundamental criteria . 18
1.3.2 NMR - Nuclear Magnetic Resonance technology 20
1.3.3 Trapped Ions technology . 24
1.3.4 Superconducting technology 28

1.4 Quantum computing’s state of the art Design Toolchain 34

2 Proposal for an Optimized Quantum Toolchain and overview of its
Step 1 37
2.1 The Optimized Quantum Toolchain 38

2.1.1 The template-based approach 39
2.1.2 The Toolchain’s structure . 41

2.2 Step 1 - QASM template-based optimization 46
2.2.1 Step 1’s structure . 48
2.2.2 QASM precomposer library 51
2.2.3 NULLOP purgers library . 54
2.2.4 simple optimizers library . 58
2.2.5 step1 templates library . 66
2.2.6 QASM postcomposer library 78

3 Overview of the Toolchain’s Step 2 79
3.1 Step 2 - Technology-dependent

gates compaction . 80
3.1.1 Step 2’s structure . 82

III

3.1.2 NMR - Specific workflow . 85
3.1.3 Trapped Ions - Specific workflow 86
3.1.4 Superconducting - Specific workflow 87
3.1.5 step2 techlib library . 88
3.1.6 Ugates converter library . 102

4 Overview of the Toolchain’s Step 3 106
4.1 Step 3 - Distribution/Mirroring-based

optimizations and CX gates decomposition 107
4.1.1 Step 3’s structure . 110
4.1.2 NMR - Specific workflow . 113
4.1.3 Trapped Ions - Specific workflow 115
4.1.4 Superconducting - Specific workflow 117
4.1.5 step3 cxtemplates library . 118
4.1.6 step3 cxtranslate library . 123

5 Benchmarks 129
5.1 General benchmarking procedures . 130

5.1.1 Tested circuits . 133
5.1.2 Comparing the Toolchain to the state-of-the-art 134

5.2 Step 1 intermediate benchmarks . 137
5.2.1 Intermediate results analysis 142

5.3 Step 2 intermediate benchmarks . 143
5.3.1 Intermediate results analysis 154

5.4 Step 3 final benchmarks . 155
5.4.1 Final results analysis . 166

Conclusions and future perspectives 169

Bibliography 171

IV

List of figures

1.1 Bloch Sphere representation of a generic |ψi state taken from [18] . . 5

1.2 Example of a sinusoidal EM Pulse implementing a quantum gate’s
manipulation, as represented in [4] 16

1.3 Virtual implementation of an RZ gate as a global phase change, as
represented in [23] . 17

1.4 Arise of the superposition of energy states following the application
of a magnetic field to a nucleus which is used to encode |0i and |1i
states in NMR, as represented in [38] 21

1.5 Implementation of base gate CZ in NMR technology by using J-
Coupling, in which the coupling parameter 1

2J
is the time in which

the system is free to evolve with no RF fields applied as shown in [23] 23

1.6 Quantum information encoding in Trapped Ions systems’ states . . . 25

1.7 Example of implementation of a base gate CX in Trapped Ions tech-
nology by using the XX gate, in which v is an arbitrary parameter
with the value of ∓1, as shown in [34] 27

1.8 Josephson Junction and its effect on the energy level in a supercon-
ducting LC Resonator, as represented in [4] 29

1.9 U1 gate symbol . 31

1.10 U2 gate equivalence . 31

1.11 U3 Gate Equivalence . 32

1.12 Current state of the art quantum Design Toolchain, as represented in
[17] . 34

2.1 Example of application of a template as described in [47] to perform a
circuital optimization, represented using IBM’s Quantum Experience
[48] . 40

2.2 Example of an “idle” CX gate which is redundant if the control qubit’s
state is |0i as represented in [46], and that can be targeted using a
state-based optimization method . 41

2.3 Overall structure and contents of the Toolchain 43

2.4 Representation of the overall structure of the Toolchain’s Step 1 . . . 48

2.5 Decomposition of a Toffoli gate in Clifford + T gates, as represented
in [49] . 52

2.6 Preliminary recombinations of S-type and T-type gates 53

2.7 Example of standard null operation 55

2.8 Example of null operation in the case of S-type or T-type gates . . . 56

V

2.9 Example of null operation in the case of rotational Pauli gates, in
which |x1 + x2| ≤ Threshold 2 . 56

2.10 Example of adjacent gates combination in the case of rotational Pauli
gates, in which |x1 + x2| > Threshold 2 57

2.11 Example of null operation in the case of two-qubit gates 57

2.12 Examples of “fake”null operations in the case of two-qubit gates,
which do not allow for any kind of straightforward purge 57

2.13 X-Y, Y-X to Z simple equivalences (considered valid because of the
global phase change which results as irrelevant to the final overall state) 58

2.14 X-Z, Z-X to Y simple equivalences (considered valid because of the
global phase change which results as irrelevant to the final overall state) 58

2.15 Y-Z, Z-Y to X simple equivalences (considered valid because of the
global phase change which results as irrelevant to the final overall state) 59

2.16 X-RZ-X to -RZ , X-RY -X to -RY simple equivalences 59

2.17 H-RZ-H to RX , H-RY -H to -RY , H-RX-H to RZ simple equivalences . 60

2.18 Y
1
2 -X, X-Y −

1
2 to H and viceversa simple equivalences 60

2.19 S-X
1
2 -S, S†-X−

1
2 -S† to H and viceversa simple equivalences 61

2.20 Template 1: CX(i,j)-RZ(i) / CZ(i,j)-RZ(i) to RZ(i)-CX(i,j) / RZ(i)-
CZ(i,j) and viceversa . 66

2.21 Template 2: CX(i,j)-RX(j) to RX(j)-CX(i,j) and viceversa 66

2.22 Template 3: CZ(i,j)-RZ(j) to RZ(j)-CZ(i,j) and viceversa 67

2.23 Template 4: CX(i,j)-X(i) to X(i)-X(j)-CX(i,j) / X(i)-CX(i,j) to CX(i,j)-
X(i)-X(j) and viceversa . 67

2.24 Template 5: CX(i,j)-Z(j) to Z(i)-Z(j)-CX(i,j) / Z(j)-CX(i,j) to CX(i,j)-
Z(i)-Z(j) and viceversa . 68

2.25 Template H1: H(i)-H(j)-CX(i,j)-H(i)-H(j) to CX(j,i) 68

2.26 Template H2: H(i)-H(j)-CX(i,j) to CX(j,i)-H(i)-H(j) and viceversa . . 69

2.27 Template H3: H(i)-CX(i,j)-H(i) to H(j)-CX(j,i)-H(j) and viceversa . . 69

2.28 Generic example in which exploiting a template-based equivalence
(the first one in Figure 2.20) can result in a “logical distortion” of the
identity if elements of the circuit list are just subjected to a “simple
swap” . 71

2.29 Examples of template application through a cluster of “alternated”
CX gates, with H gates moved backwards 77

3.1 Representation of the overall structure of the Toolchain’s Step 2 (as-
suming that the input circuit was previously optimized by Step 1) . . 82

3.2 Template to transform a CZ gate into a CX gate through the insertion
of H gates . 88

3.3 Double equivalence when transforming CZ gates into CX gates due
to CZs’ symmetry . 89

VI

3.4 Generic U3 merging scheme into a single U3 gate by exploiting equiv-
alences, as proposed in [55] . 99

3.5 H to U2 equivalence . 102

3.6 RZ-RX/RY -RZ to U2 equivalences 103

3.7 RX(±π
2
)/RY (π

2
) to U2 equivalences 103

3.8 Easily detectable U3 equivalences . 104

3.9 Generic RX , RY , RZ to U1, U3 equivalences 105

4.1 Representation of the overall structure of the Toolchain’s Step 3 (as-
suming that the input circuit was previously optimized by Step 2) . . 110

4.2 CX Template 1: transformation of a distribution of four alternated
CXs into a single long-range CX . 118

4.3 CX Template 2: transformation of a parallel cluster of CXs into a
CX and a long-range CX . 119

4.4 CX Template 3: transformation of a mirrored cluster of CXs into two
CX gates (Form 1) . 119

4.5 CX Template 4: transformation of a mirrored cluster of CXs into two
CX gates (Form 2) . 120

4.6 Equivalence when transforming CX gates into CZ gates 123

4.7 Exploitation of CZ gates’ symmetry to generate a null operation . . . 124

4.8 RZZ gate commutation properties with RZ gate 127

4.9 RXX gate commutation properties with RX gate 128

5.1 Example of an acceptable output probability of the optimized circuit
compared to the reference circuit’s one. In circuits that produces a
single outcome state, the state and probabilities must totally match
to be considered acceptable . 132

5.2 Example of an acceptable output probability of the optimized circuit
compared to the reference circuit’s one. In circuits that produces
multiple outcome states, the state and probabilities are considered
acceptable if they are very similar (no differences greater than 5%) . . 132

5.3 General benchmarks of Step 1 using the first proposed gate basis . . . 138

5.4 Benchmarks of gates number in small-sized circuits in Step 1 using
the equalized gate basis . 139

5.5 Benchmarks of latency in small-sized circuits in Step 1 using the
equalized gate basis . 139

5.6 Benchmarks of gates number in medium-sized circuits in Step 1 using
the equalized gate basis . 140

5.7 Benchmarks of latency in medium-sized circuits in Step 1 using the
equalized gate basis . 140

5.8 Benchmarks of gates number in large-sized circuits in Step 1 using
the equalized gate basis . 141

VII

5.9 Benchmarks of latency in large-sized circuits in Step 1 using the equal-
ized gate basis . 141

5.10 Benchmarks of Eulercombo functions with a randomized circuit 10000
gates long . 144

5.11 Benchmarks of gates number in small-sized circuits in Step 2 using
NMR technology . 145

5.12 Benchmarks of latency in small-sized circuits in Step 2 using NMR
technology . 145

5.13 Benchmarks of gates number in medium-sized circuits in Step 2 using
NMR technology . 146

5.14 Benchmarks of latency in medium-sized circuits in Step 2 using NMR
technology . 146

5.15 Benchmarks of gates number in large-sized circuits in Step 2 using
NMR technology . 147

5.16 Benchmarks of latency in large-sized circuits in Step 2 using NMR
technology . 147

5.17 Benchmarks of gates number in small-sized circuits in Step 2 using
Trapped Ions technology . 148

5.18 Benchmarks of latency in small-sized circuits in Step 2 using Trapped
Ions technology . 148

5.19 Benchmarks of gates number in medium-sized circuits in Step 2 using
Trapped Ions technology . 149

5.20 Benchmarks of latency in medium-sized circuits in Step 2 using Trapped
Ions technology . 149

5.21 Benchmarks of gates number in large-sized circuits in Step 2 using
Trapped Ions technology . 150

5.22 Benchmarks of latency in large-sized circuits in Step 2 using Trapped
Ions technology . 150

5.23 Benchmarks of gates number in small-sized circuits in Step 2 using
Superconducting technology . 151

5.24 Benchmarks of latency in small-sized circuits in Step 2 using Super-
conducting technology . 151

5.25 Benchmarks of gates number in medium-sized circuits in Step 2 using
Superconducting technology . 152

5.26 Benchmarks of latency in medium-sized circuits in Step 2 using Su-
perconducting technology . 152

5.27 Benchmarks of gates number in large-sized circuits in Step 2 using
Superconducting technology . 153

5.28 Benchmarks of latency in large-sized circuits in Step 2 using Super-
conducting technology . 153

VIII

5.29 Final benchmarks of gates number in small-sized circuits in Step 3
using NMR technology . 157

5.30 Final benchmarks of latency in small-sized circuits in Step 3 using
NMR technology . 157

5.31 Final benchmarks of gates number in medium-sized circuits in Step
3 using NMR technology . 158

5.32 Final benchmarks of latency in medium-sized circuits in Step 3 using
NMR technology . 158

5.33 Final benchmarks of gates number in large-sized circuits in Step 3
using NMR technology . 159

5.34 Final benchmarks of latency in large-sized circuits in Step 3 using
NMR technology . 159

5.35 Final benchmarks of gates number in small-sized circuits in Step 3
using Trapped Ions technology . 160

5.36 Final benchmarks of latency in small-sized circuits in Step 3 using
Trapped Ions technology . 160

5.37 Final benchmarks of gates number in medium-sized circuits in Step
3 using Trapped Ions technology . 161

5.38 Final benchmarks of latency in medium-sized circuits in Step 3 using
Trapped Ions technology . 161

5.39 Final benchmarks of gates number in large-sized circuits in Step 3
using Trapped Ions technology . 162

5.40 Final benchmarks of latency in large-sized circuits in Step 3 using
Trapped Ions technology . 162

5.41 Final benchmarks of gates number in small-sized circuits in Step 3
using Superconducting technology . 163

5.42 Final benchmarks of latency in small-sized circuits in Step 3 using
Superconducting technology . 163

5.43 Final benchmarks of gates number in medium-sized circuits in Step
3 using Superconducting technology 164

5.44 Final benchmarks of latency in medium-sized circuits in Step 3 using
Superconducting technology . 164

5.45 Final benchmarks of gates number in large-sized circuits in Step 3
using Superconducting technology . 165

5.46 Final benchmarks of latency in large-sized circuits in Step 3 using
Superconducting technology . 165

IX

Chapter 1

Basic Concepts

Quantum computing is a promising new branch in the computational architectures

field. Encompassing several disciplines such as physics, mathematics, chemistry and

computer science, quantum computing aims to exploit some peculiar properties of

quantum mechanics to create systems capable of running certain kind of algorithms

way faster and more efficiently than classical computers. While this fascinating and

experimental research field is still limited by premature technologies, especially the

ones concerning the relative material science and hardware implementations of the

aforementioned systems, its potential is highly esteemed and the change of paradigm

it could bring in several everyday life sectors is regarded as an auspicious way to

overcome the recent limits of the dying Moore Law and to bring a revolution in

modern computing. Such premises have spurred some of the biggest competitors

in the computing industry to heavily invest in quantum computing and to start

create their own customized hardware and working frameworks, and it is quite likely

that in a not-so-distant future the industry will achieve reliable and competitive

quantum-based machines and that they will start to utilize some of these in standard

applications in the form of quantum accelerators.

To fully understand quantum computing it is though imperative to be familiar with

some topics related to multiple scientific disciplines, from linear algebra to quantum-

scale physical interactions. However, the aim of this chapter is not to present an

overview on these arguments, but to assume a certain level of practicality with

the quantum world and to concentrate instead on the topic of gates in quantum

computers and of their implementation after a quick review of some basic properties

of qubits. As quantum computing is nowadays a subject that has been studied

for years, published literature (ex.: [1, 2]) and past degree dissertations (ex.:[3, 4])

covers quite well its basic concepts, so it was deemed to be redundant to approach

the topic “from scratch” once again.

1

1 – Basic Concepts

1.1 Qubits

A qubit, or “quantum bit”, is a unit of information that describes a two-dimensional

quantum system, and it is the most fundamental element of the quantum computing

world. While similar to the classical bit, a qubit instead of defining either a 0 or a 1

can represent a potentially infinite plethora of different values obtained as a linear

combination of its two basis states described by two complex numbers C0 and C1.

This results in the state of a single qubit being a superposition of |0i and |1i .

CLASSICAL BIT

|0i =
0

1

"
1

0

#
|1i =

0

1

"
0

1

#

QUANTUM BIT

|ψi = C0 |0i + C1 |1i =

"
C0

C1

#
in which |C0|2 + |C1|2 = 1

Of course, this “infinity” of values cannot be achieved when measuring a qubit. In

fact, once the measuring operation is applied the state of the qubit will collapse to

either the status |0i or |1i in an irreversible way. The probability to obtain |0i or

|1i when measuring a qubit are respectively |C0|2 and |C1|2, which are their related

probability amplitudes; this is also the reason why their sum must be equal to 1,

because it cannot exist a case where the measured state is not one of these two

possible states.

2

1 – Basic Concepts

1.1.1 Superposition and Entanglement

Qubits have certain intrinsic properties that make them particularly powerful for

computational purposes.

The first most interesting property is the one of superposition, which can be in-

ferred from their basic description. If one of the two probability amplitudes is 0 and

the other is 1, the contents of a qubit information-wise are alike to the ones of a

classical bit. If that is not the case, though, the qubit effectively carries a “stronger”

information package, handling both of its fundamental states as described by the

complex numbers C0 and C1. This becomes a very powerful computational tool

when a multi-qubit system is employed, since it can be demonstrated that a system

composed by N different qubits can effectively represent 2N different states at once.

So, for instance, a two-qubit system would represent 4 states in superposition (|00i,
|01i, |10i, |11i) as described by the four complex numbers that defines the system’s

matrix (C0, C1, C2, C3, in which |C0|2 + |C1|2 + |C2|2 + |C3|2 = 1).

So, generically speaking, one would obtain a system like this:

N Qubits −→ |ψi =

0..00

0..01

...

...

...

1..10

1..11



C0

C1

...

Ck

...

CN−2

CN−1


where

N−1X
k=0

|Ck|2 = 1

It is quite clear how in this propriety resides the key to make quantum systems

more appealing than classical ones in certain applications, since it allows a poten-

tially huge degree of concurrent evalutation of several possible states with a reduced

number of qubits, while in large systems a classical computer would not even be able

to store such a great amount of complex numbers to describe the system matrix.

However, superposition by itself is not enough. Even if a quantum system can

3

1 – Basic Concepts

describe lots of multiple potential states simultaneously, once the measurement op-

eration is applied one would obtain only one of those states: it is thus imperative to

arrange the quantum algorithm in such a way to make it collapse with a probability

as near to 100% as possible to the one state elected as “correct result”. By man-

aging the complex probability amplitudes accordingly, it is possible to exploit all of

quantum computing’s raw “parallel computation” capability while still ensuring to

obtain the desired result.

Another useful property is the quantum entanglement.

Quantum entanglement is a kind of perfect correlation totally absent in the classical

world, a resource that can only be exploited in quantum mechanics. Entangling

two quantum systems results in a correlation which goes beyond space and time

limitations between both of them and that brings an ad-hoc collapsing, once the

measurement operation is performed on one of the two implied systems. In other

words, if an entangled quantum system is described as:

|ψi = |a0i ⊗ |b0i + |a1i ⊗ |b1i

and the first quantum system is observed, once it is measured and found to collapse

in the, say, |a1i state, then no matter the distance between the two systems, the

second system will immediately collapse to the state |b1i.
The possibility to “bound” so deeply two particles or systems is a very powerful tool

to exploit, and it both aids in the management of complex probability amplitudes

to obtain certain results and makes some otherwise unobtainable tasks possible and

employable, such as quantum teleportation or quantum cryptography.

4

1 – Basic Concepts

The most famous example of entangled states are the Bell States:

|ψ1i =
|00i + |11i√

2
|ψ2i =

|00i − |11i√
2

|ψ3i =
|01i + |10i√

2
|ψ4i =

|01i − |10i√
2

In which if the first qubit is measured as |1i then the second qubit will collapse

respectively to |1i (|ψ1i), |1i with a phase of −180° (|ψ2i), |0i (|ψ3i), |0i with a

phase of −180° (|ψ4i).

1.1.2 Bloch Sphere

The most utilized graphical tool to represent qubit states and operations is the Bloch

Sphere.

By rewriting the generic qubit form in another one which is dependent from a

longitude and a latitude angles, it is possible to obtain some Cartesian coordinates

that can be mapped on a sphere of unit radius:

z

x

y

Figure 1.1: Bloch Sphere representation of a generic |ψi state taken from [18]

The north pole of the sphere represents the state |0i, the south pole represents

the state |1i, and each point of the sphere represents a pure state which is spanned

by a Bloch vector.

5

1 – Basic Concepts

This representation shows the qubit’s superposition of states and how global phase

changes do not affect the system’s state. Once measured, the state will either col-

lapse to the north pole |0i or the south pole |1i. Another important hint given by

this graphical representation is that the probability of a state to collapse to one of

the two poles of the sphere is solely dependent on its latitude, and it is thus not

affected by any rotation (i.e. change of phase) about the Z axis.

1.2 Quantum gates

Quantum gates are the singular elements that once combined compose a quantum

circuit and are the key ingredient to manipulate the state vector of a qubit, in a

way quite similar to the classical world of digital electronics. However along with

the similarities to “traditional” gates, they also have some intrinsic properties that

make them quite unique and differentiate them from the standard logic gates.

1.2.1 Definition and properties

A quantum gate is simply defined as an operator represented by an unitary ma-

trix that acts on qubits. The manipulation performed by a quantum gate G on a

standard qubit |ai is expressed as:

|bi = G |ai

Quantum Gates have three fundamental properties: linearity, unitarity and re-

versibility.

The linearity of a quantum gate makes it fully definable by the effect it applies to

the state vectors of the qubits it affects. A particular consequence of this charac-

teristic is the no cloning principle, which states that making an exact copy of a

given unknown quantum state is not possible, and thus the information contained in

a quantum register cannot be copied in a second quantum register without losing it

in the former. This principle only affects unknown states, so copying known states

6

1 – Basic Concepts

such as |0i or |1i is still possible.

The unitarity of quantum gates is an intrinsic property of quantum mechanics’

applications, and ensures that the state vector’s norm remain unchanged after every

manipulation. In other words, this peculiarity of the matrices that describes every

quantum gate makes sure that no matter the evolution of the circuit, the overall

probabilities remain the same, with no “leaks” nor “increments”.

The reversibility of quantum gates is their property that separates them the most

from our conventional take on logic gates, and that affects all operations pertain-

ing to the quantum world except from measurements, which are irreversible. The

reversibility states that it is always possible to reconstruct an input state once the

output one is known, and viceversa. Or, in other words:

G†G = In

where In the identity matrix on a n-dimensional vectorial space. This means that

manipulations on qubits can be performed in “both directions”, as opposed to stan-

dard logic gates, which once applied to an input generate an irreversible output,

making impossible to “undo” their effect.

7

1 – Basic Concepts

1.2.2 Most important quantum gates - single qubit

In this section a comprehensive list of the fundamental quantum gates used as “build-

ing blocks” for quantum circuits is presented, along with their defining matrices and

circuital symbol representations [5].

PI-RADIANS PAULI GATES (1 QUBIT)

- X gate : -

Performs a rotation of π radians around the x-axis, changing the |0i state in

the |1i, and viceversa.

X =

"
0 1

1 0

#
X

- Y gate : -

Performs a rotation of π radians around the y-axis, changing the |0i state in

the |1i and flipping its phase, and viceversa.

Y =

"
0 −i
i 0

#
Y

8

1 – Basic Concepts

- Z gate : -

Performs a rotation of π radians around the z-axis, flipping the phase of the

complex amplitude associated with |1i and leaving the one associated to |0i
unchanged.

Z =

"
1 0

0 −1

#
Z

These gates are used to flip the state on the Bloch Sphere around a particular axis,

with the X gate that is similar to the classical NOT gate, the Z that reverses the

qubit’s phase and the Y that is a combination of both effects.

These gates are particularly common cases applying a rotation of π radians of the

general RX, RY , RZ arbitrary rotation Pauli gates.

ARBITRARY PAULI GATES (1 QUBIT)

- RX gate : -

Performs an arbitrary rotation of φ radians around the x-axis.

RX =

"
cos(φ

2
) −i sin(φ

2
)

−i sin(φ
2
) cos(φ

2
)

#
RX(φ)

9

1 – Basic Concepts

- RY gate : -

Performs an arbitrary rotation of φ radians around the y-axis.

RY =

"
cos(φ

2
) − sin(φ

2
)

sin(φ
2
) cos(φ

2
)

#
RY (φ)

- RZ gate : -

Performs an arbitrary rotation of φ radians around the z-axis.

RZ =

"
1 0

0 eiφ

#
RZ(φ)

It has to be noted that only the application of RX and RY gates change the output

probabilities of the qubit states, because RZ only change their relative phases mod-

ifying the longitude on the Bloch Sphere.

A particular case worthy of attention is the case of the S and T, both of which are

commonly employed and are RZ gates performing a rotation of π
2

radians and π
4

radians respectively.

10

1 – Basic Concepts

- S gate : -

Performs an arbitrary rotation of π
2

radians around the z-axis.

S =

"
1 0

0 ei
π
2

#
S

- T gate : -

Performs an arbitrary rotation of π
4

radians around the z-axis.

T =

"
1 0

0 ei
π
4

#
T

Another very important gate is the Hadamard gate, a single-qubit gate that sets

up a |00...0i or |11...1i state in a perfect superposition of equally probable states.

This manipulation is one of the staples of quantum computing, since it is its appli-

cation that allows a concurrent evaluation of 2N states starting from N qubits. So

to speak, it is the “preparatory stage gate” for every qubit to be utilized in a quan-

tum superposition computation and further manipulated in the circuit to obtain the

target output.

11

1 – Basic Concepts

- Hadamard gate : -

Sets the qubit in a superposition of states.

H = 1√
2

"
1 1

1 −1

#
H

1.2.3 Most important quantum gates - Multiple qubits

Two-qubit gates in the quantum world are the last essential element alongside

the single-qubit gates with which one can compose every kind of quantum circuit

[20, 21]. Their typical form is the one of the controlled gate: basically this is

a “conditional” manipulation that implies a control qubit and a target qubit,

with the former that dictates when a certain operator has to be applied to the

latter; specifically, the operation of the controlled gate is performed on the target

qubit only if the state of the control qubit is |1i, and that qubit is left untouched

otherwise. This mechanism is compatible with the superposition property.

Of the many possible existing controlled gates, two in particular are relevant: the

Controlled X, CX or CNOT gate, which in conjunction with the presented single-

qubit gates defines the Clifford + T Gate Set and other universal gate sets which

can be used to describe every kind of quantum circuit [19], and the Controlled

Z or CZ gate. There is also the SWAP gate, a gate that is usually obtained as

a combination of three CX gates and that describes the logical swap between two

different qubits.

