

Politecnico di Torino

Master degree in Mechatronic Engineering

in collaboration with Reply spa

“Deep learning techniques for programming a

collaborative robotics system”

Supervisor:

A. Rizzo

Supervisors at Reply:

A. Tessuti

A. Grosso

Candidate:

Nicoletta Speraddio (s. 264820)

a.a. 2020/2021

2

3

SUMMARY

1. Introduction ___ 6

2. Collaborative robotics __ 9

2.1 Physical Human-robot interaction _______________________________ 9

2.2 Control strategies for online reaction to pHRI _____________________ 10

2.3 Dynamic tasks classification and scheduling ______________________ 12

2.4 Main application __ 14

2.5 Case study ___ 15

3. Machine Learning __ 16

3.1 Deep Learning ___ 16

3.2 Convolutional Neural Network ________________________________ 16

3.2.1 Convolution __ 17

3.2.2 Non-Linearity _______________________________________19

3.2.3 Stride and Padding ___________________________________ 19

3.2.4 Pooling __ 20

3.2.5 Hyperparameters ____________________________________ 21

3.2.6 Fully connection _____________________________________ 21

3.2.7 Training ___ 21

3.2.8 Human pose detection using CNN _______________________ 21

3.3 Role of CNN in the project ____________________________________ 23

4. Artificial Intelligence in Robotics ___ 24

5. e.DO by Comau ___ 27

5.1 Robot certification ___ 29

5.2 Main features ___ 29

5.3 Inverse kinematics problem __ 32

6. Stereo-vision and depth acquisition ___ 44

6.1 Geometry and computer vision in stereo-vision: perspective Camera model ____ 44

6.2 Stereo rectification __ 48

6.3 Basic Stereo Vision Model __ 49

4

6.4 Approximation of theoretical entities __________________________________ 50

6.5 Depth camera: Intel RealSense D435i _________________________________ 50

7. Image processing: Openpose __ 54

7.1 Amazon AWS __ 55

7.1.1 Amazon EC2 instances ______________________________________ 55

8. Test phase: 2D pose estimation ___ 60

8.1 Test expected result __ 60

8.2 Pose estimation from detected key points _______________________________ 60

8.3 Joint models computation ___ 61

8.4 Test result: 2D pose imitation __ 65

9. Test phase: 3D pose estimation __ 70

9.1 Pose estimation from detected key points _______________________________ 70

9.2 Image processing in depth acquisition __________________________________ 72

9.3 Robot joint models analogy with human joints ___________________________ 74

9.4 Test results ___ 76

9.5 Test result: key points coordinate expressed in cm ________________________ 86

9.6 Space point detection ___ 92

9.6.1 Calibration ___ 94

9.7 Test results: robot reaches target point in the space _______________________ 94

9.8 Performance analysis __ 96

10. Amazon AWS and Web service integration _________________________________ 97

10.1 Instance type __ 97

10.2 Web service ___ 99

10.3 Results after AWS and web service integration _________________________ 106

11. Conclusions __ 108

5

6

1. Introduction

The goal of this project is to obtain a robotic system able to accomplish collaborative tasks.
Traditional robotics does not fight with the same problems of collaborative one. We have to
distinguish traditional robots and collaborative robots. The first ones have specific
characteristics and structures, because of human interaction is not present. User controls the
robot outside its operating range. An example of traditional robot is the industrial arms shown
in the figure 1.1:

Its constraints are relative to the task it performs. It is important to note that it must not come
into contact with users. It works autonomously without any interactions with human. This is a
fundamental aspect that influence the control methodology adopted for.

As robots support increases during last years, also the kind of tasks robots perform are much
more different and various. Depending on the field of interest, robots can work singularly and
insulated from users working zone or can be used in collaborative functions. These last ones
imply different constraint and structure because of safeness in the working area.

An example of collaborative robots is shown in figure 1.2:

The idea for the thesis project is to obtain a robotic arm (didactic size) suitable for expert and
non-expert users. The challenge is to program basic movements without needing programming
skills. ‘Programming by Demonstration’ (PbD) is one of the most used techniques to solve this
kind of problem. PbD has become a central topic of robotics that spans across general research
areas such as human-robot interaction, machine learning, machine vision and motor control.
This technique has grown importantly during the past decade. The rationale for moving from
traditionally programmed robots to robots programmed via user interaction is threefold. 1

Figure 1.1

Figure.1.2

7

Collaborative robotics requires some components (hardware and software) that must be
integrated together with the robot in the overall system. The core of the system is the robotic
arm, to which peripheral devices can provide the necessary functionality for the collaborative
purpose. For this purpose, it is necessary to set up a capture environment in which the movement
to be communicated to the robot will be shown. Stereo vision is the basis of this application,
because the movement must be perceived in three dimensions. The acquisition is done from
two different points of view. This double vision allows to reconstruct a 3D point/space/object,
based on the methodology known in stereo vision theory, explained in a simplified way in the
following figure 1.3:

After reconstruction of the demonstration space, the parameters obtained in solution are
communicated to the robot. In combination with stereoscopic acquisition, deep learning is used
to detect the object of interest. For this specific case, the demonstration is performed by the
user, who shows the poses by movement of his right arm. The support played by the use of deep
learning techniques is needed first to detect the key points of the user's arm and then to correctly
map those points. These points are used to formulate the model corresponding to the human
arm, making sure to create analogies with the specific joint mechanism of the robotic arm. Point
recognition is possible through the use of an open-source library (OpenPose), based on two
neural networks trained on human image databases. This library is recognized as the first open-
source system used for real-time 2D key point detection; it is used to process frames containing
one or more human subjects (multi-detection). For this specific case, the key points detected
are the neck, shoulder, elbow and wrist (of the right arm). The performance of OpenPose has
some hardware requirements in order to achieve the best performance results. To verify that the
performance was purely related to some of these requirements, the required architecture was
simulated using Amazon AWS services. Then, a web service was implemented in order to make
the processing independent of the instance from which it was invoked.
In the next chapters, each aspect will be analyzed in more detail. The software and hardware
supports have been chosen following the analysis of the results obtained during the
experimental phases. The applications of industrial type that could be based on this system are
various, being the development not finalized to the field of action but to the functionality of the
system as collaborative. In general, the idea of the project was born to deal with the problems

Figure 1.3

8

of collaborative robotics; this field breaks away from traditional robotics based on the use of
robots isolated from the user, and opens up to robot-human interaction. Collaborative robots
are rapidly providing important improvements in productivity, safety, ease of programming,
portability and cost, making them usable for many new applications. The contact between the
human and robot worlds implies the evaluation of different approaches and requirements
compared to traditional robotics. In order to have control over the interaction, it will be
necessary to provide the robot with perception, as to follow safety protocols while performing
actions of interaction with the user. The first chapter introduces collaborative robotics in terms
of evaluations and requirements, necessary to define the main characteristics of a collaborative
workflow.

9

2. Collaborative Robotics

Robots have existed in industry for more than half a century. Initially, they were placed in steel
cages or in environments that ensured safety for users in the workspace. The first applications
in which they were used were the use of large-scale instrumentation, as well as the assembly of
components for large structures (e.g. cars). The manufacturing horizon of Industry 4.0
encompasses a shift away from automated production towards a concept of intelligent
manufacturing. The unique feature of Industry 4.0 is to meet customer demand for variations
in products in real time in a small batch size. This allows a manufacturing system to meet
individual customer needs without affecting the production time for setting up and
reconfiguring an assembly line. For a smart robotic factory to function in the context of Industry
4.0, high productivity and flexibility become the priority for a manufacturing environment. To
address this issue, robots will be employed in most manufacturing processes; although the robot
figure becomes predominant, the human worker must remain in the work area to accomplish
the remaining tasks for which robots cannot be trained or to supervise automated work cycles.
The constant human presence in or near the range of the intelligent robot leads to an increasing
focus on the safety aspect. The conventional approach is to expose human workers to a
safeguard distance from the robot, this kind of limitation of the robot's range of action is
achieved by implementing control techniques on the robot's movement.3

2.1 Physical Human-Robot Interaction (pHRI)

Imagine a robot performing a manipulation task next to a user, such as moving the user's coffee
cup from a piece of furniture to the table. As the robot moves, the person might notice that the
robot is carrying the cup too high above the table. Knowing that the cup would break if it were
to slip and fall from so high, the person easily intervenes and starts pushing the robot's end-
effector down to bring the cup closer to the table. In these cases, the moment the human lets go
of the robot, it resumes its original behavior - our robot would bring the cup back up too high,
requiring the person to continue to intervene until it has finished the current action. Although
such control strategies ensure a quick reaction to unexpected forces, returning the robot to its
original movement from a fundamental limitation of traditional pHRI strategies: robots do not
take into account that human interventions are often intentional and occur because something
is being done wrong. While the robot's original behavior may have been optimal with respect
to the robot's predefined objective function, the fact that human intervention was required
implies that this objective function was not entirely correct. Returning to our example, if the
person is applying forces to push the robot's end-effector closer to the table, then the robot
should change its objective function to reflect this preference, and complete the rest of the
current task accordingly, keeping the cup lower. Ultimately, human interactions should not be
thought of as disturbances, which disrupt the robot from its desired behavior, but rather as
corrections, which teach the robot its desired behavior. These techniques, used in robotic
programming, aim to use the pHRI to correct or change the objective function of the robot while
the robot is performing its current task. Demonstrations given by the user to the robot, to
communicate any corrections or deviations from its initial objective function, can be performed

10

during the performance of the task or as offline demonstrations, in which the robot changes its
function as a result of multiple demonstrations.

2.2 Control strategies for online reactions to pHRI

A variety of control strategies have been developed to ensure safe and responsive pHRI. They
largely fall into three categories: impedance control, collision management, and shared
manipulation control. Impedance control relates deviations from the robot's planned trajectory
to interaction pairs. The robot renders virtual stiffness, damping, and/or inertia, allowing the
person to push the robot away from its desired trajectory, but the robot always returns to its
original trajectory after the interaction ends. Collision handling methods include stopping,
switching to gravity compensation, or re-timing the planned trajectory if a collision is detected.
Finally, shared manipulation refers to the assignment of roles in situations where the human
and robot are collaborating. These control strategies for pHRI work in real time and allow the
robot to safely adapt to human actions; however, through this approach, the robot fails to take
advantage of these interventions to update its understanding of the task - left alone, the robot
would continue to perform the task in the same way it had planned prior to any human
interaction. In contrast, we focus on allowing robots to adjust the way they perform the current
task in real time.

- Offline learning of robots' objective functions.

Inverse Reinforcement Learning (IRL) methods explicitly focus on inferring an unknown
objective function, but do so offline, after passively observing expert trajectory demonstrations.
These approaches can handle noisy demonstrations, which become observations of the true
objective. In the developed design, offline learning is based on communicating with the robot
about the configuration it should take. It does not involve training via Inverse Reinforcement
Learning, but only a single observation and subsequent mirror response.

- Online Human Objective Learning.

While IRL can learn the robot's goal function after one or more demonstrations of a task, online
inference is possible when the goal is simply to reach an objective state, and the robot moves
in free space. We build on this work by considering general objective parameters; this requires
a more complex (non-analytic and difficult to compute) observation model, along with
additional approximations to achieve online performance. During project development, this
approach is taken to perform collaborative tasks. This involves recognizing the user's hand to
reach this point and exchange some objects with him.

a. Safety in pHRI

Safety during interaction with unstructured and dynamic environments is now an established
requirement for complex robotic systems. A wide variety of approaches focus on introducing
safety assessment methods in order to define a consequent safety-oriented control strategy that

11

can reactively prevent collisions between the robot and potential obstacles, including a human
being. Safety in human-robot interaction (HRI) has gained increasing relevance in industrial
environments, where in the near future humans and robots are expected to safely coexist and
cooperate, sharing the same workspace. Clearly, this aspect of safety is closely related to the
crucial task of collision avoidance. Possible collisions in fact can occur between a robot and a
human being, between the robot and potential obstacles, but also with the robot structure itself.
The concept of safety field is defined in the range of action of the robot, by means of an
evaluation that meets certain requirements. In particular, the safety field concept is:

a. dependent on the relative position and relative velocity between a moving rigid body
"source of danger" and a generic moving point in space;

b. dependent on the actual shape and dimensions of the rigid body;
c. efficiently calculated in closed form, allowing real-time applications. A basic definition

of the safety field is based on the consideration of a generic body as a source of danger,
moving in R3.

A local reference frame is considered such that the position of one of its points T is given by:

𝑟𝑡 = (𝑥𝑡 𝑦𝑡 𝑧𝑡)𝑇

The velocity is zero in the introduced frame. r and v denote the position and velocity of a generic
moving point in the space P, respectively, expressed in local coordinates. We additionally
define the angle between rt-r and v as:

𝜑 =< (𝑟𝑡 − 𝑟, 𝑣) ∈ [−𝜋, 𝜋)

The Kineto-static Safety Field (KSSF) induced by the motion of a moving point mass on a
moving point in space, as the following scalar function:

𝑆𝐹(𝑟𝑡,𝑟, 𝑣) = ‖𝑟𝑡 − 𝑟‖2(𝛾 − (𝑟𝑡 − 𝑟)𝑇𝑣)

Where 𝛾 is a positive constant such that 𝑆𝐹(𝑟𝑡,𝑟, 𝑣) ∈ R+. A suitable choice of 𝛾 satifies:

𝛾 ≥ ‖𝑟𝑡 − 𝑟‖‖𝑣‖

Figure 2.1

12

Nevertheless, note that for 𝛾 >> |𝑟𝑡 − 𝑟| |v| the effort of (𝑟𝑡 − 𝑟)𝑇𝑣 becomes negligible.
Setting the convenience ρ = ||𝑟𝑡 − 𝑟|| and v = |v|, KSSF satisfies the following conditions:

i. 𝜕𝑆𝐹

𝜕𝜌𝑡
2

(𝑟𝑡, 𝑟, 𝑣) ≡ 𝜂 > 0, ∀𝑣 ≥ 0, ∀ 𝜑 ∈ [−𝜋, 𝜋);

ii. 𝜕𝑆𝐹

𝜕𝜌𝑡
2

(𝑟𝑡, 𝑟, 𝑣) < 0, ∀𝑣 ≥ 0, ∀ 𝜑 ∈ (−𝜋/2, 𝜋/2);

iii. 𝜕𝑆𝐹

𝜕𝜌𝑡
2

(𝑟𝑡, 𝑟, 𝑣) > 0, ∀𝑣 ≥ 0, ∀ 𝜑 ∈ [−𝜋, 𝜋).

The safety field is clearly affected by distance, as highlighted in condition (i), but also considers
the magnitude of the velocity vector v (relative velocity between the hazard source and the point
where the field is calculated) and the declination angle 𝜑.
As condition (ii) implies, the safety field decreases with the magnitude of the velocity vector v
if the point of motion r is directed toward the point 𝑟𝑡 (i.e., positive scalar product between
(𝑟𝑡 − 𝑟) and v).
Finally, condition (iii) indicates that for a fixed velocity magnitude, the safety decreases with
decreasing declination angle 𝜑.
Notice that, these conditions are equivalent to those satisfies by the elementary kineto-static
danger field.4

2.3 Dynamic tasks classification and scheduling

Despite the progress in research and the availability of robot models suitable for industrial
applications, there are still several unresolved issues due to the continuous change of work
processes: some of the aspects to which the most attention is drawn are the correct evaluation
of economic viability, the definition of an adequate process plan, the assignment of tasks to
humans and robots and the intuitive and fast programming of robots. Task classification is used
for workload distribution and detailed task planning. The method is based on the assumption
that tasks should be assigned, taking advantage of the different capabilities and resources of
humans and robots, regardless of the workload balance. Several works have addressed the
evaluation of collaborative robotic cells, especially in the automotive industry, providing a
comparison between the conventional robotic cell and the human-robot cooperative cell. The
optimal task assignment between workers and robots has been studied in some use cases;
therefore, great efforts have been devoted to the safety of human-robot collaboration.
Considering the production process divided into work tasks, it is evident that some tasks could
be more profitably performed by humans or robots alone, others collaboratively. The human
and robotic contribution and the choice of collaboration strategy must be decided in advance
by the process designer. The work is divided into several tasks and these are assigned to the
human or robot following decision steps based on the analysis of available resources, suitability
of the task, minimum operation time required to perform the task. The approach is particularly
effective when human-robot collaboration is considered under conditions of spatial or temporal
separation in the work cell. Especially in small production runs, more than one solution is
possible: the task can be performed by both humans and robots. Manual cells have the additional
problem of assigning the load to different workers in a balanced way. Very often, each worker
can perform each task and the assignment is just a matter of workload. The human and the robot

13

have different abilities that should be leveraged as much as possible. Also, there is no need to
balance the workload between human and robot. If you take, for example, the collaborative
industrial robotic system and its associated work environment, you have to make safety
assessments in addition to the workload (ISO Technical Standard 150666). Based on this, it is
possible to have different types of collaborative work based on the presence, or not, of temporal
and/or spatial separation between humans and robots. The main cases of human-robot
collaboration have been classified as:

- Safety-rated monitored stop (temporal and spatial separation):

The collaborative robot stops and remains stopped when the operator is in the workspace.

- Hand-guiding (temporal separation):
The operator has a guiding device to move the robot in the intended position. When the operator
releases the guiding device, a safety-rated monitored stop is issued.

- Speed and separation monitoring (spatial separation):
Minimum protective separation distance between the operator and robot system is maintained
at all times.

Figure 2.2

Figure 2.3

Figure 2.4

14

- Power and force limiting (workspace sharing):
Physical contact between the robot system (including workpiece) and an operator can occur
either intentionally or unintentionally, but exerted forces are limited.