12

1 – Basic Concepts

- CX or CNOT gate : -

Changes the |0i state in |1i and viceversa on the target qubit if the control

qubit’s state is |1i, and does nothing otherwise. In a quantum register, if we

denote the control qubit as “C” and the target qubit as “T”, the associated

resulting state is |CT i, in which the control act as a “MSB”.

CX =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


Control •
Target

- CZ gate : -

Flips the phase of the target qubit if the control qubit’s state is |1i, does

nothing otherwise. In a quantum register, if we denote the control qubit as

“C” and the target qubit as “T”, the associated resulting state is |CT i, in

which the control act as a “MSB”.

13

1 – Basic Concepts

CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


Control •
Target Z

- SWAP gate : -

Logically swaps two qubits.

SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


×
×

OR

• •
•

By using single-qubit and two-qubit gates, one can compose any custom quantum

gate desired. A specific case of multiple qubits gates are the ones which have

multiple control qubits. These more elaborate gates have a mechanism akin to their

two-qubit counterpart, and they allow the implementation of any kind of logical

operation in a quantum circuit. The most common gates of this category are the

Toffoli or CCNOT Gate, that acts as a CNOT with two control qubits and that

in this way can implement the logical function of the classical NAND gate, and the

Fredkin or CSWAP Gate, that performs a logical swap depending on the control

qubit’s state.

14

1 – Basic Concepts

Toffoli gate

Control − 1 •
Control − 2 •

Target

Fredkin gate

Control •
Swap− 1 ×
Swap− 2 ×

1.2.4 Physical implementation of quantum gates

Prior to a more in-depth overview on the hardware implementation part concerning

quantum devices, it is worth introducing with a few words the topic of physical

implementation of quantum gates, which is yet another element that differentiates

them from standard logic gates.

Unlike the common gates typical of digital electronics that take inputs and per-

form Boolean functions generating an output, quantum gates are not physically-

implemented devices inserted in a circuit. In fact the structure of quantum

circuits does not present multiple registers, gates and devices interconnected, but

is mainly composed by quantum registers, composed by a given amount of qubits

on which one can apply the effect of certain quantum gates. In other words, quantum

gates are effectively some “stimuli” that are applied to qubits to apply the desired

manipulation, and much like sinusoidal pulses they are defined by their amplitude

and phase and by their time of application on the qubit: by controlling these pa-

rameters, it is possible to implement all kind of quantum evolutions. Once again,

this is deeply linked to the quantum concept of reversible transformations - since

all evolutions can be applied and then undone by applying their opposite, gates

by themselves lack a “material” implementation. An important aspect regarding

quantum gates that changes in the spectrum of quantum technologies is the physi-

cal method with which the stimuli/pulses are applied in the quantum registers and

the two-qubit gates, that presents a different mechanism and thus a different gate

synthesis depending on the technology employed.

15

1 – Basic Concepts

Figure 1.2: Example of a sinusoidal EM Pulse implementing a quantum gate’s ma-
nipulation, as represented in [4]

1.2.5 Virtual implementation of RZ gates

It must be noted that RZ gates can be implemented in a peculiar and more efficient

way in most quantum technologies [22]. Given that the effect of an RZ gate is all

about changing the phase of the affected qubit state, instead of applying the gate in

the “classical” way, one can resort to a virtual implementation that consists in a

global phase change in the reference system equal to the phase change that the gate

should introduce to be considered in all subsequent rotations in the Bloch Sphere

generated by other gates’ manipulations. By doing so, the evolution of the RZ gate

is applied “for free” without an actual implementation of a quantum gate, and all of

it happens instantaneously because no pulses or stimuli have to be applied at all to

generate the z-axis rotation in the circuit. As will be explained in the next section,

this virtual implementation method is particularly efficient to circumvent some of

quantum devices’ intrinsic constraints, and it should be maximized whenever is pos-

sible.

16

1 – Basic Concepts

Figure 1.3: Virtual implementation of an RZ gate as a global phase change, as
represented in [23]

1.3 Quantum technologies and devices

One thing must be clearly stated when discussing quantum technologies: to this day,

all the branches concerning the hardware implementation of quantum computers are

highly experimental, currently under development and affected by a lot of issues.

Quantum implementation technologies revolves around the very complicated world

of quantum mechanics and present some intrinsic problems that at present day are

unresolved and heavily limit quantum devices’ performance. So even if it is true that

in the past two years some researchers claim to have achieved quantum supremacy

in certain application, it is also true that existing quantum computers tend to still

not possess a grade of reliability that would allow them to fully replace conventional

computers, and that their implementation is so costly and complicated to shatter

every possible thought of industrializing quantum devices. Even if some important

breakthroughs have been achieved in the past years and even if the roadmaps of

the major investors in the quantum computing business show that some promising

milestones will be reached in the next years [16, 24], quantum computing is still a

“promising bet”, and any dreams of quantum hardware to be a common sight in

17

1 – Basic Concepts

the sector of computing or to replace conventional hardware all together are very

unlikely to be fulfilled in the near and even mid-term future. Still, the potential

of this subject is very high, so much that it spurred many different realities in the

sector to fund and experiment multiple studies on technological implementation: it

is thus inevitable that someday the knowledge of quantum interactions and science

material expertise will catch up to allow these devices to truly shine.

1.3.1 Fundamental criteria

Quantum computing devices must meet some fundamental criteria to be considered

functional. These criteria were introduced in [6] and are known as Di Vincenzo’s

Criteria. While it would be redundant to re-list and define them, it is imperative

to give a brief overview on some of the general fundamental criteria derived from Di

Vincenzo’s ones that poses some functional issues that still haunt quantum devices

implementation to this very day:

• Scalability constraints: Scalability requires to be able to produce and route

enough quantum registers’ elements (i.e. qubits) to satisfy the needs of a

specific computation, as to also be able to fully characterize these elements and

reliably initialize their quantum state. With current quantum hardware, large

numbers of reliable qubits are still quite difficult to obtain, and most state

of the art technologies can only produce quantum registers with a number

of elements in the order of the dozens. However experimental devices have

achieved computers counting hundreds of qubits, and some existing roadmaps

[16] points that in a couple of years quantum devices employing more than a

thousand qubits for computation purposes will be achieved.

• Layout constraints: the quantum interactions on which most quantum im-

plementation technologies are based on make the composed devices not fully-

connected. This means that when two-qubit gates are involved, not all qubits

in the register can reliably interact as the gate manipulation would require or

can interact at all, imposing some restrictions on the physical layout of the

18

1 – Basic Concepts

device that must be considered when computing. The connected qubits, i.e.

the qubits that can mutually interact in two-qubit gates operations, are usu-

ally the ones with the least geometrical distance in the lattice or the strongest

quantum interactions between them, and they are mapped in an ad-hoc layout

which depends on the device. All technologies present some sort of constraints

related to the layout. Fortunately, the problem can be resolved by using SWAP

gates and by making “logically adjacent” all qubits that need to mutually in-

teract. The downside of this solution is that complex layouts often require

an hefty number of SWAPs involved, which are usually implemented with a

combination of three CX gates and thus make the number of quantum gates in

the circuit explode, making an efficient layout synthesis mandatory to reduce

the overall complexity of the circuit.

• Time constraints: time constraints are actually the biggest obstacle for

nowadays quantum computation. Quantum registers’ elements, in fact, are

not “ideally isolated” and presents some grade of interaction with other quan-

tum systems. After a certain span of time has passed, these interactions alter

the superposition states stored in the qubits due to the phenomena of deco-

herence and relaxation, resulting in a loss of information and invalidating

the computation. For this reason, the overall circuit operation time dictated

by the sequence of each gate application must be reasonably shorter than

this decoherence/relaxation time, if output accuracy is to be achieved. These

phenomena intrinsic to the quantum world make the execution of really com-

plex quantum algorithms not always possible, and must be “fought back” by

optimizing the overall latency of the circuit by reducing the number of gates

applied or the duration of the time slot each gate requires (for example, as

stated before, by maximizing the number of virtually-implemented RZ gates,

if the quantum technology allows it). Another solution to this troublesome is-

sue is to employ some fault-tolerant protocols in the circuit to counter the

losses and the errors induced by decoherence/relaxation by utilizing redundan-

cies and error correction codes when encoding information. This mechanism

does not come cheap, though: implementing fault-tolerant protocols for even

19

1 – Basic Concepts

simple to average quantum circuits requires a substantial increase in the num-

ber of used qubits because each single logic qubit is mapped onto multiple

effective qubits, making the overall circuits incompatible with the actual scal-

ability limits [25, 26]. As quantum hardware with larger number of qubits will

be realized, this problem will eventually smooth out and these kind of protocol

will probably become much more common in the quantum computation world.

As stated before, the field of quantum device implementation is still highly ex-

perimental. In the years many interesting technologies were discovered and are still

being studied, but to the present day none of these has really “emerged” as the victor

and proved itself unmistakeably superior to the others. Different major competitors

in the sector have started focusing on a single particular technology that eventually

became deeply connected to their own quantum environments, and new proposals

regarding these technologies are still being developed all around the world.

The aim of these sections is to present the most promising technologies of nowadays’

quantum implementation spectrum and to define their pros and cons. These tech-

nologies were selected also because they are the most mainstream implementations

in today’s quantum computing scene, and all of this thesis work is designed to be

compatible with them. The description that follows will be only an overview of their

most important characteristics: for an in-depth analysis, see [3, 7].

1.3.2 NMR - Nuclear Magnetic Resonance technology

Nuclear Magnetic resonance is a type of quantum molecular technology in which

the information is encoded using the nuclear spins of some peculiar liquid-state dia-

magnetic molecules. One thing must be stated clearly whenever the NMR quantum

technology in general is treated: most probably, it is not a competitive technology

and basically no one of the main players in the quantum business has bet on it

to ever bring about a direct and substantial breakthrough in the quantum com-

puting world. In today’s state of the art the biggest investors in this field chose

to focus on other promising technologies, and the really limited scalability and the

decoherence/relaxation time vs gate quantum gate duration ratio limits inherent

to molecular technologies are likely to make so that this implementation technique

20

1 – Basic Concepts

will never be mainstream hardware-wise when compared to Superconducting or Ion-

Based quantum devices. So, why mention it at all? The whole point is that NMR’s

greatest pro is that it possess a huge potential for research, and for a time it has been

the unparalleled choice to experiment on quantum protocols in small-scaled devices.

While it is improbable that tomorrow’s quantum computers will be built using NMR

technologies, these present a plethora of properties that makes them really accessi-

ble, and more importantly are capable of operating at acceptable temperatures and

even at room temperature, something that is currently unachievable for most state

of the art quantum technologies, that require a work temperature in the order of

the single Kelvin degrees. So to speak, NMR represents one of the best “quantum

experimental technology” currently available, and could indirectly contribute to the

evolution of the quantum computing scenario and to the understanding of quantum

mechanics.

Figure 1.4: Arise of the superposition of energy states following the application of
a magnetic field to a nucleus which is used to encode |0i and |1i states in NMR, as
represented in [38]

• Qubits In NMR, qubits are implemented as nuclear spins [3, 27, 28]: by

applying a magneto-static field B0 two separate energy levels arise in super-

position in these nuclei thanks to the Zeeman Effect and are used to encode

21

1 – Basic Concepts

the |0i and |1i states. These spins can be represented as precessing around

B0
bZ at the Larmor (resonance) frequency ω0. Quantum registers are im-

plemented as molecules composed by the aforementioned nuclei [3], each one

possessing a slightly different resonance frequency. It is indeed due to this

implementation method that NMR suffers an hefty scalability limit, because

the signal used to perform readings suffers from a physical limit expressed

in the form of an exponential decay proportional to the number of qubits,

which makes measurements straightforward impossible to perform in large-

scaled quantum circuits [28]. Another minor but non-negligible issue is that

creating single molecules containing a large amount of different nuclei whose

resonance frequency can be clearly differentiated by one another is really hard.

The number of qubits can be increased by using homonuclear molecules, whose

trade-off is that the difference between each nucleus’ resonance frequency is

not that great and thus it is harder to target the “right” nuclei, making a

smart RF pulses management mandatory [3, 28].

• Single-qubit gates Single qubits manipulations are obtained in NMR tech-

nology by applying a RF magnetic field BR to the molecules composing the

quantum registers [3, 28]: by tuning this alternate field to the resonance fre-

quency of the target nucleus, a rotation of its spin is applied and its measure-

ment probabilities are altered. By changing this field’s application parameters

(phase amplitude and time duration) it is possible to implement two Pauli ro-

tation gates (RX , RY). The RZ gates can be implemented as a combination

of the former two gate, or by using a virtual implementation.

• Two-qubit gates To rotate spins depending on other spins’ states the J-

Coupling phenomenon is exploited [3, 28]. J-Coupling is a type of hyperfine

interaction between different spins in which the nuclei’s electrons couple mak-

ing them interact between themselves. This influence dictated by the electrons’

coupling is used to realize multi-qubit gates; although the CX Gate can be

composed by using this mechanism, NMR’s “true” two-qubit basis gate is the

CZ Gate: in fact it can be demonstrated that when using J-Coupling by

applying a slight compensation RZ on bot spins (which can be implemented

virtually as always) a CZ Gate is effectively obtained.

22

1 – Basic Concepts

RZ(−sgn(J)π2)
UJ(| 1

2J |)
RZ(−sgn(J)π2)

Figure 1.5: Implementation of base gate CZ in NMR technology by using J-
Coupling, in which the coupling parameter 1

2J
is the time in which the system

is free to evolve with no RF fields applied as shown in [23]

Advantages/Disadvantages overview

+ Really cheap quantum technology: it is relatively easy to implement and does

not require costly equipment to perform measurements.

+ Capability to operate at comfortable temperatures up to room temperature.

+ Theoretically Fully-Connected. This may not always be the case, as the cou-

pling between two nuclei dictated by their J-Coupling factor may not be strong

enough for certain pairs to allow the implementation of two-qubit gates.

– Very poor scalability: obtaining quantum register molecules capable of imple-

menting more than a couple dozens of qubits at best is currently impossible.

23

1 – Basic Concepts

– NMR’s long computation times are far worse than the ones of other technolo-

gies. While decoherence and relaxation times are not short in themselves, the

duration of the pulses which implements the quantum gates are long enough

when compared to them to make these time constraints and information loss

issues non-negligible.

1.3.3 Trapped Ions technology

The Trapped Ions implementation technology is one of the two most mainstream

quantum technologies in the state of the art, and the one that has achieved the

greatest stability and accuracy in computational results [9, 29]. This technology

uses certain kinds of vaporized ions trapped in a vacuum and encodes |0i and |1i
using their energy states. Trapped Ions were one of the first leading quantum tech-

nologies since Shor developed its renowned algorithm, and remained as such to

this day, in which it is considered the most promising implementation method for

quantum-based hardware alongside the Superconducting technology. The main ad-

vantage of quantum devices implemented using Ions is that, as told before, this is the

most stable quantum technology known to this day. Decoherence times and states

longevity are incredibly long, in the order of tens of minutes, easily surpassing all

competitors and allowing to compute complex algorithms with no issues. Also their

accuracy is unparalleled, and some qubits manipulations with an accuracy of up

to 99.9999% have been reported [9], with only superconducting devices being able

to obtain similar results when entangling gates are involved. Also, ion traps are

a technology based on fully natural phenomena, while other implementation such

as Superconductor require the manufactoring of man-made devices. What hampers

these ion-based devices from truly shining is their intrinsic realization complexity

and their abysmal multi-qubit gates speed, which makes achieving quantum advan-

tage not a small feat. On the other hand, some advantages presented by Trapped

Ions are unrivaled to this day by all of the competing technologies [10], and their

status as one of the quantum technologies with most potential to succeed is as strong

as ever.

24

1 – Basic Concepts

Figure 1.6: Quantum information encoding in Trapped Ions systems’ states

• Qubits In Trapped Ions qubits are implemented by exploiting two separate

energy levels in superposition within the ions themselves to encode the |0i and

|1i states. Qubits can be implemented using two different methods: hyperfine

implementations or optical implementations. Hyperfine implementa-

tions exploit some basic nuclei-electrons interactions and obtain rotations and

initialization on single qubits by applying a RF Magnetic field BR at the right

frequency, and encoding quantum information on two different ground atomic

states. Their states have a frequency difference in the order of tens of GHzs,

and they tend to be more stable, with the longest decoherence times ever mea-

sured in the quantum hardware branch. These implementations became the

flagship technology of IonQ [30, 32], which usually utilizes an implementation

based on atomic clock technologies using 171Yb+ [7, 11], or, more recently,
133Ba+ [29] ions. Optical implementations perform rotations and initial-

izations using a charge pump laser tuned to the right frequency, and encoding

quantum information on different orbitals - |0i in a ground state and |1i in

an excited state. Their states have a frequency difference in the order of the

thousand of THzs, and they tend to be less accurate compared to Hyperfine

25

1 – Basic Concepts

implementations. These became the flagship implementations of Alpine Quan-

tum Technologies [31, 33], and are usually implemented using 40Ca+ ions [7].

Quantum registers are implemented as ion chains suspended in a vacuum.

These chains benefit of an important property: given the right controls, each

ion in the chain can be moved in it without losing quantum information. This

is in fact the reason why Trapped Ions devices are one of the few examples of

quantum hardware in which true Full Connectivity is achieved.

• Single-qubit gates By changing the manipulation method’s parameters it

is possible to implement two of the Pauli rotation gates (RX andRY) through

the generic rotation gate R(θ,φ). It has to be noted that RZ gates can be

universally implemented as a combination of RX and RY , but that their virtual

implementation in this technology is not always possible: only in the past few

years it has been discovered an addressing system efficient enough to change

the state relative phase on a single qubit basis [11, 12].

• Two-qubit gates Two-qubit manipulations are implemented by using the

vibrational modes of the ion chain and by exploiting Coulombian interactions.

This relative manipulation is transpiled using the XX(χ) Gate, in which

the χ represents a phase that is dependent by the pair of ions on which the

manipulation is enacted. This gate’s implementation is based on the notorious

Molmer-Sorensen interaction [13], and it is used to compose the CX Gate, as

shown in Figure 1.7.

26

1 – Basic Concepts

RY (v π2)
XX(sgn(χ)π4)

RX(−sgn(χ)π2) RY (−v π2)

RX(−v · sgn(χ)π2)

Figure 1.7: Example of implementation of a base gate CX in Trapped Ions
technology by using the XX gate, in which v is an arbitrary parameter with
the value of ∓1, as shown in [34]

Advantages/Disadvantages overview

+ The most accurate quantum technology currently known, with an exceptional

stability provided by extremely long decoherence/relaxation times.

+ Can operate at comfortable temperatures, but very low temperatures produce

better results in terms of noise-related performance.

+ Fully-connected, and with a excellent scalability.

– High complexity: the required instrumentation and pulse controls make this

technology hard to implement and really expensive.

– While Trapped Ions yield good results in terms of quantum registers sizes,

trapping very large amounts of ions is becoming ever more challenging and

the scalability more limited.

27

1 – Basic Concepts

– Abysmal gate speed, especially when compared with other quantum technolo-

gies such as the Superconducting one [7, 10]. Multi-qubit gates in particular

tend to be very slow, and their speed tends to be inversely proportional to

the ion chain’s length: the more ions are present, the slower the manipulation

times are [7].

1.3.4 Superconducting technology

The Superconducting implementation technology is the second most mainstream

quantum technology in the state of the art, and the one that was elected as flagship

technology by several major investors in the sector, such as IBM and Google. The

Sycamore quantum processor, with which Google Quantum research team affirmed

to have achieved actual quantum supremacy for the first time in human history

in [14], was indeed built using Superconducting technology. The Superconducting

technology uses the charge states of an LC Resonator in superconductive phase to

encode the |0i and |1i states. The inductor in the aforementioned resonator is im-

plemented as a Josephson Junction [4, 28]. This particular device is useful because

it changes the energy gap between the |0i and |1i states in such manner that it be-

comes different from all the other energy gaps relative to other higher-energy states;

in this way an ad-hoc pulse at the resonance frequency relative to that energy gap

can be generated, charging the junction and making all other states off-resonance

and allowing only the two basis states as possible states. Josephson Junctions are

also engineered in order to resonate at a frequency that can be easily produced with

the state of the art microwave signal generators. Superconducting technology has

proved itself quite versatile in the last decade, boasting an excellent accuracy, an

overall fine stability and good scalability potential. What really makes this tech-

nology valuable is its inherent working speed, with manipulation on multiple qubits

performed in the order of nanoseconds, and the fact that is partially compatible

with today’s state of the art semiconductor fabrication processes, allowing for an

easier production of high scalability and quality devices and improving the overall

designability of the technology, with many different viable qubit implementations

28

1 – Basic Concepts

techniques each with its own pros and cons ([15]). The main disadvantages of this

technology are the limited longevity of its quantum states, that makes decoherence

and relaxation phenomena non negligible, the fact that it is not fully-connected and

thus requires a well-thought layout to adapt the computation to the hardware in

use, and finally that it requires abysmal operative temperatures in the order of the

dozens of mK degrees, making it expensive to implement and unfit for industrializa-

tion. Even with its own limits, Superconducting quantum devices are the quantum

hardware that, to this day, have probably been more successful in terms of results.

Moreover, the major investments of the big names in the industry makes this a fast

evolving technology, with roadmaps such as the one published by IBM that states

that quantum devices with more than 1000 qubits will be delivered by the end of

2023 [16], and this has encouraged the blooming of several environments such as

Google’s CircQ and IBM’s Quantum Experience. As of now, the future of Super-

conducting devices seems all but radiant.

Figure 1.8: Josephson Junction and its effect on the energy level in a superconduct-
ing LC Resonator, as represented in [4]

• Qubits Superconducting qubits are implemented as LC Resonators that

are quantum oscillators that behave similarly to the default harmonic oscil-

lator. The inductors of these resonators are implemented using a Josephson

Junction which introduces anharmonicity in the system, thus permitting to

facilitate the addressing of only two energy states which are then used to en-

code |0i and |1i, as represented in Figure ??. Superconducting quantum

29

1 – Basic Concepts

registers are implemented as ensembles of these resonators in loop [35]. Usu-

ally the Josephson Junctions that compose different qubits are engineered to

posses intrinsic resistances that slightly differ from each other [7] in order to

make the corresponding single resonance frequencies clearly identifiable and

different between them, but without straying too much from the optimal con-

trol frequency chosen for the device. Implementing this optimization is not

trivial, and the current fabrication processes do not allow to create quantum

registers with a lot of qubits each with a slighlty diverse resonance frequency.

The intrinsic scalability limits of this technology originate from this and other

issues.

• Single-qubit gates Qubits initialization and manipulations are performed

through magnetic resonance by applying a microwave pulse at the right reso-

nance frequency, which excites the current within the resonator. By changing

this pulse’s application parameters it is possible to directly implement two of

the Pauli rotation gates (RX and RY). The RZ can still be implemented as

a combination of the other two Pauli gates or virtually.

• Two-qubit gates Two-qubit manipulations are implemented by coupling

different qubits and by exploiting the crossresonance phenomenon [4]: by

exciting a Superconducting qubit with a pulse at the resonance frequency of

its coupled other qubit, a manipulation on the former is performed depending

on the latter’s state. It is also possible to enact a direct capacitive coupling

between adjacent qubits, but doing so, crosstalk issues tend to arise in devices

that uses great numbers of qubits. All this can be used to implement the basic

CX Gate.

IBM’s Superconducting native set

IBM’s Superconducting quantum computers are based on a different native set with

respect to the standard base gates: it employs the CX Gate as the two-qubit fun-

damental gate, and then the U1, U2, U3 Gates as universal single-qubit gates

30

1 – Basic Concepts

[36]. Since this thesis work largely revolves around the usage of IBM’s open envi-

ronment comprising the IBM Quantum Experience and the Qiskit transpiler and

optimization open-source framework, it is worth spending a few words on this par-

ticular native set and its characteristics.

IBM’S NATIVE SET

- U1(λ) gate : -

Also known as “phase gate”, it is equivalent to the RZ(λ) Gate. It is a

subcase of the U3 gate (U1 = U3(0, 0, λ)).

U1(λ)

Figure 1.9: U1 gate symbol

- U2(φ, λ) gate : -

Equivalent to a RZ(φ) ×RY (π
2
) ×RZ(λ) gates combination, its duration

is half of the U3 Gate’s one, and thus it can be used to implement gates

such as the Hadamard more efficiently. It is a subcase of the U3 gate

(U2 = U3(π
2
, φ, λ)).

RZ(λ) RY (
π
2) RZ(φ)

31

1 – Basic Concepts

Figure 1.10: U2 gate equivalence

- U3(θ, φ, λ) Gate : -

General case gate that describes all possible single-qubit rotations,

its duration is twice the one of the U2, so it is advisable to use

its subcases U1 and U2 whenever is possible. It is equivalent to a

RZ(φ) ×RY (θ) ×RZ(λ) gates combination, which can also be expressed

as RZ(φ) ×RX(−π
2
) ×RZ(θ) ×RX(π

2
) ×RZ(λ), which is indeed equal

to two U2 gates. Because of this, it is clear why U3 gates’ duration lasts

twice the duration of U2 gates.

RZ(λ) RY (θ) RZ(φ)

Figure 1.11: U3 Gate Equivalence

- CX Gate : -

Standard CX Gate.

Advantages/Disadvantages overview

+ Excellent scalability, it is the technology that was used to implement several

large-scale quantum circuits, such as Google’s Sycamore [14].

+ Good reliability and really fast operation times.

32

1 – Basic Concepts

+ Compatible with today’s microelectronics fabrication processes in the hard-

ware creation phase and with today’s state of the art microwave pulse gener-

ation techniques in the gate implementation phase.

– States’ coherence tends to collapse quite easily when compared to other tech-

nologies, so decoherence and relaxation issues become non negligible.

– Require abysmal operative temperatures, which make this technology expen-

sive to implement and complex to manage.

– Superconducting devices cannot be fully-connected, and this means that when

dealing with multi-qubit operations several SWAP gates may be required for

the circuit to logically function, increasing overall complexity and latency is-

sues.

33

1 – Basic Concepts

1.4 Quantum computing’s state of the art Design

Toolchain

Because of the ever expanding interest in quantum computing and its steady devel-

opment in recent years, researchers have started interrogating themselves on which

is the most convenient way to implement such challenging devices. Taking inspi-

ration from classical computing, the quantum state of the art rapidly adopted the

philosophy of the automated design to produce reliable architecture. The process of

defining an optimal toolchain to define and optimize a quantum processor is still a

matter of trial and error in development, but in the last decade the comprehension

of quantum algorithms and quantum circuits has steadily improved in the industry,

and nowadays the steps most crucial to efficiently optimize a quantum circuit are

known, defined and implemented in every design process in the state of the art.

Below is represented what is considered to be the current state of the art’s quantum

architecture Design Toolchain [17], and its various steps are described:

Figure 1.12: Current state of the art quantum Design Toolchain, as represented in
[17]

• Application: In this step the target application for which the quantum device

will be used is defined. Depending on the field of interest, different kind of

algorithms might be considered.

34

1 – Basic Concepts

• Quantum Algorithm Design: Once the purpose of the algorithm to be exe-

cuted is set, the quantum circuit that will implement the algorithm itself must

be devised. In this step the operations that must be performed in the circuit

are stated and put in the desired order, and then the algorithm to be imple-

mented is described in algebric terms. Most of the time algorithms expressed in

algebric terms are then translated using intermediate representation lan-

guages for quantum instructions, such as OpenQASM, Quil, Blackbird

and others. These languages are used to easily describe the quantum archi-

tecture to be implemented, and they are very similar to classical Hardware

Description Languages.

• Logic Synthesis: One of the most crucial steps in automated quantum de-

sign. In this step the circuit expressed in intermediate quantum languages

is translated using the target quantum technology’s own library, and all the

gates are transpiled using the technology’s proper basis gates. It is most com-

mon that CX gates are left untouched, since in the next step most Layout

Synthesis tools tend to work using non-decomposed CX/CZ gates [37]. A lot

of optimizations can be applied in this step, where it is possible to obtain the

greatest reduction of single-qubit gates amount and to manipulate them in

order to employ the most efficient and cost-effective gates. This sequence of

operations proper of the target device is then produced as output.

• Layout Synthesis: This is the other most crucial step in automated quantum

design, and the one that currently presents the most criticalities to be overcome

when working with non fully-connected technologies. In this step the circuit

is mapped and scheduled on the hardware of the device to be used, working

on the spacetime coordinates of all the involved gates. In other words, this

is the step in which the critical multi-qubit gates are adapted to the device

connectivity map and the required SWAP gates are inserted, and in which all

the optimizations regarding the logical shifting of qubits and the two-qubit

base gates are performed. CX Gates are then decomposed using the target

technology’s own library. The ouput of this step may be represented using

intermediate languages as a ordered circuit containing all the optimization

and logical swaps required to work on the device. Since multi-qubit gates

35

1 – Basic Concepts

are often very useful in quantum computing but also very troublesome if the

stability and logical success ratio of the circuit are to be guaranteed, the step

of the Layout Synthesis is the one on which usually most efforts are made

in the optimization phase, and the one that can potentially yield the best

improvements in the toolchain.

• Control Signals Generation: This is the step in which the gates are ef-

fectively “programmed” by setting the pulse and stimuli generation devices

required by the target technology, and in which the decided schedule is actu-

ally enacted. In some technologies the gate pulses management can be actually

harder than handling the quantum hardware itself.

• Physics: In this step the quantum circuit is physically implemented. All

the techniques relative to the target technology are employed, qubits are ini-

tialized, gates are applied in the set order and then finally measurements are

performed.

It is clear that different steps in the toolchain are prone to different kinds of

optimizations. In the Algorithm Design step, the target algorithm to be performed

can be improved in a technology-agnostic way, but no action can be taken on how

it will perform on actual quantum hardware. The Control Signals Generation and

Physics step are the most important step to consider if one aims to perfect the

hardware involved and to devise new smart and efficient ways to employ the target

technology with no control at all on the sequence of operations to be performed.

The Logic Synthesis and Layout Synthesis steps are the crucial link between the

algorithm and the hardware, and are the best source of improvements architecturally

speaking.

36

Chapter 2

Proposal for an Optimized

Quantum Toolchain and overview

of its Step 1

This chapter is divided in two sections. In Section 2.1, a proposal for a new Design

Toolchain based on the current state-of-the-art one presented in Chapter 1 [17] and

represented in Figure 1.12 is explained, along with its basic concepts, its bias and its

peculiar optimization strategy which employs a template-based approach. A gen-

eral overview of the strategies regarding the Toolchain’s exact implementation and

modularity is also provided. After this first description of the proposed Toolchain’s

structure, Section 2.2 features an in-depth overview of its correlated Step 1. In

general, in this part the exact purpose and the inner structure of the first part of

the template-based Logic Synthesis is explained, and brief descriptions of each of

the functions that compose the related Python libraries are provided. Each of these

descriptions are presented along with a complete list of the circuital identities and

templates which are employed in the optimization process.

37

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

2.1 The Optimized Quantum Toolchain

The aim of this thesis work is to present, implement and test a new Quantum

Design Toolchain capable of performing a certain set of optimizations on a quan-

tum circuit and to elaborate it through various step of design automation to finally

produce an output file that describes an optimized QC translated according to the

chosen technology’s own library and, in its final version, adapted to the chosen de-

vice layout. Both the input and output circuits involved are meant to be described

at high level with an intermediate representation language.

Before fully explaining the approach on which this Toolchain is based and seeing

in detail its inner workings, two things must be pointed out: first, the Toolchain

is designed to work with - and therefore produce as output - files that describe

quantum circuits using IBM’s OpenQASM 2.0 language (or Open Quantum

Assembly language) [39]. The language itself was chosen because of its com-

mon use in the state-of-the-art as intermediate description language for quantum

computing purposes, and because most of this thesis work revolved around the us-

age of IBM’s open source resources such as Quantum Experience or Qiskit for

testing and benchmarking purposes. Recently IBM released a new iteration of the

language, OpenQASM 3.0 [40], which implements significant syntax changes and

that trades the pseudo-similarity of the 2.0 iteration to a classical HDL language for

a new form which is more akin to a programming language. The compatibility with

this iteration was discarded for two reasons: first, it was officially presented right

in the middle of the development of the Optimized Toolchain, and its hefty differ-

ences with OpenQASM 2.0 made impossible to allow a 100% compatibility without

redesigning from scratch the Pyhton libraries. Second, it was considered preferable

to employ a well-established language instead of an experimental one to gain ac-

cess to a series of resources and repository regarding quantum circuits described in

OpenQASM 2.0 and to make the Toolchain itself a useful tool for each user who has

“quantum computing need” but still is not experienced with this new OpenQASM

iteration. Of course, the abstract concepts on which the whole Toolchain is based

could be made compatible with OpenQASM 3.0 described files, and as a future work

an ad-hoc implementation for this purpose could very well be possible. An in-depth

description of OpenQASM 2.0’s basic syntax and mechanics will not be presented

38

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

nor described in the following Chapters, since it is not required to understand the

basic conceptual operations performed in the Toolchain. For further details on the

matter, see [4, 39].

Second, the Toolchain was designed to be compatible with the three important

quantum implementation technologies that were presented earlier in Chapter 1: the

NMR, the Trapped Ions, and the Superconducting technologies. When using

the Toolchain, optimizing a quantum circuit for a certain target technology implies

the usage of a specific gate set and an application of a subset of possible opti-

mizations, all of which will be further explained in Chapter 3. These technologies

were chosen because, as explained in Chapter 1, they are the most mainstream im-

plementation technologies in the state-of-the-art (Trapped Ions, Superconducting),

and because they retain an high value for research purposes (NMR). Of course, once

again, the Toolchain’s libraries could be expanded to be compatible with more niche

or specific target quantum technologies.

2.1.1 The template-based approach

Nowadays, quantum circuits have reached such large scales and complexities that

resorting to a manual implementation effort is utterly unpractical. As described

in Section 1.4, the industry took inspiration from the past of classical computing

to adapt new strategies for the future of quantum computing and resorted to auto-

mated design methods to produce refined, reliable quantum circuits to be adapted on

the target devices. The goal is always the same: producing an optimized quantum

circuit based on an implementation of a certain quantum algorithm. The entity

of the applied improvements and their focus may vary depending on the desired

performance, the target device and many other variables. These optimizations are

usually performed by compilers [42], which take as input the high-level, abstract

description of a certain application of a quantum algorithm or of a quantum circuit

performing a certain algorithm and automatically “translate” and adapt it following

the given specifications, generating a quantum circuit built to work smoothly with

the target technology or on the target device and making sure to optimize its circuit

depth, latency, critical operations number and/or other parameters. There are many

philosophies on which the current state-of-the-art design methods are based. Some

39

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

prefer to apply optimal implementations of given reversible circuital structures de-

fined by a certain number of qubits whenever possible [41], but in more general case

other approaches are commonly devised. Some of the most common approaches are

the heuristic methods that rely on a plethora of possible different logic mechanisms

(transformations, Binary Decision Diagrams or BDDs, unitary matrices evaluation

or search algorithms such as the A* [41, 42]) to produce reasonable solutions start-

ing from a fixed amount of available computational resources [44], and that are one

of the few feasible ways to solve NP-hard problems. Some others are other, more

advanced meta-heuristic approaches that implements more unique and complex

solutions, like the Quantum Annealing approach [43].

To optimize quantum circuits in this thesis work’s proposal, none of the more

“classical” approaches was chosen. Instead of resorting to a theory-rich, algebraic

evaluation-based or branching diagram-based complex approach, a more “circuital”

method was deemed worthy of being explored: the template-based approach.

According to this approach, the input quantum circuit is scanned, and a series of

equivalences and circuital identities denoted as templates, which are described in

the Toolchain’s libraries, are identified. Once a template is detected, the quantum

gates adjacent to it are identified and, if deemed convenient, the template structure

is “switched” to its equivalent form to obtain a compaction or optimization in the

circuit.

Figure 2.1: Example of application of a template as described in [47] to perform a
circuital optimization, represented using IBM’s Quantum Experience [48]

This approach is based on the very simple and intuitive concept of circuital equiv-

alences and does not require complex mathematics or algebraic evaluation tools to be

implemented, thus potentially requiring a minor average amount of computational

40

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

resources to be compiled in acceptable times. The intrinsic flaw of this approach

is that by being based on case-by-case applications performed while scanning the

circuit, it suffers from a limited foreseeing and is incapable of looking for multiple

steps ahead. In other words, this approach implies that no initial disadvantage, even

if that could yield a greater payout in the future, will ever be accepted. Moreover,

because the quantum circuits are optimized by applying a remodeling based on a

purely circuital evaluation, without analyzing the exact state of given qubits after

or before each operations, the template-based approach does not consider all opti-

mizations or equivalences based on knowing the state of certain qubits, favouring

general optimizations instead.

Figure 2.2: Example of an “idle” CX gate which is redundant if the control qubit’s
state is |0i as represented in [46], and that can be targeted using a state-based
optimization method

2.1.2 The Toolchain’s structure

The proposed Quantum Toolchain works by taking as input a given quantum cir-

cuit described in OpenQASM 2.0 and produces as output an optimized, compacted

circuit decomposed using a target technology’s own set of gate. This output is

also described in OpenQASM 2.0. Using the state-of-the-art toolchain represented

in Figure 1.12 and described in [17], the Toolchain operates by implementing the

optimizations proper of the Logic Synthesis and a segment of the Layout Syn-

thesis blocks by using a sequence of three different scripts labeled as “Steps”. The

Toolchain operates in what could be described as the “central” part of the stet-of-

the-art design toolchain, and it does not dabble with the Algorithm Design block

(whose algorithm’s selection and implementation in a quantum circuit is left to the

41

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

user’s choice) and with the Control Signals Generation block (which as it was

described in Section 1.4 involves a more “physical” and technological implementa-

tion of the circuit on the target device, and it is thus the field of interest of different,

more specific applications [45]).

Logic Synthesis block

• Step 1: QASM template-based optimization - The aim of this step

is to apply the main bulk of the circuital equivalences and template-based

substitutions described in the Toolchain’s libraries and to compact the input

circuit as much as possible. This is achieved by generating wherever it is

possible some circuital null operations, thus allowing to reduce the number

of quantum gates, all without hampering the logic function of the circuit.

When a straightforward elimination of redundant gates is not feasible, this Step

implements some transformations in order to maximize the use of a certain

preferable kind of gates. The output produced by this Step is an optimized

OpenQASM-described circuit in which all gates have been decomposed to the

RX, RY , RZ, CX, CZ subset of gates, and in which each Pauli gate is

transformed in its rotational form using floating point notation.

• Step 2: Technology-dependent gates compaction - The aim of this step

is to translate the output circuit of Step 1 into the proper set of gates relative

to the target technology, which could be specified as input and chosen from the

NMR, Trapped Ions and Superconducting technologies. This trans-

lation is applied universally, but CX gates are not decomposed in their basic

constituting gates yet: this does happen in Step 3. Along with this transla-

tion, Step 2 employs a rotation-based compaction, which aims to consolidate

the optimizations of Step 1, followed by a series of technology-dependent op-

timizations created by smartly managing peculiar gates, like CZs transformed

into CXs and the IBM’s set U gates.

42

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

Layout Synthesis block

• Step 3: Distribution/Mirroring-based optimizations and CX gates

decomposition - The aim of this step is double: the exploit of a certain

subset of templates which may ensure the generation of a more suitable layout

of CX gates, and the decomposition of each two-qubit gate by using the target

technology’s own native library. Other reiterative applications of the rotation-

based optimizations of Step 2 are also applied. As of now, this Step covers the

fully-connected technologies but does not implement yet an hardware-mapping

system of the circuit for the Superconducting technology. However, it was

created as a modular part in which this and other layout-related functions

could be implemented in the future to expand the Toolchain’s utilities.

Implementation overview

Figure 2.3: Overall structure and contents of the Toolchain

The Toolchain was implemented using a series of Python 3.x scripts. Each of the

three main scripts (“optimizer 1”, “optimizer 2”, “optimizer 3”) implements one of

the three Steps and takes as input an OpenQASM 2.0-described .qasm file. To

ensure the complete application of the Toolchain as intended, each step must take

43

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

as input the file produced as output by the previous step or, in Step 1’s case, the

original quantum circuit file to be optimized. It is also possible to apply the specific

optimization described into one of the three main scripts to an ad-hoc, custom file.

In fact, the whole Toolchain was designed in a completely modular way through a

libraries-based implementation, which allows total control on which steps are

applied to a certain circuit, high flexibility in the functions’ usage, the capability

to set some specific parameters through the edit of specific files and the faculty to

allow future modifications and expansions.

Each step requires specific inputs when they are to be executed, and these inputs will

be covered and described for each step in Section 2.2 and in Chapter 3, Chapter 4.

The operations performed by each step is circuit-wide, and the subpartitions of a

given circuit by using Barriers are not considered optimization-wise. Also, each

qubit is treated as ideal and thus differences in performance between qubits are

not considered, and at the time of writing each architecture is treated as fully-

connected. Finally, the Toolchain requires the installation of the python-math,

NumPy, SciPy and Configparser libraries to work, and for easiness of parsing

reasons it requires that each .qasm file to be used as input starts with the following

lines (which means that only a single quantum register and a single classic register

are supported, and that the quantum register have to be named with the standard

“q[...]” name):

OPENQASM 2.0;

include \enquote{qelib1.inc};

qreg q[..];

creg c[..];

• Libraries: Following the philosophy of total modularity, several libraries in

form of scripts were created, each containing a subset of functions designed to

tackle a certain specific part of the optimization process. This allows the main

script for each Step to remain “lean” and easily customizable, and it also facil-

itates the nested usage of the functions in multiple occurrences, while making

each library easily readable. Each library with its related set of functions will

be described in detail, along with the inner workings of each step, in Section

44

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

2.2 and in Chapter 3, Chapter 4, and they are all contained in the “libraries”

subfolder.

• .cfg Files: To easily allow the edit of certain parameters that are particu-

larly uncomfortable to pass as shell inputs, each step supports the reading of

.cfg files to determine such parameters and to act accordingly. These files

are contained in the “cfg” subfolder. Once again, this system is fit for a fur-

ther customization and expansion of the Toolchain’s capabilities, and many

more parameters could be easily set using these very configuration files. All

these files require the Configparser library to be interpreted, and thus this

Python library is required for the Toolchain to work. As of now, five .cfg files

are implemented:

– The thresholds.cfg file, which defines in a “10X form” both the ap-

proximation of π and of its dividends to be employed when using ro-

tational gates in floating-point notation (this is labeled as Threshold 1,

and its allowed maximum precision is 10−15) and the rotation value

under which a gate is considered a null operation when combin-

ing multiple rotational gates, with a lower threshold corresponding to a

stricter criteria to approximate a rotation to 0 (this is labeled as Thresh-

old 2, and its allowed maximum precision is 10−12).

– The iterations.cfg file. which defines the iterative parameters IT1, IT2

used in Step 1, which describe how many times certain portions of opti-

mizing code are called and are somewhat akin to a rough “optimization

grade” indication (as explained in Section 2.2.1) and the iterative param-

eter IT3 used in Step 3, which describe how many iterations of the code

section that applies optimizations based on templates using CX gates are

performed (as explained in Section 4.1.1).

– The ion translation.cfg, which defines all generic translation parame-

ters for Step 2 and Step 3 and, as of now, contains a boolean parameter

labeled as Iontran, that in the case of Trapped Ions technology defines

45

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

if RX and RY gates are to be left in their original form or trans-

lated in R(θ,φ) form.

– The layout nmr.cfg, which regulates how CX gates have to be managed

in Step 3 in the NMR technology case, as explained in Section 4.1.2.

This file contains the CZTranslation parameter, which defines if CZ

gates have to be decomposed in the structure represented in Figure 1.5

or left untouched, and the NMR Layout parameter, a custom list of lists

which defines the J coupling sign of each couple of interacting qubits in

the circuit. This sign is used to implement decomposed two-qubit gates.

– The layout ion.cfg, which regulates how CX gates have to be managed

in Step 3 in the Trapped Ion case, as explained in Section 4.1.3. This

file contains the CZTranslation parameter, which defines if CZ gates

have to be decomposed in the structure represented in Figure 1.5 or left

untouched, and the Ion Layout parameter, a custom list of lists which

defines the J coupling sign of each couple of interacting qubits in the

circuit. This sign is used to implement decomposed two-qubit gates.

2.2 Step 1 - QASM template-based optimization

As stated before in Section 2.1.2, in the first step of the Toolchain the main bulk

of template-based optimizations is performed, with the aim of optimizing as much

as possible any redundancy or suboptimality present in the circuit through the re-

iterative application of a series of “coarse” compactions based on simpler circuital

equivalences followed by specific, fine-grain remodelings on each detected template.

Step 1 is designed to be completely technology-agnostic: in fact, it does work at

an high-level of description, not considering implementations that use technology-

specific gate sets or constraints dictated by an hypothetical target device’s layout

or ideality issues. The workflow of this Step is:

• trying to maximize the creation of circuital null operations in order to main-

tain the logic functionality of the circuit while at the same time reducing the

number of involved quantum gates.

46

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

• Trying to compact as much as possible the quantum circuit through the usage

of less gates that apply a rotation on the qubits’ states equivalent to the ones

applied by multiple gates.

• If neither of these two operations above are feasible, trying to maximize the

number of RZ gates through specific circuital forms and substitutions in

order to incentivize an extended use of virtual implementations to reduce

the circuit’s latency all across the board.

Step 1’s optimizations are particularly efficient in reducing single-qubit gates, but

they also encompass several templates which contain CX and CZ gates, thus allow-

ing a situational and yet efficient set of circuital improvements. As of now, Step

1 is compatible with an extended Clifford + T gate set, and it supports the usage

of RX, RY , RZ, X, Y, Z, S, T, S†, T †, H, CX, CZ and CCX (or Toffoli)

gates in the input quantum circuit. IBM’s gate set comprising the U1, U2, U3

gates is also passively supported, but no optimization are performed on such gates

in this step (that passage is delegated to the technology-specific Step 2, as explained

in Chapter 3). No other quantum gates usage is supported at the moment, such as

the definition of custom circuital structures, but while the current supported gates

are more than capable of covering most of the common QASM circuits, both the

supported gate set and the feature involving the definition of custom gates/struc-

tures could be easily expanded and implemented in the future.

Step 1 requires two input when executed from shell: the input .qasm circuit file,

which describes the reference quantum circuit that as to be optimized, and the Sub-

circuit parameter, which is a boolean flag that defines if the circuit is indeed a

subcircuit to be used in conjunction with other QASM-described entities and thus

if certain optimization regarding RZ gates can be employed.

The templates and identities contained in the Toolchain’s libraries were extrapolated

from [8, 20, 49, 50, 51] or obtained through calculation and experimentation.

All the benchmarking procedures, the results and their related analysis are reported

in Chapter 5 in the appropriate section.

47

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

2.2.1 Step 1’s structure

Figure 2.4: Representation of the overall structure of the Toolchain’s Step 1

Step 1 is implemented with the template optmizer 1 script, and is divided in

the following sections:

1. Input Handler section: This section handles the correct reception of inputs

and provides error messages if a wrong number of parameters or a wrong

file extension are passed as inputs. It also read the .cfg files to define the

thresholds and approximation accuracy to be used in the optimization process

and to set the iteration parameters IT1 and IT2 used in the looped section

of the code. For what concerns the thresholds, the script provides an error

message if an approximation accuracy equal or greater than 1 is provided, and

a warning message if a null operation identifier threshold is defined, since this

could bring to “overzealous” optimizations that could compromise the logic

functionality of the circuit. If a non-integer number is passed for the iterative

parameters it proceeds to round it, and if a number which is less than 1 is set

in the .cfg files for these loops it automatically sets it to “1”.

2. Parser + Precomposer section: The Parser section generates the cir-

cuit list on which the script will work based on the input file and rearranges

48

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

it, “cleaning” it from endline spaces, blank lines, barriers and comments. It

also identifies the number of qubits involved in the target circuit and saves

all the measurements performed in the input file on a temporary list, which

will be appended to the output circuit list once the optimization is com-

pleted. The Precomposer section employs the functions contained in the

QASM precomposer library to decompose universally-applied gates and

Toffoli gates in basic gates applied to each involved qubit, to convert all Pauli

gates in floating-point notation (ex: RZ(π
3
) gates to RZ(1.04666..) gates) or,

when possible, in “non-rotational” form (ex: RZ(π
2

gates to S gates) and to

then perform some preliminary combinations on S-type and T-type quantum

gates.

3. Null Operations Purger section: In between the Precomposer and the

first Simple Optimizer section there is a first “ghost section” that calls the

basic functions contained in the NULLOP purgers library. This serves as

a first coarse optimization able to easily purge the most straightforward null

operations in the circuit. A double call of the InitialZ and FinalZ functions

is also performed to cover the cases in which this first optimization brings

some RZ gates eligibile to be purged right after initialization or right before

measurement in the circuit.

4. Simple Preoptimizer section: This section uses the functions contained in

the simple optimizers library to exploit some less complex circuit identities

involving single-qubit gates labeled as “simple optimizations” to perform an

ubiquitous and thorough compaction of the circuit. These optimizations are

reiterated in a loop defined by the IT1 parameter in order to achieve maximum

compaction throughout the compilation. Each gate detected as the target of a

possible simple optimization is left untouched if it is susceptible of being part

of a more complex, higher-gain optimization-wise template; these gates are

usually identified by being single-qubit gates of the “right” type near a CX or

a CZ gate.

5. Template-based Optimizer section: The “core” of the optimization pro-

cess of this step, this is the section in which the functions contained in the

49

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

step1 templates library are used to exploit some complex templates and

advanced circuital identities to achieve optimizations of both single-qubit and

two-qubit basic gates. Some of these functions are call themselves a second

time in order to try to perform a compaction of gates of the same type if a

stronger optimization could not be achieved. This section followed by another

set of simple optimizations and a final recombination is reiterated through a

loop defined by the IT2 parameter to maximize the number of optimizations

applied. The recommended value of IT2 is actually “1”, because a single itera-

tion of this core section of the optimization process is usually enough to detect

and perform all possible template-based optimizations. That being said, the

parameter gives the possibility to try to achieve an higher grade of optimiza-

tion, trading off computation time in order to increase the probabilities of all

possible templates actually being detected and exploited.

6. Simple Postoptimizer section: This section employs once again the func-

tions used in the Simple Preoptimizer section in order to exploit the set of

simple optimizations. This section’s unique behaviour is that on the very last

application of the simple optimizations’ loop it tries to enact its peculiar com-

paction even on gates that was previously detected as susceptible of being part

of a template, since at this point of the process all the complex template-based

identities should have already been exploited.

7. Final Recombination: This section uses the QASM postcomposer li-

brary to translate all gates in their floating-point rotational notation and to

attempt a last “brute force” compaction between them. This section makes

the output circuit composed by CX, CZ, RX, RY , RZ gates only and

ensures that each single-qubit gate is of a different kind with respect to

the gates adjacent to it.