In the industrial field it is far more common to find are hand guiding or speed monitoring. They
allow the use of standard industrial robots with a minimum refurbishment of the work cell. 5

2.4 Main applications

Over the past decade, customers are demanding diversified or custom options, and
manufacturers are moving toward smaller batches and in some cases made-to-order to meet this
demand. Manufacturers are also moving, at the same time, to lower the cost of production such
as material logistics on the factory floor. Automation is one answer to these demands, but
traditional robotics are not suited for the task. Cobots are the solution to this kind of need. Other
factors influencing the current manufacturing environment is that the workforce is aging and
younger employees entering the workplace do not see manual-type jobs as attractive as in the
past. It has also been reported that traditional robots can only handle about 10% of the new
tasks that need to be addressed. End products of automated processes, then with collaborative
robotic supports during production flows, with their lower initial cost, quick and easy setup and
programming, portability from one application to another, and faster return on investment, are
increasingly coming to light for their advantages. Key applications for collaborative robots
include packing products into shipping containers, loading and unloading the production line,
assembly operations, parts testing, machine maintenance, and workplace material logistics.
Problems in adapting robots in the past, such as the difficulty in justifying the investment,
worker acceptance of robot safety, programming the robot to perform the desired task, and the
difficulty in repurposing robots are all addressed by collaboration. Many of the collaborative
robots already on the market can be easily transported by a human from one application to
another and quickly programmed for rapid reorganization. Along with the ability to quickly
program the application, repurposing is a great way to improve return on investment. Today's
collaborative robots are generally smaller and have much less arm inertia than traditional robots,
making them much easier to stop quickly and safely. The safety of the collaborative chain
depends on the arm stopping almost instantly if it makes contact with a human. Typical
collaborative robotic arms can stop in as little as 2 mm of distance. This ensures that no harm
occurs to the human or the application. Collaborative robots will be increasingly important in
the coming years. It will be a game changer. It may even turn out that collaborative robotics

Figure 2.5

15

technology will become the dominant robotics technology in the decades to come, replacing
the large one-armed giants that will continue to serve select applications. Clearly, the
technology advances the state of the art in robotics and offers many new benefits. The speed at
which this change will occur will depend on how both suppliers and their customers approach
the technology. Suppliers will need to continue to be effective in educating the market about
the benefits and educating on the means to best adapt the technology.6

2.5 Case study

Collaborative robots rely on detecting external events with subsequent reaction to them. The
way to detect stimuli and produce an intelligent response is to use Machine Learning techniques
to support the robot's programming. Machine Learning gives the possibility to make the system
intelligent and facilitate the automation of systems based on it. In the developed project, a dual
application of the same system is proposed. Starting from the concept of collaborative task, the
system lays the foundation on the use of Machine Learning techniques to program the robot.
The perception of the surrounding space is fundamental to achieve this goal. The final
application is not a discriminating factor for the implementation, it is rather made a point of
interest to produce something versatile for different applications. Machine Learning is exploited
to recreate a type of robot programming that does not require the development of an algorithm
or its understanding by the user who will have to program it. The robot must be made capable
of perceiving the pose of a human user. The robot is programmed through imitation of the
movements performed by the user. This type of system can be applied in small production,
performing basic tasks such as pick-and-place. Considering the goal of making it possible to
program the robot without the need to program it traditionally, visual perception becomes
necessary. The development of perceptual ability makes it adaptable to a collaborative robotics
scenario.

16

3. Machine Learning

Machine Learning (ML) is an important aspect of business and research in the modern world.
It uses algorithms and neural network models to help computer systems progressively improve
their performance. Machine Learning algorithms automatically build a mathematical model
using collections of sample data and using that data to make decisions without being specifically
programmed to make those decisions. 7

3.1 Deep Learning

Deep Learning, as a branch of Machine Learning, employs algorithms to process data and
mimic the thought process, or to develop abstractions. Deep Learning (DL) uses layers of
algorithms to process data, understand human actions, and visually recognize objects.
Information is passed through several layers, reporting the outputs of the previous layer as input
to the next layer. The first layer of a network is called the input layer, while the last is called
the output layer. All the layers between the two are called hidden layers. Each layer is typically
an algorithm containing one type of activation function. The data analyzed using these
techniques are used for the purpose of extracting features that are common to them: feature
extraction is another task performed by Deep Learning. There are different types of neural
networks in deep learning: convolutional neural networks (CNN), recurrent neural networks
(RNN), artificial neural networks (ANN), etc. These types of neural networks are at the heart
of the deep learning revolution, and are aimed at supporting modern applications (e.g.,
unmanned aircraft, self-driving cars, speech recognition, etc.).8

3.2 Convolutional Neural Network (CNN)

CNN is probably the most popular deep learning architecture. The recent surge of interest in
deep learning is due to the immense popularity and effectiveness of convolutional networks.
CNN is now the reference model for any problem based on image processing. In terms of
accuracy, they have numerous advantages and high accuracy. The convolutional networks are
also successfully employed to systems that need natural language processing. The main
advantage of CNN over its predecessors is that it automatically detects important and distinctive
features in the analyzed data without any human supervision. For example, given many images
of dogs and cats, it learns the distinctive features for each class on its own. CNN is also
computationally efficient. It uses special convolution and pooling operations and performs
parameter sharing. This allows CNN models to run on any device, making them universally
applicable. All CNN models follow a similar architecture, as shown in the figure:

17

There is an input image on which the work must be executed. A series of convolutions and
pooling operations are performed, followed by a number of fully connected layers. If multi class
classification is performed, the output is softmax. Softmax or normalized exponential function
is a generalization of the logistic function to multiple dimensions.

3.2.1 Convolution

The main building block of the CNN is the convolution layer. Convolution is a mathematical
operation aimed at joining two sets of information. In our case, convolution is applied on the
input data through the use of a convolution filter, with the purpose of mapping the detected
features. Below is an analysis of the main components shown in Figure 9: on the left is the input
at the convolution level, for example the input image. On the right is the convolution filter, also
called kernel, we will use these terms interchangeably. This is called 3x3 convolution because
of the shape of the filter (shown in Figure 3.2).

Figure 3.1

18

On the left of the image is the filter: the output of the convolution filter is shown on the feature
map. After using the filter to extract the discriminating features, we go to the right and perform
the same operation, reporting the result on the feature map. This was an example of a
convolution operation using a 3x3 filter. In reality, these convolutions are performed in 3D. The
3-dimensional analysis considers the image as a 3D matrix (height, width and depth
dimensions). Depth is expressed in RGB values. A convolution filter has a specific height and
width, but during design a filtering that covers the third dimension (depth) is also included. It
then becomes a filtering process suitable for analyzing the image in 3 dimensions. Multiple
convolutions on an input are performed using a different filter and obtaining a distinct feature
map for the additional dimension. The results are then stacked into the detected feature maps
and this composition becomes the final output of the convolution process.

Multiple convolutions:

Considering an image 32x32x3 and a filter 5x5x3 (depths are the same for image and filter).
When the filter is at a particular location it covers a small volume of the input and the
convolution operation is performed as explained. The only difference this time is that the sum
of matrix multiply in 3D, not in 2D, but the result is still a scalar. The filter is sliding over the
input like above and perform the convolution at each location, aggregating the result in a feature
map. The feature map size is 32x32x1 as shown on the right of figure 3.3.

If 10 different filters are used the results are 10 different feature maps of the same size
(32x32x1). Stacking them along the depth dimension will give us the final output of the

Figure 0.2.2

Figure 3.3

19

convolution layer: 32x32x10 (as shown in figure 3.2). The height and width of the feature map
are unchanged and still 32.

3.2.2 Non-Linearity

For any type of neural network to have high performance, there is a need to consider the aspect
of nonlinearity. The values in the final feature maps are not actually sums, they refer to the
ReLu function (in the context of artificial neural networks, the rectifier or ReLu is an activation
function defined as the positive part of its argument) that is applied as a result of the simple
sum. In conclusion, any kind of convolution implies a ReLu operation, without which the
network will not reach its true potential.

3.2.3 Stride and Padding

The Stride methodology specifies how much we move the convolution filter at each step. You
can have larger steps if you want less overlap between receptive fields. This also reduces the
size the resulting feature maps (Figure 3.4), considering the jump in potential positions.

The size of the map is smaller than the input because the convolution filter needs to be contained
in the input. If a requirement is to maintain the same dimension it is possible to use padding
surround the input with zeros (as in figure 3.5):

The grey area around the input is the padding. Now the dimensionality of the feature map
marches the input. Padding is commonly used in CNN to preserve the size of the feature maps,

Figure 3.4

Figure 3.5

20

otherwise they would shrink at each layer, which is typical not desirable. The 3D convolution
figures shown in previous figures used padding, this is the reason why the height and width of
the feature map is the same as the input (32x32) and only depth changed.

3.2.4 Pooling

After a convolution operation, a pooling operation is performed to reduce the size of the output.
This reduces the number of parameters, which shortens the processing time and combats
overfitting. In general, there is a trade-off between the size of the space of distinct models that
a learner can produce and the risk of overfitting. As the space of models between which the
learner can select increases, the risk of overfitting will increase. However, the potential for
finding a model that closely fits the true underling distribution will also increase. This can be
viewed as one facet of the bias and variance trade-off.19

Pooling layers are used to sample each feature map independently, reducing the height and
width while keeping the depth intact. Figure 10 shows max pooling using a 2x2 window and
stride 2. Each color denotes a different window. Since both the window size and stride is equal
to 2, the windows do not overlap.

Note that with this configuration of windows and stride, the size of the feature map is halved.
This is the main use case of pooling, sampling the feature map while retaining important
information.
By halving the height and width, we have reduced the number of weights to ¼ of the input.
Considering that typically the problem is dealing with millions of weights, in CNN architectures
it is critical to reduce this value.
In CNNs, pooling is typically done with 2x2 windows, stride 2 and no padding. Convolution is
done with 3x3 windows, stride 1 and padding.

Figure 3.6

https://doi.org/10.1007/978-0-387-30164-8_76

21

3.2.5 Hyperparameters

Let’s consider a convolution layer ignoring pooling. Now 4 important hyperparameters must
be decided:

a) Filter size: typically the size is 3x3, but also 5x5 and 7x7 are used depending on the type of
application. These filters are 3D and have a depth value of 3, but since the depth of a filter in a
given layer is equal to the depth of its input, it is omitted.

b) Number of filters: this is a power of any two between 32 and 1024. Increasing the number
of filters results in a more powerful model, but you may run into the risk known as overfitting,
caused by increasing the number of parameters.

Usually in the initial layers the number of filters is low and increases progressively as the depth
increases.

c) Stride: the default value is 1.

d) Padding: usually used.

3.2.6 Fully connection

After the convolution and pooling layers, a couple of fully connected layers is added to wrap
the CNN architecture. The output of both convolution and pooling layers are 3D volumes, while
fully connected layers expect 1D vector of numbers. The output of the final pooling layer is
flattened, becoming a vector, then the input to the fully connected layer. Flattening is simply
arranging 3D volume of number into a 1D vector.

3.2.7 Training

CNN is trained through back propagation with gradient descent. A CNN model can be thought
as a combination of two components: the feature extraction part and the classification part. The
convolution + pooling layers perform features extraction. For example, given an image, the
convolution layer detects features such as two eyes, long ears, four legs, a short tail and so on.
The fully connected layers then act as a classifier on top of these features, and assign a
probability for the input image being a dog. 9

3.2.8 Human pose detection using CNN

CNNs recognize spatial features as well as temporal features by comparing pairs of images
from two adjacent frames. Traditional feature-based methods, such as those based on color or
motion blobs, perform tracking by maintaining a simple model of the target and adapting that
model over time. Real-world situations in practice pose enormous challenges to these
techniques because: 1. over time, the model of the object may deviate from the original model
2. they lack a discriminating model that distinguishes the object category of interest from others.
The main challenge of traditional learning-based and/or tracking-by-detection methods is false

22

positive matches that lead to the misunderstood association of traces. The reason for these
wrong identifications is that these methods rely on applying an appearance pattern or object
detector in all possible windows around the target. When the distractor objects are similar to
the target, the object detector will generate high and similar detection scores for both the target
and the distractors, which will likely cause a drift problem. It is very difficult if we use a head
detector because the heads of other people in the crowd can also be seen as exact matches during
recognition. The drift problem is alleviated by the use of additional information for detection,
this marks the difference between an object detector and a tracker that is able to estimate the
position and scale of the target given its previous position and size, as well as the current and
previous image frames. CNNs force local feature extraction by restricting the receptive fields
of hidden units to be local, based on the fact that images have strong 2D local structures. The
features (structures) are learned during offline training. The generality of features learned by
testing the CNN tracker can be observed on different scenarios and environments. In fact,
tracking by sensing methods can be seen as a special type of learning-based methods, since the
feature is learned offline. The usually proposed approach is based on two phases: during the
first phase, an appearance model of individuals is built, and during the second phase, people
are tracked by detecting these models in each frame. These methods are based on body part
analysis or pose estimation. For recognition or detection tasks, primitive feature detectors that
are useful on one part of the image are likely to be useful on the whole image. Human
identification is the first step for robots to interact with humans.10 However, identifying a human
is a non-trivial process that encounters the problems of highly articulated human body postures
and occlusions. CNN combined with the so-called regional proposal becomes the R-CNN that
can be applied for object detection. R-CNN shows a great improvement in detection accuracy
over conventional feature-based detectors. In R-CNN, the possible objects are extracted from
the selective search that proposes 2000 object regions. To accelerate the R-CNN computation,
a fast R-CNN is proposed (ROI pooling layer and two full connection layers after CNN layers).
The R-CNN improves the original system by joining an ROI proposal layer that gives k-possible
region proposals and decides which one contains an object. The depth of the network is of
crucial importance, and the main results on the challenging ImageNet dataset all exploit "very
deep" models; with an increase in depth, the accuracy may not improve further. One obstacle
to improving accuracy is the well-known problem of vanishing/exploding gradients. However,
the degradation problem occurs for deeper networks, once the depth of the network increases,
the accuracy saturates and then degrades rapidly. Such degradation is not caused by overfitting,
adding more layers to an adequately deep model leads to higher training error. The deep
learning network is applied for the detection of specific parts of the human body.11 A
development of three different types of body part detector is done using R-CNN (head and
shoulder, torso and leg). The method is based on the following contributions:

1. It can handle partial occlusion problems based on the evidence of the visible body parts.
2. It is robust to articulation and viewpoint changes of the observed human object because

the constraints of the spatial relation of the parts are flexible, and the final decision is
made by multiple part detectors.

3. It uses a simplified fast R-CNN to detect different types of body part.

23

4. It performs the occlusion compensation via an occlusion map to identify the human
object and reject false alarms.

3.3 Role of CNN in the project

OpenPose2 is the library used during the implementation of the system. It is a Real-time
multiple-person detection library, and it’s the first time that any library has shown the capability

of jointly detecting human body, face, and foot key points.
The pipeline from OpenPose is actually pretty simple and straightforward.
First, an input RGB image is fed as input into a “two-branch multi-stage” CNN. Two branches

means that the CNN produces two different outputs. Multi-stage simply means that the network
is stacked one on top of the other at every stage. (This step is analogous to simply increasing
the depth of the neural network in order to capture more refined outputs towards the latter
stages.)
The top branch, shown in beige, predicts the confidence maps of different body parts location
such as the right eye, left eye, right elbow and others. The bottom branch, shown in blue,
predicts the affinity fields, which represents a degree of association between different body
parts.
The term AI now encompasses the whole conceptualization of a machine that is intelligent in
terms of both operational and social consequences. With the prediction of the AI market to
reach 3 trillion by 2024, both industry and government funding bodies are investing heavily in
AI and robotics.12

24

4. Artificial Intelligence in Robotics

Neural networks owe their structure and principle of operation to the structure of the animal
nervous system. AI aims to perform tasks related to "perception". Limitations of using deep
learning can be distinguished as: 1) Low interpretability of the resulting learned model. 2) Large
volumes of training data, resulting in the need for significant computational power Building on
advances made in mechatronics, electrical engineering, and computer science, robotics is
developing increasingly sophisticated sensorimotor functions. They give machines the ability
to adapt to their changing environment. The autonomy of a robot in an environment can be
divided into perception, planning, and execution (manipulate, navigate, collaborate). The main
idea of the convergence of AI and Robotics is to try to optimize its level of autonomy through
learning. Robots with intelligence have been attempted many times. Although the creation of a
system that exhibits human-like intelligence remains elusive, robots that can perform
specialized autonomous tasks, such as picking up objects and putting them down, driving a
vehicle, etc., are still possible. Another important application of AI in robotics is the task of
perception. Robots can perceive the environment by means of built-in sensors or systems based
on computer vision. Perception is not only important for planning, but also for creating an
artificial sense of self-awareness in the robot. This allows supporting the robot's interactions
with other entities in the same environment. This discipline is known as social robotics. It
covers two domains: human-robot interaction (HCI) and cognitive robotics. The field of HCI
involves robotic perception of humans such as understanding activities, emotions, nonverbal
communications, and the ability to navigate an environment along with humans. The field of
cognitive robotics focuses on providing robots with the autonomous ability to learn and acquire
knowledge from sophisticated levels of perception based on imitation and experience. It aims
to mimic the human cognitive system. In cognitive robotics, there are also models that
incorporate motivation and curiosity to improve the quality and speed of knowledge acquisition
through learning. AI has continued to break all records and overcome many challenges that
were unthinkable less than a decade ago. In general, a typical robotic assembly operation
involves working with two or more objects/parts. Each part is a subset of the assembly. The
purpose of the assembly is to compute an order of operations that brings the individual parts
together to make a new product. To learn the execution of assembly operations, a robot must
first estimate the pose of the parts to be machined, then an assembly sequence can be
programmed directly on the robot or "demonstrated" by the robot user. Robotic assembly
remains one of the most challenging problems in the field of robotics research, especially in
environments not structured to accommodate such. Traditional robots require users to have
programming skills, which makes robots out of reach of the public. Today, robotics researchers
have been working on a new generation of robots that could learn from demonstration and do
not need programming. These new robots could sense human movements using their sensors
and mimic the same actions that humans do. Imitation takes place when an agent learns a
behavior by observing the execution of that behavior by a teacher. This was the starting point
for establishing the characteristics of robot imitation:

25

i. Adaptation
ii. Efficient communication between the teacher and the learner
iii. Compatibility with other learning algorithms
iv. Efficient learning in an agent society.