8. Output Handler section: This section uses the final circuit list to generate a

.qasm file in the working directory that has the same name of the original input

file plus the suffix “ optimized”, appends to it the measurements contained in

the original circuit (if it is not a subcircuit, of course) and provides a message

announcing that the optimizations were completed successfully and the name

50

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

of the generated file.

2.2.2 QASM precomposer library

QASM PRECOMPOSER

• UniversalDecomposer function: This function scans the circuit and

when it finds universally applied gates it decomposes them into the

same kind of gate applied to each qubit.

Example in a four-qubit circuit case:

h q; =⇒ h q[0];

h q[1];

h q[2];

h q[3];

• Translator function: This function transform all Pauli gates in a

“non-rotational” form. When these known forms are not exploitable, it

translates each Pauli gate whose rotation parameter is expressed as a

multiple of “pi” into its floating-point notation by evaluating the pa-

rameter in pi-form and recalculating it using the π value approximated

using the .cfg accuracy threshold in the Input Handler section.

51

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

Examples:

rz(pi/4) or rz(0.78...) q[n];

rz(pi/2) or rz(1.57...) q[n];

rz(+/- pi) or rz(3.14...) q[n];

rx(+/- pi) or rx(3.14...) q[n];

ry(+/- pi) or ry(3.14...) q[n];

ry(3*pi/2) q[n];

=⇒ t q[n];

=⇒ s q[n];

=⇒ z q[n];

=⇒ x q[n];

=⇒ y q[n];

=⇒ ry(4.71...) q[n];

• ToffoliDecomposer function: This function detects each Toffoli gate

in the circuit (labeled as “ccx q[a],q[b],q[c];”) and replaces it using its

decomposition in Clifford + T gates.

Figure 2.5: Decomposition of a Toffoli gate in Clifford + T gates, as repre-
sented in [49]

52

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

• Precombo ST function: This function scans the circuit and performs

a preliminary combination of S-type and T-type gates into Z gates and

S-type gates, respectively.

S S = Z

S† S† = Z

T T = S

T † T † = S†

Figure 2.6: Preliminary recombinations of S-type and T-type gates

53

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

2.2.3 NULLOP purgers library

NULLOP PURGERS

• FinalZ function: This function scans each qubit line in the circuit

backwards, starting from the circuit’s end, and checks if the last gate

is a RZ : if it is not, it proceeds with the next qubit line; if it is, it purges

it and resumes from the new circuit’s end. This optimization exploit

the fact that RZ gates right before measurement are negligible,

since they only insert a phase variation. If the circuit is a Subcircuit

and thus it is not followed by measurement operations, this functions

does nothing.

• InitialZ function: This function scans each qubit line in the circuit

forwards, starting from the circuit’s beginning, and checks if the first

gate is a RZ : if it is not, it proceeds with the next qubit line; if it is, it

purges it and resumes from the new circuit’s start. This optimization

exploit the fact that RZ gates right after qubit initialization

to |0i are negligible, since they do not insert any phase variation.

If the circuit is a subcircuit and thus it is not preceded by qubits’

initializations, this functions does nothing.

54

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

• NullPurge function: This function is the main building block

on which all optimizations in the Toolchain are based on. While the

other two functions of this library are situational, the NullPurge function

offer a powerful tool that is invoked after exploiting most templates,

compactions and identities. This function scans each qubit line in the

circuit backwards, starting from the circuit’s end, checking each couple of

adjacent gates, detecting eventual null operations and purging them.

In case of Pauli gates in rotational form, it combines them in a single

equivalent gate. If the resulting rotation parameter is lower or equal

to the Threshold 2 parameter read from the .cfg files, the combined

gate is considered as a null operation and thus purged. Once the purge

or the combination is applied, the scan on the qubit line resumes from

the last gate before the gates that were optimized, and from the end of

the circuit if there are none left.

- Standard case: For H, X, Y, Z gates a null operation is detected

each time two gates of this type are adjacent. The gates are then

purged.

H H =

Figure 2.7: Example of standard null operation

55

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

- S-type, T-type case: For S, S†, T, T † gates a null operation is

detected each time an S-type or T-type gate is adjacent to a gate that

describes the conjugate transpose of its unitary matrix (Example:

SS†). The gates are then purged.

T T † =

Figure 2.8: Example of null operation in the case of S-type or T-type gates

- Pauli gates case: For RX, RY , RZ gates a null operation is

detected when the evaluated absolute value of the algebraic sum of

the rotation parameters of two subsequent Pauli gates of the same

type is equal or less than the .cfg parameter Threshold 2. If a null

operation is not detected but two Pauli gates of the same type are

adjacent, the gates are combined in an equivalent single gate of the

aforementioned type.

RX(x1) RX(x2) =

Figure 2.9: Example of null operation in the case of rotational Pauli gates, in
which |x1 + x2| ≤ Threshold 2

56

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

RX(x1) RX(x2) = RX(x1 + x2)

Figure 2.10: Example of adjacent gates combination in the case of rotational
Pauli gates, in which |x1 + x2| > Threshold 2

- Two-qubit gates case: For CX and CZ gates a null operation

is detected whenever two of these gates are perfectly adjacent. If a

null operation is detected the gates are then purged. If a “fake” null

operation is detected due to the gates not being perfectly adjacent

on both their qubit lines, no gate is modified to preserve the logical

function of the circuit.

• • =

Figure 2.11: Example of null operation in the case of two-qubit gates

• T • = • T •

• •
T

= • •
T

Figure 2.12: Examples of “fake”null operations in the case of two-qubit gates,
which do not allow for any kind of straightforward purge

57

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

2.2.4 simple optimizers library

Employed simple optimizations and identities

SIMPLE EQUIVALENCES

X Y = Z

Y X = Z

Figure 2.13: X-Y, Y-X to Z simple equivalences (considered valid because of
the global phase change which results as irrelevant to the final overall state)

X Z = Y

Z X = Y

Figure 2.14: X-Z, Z-X to Y simple equivalences (considered valid because of
the global phase change which results as irrelevant to the final overall state)

58

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

Y Z = X

Z Y = X

Figure 2.15: Y-Z, Z-Y to X simple equivalences (considered valid because of
the global phase change which results as irrelevant to the final overall state)

X RZ(θ) X = RZ(−θ)

X RY (θ) X = RY (−θ)

Figure 2.16: X-RZ-X to -RZ , X-RY -X to -RY simple equivalences

59

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

H RZ(θ) H = RX(θ)

H RY (θ) H = RY (−θ)

H RX(θ) H = RZ(θ)

Figure 2.17: H-RZ-H to RX , H-RY -H to -RY , H-RX-H to RZ simple equiva-
lences

RY (
π
2) X = H

X RY (−π
2) = H

Figure 2.18: Y
1
2 -X, X-Y −

1
2 to H and viceversa simple equivalences

60

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

S RX(
π
2) S = H

S† RX(−π
2) S† = H

Figure 2.19: S-X
1
2 -S, S†-X−

1
2 -S† to H and viceversa simple equivalences

61

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

Library description

SIMPLE OPTIMIZERS

• Eq XY function: This function scans each qubit line in the circuit

backwards, starting from the circuit’s end, and tries to exploit the

equivalences represented in Figure 2.13 to compact each couple of

adjcent X and Y gates into Z gates.

• Eq XZ function: This function scans each qubit line in the circuit

backwards, starting from the circuit’s end, and tries to exploit the

equivalences represented in Figure 2.14 to compact each couple of

adjcent X and Z gates into Y gates.

• Eq YZ function: This function scans each qubit line in the circuit

backwards, starting from the circuit’s end, and tries to exploit the

equivalences represented in Figure 2.15 to compact each couple of

adjcent Y and Z gates into X gates.

62

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

• Eq XRX function: This function scans each qubit line in the circuit

backwards, starting from the circuit’s end, and tries to exploit the

equivalences represented in Figure 2.16. The application of this function

yields a gain which makes it always worth it.

The following functions accept a parameter that defines if step1 templates

library’s functions will be called after the current Simple Optimizer section:

• Eq HRH function: This function scans each qubit line in the circuit

backwards, starting from the circuit’s end, and tries to exploit the

equivalences represented in Figure 2.17.

When trying to compact the gates, it checks if templates are to be

called later: if so, it never transforms an H gate if it is adjacent to a CX

gate in order to try to obtain a “stronger” template-based optimization,

since H-based templates are particularly effective. Otherwise, it always

tries to compact the circuit. If the result of this compaction is a RZ

gate, it calls the Translator function to translate it in an eventual

“non-rotational” form.

63

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

• Eq H1 function: This function scans each qubit line in the circuit

backwards, starting from the circuit’s end, and tries to exploit the

equivalences represented in Figure 2.18.

When transforming gates into H gates, it checks if templates

should be called later: if so, it always transforms the couple of gates

if it is adjacent to a CX gate in order to try to obtain a “stronger”

template-based optimization, since H-based templates are particularly

effective. Otherwise, it transforms the couple if a null operation can be

achieved. If not, once all the template-based optimizations have been

performed, on the last iteration it tries to compact the circuit as much

as possible in order to allow the transformation of H gates into the

more convenient form of Figure 2.19.

When expanding H gates, it checks if templates are to be called

later: if so, it never transforms the H gate if it is adjacent to a CX gate

in order to try to obtain a “stronger” template-based optimization.

Otherwise, it transforms the couple if a null operation can be achieved.

If not, it never tries to pointlessly expand the circuit.

• Eq H2 function: This function scans each qubit line in the circuit

backwards, starting from the circuit’s end, and tries to exploit the

equivalences represented in Figure 2.19.

64

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

When transforming gates into H gates, it checks if templates

should be called later: if so, it always transforms the triplet of gates

if it is adjacent to a CX gate in order to try to obtain a “stronger”

template-based optimization, since H-based templates are particularly

effective. Otherwise, it transforms the triplet if a null operation can be

achieved. If not, once all the template-based optimizations have been

performed, on the last iteration it tries to compact the circuit as much

as possible.

When expanding H gates, it checks if templates are to be called later:

if so, it never transforms the H gate if it is adjacent to a CX gate in order

to try to obtain a “stronger” template-based optimization. Otherwise,

it transforms the couple if a null operation can be achieved, preferring

the first form in Figure 2.19. If not, it never tries to pointlessly expand

the circuit.

65

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

2.2.5 step1 templates library

Employed templates

TEMPLATES

• RZ(θ) = RZ(θ) •

• RZ(θ)

Z

= RZ(θ) •

Z

Figure 2.20: Template 1: CX(i,j)-RZ(i) / CZ(i,j)-RZ(i) to RZ(i)-CX(i,j) /
RZ(i)-CZ(i,j) and viceversa

•
RX(θ)

= •
RX(θ)

Figure 2.21: Template 2: CX(i,j)-RX(j) to RX(j)-CX(i,j) and viceversa

66

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

•
Z RZ(θ)

= •
RZ(θ) Z

Figure 2.22: Template 3: CZ(i,j)-RZ(j) to RZ(j)-CZ(i,j) and viceversa

• X = X •

X

X • = • X

X

Figure 2.23: Template 4: CX(i,j)-X(i) to X(i)-X(j)-CX(i,j) / X(i)-CX(i,j) to
CX(i,j)-X(i)-X(j) and viceversa

67

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

•
Z

= Z •

Z

•
Z

= • Z

Z

Figure 2.24: Template 5: CX(i,j)-Z(j) to Z(i)-Z(j)-CX(i,j) / Z(j)-CX(i,j) to
CX(i,j)-Z(i)-Z(j) and viceversa

H • H

H H

=
•

Figure 2.25: Template H1: H(i)-H(j)-CX(i,j)-H(i)-H(j) to CX(j,i)

68

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

H •

H

= H

• H

Figure 2.26: Template H2: H(i)-H(j)-CX(i,j) to CX(j,i)-H(i)-H(j) and vicev-
ersa

H • H =

H • H

Figure 2.27: Template H3: H(i)-CX(i,j)-H(i) to H(j)-CX(j,i)-H(j) and vicev-
ersa

69

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

Library description

HELPER FUNCTIONS

These functions are employed to identify the single-qubit gates adjacent to

particular two-qubits gates that are on a qubit line which is not the one that

is being scanned. Overall, they are a tool used to detect if certain complex

templates equivalences can actually be exploited.

• CheckCXSwapDown function: This function accepts as input the

qubit line under scanning, the string of the target CX or CZ gate in

the circuit list, and the indexes of the two gates involved in a circuital

equivalence. From the two-qubit gate’s string it identifies its second,

non-scanned qubit, i.e. the control qubit or the target qubit, and checks

if on such qubit line there is any gate which is between the two gates

whose position in the circuit list is defined by the input indexes. This

evaluation is done by scanning from the bottom of the circuit.

If there is at least one such gate, it returns the index of the nearest

adjacent gate to the CX or CZ on the non-scanned qubit line. If there

is none, it returns a flag with the value “0”.

70

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

The basic use of this is checking if “simple swaps” directed towards

the end of the QC (“right direction”) in the circuit list are allowed when

applying a template that utilizes a two-qubit gate. In fact, by recklessly

applying the “simple swaps” one may compromise the logical functional-

ity of the circuit by “distorting” the equivalence, as represented in figure

2.28. In such cases, a more complex kind of swap is performed.

Z •

Y

6= • Z

Y

Z •

Y

= • Z

Y

Figure 2.28: Generic example in which exploiting a template-based equiva-
lence (the first one in Figure 2.20) can result in a “logical distortion” of the
identity if elements of the circuit list are just subjected to a “simple swap”

71

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

• CheckCXSwapUp function: This function accepts the same inputs

as the previous function, but it performs its evaluation on the non-

scanned qubit by scanning from the beginning of the circuit. It

also returns a flag with the index of the nearest adjacent gate to the

CX or CZ on the non-scanned qubit line, or, if there is none, a flag with

the value “0”.

The basic use of this is checking if “simple swaps” directed towards

the beginning of the QC (“left direction”) in the circuit list are allowed

when applying a template that utilizes a two-qubit gate, for the same

reason of performing more complex kind of swaps when required.

Z • Z

Y

Example of Helper functions usage, in which the gates in the circuit are repre-
sented with the same order they have in the circuit list. The Z gates and the
CX gate are capable of being exploited as a template in both directions, and
the qubit line under scanning is the one above. By using the CheckCXSwa-
pUp function with the CX and the left Z’s indexes as input, the flag returned
is “0”: no gates are present on the non-scanned qubit, and so a “simple swap”
between the CX and the left Z gate may be performed. By using the Check-
CXSwapDown function with the CX and the right Z’s indexes as input, the
flag returned is the index of the Y gate: that very gate on the non-scanned
qubit line implies that no “simple swaps” may be performed, and that a more
complex swap is required.

72

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

STEP 1 TEMPLATES

• Templ1 function: This function scans each qubit line in the circuit

backwards, starting from the circuit’s end, and tries to exploit the

templates represented in Figure 2.20, in one verse or another. Each

time this function is called, it has two iterations. This function support

both the known form and the rotational form of the RZ gates.

In the first iteration, it tries to “swap” the gates in order to obtain

one or multiple null operations. If no null operation can be achieved, it

tries to move each RZ-type gate towards the beginning or the end of

the circuit if it is not a subcircuit and then attempt an optimization

through the call of InitialZ and FinalZ functions. Each time that

a swap is required, it makes sure that the logical functionality of the

circuit is maintained when applying the template.

In the second iteration it performs the same exact operations but

when no null operations can be achieved it also tries to make all possible

RZ-type gates adjacent in order to obtain a further compaction of the

circuit if no gate purging was possible.

• Templ2 function: This function scans each qubit line in the circuit

backwards, starting from the circuit’s end, and tries to exploit the

template represented in Figure 2.21, in one verse or another. Each time

this function is called, it has two iterations. This function support both

the known form and the rotational form of the RX gates.

In the first iteration, it tries to “swap” the gates in order to obtain

one or multiple null operations.

73

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

In the second iteration it performs exactly the same operations

but when no null operations can be achieved it also tries to make all

possible RX-type gates adjacent in order to obtain a further compaction

of the circuit if no gate purging was possible.

• Templ3 function: This function scans each qubit line in the circuit

backwards, starting from the circuit’s end, and tries to exploit the

template represented in Figure 2.22, in one verse or another. This

template is actually a subcase of the second template in Figure 2.20

caused by the symmetry of CZ gates. Each time this function is

called, it has two iterations. This function supports both the known

form and the rotational form of the RZ gates.

In the first iteration, it tries to “swap” the gates in order to obtain

one or multiple null operations. If no null operation can be achieved, it

tries to move each RZ-type gate towards the beginning or the end of

the circuit if it is not a subcircuit and then attempt an optimization

through the call of InitialZ and FinalZ functions. Each time that

a swap is required, it makes sure that the logical functionality of the

circuit is maintained when applying the template.

In the second iteration it performs exactly the same operations

but when no null operations can be achieved it also tries to make all

possible RZ-type gates adjacent in order to obtain a further compaction

of the circuit if no gate purging was possible.

• Templ4 function: This function scans each qubit line in the circuit

backwards, starting from the circuit’s end, and tries to exploit the

template represented in Figure 2.23, in one verse or another. This

function support both the known form and the rotational form of the

74

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

X gates.

When detecting the template in the form with both X gates, it

automatically tries to apply it.

When detecting the template in the form with a single X gate,

it tries to apply it only if the insertion of a new X gate can create a null

operation on the control qubit, on the target qubit or on both qubits.

Otherwise, since it yields no gain, so the function does nothing. Each

time that a swap is required, it makes sure that the logical functionality

of the circuit is maintained when applying the template.

• Templ5 function: This function scans each qubit line in the circuit

backwards, starting from the circuit’s end, and tries to exploit the

template represented in Figure 2.24, in one verse or another. This

function support both the known form and the rotational form of the Z

gates.

When detecting the template in the form with both Z gates, it

automatically tries to apply it, and it also cover the case in which the

Z gate is pushed to the end or beginning of the circuit, where it can be

purged through InitialZ and FinalZ functions

When detecting the template in the form with a single Z gate,

it tries to apply it only if the insertion of a new Z gate can create a

null operation on the control qubit, on the target qubit or on both

qubits, or, when it is not a subcircuit, if this results in both the Z gates

being pushed to the end or the beginning of the circuit. Each time that

a swap is required, it makes sure that the logical functionality of the

circuit is maintained when applying the template.

75

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

• TemplH1 function: This function scans each qubit line in the circuit

backwards, starting from the circuit’s end, and tries to exploit the

template represented in Figure 2.25. This template is the most powerful

in terms of gain, and it is actually a subcase of the TemplH2

function which uses the template in Figure 2.26. It was separated in

a standalone case because it is easy to detect and apply preemptively.

Whenever this template is applicable, this function tries to exploit it.

• TemplH2 function: This function scans each qubit line in the circuit

backwards, starting from the circuit’s end, and tries to exploit the

template represented in Figure 2.26. This template is very powerful

in terms of gain, because optimizing H gates yields a higher benefit

with respect to other single-qubit gates. This function tries to exploit

the template if it can create null operations. Otherwise, it tries to

apply the template whenever two CX gates with inverted control

and target qubits are adjacent. This particular case may result

in a scenario similar to the one represented in Figure 2.24, allowing

an optimization if H gates are present right before the cluster in the

circuit; its application is harmless otherwise. The function performs a

reiterative call of itself whenever after the application of this particular

case it detects a possible null operation obtainable through another

TemplH2 function call or if it identifies another “alternated” CX

gate: by doing so, the couple of H gates is moved through whole clusters

of “alternated CXs”, as represented in figure 2.29.

76

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

The function though makes this movement of gates possible only back-

wards, towards the beginning of the circuit, in order to avoid endless

loops in particular situations.

• • H

• • H

= H • •

H • •

Figure 2.29: Examples of template application through a cluster of “alter-
nated” CX gates, with H gates moved backwards

• TemplH3 function: This function scans each qubit line in the circuit

backwards, starting from the circuit’s end, and tries to exploit the tem-

plate represented in Figure 2.27. This template is very powerful in terms

of gain, because optimizing H gates yields a higher benefit with respect

to other single-qubit gates. This function tries to exploit the template if

it can create null operations. Otherwise, it tries to exploit it whenever

its application results in a RX-type gate being near to a CX gate on

its target qubit, as this scenario may result in a possible optimization

through the call of Templ2 function.

77

2 – Proposal for an Optimized Quantum Toolchain and overview of its Step 1

2.2.6 QASM postcomposer library

QASM POSTCOMPOSER

• FinalCombo function: This function has the important task of

rebasing all the circuit using the RX , RY , RZ gates in preparation

for Step 2 and of compacting in such a way that each gate becomes

adjacent to gates of a different kind. To do this, it scans each qubit line

in the circuit and transform every single-qubit gate which is in a known

form into its rotational form with floating-point notation, and then

calls in sequence all the functions in the NULLOP purgers library

to compact the circuit as much as possible.

This function accepts a parameter that defines if step1 templates

library’s functions will be called after the current of the Simple

Optimizer section. When dealing with H gates, it checks if templates

should be called later: if not, on the last iteration it decomposes all H

gates using the first equivalence in Figure 2.19 (also reported below).

This equivalence is particularly advantageous for H gates, since when

compared to the ones in Figure 2.18 it only employs a single non-RZ

gate, while the other two can be implemented virtually thus not

encumbering the circuit.

H = S RX(
π
2) S

78

Chapter 3

Overview of the Toolchain’s Step 2

As explained in Section 1.4, the required output of the Logic Synthesis step in

the state-of-the-art quantum design toolchain must be, as it is described in [17],

“a sequence of gates/operations supported by the architecture”. The aim of this

chapter is to provide an in-depth overview of the Toolchain’s Step 2, which is the

step delegated to tackle this particular task and finalize the Logic Synthesis in the

optimization process. A description of the exact purpose of this step is reported,

followed by a summary of the conceptual blocks that define its structure and of

their inner workings. After that, the exact sequence of operations performed for

each target technology is reported, along with some explanations about the design

choices made in the implementation of each technology-specific workflow. Finally,

brief descriptions of each of the functions that compose the related Python libraries

are provided.

79

3 – Overview of the Toolchain’s Step 2

3.1 Step 2 - Technology-dependent

gates compaction

As stated before in Section 2.1.2, in this step of the Toolchain the translation pro-

cess of each gate in the input quantum circuit into the NMR, Trapped Ions and

Superconducting technologies’ own set of gates is performed. This step is de-

signed to take as inputs the optimized circuit .qasm files generated by Step 1 to

work at maximum efficiency, but it can also be used on custom, unoptimized .qasm

files. The translation process, which is applied universally to single-qubit gates, does

not implement a decomposition of two-qubit gates such as the CX gates, which are

left untouched in order to be better exploited in Step 3, where they will eventu-

ally be decomposed into their basic constituting gates. As explained in Section 4.1,

this procrastination is due to the fact that all the templates that involve multiple

two-qubit gates and all Layout Synthesis operations in general can be detected and

performed much more easily with non-decomposed CX and CZ gates.

Clearly, to perform these operations, Step 2 forsake the technology-agnosticism of

Step 1 to employ a technology-specific approach, taking in consideration only the

chosen target technology and its inherent optimization process. Generally speaking,

the workflow of this step is:

• Smartly disposing of CZ gates in such a way that their conversion is made

as efficiently as possible according to the target technology’s specific needs.

• Employing a peculiar manipulation on triplets of adjacent Pauli gates of dif-

ferent type to achieve a further compaction of the circuit and to increase the

number of RZ gates when possible. This situational manipulation is quite

powerful, and it is based on coordinate transformations using Euler angles.

• Translating each single-qubit gate into one of the target technology’s base set

of gates following technology-specific criteria.

• If it is possible, trying to compact the resulting gates as much as possible.

80

3 – Overview of the Toolchain’s Step 2

While Step 2’s role in the optimization process is fundamental in order to obtain

quantum circuits that are tailored to a specific implementation technology, its opti-

mizations are mostly situational, when compared to Step 1’s powerful set of circuit

improvements. Optimization-wise, Step 2 introduces a “consolidation” of the re-

duction in the single-qubit gates’ number, and it is particularly effective in dealing

with long streaks of these kind of gates uninterrumpted by two-qubit gates, streaks

that, as seen in the results in Chapter 5, are usually quite rare in layered quantum

circuits, especially after the manipulations performed in Step 1.

As of now, Step 2 supports the usage of RX, RY , RZ, CX and CZ gates in

the input quantum circuit and requires all single-qubit gates to be adjacent to

gates of different type. These are condition easily achieved in Step 1 through the

translation and compaction resulting from the usage of the FinalCombo function

(as explained in Section 2.2.6), but in case of usage of an input quantum circuit

which was not previously optimized through Step 1 they have to be enforced by the

user. Once again, the modular structure of the libraries allows for an expansion to

support other quantum technology with their specific workflows.

Step 2 requires two inputs when executed from shell: the input .qasm circuit

file, which describes the reference quantum circuit that has to be optimized, and

the Subcircuit parameter, which is a boolean flag that defines if the circuit is

indeed a subcircuit to be used in conjunction with other QASM-described entities

and thus if certain optimizations regarding RZ gates can be employed. Once the

script is started, it asks the user for a parameter to define the target technology:

“M” for the NMR technology, “I” for the Trapped Ions technology and “S”

for the Superconducting technology.

All the manipulations involving Euler angles are performed through the usage of

the SciPy Python library [52] and of the NumPy Python library [53]. All

the benchmarking procedures, the results and their related analysis are reported in

Chapter 5 in the appropriate section.

81

3 – Overview of the Toolchain’s Step 2

3.1.1 Step 2’s structure

Figure 3.1: Representation of the overall structure of the Toolchain’s Step 2 (as-
suming that the input circuit was previously optimized by Step 1)

Step 2 is implemented with the technology optimizer 2 script, and depending on

the target technology calls the NMRLib, IonsLib or SupercondLib functions.