Processes in robot imitation have been identified, namely perceiving, understanding, and doing.
They can be identified as: observing an action, representing the action, and reproducing the
action. This distinction is shown in the following figure 4.1:

There are two basic main tasks in learning by imitation: a. Recognizing human behavior from
visual input b. Finding methods to structure the motor control system for general movements
and learning-by-imitation skills. Current approaches to representing a skill can be broadly
divided into two trends: - Trajectory coding (low-level representation of skill in the form of a
nonlinear mapping between sensory and motor information); - Symbolic coding (high-level
representation of the skill that decomposes the skill into a sequence of action-perception units).
To accomplish robot learning in response to a demonstration, three challenges must be
addressed. 1. The correspondence problem is figuring out how to map connections and joints
from human to robot. 2. Learning from demonstration is only feasible if a demonstrated
movement can be generalized with the purpose of referring to various targets 3. Finally,
robustness against perturbations is required: exactly reproducing an observed motion is not
realistic in a dynamic environment, where obstacles may suddenly appear. A typical approach
involves defining sufficient sub-skills and critical transition-assembly tasks: for modeling the
assembly task, human demonstrations are translated into a sequence of movements referencing
semantically relevant objects. Research in robotic assembly looks at specific developments: it
requires a high degree of repeatability, flexibility, reliability to improve automation
performance in assembly lines. Therefore, many specific research problems need to be solved
to achieve automated robotic assembly in unstructured environments. The robot software
should be able to convert assembly task sequences into individual movements, estimate the
pose of assembly parts, and calculate the required forces and torques. To obtain an efficient
assembly sequence for a task, an optimization algorithm is required to find the optimal

Figure 4.1

26

definition of the action to be performed. In some developments reported in the literature13,
researchers have found that the type of assembly has a significant influence on the choice of an
optimal action sequence. Another such example considers an integrated assembly and motion-
planning system to search for the assembly sequence with the help of a horizontal surface as a
support. It proposes two new algorithms that learn precedence constraints and relative part size
constraints. The first algorithm uses precedence constraints to generate assembly sequences in
online mode and ensures the feasibility of assembly sequences by learning from human
demonstration. The second algorithm learns how to assemble the various parts through
exploratory executions, i.e., learning from exploration. Learning robots from demonstration
requires the acquisition of example trajectories, which can be captured in various ways.
Alternatively, a robot can be physically guided through the desired trajectory by its operator,
and the learned trajectory is recorded proprioceptive for demonstration. To achieve a system
equipped with proprioception, the following components must be considered: a robotic
manipulator [5], a depth camera [6], image processing algorithms.

27

5. e.Do by Comau

The system used for the thesis project is e.DO Robot, product by Comau. This robot is a
modular, multi-axis articulated (anthropomorphic with 6 degrees of freedom) Personal Care
Robot. It has an integrated open-source intelligence; its aim is of making learning, creation,
exploration and programming more fun and interactive.

e.DO is available in different versions and configurations:

- e.DO with 6 central axes

- e.DO with 6 side axes

- e.DO with 6 central axes, with Gripper

- e.DO with 6 side axes, with Gripper

During this project, the configuration of e.DO with Gripper is chosen.

The system used for the thesis project is e.DO Robot, product by Comau. This robot is a
modular, multi-axis articulated (anthropomorphic with 6 degrees of freedom) Personal Care
Robot. It has an integrated open-source intelligence; its aim is of making learning, creation,
exploration and programming more fun and interactive.

e.DO is available in different versions and configurations:

- e.DO with 6 central axes

- e.DO with 6 side axes

- e.DO with 6 central axes, with Gripper

- e.DO with 6 side axes, with Gripper

During this project the configuration of e.DO with Gripper is chosen.

Specification Value

Number of axis 6

Max payload 1 kg

Max reach Axis 1: +/- 180° (38°/sec)

 Axis 2: +/- 113° (38°/sec)

 Axis 3: +/- 113° (38°/sec)

 Axis 4: +/- 180° (56°/sec)

 Axis 5: +/- 104° (56°/sec)

 Axis 6: +/- 180° (56°/sec)

Total weight 11,1 kg

Robot arm weight 5,4 kg

28

Table 4.1

Real measurements of each joint are reported in figure 4.2:

Main components

Open source

e.DO works thanks to ROS (Robot Operating System). This operating feature is the reason why
people interesting in robotics can program on e.DO with different kind of programming
language: C/C++, python, Java and the robot can interact with any hardware or software
compatible with ROS.

Hardware and software

The hardware of e.DO robot is composed by a Raspberry Pi board and its operating system is
Linux. The environment on which is developed makes possible that advanced users enter the
embedded control system and improve it: this system provides intelligence and flexibility to
realize complex movement, executions of sequence and automation in real world processes.

Structure material Ixef 1002

Power source Universal external power source with 12V power adapter

Connectivity 1 external USB port

1 RJ45 Ethernet

1 DSub-9 Serial Port

Motherboard Raspberry Pi running Raspbian Jessie

ROS Kinetic Kame

Control Logic Proprietary open-source e.DO

Additional features External emergency stop button

Figure 5.1

29

Main structure components

The Robot is characterized by a modular composition: “smallest construction units” are

assembled and connected to obtained it. These units are described below:

1. The base of the Robot is a basic structure equipped with interface devices, inside with
the Robot main power supply and controller boards are installed.

2. The Big joint unit consists of joint board (for motor control), motor, encoder, gearbox,
brave, main shaft, support plate, gears and output flange. It constitutes the first 3 axes
of the robot.

3. The Small joint unit consists of the same component of the Big one. It constitutes the
remaining 3 axes of the robot.

4. There are brackets and adapters used for physical connection between the various joints.
5. The system presents an additional emergency push button, available to be positioned

freely near the robot. The cap connector is available and can be used in case of absence
of additional energy push-buttons and/or interlocking devices associated with guards.

The axes can rotate clockwise or anticlockwise. Directly on the robot structure are affixed some
indicators “+” / “-”. Considering this labels, the direction of rotation is known and the

identification of the axis is easily done.

5.1 Robot certification
The e.DO Robot is considered a “Machine” as defined in Article 2(a) of the Machinery

Directive 2006/42/EC and anthropomorphic “Personal Care Robot (type 1.1)” with 6 degrees

of freedom as set out in the standard EN ISO 13482:2014. The Robot complies with the
requirements of the following Community Directives: – DIRECTIVE 2006/42/EC OF THE
EUROPEAN PARLIAMENT AND OF THE COUNCIL of 17 May 2006 on machinery, and
amending Directive 95/16/EC.

The following are the harmonized standards followed for the design and construction of the
Robot: – EN ISO 13482: 2014 Robot and robotic devices – Safety requirements for personal
care Robots – EN ISO 12100: 2010 Safety of machinery - General principles for design - Risk
assessment and risk reduction. – EN ISO 13849-1: 2016 Safety of machinery – Safety related
parts of control systems – Part 1: General principles for design. – EN 60204-1: 2006 Safety of
machinery - Electrical equipment of machines. Part 1: General requirements and subsequent
amendments.

5.2 Main features:

1. Requirements: e.DO robot can be controlled through a special all that can be installed

on tablets with Android operating system and minimum screen size of 7’’. The Wi-Fi
connectivity requirement is 802.11 a/b/g/n/ac and the CPU must be Octa-core ((1.8 GHz
Quad + 1.4 GHz Quad).
After download and connection of e.DO app with e.DO robot, the configuration can be
start.

30

2. Configuration: after the connection app-robot, it is possible to select e.DO configuration
we will use (we use ‘with Gripper’ configuration).
Then, at first start of e.DO, the calibration procedure is required. This is the process that
must be followed (by using a specific app developed for):

a. Using the buttons at the bottom, select the joint to be calibrated;
NB: The e.DO calibration must be performed for all joints; it is suggested a
progressive calibration from 1 to 6
NNB: If the Robot is already in the calibration position (Robot in “vertical”

position), it is possible to calibrate all the joints simultaneously by pressing
“Calibrate all joints” button>

b. Using “+/-” buttons, move the selected joint as long as the calibration notches

on the Robot structure are aligned;
NB: The axis “+/-” direction of rotation is indicated by special identification

labels installed directly on the Robot structure. The axis movement speed can be
adjusted through the slider in the center of the page

c. repeat the calibration operations for the remaining axes of the Robot.

The calibration:

is required

d. after turning off e.DO, setting the main switch to the 0-OFF position
e. due to the lack of the electrical power supply to e.DO

is not required

f. after pressing the emergency stop push-button
g. after a collision

There is the possibility to calibrate the robot by using an SDK instead of the tablet application.
This SDK is named ‘pyedo’ (https://github.com/Comau/pyedo) and contains some function to
command the robot, starting from the initialization it is possible to calibrate and then control
the movement of the robot. The function developed in this SDK are explained following:

- init_7Axes(): can initialize the robot with 7 axes (e.DO 6 axes plus the gripper)
- init_6Axes(): can initialize the robot with 6 axes
- disengage_std(): can disengage the robot with the standard movement
- disengage_safe(): can release only the brakes
- disengare_sin(): can disengage the robot with a sinusoidal movement
- calib_axes(): can calibrate all the robot axes. The calibration is possible only after

initialization and disengage of the brakes

- move_joint(ovr, j1, j2, j3, j4, j5, j6, j7) : Can move the joints to a joint_position indicated
through the angles in degrees (j1, , j2, j3, j4, j5, j6) and the opening of the gripper J7 in
mm with a velocity percentage in (ovr) up to the maximum value «100»

https://github.com/Comau/pyedo

31

- move_cartesian(ovr, x, y, z, a, e, r) : Can move the joints to a cartesian_position
indicated through the pose in (x, y, z, a, e, r) with a velocity percentage in (ovr) up to
the maximum value «100»

- move_circular(ovr, x1, y1, z1, a1, e1, r1, x2, y2, z2, a2, e2, r2) : Can move the joints to
a cartesian_position indicated through the pose in (x1, y1, z1, a1, e1, r1) passing through
another cartesian_position indicated through the pose in (x2, y2, z2, a2, e2, r2) with a
velocity percentage in (ovr), up to the maximum value «100», creating a circular path.

- move_cancel() : Can cancel the buffer of the moves, helpful when some errors occur in
generating path trajectory not allowed.

- move_cartesianX(ovr, x, y, z, a, e, r, j7) : Can move the joints to a cartesian_position
indicated through the pose in (x, y, z, a, e, r) and the opening position in mm of the
gripper in (j7) with a velocity percentage in (ovr) up to the maximum value "100"

- move_circularX(ovr, x1, y1, z1, a1, e1, r1,j71, x2, y2, z2, a2, e2, r2,j72) : Can move the
joints to a cartesian_position indicated through the pose in (x1, y1, z1, a1, e1, r1) and
the opening position in mm of the gripper in (j71) passing through another
cartesian_position indicated through the pose in (x2, y2, z2, a2, e2, r2) and the opening
position in mm of the gripper in (j72) with a velocity percentage in (ovr), up to the
maximum value "100", creating a circular path.

- jog_joint(ovr, j1, j2, j3, j4, j5, j6, j7) : Can move the joints, once per time for a delta, in
a direction indicated with "1"(positive) or "-1"(negative) in the (j1, j2, j3, j4, j5, j6, j7)
with a velocity percentage in (ovr) up to the maximum value "100"

- jog_cartesian(ovr, x, y, z, a, e, r) : Can move the joints in a cartesian_position, once
coordinate per time for a delta, indicated with "1"(positive) or "-1"(negative) in the
cartesian_position through the pose in (x1, y, z, a, e, r) with a velocity percentage in
(ovr) up to the maximum value "100"

- listen_JointState() : Allows to start the subscribing on the topic related to this
information: [Position Velocity Current]

- listen_CartesianPosition() : Allows to start the subscribing on the topic related to the
cartesian position (x,y,z,a,e,r)

- unlisten_JointState() : Allows to stop the subscribing on the topic related to these
information: [Position Velocity Current]

- unlisten_CartesianPosition() : Allows to stop the subscribing on the topic related to the
cartesian position (x,y,z,a,e,r)

- get_JointState() : Allows to get the Joint State dictionary containing the variables
listened with the listen method: [Position Velocity Current cartesianPosition]

The procedure of connection is the same as above, but the initialization, calibration and moving
are commanded by these functions. In the Thesis project this approach has been adopted. First
of all the robot is powered on, then connection between pc and robot is performed using Wi-Fi.
Once the connection is stable, a few steps are performed as reported below:

- Open a new terminal and digit:
a. ssh edo@192.168.12.1 (and the password)

mailto:edo@192.168.12.1

32

b. export LC_ALL=C; unset LANGUAGE
c. .\ministarter_sim

When the state of the robot is “READY” open an offline python script and use it to send the

commands to the robot. The example of this code is reported below.

from pyedo import edo

myedo= edo('192.168.12.1')

import time

myedo.move_joint()

myedo.init_7Axes()

time.sleep(7)

myedo.disengage_std()

time.sleep(7)

myedo.calib_axes()

A break point is added at the end in order to have the possibility to send single command a time
by using ‘evaluate’ tool.

After calibration command, we must be sure that the robot is in the “vertical position”: there

are some signs on each joint and the lower one must fit with the upper one in order to be sure
that the position is the suggested one.

The fitting between sign is reached by using move_joint(), giving in input the angular position
necessary to reach the best fitting of the signs.

Then, recalibration is done through ‘calib_axes()’ after the robot is in "vertical position" in

these positions.

Now the robot is ready to receive in input the angle position for each joint: this kind of control
is based on the direct kinematics.

5.3 Inverse kinematics problem

The motion control based on inverse kinematics solver can be handled by using the
‘move_cartesian’ function of the SDK. Unfortunately, this function is not working how we
expected, the reason of this failure can be that it uses an inverse kinematic solver to operate,
and this solver is not present inside the robot as default. In order to solve this problem, an
analysis on inverse kinematic solver has been done. Considering that the project is based on a
python programming, we have searched for python inverse kinematic solvers. The idea is to

33

solve the inverse kinematic, giving as input the Cartesian coordinate of the target and extracting
from the output the parameters for move_joint() function (that is based on direct kinematics).

The first solver used to obtain this process is named ‘tinyIK’. It is based on a very simple logic

and works on a chain created by the user. As first step, a model of the robot must be defined:

import tinyik

arm = tinyik.Actuator(['z', [1., 0., 0.], 'z', [1., 0., 0.]])

print(arm.angles)

print(arm.ee)

import numpy as np

arm.angles = [np.pi / 6, np.pi / 3]

print(arm.ee)

arm.ee = [2 / np.sqrt(2), 2 / np.sqrt(2), 0.]

print(np.round(np.rad2deg(arm.angles)))

Through the function chain, we can define a very simple model. It is enough to declare the
rotation axis of each joint and relative length. Then, the library offers some function, we use
directly the inverse_kinematic function to solve our model trajectory planning. The output of
that function is the sequence of joint position angles that the robot has to follow. By creating a
code in which pyedo and tinyIK works together, it is possible to obtain the solution to the
inverse kinematic problem.

The model created on tinyIK is very simple and ignoring some of important characteristics of
the robot (inertia, joint limits in motion, orientation).

For this reason, another python inverse kinematic solver is tested.

In order to bypass the RViz and MoveIt computations and implement the same logic in a smarter
way, an alternative Inverse Kinematic solver is used: IKPy.

With IKPy, it is possible to:

• Compute the Inverse Kinematics of every existing robot.

• Compute the Inverse Kinematics in position, orientation, or both

• Define your kinematic chain using arbitrary representations: DH (Denavit–Hartenberg),
URDF, custom...

• Automatically import a kinematic chain from a URDF file.

• Use pre-configured robots, such as baxter or the poppy-torso

• IKPy is precise (up to 7 digits): the only limitation being your underlying model's
precision, and fast: from 7 ms to 50 ms (depending on your precision) for a complete
IK computation.

• Define your own Inverse Kinematics methods.IKPy is an inverse kinematic solver that
solve the kinematic of robots on a model described by the user or imported through the
URDF file. The URDF file contains more details about each important feature of the
robot and for this reason the analysis results are more precise than in previous situation.

34

The URDF file of e.DO robot is reported below: it is the mix between the model created
by Comau (https://github.com/Comau/eDO_description) and the model of a project
developed by some Reply employees (https://gitlab.com/aloha-reply).