The script is divided in the following sections:

1. Input Handler section: This section handles the correct reception of inputs

and provides error messages if a wrong number of parameters or a wrong file

extension are passed as inputs. It also reads some of the .cfg files described

in 2.1.2 to define the thresholds and approximation accuracy to be used in

the optimization process and to set the translation parameter Iontran in the

Trapped Ions technology case. For what concerns the thresholds, the script

provides an error message if an approximation accuracy equal or greater than

1 is provided and a warning message if a null operation identifier threshold

is defined, since this could bring to “overzealous” optimizations that could

compromise the logic functionality of the circuit. If a non-integer number is

passed for the iterative parameters it proceeds to round it, and if a number

which is less than 1 is set in the .cfg files for these loops, it automatically sets

it to “1”.

2. Parser section: The Parser section generates the circuit list on which the

script will work based on the input file and rearranges it, “cleaning” it from

82

3 – Overview of the Toolchain’s Step 2

endline spaces, blank lines, barriers and comments. It also identifies the num-

ber of qubits involved in the target circuit and saves all the measurements

performed in the input file on a temporary list, which will be appended to the

output circuit list once the optimization is completed.

3. CZ Management section (Trapped Ions, Superconducting): This sec-

tion performs a smart translation of CZ gates into CX gates in the tech-

nologies where they are not natively supported by exploiting the equivalence

represented in Figure 3.2. Since this transformation implies the insertion of H

gates in the circuit, the functions of this section are programmed to account

for the symmetry propriety of CZ gates and try to achieve some optimiza-

tions by generating the most convenient null operations. To do this, a “score

system” is employed, as described in Section 3.1.5. If no null operation can

be achieved, they simply insert the H gates using their most convenient de-

composed form represented in Figure 2.19. The template used to translate CZ

gates into CX gates was extrapolated from [8, 50].

4. Eulercombo section (NMR, Trapped Ions, Superconducting): This

section tries to achieve a further single-qubit gates compaction through the us-

age of coordinate transformations applied on triplets of different Pauli gates.

These transformations are based on the principle that each arbitrary rotation

in the Bloch Sphere described by a triplet of single-qubit gates and their ro-

tation parameters (i.e. their Euler angles) can be perfectly described by

another triplet of different gates with different Euler angles obtained through

a transformation of the three-dimensional coordinates [54]. These angles are

calculated through the multiplication by a matrix performed by the SciPy

library, and are the only parameters in the toolchain which have to be math-

ematically evaluated and cannot be extracted from a database of templates -

since the sheer number of possibilities would be simply too big to handle. By

performing specific coordinate transformation, it is possible to make so that

the external gates in the triplets are adjacent to Pauli gates of the same type,

thus allowing for a compaction. If the detected triplets are not adjacent to any

other single-qubit gate, this section uses the same method to transform them

in a form which maximizes the usage of virtually-implementable RZ gates.

83

3 – Overview of the Toolchain’s Step 2

A more in-depth description of the mechanism around which the Eulercombo

section revolves is presented in 3.1.5.

5. Translator section (Trapped Ions, Superconducting): This is the sec-

tion in which the effective translation into the technology-specific gate set is

performed. In the case of the Trapped Ions technology, this consists in an op-

tional, sheer translation process, while in the Superconducting case a smarter

and more refined approach is used to maximize the usage of IBM’s native gate

set’s optimal U gates.

6. U gates Merger section (Superconducting): This section is uniquely ded-

icated to the Superconducting technology, and it performs the efficient optimiz-

ing scheme proposed in [55] in order to merge single-qubit gates to the extreme.

This section uses functions from a dedicated library, the Ugates converter

library.

7. Output Handler section: This section uses the final circuit list to generate

a .qasm file in the working directory. If the input file is detected as an output

of Step 1 through the parsing of its name, the suffix (optimized) is replaced.

Otherwise, a new suffix is simply appended to the original file name. In either

case, the suffix “ X techoptimized” in which X is the input parameter describ-

ing the target technology (“M”, “I”, “S”) is added, thus making explicit in the

file name the chosen target technology. Then, it appends to the file the mea-

surements contained in the original circuit (if it is not a subcircuit, of course)

and provides a message announcing that the optimizations were completed

successfully and the name of the generated file.

84

3 – Overview of the Toolchain’s Step 2

3.1.2 NMR - Specific workflow

• CZ gates: CZ gates are actually supported in NMR technology. In fact, they

are the most convenient way to implement two-qubit gates, as explained in

Section 1.3.2. Thus, instead of a transformation from CZs to CXs, it would be

preferable a transformation the other way around, from CXs to CZs. However,

most template-based optimizations applicable in the Layout Synthesis block

are based on CX gates and not on CZ gates. To leave the possibility of

exploiting these templates, present CX gates are left untouched, but since

CZ gates are preferable in this technology they are left untouched as well.

Basically, no conversion is performed in either case, and the translation

into a single type of two-qubit gate is performed later in Step 3, as explained

in Chapter 4.

• Translation: The base gates of the NMR technology are the RX, RY ,

RZ, CX and CZ gates. This gate set is already required for Step 2 to work

and its usage is ensured in each circuit optimized by the Toolchain’s Step 1,

so no translation is necessary.

• Special functions: Since CZ gates, like RZ gates, can be neglected when at

the very end or very beginning of the circuit, an ad-hoc version of FinalZ and

InitialZ functions (SpecialFinalZ and SpecialInitialZ) are called to try to

purge every redundant CZ once all other optimizations are applied.

• Function calls: (contained in the NMRLib function)

– Eulercombo function

– EulerZYZ function

– SpecialFinalZ function

– SpecialInitialZ function

85

3 – Overview of the Toolchain’s Step 2

3.1.3 Trapped Ions - Specific workflow

• CZ gates: As CZ gates are not supported by this technology, they are trans-

lated into CX gates using the equivalence represented in Figure 3.2. This is

done optimally by the ad-hoc functions described in Section 3.1.5.

• Translation: As explained in Section 1.3.3, the Trapped Ions technology

usually supports the implementation of single-qubit gates through the usage

of the R(θ,φ) generic rotation gate. Since this notation may not always be

preferred, as for example in benchmarking operations, the translation of the

RX andRY gates in the R(θ,φ) gate is performed only if the Iontran boolean

parameter in the ion translations.cfg file is set as true (“T”). Otherwise, the

gates are left untouched. RZ gates are left in their original form in order to be

clearly identifiable and to make the virtual implementation process easier.

This choice was made because recently virtual implementations of these gates

became available for Trapped Ions-based devices ([11, 12]) and because in

this way the Toolchain’s philosophy of maximizing the number of RZ gates is

matched. If one were to decide to make the translation compatible with non-

virtual implementations, it could be easily changed to be capable of replacing

each RZ gate with an equivalent combination of RX and RY gates.

• Function calls: (contained in the IonsLib function)

– CZReadjust function

– CZtoCX function

– Eulercombo function

– EulerZYZ function

– If required: IonTranslator function

86

3 – Overview of the Toolchain’s Step 2

3.1.4 Superconducting - Specific workflow

• CZ gates: As CZ gates are not supported by this technology, they are trans-

lated into CX gates using the equivalence represented in Figure 3.2. This is

done optimally by the ad-hoc functions described in Section 3.1.5.

• Translation: As explained in Section 1.3.4, the Superconducting technology

supports IBM’s native gate set of U1, U2, U3 and CX gates, so a trans-

lation of single-qubit gates is required. Since the usage of U1 and U2

gates is preferable with respect to U3 gates because it is more convenient in

terms of gate latency, this translation is performed in order to maximize their

number in the circuit. This is done by using the Ugates converter library,

whose functions translate detected H gates into U2 gates and then, after the

Eulercombo optimizations, try to resort to U3 implementations only in the

cases in which U1 and U2 gates are not employable. These U gates are then

merged by using the same mechanism on which the Eulercombo optimizations

are based to implement the scheme proposed in [55] and compact the circuit

as much as possible.

• Function calls: (contained in the SupercondLib function)

– CZReadjust function

– CZtoCX function

– H to U2 function

– Eulercombo function

– EulerZYZ function

– ZRZ to U2 function

– HalfR to U2 function

– ZRZ to U3 function

– GenericConverter function

– SupercondMerge function

87

3 – Overview of the Toolchain’s Step 2

3.1.5 step2 techlib library

STEP 2 TECHLIB - CZ MANAGEMENT

CZ gates can be transformed into CX gates by using the following equivalence:

•
Z

= •
H H

Figure 3.2: Template to transform a CZ gate into a CX gate through the
insertion of H gates

However, CZ gates are symmetrical, and thus a single CZ when transformed

can actually result in two different templates with a CX:

Because

•
Z

= Z

•

88

3 – Overview of the Toolchain’s Step 2

both equivalences are true:

•
Z

= •
H H

•
Z

= H H

•

Figure 3.3: Double equivalence when transforming CZ gates into CX gates
due to CZs’ symmetry

To transform CZ gates into CX gates in an optimal way, both templates must

be taken into account to insert the H gates in the qubit line where they yield

the greatest benefits in terms of circuit compaction, because purging an H

gate is a particularly strong optimization for single-qubit gates. To do this,

two functions are employed.

The CZReadjust function evaluates which qubit line is more suitable for

the H gates insertion through the “score system” described below and shifts

the CZ in order to have its target qubit on the aforementioned qubit line.

Once this is done, the CZtoCX function simply applies the correct template

by inserting the required H gates in the qubit line where the CZ’s target

qubit is located.

The H gates are inserted in a decomposed form, which is determined by the

compactable gates adjacent to the original CZ.

89

3 – Overview of the Toolchain’s Step 2

• CZReadjust function: This function performs a preemptive transla-

tion of all eligible single-qubit gates into known forms of Pauli gates by

invoking the Translator function. Then, it scans each qubit line in

the circuit backwards, starting from the circuit’s end, and identifies all

CZ gates. As first thing, the function checks if the CZ’s control qubit

is adjacent to decomposed H gates and the target qubits is not: if so, it

inverts the CZ gate. Viceversa, if the CZ’s target qubit is adjacent to

decomposed H gates and the control qubit is not, the function identifies

a best-case scenario and does nothing. If both qubit lines present poten-

tially compactable single-qubit gates as adjacent gates, both sides on the

qubit lines are checked and the following “score system” is employed,

with the target qubit line and the control qubit line having separate

scores:

– H gates in the RY -X / X-RX form score 3 points each. This

is due to the fact that purging a decomposed H gate is a strong

optimization, and that purging two non-RZ gates yields the most

gain in the circuit.

– H gates in the S-RX-S / S†-RX-S† form score 2 points each.

– Non-H gates which can be compacted with a decomposed H gate

score 0.5 points each. This is due to the fact that when no H gate

is available on either side it is still optimal to try to compact the

circuit as much as possible, but the presence of these single-qubit

gates should never compromise the evaluation of present H gates.

At the end of the evaluation, the scores of the target qubit line and

of the control qubit lines are compared. If the target score is greater,

nothing is done. If the control score is greater, the CZ is inverted.

When there’s a draw, it is useless to take any action and so nothing is

done.

90

3 – Overview of the Toolchain’s Step 2

For instance:

S RX(
π
2) S • S RX(

π
2) S

RY (
π
2) X Z RX(θ)

In this example, the target qubit line presents a non-ideal decomposed

H gate on the left (3 points) and a compactable non-H gate on the right

(0.5 points). The control qubit line presents an ideal decomposed H gate

(2 points) on both sides. The target qubit line’s total score is 3.5, the

control qubit line’s total score is 4. Since the control qubit line “won”,

it is more convenient to invert the CZ gate.

• CZtoCX function: This function scans each qubit line in the circuit

backwards, starting from the circuit’s end, identifies all CZ gates and

then translates them into CXs. Since after the call of the CZReadjust

function each CZ is already placed in order to have the target qubit

on the qubit line in which an insertion of H gates is most convenient,

this function simply transforms the CZ into a CX using the template in

Figure 3.2 by ensuring that the CX’s target qubit match the CZ’s one,

in order to effectively insert the H gates where they are most beneficial.

91

3 – Overview of the Toolchain’s Step 2

The decomposed form of the H gates to use is evaluated for both sides

by identifying the adjacent gates. Then, when two or more single-

qubit gates of the same type are adjacent, an optimization is performed

through the NullPurge, InitialZ and FinalZ functions. Once the

purge or the combination is applied, the scan on the qubit line resumes

from the last gate before the gates that were optimized, and from the

end of the circuit if there are none left.

STEP 2 TECHLIB - EULERCOMBO

When using these functions with a very accurate approximation of π, it is

possible to incur in the problem known as Gimbal Lock [56]. This involves no

issues when compiling the code nor when manipulating the circuit list, but

can severely increase the computation time required. For a more in-depth

explanation on the mathematical mechanism on which these functions are

based, refer to [54].

• Eulercombo function: This function scans each qubit line in the

circuit backwards, starting from the circuit’s end, and identifies triplets

of consecutive single-qubit gates. Once a triplet is detected, it identifies

its adjacent gates and evaluates which side is suitable to allow a

combination (i.e. which side has no CX, CZ, RXX, RZZ or no gate

adjacent to the triplet). Then, it applies the most convenient coordinate

transformations to manipulate the triplet in a way to change its external

gates in the same type of their adjacent gates, in order to allow a

compaction. When a template is used, the function automatically

detects what two-qubit gates are involved (CXs, CZs, RXXs or

RZZs) and calls only the optimization functions that can be exploited

on those particular gates.

92

3 – Overview of the Toolchain’s Step 2

These manipulations consist in a change from an “ABC” triplet,

in which each letter defines a rotation around the X, Y or Z axis

and in which each gate describing a rotation is adjacent to another

single-qubit gate of different type (a triplet in an “AAC” form for

instance could not be transformed), to an “UVW” triplet, whose

rotations are determined on the principle of compacting the circuit as

much as possible and are different from the adjacent rotations in the

triplet. After the manipulation, the function also purges all the gates

in the triplet with a rotation parameter of “0”, because they are null

operation: this is done in order to avoid the insertion of redundant

gates when a Gimbal Lock happens.

To achieve this, the following criteria are adopted:

– Try to maximize RZ gates for optimal virtual implementation.

– When both the gates adjacent to the triplet are RZ gates or when-

ever applicable, prefer a Z-Y-Z form. This is ideal both because it

maximizes the number of involved RZ gates and because it makes

translation into U gates easier in the Superconducting technology.

– Whenever a side is not suitable for combination (i.e. a CX, CZ,

RXX or RZZ gate is adjacent to the triplet), try to transform its

adjacent external gate of the triplet in a RX gate in order to ex-

ploit the advantageous template in Figure 2.21 and 4.9 as much as

possible. If not possible, transform it in a RZ gate to exploit the

templates in Figure 2.20, 2.22 and 4.8 instead (which are consid-

ered as less advantageous because they optimize RZ gates, which,

if virtually implemented, do not hamper the circuit). It must be

noted that the exploitation of these three last templates is not the

focus of this section. In fact, they are employed only when a com-

bination of single-qubit gates is already possible and no template

93

3 – Overview of the Toolchain’s Step 2

involving RX gates can be exploited, as a “bonus”. Indeed, at this

stage of optimizations, RZ gates are considered “harmless” because

of their virtual implementation.

By labeling as “C” an external gate in the triplet whose rotation is of

the same type of a gate adjacent to the triplet (and that thus allows

a combination) and as “G” a generic gate in the middle of the triplet

which is of different type with respect to the other two external gates,

the following cases arise:

– Both sides not suitable for combination: if both sides feature

a CX or RXX gate, then the triplet is transformed into the X-Z-

X form. If not, no action is performed on the triplet (as discussed

in the adopted criteria, when both adjacent gates are CZ or RZZ

gates no effort is made to try to exploit their correlated templates,

because of the harmlessness of RZ gates). For example:

CX RX −RY −RZ CX

⇒ CX RX −RZ −RX CX

Both sides are not suitable for combination: a X-Z-X form is applied to try
to exploit some advantageous templates that involve CX and RX gates.

– Both sides suitable for combination: the triplet is preferably

transformed into the Z-Y-Z form. If it is evaluated that more

combinations are achievable by not using a couple of external RZ

gates, the triplet is transformed into the C-Z-C form. If not

94

3 – Overview of the Toolchain’s Step 2

possible because two RZ gates would be adjacent in the triplet, the

generic C-G-C form is applied. For example:

RZ RX −RY −RZ RZ

⇒ RZ RZ −RY −RZ RZ

⇒ RZ RY RZ

Both sides are suitable for combination (best case scenario): since using a
Z-Y-Z form actually yields the highest number possible of combinations, it is
preferred above all other forms.

RX/RY RX −RY −RZ RX/RY

⇒ RX/RY RX/RY −RZ −RX/RY RX/RY

⇒ RX/RY RZ RX/RY

Both sides are suitable for combination: A C-Z-C is used to obtain the highest
number possible of combinations. The usage of a central RZ gate is preferred
since none of the other two external gates is of the same type.

– At least one side suitable for combination: the triplet is

preferably transformed into the C-Z-X or X-Z-C form, in order

to allow a compaction of gates on the suitable side and to try to

exploit the template in Figure 2.21 or 4.8 on the other.

95

3 – Overview of the Toolchain’s Step 2

There are cases in which the adjacent gate to the triplet is

a RZ gate and thus the usage of these two forms would not

allow both the possibility to exploit a template that is considered

“interesting”, i.e. one that involves CX and RXX gates, and a

combination on the suitable side, because that would result in a

triplet containing two adjacent internal RZ gates. In those cases

the triplet is transformed into the C-X-Z or Z-X-C form, in

order to compact the gates on the suitable side and to try to

exploit the templates in Figure 2.20, 2.22 and 4.8 on the other

at the same time, as a “bonus” effort alongside the combination

on the suitable side. Also, whenever the side not suitable for

combination coincides with the circuit’s end or beginning, a

C-Y-Z or Z-Y-C form is adopted to try to place a RZ gate

at the end or beginning of the circuit, where it can be purged.

When optimizing, the function calls the related functions from

the step1 templates library and from the Special Functions

section of this library according to the detected exploitable

template, and the InitialZ and FinalZ functions when RZ

gates might be at the beginning or the end of the circuit.

96

3 – Overview of the Toolchain’s Step 2

For example:

CX RX −RY −RZ RY

⇒ CX RX −RZ −RY RY

⇒ CX RX RZ RY

Left side not suitable for combination: A X-Z-C is used to obtain both the
combination of the rightmost adjacent RY gate and the chance to exploit the
CX + RX template on the left side.

• EulerZYZ function: Once all existing triplets are compacted as much

as possible in a single one by the Eulercombo function call, or if

there are triplets which could not be compacted any further or partially

employed in a template, this function detects them by scanning each

qubit line in the circuit backwards, starting from the circuit’s end. Once

this is done, it transforms them in the optimal Z-Y-Z form. After

that, the function also purges all the gates in the triplet with a rotation

parameter of “0”, because they are null operation: this is done in order

to avoid the insertion of redundant gates when a Gimbal Lock happens.

Finally, it tries a last optimization effort by calling the InitialZ and

FinalZ functions.

97

3 – Overview of the Toolchain’s Step 2

STEP 2 TECHLIB - TRANSLATION

• IonTranslator function: This function is called only when the Ion-

tran parameter is set to “true”. When this happens, it scans the

circuit and translates each RX and RY gate in an equivalent R(θ,φ)

gate. Of course, to ensure correctness with decomposed two-qubit gates

all RXX gates are detected and left untouched in the translation pro-

cess.

STEP 2 TECHLIB - U GATES MERGE

• SupercondMerge function: This function scans each qubit line in

the circuit backwards, starting from the circuit’s end, and identifies

each U gate in the circuit. The merging mechanism is based on the

U gates equivalences of IBM’s native gate set described in Section

1.3.4 and represented in Figure 1.9, 1.10, 1.11. By exploiting these

equivalences, U gates are merged into a single U gate.

Merging U1 gates with other U gates is trivial, because it is

performed by merging two RZ gates:

U1(x) U3(θ, φ, λ)

⇒ RZ(x) RZ(λ) RY (θ) RZ(φ)

⇒ U3(θ, φ, λ + x)

98

3 – Overview of the Toolchain’s Step 2

When combining U2 and U3 gates between them or with each

other, things are more complicated. By employing the optimization

scheme proposed in [55], by applying an ad-hoc coordinate transfor-

mation in the central triplet of gates and by considering each U2 as a

particular case of U3, it is possible to solve each generic U3 + U3

case and merge the gates into a single U3 by exploiting a Y-Z-Y

form to Z-Y-Z form transformation:

U3(θ1, φ1, λ1) U3(θ2, φ2, λ2)

RZ(λ1) RY (θ1) RZ(φ1 + λ2) RY (θ2) RZ(φ2)

RZ(λ1) RY (α) RZ(β) RY (γ) RZ(φ2)

RZ(λ1 + α) RY (β) RZ(φ2 + γ)

U3(β, φ2 + γ, λ1 + α)

Figure 3.4: Generic U3 merging scheme into a single U3 gate by exploiting
equivalences, as proposed in [55]

99

3 – Overview of the Toolchain’s Step 2

STEP 2 TECHLIB - SPECIAL FUNCTIONS

• SpecialFinalZ function: This function act as an ad-hoc version of

the FinalZ function described in Section 2.2.3 to purge all CZ and

RZZ gates at the very beginning of the circuit. This function scans

each qubit line in the circuit backwards, starting from the circuit’s end,

and checks if the last gate is a CZ or RZZ: if it is not, it proceeds

with the next qubit line; if it is, it checks the other of the two qubits

involved in the gate and detects if the gate is at the very end of the

circuit on both qubit lines. If so, it purges it and resumes from the

new circuit’s end. Otherwise, it proceeds with the next qubit line. This

optimization exploit the fact that, like RZ gates, CZ and RZZ gates

right before measurement are negligible, since they only insert a

phase variation. If the circuit is a Subcircuit and thus it is not followed

by measurement operations, this functions does nothing.

• SpecialInitiallZ function: This function act as an ad-hoc version

of the InitialZ function described in Section 2.2.3 to purge all CZ

and RZZ gates at the very beginning of the circuit. This function

scans each qubit line in the circuit forwards, starting from the circuit’s

beginning, and checks if the first gate is a CZ or RZZ: if it is not, it

proceeds with the next qubit line; if it is, it checks the other of the

two qubits involved in the gate and detects if the gate is at the very

beginning of the circuit on both qubit lines. If so, it purges it and

resumes from the new circuit’s start. Otherwise, it proceeds with the

next qubit line.

100

3 – Overview of the Toolchain’s Step 2

This optimization exploit the fact that, like RZ gates, CZ and RZZ

gates right after qubit initialization to |0i are negligible, since

they do not insert any phase variation. If the circuit is a Subcircuit and

thus it is not followed by measurement operations, this functions does

nothing.

• NMRLib, IonsLib, SupercondLib: Wrappers that call the de-

tailed workflow reported in Sections 3.1.2, 3.1.3 and 3.1.4 for the

NMR, Trapped Ions and Superconducting technology respec-

tively. These are the functions called in the technology optimizer 2

script that implements Step 2.

101

3 – Overview of the Toolchain’s Step 2

3.1.6 Ugates converter library

U GATES CONVERTER

• H to U2 function: This function scans each qubit line in the cir-

cuit backwards, starting from the circuit’s end, and detects decomposed

H gates both in ideal and non-ideal form. It then translates them in

U2(0, π) gates by exploiting the equivalence in Figure 3.5. This func-

tion is called before eventual Eulercombo optimizations to ensure H

gates are transformed into U2 right away, instead of risking less optimal

U3 implementations after triplets manipulations.

H = U2(0, π)

Figure 3.5: H to U2 equivalence

• ZRZ to U2 function: This function scans each qubit line in the

circuit backwards, starting from the circuit’s end, and tries to exploit

the easily detectable equivalences represented in Figure 3.6 to maximize

the number of employed U2 gates.

102

3 – Overview of the Toolchain’s Step 2

The RZ-RX-RZ case is actually unused thanks to the usage of Eu-

lerZYZ function, but was still added for completion.

RZ(λ) RY (π2) RZ(φ) = U2(φ, λ)

RZ(λ) RX(±π
2) RZ(φ) = U2(φ± π

2 , λ∓ π
2)

Figure 3.6: RZ-RX/RY -RZ to U2 equivalences

• HalfR to U2 function: This function scans each qubit line in the

circuit backwards, starting from the circuit’s end, and tries to exploit

the easily detectable equivalences represented in Figure 3.7 to maximize

the number of employed U2 gates.

RY (
π
2) = U2(0, 0)

RX(±π
2) = U2(±π

2 , ∓
π
2)

Figure 3.7: RX(±π
2
)/RY (π

2
) to U2 equivalences

103

3 – Overview of the Toolchain’s Step 2

• ZRZ to U3 function: This function scans each qubit line in the circuit

backwards, starting from the circuit’s end, and tries to exploit the easily

detectable equivalences represented in Figure 3.8 to translate the gates

into U3s right away. The RZ-RX-RZ case is actually unused thanks to

the usage of EulerZYZ function, but was still added for completion.