• <robot

 name="edo_sim">

 <link

 name="base_link">

 <inertial>

 <origin

 xyz="0.0617583602130883 0.437262464550775 -

0.00395442197852672"

 rpy="0 0 0" />

 <mass

 value="0.0785942338762368" />

 <inertia

 ixx="0.0123841200738068"

 ixy="-0.000187984913202787"

 ixz="-1.32683892634308E-06"

 iyy="7.0169034503364E-05"

 iyz="-9.17416945099319E-05"

 izz="0.0123862261905614" />

 </inertial>

 <visual>

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

 <mesh

 filename="package://edo_sim/meshes/base_link.STL" />

 </geometry>

 <material

 name="">

 <color

 rgba="0.792156862745098 0.819607843137255 0.933333333333333

1" />

 </material>

 </visual>

 <collision>

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

 <mesh

 filename="package://edo_sim/meshes/base_link.STL" />

 </geometry>

 </collision>

 </link>

 <link

 name="link_1">

 <inertial>

 <origin

 xyz="-0.00457048841401064 0.303831811417004 -

0.00202866410579916"

 rpy="0 0 0" />

 <mass

 value="0.0785942338762368" />

 <inertia

 ixx="0.0123841200738068"

 ixy="0.000187984913202727"

https://github.com/Comau/eDO_description
https://gitlab.com/aloha-reply

35

 ixz="-1.32683892634271E-06"

 iyy="7.01690345033622E-05"

 iyz="9.17416945099368E-05"

 izz="0.0123862261905615" />

 </inertial>

 <visual>

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

 <mesh

 filename="package://edo_sim/meshes/link_1.STL" />

 </geometry>

 <material

 name="">

 <color

 rgba="0.792156862745098 0.819607843137255 0.933333333333333

1" />

 </material>

 </visual>

 <collision>

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

 <mesh

 filename="package://edo_sim/meshes/link_1.STL" />

 </geometry>

 </collision>

 </link>

 <joint

 name="joint_1"

 type="continuous">

 <origin

 xyz="0.057188 0.0059831 0.13343"

 rpy="1.5708 6.9389E-16 -3.1416" />

 <parent

 link="base_link" />

 <child

 link="link_1" />

 <axis

 xyz="0 1 0" />

 </joint>

 <link

 name="link_2">

 <inertial>

 <origin

 xyz="-0.0168406485709407 0.071318237296396 -

0.0876822373080704"

 rpy="0 0 0" />

 <mass

 value="0.0785942338762368" />

 <inertia

 ixx="0.0122070242873091"

 ixy="0.000930596667670934"

 ixz="-0.0011486325666074"

 iyy="0.007576065624266"

 iyz="0.0059380539105297"

 izz="0.00505742538729646" />

 </inertial>

 <visual>

36

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

 <mesh

 filename="package://edo_sim/meshes/link_2.STL" />

 </geometry>

 <material

 name="">

 <color

 rgba="0.792156862745098 0.819607843137255 0.933333333333333

1" />

 </material>

 </visual>

 <collision>

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

 <mesh

 filename="package://edo_sim/meshes/link_2.STL" />

 </geometry>

 </collision>

 </link>

 <joint

 name="joint_2"

 type="continuous">

 <origin

 xyz="0 0.18967 0"

 rpy="0.94237 -0.4634 -0.11653" />

 <parent

 link="link_1" />

 <child

 link="link_2" />

 <axis

 xyz="-0.88847 0.2908 0.35504" />

 </joint>

 <link

 name="link_3">

 <inertial>

 <origin

 xyz="0.00457048841401063 0.0962524890074447

0.00395442197852662"

 rpy="0 0 0" />

 <mass

 value="0.0785942338762368" />

 <inertia

 ixx="0.0123841200738068"

 ixy="0.000187984913202718"

 ixz="1.32683892634266E-06"

 iyy="7.01690345033619E-05"

 iyz="-9.17416945099381E-05"

 izz="0.0123862261905615" />

 </inertial>

 <visual>

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

 <mesh

 filename="package://edo_sim/meshes/link_3.STL" />

37

 </geometry>

 <material

 name="">

 <color

 rgba="0.792156862745098 0.819607843137255 0.933333333333333

1" />

 </material>

 </visual>

 <collision>

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

 <mesh

 filename="package://edo_sim/meshes/link_3.STL" />

 </geometry>

 </collision>

 </link>

 <joint

 name="joint_3"

 type="continuous">

 <origin

 xyz="-0.024558 0.12737 -0.16578"

 rpy="0.97336 -0.36296 2.8253" />

 <parent

 link="link_2" />

 <child

 link="link_3" />

 <axis

 xyz="1 0 0" />

 </joint>

 <link

 name="link_4">

 <inertial>

 <origin

 xyz="-0.00422951158597114 -0.00395442197852627

0.255057059248813"

 rpy="0 0 0" />

 <mass

 value="0.0785942338762368" />

 <inertia

 ixx="0.0123841200738068"

 ixy="-1.32683892634285E-06"

 ixz="0.000187984913202718"

 iyy="0.0123862261905615"

 iyz="9.17416945099506E-05"

 izz="7.01690345033621E-05" />

 </inertial>

 <visual>

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

 <mesh

 filename="package://edo_sim/meshes/link_4.STL" />

 </geometry>

 <material

 name="">

 <color

 rgba="0.792156862745098 0.819607843137255 0.933333333333333

1" />

38

 </material>

 </visual>

 <collision>

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

 <mesh

 filename="package://edo_sim/meshes/link_4.STL" />

 </geometry>

 </collision>

 </link>

 <joint

 name="joint_4"

 type="continuous">

 <origin

 xyz="0.0088 -0.1588 0"

 rpy="-1.5708 0 0" />

 <parent

 link="link_3" />

 <child

 link="link_4" />

 <axis

 xyz="0 0 -1" />

 </joint>

 <link

 name="link_5">

 <inertial>

 <origin

 xyz="0.00422951158596777 -0.00395442197852616 -

0.360352489007445"

 rpy="0 0 0" />

 <mass

 value="0.0785942338762368" />

 <inertia

 ixx="0.0123841200738068"

 ixy="1.32683892634191E-06"

 ixz="0.000187984913202582"

 iyy="0.0123862261905615"

 iyz="-9.17416945099552E-05"

 izz="7.01690345033581E-05" />

 </inertial>

 <visual>

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

 <mesh

 filename="package://edo_sim/meshes/link_5.STL" />

 </geometry>

 <material

 name="">

 <color

 rgba="0.792156862745098 0.819607843137255 0.933333333333333

1" />

 </material>

 </visual>

 <collision>

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

39

 <geometry>

 <mesh

 filename="package://edo_sim/meshes/link_5.STL" />

 </geometry>

 </collision>

 </link>

 <joint

 name="joint_5"

 type="continuous">

 <origin

 xyz="0 0 -0.1053"

 rpy="3.1416 1.1102E-14 3.1416" />

 <parent

 link="link_4" />

 <child

 link="link_5" />

 <axis

 xyz="-1 0 0" />

 </joint>

 <link

 name="link_6">

 <inertial>

 <origin

 xyz="1.10581233290358E-05 -0.00932339385603209

6.35624315718574E-06"

 rpy="0 0 0" />

 <mass

 value="0.0279702497322662" />

 <inertia

 ixx="7.63464744598253E-06"

 ixy="1.89204959067221E-10"

 ixz="5.32970316039599E-09"

 iyy="1.45744912344428E-05"

 iyz="1.08958003890421E-10"

 izz="7.62871791498103E-06" />

 </inertial>

 <visual>

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

 <mesh

 filename="package://edo_sim/meshes/link_6.STL" />

 </geometry>

 <material

 name="">

 <color

 rgba="0.792156862745098 0.819607843137255 0.933333333333333

1" />

 </material>

 </visual>

 <collision>

 <origin

 xyz="0 0 0"

 rpy="0 0 0" />

 <geometry>

 <mesh

 filename="package://edo_sim/meshes/link_6.STL" />

 </geometry>

 </collision>

 </link>

40

 <joint

 name="joint_6"

 type="continuous">

 <origin

 xyz="-0.0039 0 0.1636"

 rpy="-1.5708 1.249E-14 0" />

 <parent

 link="link_5" />

 <child

 link="link_6" />

 <axis

 xyz="0 -1 0" />

 </joint>

</robot>

Through this model is described each joint and each link (end effector is not considered1),
including the base link (that is fixed). Each link is described in terms of origin (of relative
reference frame), orientation (of relative RF), inertia, mass, speed. Each joint is described in
terms of origin (of relative RF), orientation, rotation axis, joint limits (the range of the angles
that can be performed), speed limits. In other words, the links describe static features and the
joints include features that makes possible the motion control.

After creation of the model in URDF format, it is possible to import it in the ‘chain’ variable,

through the use of Chain function.

‘link’ is specified as ‘base_element_type’ and the model is ready to be used for the simulation.

Once the model is imported is possible to visualize a minimal structure representing the robot,
using the matplotlib library functions. The model can be verified by showing on a plot the
structure of the defined chain. Each joint shows its rotation axis exiting so is very intuitive to
understand if there are errors in the model. The results of the model created is reported below:

Figure 5.2: URDF model on RViz (visualization software)

41

Now it is possible to demonstrate the logic of the inverse kinematic solver on which is based
IKPy solver. The syntax of the function solver of inverse kinematics is:

Input (there are other inputs than these below maintained at default value):

Figure 4.4: xz plane view

Figure 4.5: xy plane view

Figure 4.6: yz plane view

42

- TARGET_POSITION: is the position in coordinates of the point that the robot has to
reach. The values have as reference the length of joints described by the model.

- TARGET ORIENTATION: is a unit vector, it defines the axis along the orientation axis
will be aligned. It is defined by the cosines of the angle between the vector and each
reference system axes.

- ORIENTATION_MODE: is the axis of the last joint reference system that will be aligned
with the unit vector defined in target_orientation.

Output:

- angles for each link (7), of which the first one is zero because the joint is modelled as
fixed. The other angles, if different from zero, have value limited in the range defined
in the URDF file.

The end effector is not considered in the model, due to the fact that it is not a real joint, instead
it is composed by more than one mobile part, and it is not possible to define it as revolute or
planar joint, just fixed. Considering that the logic of the orientation control is based on
alignment of the last defined joint rotation axis with the unit vector defined in
target_orientation, the end effector makes the model ambiguous in terms of orientation control.
In fact, the orientation of the end effector depends on the Joint 6 orientation (if we consider the
EE as a fixed joint). Since this fact we want the J6 will align its reference frame how we prefer
and to obtain this Joint 6 must be seen as the last joint.

When all the parameters are defined, it is possible verifying the angles in output on a plot that

shows a very minimal model. Some tests are performed to be evident the logic on which is

based the solver. First, the ‘zero’ position is showed, giving to the direct kinematic function all

angles set to zero.

An example of the algorithm is reported following:

import ikpy

import ikpy.inverse_kinematics

import numpy as np

#from pyedo import edo

#import time

import ikpy.utils.plot as plot_utils

#kinematic Chain

edosim =

ikpy.chain.Chain.from_urdf_file("/home/anna/catkin_ws/src/eDO_comau/robots/

edited_edo_sim.urdf")

#getting the position of your chain

positionchain=edosim.forward_kinematics([0] * 7)

print("posizione ad angoli nulli: ", positionchain[:3,3])

newpos=[0.2,6.58959642e-04,1]

print('new pos ', newpos)

newangle1=edosim.inverse_kinematics(newpos)

newangle=np.round(np.rad2deg((edosim.inverse_kinematics(newpos))))

print("angoli per raggiungere newpos: ",newangle)

43

positionangle=edosim.inverse_kinematics([7.04527514e-04, 6.58959642e-04,

1.02999907e+00])

print("angoli per raggiungere la posizione zero:

",np.round(np.rad2deg(positionangle)))

import matplotlib.pyplot

from mpl_toolkits.mplot3d import Axes3D

ax=matplotlib.pyplot.figure().add_subplot(111, projection='3d')

edosim.plot(positionangle, ax)

edosim.plot(newangle1, ax)

matplotlib.pyplot.show()

#myedo = edo("192.168.12.1")

#myedo.init_7Axes()

#time.sleep(1)

#myedo.disengage_std()

#time.sleep(5)

#myedo.calib_axes()

#time.sleep(1)

#myedo.move_joint(j1=0,j2=0,j3=0,j4=0,j5=34,j6=0)

44

6. Stereo-vision and depth acquisition

Human vision is one example of how the stereo-vision works. The perception of depth is due
to our brain’s ability in analyzing the difference between the two-dimensional images which
are projected of the retinas of the eyes. To extract 3-D information from a given scene, multiple
camera views of the same scene are required. These images can be captured using either a single
movable camera of an array of cameras. The depth of the real-world scenery can thus be
estimated by comparing the difference between the left and tight digital images captured by
each camera.

The two key aspect of computer stereo-vision are speed and accuracy. A lot of research has
been carried out to improve both the precision disparity maps and the execution speed of the
algorithm. Speed and precision are two desirable but conflicting properties, it is very
challenging to achieve both simultaneously. The algorithm execution can be improved with
future advances in hardware computational power.

6.1 Geometry and computer vision in stereo-vision: perspective Camera model

The perspective (or pinhole) camera model is the most commonly used geometric model to
describe the relationship between a 3D point p = [X, Y, Z]T in the Camera Coordinate System
(CCS) and its projection p = [x, y, z]T on the image plane π. An example of the perspective

camera model is shown in Figure 20 where o is the focus of the camera and the distance
between π and o is the focal length f.

p = [X/Z, Y/Z, 1] is an image point expressed in normalized coordinates. The ray originating
from o and going perpendicularly through π is known as the optical axis. o = [ou, ov]’ and the

intersection between π and the optical axis is the principal point in pixels. Since the distance z

between o and the image plane π is always equal to the focal length f, the relationship between

p and p is shown as:

�̅� =
𝑓

𝑍𝑙
𝑝𝑙

Figure 6.1

eq.1

45

Intrinsic parameters

Since the lens distortion does not exist in a perspective camera model, the transformation
from a projection point p on the image plane to a pixel p = [u, v]T in the Image Coordinate
System (ICS) is performed as follows:

u = Ou + sxx

v = Ov + syy

where sx and sy are the effective size measured in pixels per millimetre in the horizontal and
vertical directions, respectively. To simplify the expression of the intrinsic matrix K, two
notations fx = fsx and fy = fsy are introduced. Combining eq.1 and eq.2, a 3-D point p in the CCS
can be transformed to a pixel p in the ICS using Eq.3, where p̃ = [pT; 1]T = [u, v, 1]T denotes
the homogeneous coordinate of p = [u, v]T. It is to be noted that an arbitrary 3-D point lying on
the ray which goes from oc and through pc is always projected at p in the ICS. ou, ov, f, sx and
sy are five intrinsic parameters.

𝑧�̃� = 𝐾𝑝𝑙 = [
fx 0 Ou

0 𝑓𝑦 Ou

0 0 1

] [
𝑋𝑙

𝑌𝑙

𝑍𝑙

]

Given the matrix K (intrinsic matrix) an image point can be expressed in normalized coordinates
as follows:

�̂� = 𝐾−1�̃� =
�̅�

𝑓
=

𝑝𝑙

𝑧𝑙

Lens distortion To get a better image result, a lens is usually installed in front of the camera,
but it introduces distortion into the images. Optical aberration caused by the lens distorts
physically straight lines and makes them appear as curves in the images. Lens distortions can
be grouped into two main categories: radial and tangential. The presence of radial distortion is
due to the fact that the geometric shape of the lens affects the transmission of straight lines,
while tangential distortion occurs because the lens installed in front of the camera is not
perfectly parallel to the image plane. In practical experiments, image geometry is affected to a
much greater extent by radial distortion than by tangential distortion, and so the latter is always
neglected when correcting a distorted image. For calibration of a multi-camera system,
correction of lens distortion is usually performed before estimating the intrinsic and extrinsic
parameters. Radial distortion can be classified primarily in two ways (example shown in figure
22). It can be observed that radial distortions are symmetrical around the center of the image,
and the lines are no longer straight in distorted images. In barrel distortion, the magnification
of the image decreases with distance from the center of the image (the lines curve outward). In
contrast to barrel distortion, pincushion distortion pinches the image (the lines curve inward).
Fortunately, these two types of radial distortion can be corrected using eq.5, where p = [u, v]T is

eq.2

eq.3

eq.4

46

a pixel in the distorted image and pcorrected = [ucorrected; vcorrected]T is the displacement of p in the
corrected image.

- 𝑟 = ‖𝑝 − 𝑜‖2 is the distance from p to the center of the image.
- k1, k2, and k3 are three intrinsic parameters used to correct radial distortion, and can be

estimated using different checkerboard images.

𝑢𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = (1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6)(𝑢 − 𝑜𝑢) + 𝑜𝑢
𝑣𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = (1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6)(𝑣 − 𝑜𝑣) + 𝑜𝑣

Tangential distortion

Similar to radial distortion, the tangential distortion can be corrected, using intrinsic parameters
which can be estimated using several images containing a planar checkerboard pattern.
In practical experiments, radial and tangential distortions are usually corrected simultaneously.
the corresponding correction result of Figure 6.3 (a) is shown in Figure 6.3 (b), where the bent
checkerboard grids are now displayed linearly.

Figure 6.2

eq.5

Figure 6.3

47

The generic geometry of a binocular vision system is known as epipolar geometry. An example of
epipolar geometry is shown in Figure 6.4:

- 𝑂𝑙
𝑐 and 𝑂𝑟

𝑐 denote the focuses of the left and right cameras, respectively.
- 𝑝𝑤 = [𝑋𝑁 , 𝑌𝑤 , 𝑍𝑤] is a 3-D point in the World Coordinate System (WCS) and its

representations in the Left Camera Coordinate System (LCCS) and Right Camera
Coordinate System (RCCS) are pc

L = [Xc
L ; Yc

L; Zc
L]T and pc

R = [Xc
R ; Yc

R ; Zc
R]T,

respectively.
- ΠL and ΠR are two image planes. PW is projected on ΠL at pL = [xL; yL; fL]T and on ΠR

at pR = [xR; yR; fR]T, where fL and fR are the focuses of the left and right cameras,
respectively. ec

L and ec
R denote the left and right epipoles, respectively.

The plane identified by oc

L, oc
L and pW is known as an epipolar plane. The latter intersects each

plane in a line which is generally named as an epipolar line. The transformation from a 3-D
point in each CCS to its projection on the corresponding camera plane can be performed using
eq.6:

𝑝�̅� =
𝑓𝑙

𝑧𝑙
𝐶 𝑝𝑙

𝐶

𝑝𝑟̅̅̅ =
𝑓𝑟

𝑧𝑟
𝐶 𝑝𝑟

𝐶

𝑝𝑙

𝐶 𝑎𝑛𝑑 𝑝𝑟
𝐶 can be normalized as:

�̂�𝑙 =
𝑝𝑙

𝑐

𝑧𝑙
= 𝐾𝑙

−1�̃�𝑙

�̂�𝑟 =
𝑝𝑟

𝑐

𝑧𝑟
= 𝐾𝑟

−1�̃�𝑟

where 𝐾𝑙 and 𝐾𝑟 denote the intrinsic matrices of the left and right cameras, respectively.
p̃l= [p̃l

T; 1]T and p̃= [p̃r
T; 1]T represent the homogeneous coordinates of the 2-D points pl= [ul;

vl]T and pr= [ur; vr]T, respectively. Before moving on to analyze the extrinsic parameters of an

Figure 6.4

eq.6

eq.7

48

epipolar geometry, it is introduced a matrix R Є Ɍ3x3 and a translation vector t Є Ɍ3x1 to describe
the transformation from 𝑝𝑙

𝐶 to 𝑝𝑟
𝐶 (eq.8).

𝑝𝑟
𝐶 = 𝑅𝑝𝑙

𝐶 + 𝑡

Estrinsic parameters

E depicts the relationship between each pair of normalized image points pl and pr lying on the
same epipolar plane. It is important to note here that E has five degrees of freedom (both R and
t have three degrees of freedom, but the overall scale ambiguity causes the degrees of freedom
to be reduced by one). Hence, in theory, E can be estimated with at least five pairs of pc

l and
pc

r.

�̂�𝑟
𝑇𝐸�̂�𝑙 = 0

However, due to the non-linearity of E, its estimation using five pairs of correspondences is
always intractable. Therefore, E is commonly estimated with at least eight pairs of pc

l and pc
r.

The essential matrix creates a link between each pair of corresponding 3-D. When the intrinsic
matrix of each camera is known, the relationship between each pair of corresponding 2-D points
pl = [ul; vl]T and pr = [ur; vr]T can also be established. This process relates to a so-called
fundamental matrix. It can be thought of as a generalization of the essential matrix, where the
assumption of calibrated cameras is removed. The fundamental matrix F Є Ɍ3x3 is defined as:

𝐹 = 𝐾𝑟
−𝑇𝐸𝐾𝑙

−1

�̃�𝑟
𝑇𝐾−𝑇𝐸𝐾𝑙

−1𝑝𝑙 = �̃�𝑟
𝑇𝐹�̃�𝑙 = 0

F (Eq. 9.1) has seven degrees of freedom: five come from E (Eq. 8) and the other two from 𝐾𝑟
and 𝐾𝑙 . The most commonly used algorithm for estimating E and F is the so-called "eight-
point algorithm". This algorithm is based on the scale invariance of E and F, i.e., 𝜆𝐸𝑝𝑟

𝑐𝑇𝐸𝑝𝑙
𝑐 =

0 and 𝜆𝐹𝑝𝑟
𝑐𝑇𝐹𝑝𝑙

𝑐 = 0, where ʎE and ʎF are different from zero. By setting an element in E and
F to 1, there are eight unknown elements that need to be estimated, and this can be done using
at least eight matching pairs. If the intrinsic matrices Kl and Kr of the two cameras are known,
the eight-point algorithm only needs to be run once to estimate E or F, because the other can be
easily processed using the relationship between them.

6.2 Stereo rectification

When using a pair of pinhole cameras to acquire images from multiple views, the main task of
3D reconstruction is to determine each pair of corresponding points between the left and the
right images. For a not calibrated stereo vision system, finding the correspondence pairs usually
involves a 2-D search, with is a computationally intensive task. Therefore, an image

eq.7

eq.8

eq.9.1

eq.9.2

49

transformation process known as Stereo Rectification is always performed beforehand to reduce
the dimension of the correspondence search. Each pair of conjugate epipolar lines becomes
collinear and parallel to the horizontal image axis, as shown in figure 6.5:

Where πL’ and πR’ are rectified image planes. After the rectification process, the left and right

images appear as if they were taken using a pair of parallel cameras. Hence, searching for the
correspondence pairs is simplified to a one dimensional (1-D) process.14

6.3 Basic Stereo Vision Model

A well-calibrated binocular system can be represented by a basic stereo vision model, as shown
in figure:

The latter can be regarded as a specialization of the epipolar geometry, where the left and the
right cameras are perfectly parallel to each other and the axis Xl

c and the axis Xr
c are collinear.15

Figure 6.5

Figure 6.6

50

6.4 Approximation of theoretical entities

In general the relationship between a disparity (d) and depth (z) can be parametrized as seen in
equation:

𝑧 =
𝑓 ∗ 𝐵

𝑑

Where f is the focal length of the imaging sensor, B is the desired depth units.

Additionally, the derivative 𝜕𝑧

𝜕𝑑
 , substituted in the equation generates an error:

|𝑒1 | =
𝑧2

𝑓 ∗ 𝐵
∗ |𝑒2 |

Where 𝑒1 is the error on depth and 𝑒2 is the error on the disparity. It is usually constant for
stereo system. It stems from imaging properties and the quality of the matching algorithm, so
|𝑒2 | is treated as a constant.

Classical stereoscopic depth systems struggle with resolving depth on texture-less surfaces. A
plethora of techniques have been developed to solve this problem, from global optimization
method to semi-global propagation techniques, to plane sweeping methods.

These techniques all depend on some prior assumptions about data in order to generate correct
depth candidates. In the Intel RGBD depth cameras there is instead an active texture projector
available on the module. This technique was used by classical stereo systems.

Such systems do not require a priori knowledge of the pattern’s structure, as they are used
simply to generate texture which makes image matching unambiguous.

To create a favorable pattern for optical configuration and matching algorithm, one can perform
optimization over a synthetic pipeline that models a projector design. By modeling both the
optical and the physical system’s constraints and realistic imaging noise, one can obtain better

texture projectors.

6.5 Depth camera: Intel RealSense D435i

A depth camera is a kind of sensor that can directly collect distance information between an
object and the camera. The RealSense D435i is a low-cost depth camera that is currently in
widespread use. Data acquisition produces two images simultaneously: RGB image and depth
images. The quality of RGB image is good, whereas the depth image typically has many holes.16

51

The Intel RealSense D345i (shown in figure) places an IMU into our cutting-edge stereo depth-
camera. With an Intel module and vision processor in a small form factor, this camera is a
powerful complete package which can be paired with customizable software for a depth camera
that is capable of understanding its own movement. The D435i is an ideal camera for motion
application, the combination of a wide field of view and global shutter sensor on the camera
make it the preferred solution for application such as robotic navigation and object recognition.
The wider field of view allows a single camera to cover more area, resulting in less “blind

spots”. The global shutter sensors provide great low light sensitivity, allowing robots to
navigate spaces with the light off.17

Setup:

The hardware required includes the D435i device to be calibrated, a USB cable, and a computer
running Windows or Ubuntu. Inter RealSense SDK works can be used through python
language, a python wrapper is available and open-source. The calibration script is included in
the SDK available on GitHub (table below).

Resource URL

SDK homepage https://www.intelrealsense.com/developers#downloads

LibRealSense

Githhub

https://github.com/IntelRealSense/librealsense

SDK

documentation

https://github.com/IntelRealSense/librealsense/tree/master/doc

Python wrapper https://github.com/IntelRealSense/librealsense/tree/master/wrappers/python

Figure 6.7: Depth camera Intel RealSense D435i

52

Calibration Device with the Python Calibration Script:

The general process to calibrate a device with the Python Calibration Script starting the script
to capture IMU data in 6 different positions, then computing the parameters and writing the
result to the camera.

- Main features:

Use environment: Indoor/Outdoor

Image sensor technology: Global Shutter

Ideal range: 0.3 m to 3 m

- Depth features:

Depth technology: Active IR Stereo

Minimum depth distance (Min-Z) at max resolution: about 28 cm

Depth Accuracy: <2% at 2 m1

Depth Field of View (FOV): 87° × 58°

Depth output resolution: Up to 1280 × 720

Depth frame rate: Up to 90 fps

RGB frame resolution: 1920 × 1080

RGB frame rate: 30 fps

RGB sensor technology: Rolling Shutter

RGB sensor FOV (H × V): 69° × 42°

RGB sensor resolution: 2 MP

- Main Components:

Camera module: Intel RealSense Module D430 + RGB Camera

Vision processor board: Intel RealSense Vision Processor D4 Physical

Form factor: Camera Peripheral

Length × Depth × Height: 90 mm × 25 mm × 25 mm

Connectors: USB-C* 3.1 Gen 1*

Recording data Compute calibration Write calibration on device

53

One 1/4-20 UNC thread mounting point.

Mounting mechanism:

Two M3 thread mounting points.

In order to calibrate the system some distances are taken into account:

During tests, the RealSense camera is employed to acquire human gestures. Each image (RGB
and depth) is used for the analysis. As first, the RGB image is used to compute two-dimensions
movement; depth image information has been integrated successfully in order to transform the
movement from 2D to 3D.

Deep learning techniques are used to process the images. A comparison with classified human
poses is performed, using two neural networks pretrained. In order to optimize the performance,
a library of git with a pre-existing class of images and trained neural network is chosen. In the
next chapter, the library is described deeply.

Figure 6.8: measures of d-camera

54

7. Image processing: Openpose

OpenPose has represented the first real-time multi-person system to jointly detect human
body, hand, facial and foot key points (in total 135 key points) on a single image.

Runtime analysis: in the graph below is shown the comparison between 3 available pose
estimation libraries (assuming the same hardware conditions): Openpose, Alpha-Pose (fast
Pytorch) and Mask R-CNN. The openpose runtime is constant, while the runtime of Alpha-
Pose and Mask R-CNN grow linearly with the number of people. It is clear that openpose
has better performance in case of multi detection.

Main capabilities:

1. 2D real-time multi-person key point detection:

- 15,18 or 25 key points, including 6 foot key points. Runtime is invariant to number of
detected people.

- 2x21 key point hand estimation: runtime depends on number of detected people.

- 70-keypoint face estimation: runtime depends on number of detected people.

2. 3D real-time single person key point detection:
- 3D triangulation from multiple single views
- Synchronization of Flir cameras handled
- Compatible with Flir/Point Grey cameras.

Calibration (3D) toolbox: estimation of distortion, intrinsic and extrinsic camera
parameters.

Graph 7.1: comparison between CNN-based library

55

How it works:

Input can be an image or video, capturing real time by webcam, Flir/Point Grey, IP camera,
and support to add your own custom input source (i.e. depth camera figure 28)

Output is input frame + keypoints get out from the elaboration; keypoints can be saved in file
(JSON, XML, YML).

Operating systems: Ubuntu (20,1816,14), Windows (10,8), MaxOSX, Nvidia TX2.

Hardware compatibility: CUDA (Nvidia GPU), OpenCL (AMD GPU), and non-GPU (CPU-
only) versions.

In the specific case of this project, GPU is not compatible with the requested one. Until now,
only-CPU version is used and the implementation is done in non-real time. Output skeleton is
produced in some seconds (time to elaborate the image can range from 12 to 50 sec).

In order to accomplish to this requirement during the test I tried to launch Amazon services
EC2 instances, creating it with the required hardware.

7.1 Amazon AWS

Amazon Web Services offers a broad set of global cloud-based products including compute,
storage, databases, analytics, networking, mobile, developer tools, management tools, IoT,
security, and enterprise applications: on-demand, available in seconds, with pay-as-you-go
pricing. From data warehousing to deployment tools, directories to content delivery, over 175

Figure 7.1: output OpenPose elaboration

56

AWS services are available. New services can be provisioned quickly, without the upfront
capital expense. This allows enterprises, start-ups, small and medium-sized businesses, and
customers in the public sector to access the building blocks they need to respond quickly to
changing business requirements. This white paper provides you with an overview of the
services of the AWS Cloud and introduces you to the services that make up the platform.

In 2006, Amazon Web Services (AWS) began offering IT infrastructure services to businesses
as web services—now commonly known as cloud computing. One of the key benefits of cloud
computing is the opportunity to replace upfront capital infrastructure expenses with low
variable costs that scale with your business. With the cloud, businesses no longer need to plan
for and procure servers and other IT infrastructure weeks or months in advance. Instead, they
can instantly spin up hundreds or thousands of servers in minutes and deliver results faster.

Today, AWS provides a highly reliable, scalable, low-cost infrastructure platform in the cloud
that powers hundreds of thousands of businesses in 190 countries around the world.

7.1.1 Amazon EC2 instances

Cloud computing is the on-demand delivery of compute power, database, storage, applications,
and other IT resources through a cloud services platform via the Internet with pay-as-you-go
pricing. Whether you are running applications that share photos to millions of mobile users or
you’re supporting the critical operations of your business, a cloud services platform provides

rapid access to flexible and low-cost IT resources. With cloud computing, you don’t need to
make large upfront investments in hardware and spend a lot of time on the heavy lifting of
managing that hardware. Instead, you can provision exactly the right type and size of computing
resources you need to power your newest bright idea or operate your IT department. You can
access as many resources as you need, almost instantly, and only pay for what you use.

Cloud computing provides a simple way to access servers, storage, databases and a broad set
of application services over the Internet. A cloud services platform such as Amazon Web
Services owns and maintains the network-connected hardware required for these application
services, while you provision and use what you need via a web application.

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides secure, resizable
compute capacity in the cloud. It is designed to make web-scale computing easier for
developers. The simple web interface of Amazon EC2 allows you to obtain and configure
capacity with minimal friction. It provides you with complete control of your computing
resources and lets you run on Amazon’s proven computing environment. Amazon EC2 reduces

the time required to obtain and boot new server instances (called Amazon EC2 instances) to
minutes, allowing you to quickly scale capacity, both up and down, as your computing
requirements change. Amazon EC2 changes the economics of computing by allowing you to
pay only for capacity that you actually use. Amazon EC2 provides developers and system
administrators the tools to build failure resilient applications and isolate themselves from
common failure scenarios.

https://aws.amazon.com/ec2/

57

Instance Types:

• On-Demand Instances—With On-Demand instances, you pay for compute capacity by the hour
with no long-term commitments. You can increase or decrease your compute capacity
depending on the demands of your application, and only pay the specified hourly rate for the
instances you use. The use of On-Demand instances frees you from the costs and complexities
of planning, purchasing, and maintaining hardware and transforms what are commonly large
fixed costs into much smaller variable costs. On-Demand instances also remove the need to buy
“safety net” capacity to handle periodic traffic spikes.

• Reserved Instances—Reserved Instances provide you with a significant discount (up to 75%)
compared to On-Demand instance pricing. You have the flexibility to change families,
operating system types, and tenancies while benefitting from Reserved Instance pricing when
you use Convertible Reserved Instances.

• Spot Instances—Spot Instances are available at up to a 90% discount compared to On-Demand
prices and let you take advantage of unused Amazon EC2 capacity in the AWS Cloud. You can
significantly reduce the cost of running your applications, grow your application’s compute

capacity and throughput for the same budget, and enable new types of cloud computing
applications.
When you launch an instance, the instance type that is specified determines the hardware of the
host computer used for your instance.
Each instance type offers different compute, memory and storage capabilities and is grouper in
an instance family based on these capabilities. Select an instance type based on the requirements
of the application or software that you plan to run on your instance.
Amazon EC2 provides each instance with a consistent and predictable amount of CPU capacity,
regardless of its underlying hardware. EC2 dedicates some resources of the host computer, such
as CPU, memory and instance storage, It shares other resources of the host computer, such as
network and disk subsystem, among instances.
The minimum performance from a shared resource provided by each instance can be higher or
lower.
Ec2 provides a wide selection of instance types optimized for different use cases.
There is an instance type available for free trial. For this one is not possible to choose a
dedicated GPU hardware; P and G instance types are specific for Machine Learning
application.18

Each instance family (P and G) includes instance types, and each instance type includes
instances with different sizes. Each instance has a certain vCPU count, GPU memory, system
memory, GPUs per instance and network bandwidth. A full list of all available options is shown
in the figure 7.2:

https://aws.amazon.com/ec2/purchasing-options/reserved-instances/
https://aws.amazon.com/ec2/purchasing-options/spot-instances/

58

The highest performing deep learning training instance (P4) provides access to NVIDIA V100
GPUs based on NVIDIA Ampere architecture. You can also launch a multi GPUs per instance
with 8 A100 GPUs with 40 GB of GPU memory per GPU, 96 vCPU and 400 Gbps network
bandwidth for record setting training performance. P2 instances give you access to NVIDIA
K80 GPUs based on the NVIDIA Kepler architecture. Kepler's architecture is a few generations
old, therefore they’re not the fastest GPUs around. They do have some specific features such
as full precision support that makes them attractive and cost-effective for high performance
computing (HPC) workloads that rely on the extra precision. P2 instances can be of 3 different
sizes:

- P2.xlarge (1 GPU)
- P2.8xlarge (8 GPUs)
- P2.16xlarge (16 GPUs)

The NVIDIA K80 is an interesting GPU. A single NVIDIa K80 is actually two GPU on a
physical board, which NVIDIA calls dual-GPU design. Launching an instance of p2.xlarge
consists in the choice of what of these two GPU must be on K80 board.
P2 instance features:

➔ GPU generation: NVIDIa Kepler
➔ Supported precision types: FP64, FP32
➔ GPU memory: 12 GB
➔ GPU interconnect: PCIe

Prior to the launch of amazon EC2 G4 instances, P2 were a recommended cost-effective deep
learning training instance type. Since the launch of G4 instances, P2 continues to be cost-
effective, but without several features such as support for mixed-precision training and reduced
precision inference improved with NVIDIA Ampere architecture.
Without optimized software, there is a risk of under-utilize of the hardware resources provided.
A service highly recommended is AWS Deep Learning AMIs. By using it what is done is a test
end to end giving the best performance.

Figure 7.2

59

AWS Deep Learning AMI: the DLAMI is one-stop shop for deep learning in the cloud. This
customized machine instance is available in most Amazon EC2 region for a variety of instance
types, from a small CPU-only instance to the latest high-powered multi-GPU instances. It
comes preconfigured with NVIDIA CUDA and NVIDIA cuDNN, as well as the latest releases
of the most popular deep learning frameworks.

60

8. Test phase: 2D pose estimation

Hardware:

- e.DO robot

- Camera (generic camera, no depth acquisition are needed)

- GPU: Intel HD Graphic 630

Software:

- OS: Ubuntu 18.04

- Environment: ROS Kinetic

- Programming language: Python (3.6 or higher)

- Main Git libraries:

◼ SDKs: pyedo, realsense

◼ Solver: tinyIK, IKPy

◼ Image processing: openCV

◼ CNN/Deep Learning elaborations: OpenPose

8.1 Test expected result

The aim of this project is to implement a robotic system able to perform simple task, as pick –
place. The idea is to program this kind of actions without traditional programming approach.

Learning from demonstration is the approach that make possible to program a robot, without
any programming skills. Starting from this idea, the goal of the thesis is to produce a robot that
can be configured by recognizing objects or human pose, with the ability to move following its
perception. In this phase the goal is to reproduce a 2D movement.

8.2 Pose estimation from detected key points

The pose estimation was developed starting from a 2D estimation pose: for this goal could be
used RealSense acquisition or pre-stored images. Third coordinate is not considered in this
phase.

Starting from 2D pose, the final development for 3D movement was done; in this case the
RealSense acquisition is needed because depth acquisition is fundamental to perceive the depth
information. These files give the information about third coordinate of the space necessary for
the implementation of 3D movement. Moreover, it makes more accurate the pose estimation
and as a consequence the pose imitation.