RZ(λ) RY (θ) RZ(φ) = U3(θ, φ, λ)

RZ(λ) RX(θ) RZ(φ) = U3(θ, φ± π
2 , λ∓ π

2)

Figure 3.8: Easily detectable U3 equivalences

104

3 – Overview of the Toolchain’s Step 2

• GenericConverter function: This function comes into play when all

existing equivalences for U2s have already been exploited, and when all

easily detectable equivalences for U3s have already been identified and

translated. The function scans each qubit line in the circuit backwards,

starting from the circuit’s end, and translates all remaining RZ gates

into U1 gates and all remaining RX, RY gates into U3 gates by

using the equivalences represented in Figure 3.9

RZ(λ) = U1(λ)

RY (θ) = U3(θ, 0, 0)

RX(θ) = U3(θ, ± π
2 , ∓

π
2)

Figure 3.9: Generic RX , RY , RZ to U1, U3 equivalences

105

Chapter 4

Overview of the Toolchain’s Step 3

The final step of the Toolchain manages the most complex operations involving

templates. In fact, it takes care of a part of the Layout Synthesis block described in

Section 1.4. At the time of writing this thesis, it does not implement a proper routing

and mapping mechanism to support proper adaptation to quantum devices in non-

fully-connected technologies (i.e. the Superconducting one) however, it already

performs a multitude of template-based optimizations targeting clusters of two-

qubit gates and finalizes the circuit translation in the technology’s own gate set by

smartly decomposing all those gates. The aim of this chapter is to provide an in-

depth overview of the Toolchain’s Step 3 and of its implemented technology-based

optimization strategies, both for decomposing the involved two-qubit gates and for

compacting the circuit as much as possible.

A description of the exact purpose of this step is reported, followed by a summary

of the blocks that define its structure and of their inner workings. Then, the exact

sequence of operations performed for each target technology is reported, along with

some explanations about the design choices made in the implementation of each

technology-specific workflow. Finally, brief descriptions of each function composing

the technology-specific sections of the related Python libraries are provided. The

proposed descriptions are presented with a complete list of the circuit identities and

templates employed in the optimization process.

106

4 – Overview of the Toolchain’s Step 3

4.1 Step 3 - Distribution/Mirroring-based

optimizations and CX gates decomposition

As stated in Section 2.1.2, Step 3 has a double aim:

• Exploiting a subset of templates which can potentially reduce the number of

two-qubit gates in a circuit, especially CX gates

• Subsequently decomposing them according to the target technology and then

trying a final optimization effort

This decomposition is delayed until Step 3 because, as it is common in the state-of-

the art [37], the choice to work with non-decomposed CX/CZ gates in the Layout

Synthesis block was made. This is usually done in order to perform routing op-

erations in a simpler way by considering these gates in compacted form, to then

decompose them once they are mapped on the target device. In the case of a

template-based approach, it should be noted that this procrastinated decomposi-

tion also makes much easier to detect and exploit the templates involving cluster of

CXs reported in Section 4.1.5.

This step currently covers only a fraction of the effective operations needed to fi-

nalize the Layout Synthesis block described in the state-of-the-art toolchain in [17].

In particular, it is focused on what we could name “the first part”, involving the

optimization of potentially redundant multi-qubit gates, and “the last part”, which

is the one regarding the decomposition of the aforementioned gates that is usually

performed at the very end of the Layout process. While a mechanism to specify some

of the properties of a target device is implemented (namely some files to describe

the sign of the interactions between two given qubits in the NMR and Trapped

Ions technology, as reported in Sections 4.1.2 and 4.1.3), for this first prototype of

Toolchain it was preferred to focus on general-purpose optimizations and on the

adaptation to theoretically fully-connected technologies. Moreover, the actual issue

of inserting SWAP gates to match the circuit’s usage of multi-qubit gate with a non-

fully-connected target device is left as a potential future evolution of the project, as

107

4 – Overview of the Toolchain’s Step 3

reported in the Conclusions and future perspectives.

Step 3 is designed to take as inputs the optimized circuit .qasm files generated by

Step 2 to work at maximum efficiency, but it can also be used on custom, un-

optimized .qasm files. This step is technology-specific exactly like Step 2, and

the performed manipulations of the circuit differ greatly depending on the target

technology. Generally speaking, the workflow of this step is:

• Employing the templates based on parallelization, distribution and mir-

roring of CX gates in order to reduce their number in the circuit.

• Decomposing two-qubit gates using a technology-specific gate set. This decom-

position is enacted in a way that aims to compact the circuit further whenever

is possible.

• If it is possible, trying to exploit the special properties of newly inserted two-

qubit gates (namely the RXX and RZZ gates) and a final iteration of the

Eulercombo mechanism described in Sections 3.1.1, 3.1.5 in order to compact

the circuit as much as possible.

Step 3 has the important task of handling the complex templates that involve clus-

ters of CX gates, and is the Toolchain’s primary source of multi-qubit gates

optimizations. This task is followed by another important one: a smart decom-

position of two-qubit gates and some other minor optimization, all in order to

fully adapt the circuit to the target technology with the least impact on the circuits’

gates. Both roles performed by Step 3 are essential to complete the Toolchain’s

proposed compilation process, but the template-based approach on which they are

based on is theoretically suboptimal for such tasks. While two-qubit gates decom-

position can still be handled efficiently, This is especially true in the case of the

exploiting of CX templates, which on paper seem quite limited when compared to

more complex evaluation algorithms. Also, they are less suited to be effective in the

Layout Synthesis’ phase of mapping circuits on target devices, which is currently

not implemented in the Toolchain.

Step 3 supports the usage of the following gate sets depending on the target tech-

nology:

108

4 – Overview of the Toolchain’s Step 3

• NMR technology: RX, RY , RZ, CX and CZ gates

• Trapped Ions technology: RX, RY OR R(θ,φ) gates, RZ, CX gates

• Superconducting technology: U1, U2, U3 and CX gates

Because of the usage of the Eulercombo functions, this step also requires all single-

qubit gates to be adjacent to gates of different type. This condition is

guaranteed after the circuit optimization based on Step 1 and Step 2, as reported

in Chapter 3, and specifically by the previous usage of the Eulercombo itself, but in

case of usage of an custom or not previously optimized input circuit they have to be

enforced by the user. Once again, the modular structure of the libraries allows to

support in the future other quantum technologies with their specific workflows and

to upgrade the existing ones with new features.

Step 3 requires two inputs when executed from shell: the input .qasm circuit file,

which describes the reference quantum circuit that has to be optimized, and the

Subcircuit parameter, which is a boolean flag that defines if the circuit is indeed

a subcircuit to be used in conjunction with other QASM-described entities and thus

if certain optimizations regarding RZ gates can be employed. If the input circuit is

the output of Step 2, the script is able to parse the file name and to recognize the

employed target technology, which uses the same parameters as in Step 2 (“M”

for the NMR technology, “I” for the Trapped Ions technology and “S” for

the Superconducting technology). If the file name was changed or if the input

file is custom or not previously optimized, the script displays a message and then

asks the user the technology parameter.

All the manipulations involving Euler angles are performed through the usage of

the SciPy Python library [52] and of the NumPy Python library [53]. All

the benchmarking procedures, the results and their related analysis are reported in

Chapter 5 in the appropriate section.

109

4 – Overview of the Toolchain’s Step 3

4.1.1 Step 3’s structure

Figure 4.1: Representation of the overall structure of the Toolchain’s Step 3 (as-
suming that the input circuit was previously optimized by Step 2)

Step 3 is implemented with the layout optimizer 3 script, and is divided in the

following sections:

1. Input Handler section: This section handles the correct reception of inputs

and provides error messages if a wrong number of parameters or a wrong file

extension are passed as inputs. It also reads some of the .cfg files described

in Section 2.1.2 to define the thresholds and approximation accuracy to be

used in the optimization process, to set the translation parameter Iontran

in the Trapped Ions technology case and to set the IT3 iteration parameter.

For what concerns the thresholds, the script provides an error message if an

approximation accuracy equal or greater than 1 is provided and a warning

message if a null operation identifier threshold is defined, since this could bring

to “overzealous” optimizations that could compromise the logic functionality

of the circuit. If a non-integer number is passed for the iterative parameter it

proceeds to round it, and if a number which is less than 1 is set in the .cfg

files for these loops, it automatically sets it to “1”.

110

4 – Overview of the Toolchain’s Step 3

2. Parser section: The Parser section generates the circuit list on which the

script will work based on the input file and rearranges it, “cleaning” it from

endline spaces, blank lines, barriers and comments. It also identifies the num-

ber of qubits involved in the target circuit and saves all the measurements

performed in the input file on a temporary list, which will be appended to the

output circuit list once the optimization is completed.

3. CX Templates section (NMR, Trapped Ions, Superconducting): This

section is in charge of performing the main “core” of optimizations in this step

by using the functions contained in the step3 cxtemplates library. These

functions detect and employ a subset of templates extrapolated from [50] which

are based on parallelization, distribution and mirroring of CX gates

to achieve some potentially powerful compactions that are unobtainable when

using the simple equivalences or the template-based optimization contained in

Step 1. As of now, these are the most complex template-based equivalences

exploited in the Toolchain. This section is reiterated through a loop defined by

the IT3 parameter to maximize the number of optimizations applied, because

some of the manipulations applied through the usage of these templates based

on two-qubit gates could reshape the CX clusters in the circuit in such a way

that another CX-based template is created. The recommended value of IT3

is actually “2”, because while it is true that new templates may be generated

after the first iteration of the section, it is quite unlikely to see this reshape in

another iteration, so a double loop is usually enough to detect and perform all

possible template-based optimizations. In any case, the parameter gives the

possibility to achieve an higher grade of optimization, trading off computation

time in order to increase the probabilities of all possible templates actually

being detected and exploited.

4. CX Translation section (NMR, Trapped Ions): This is the section in

which the effective decomposition of multi-qubit gates into the technology-

specific gate set is performed, if required. In the case of the NMR technology,

this involves RZZ gates (which can be used as an OpenQASM-supported

version of the UJ gates) to implement the circuit structure represented in

Figure 1.5. In the case of the Trapped Ions technology, this involves RXX

111

4 – Overview of the Toolchain’s Step 3

gates to implement the circuit structure represented in Figure 1.7. In both

cases, the translation process is designed to achieve maximum compaction in

the circuit. In both cases, one can use the parameters in the .cfg files described

in Section 2.1.2 to forsake this decomposition and use untranslated CX gates.

5. Special Templates + Eulercombo section (NMR, Trapped Ions): In

this section the last optimization effort is performed. Firstly, the commutation

properties with certain single-qubit gates of the newly inserted RXXs and

RZZs are exploited in order to apply some “special templates” which are

de facto a particular case of the Templates 1, 2 and 3 represented in Figure

2.20, 2.21, 2.22. Following this optimization, the Eulercombo mechanism

described in Sections 3.1.1 and 3.1.5 is called in order to capitalize on eventual

streaks of single-qubit gates created after the application of the last templates

and to compact as much as possible all the single-qubit gates inserted during

the decomposition of CX gates.

6. Output Handler section: This section uses the final circuit list to generate

a .qasm file in the working directory. If the input file is detected as an output

of Step 2 through the parsing of its name, the suffix (finaloptimized) is re-

placed. Otherwise, a new suffix is simply appended to the original file name.

In either case, the suffix “ X finaloptimized” in which X is the input param-

eter describing the target technology (“M”, “I”, “S”) is added, thus making

explicit in the file name the chosen target technology. Then, it appends to the

file the measurements contained in the original circuit (if it is not a subcircuit,

of course) and provides a message announcing that the optimizations were

completed successfully and the name of the generated file.

112

4 – Overview of the Toolchain’s Step 3

4.1.2 NMR - Specific workflow

• CX and CZ gates: Since CZ gates are the most convenient way to implement

two-qubit gates, as explained in Section 1.3.2, all CX gates are translated in

a form which uses them by using the equivalence represented in Figure 4.6.

The two-qubit gate itself is transformed using a RZZ gate, a type of gate

supported in OpenQASM that can be used to implement the UJ gate by

using a rotation of π
2

. The sign of the rotation in the RZZ gate depends on

the target qubits (nuclear spins) involved, and is determined by reading the

NMR layout parameter from the layout nmr.cfg file described in Section

2.1.2. Basically the NMR Layout parameter is read, and the J coupling

sign for each couple of interacting qubits is determined. The parameter itself

must be written in form of a list of lists, with each list detailing the J coupling

sign that each qubit has when interacting with others. In a quantum circuit

containing N qubits, Step 3 to work would require a list containing N lists

each containing N elements, which can be “∓1” or “0”. The “0” value is

employed since the qubit interaction with itself is clearly null, so an i-th qubit

will feature in the i-th list an i-th element which is equal to 0. In this way, it

is possible to implement the circuit structure represented in Figure 1.5. The

CX gates are decomposed only if the CZ Translation parameter in the

layout nmr.cfg file is set as “true”, and no operation is performed otherwise.

The potential phenomenon of weak J coupling that can impede two-qubit

interactions between specific, weakly-coupled qubits is currently not taken

into account, and all qubits are considered as ideally coupled between each

other.

• Special Templates: It can be demonstrated that the RZZ gates share the

same commutation property of CZ gates with respect toRZ gates. Because of

this, it is possible to apply an equivalent to the Template 1 and the Template

3 described in Section 2.2.5 in order to try to combine as many RZ and RZZ

gates as possible. Both templates are merged under a single template named

“Special template 1”, and described in Section 4.1.6. An Eulercombo

section is called immediately afterwards to try to compact the circuit even

further.

113

4 – Overview of the Toolchain’s Step 3

• Special functions: Since RZZ gates benefit of the same property of RZ

gates of being negligible when at the very end or very beginning of the circuit,

the same ad-hoc version of FinalZ and InitialZ functions used in Step 2 and

described in Section 3.1.5, (SpecialFinalZ and SpecialInitialZ), are called

to try to purge every redundant RZZ once all other optimization are applied.

• Function calls:

– CX optimization: (repeated IT3 times)

– CXDistribution function

– CXParallel function

– CXMirror1 function

– CXMirror2 function

– CX translation: (if required)

– CXtoCZ function

– CZHarmonize function

– Specialtemplate + Eulercombo:

– Specialtempl1 function

– Eulercombo function

– Eulerzyz function

– SpecialFinalZ function

– SpecialInitialZ function

114

4 – Overview of the Toolchain’s Step 3

4.1.3 Trapped Ions - Specific workflow

• CX gates: As explained in Section 1.3.3, the Trapped Ions technology sup-

ports the RXX gate as fundamental two-qubit gate, so a decomposition is

applied to CX gates in order to implement the circuit structure represented

in Figure 1.7 by using a RXX gate with a rotation of π
4

. The sign of the

rotation in the RXX gate depends on the target qubits (ions in the chain)

involved, and is determined by reading the Ion layout parameter from the

layout ion.cfg file described in Section 2.1.2. The Ion Layout parameter

is then read and the χ interaction sign for each couple of interacting qubits is

determined. The parameter itself must be written in form of a list of lists,

with each list detailing the χ interaction sign that each qubit has when inter-

acting with others. In a quantum circuit containing N qubits, Step 3 to work

would require a list containing N lists each containing N elements, which can

be “∓1” or “0”. The “0” value is employed since the qubit interaction with

itself is clearly null, so an i-th qubit will feature in the i-th list an i-th element

which is equal to 0. Furthermore, as explained in [34], some rotation param-

eter in the circuit equivalence depend on the arbitrary parameter v, that can

be equal to ∓1. To ensure maximum compaction, this parameter is chosen

depending on the single-qubit gates adjacent to the decomposed CX in order

to allow the highest number of combinations with those gates possible. The

CX gates are decomposed only if the CX Translation parameter in the

layout ion.cfg file is set as “true”, and no operation is performed otherwise.

• Ghost translations: If in Step 2 all theRX and RY gates were translated in

the R(θ,φ) generic rotation gate form, an “hidden” translation is performed

in the optimization process. Parsing and detecting combinable gates in the

RX, RY form is much easier with respect to the generic rotation form, so

before enacting the effective decomposition of CX gates, if the circuit shows

that generic form, it is preemptively translated using the regular rotation

forms. Once all optimization efforts have been performed, all RX and RY

gates, both “old” and newly inserted, are re-translated in the generic rotation

gate form.

115

4 – Overview of the Toolchain’s Step 3

• Special Templates: It can be demonstrated that the RXX gates shows a

commutation property with respect toRX gates [34], so it is possible to apply

a template equivalent to the Template 2 described in Section 2.2.5. Moreover,

a new template which is similar to Template 1 but uses RX gates instead of

RZ gates can be employed in order to try to combine as many RX and RXX

gates as possible. Both templates are merged under a single template named

“Special template 2”, and described in Section 4.1.6. An Eulercombo

section is called immediately afterwards to try to compact the circuit even

further.

• Function calls:

– CX optimization: (repeated IT3 times)

– CXDistribution function

– CXParallel function

– CXMirror1 function

– CXMirror2 function

– Ghost reverse translation: (if required)

– IonTranslator Reverse function

– CX translation: (if required)

– IonCX function

– Specialtemplate + Eulercombo:

– Specialtempl2 function

– Eulercombo function

– Eulerzyz function

116

4 – Overview of the Toolchain’s Step 3

– Ghost re-translation: (if required)

– IonTranslator function

4.1.4 Superconducting - Specific workflow

• CX gates: Since CX gates are supported in their undecomposed form in the

Superconducting technology, they are left untouched and no translation op-

erations are performed. The layout constraints intrinsic to this technology

are not currently taken into account, and the architecture is considered as

fully-connected.

• Special Templates: Regular CX do not benefit from any “special template”,

but only from the regular ones described in Chapter 2 and in this Chapter.

Thus, no particular operation is performed. A SupercondMerge func-

tion is called immediately after the regular CX optimizations in order to try

to capitalize on potentially newly generated streaks of U gates and to compact

the circuit even further.

• Function calls:

– CX optimization: (repeated IT3 times)

– CXDistribution function

– CXParallel function

– CXMirror1 function

– CXMirror2 function

– SupercondMerge function

117

4 – Overview of the Toolchain’s Step 3

4.1.5 step3 cxtemplates library

Employed CX templates

CX TEMPLATES

• •
• • =

• •
= • • =

•
=

Figure 4.2: CX Template 1: transformation of a distribution of four alternated
CXs into a single long-range CX

118

4 – Overview of the Toolchain’s Step 3

•
• • =

• •
=

• •
=

Figure 4.3: CX Template 2: transformation of a parallel cluster of CXs into
a CX and a long-range CX

• •
• =

• •
• =

•
= •

Figure 4.4: CX Template 3: transformation of a mirrored cluster of CXs into
two CX gates (Form 1)

119

4 – Overview of the Toolchain’s Step 3

• •
• =

• •
• =

•
= •

Figure 4.5: CX Template 4: transformation of a mirrored cluster of CXs into
two CX gates (Form 2)

120

4 – Overview of the Toolchain’s Step 3

Library description

CX TEMPLATES

• CXDistribution function: This function scans each qubit line in the

circuit backwards, starting from the circuit’s end, and tries to exploit

the template represented in Figure 4.2. The detection of the template

takes place on the qubit line in the middle. Once the template has

been detected, the function checks if the distribution of CX gates is

uninterrupted by single-qubit gates; if not, the template cannot be

applied, so no operation is performed. Otherwise, it implements the

long-range CX on the right qubits.

• CXParallel function: This function scans each qubit line in the

circuit backwards, starting from the circuit’s end, and tries to exploit

the template represented in Figure 4.3. The detection of the template

takes place on the qubit line in the middle. Once the template has been

detected, the function checks if the cluster of CX gates is uninterrupted

by single-qubit gates; if not, the template cannot be applied, so no

operation is performed. Otherwise, it checks the gates adjacent to

the template and transforms the latter in the form which can yield

a possible null operation. If no null operation can be achieved, it

automatically chooses the first form in Figure 4.3 (a CX followed by a

long-range CX).

121

4 – Overview of the Toolchain’s Step 3

• CXMirror1 function: This function scans each qubit line in the

circuit backwards, starting from the circuit’s end, and tries to exploit

the template represented in Figure 4.4. The detection of the template

takes place on the qubit line in the middle for the two short-range CXs,

and is completed by checking if they are adjacent to a long-range CX.

Once the template has been detected, the function checks if the cluster

of CX gates is uninterrupted by single-qubit gates; if not, the template

cannot be applied, so no operation is performed.

• CXMirror2 function: This function works exactly like the CXMirror1

function, but implements instead the template represented in Figure 4.5.

122

4 – Overview of the Toolchain’s Step 3

4.1.6 step3 cxtranslate library

CX TRANSLATE - NMR CASE

• CXtoCZ function: This function scans each qubit line in the circuit

backwards, starting from the circuit’s end, identifies all CX gates and

then translates them into CZs using the template reported in Figure

4.6. Since CX gates do not benefit from the symmetry property of CZs,

the translation in this case is straightforward. The decomposed form

of the H gates to be used is evaluated for both sides by identifying the

adjacent gates. Each gate is directly inserted in a rotational form with

floating-point notation. Then, when two or more single-qubit gates of

the same type are adjacent, an optimization is performed through the

NullPurge, InitialZ and FinalZ functions. Once the purge or the

combination is applied, the scan on the qubit line resumes from the

last gate before the gates that were optimized, and from the end of the

circuit if there are none left.

• = •
H Z H

Figure 4.6: Equivalence when transforming CX gates into CZ gates

• CZHarmonizer function: This function scans each qubit line in the

circuit backwards, starting from the circuit’s end, and tries to exploit

the symmetry of CZ gates, both “old” or newly inserted, to try to

generate null operations between them by making them detectable by

123

4 – Overview of the Toolchain’s Step 3

the NullPurge function. That function, in fact, does not detect

a couple of mirrored CZs as a null operation, exactly as in the CX

gates case. In order to compact the circuit as much as possible, the

CZHarmonizer function detects all adjacent CZ gates which involve

the same two qubits. At this point of the process the only potentially

removable couples of CZs are the mirrored ones, since the others have

already been dealt with previously. Once a mirrored couple is detected,

the function checks if the two gates are perfectly adjacent, with no

single-qubit gates between them. If so, it proceeds to purge them.

• Z

Z •

= • •
Z Z

Figure 4.7: Exploitation of CZ gates’ symmetry to generate a null operation

• NMRCZ function: This function detects all CZ gates in the circuit

and transforms them in the form represented in 1.5 using two RZ gates

and a technology-specific RZZ gate. To evaluate the sign of the J cou-

pling interaction, it reads the NMR Layout parameter from the .cfg

files, and if a mismatch between the signs in the list of lists is detected

an error is displayed to signal it and no other operations are performed.

If the decomposition happens, the function also tries an optimization

using the NullPurge and InitialZ functions. The FinalZ function

is not called because the structure used in the decomposition does not

insert any new RZ gate towards the end of the circuit.

124

4 – Overview of the Toolchain’s Step 3

CX TRANSLATE - TRAPPED IONS CASE

• IonTranslator Reverse function: This function is called only when

the Iontran parameter is set to “true”. When this happens, it

performs the same translation of the IonTranslator function, but

in the opposite verse. The function scans the circuit and translates

each generic rotation R(θ,φ) gate in an equivalent RX and RY gate.

This is done to ensure that when applying the Special Template +

Eulercombo section in the workflow all gates are not in the generic

rotation form, since the functions involved do not support it. This is due

to the fact that a generic rotation form makes optimizations harder to

perform. Once the section is executed, the IonTranslator function is

eventually called once again to ensure the circuit gates are in the desired

form.

• IonCX function: This function detects all CX gates in the circuit and

transforms them in the form represented in 1.7 using two RX gates,

two RY gates and a technology-specific RXX gate (which must have

a rotation parameter equal to π
2

in order to implement the desired π
4

manipulation using OpenQASM’s RXX gates [?]). To evaluate the sign

of the χ interaction, it reads the Ion Layout parameter from the .cfg

files, and if a mismatch between the signs in the list of lists is detected

an error is displayed to signal it and no other operations are performed.

As Figure [?] shows, the involved gates also depend from an arbitrary

parameter v, which can be equal to ∓1. To evaluate the most convenient

parameter to use, the function checks the gates adjacent to the CX, and

chooses a v parameter which ensures the lowest rotation parameters in

the potentially combined gates in order to reduce overall circuit latency.

To do so it first checks for the best case scenarios, the ones in which

two gates can be combined (both gates on the right or a gate on the

125

4 – Overview of the Toolchain’s Step 3

right and a gate on the left). In the regular scenarios in which only one

gate can be combined, the function prioritizes an efficient combination

of the RY gates, starting from the one on the right. If no of the newly-

inserted gates can be combined with other adjacent gates, the function

automatically set a v parameter equal to “1”. Then, if the decomposition

happens, the function also tries an optimization using the NullPurge

function.

CX TRANSLATE - SPECIAL FUNCTIONS

• SpecialNullPurge function: This function act as an ad-hoc version

of the NullPurge function described in Section 2.2.3 to combine all

adjacent RXX and RZZ gates. The mechanism is almost the same:

this function scans each qubit line in the circuit backwards, starting

from the circuit’s end, checking each couple of adjacent RZZ and RXX

gates. It then detects if the gates are acting on the same two qubits and

checks if they are perfectly adjacent, with no single-qubit gate between

them. If so, they can be combined in a manner which is similar to the

Pauli gates case of the original NullPurge. If the resulting rotation

parameter is lower or equal to the Threshold 2 parameter read from

the .cfg files, the combined gate is considered as a null operation and

thus purged. Once the purge or the combination is applied, the scan

on the qubit line resumes from the last gate before the gates that were

optimized, and from the end of the circuit if there are none left. This

function is employed in the SpecialTempl1 and SpecialTempl2

functions, which are the only and last attempt to obtain further

combinations between RXX and RZZ gates once the decomposition is

enacted.