In order to perform a bi-dimensional estimation some analytical computation must be
considered: the acquisition system reference frame is not corresponding to the human reference

61

frame or the robot reference frame. The transformation matrix used for moving the coordinates
from the acquisition system RF to the human one are the following:
Rotational matrix (body→camera)

 R body→cam = [
1 0 0
0 0 −1
0 1 0

]

Translation vector (body→camera)

t body→cam =[
𝑛𝑥

𝑛𝑦
0

]

Transformation matrix (body→camera)

T body→cam = [

1 0 0 𝑛𝑥

0 0 1 0
0 −1 0 𝑛𝑦

0 0 0 1

]

8.3 Joint models computation

- J2 computation

In order to compute the joint position for joint 2, basic inverse kinematic solver is used: tinyIK.
It is a simple solver that use a model created by the user, based on the specified rotational axis
and length for each joint. The first joint specified is assumed attached at the base of the chain.

Using tinyIK the model of the first joint is defined as follows:

ZCAM

YCAM

XCAM

Y body
X body

Z body

Figure 8.1: reference frames considered

62

- Model = tinyIK.Actuator([‘y’, [0, 0, ns]) where ns = norm(neck-shoulder)

- Target position = T * (sx, sy, 0) camera rf (pixels) = (sx, sy, 0) body rf (pixels)

- Output angle = joint position to reach the shoulder detected point = ‘j2’

This last computation get out the angle joint position to be set for the robot movement. Through
using pyedo SDK the joint position is communicated and the robot performs the movement
with the aim to reach this joint position.

- J3 computation

In order to compute the joint position for joint 3 a rotation of body reference system is taken
into account (j2 around y). First, a Transformation matrix must be considered, because of the
previous joint rotation.

In fact, pyedo SDK considers the configuration angle as relative rotation: each joint position is
referred to the previous joint rotation:

- Transformation matrix =[

𝑐𝑜𝑠(𝐽2) 0 − 𝑠𝑖𝑛(𝐽2) 0
0 1 0 0

𝑠𝑖𝑛(𝐽2) 0 𝑐𝑜𝑠(𝐽2) 𝑛𝑠

0 0 0 1

]

- Model = tinyIK.Actuator([‘y’, [0, 0, se]) where se = norm(shoulder-elbow)

- Target position = T * T1 * (ex, ey, 0) camera rf = T1 * (sx, sy, 0) body rf

- Output angle = joint position to reach the elbow detected point = j3

J5 computation

For computing the joint position for third joint previous rotation are taken into account (j2 and
j3). As first transformation matrix is computed:

- Transformation matrix = [

𝑐𝑜𝑠(𝐽2 + 𝐽3) 0 − 𝑠𝑖𝑛(𝐽2 + 𝐽3) 𝑛𝑠 ∗ 𝑠𝑖𝑛(𝐽3)

0 1 0 0
𝑠𝑖𝑛(𝐽2 + 𝐽3) 0 𝑐𝑜𝑠(𝐽2 + 𝐽3) −𝑠𝑒 − 𝑛𝑠 ∗ 𝑐𝑜𝑠(𝐽3)

0 0 0 1

]

- Model = tinyIK.Actuator([‘y’, [0, 0, ew]) where ew = norm(elbow-wrist)

- Target position = T2 * T * (wx, wy, 0) camera rf = T2 * (ex, ey, 0) body rf

- Output angle = joint position to reach the wrist detected point = j5

63

An example of the output of the script used for the angle computation is reported below:

2D

neck, shoulder, elbow, wrist (CAMERA rf)

n = np.array([652.22235, 497.15414, 0])

s = np.array([507.69153, 497.20465 , 0])

e = np.array([347.42737 ,434.09454, 0])

w = np.array([189.74858, 323.7846 , 0])

print("neck CAM: ", n)

print("shoulder CAM: ", s)

print("elbow CAM: ", e)

print("wrist CAM: ", w)

neck, shoulder, elbow e wrist (CAMERA rf) homogeneous coordinates

nq = np.array([n[0],n[1],n[2], 1])

sq = np.array([s[0],s[1],s[2], 1])

eq = np.array([e[0],e[1],e[2], 1])

wq = np.array([w[0],w[1],w[2], 1])

print("n in omogenee CAM: ",nq)

print("s in omogenee CAM: ",sq)

print("e in omogenee CAM: ",eq)

print("w in omogenee CAM: ",wq)

nq = [n[0],n[1],0, 1]

sq = [s[0],s[1],0, 1]

eq = [e[0],e[1],0, 1]

wq = [w[0],w[1],0, 1]

print("n in omogenee CAM: ",nq)

print("s in omogenee CAM: ",sq)

print("e in omogenee CAM: ",eq)

print("w in omogenee CAM: ",wq)

Rotation of 90 degree about x axis

#print("Matrice di Rotazione R(x,+90) = \n", R)

New origin coordinates ---> {xcamera(neck), ycamera(neck)}

T = np.array([[1,0,0,-n[0]], [0,0,1,0], [0,-1,0,n[1]],[0,0,0,1]])

Roto-traslation

print("Matrice di Roto-Traslazione T =\n ", T)

nr0 = np.dot(T,nq)

sr0 = np.dot(T,sq)

er0 = np.dot(T,eq)

wr0 = np.dot(T,wq)

print("Origin coordinates BODY: \n", nr0[0:3])

print("Shoulder coordinates BODY: \n", sr0[0:3])

print("Elbow coordinates BODY: \n", er0[0:3])

print("Wrist coordinates BODY: \n", wr0[0:3])

ns = np.linalg.norm(nr0-sr0)

m1 = tinyik.Actuator(['y', [0,0,ns]])

m1.ee = sr0[0:3]

a1 = m1.angles

64

T1=np.array([[cos(a1), 0, -sin(a1), 0],[0,1,0,0], [sin(a1), 0, cos(a1), -

ns], [0,0,0,1]])

print("origin model s-e: \n", np.round(np.dot(T1,sr0)))

se = np.linalg.norm(sr0-er0)

m2 = tinyik.Actuator(['y', [0,0,se]])

er1 = np.dot(T1,er0)

m2.ee = er1[0:3]

a2 = m2.angles

print(er0)

t = np.array([0,0,se])+[0,0,ns*cos(a2)]

print(t)

T2 = np.array([[cos(a2+a1), 0, -sin(a2+a1), ns*sin(a2)],[0,1,0,0],

[sin(a1+a2), 0, cos(a1+a2), -se-ns*cos(a2)], [0,0,0,1]])

print(T2)

print("origin model e-w: \n", np.round(np.dot(T2,er0)))

ew=np.linalg.norm(er0-wr0)

m3 = tinyik.Actuator(['y',[0,0,ew]])

ew2 = np.dot(T2,wr0)

m3.ee = ew2[0:3]

a3 = m3.angles

print("angle between z-ns: \n", np.rad2deg(a1))

print("angle between ns-se: \n", np.rad2deg(a2))

print("angle between se-ew: \n", np.rad2deg(a3))

The output skeleton obtained from the script is shown in figure 8.2:

Figure 8.2: output skeleton

92.41°

-57.41°

-44.18°

65

Considering the pixel coordinate information extracted by OpenPose, the angle between each
joint is computed. Consequently, these values are sent to the robot in order to obtain the
configuration demonstrated. The function used to communicate the values to the robot is the
move_joint() set by pyedo SDK (chapter 4).

This function expects the value of the relative angular position starting from the first joint
(absolute reference frame).

move_joint(ovr, j1, j2, j3, j4, j5, j6, j7)

where:

- ovr: speed of movement (% of maximum possible value)

- jn (n=1,…,6): rotating joints; same rotation axis (zrobot) for j2, j3, j5, same rotation axis

(yrobot) for j1, j4, j6.

- j7: gripper opening

8.4 Test result: 2D pose imitation

The test consist of few steps:

1. Acquisition of the pose
2. Detection of key points
3. Skeleton and joint angles computation
4. Programming of the pose on the robot

On the left is reported the input images, used as demonstration of the pose. The skeleton
computed after key points detection is overlapped on input image.On the right is reported the
response of the robot to the pose demonstrated. After angle computation the robot is
controlled in joint configuration through these parameters:

 Figure8.3: Pose demonstration Figure 8.4:: Robot imitation

66

Figure 8.5: Pose demonstration Figure 8.6: Robot imitation

Figure 8.7: Pose demonstration Figure 8.8: Robot imitation

67

Figure 8.9: Pose demonstration Figure 8.10: Robot imitation

Figure 8.12: Robot imitation
Figure 8.11: Pose demonstration

68

Figure 8.13: Pose demonstration

Figure 8.15: Pose demonstration

Figure 8.14: Robot imitation

Figure 8.16: Robot imitation

69

The test have reported some distinctive characteristics, useful to study a solution for next steps.

In the tests performed:

Elaboration frequency is approximately 1/50 (time for image processing and key point
recognition).

Factors influencing processing time:

1) Partial body view (torso and face only).

2) Weak contrast between body and background

3) Objects other than the object of interest present in the acquisition environment

Taking into account the results of these tests and considering the intrinsic characteristics of the
system, the next step is to perform a demonstration in 3-dimensions in order to consider the
total chain.

70

9. Test phase: 3D pose estimation

Starting from 2D implementation, the aim is to extend the movement imitation to 3D case. The
main variation from 2D case is the input image: at this point the acquisition method is
mandatory to be a depth camera. Depth sensibility is needed to integrate the third coordinate.

9.1 Pose estimation from detected key points

The robot chain is characterized by 6 joints. Each joint is rotational and linked to the next joint:
each angle position is relative to the previous joint angular position. Computation must be
referred to the previous joint orientation.

Reference systems

Body:

The origin of the body reference frame is considered on neck (position keypoint detected by
openpose)

- z axis direction: UP
- y axis direction: BACK
- x axis direction: RIGHT
-

Robot:

The origin of the robot reference frame is considered on the fixed base joint (beginning of joint
1)

- z axis direction: UP
- y axis direction: BACK
- x axis direction: RIGHT

 Figure 9.1: body reference system from different point of views. The selected one is analogue to the
robot reference system

71

Considering the reference shown in figure, some assumption can be done to put in evidence the
analogy between the human chain and the robot chain. In the following table are explained the
association of each human joint (neck-shoulder, shoulder-elbow, elbow-wrist) to the robot ones.
The human links are three, but able to performs rotation about more than one rotation axis. By
this assumption is possible to refer one human joint to more than one robot joint because of the
movements of the human one can be reproduced in robot thanks to the composition of two
joints rotation.

Joint Rotation axis Movement description Origin

J1 z n-s (piano xy) Neck (n)

J2 y n-s (piano xz) Neck (n)

J3 y s-e (piano xz) Shoulder (s)

J4 z s-e (piano xy) Shoulder (s)

J5 y e-w (piano xz) Elbow (e)

J6 z e-w (piano xy) Elbow (e)

(nx, ny, nz) = neck coordinates = n

(sx, sy, sz) = shoulder coordinates = s

(ex, ey, ez) = elbow coordinates = e

(wx, wy, wz) = wrist coordinates = w

Figure 9.2: robot reference system

z

x

72

The computation of each joint position:

- j2, j3, j5 = rotation in xz plane, about y axis.
x and z coordinates are estimated from RGB image.

- j1, j4, j6 = rotation in xy plane, about z axis.
x coordinate is estimated from RGB image;
y coordinate is estimated from depth image.

9.2 Image processing in depth acquisition

Depth RGB camera get out two kinds of acquisition; these two outputs have different dimension
and resolution. Following the logic of 2D movement the RGB acquisition is used to detect the
key points (neck-shoulder-wrist) coordinates. These coordinates are expressed in pixels.

Depth acquisition is used to estimate the 3rd coordinate. The information about it is linked to
RGB scale expressing the depth vision of the camera. Depth is a color mapped information
depending on the setting RGB scale.

The RGB values are not comparable to the pixel measurement unit, some trials have been
performed but the relevance of the plane 2D movement results greater than the depth perception
and response.

For this reason, the coordinates had to be translated in a univocal measurement system, in order
to obtain the same results independently on the perception of the camera.

Considering a pixel, defined by

- 3 coordinates: two coordinates used to define 2D position and one is used to express the
distance from acquisition reference frame.

- 1 RGB value: is a 1x3 vector, with elements linked to the intensity of Red Green Blue
color to be associated.

Assuming as RF the body, each pixel is considered referred to the neck key point (considered
at zero position).

Each key point (shoulder, elbow, wrist) coordinate is linked to the neck relative coordinate as
scalar distance. Now each joint movement is considered, so the distances are viewed on two
different planes to consider also movements on 3rd direction.

As in the following figure (33), robot joints and human arm joints are associated by analogy.
The human arm reference frame is referring to the robot reference frame. Starting from these
assumptions, it is possible to compute the movement for the robot starting from the human
movement.

73

Assuming the robot configuration, the joint analogy on the human arm is:

j1 = torso

j2 = neck-shoulder

j3 = shoulder-elbow moving around y

j4 = shoulder-elbow moving around z

j5 = elbow-wrist moving around y

j6 = elbow-wrist moving around z

8.3.3 Inverse kinematics solution

Figure 9.3

Figure 9.4

74

In order to compute the angle configuration for the robot the first analysis is about the
movement in two dimension. Once this analysis gets the resulting angle the same procedure is
applied on the other plan of movement. The joints mainly included in this phase are the first 5
joints. The sixth joint is not fundamental for the imitation of the pose because its main role is
giving the direction of arrival to the gripper (last joint).

In order to compute the joint position for each joint, a basic inverse kinematic solver (tinyIK)
is used. It is a simple solver where the model can be created specifying the rotation axis and the
lenght of the rotating joint. This phase is the same of the two-dimension experiment. The first
joint specified is assumed attached at the base of the chain.

Some assumptions to have the arm pointing up as ‘zero’ configuration:

Torso rotation = j1 = 0

Neck-shoulder rotation around y = j2 = 0 *

Shoulder-elbow rotation around y = j3 = angle3 - j2

*(if not compensated the joint j2 goes always to -90° with respect to vertical axis)

The model for each joint is expressed in the robot reference system, relative to the rotation of
previous joint.

The joint1 is referring to the absolute robot reference frame. The joint from 2 to 6 are
referring to the RF rotated about rotation axis and of the angle of the previous joint/joints. The
angle of the joints having the same rotation axis is summed together with the others. In this
sense the total movement is the composition of the movement on two planes (two different
rotation axis). The joints j2, j3 and j5 have rotation axis ‘yrobot’. The joints j1, j4, j6 have

rotation axis ‘zrobot’. The change of reference frame is expressed by transformation matrices

that consider the rotation and the length of each joint. Steps to compute each angle final
position are:

1. Projection of the joint in new rotated RF
2. Consideration of the Target position as coincident with the origin of the next joint (end

point of the actual joint).
3.

9.3 Robot joint models analogy with human joints

J1:

#model J1

ns_norm = np.linalg.norm(n_cm-s_cm)

ns = [0,0,ns_norm,1]

print("starting pose: \n", ns)

m1 = tinyik.Actuator(['z', ns[0:3]])

target1 = np.array([s_cm[0],s_cm[1],0])

print("\n target point1 xz: \n", target1)

m1.ee = target1

75

a1 = m1.angles

print("\n J1 =", np.rad2deg(a1))

J2:

#model J2

ns_rot = np.dot(R1,ns)

print("\n starting pose after J2: \n", ns_rot)

m2 = tinyik.Actuator(['y', ns_rot[0:3]])

target2 = np.array([s_cm[0],0,s_cm[2]])

print("\n target point2 xy: \n", target2)

m2.ee = target2

a2 = m2.angles

print("\n J2 =", np.rad2deg(a2))

J3:

#model J3

es_norm = np.linalg.norm(e_cm-s_cm)

es = [0,0,es_norm,1]

e_srf = np.dot(T12,e_cm)

m3 = tinyik.Actuator(['y', es[0:3]])

target3 = np.array([e_srf[0], 0, e_srf[2]])

print("target point 3 xz: \n", target3)

m3.ee = target3

a3 = m3.angles

print("\n J3 = ", np.rad2deg(a3))

J4:

es_rot = np.dot(R3,[0,0,e_srf[2],1])

print("\n starting pose after J3: \n", es_rot)

m4 = tinyik.Actuator(['z', es_rot[0:3]])

target4 = np.dot(R3,np.array([e_srf[0],e_srf[1],0,1]))

print("\n target point 4 xy: \n", target4)

m4.ee = target4[0:3]

a4 = m4.angles

print("\n J4 = ", np.rad2deg(a4))

J5:

#model J5

ew_norm = np.linalg.norm(e_cm-w_cm)

ew = [0,0,ew_norm,1]

w_erf = np.dot(T12_34,w_cm)

m5 = tinyik.Actuator(['y', ew[0:3]])

target5 = np.array([w_erf[0], 0, w_erf[2]])

print("\n target point 5 xz: \n", target5)

m5.ee = target5

a5 = m5.angles

print("\n J5 = ", np.rad2deg(a5))

J6:

76

#model j6

ew_rot = np.dot(R5,[0,0,w_erf[2],1])

print("\n starting pose after J5: \n", ew_rot)

m6 = tinyik.Actuator(['z', ew_rot[0:3]])

target6 = np.dot(R5, np.array([w_erf[0],w_erf[1],0,1]))

print("\n target point 6 xy: \n", target6)

m6.ee = target6[0:3]

a6 = m6.angles

print("\n J6 = ", np.rad2deg(a6))

Chain structure is depending on each rotation acquired/performed. Two chains are mainly
considered because neck-shouder are the starting chain and are considered ‘fixed’: relative

movements between neck and shoulder are negligible and for this reason not considered. Then,
the first relative movement is referring to the neck-shoulder initial position and represents the
shoulder-elbow chain:

#rotation matrix J2

R2 = np.array([[cos(a2), 0, sin(a2), 0], [0, 1, 0, 0], [-sin(a2), 0,

cos(a2), 0], [0, 0, 0, 1]])

next joints

Rt0 = np.dot(R1,R2)

R12 = np.transpose(Rt0)

t12 = -np.dot(R12,s_cm)

T12 = np.array([[R12[0,0], R12[0,1], R12[0,2], t12[0]],[R12[1,0], R12[1,1],

R12[1,2], t12[1]], [R12[2,0], R12[2,1], R12[2,2], t12[2]], [0, 0, 0, 1]])

The second projection to be considered is representing elbow-wrist chain, starting from the
previous chain:

#rotation J3

R3 = np.array([[cos(a3), 0, sin(a3), 0], [0, 1, 0, 0], [-sin(a3), 0,

cos(a3), 0], [0, 0, 0, 1]])

R4 = np.array([[cos(a4), -sin(a4), 0, 0], [sin(a4), cos(a4), 0, 0], [0, 0,

1, 0], [0, 0, 0, 1]])

Rt1 = np.dot(R3,R4)

Rt2 = np.dot(Rt0,Rt1)

R12_34 = np.transpose(Rt2)

t12_34 = -np.dot(R12_34, e_cm)

T12_34 = np.array([[R12_34[0,0], R12_34[0,1], R12_34[0,2],

t12_34[0]],[R12_34[1,0], R12_34[1,1], R12_34[1,2], t12_34[1]],

[R12_34[2,0], R12_34[2,1], R12_34[2,2], t12_34[2]], [0, 0, 0, 1]])

From all these assumptions is possible to compute and refer the robot joint configuration to
the human pose. Human arm structure is not the same of the robot chain, but is possible to
find some analogy. For this reason, the movement is not apparently the same. Anyway, the
direction of each robot joint follows the associated arm joint in the correct way.

9.4 Test results

Following the experimental tests, some analyses are performed, following as much as possible
the coherence with the shown movement: looking at the robot chain, it is evident that there is a

77

discrepancy between the joints of the robot and the joints of the human arm. The movements
shown are different from the movement repeated by the robot, this is the reason why the
gestures have been chosen in order to have a reasonable response easier to be recognized.

Considering the j2 (neck shoulder) angle configuration always zero, the initial position of the
robot is identified in the straight arm pointing upwards.

The starting condition is the position on which are depending all the configurations: from this
condition have been computed all the movements of the experimental tests.

78

1st pose: Forward point arm with no inclination on side direction

FRONT VIEW (piano xz)

J1 = 0

J2 = 1

J3 = -1

J4 = -87

J5 = 10

J6 = -1

Figure 9.5

79

2nd pose: Forward-right point arm

FRONT VIEW (piano xz)

J1 = 0

J2 = 4

J3 = -60

J4 = -59

J5 = 8

J6 = -7

Figure 9.6

80

3rd pose: Forward-left point arm

FRONT VIEW (piano xz)

J1 = 0

J2 = 5

 J3 = 13

J4 = 81

J5 = -20

J6 = 55

Figure 9.7

81

4th pose: Backward point arm with no inclination on side direction

FRONT VIEW (piano xz)

J1 = 0

J2 = 10

J3 = -14

J4 = 42

 J5 = -2

J6 = 77

Figure 9.8

82

5th pose: Backward-right point arm

FRONT VIEW (piano

xz)

J1 = 0

J2 = 8

J3 = -30

J4 = 27

J5 = 20

Figure 9.9

83

6th pose: Backward-left point arm

FRONT VIEW (piano

xz)

J1 = 0

J2 = 16

J3 = 7

J4 = 79

J5 = 16

J6 = -23

Figure 9.10

84

From the tests performed, the movement in the yz plane is not as evident as that in the xz
plane. The forward/backward displacement is perceived less during the acquisition than the
right/left displacement; this could depend on the fact that, with the same number of
centimeters, the value of the distance between RGB vectors is smaller than the value of the
same distance expressed in pixels.

 J4 > 0 J4 < 0

J3 e/o J5 e/o (J3+J5) > 0 Backward - left Forward - left

J3 e/o J5 e/o (J3+J5) < 0 Backward – right Forward - right

As can be seen on the images below, if the human arm is pushed further forward the angular
movement is greater (greater angles) because the differences in depth become more apparent
to the camera (distances value RGB increases).

Figure 9.11

Figure 9.12

85

Since the resolution of the 3D kinematics obtained with the coordinates expressed in pixels
and depth-RGB value presents deficits in the interpretation of the depth-RGB values, it is
necessary to report the three coordinates in the same reference system.

The transformation ratio pixel-meters is different from RGB meters, for this reason at the same
meters the expression in pixel and the expression in RGB produce two different results. Since
a coordinate must be expressed as an RGB value, and it is not possible to express it in the same
reference system as the other two coordinates, we proceed by taking the 3 coordinates to the
same unit of measurement (in this case meters).

The transformation of the points from pixels to meters is based on the calculation of parameters
characteristic of the acquisition system, as well as the environment in which the test is
performed.

- Intrinsic parameters

These ones link the acquisition system with the image plane within which the acquisition is
expressed. It is possible to obtain an expression of the coordinates referred to the camera
reference system through the use of these parameters:

Focal length:

f = 423,723 (=fx =fy)

Center of image plane coordinates (expressed in pixel, resolution 840x840):

Cx = 420.892

Cy = 238.206

The intrinsic matrix results:

[
𝑓𝑥 0 𝐶𝑥

0 𝑓𝑦 𝐶𝑦

0 0 1

]

Considering point K as a key point extracted from OpenPose, expressed in the image reference
system with units in pixels and depth expressed in RGB, the algorithm implemented to obtain
the coordinates expressed in the body reference system with units in meters is as follows:

1. Extract scale factor (proportional to the distance of the image plane) of the camera (=k)

2. Extract key points from OpenPose

3. Compose intrinsic and extrinsic matrix

4. I transform the coordinates of the points extracted from OpenPose, through the use of
matrices in step 4, from pixels to meters

5. Report the values in cm to the reference system neck, referring to the coordinates of the
point "n" previously transformed into meters

6. I use 3D motion resolution algorithm to obtain the angles

86

9.5 Test result: key points coordinate expressed in cm

1st pose: Forward point arm with no inclination on side direction

J2 = 0

J3 = -4.5

J4 = -71.61

J5 = 18.86

J6 = -16.96

Figure 9.13

87

2nd pose: Forward - right point arm

J2 = 0

J3 = -45.53

J4 = -38.02

J5 = 38.71

J6 = -2.18

Figure 9.14

88

3rd pose: Forward – left point arm

J2 = 0

J3 = -23.85

J4 = -44.38

J5 = 62.93

J6 = 48.35

Figure 9.15

89

4th pose: Backward point arm with no inclination on side direction

J2 = 0

J3 = -10

J4 = 29.02

J5 = 37.08

J6 = 8.21

Figure 9.16

90

5th pose: Backward - right point arm

J2 = 0

J3 = -3

J4 = 38.17

J5 = 22.58

J6 = 27.96

Figure 9.17

91

6th pose: Backward - left point arm

J2 = 0

J3 = -4

J4 = 49.95

J5 = 29.71

J6 = -66.85

Figure 9.18

92

9.6 Space point detection

From depth acquisition is possible to implement another use case, with the aim to cover the
case of collaborative tasks (i.e. exchanging objects) between user and robot. Considering this
purpose, the depth acquisition is used to map space around the system.

For this goal becomes important the relative position between camera and robot because the
point must be reached by the robot but is viewed at first by the camera. In the following figure,
we can find the association between camera reference system and robot reference system:

To ‘read’ correctly the space around the system, the calibration process must be performed

before starting the test.

The Robot and Camera reference system are shown in the following figure. According to these
directions, some matrices are taken into account to consider the relative positions:

Figure 9.19: camera point of view

Figure 9.20: robot RF (y) camera RF (o)

x

y

z

x

93

Two rotation are performed in order to overlap the RFs. The two matrix are:

𝑅1 = [
1 0 0
0 0 −1
0 1 0

]

𝑅2 = [
−1 0 0
0 −1 0
0 0 1

]

The vectorial product (composition) of these two matrices gives the matrix R:

𝑅 = [
−1 0 0
0 0 −1
0 −1 0

]

9.6.1 Calibration

In order to express the coordinates in robot reference system:

- Origin of camera rf and robot rf must coincide: compensation of 15 cm z-coordinate*

- The URDF file does not consider the gripper length, the end effector rf originates on
j6; in order to execute a picking action, the robot must reach the target with the
gripper, so the origin of the end effector is translated of 6 cm on z-coordinate (a half of
gripper length)

12 cm

15 cm

Figure 9.21

94

Precondition to test:

- User in front of the robot (and the camera)
- User shows the wrists as target to be reached

9.7 Test results: robot reaches target point in the space

1st test

 Figure 9.22: simulation

95

2nd test

Figure 9.23: simulation

96

9.7 Performance analysis

The results obtained from the tests are consistent with those expected, but some adjustments
could be made to improve performance. The analysis of the results showed room for
improvement on two main fronts: versatility and responsiveness of the system.

In order to have the possibility to perform the same kind of tests in different environments, the
calibration is the most influential phase. Specifically, it would be better to consider the
translation between the robot reference system and the camera reference system (which was
considered zero during the tests). As a result of this choice, it would be possible to obtain a
system adaptable to different test environments, as well as the possibility of placing the camera
in different positions from the one originally proposed.

This allows the system to improve in terms of accuracy (calculation of coordinates) and in terms
of repeatability of the tests, as well as being validated in the most correct way.

Another aspect influencing performance was the latency time of the system. The processing of
images has an average duration of 40 seconds, this translates into a delay in response on the
system as a whole. The processing of acquired images is dependent on the characteristics of the
machine used to process; fortunately, OpenPose can be used in two versions:

- On CPU

- On dedicated GPU (optimal performance)

The tests shown in the two previous chapters were carried out with the CPU version of
OpenPose, with the specific hardware available. This led to an analysis, firstly based on the
consistency of the robot in the imitation.

Following the tests carried out on CPU, the analysis has shifted to the aspect of temporal
processing, in order to optimize performance albeit at low cost.

97

10. Amazon AWS and Web service integration

Considering the results obtained from the 3D tests shown in the last chapter, the response
performance of the system was analyzed. In addition to the current results there are problems
in terms of processing time due to the data processing hardware.

The system is in fact slow in response due to the lack of a GPU dedicated to the processing of
images sent in input to Openpose. To obtain the optimal performance and as close as possible
to a real-time point recognition is a Nvidia GPU, on which it is possible to use CUDA.

CUDA (stands for Compute Unified Device Architecture) is a hardware architecture for parallel
processing created by NVIDIA. Through the CUDA development environment, software
developers can write applications capable of running parallel computing on NVIDIA video card
GPUs. Thanks to this architecture Openpose takes advantage of the computational power and
outputs points in times similar to Real-Time.

This architecture compatibly with the Nvidia GPU has very high costs.

One of the objectives of the project is to obtain a robotic system that uses Deep Learning at low
cost. Given these prerogatives it was decided to choose an educational manipulator and not
industrial as it would have reported higher costs. The choice of the robot proved to be adaptable
to the tasks developed.

On the other hand, the hardware needed to perform the image processing was not as performant
as expected.

After the development of the tasks in terms of motion dynamics, we moved on to make an
analysis of the time expenditure characterizing the tests carried out.

Considering the strong dependence of the processing on the architecture of the machine used
in the processing, we moved on to an analysis of the hardware on which the system was
implemented.

Specifically, the Nvidia GPU presents high costs that go against the objective of obtaining a
low cost system.

In this regard, it was thought to take advantage of the virtual computing power made available
by online services, in particular Amazon's AWS systems (Chapter 6).

These services offer the possibility to create a virtual machine with features chosen based on
the user's needs. The difference with the typical virtual machines that can be used for free is
that the hardware architecture is not based on the local one but is totally independent from the
machine on which the service is requested.

10.1 Instance type

The requirements for obtaining the optimal development environment to use the Openpose
library laid the groundwork on the choice of the specific instance among the various offered by
the service. The instance chosen is the EC2 type: Amazon EC2 offers a wide range of instance
types optimized to meet different use cases. Instance types include different combinations of

98

CPU, memory, storage, and network capabilities, giving you the flexibility to choose the
appropriate combination of resources for your applications. Each instance type includes one or
more instance sizes, allowing you to scale your resources according to workload requirements.

After choosing the instance type, the service offers several options in the field of Deep
Learning. Several AMIs are distinguished: Deep Learning Base AMI is like an empty canvas
for deep learning. It comes with everything you need up until the point of the installation of a
particular framework. It will have your choice of CUDA versions. AWS Deep Learning Base
AMI provides a foundational platform for deep learning on AWS EC2 with NVIDIA CUDA,
cuDNN, NCCL, GPU Drivers, Intel MKL-DNN, Docker, NVIDIA-Docker and EFA support.
This AMI is suitable for deploying your own custom deep learning environment at scale.

For example, for machine learning developers contributing to open source deep learning
framework enhancements, the AWS Deep Learning Base AMI provides a foundation for
installing your custom configurations and forked repositories to test out new framework
features. You could also be a Machine Learning / AI startup with a highly specialized deep
learning setup that needs a foundation to run on a cloud-scale infrastructure.

Another parameter required by Openpose is the number of cores per processor. It is in fact
necessary to have 4 cores to obtain an optimal processing performance.

The main characteristic of the instance are reported below:

Following the creation of the machine with the suitable characteristics, it is necessary to proceed
with the fundamental installations for reading the code executed so far on the local machine.

The Openpose library in particular is installed in GPU version (unlike the CPU version used
locally).

99

10.2 Web service

In order to make the processing process callable from the virtual machine, a web service was
implemented. A web service is a software system designed to support interoperability between
different processors on the same network or in a distributed environment. This feature is
obtained by associating to the application a software interface (described in an automatically
processable format such as, e.g., Web Services Description Language) that exposes the Web
Services Description Language, the Web Services Description Language) that exposes to the
outside the associated service/s and using which other systems can interact with the same
application activating the operations described in the interface (services or requests of remote
procedures) through appropriate "messages" of request: such messages of request are included
in an "envelope" (the most famous is SOAP), formatted according to the standard XML,
encapsulated and transported through the protocols of the Web (usually HTTP), from which
exactly the name Web service. In fact, the web service consists of a call to a service very similar
to a function, subroutine or method written in an unusual way compared to the norm and with
the above mentioned call methods, useful in terms of interoperability in a typical complex
modular architecture. Some of the advantages that can be achieved with the use of Web services
are as follows:

- they allow interoperability between different software applications on different hardware
platforms;

- they use "open" standards and protocols; the protocols and data format is, where possible, in
textual format, which makes them easier to understand and use by developers;

- through the use of HTTP for message transport, Web services normally do not require changes
to security rules used as filters on firewalls;

- can easily be used in combination with one another (regardless of who provides them and
where they are made available) to form complex, "integrated" services;

- they allow the reuse of already developed infrastructures and applications and are (relatively)
independent from any changes to them;

- they hide to the customer the architectural complexity of the framework, offering in an
eventual interface (front end) the result of the execution of the service (as an example the values
of determined fields of a table in an app).

It is desired to obtain a flow of information and processing that is adaptable and independent of
the physical machine on which it is requested.

100

The following is a diagram of the structure of the end system:

1) Local acquisition, image is sent to AWS instance

2) AWS sends image to webservice

3) AWS receive output key points from webservice

4) AWS sends key points on local machine

In addition to the libraries used for local processing it was chosen to use the request library:
Requests is an elegant and simple HTTP library for Python, built for human beings. Requests
allows you to send HTTP/1.1 requests extremely easily. There's no need to manually add query
strings to your URLs, or to form-encode your POST data. Keep-alive and HTTP connection
pooling are 100% automatic, thanks to urllib3.

Considering the flow shown in the figure the code in this phase is implemented in 3 main parts
to get the image processing and the robot response:

1. Local

1.a Image capture

Acquisition from depth-camera ###

start_time = time.time()

pipe = rs.pipeline()

cfg = rs.config()

profile = pipe.start(cfg)

depth_sensor = profile.get_device().first_depth_sensor()

depth_scale = depth_sensor.get_depth_scale()

print("Depth scale = ", depth_scale)

for x in range(5):

 pipe.wait_for_frames()

frameset = pipe.wait_for_frames()

color_frame = frameset.get_color_frame()

color = np.asanyarray(color_frame.get_data())

colorizer = rs.colorizer()

align = rs.align(rs.stream.color)

frameset = align.process(frameset)

aligned_depth_frame = frameset.get_depth_frame()

1

Local machine AWS instance

Acquisition +

image transfer to

AWS instance

Robot pose

estimation

Image transfer to
the webservice

Key points transfer

to Local machine in
json file

Image elaboration on

webservice,

Output key points

transfer to AWS
instance

Web service

1
2

3 4

101

colorized_depth =

np.asanyarray(colorizer.colorize(aligned_depth_frame).get_data())

1.b Image saving

imgD = Image.fromarray(colorized_depth)

imgRGB = Image.fromarray(color)

imgD.save("/home/anna/PycharmProjects/Final_project/depth1.jpg")

imgRGB.save("/home/anna/PycharmProjects/Final_project/RGB1.jpg")

1.c Image Transfer to Remote Instance

Uploading .jpg file on Remote EC2 instance ### !!! IP changes each time

instance starts

trans_frame = 'scp -i EC2kp.pem RGB1.jpg ubuntu@ec2-100-27-12-143.compute-

1.amazonaws.com:/home/ubuntu/flask_project/static/images'

call(trans_frame.split())

1.d Get keypoints from remote instance and compute the joint angle configuration

UPLOAD keypoints in local from keypoints file ###

myArray =

np.load(open('/home/anna/PycharmProjects/Final_project/keypoints.npy',

'rb'),allow_pickle=True)

nstr = myArray[0]

sstr = myArray[1]

estr = myArray[2]

wstr = myArray[3]

narr = (nstr[2:(len(nstr)-2)]).split()

sarr = (sstr[2:(len(sstr)-2)]).split()

earr = (estr[2:(len(estr)-2)]).split()

warr = (wstr[2:(len(wstr)-2)]).split()

n = np.array([np.array([float(narr[0]), float(narr[1]), float(narr[2])]),])

s = np.array([np.array([float(sarr[0]), float(sarr[1]), float(sarr[2])]),])

e = np.array([np.array([float(earr[0]), float(earr[1]), float(earr[2])]),])

w = np.array([np.array([float(warr[0]), float(warr[1]), float(warr[2])]),])

punti chiave salvati

print("Neck coordinates in absolute rf: \n" + str(n))

print("\nRight Shoulder coordinates in absolute rf: \n" + str(s))

print("\nRight Elbow coordinates in absolute rf: \n" + str(e))

print("\nRight Wrist coordinates in absolute rf: \n" + str(w))

cfg = pipe.start() # Start pipeline and get the configuration it found

profile = cfg.get_stream(rs.stream.depth) # Fetch stream profile for depth

stream

intr = profile.as_video_stream_profile().get_intrinsics() # Downcast to

video_stream_profile and fetch intrinsics

print(intr.ppx)