126

4 – Overview of the Toolchain’s Step 3

• SpecialTemplate1 function: This function act as an ad-hoc version

of the Templ1 function described in Section 2.2.5 to exploit the

commutation of RZZ gates with RZ gates. This function scans each

qubit line in the circuit backwards, starting from the circuit’s end, and

tries to exploit the templates represented in Figure 4.8, in one verse or

another. The function tries to “swap” the gates in order to obtain one

or multiple combinations between gates of the same type. If no null

operation can be achieved, it tries to move each RZ-type gate towards

the beginning or the end of the circuit if it is not a subcircuit and then

attempt an optimization through the call of InitialZ and FinalZ

functions. Each time that a swap is required, it makes sure that the

logical functionality of the circuit is maintained when applying the

template. The template is exploited on both the qubit lines involved.

RZZ
RZ(θ) = RZ(θ)

RZZ

RZZ
RZ(θ)

=
RZZ

RZ(θ)

Figure 4.8: RZZ gate commutation properties with RZ gate

127

4 – Overview of the Toolchain’s Step 3

• SpecialTemplate2 function: This function act as an ad-hoc version

of the Templ2 function described in Section 2.2.5 to exploit the com-

mutation of RXX gates with RX gates. This function scans each qubit

line in the circuit backwards, starting from the circuit’s end, and tries to

exploit the templates represented in Figure 4.9, in one verse or another.

The function tries to “swap” the gates in order to obtain one or multiple

combinations between gates of the same type. Each time that a swap

is required, it makes sure that the logical functionality of the circuit is

maintained when applying the template. The template is exploited on

both the qubit lines involved.

RXX
RX(θ) = RX(θ)

RXX

RXX
RX(θ)

=
RXX

RX(θ)

Figure 4.9: RXX gate commutation properties with RX gate

128

Chapter 5

Benchmarks

In order to ensure the correctness and efficiency of the Toolchain’s optimization,

several tests and benchmarks have been progressively performed during its develop-

ment. The aim of this chapter is to provide a full explanation about the procedures

and the tools used to test the generated optimized circuits and to verify that the

identities were satisfied. In the first Section, an overview of the procedures used

to set the benchmarks is provided, along with a brief description of the two state-

of-the-art transpilers that were chosen as reference, IBM’s Qiskit and Cambridge

Quantum Computing’s T-KET. The sections that follow are dedicated to the tests

performed on each of the Toolchain’s steps, and they present an explanation of the

benchmarking methods, along with a brief analysis of the obtained results. The

final section is dedicated to Step 3, the last segment of the Toolchain, whose results

correspond to the Toolchain’s final results. Each section also reports the results

obtained by testing quantum circuits of different scale in the form of comparative

histograms.

129

5 – Benchmarks

5.1 General benchmarking procedures

Generally speaking, in multiple occasions during the development of the Toolchain

a quick, reliable way to generate simple quantum circuits and to test circuit iden-

tities was needed. To perform this kind of trivial yet useful tasks, both IBM’s

Quantum Experience Composer [48] and Strilanc’s Quirk Simulator [58]

were used. They are both quantum circuit simulators that allow an user-friendly

generation of custom circuits in the form of toolboxes or, in the case of Quantum

Experience, also in the form of an OpenQASM-defined circuit. These two tools were

used extensively throughout the development, and their role must not be neglected.

To test the circuits generated by the Toolchain’s steps, some benchmark scripts

were created in Python language. The first aim of these script was to verify that

the introduced optimizations were actually correct, and that each circuit’s logic out-

come was the same as the reference, untouched quantum circuit. To do so both the

.qasm file describing the reference quantum circuit and the .qasm files generated

by the Toolchain were used in conjunction with IBM’s Qiskit to create quantum

circuits based on them in it and then simulate them using the Aer Libraries’ Sim-

ulator. initially, an approach in which Qiskit’s Unitary Simulator was used to

evaluate each circuit’s overall unitary matrix was employed.

This first approach revolved around generating the matrices and then evaluating

the product between the first matrix and the conjugate transpose of the second

matrix. The product between the first matrix and the transposed conjugate of the

second one must be the identity matrix In.

R = M’†M = In

For this reason, the grade of correctness of the optimized version was evaluated as

the “maximum deviation” between the resulting matrix and the identity matrix,

calculated as the greatest difference between the squared magnitude of the el-

ements in diagonal of the resulting matrix and “1”, which is the value of all

130

5 – Benchmarks

elements on the main diagonal of the identity matrix.

Max Deviation = max(1 − |R[ii]|2)

If this “maximum deviation” was low enough (initially lower than 10−3), the

optimization was marked as “correct”. This approach was later abandoned because

calculating each matrix required a huge amount of computational resources and was

thus painstakingly slow. When dealing with large-sized circuits in particular the

computational load was too much to handle, and Qiskit usually crashed, thus mak-

ing this approach unfeasible.

The second approach, which became the one used to test all generated circuits,

involved the usage of Qiskit’s QASM Simulator. By using this simulator’s stan-

dard settings (such as 1024 shots and others) and the aer.QasmSimulator backend

and by ensuring that every qubit line in each tested circuit had a measurement per-

formed at the end, it was possible to simulate the circuit’s outcome and to visualize

it in form of an histogram representing the simulated output states with their

associated probabilities. In case of circuits in which a single output state was

expected with a probability of 100%, the relative optimized circuit was deemed as

“correct” if the output matched completely with a probability of also 100%, as repre-

sented in Figure 5.1. In case of circuits in which multiple output states with different

probabilities were expected, the obtained results were compared and the optimiza-

tion was marked as “correct” only if the difference between each state probability

did not exceed 5% of the related reference’s probability, as represented in Figure

5.2. A threshold of 5 % was chosen because in these cases randomness and num-

ber of executed shots can significantly impact the results (so it is generally unlikely

to have very small differences in probabilities’ percentages), but a good grade of

fidelity is still required. The generated graphs representing the output states and

output states’ probabilities of both the original reference and its optimized version

were checked and validated for each tested circuit, but are not reported in this thesis.

131

5 – Benchmarks

Figure 5.1: Example of an acceptable output probability of the optimized circuit
compared to the reference circuit’s one. In circuits that produces a single outcome
state, the state and probabilities must totally match to be considered acceptable

Figure 5.2: Example of an acceptable output probability of the optimized circuit
compared to the reference circuit’s one. In circuits that produces multiple outcome
states, the state and probabilities are considered acceptable if they are very similar
(no differences greater than 5%)

Once the optimized circuits were verified as “correct”, the scripts’ aim became to

calculate its relevant parameters and to compare them with the ones generated by

the other state-of-the-art compilers.

The selected parameters were:

132

5 – Benchmarks

• The total number of single-qubit gates.

• The total number of non-RZ/U1 single-qubit gates (which are the de

facto relevant single-qubit gates latency-wise when RZ gates are implemented

virtually).

• The total number of two-qubit gates.

• The approximated circuit latency weighted for single-qubit gates.

More information about the criteria used to evaluate these parameters in each step’s

test are reported at the beginning of the related section.

5.1.1 Tested circuits

Several custom quantum circuits were made to evaluate the correct application of

templates and identites in the developed libraries, but none of them were used

to evaluate the Toolchain’s performance. Instead, it was preferred to use general,

different-sized quantum circuits that were made available on GitHub. These circuit

were taken from existing repositories: in particular, form a repository of an exist-

ing QASM Benchmark Suite, QASMBench [59], [60], and a repository of testing

circuits belonging to Prof. Dr. R. Wille’s IIC Group from the Johannes Ke-

pler University of Linz [61], [62]. The set of circuits chosen for the benchmark

was composed with the idea of involving small to large-scaled circuits. Only the

latest version of each chosen circuit in the repositories was taken in consideration.

The circuits were mostly left untouched: the only actions that were performed on

them was adding a measurement on each involved qubit line at the end and, in a

few circuits taken form QASMBench’s repository, to manually decompose custom-

defined gates (which the Toolchain at the moment does not support). The circuits

used in the benchmarks have a quantum register size that spans from 3 qubits to 18

qubits.

133

5 – Benchmarks

The main quantum circuits used in the benchmarks were:

Circuit name Number of qubits Number of gates
Linearsolver 3 43
Adder small 4 27

Phaseest (formerly pea) 5 108
Adder medium 10 174

Alu-bdd 288 16 104
Rd84 253 16 17062

Sym10 262 16 61269
Urf5 280 16 80331

Adder large 18 346

All circuits optimized by the Toolchain were generated by setting an approxima-

tion of π and its dividends at 10−10 and a threshold of rotation parameters

for a gate to be considered a null operations at 10−12 in the configuration

(.cfg) files.

5.1.2 Comparing the Toolchain to the state-of-the-art

The Toolchain’s performance was validated by comparing it to two of the state-of-

the-art most successful compilers.

The first chosen compiler is Qiskit Transpiler. Qiskit is an open-source framework

for quantum computing developed by IBM Research, and is fully implemented in

Python language. What was specifically used to generate comparison circuits was

the Qiskit Terra Transpiler, which allows an optimized transpiling of quantum

circuits described in Open QASM using a user-defined set of gates. It also allows

multiple optimization levels (none, 1, 2, 3, with an higher levels that correspond to

a finer optimization. Qiskit was an obvious choice for these benchmarks. This com-

piler has been widely used in the quantum research community for years, and IBM’s

policy of open-sourcing it and of making available tools like Quantum Experience for

free made it one one of the most employed quantum compilers, especially when deal-

ing with Superconducting devices, which are IBM’s flagship quantum technology.

Also, the whole Toolchain is based on IBM’s OpenQASM language and the

134

5 – Benchmarks

benchmarks were realized using exactly Qiskit, so involving IBM’s core quantum

framework was deemed as a must. To provide multiple comparisons with differ-

ent grades of optimization, each circuit was transpiled both with an optimization

grade of “1” and a finer optimization grade of “3”. The benchmarks were per-

formed using Qiskit version 0.27, with Qiskit Aer Libraries version 0.8.2 and

Qiskit Terra Libraries version 0.17.4 (the latest releases at the time of writing).

The second chosen compiler is T-KET, a closed-source architecture-agnostic quan-

tum software developed by Cambridge Quantum Computing, implemented in

C ++ language. This compiler allows to transpile machine-independent quantum

algorithms into optimized quantum circuits, and it supports multiple intermediate

languages (including OpenQASM). It also allows two optimization levels, standard

and maximum. Because of it being closed-source, to access it and interfacing it

with Qiskit an ad-hoc module called pytket-qiskit implemented in Python lan-

guage was employed. T-KET was chosen because in the past few years it proved

to be a particularly efficient compiler in the state-of-the-art, outperforming most

competitors in several published benchmarks. T-KET is particularly renowned for

its capability to smartly adapt a circuit to a given target device and to manage

multi-qubit gates.

Once again, choosing T-KET in the comparisons was a key choice to determine the

Toolchain’s competitiveness in the state-of-the-art. The pytket module was used

to interface with Qiskit in order to generate a quantum circuit in it starting from

T-KET’s optimized output for benchmarking purposes, as done for the Toolchain’s

generated circuits. In order to provide multiple comparisons with different grades

of optimization, each circuit was transpiled both with the standard optimization

grade and the maximum optimization grade. The benchmarks were performed

using pytket-qiskit version 0.15.1.

The general trend noted in the benchmarks is that Qiskit features a ver-

satile management of single-qubit gates, being able to optimize them well using

the gates basis of multiple target technologies. T-KET, on the other hand, proved

to be more unpredictable when dealing with single-qubit gates, because it alter-

nates very good optimizations to completely suboptimal handles. At the same time,

135

5 – Benchmarks

T-KET proved to be the best in the reduction of two-qubit gates, as it was able

to reduce their number substantially by accepting some tradeoffs on the single-qubit

gates’ number.

136

5 – Benchmarks

5.2 Step 1 intermediate benchmarks

Since Step 1 is the Toolchain’s step in which the main bulk of template-based op-

timizations is performed, its benchmarks were the ones in which most circuits were

tested to ensure of the correcteness of each optimization. To maintain the step’s

philosophy of technology-agnosticism, all qubits were considered as ideal and all

architectures as fully-connected, with no specific backend device. The initial ba-

sis of quantum gates used in Qiskit were two: the first using X, Y, Z, S, T,

S†, T †, RX, RY , RZ, CX, CZ and undecomposed H gates and the second

X, Y, Z, S, T, S†, T †, RX, RY , RZ, CX and CZ gates. This solution was

employed because, if this Clifford + T expanded gate set with decomposed H gates

was used, Qiskit sometimes showed some anomalies in the compilation and used

a non-smart optimization for single-qubit gates. When comparing those transpiled

circuits with the others, only the best implementations among these two cases

were considered. In the case of non-decomposed H gates, the effective count of gates

was calculated by using H gates’ efficient decomposition represented in Figure 2.19.

The initial basis of quantum gates used in T-KET was the ProjectQ one,

which involved the same gates of Qiskit’s first used gate basis plus SWAP, CRZ

and V gates. A first batch of benchmarks was performed using these gate basis.

To determine the final comparison, it was decided to “equalize” the circuits gener-

ated by the state-of-the-art’s compilers to the ones generated by the Toolchain, so a

common gate basis using only RX, RY , RZ, CX and CZ gates was employed

for both compilers.

To evaluate the single-qubit gates’ overall weighted latency, it was decided that each

non-RZ gate with a rotation parameter of θ would introduce a latency equal to

2 |θ|
π

. Hence, gates with a rotation of ∓π introduce a weighted latency equal to “2”

and gates with a rotation of ∓π
2

introduce a weighted latency equal to “1”. The cal-

culated latencies were approximated at two decimals. RZ gates were not considered

because a virtual “instantaneous” implementation is assumed.

137

5 – Benchmarks

Quantum circuits - First used gate basis

Figure 5.3: General benchmarks of Step 1 using the first proposed gate basis

138

5 – Benchmarks

Small-sized quantum circuits

Figure 5.4: Benchmarks of gates number in small-sized circuits in Step 1 using the
equalized gate basis

Figure 5.5: Benchmarks of latency in small-sized circuits in Step 1 using the equal-
ized gate basis

139

5 – Benchmarks

Medium-sized quantum circuits

Figure 5.6: Benchmarks of gates number in medium-sized circuits in Step 1 using
the equalized gate basis

Figure 5.7: Benchmarks of latency in medium-sized circuits in Step 1 using the
equalized gate basis

140

5 – Benchmarks

Large-sized quantum circuits

Figure 5.8: Benchmarks of gates number in large-sized circuits in Step 1 using the
equalized gate basis

Figure 5.9: Benchmarks of latency in large-sized circuits in Step 1 using the equalized
gate basis

141

5 – Benchmarks

5.2.1 Intermediate results analysis

The obtained results show that Step 1 fares consistently well when optimizing

single-qubit gates, competing in almost every scenario with T-KET’s optimiza-

tion (and in some cases even surpassing it in non-RZ gates usage) and outperforming

Qiskit all over the chart in this branch; this results in an overall better weighted

latency of single-qubit gates in the circuit. At the same time, it is clear how the

introduced two-qubit gates optimizations are minimal. This was expected be-

cause, as reported in Chapter 4, the main source of optimizations in the Toolchain

is Step 3, while Step 1 templates’ purging capabilities on CX gates are pretty weak.

For what concerns Qiskit, when comparing the results obtained with the first dual

gate basis and the RX , RY , RZ only basis, it can be observed how the number of

employed single-qubit gates is lower in the second case, but the number of employed

non-RZ single-qubit gates is quite higher, even doubled in some circuits. This prob-

ably means that Qiskit does not use the efficient decomposition of H gates, but the

classical decomposition using RX and RY gates instead.

The compilation time of Step 1 was really short when compared to the other com-

pilers. This was expected as well, because of the step’s lack of more complex opti-

mizations, involving Euler transformations and two-qubit gates.

142

5 – Benchmarks

5.3 Step 2 intermediate benchmarks

In order to test Step 2, only circuits previously optimized by Step 1 were used.

During the tests, all qubits were considered once again as ideal and all architectures

as fully-connected, with no specific backend device. The gate basis used in each

technology implementation for all compilers were the technology’s legal set of

gates, with the only exception of the NMR technology in which CX are still

treated as “legal” because they are decomposed in Step 3, as explained in Chapter 3

and Chapter 4:

• NMR Technology: RX, RY , RZ, CX and CZ gates

• Trapped Ions Technology: RX, RY , RZ and CX gates

• Superconducting Technology: U1, U2, U3 and CX gates

Since the set of tested quantum circuits did not actually employ any CZ gate in it,

the handler functions managing the efficient translation of CZ gates into CX gates

were tested with some custom circuits. The correct usage of the functions’ mech-

anism was ensured. Moreover, in order to test the optimization capabilities of the

Eulercombo functions described in Section 3.1.5, a randomized custom circuit

featuring a single qubit line with 10000 random single-qubit gates, each one of dif-

ferent type with respect to tits adjacent gates, was employed. The random circuit

was tested multiple times, each time with a different randomizer seed.

To evaluate the single-qubit gates’ overall weighted latency, in the NMR and

Trapped Ions technology cases it was decided that each non-RZ gate with

a rotation parameter of θ would introduce a latency equal to 2 |θ|
π

. Hence, gates

with a rotation of ∓π introduce a weighted latency equal to “2” and gates with a

rotation of ∓π
2

introduce a weighted latency equal to “1”. The latencies were ap-

proximated at two decimals. In the Superconducting technology case, a more

straightforward approach was used instead, and the weighted latency was calculated

by assuming that each U2 gate introduces a latency equal to “1” and that each

U3 gate introduces a latency equal to “2”. This criteria was used to emphasize

the fact that an implementation using a U3 gate last twice the time of an imple-

mentation using a U2 gate. RZ and U1 gates were not considered because a virtual

instantaneous implementation is assumed.

143

5 – Benchmarks

Randomized circuits test

Figure 5.10: Benchmarks of Eulercombo functions with a randomized circuit 10000
gates long

144

5 – Benchmarks

Small-sized quantum circuits - NMR

Figure 5.11: Benchmarks of gates number in small-sized circuits in Step 2 using
NMR technology

Figure 5.12: Benchmarks of latency in small-sized circuits in Step 2 using NMR
technology

145

5 – Benchmarks

Medium-sized quantum circuits - NMR

Figure 5.13: Benchmarks of gates number in medium-sized circuits in Step 2 using
NMR technology

Figure 5.14: Benchmarks of latency in medium-sized circuits in Step 2 using NMR
technology

146

5 – Benchmarks

Large-sized quantum circuits - NMR

Figure 5.15: Benchmarks of gates number in large-sized circuits in Step 2 using
NMR technology

Figure 5.16: Benchmarks of latency in large-sized circuits in Step 2 using NMR
technology

147

5 – Benchmarks

Small-sized quantum circuits - Trapped Ions

Figure 5.17: Benchmarks of gates number in small-sized circuits in Step 2 using
Trapped Ions technology

Figure 5.18: Benchmarks of latency in small-sized circuits in Step 2 using Trapped
Ions technology

148

5 – Benchmarks

Medium-sized quantum circuits - Trapped Ions

Figure 5.19: Benchmarks of gates number in medium-sized circuits in Step 2 using
Trapped Ions technology

Figure 5.20: Benchmarks of latency in medium-sized circuits in Step 2 using Trapped
Ions technology

149

5 – Benchmarks

Large-sized quantum circuits - Trapped Ions

Figure 5.21: Benchmarks of gates number in large-sized circuits in Step 2 using
Trapped Ions technology

Figure 5.22: Benchmarks of latency in large-sized circuits in Step 2 using Trapped
Ions technology

150

5 – Benchmarks

Small-sized quantum circuits - Superconducting

Figure 5.23: Benchmarks of gates number in small-sized circuits in Step 2 using
Superconducting technology

Figure 5.24: Benchmarks of latency in small-sized circuits in Step 2 using Super-
conducting technology

151

5 – Benchmarks

Medium-sized quantum circuits - Superconducting

Figure 5.25: Benchmarks of gates number in medium-sized circuits in Step 2 using
Superconducting technology

Figure 5.26: Benchmarks of latency in medium-sized circuits in Step 2 using Super-
conducting technology

152

5 – Benchmarks

Large-sized quantum circuits - Superconducting

Figure 5.27: Benchmarks of gates number in large-sized circuits in Step 2 using
Superconducting technology

Figure 5.28: Benchmarks of latency in large-sized circuits in Step 2 using Supercon-
ducting technology

153

5 – Benchmarks

5.3.1 Intermediate results analysis

The results obtained in Step 2 were somewhat disappointing. In the NMR and

Trapped Ions technologies case, Step 2 yields basically no improvements

when compared to Step 1. While it is true that Step 1 is undoubtedly the

step whose functions introduce the heaviest optimizations, it was estimated that a

versatile tool such as the Eulercombo would mostly consolidate the results achieved

in Step 1, and in some cases improve them even further. The tests of the Eulercombo

on the randomized circuits were successful, and in every case achieved a drastic

circuit compaction, by collapsing the streak of 10000 subsequent gates into a single

triplet. This matched or outperformed the single-qubit streak management of the

other two compilers. However, what Step 2 basically does in these two technologies

is translating the circuit with negligible improvements. This is probably due to

the fact that the Eulercombo optimization, albeit strong, is very situational: in

simple circuits and in more sophisticated circuits using large numbers of two-qubit

gates, the probability of having long streaks of single-qubit gates to be compacted is

quite unlikely. For this reason, it was deemed as redundant to show the histograms

regarding weighted latency in NMR and Trapped Ions technologies, since

they are basically identical to the graphs represented in Section 5.2.

On the other hand, Step 2 performed really well when using the Superconducting

technology, showing how the optimized merging scheme proposed in [55] is actually

very efficient. This is proved by the fact that Step 2 was able to outperform Qiskit

at “its own game” when using IBM’s gate set. It must also be noted that, on

the other hand, T-KET’s optimization using this gate set proved not that great,

because it tends to completely neglect the use of U1 and U2 gates when possible

and resorts instead to a “brute force” translation into a large number of U3 gates

that hampers the overall circuit latency. However, T-KET also features a two-

qubit gates optimization which outperform even Qiskit.

The compilation time of Step 2 was non negligible in the case of large-sized circuits.

This is mostly due to the fact that when using very precise approximations of π it

is very easy when using the Eulercombo to incur into Gimbal Locks, which slow

drastically the compilation.

154

5 – Benchmarks

5.4 Step 3 final benchmarks

In order to test Step 3, only circuits previously optimized by Step 2 were used. Dur-

ing the tests, all qubits were considered once again as ideal and all architectures as

fully-connected, with no specific backend device. However, this time, as explained

in Chapter 4, the decomposition of two-qubit gates depended on the sign of

interactions between certain qubits. Since having mixed sets of interaction signs was

deemed as unnecessary for the purpose of evaluating the Toolchain’s performance,

these signs were “equalized” and the same decomposition was applied in each of the

tested compilers. In other words, all the interaction signs in the .cfg files were set as

“1” (except for the ones referring to the interaction of a qubit with itself of course,

which were still equal to “0”). The technology’s legal set of gates was adopted

as gate basis, with the UJ gate of the NMR technology translated using the

OpenQASM-supported RZZ gate:

• NMR Technology: RX, RY , RZ and RZZ gates

• Trapped Ions Technology: RX, RY , RZ and RXX gates

• Superconducting Technology: U1, U2, U3 and CX gates

In T-KET, the decompositions were allowed when generating the optimized cir-

cuit were set as the same one used by the Toolchain and represented in Figure 1.5,

1.7. In Qiskit, since Qiskit Terra does not support circuit decomposition using

only RZZ gates as multi-qubit gates, a decomposition in CZ gates was applied

instead, and in the gate count each CZ was counted as a RZZ gate and two RZ

gates. This was a good approximation, since inserted RZ gates do not influence the

overall latency of single-qubit gates anyway.

To evaluate the single-qubit gates’ overall weighted latency, in the NMR and

Trapped Ions technology cases it was decided that each non-RZ gate with

a rotation parameter of θ would introduce a latency equal to 2 |θ|
π

. Hence, gates

with a rotation of π introduce a weighted latency equal to “2” and gates with a

rotation of π
2

introduce a weighted latency equal to “1”. The calculated latencies

were approximated at two decimals. In the Superconducting technology case,

a more straightforward approach was used instead, and the weighted latency was

155

5 – Benchmarks

calculated by assuming that each U2 gate introduces a latency equal to “1” and

that each U3 gate introduces a latency equal to “2”. This criteria was used to

emphasize the fact that an implementation using a U3 gate last twice the time of

an implementation using a U2 gate. RZ and U1 gates were not considered because

a virtual instantaneous implementation is assumed.