102

print(intr.ppy)

print(intr.fx)

print(intr.fy)

depth_image = np.asanyarray(aligned_depth_frame.get_data())

depth = depth_image[np.int(intr.ppx),np.int(intr.ppy)].astype(float)

distance = depth * depth_scale

print("distance = ", distance)

pipe.stop()

Mi = np.array([[intr.fx, 0, intr.ppx], [0, intr.fy, intr.ppy], [0, 0, 1]])

Me = np.array([[1, 0, 0], [0, 0, 1], [0, -1, 0]])

M_p_cm = np.linalg.inv(np.dot(Mi,Me))

print(M_p_cm)

coordinate omogenee di neck, shoulder, elbow e wrist (CAMERA rf)

nq = np.array([n[0,0],n[0,1],1])

sq = np.array([s[0,0],s[0,1],1])

eq = np.array([e[0,0],e[0,1],1])

wq = np.array([w[0,0],w[0,1],1])

nxy_cm = np.dot(M_p_cm, nq)

sxy_cm = np.dot(M_p_cm, sq)

exy_cm = np.dot(M_p_cm, eq)

wxy_cm = np.dot(M_p_cm, wq)

nxp = np.int(n[0,0])

nyp = np.int(n[0,1])

depth_nz = depth_image[nyp,nxp].astype(float)

nz_cm = depth_nz * depth_scale

sxp = np.int(s[0,0])

syp = np.int(s[0,1])

depth_sz = depth_image[syp,sxp].astype(float)

sz_cm = depth_sz * depth_scale

exp = np.int(e[0,0])

eyp = np.int(e[0,1])

depth_ez = depth_image[eyp,exp].astype(float)

ez_cm = depth_ez * depth_scale

wxp = np.int(w[0,0])

wyp = np.int(w[0,1])

depth_wz = depth_image[wyp,wxp].astype(float)

wz_cm = depth_wz * depth_scale

n_cmABS = np.array([nxy_cm[0],nxy_cm[2],nz_cm])

s_cmABS = np.array([sxy_cm[0],sxy_cm[2],sz_cm])

e_cmABS = np.array([exy_cm[0],exy_cm[2],ez_cm])

w_cmABS = np.array([wxy_cm[0],wxy_cm[2],wz_cm])

TT = np.array([[1,0,0,0], [0,0,1,0], [0,-1,0,0], [0,0,0,1]])

neck as reference

n_cm = np.dot(TT,np.array([0,0,0,1]))

s_cm = np.dot(TT,np.array([sxy_cm[0]-nxy_cm[0],sxy_cm[2]-nxy_cm[2],sz_cm-

nz_cm,1]))

e_cm = np.dot(TT,np.array([exy_cm[0]-nxy_cm[0],exy_cm[2]-nxy_cm[2],ez_cm-

nz_cm,1]))

w_cm = np.dot(TT,np.array([wxy_cm[0]-nxy_cm[0],wxy_cm[2]-nxy_cm[2],wz_cm-

103

nz_cm,1]))

print(n_cm)

print(s_cm)

print(e_cm)

print(w_cm)

#model J1

ns_norm = np.linalg.norm(n_cm-s_cm)

ns = [0,0,ns_norm,1]

print("starting pose: \n", ns)

m1 = tinyik.Actuator(['z', ns[0:3]])

target1 = np.array([s_cm[0],s_cm[1],0])

print("\n target point1 xz: \n", target1)

m1.ee = target1

a1 = m1.angles

print("\n J1 =", np.rad2deg(a1))

#rotation matrix J2

R1 = np.array([[cos(a1), -sin(a1), 0, 0], [sin(a1), cos(a1), 0, 0], [0, 0,

1, 0], [0, 0, 0, 1]])

#model J1

ns_rot = np.dot(R1,ns)

print("\n starting pose after J2: \n", ns_rot)

m2 = tinyik.Actuator(['y', ns_rot[0:3]])

target2 = np.array([s_cm[0],0,s_cm[2]])

print("\n target point2 xy: \n", target2)

m2.ee = target2

a2 = m2.angles

print("\n J2 =", np.rad2deg(a2))

R2 = np.array([[cos(a2), 0, sin(a2), 0], [0, 1, 0, 0], [-sin(a2), 0,

cos(a2), 0], [0, 0, 0, 1]])

next joints

Rt0 = np.dot(R1,R2)

R12 = np.transpose(Rt0)

t12 = -np.dot(R12,s_cm)

T12 = np.array([[R12[0,0], R12[0,1], R12[0,2], t12[0]],[R12[1,0], R12[1,1],

R12[1,2], t12[1]], [R12[2,0], R12[2,1], R12[2,2], t12[2]], [0, 0, 0, 1]])

print("origin in shoulder: \n", np.round(np.dot(T12,s_cm)))

print("elbow coordinates in new rf: \n", np.dot(T12,e_cm))

#model J3

es_norm = np.linalg.norm(e_cm-s_cm)

es = [0,0,es_norm,1]

e_srf = np.dot(T12,e_cm)

m3 = tinyik.Actuator(['y', es[0:3]])

target3 = np.array([e_srf[0], 0, e_srf[2]])

print("target point 3 xz: \n", target3)

m3.ee = target3

a3 = m3.angles

print("\n J3 = ", np.rad2deg(a3))

#rotation J3

R3 = np.array([[cos(a3), 0, sin(a3), 0], [0, 1, 0, 0], [-sin(a3), 0,

cos(a3), 0], [0, 0, 0, 1]])

#model j4

104

es_rot = np.dot(R3,[0,0,e_srf[2],1])

print("\n starting pose after J3: \n", es_rot)

m4 = tinyik.Actuator(['z', es_rot[0:3]])

target4 = np.dot(R3,np.array([e_srf[0],e_srf[1],0,1]))

print("\n target point 4 xy: \n", target4)

m4.ee = target4[0:3]

a4 = m4.angles

print("\n J4 = ", np.rad2deg(a4))

R4 = np.array([[cos(a4), -sin(a4), 0, 0], [sin(a4), cos(a4), 0, 0], [0, 0,

1, 0], [0, 0, 0, 1]])

Rt1 = np.dot(R3,R4)

Rt2 = np.dot(Rt0,Rt1)

R12_34 = np.transpose(Rt2)

t12_34 = -np.dot(R12_34, e_cm)

T12_34 = np.array([[R12_34[0,0], R12_34[0,1], R12_34[0,2],

t12_34[0]],[R12_34[1,0], R12_34[1,1], R12_34[1,2], t12_34[1]],

[R12_34[2,0], R12_34[2,1], R12_34[2,2], t12_34[2]], [0, 0, 0, 1]])

print("\n origin in elbow: \n", np.round(np.dot(T12_34,e_cm)))

print("\n wrist coordinates in new rf: \n", np.dot(T12_34,w_cm))

#model J5

ew_norm = np.linalg.norm(e_cm-w_cm)

ew = [0,0,ew_norm,1]

w_erf = np.dot(T12_34,w_cm)

m5 = tinyik.Actuator(['y', ew[0:3]])

target5 = np.array([w_erf[0], 0, w_erf[2]])

print("\n target point 5 xz: \n", target5)

m5.ee = target5

a5 = m5.angles

print("\n J5 = ", np.rad2deg(a5))

#rotation J5

R5 = np.array([[cos(a5), 0, sin(a5), 0], [0, 1, 0, 0], [-sin(a5), 0,

cos(a5), 0], [0, 0, 0, 1]])

#model j6

ew_rot = np.dot(R5,[0,0,w_erf[2],1])

print("\n starting pose after J5: \n", ew_rot)

m6 = tinyik.Actuator(['z', ew_rot[0:3]])

target6 = np.dot(R5, np.array([w_erf[0],w_erf[1],0,1]))

print("\n target point 6 xy: \n", target6)

m6.ee = target6[0:3]

a6 = m6.angles

print("\n J6 = ", np.rad2deg(a6))

print('\nj1 su z: ', np.rad2deg(a1))

print('j2 su y: ', np.rad2deg(a2)-np.rad2deg(a2))

print('j3 su y: ', np.rad2deg(a3)+np.rad2deg(a2))

print('j4 su z: ', np.rad2deg(a4))

print('j5 su y: ', np.rad2deg(a5))

print('j6 su z: ', np.rad2deg(a6))

#myedo.movejoint(j1=,j2=,j3=,j4=,j5=,j6=)

105

2. AWS instance

2.a Image transfer to webservice

Openpose called on webservice by remote EC2 instance ### !!! IP

changes each time instance starts

rem_script = 'ssh -i EC2kp.pem ubuntu@ec2-100-27-12-143.compute-

1.amazonaws.com python3 < app.py'

call(rem_script.split())

2.b Get webservice output

n,s,e,w=find_keypoints()

myList=np.array([n,s,e,w])

np.array(myList).dump(open('/home/ubuntu/keypoints.npy', 'wb'))

2.c Local file transfer

Loading .jpg file on local ### !!! IP changes each time instance starts

trans_kp = 'scp -i EC2kp.pem ubuntu@ec2-100-27-12-143.compute-

1.amazonaws.com:/home/ubuntu/keypoints.npy

/home/anna/PycharmProjects/Final_project'

call(trans_kp.split())

3. Web Service

3.a Points detection

app

app = Flask(__name__)

APP_ROOT = os.path.dirname(os.path.abspath(__file__))

@app.route('/')

def find_keypoints(filename='RGB1.jpg'):

 # open and process image

 target = os.path.join(APP_ROOT,

'/home/ubuntu/flask_project/static/images')

 destination = "/".join([target, filename])

 parser = argparse.ArgumentParser()

 parser.add_argument("--image_path", default=destination, help="Process

an image. Read all standard formats (jpg, png, bpm, etc.).")

 parser.add_argument("--no_display", default=False, help="Enable to

disable the visual display.")

 args = parser.parse_known_args()

 # Custom Params (refer to include/openpose/flags.hpp for more

parameters)

 params = dict()

 params["model_folder"] = "/home/ubuntu/openpose/models/"

106

 opWrapper = op.WrapperPython()

 opWrapper.configure(params)

 opWrapper.start()

 datum = op.Datum()

 imageToProcess = cv2.imread(args[0].image_path)

 datum.cvInputData = imageToProcess

 x = op.VectorDatum([datum])

 result = opWrapper.emplaceAndPop(x)

 n = str(datum.poseKeypoints[:, 1, :])

 s = str(datum.poseKeypoints[:, 2, :])

 e = str(datum.poseKeypoints[:, 3, :])

 w = str(datum.poseKeypoints[:, 4, :])

 return n,s,e,w

n,s,e,w=find_keypoints()

myList=np.array([n,s,e,w])

np.array(myList).dump(open('/home/ubuntu/keypoints.npy', 'wb'))

10.3 Results after AWS and web service integration

From the test performed on the machine the execution time is reduced by about 60%.

The result obtained does not reflect the expected one, with the right hardware structure we
expected a real time frame processing. The purpose of the test was to obtain an improvement
in processing for the purpose of processing video acquisitions. With the obtained result it is still

Execution time reduced from 40 sec to 15 sec

107

impossible to use a sequence of frames for the motion demonstration. We stop at the
demonstration acquired for single images, usable in composition to program a complete action.

108

11. Conclusions

The objective of this thesis project was to obtain a robotic support system, which could
collaborate with the user during the performance of basic actions such as the mutual exchange
of objects. Specifically, the strength of the project is in terms of programming of the same, in
fact, the implementation of the system in its entirety aims to relieve the user from tasks of
computer / robotic type.

The programming by imitation has as its ultimate goal to give the user to use and modify the
tasks for which a robot is programmed without the need to know in depth the programming
techniques at the base of the system.

In addition to specific technical features that would have given the system adaptability to any
user, the project aimed to remain in a low cost development range, considering the chosen
manipulator around which the global architecture of the system revolves.

During the drafting of the project and the development of the control code, the proposal was to
remain below the price ranges typical of automation systems used to perform pick and place
tasks (industrial manipulators).

The choice of the system components was made following this principle and during the
development of the system some problems emerged caused by the compromise that was chosen
to follow.

The main limitations identified during the development of the system can be distinguished
according to the system component they refer to:

- Manipulator

The chosen manipulator is a manipulator used for educational and recreational purposes. The
accuracy of the motion is not on par with the accuracy that characterizes industrial
manipulators. In the manipulator design, the motors in the joints carry a low load. The joints at
the base have a lower stress margin than the upper ones; in fact, the manipulator has a control-
braking system that stops the movement in progress if the stress exceeds the threshold supported
by the specific joint. In order to obtain movements similar to those of humans, the joints at the
bottom should be able to support inclinations greater than those contemplated. This limitation
forces the adoption of a (fixed) angle imposition at joint 2 in order to avoid the activation of
this control system during imitation. Based on this imposition, the imitation appears less truthful
than the movement shown by the user.

- PC graphics processor

Deep learning based systems are based on towed neural networks that need the right hardware
support to produce usable and applicable results in automated processes. In the case of the
implemented system, the processor of the PC on which the development has been done does
not have a dedicated graphics card: this involves the impossibility to obtain results in real time
and therefore usable for applications on the market. To stay in the theme of low cost
development, AWS systems have been fundamental to obtain much better results, even if still
characterized by a finite latency time.

109

- Web services

The failure to obtain real-time processing may have been caused not only by the use of virtual
hardware and not physical, but also by the use of the web service, which, although it gives
versatility to the use of the system, has lower performance than those found using alternative
approaches to distributed computing such as Java RMI, CORBA, or DCOM.

Although the system obtained is not usable in real time, the development of this thesis has
brought to light several positive evaluations, in terms of compatibility between systems of
different nature.

The primary meaning of collaborative robotics puts next to the traditional robotics the
interaction with the user: this implies the use of artificial intelligence that gives sensory
perception to the system and allows to have control over the safety of the user and the tasks
carried out in collaboration. In order to obtain polyvalent systems of this type, it is necessary to
base the implementation choices on the versatility and adaptability of the instrumentation and
programming languages used. Most of the problems that emerged during development were
easily overcome when compatibility between systems made it possible. It becomes fundamental
for purposes like the one treated, to carry out a qualitative analysis in terms of compatibility,
upstream of the implementation of the global system.

0

1

2

3

4

5

6

7

8

9

10

test on CPU Test on virtual GPU Test on webservice and vGPU

Performance analysis

runtime results in fps (%)

0.2 fps 0.02 fps 0.06 fps

110

Bibliography

1. Robot Programming by Demonstration

– Authors: Aude Billard, Sylvain Calinon, Rüdiger Dillmann, Stefan Schaal

2. OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields

– Authors: Zhe Cao, Student Member, IEEE, Gines Hidalgo, Student Member,

IEEE,Tomas Simon, Shih-En Wei and Yaser Sheikh

3. A methodology to develop collaborative robotic cyber physical systems for production

environment – Authors: Azfar Khalid, Pierre Kirisci, Zied Ghrairi, Klaus-Dieter

Thoben, Ju¨rgen Pannek

4. A computationally efficient safety assessment for collaborative robotics applications

– Authors: Matteo Parigi Polverini, Andrea Maria Zanchettin, Paolo Rocco

5. Dynamic task classification and assignment for the management of human-robot

collaborative teams in workcells

– Authors: Giulia Bruno · Dario Antonelli

6. Industrial Robot: An International Journal

– Autor: Richard Bloss

7. A Brief History of Machine Learning

– Author: Keith D. Foote

8. A Brief History of Deep Learning

– Author: Keith D. Foote

9. Applied Deep Learning - Part 4: Convolutional Neural Networks

– Author: Arden Dertat

10. Human Tracking Using Convolutional Neural Network

– Authors: Jialue Fan, Wei Xu, Yihong Gong

11. Human Object Identification for Human-Robot Interaction by using Fast R-CNN

– Authors: Shih-Chung Hsu, Yu-Wen Wang

12. Artificial Intelligence and Robotics

– Authors: Javier Andreu Perez, Fani Deligianni, Dnaiele Ravi and Guang-Zhong Yang

13. Robot Learning from Demonstration in Robotic Assembly

– Authors: Zuyuan Zhu, Huosheng Hu

14. Intel RealSense Stereoscopic Depth Cameras

– Authors: Leonid Keselman, John Iselin Woodfill, Anders Grunnet-Jepsen, Achintya

Bohwmik

15. Real-Time Computer Stereo Vision for Automotive Applications

111

– Authors: Dr. Naim Dahnoun, Prof. John G. Rarity

16. Texture Synthesis Repair of RealSense D435i Depth Images with Object-Oriented RGB

Image Segmentation – Authors: Longyu Zhang, Hao Xia, and Yanyou Qiao

17. https://www.intelrealsense.com/depth-camera-d435i/

18. https://towardsdatascience.com/choosing-the-right-gpu-for-deep-learning-on-aws-

d69c157d8c86

19. Webb G.I. (2011) Overfitting. In: Sammut C., Webb G.I. (eds) Encyclopedia of

Machine Learning. Springer, Boston, MA.

https://www.ncbi.nlm.nih.gov/pubmed/?term=Zhang%20L%5BAuthor%5D&cauthor=true&cauthor_uid=33255511
https://www.ncbi.nlm.nih.gov/pubmed/?term=Xia%20H%5BAuthor%5D&cauthor=true&cauthor_uid=33255511
https://www.ncbi.nlm.nih.gov/pubmed/?term=Qiao%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=33255511
https://www.intelrealsense.com/depth-camera-d435i/
https://towardsdatascience.com/choosing-the-right-gpu-for-deep-learning-on-aws-d69c157d8c86
https://towardsdatascience.com/choosing-the-right-gpu-for-deep-learning-on-aws-d69c157d8c86