156

5 – Benchmarks

Small-sized quantum circuits - NMR

Figure 5.29: Final benchmarks of gates number in small-sized circuits in Step 3
using NMR technology

Figure 5.30: Final benchmarks of latency in small-sized circuits in Step 3 using
NMR technology

157

5 – Benchmarks

Medium-sized quantum circuits - NMR

Figure 5.31: Final benchmarks of gates number in medium-sized circuits in Step 3
using NMR technology

Figure 5.32: Final benchmarks of latency in medium-sized circuits in Step 3 using
NMR technology

158

5 – Benchmarks

Large-sized quantum circuits - NMR

Figure 5.33: Final benchmarks of gates number in large-sized circuits in Step 3 using
NMR technology

Figure 5.34: Final benchmarks of latency in large-sized circuits in Step 3 using NMR
technology

159

5 – Benchmarks

Small-sized quantum circuits - Trapped Ions

Figure 5.35: Final benchmarks of gates number in small-sized circuits in Step 3
using Trapped Ions technology

Figure 5.36: Final benchmarks of latency in small-sized circuits in Step 3 using
Trapped Ions technology

160

5 – Benchmarks

Medium-sized quantum circuits - Trapped Ions

Figure 5.37: Final benchmarks of gates number in medium-sized circuits in Step 3
using Trapped Ions technology

Figure 5.38: Final benchmarks of latency in medium-sized circuits in Step 3 using
Trapped Ions technology

161

5 – Benchmarks

Large-sized quantum circuits - Trapped Ions

Figure 5.39: Final benchmarks of gates number in large-sized circuits in Step 3 using
Trapped Ions technology

Figure 5.40: Final benchmarks of latency in large-sized circuits in Step 3 using
Trapped Ions technology

162

5 – Benchmarks

Small-sized quantum circuits - Superconducting

Figure 5.41: Final benchmarks of gates number in small-sized circuits in Step 3
using Superconducting technology

Figure 5.42: Final benchmarks of latency in small-sized circuits in Step 3 using
Superconducting technology

163

5 – Benchmarks

Medium-sized quantum circuits - Superconducting

Figure 5.43: Final benchmarks of gates number in medium-sized circuits in Step 3
using Superconducting technology

Figure 5.44: Final benchmarks of latency in medium-sized circuits in Step 3 using
Superconducting technology

164

5 – Benchmarks

Large-sized quantum circuits - Superconducting

Figure 5.45: Final benchmarks of gates number in large-sized circuits in Step 3 using
Superconducting technology

Figure 5.46: Final benchmarks of latency in large-sized circuits in Step 3 using
Superconducting technology

165

5 – Benchmarks

5.4.1 Final results analysis

Generally speaking, the final results obtained were promising and surprising in

several ways. The most unexpected thing was that the Step 3 proved capable of

handling two-qubit gates quite well, introducing optimizations capable of out-

performing Qiskit and, most importantly, of competing with T-KET in most

situations, the very T-KET whose strong point is actually the capability of reduc-

ing the number of multi-qubit gates involved in the circuit. This went against the

expectation of the template-based approach being unsuited to tackle efficiently the

management of clusters of CX gates, as the templates that involve them are not

numerous and as other methods, such as the heuristic-based ones, seem theoreti-

cally more prone to detect advantageous circuit restructurations. As expected, the

number of single-qubit gates drammatically increases in some cases, since each

decomposition of two-qubit gates introduces several single-qubit gates in the circuit

and can bring to a lot of new inserted gates in large-sized circuits. The insertion of

the new single-qubit gates also makes the Eulercombo optimization more useful, as

it makes long streaks of adjacent single-qubit less rare.

The specific results obtained for each technology are:

• NMR technology: Of all the supported technologies, the generated cir-

cuits with the NMR as target technology proved to be the ones in which the

Toolchain’s optimization is least competitive. When compared to Qiskit,

the Toolchain performs really well, introducing a significant reduction on both

single-qubit and two-qubit gates. On the other hand, T-KET com-

pletely outperforms the other compilers, and by far. While its opti-

mizations regarding two-qubit gates prove once again to be the best ones,

they are generally not that different from the ones the Toolchain is capable

of implementing. When managing single-qubit gates, though, T-KET’s op-

timization is unrivaled and boasts a reduction of gates and a readaptation of

non-RZ gates into RZ gates so strong that both Qiskit and the Toolchain do

not come even close to competing with it. While the Toolchain performance

with this technology is still good, the benchmarks (Figure from 5.29 to 5.34)

showed that in no way the NMR technology would perform better on the

currently-implemented Toolchain than on other state-of-the-art compilers. It

166

5 – Benchmarks

has to be noted that the NMR technology was considered as fully-connected,

but that it might not always be. As higlighted in Section 1.3.2, in some cases

the J coupling between two qubits might be too weak to allow an actual two-

qubit gate interaction. This issue was not taken in consideration, but it could

easily be resolved by adding new handling cases based on the NMR Layout

parameter.

• Trapped Ions technology: The benchmarks (Figure from 5.35 to 5.40)

showed that the Trapped Ions technology is the one managed most success-

fully in the Toolchain. Along with excellent improvements on the number of

two-qubit gates in the circuit, the Toolchain achieves a consistent reduction

of the number of single-qubit gates and significantly outperforms both the

other compilers in terms of overall single-qubit gates, non-RZ single-qubit

gates and weighted latency. When using this target technology, Qiskit is

capable of holding its ground quite well, while the same cannot be said for

T-KET, which features a lackluster implementation: even if it manages as

well as always two-qubit gates, it is, in fact, incapable of severely reducing

single-qubit gates, and it also employs non-RZ gates with rotation parame-

ters such that the overall weighted latency results very high. This results in

both a generated circuit gate count and overall latency ensured by the

Toolchain which is far superior with respect to the other compilers’ work.

• Superconducting technology: The Toolchain performs really well when

using this target technology. In Step 3, all of Step 2’s significant improvements

are consolidated with the attainment of a good reduction of two-qubit gates

in the circuit. In this technology, as seen in Step 2, T-KET is able to achieve

a reduction of two-qubit gates all cross the chart while at the same time

managing in a suboptimal way the single-qubit U gates; Qiskit handles instead

IBM’s gate set really well in terms of single-qubit gates number, but it is

not capable of competing with T-KET in CX optimization. After Step 3,

the Toolchain takes the best of both worlds, outperforming Qiskit in the

management of U gates and nearly matching T-KET in CX optimizations. The

benchmarks (Figure from 5.41 to 5.46) show that latency-wise the Toolchain

167

5 – Benchmarks

basically matches Qiskit’s optimization, but by using less gates. Generally-

speaking, the advantages over the other compilers’ results are not very strong,

but are still significant. However, it has to be noted that, in this specific

technology, the critical layout mapping phase was not taken in consideration,

and that the smart management of SWAP gates to adapt circuits to target

devices is one of Qiskit’s and T-KET’s strong point: perhaps, with such feature

implemented the Toolchain would prove less ideal than Qiskit, T-KET or both.

In the Superconducting technology case, the compilation time of Step 3 was non

negligible in the case of large-sized circuits, but not long. Combining the running

times of all the steps, the Toolchain takes longer than both Qiskit and T-KET, but

in small to average circuits this difference is negligible and is still acceptable in large

circuits. In the NMR and Trapped Ions technologies cases, the compilation time

of Step 3 was generally speaking significant and absolutely crippling when dealing

with large-sized circuits. This is probably due to the employment of the second

Eulercombo mechanism in a circuit whose number of gates drammatically increased

after the decomposition of CX and CZ gates: what would be a long but acceptable

compilation, once very large circuits are decomposed, snowballs into an hours-long

process.

When considering the overall running time of the Toolchain, it is clear that the

template-based approach can be fast enough for small to average circuits, but that

it is also extremely slower than other heuristic methods when dealing with very large

circuits.

168

Conclusions and future

perspectives

The main goal of this thesis was to create a prototype of a toolchain capable of op-

timally compiling quantum circuits for more target quantum technologies. As main

principle of the Toolchain’s inner workings, it was deemed as interesting to explore

a less conventional template-based approach in the optimization process.

The Toolchain was developed using modular libraries in order to allow expansions

and future support for other features and technologies, and it was divided in steps

to allow the exploiting of specific layers of the optimization process. During and

after development, the Toolchain was tested by using small to large-sized quantum

circuits as inputs and its results, both final and intermediate, were compared to two

of the state-of-the-art most efficient compilers.

The results obtained show that the Toolchain and its core philosophy are actu-

ally competitive in the state-of-the-art, and that the designed optimization process

can introduce some fine-grain technology-dependent optimizations that allow the

Toolchain to outperform its competitors, especially when dealing with single-qubit

gates. It is, in fact, capable of steadily reduce the number of these gate, and to

prioritize an abundant use of advantageous and virtually-implementable RZ gates.

What the Toolchain prototype disappoints in is the overall compilation time, that

in certain technologies becomes an unbearable factor when dealing with very large

circuits. The largest circuits used in the benchmarks are probably too large in scale

for actual quantum computers to be able to handle them and actually use them for

computation, but still, this shows a limit of some of the proposed optimizations, that

are easily prone to trigger very long computations in extreme cases when compared

to other compilers.

As reported multiple times through this thesis, the Toolchain is, however, still a

prototype. Its structure could allow it to support even more quantum technologies,

enhancing its already good versatility.

169

5 – Benchmarks

The most important part currently missing in the Toolchain is the capability of han-

dling the whole Layout Synthesis process for non-fully-connected technologies such

as the Superconducting one. This would require to implement a tool capable of

adapting the compilation to a given device’s layout, and to logically map each qubit

line with a smart insertion of SWAP gates. It is unlikely for the template-based ap-

proach to be competitive in this kind of quantum gates management when compared

to other more “farsighted” approaches, but it could still prove good enough. The way

to implement this device-mapping could easily be inserted in the specific part of the

Toolchain’s Step 3. Multiple ways of implementing the method with which to define

the target device could be devised, from using the existing .cfg files infrastructure,

to other more radical reshapes of the process. Moreover, in order to improve the

compilation other steps could be implemented in the Toolchain. Existing steps may

also be modified in order to accommodate new features and currently-implemented

functions could be moved in the Toolchain to improve its overall process. Last but

not least, some precautions could be taken to specifically reduce compilation time.

Even if this Toolchain and all the potential works inspired from it will not be consid-

ered as worthy to supersede other commonly employed optimization mechanism, or

even if they will eventually become obsolete, the perspective and analysis offered by

this thesis work about the usage of non-heuristic methods tailored on the intrinsic

dynamics of quantum technologies and about the approach of balancing versatility

and technology-specific efficiency in optimization processes, will remain one of the

many steps forward in the direction of the paradigm-changing quantum advantage.

170

Bibliography

[1] Yanofsky, N., Mannucci, M. (2008). Quantum Computing for Computer Scien-

tists. Cambridge: Cambridge University Press. DOI:10.1017/CBO9780511813887

[2] Hidary, J. (2019). Quantum Computing: An Applied Approach. Springer Nature.

DOI:10.1007/978-3-030-23922-0

[3] Simoni Mario. Modelling Molecular Technologies for Nu-

clear Magnetic Resonance Quantum Computing. Consultable at

https://webthesis.biblio.polito.it/14446/, Politecnico di Torino, April 2020

[4] Raggi Lorenzo. Arithmetic circuits for quantum computing: a software library.

Consultable at https://webthesis.biblio.polito.it/15853/, Politecnico di Torino,

October 2020

[5] Eastin Bryan, Flammia Steven T. Q-Circuit Tutorial. Department

of Physics and Astronomy, University of New Mexico. Online at

https://physics.unm.edu/CQuIC/Qcircuit/Qtutorial.pdf

[6] D. P. DiVincenzo et al. The Physical Implementation of Quantum Computation.

arXiv preprint quant-ph/0002077, 2000.

[7] T. S. Humble et al. Quantum Computing Circuits and Devices. arXiv preprint

1804.10648, 2018

[8] G. A. Cirillo, G. Turvani and M. Graziano. A Quantum Computation Model for

Molecular Nanomagnets. in IEEE Transactions on Nanotechnology, vol. 18, pp.

1027-1039, 2019, DOI:10.1109/TNANO.2019.2939910.

[9] T.P. Harty et al. Phys. Rev. Lett.113, 220501 (2014)

DOI:10.1103/PhysRevLett.113.220501

[10] C. D. Bruzewicz et al. Trapped-Ion Quantum Computing: Progress and Chal-

lenges. arXiv preprint 1904.04178, 2019

[11] C. Figgatt. Building and Programming a Universal Ion Trap Quantum Com-

puter. DOI:10.13016/M2K35MH5F, 2018

[12] A. C. Lee et al. Engineering Large Stark Shifts for Control of Individual Clock

State Qubits. arXiv preprint 1604.08840, 2016

[13] A. Sorensen, K. Molmer. Quantum computation with ions in thermal motion.

171

https://doi.org/10.1017/CBO9780511813887
https://doi.org/10.1007/978-3-030-23922-0
https://webthesis.biblio.polito.it/14446/
https://webthesis.biblio.polito.it/15853/
https://physics.unm.edu/CQuIC/Qcircuit/Qtutorial.pdf
https://arxiv.org/abs/quant-ph/0002077
https://arxiv.org/abs/1804.10648
https://doi.org/10.1109/TNANO.2019.2939910
https://doi.org/10.1103/PhysRevLett.113.220501
https://arxiv.org/abs/1904.04178
https://doi.org/10.13016/M2K35MH5F
https://arxiv.org/abs/1604.08840

Bibliography

arXiv preprint quant-ph/9810039, 1999

[14] Arute, F., Arya, K., Babbush, R. et al. Quantum supremacy using a pro-

grammable superconducting processor. Nature 574, 505-510, DOI:10.1038/s41586-

019-1666-5, 2019

[15] H. L. Huang, D. Wu, D. Fan, X. Zhu. Superconducting Quantum Computing:

A Review. arXiv preprint 2006.10433, 2020

[16] J.M. Gambetta. IBM’s Roadmap For Scaling Quantum Technology Online

15/09/2020 at https://www.ibm.com/blogs/research/2020/09/ibm-quantum-

roadmap/

[17] Architecture and Design Automation for Quantum Computing Online at

https://vast.cs.ucla.edu/projects/architecture-and-design-automation-quantum-

computing University of California, Los Angeles

[18] QMBlochSphere.svg by CSTAR Online 20/06/2007 at

https://commons.wikimedia.org/wiki/

[19] S. Bravyi, A. Kitaev. Universal Quantum Computation with ideal Clifford gates

and noisy ancillas. arXiv preprint quant-ph/0403025, 2004

[20] A. Barenco, D.P. DiVincenzo, P. Shor et al. Elementary gates for quantum

computation. arXiv preprint quant-ph/9503016, 1995

[21] D.P. DiVincenzo Two-Bit Gates are Universal for Quantum Computation.

arXiv preprint cond-mat/9407022, 1994

[22] D.C. McKay, C.J. Wood, S. Sheldon, J.M. Chow, J.M. Gambetta. Efficient

Z-Gates for Quantum Computing. arXiv preprint 1612.00858, 2016

[23] G. A. Cirillo, G. Turvani, M. Simoni, M. Graziano. Advances in Molecular

Quantum Computing: from Technological Modeling to Circuit Design. 2020 IEEE

Computer Society Annual Symposium on VLSI (ISVLSI), 2020, pp. 132-137

DOI:10.1109/ISVLSI49217.2020.00033.

[24] E. Lucero. Unveiling our new Quantum AI campus Online 18/05/2021 at

https://blog.google/technology/ai/unveiling-our-new-quantum-ai-campus/

[25] R. Chao, B.W. Reichardt. Fault-tolerant quantum computation with few qubits.

npj Quantum Inf 4, 42 (2018). DOI:10.1038/s41534-018-0085-z

[26] M. Suchara et al. Comparing the Overhead of Topological and Concatenated

Quantum Error Correction. arXiv preprint 1312.2316, 2013

172

https://arxiv.org/abs/quant-ph/9810039
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://arxiv.org/abs/2006.10433
https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
https://vast.cs.ucla.edu/projects/architecture-and-design-automation-quantum-computing
https://vast.cs.ucla.edu/projects/architecture-and-design-automation-quantum-computing
https://commons.wikimedia.org/wiki/
https://arxiv.org/abs/quant-ph/0403025
https://arxiv.org/abs/quant-ph/9503016
https://arxiv.org/abs/cond-mat/9407022
https://arxiv.org/abs/1612.00858
https://doi.org/10.1109/ISVLSI49217.2020.00033
https://blog.google/technology/ai/unveiling-our-new-quantum-ai-campus/
https://doi.org/10.1038/s41534-018-0085-z
https://arxiv.org/abs/1312.2316

Bibliography

[27] L.M.K. Vandersypen, M. Steffen et al. Experimental realization of Shor’s quan-

tum factoring algorithm using nuclear magnetic resonance. arXiv preprint quant-

ph/0112176, 2001

[28] M. Nakahara, T. Ohmi (2008). Quantum Computing: From Linear Algebra to

Physical Realizations. CRC Press. DOI:10.1201/9781420012293

[29] Christensen, J.E., Hucul, D., Campbell, W.C. et al. High-fidelity manipulation

of a qubit enabled by a manufactured nucleus. npj Quantum Inf 6, 35 (2020).

DOI:10.1038/s41534-020-0265-5

[30] From IonQ’s site ”Technology” section, Online at https://ionq.com/technology

[31] From Alpine Quantum Technologies’ site ”Technology” section, Online at

https://www.aqt.eu/technology/

[32] S. Allen, J. Kim, D. L. Moehring and C. R. Monroe. Reconfigurable and Pro-

grammable Ion Trap Quantum Computer. 2017 IEEE International Conference on

Rebooting Computing (ICRC), 2017, pp. 1-3, DOI:10.1109/ICRC.2017.8123665.

[33] T. Monz et al. Realization of a scalable Shor algorithm. arXiv preprint

1507.08852, 2015

[34] D. Maslov. Basic circuit compilation techniques for an ion-trap quantum ma-

chine. arXiv preprint 1603.07678, 2016

[35] V.V. Aristov, A.V. Nikulov. Chain of Superconducting Loops as a Possible

Quantum Register. arXiv preprint cond-mat/0412573, 2004

[36] General U-gates, 1.4.7 section, online at https://qiskit.org/textbook/ch-

states/single-qubit-gates.html by The Jupiter Book Community

[37] B. Tan, J. Cong. Optimality Study of Existing Quantum Computing Layout

Synthesis Tools. arXiv preprint 2002.09783, 2020

[38] T. Wenzel. Quantum Mechanical Description of NMR Spectroscopy. Chemistry

LibreTexts, 2020.

[39] A.W Cross, L.S. Bishop, J.A. Smolin, J.M. Gambetta. Open Quantum Assembly

Language. arXiv preprint 1707.03429, 2017

[40] A.W Cross, L.S. Bishop, J.A. Smolin, J.M. Gambetta et al. OpenQASM 3: A

broader and deeper quantum assembly language. arXiv preprint 2104.14722, 2021

[41] M. Saeedi, I.L. Markov. Synthesis and Optimization of Reversible Circuits - A

Survey. arXiv preprint 1110.2574, 2011

[42] M. Soeken, T. Haner, M. Roetteler. Programming Quantum Computers Using

173

https://arxiv.org/abs/quant-ph/0112176
https://arxiv.org/abs/quant-ph/0112176
https://doi.org/10.1201/9781420012293
https://doi.org/10.1038/s41534-020-0265-5
https://ionq.com/technology
https://www.aqt.eu/technology/
https://doi.org/10.1109/ICRC.2017.8123665
https://arxiv.org/abs/1507.08852
https://arxiv.org/abs/1603.07678
https://arxiv.org/abs/cond-mat/0412573
https://qiskit.org/textbook/ch-states/single-qubit-gates.html
https://qiskit.org/textbook/ch-states/single-qubit-gates.html
https://arxiv.org/abs/2002.09783
https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules_(Analytical_Chemistry)/Analytical_Sciences_Digital_Library/Active_Learning/In_Class_Activities/Nuclear_Magnetic_Resonance_Spectroscopy/03_Text/02_Quantum_Mechanical_Description_of_NMR_Spectroscopy
https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules_(Analytical_Chemistry)/Analytical_Sciences_Digital_Library/Active_Learning/In_Class_Activities/Nuclear_Magnetic_Resonance_Spectroscopy/03_Text/02_Quantum_Mechanical_Description_of_NMR_Spectroscopy
https://arxiv.org/abs/1707.03429
https://arxiv.org/abs/2104.14722
https://arxiv.org/abs/1110.2574

Bibliography

Design Automation. arXiv preprint 1803.01022, 2018

[43] S.E. Venegas-Andraca et al. A cross-disciplinary introduction to quantum

annealing-based algorithms. arXiv preprint 1803.03372, 2018

[44] Y.R. Sanders et al. Compilation of Fault-Tolerant Quantum Heuristics for Com-

binatorial Optimization. arXiv preprint 2007.07391, 2020

[45] C. Altafini, F. Ticozzi. Modeling and Control of Quantum Systems: An Intro-

duction. arXiv preprint 1210.7127, 2012

[46] J. Liu, L. Bello, H. Zhou. Relaxed Peephole Optimization: A Novel Compiler

Optimization for Quantum Circuits. arXiv preprint 2012.07711, 2020

[47] T. Itoko, R. Raymond, T. Imamichi, A. Matsuo. Optimization of Quantum

Circuit Mapping using Gate Transformation and Commutation. arXiv preprint

1907.02686, 2019

[48] IBM’s Quantum Experience, Quantum Composer, Online at https://quantum-

computing.ibm.com/composer/

[49] V.V Shende, I.L. Markov. On the CNOT-cost of TOFFOLI gates. arXiv

preprint 0803.2316, 2008

[50] J.C. Garcia-Escartin, P. Chamorro-Posada. Equivalent Quantum Circuits.

arXiv preprint 1110.2998, 2011

[51] IBM’s “Learn Quantum Computation using Qiskit”, “2 - Multiple Qubits and

Entanglement”, Online at https://qiskit.org/textbook/ch-gates/more-circuit-

identities.html by The Jupiter Book Community

[52] The SciPy Community’s “API reference - SciPy API”, Online at

https://docs.scipy.org/doc/scipy/reference/

[53] The NumPy Community’s “API reference - NumPy Manual”, Online at

https://numpy.org/doc/stable/

[54] M. Ben-Ari. A Tutorial on Euler Angles and Quaternions, version

2.0.1. Online at https://www.weizmann.ac.il/sci-tea/benari/sites/sci-

tea.benari/files/uploads/softwareAndLearningMaterials/

[55] X. Zhang, H. Xiang, T. Xiang, L. Fu, J. Sang. An efficient quantum circuits

optimizing scheme compared with QISKit. arXiv preprint 1807.01703, 2018

[56] D. S. Brezov, C. D. Mladenova, I. M. Mladenov. New Perspective on the Gimbal

Lock Problem. AIP Conference Proceedings, 1570. 367-374, 2013

[57] IBM’s “Qiskit Circuit Library - RXX Gate”. Online at

174

https://arxiv.org/abs/1803.01022
https://arxiv.org/abs/1803.03372
https://arxiv.org/abs/2007.07391
https://arxiv.org/abs/1210.7127
https://arxiv.org/abs/2012.07711
https://arxiv.org/abs/1907.02686
https://quantum-computing.ibm.com/composer/
https://quantum-computing.ibm.com/composer/
https://arxiv.org/abs/0803.2316
https://arxiv.org/abs/1110.2998
https://qiskit.org/textbook/ch-gates/more-circuit-identities.html
https://qiskit.org/textbook/ch-gates/more-circuit-identities.html
https://docs.scipy.org/doc/scipy/reference/
https://numpy.org/doc/stable/
https://www.weizmann.ac.il/sci-tea/benari/sites/sci-tea.benari/files/uploads/softwareAndLearningMaterials/
https://www.weizmann.ac.il/sci-tea/benari/sites/sci-tea.benari/files/uploads/softwareAndLearningMaterials/
https://arxiv.org/abs/1807.01703
https://www.researchgate.net/publication/259502625_New_Perspective_on_the_Gimbal_Lock_Problem

Bibliography

https://qiskit.org/documentation/stubs/qiskit.circuit.library.RXXGate.html

[58] C. ”Strilanc” Gidney. Quirk Simulator. Online at https://algassert.com/quirk

[59] A. Li, S. Stein, S. Krishnamoorthy, J. Ang. QASMBench: A Low-level QASM

Benchmark Suite for NISQ Evaluation and Simulation. arXiv preprint 2005.13018,

2020

[60] QASMBench circuits repository, Online at

https://github.com/uuudown/QASMBench

[61] Johannes Kepler University Linz’s Institute for integrated Circuits and System

Design Group Team online at https://iic.jku.at/eda/team/

[62] JKU IIC circuits repository, Online at https://github.com/iic-

jku/ibm qx mapping/tree/master/examples

175

https://qiskit.org/documentation/stubs/qiskit.circuit.library.RXXGate.html
https://algassert.com/quirk
https://arxiv.org/abs/2005.13018
https://github.com/uuudown/QASMBench
https://iic.jku.at/eda/team/
https://github.com/iic-jku/ibm_qx_mapping/tree/master/examples
https://github.com/iic-jku/ibm_qx_mapping/tree/master/examples

	Summary
	Basic Concepts
	Qubits
	Superposition and Entanglement
	Bloch Sphere

	Quantum gates
	Definition and properties
	Most important quantum gates - single qubit
	Most important quantum gates - Multiple qubits
	Physical implementation of quantum gates
	Virtual implementation of RZ gates

	Quantum technologies and devices
	Fundamental criteria
	NMR - Nuclear Magnetic Resonance technology
	Trapped Ions technology
	Superconducting technology

	Quantum computing's state of the art Design Toolchain

	Proposal for an Optimized Quantum Toolchain and overview of its Step 1
	The Optimized Quantum Toolchain
	The template-based approach
	The Toolchain's structure

	Step 1 - QASM template-based optimization
	Step 1's structure
	QASM_precomposer library
	NULLOP_purgers library
	simple_optimizers library
	step1_templates library
	QASM_postcomposer library

	Overview of the Toolchain's Step 2
	Step 2 - Technology-dependent gates compaction
	Step 2's structure
	NMR - Specific workflow
	Trapped Ions - Specific workflow
	Superconducting - Specific workflow
	step2_techlib library
	Ugates_converter library

	Overview of the Toolchain's Step 3
	Step 3 - Distribution/Mirroring-based optimizations and CX gates decomposition
	Step 3's structure
	NMR - Specific workflow
	Trapped Ions - Specific workflow
	Superconducting - Specific workflow
	step3_cxtemplates library
	step3_cxtranslate library

	Benchmarks
	General benchmarking procedures
	Tested circuits
	Comparing the Toolchain to the state-of-the-art

	Step 1 intermediate benchmarks
	Intermediate results analysis

	Step 2 intermediate benchmarks
	Intermediate results analysis

	Step 3 final benchmarks
	Final results analysis

	Conclusions and future perspectives
	Bibliography

