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Abstract

The present work proposes a solution for performing indoor �ocking with micro air vehicles
(MAVs) in a fully autonomous way, considering the motion of the robots in three dimensions.
The main characteristics that are looked for in the behavior of the �ock are: adaptability,
scalability and robustness.
In order to meet these goals, each agent is equipped with on-board sensors that allow it
to navigate autonomously in the environment; speci�cally, the IMU provides information
about the velocity and acceleration of the drone and about its pose, while an UWB antenna
measures the relative distance from every other agent in the �ock and broadcasts the infor-
mation extracted by the IMU to the rest of the �ock. Basing on these measurements only, a
state estimator allows each agent to obtain accurate relative localization of any other agent
within UWB range of work. The estimation is done by means of an Extended Kalman Filter,
which outputs both the relative position and the relative yaw angle of a MAVj (tracked) with
respect to a MAVi (host). The resulting system does not rely on any external infrastructure,
such as UWB beacons or the GNNS, making the �ock deployable anywhere at any time.
The limitations of this solution are studied through an observability analysis in Lie deriva-
tives, which leads to the identi�cation of conditions in terms of combinations of inputs and
states, that would a�ect the convergence of the �lter.
Finally, two �ocking algorithms are presented, inspired by the Reynolds' theory of boids'
rules of alignment, cohesion and separation.
Emphasis is given to the implementation of a completely decentralized control, such that
the resulting system appears highly robust to the loss of one or more agent and at the same
time scalable to changes in the size of the �ock, whose members can be easily added or
removed without changing anything in the algorithm. The overall collective motion that
emerges is the result of purely local interaction, without the need of a preprogrammed path
or formation control. This feature makes the �ock indipendent from human guidance and
able to adapt to any environment or situation dynamically.
The EKF and the �ocking algorithms are coded in MATLAB & Simulink in discrete time
and integrated with the preexisting model of a �apping wing MAV, the DelFly Nimble,
designed and developed at the Technical University of Delft.
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Estratto in lingua italiana

Il lavoro svolto per questa tesi mira a proporre una soluzione per implementare uno stormo di
micro veicoli aerei (MAVs abbreviato) nell'ambito della robotica degli sciami, completamente
autonomo e adatto sia per applicazioni indoor sia outdoor. Le caratteristiche fondamentali
che si ricercano sono: adattabilità, scalabilità e a�dabilità.
A tal �ne, ogni agente nel team è dotato di sensori di bordo che gli permettono di nav-
igare autonomamente nell'ambiente circostante; in particolare, il Sistema di Navigazione
Inerziale (a cui si fa riferimento con la sigla inglese IMU nel seguito) permette di ottenere
informazioni sulle velocità e le accelerazioni del drone e sulla sua orientazione nello spazio,
mentre un'antenna Ultra Wide Band (UWB) è in grado di misurare la distanza del robot
dagli altri membri del gruppo e di di�ondere le misurazioni e�ettuate dall'IMU. Basandosi
esclusivamente su tali informazioni, un osservatore di stato consente a ciascun agente di
stimare accuratamente la posizione relativa di ogni altro membro dello stormo entro il range
permesso dall'antenna UWB. La stima è e�ettuata attraverso un Filtro di Kalman Esteso
(abbreviato EKF), che ha lo scopo di fornire sia la positione relativa sia l'angolo di imbardata
relativo del MAVj (osservato) rispetto al MAVi. Il sistema risultante appare indipendente
da qualsiasi infrastruttura esterna, come ancore UWB o GPS, rendendolo adatto ad essere
implementato in qualsiasi contesto.
I limiti di tale soluzione sono studiati attraverso un'analisi di osservabilità nelle derivate di
Lie, che permette di identi�care speci�che condizioni in termini di input e stati che possono
potenzialmente in�uenzare negativamente la convergenza del �ltro.
In�ne, sono stati sviluppati due algoritmi per emulare i reali stormi di uccelli o sciami di
insetti, basandosi sulle tre leggi fondamentali derivate nella teoria di Reynolds' dei "boids",
entità dotate di una determinata velocità in termini di modulo e direzione che aspirano a
simulare il moto degli agenti in un gruppo che presenta le caratteristiche di uno sciame:
allineamento delle velocità, coesione e elusione delle collisioni.
L'aspetto a cui viene data maggiore importanza è la realizzazione di un sistema di controllo
interamente decentralizzato, in modo tale da ottenere un sistema che sia robusto alla perdita
di uno o più agenti e allo stesso tempo incrementabile dal punto di vista della dimensione
dello stormo, a cui è possibile aggiungere o rimuovere membri senza modi�care signi�cativa-
mente l'algoritmo. Il comportamento collettivo globale emergente è il risultato di interazioni
esclusivamente locali, senza la necessità di seguire una traiettoria preimpostata. Per questa
ragione, il sistema può essere implementato in assenza di un pilota umano ed è in grado di
adattarsi dinamicamente all'ambiente.
Il Filtro di Kalman Esteso e l'algoritmo per simulare gli sciami sono stati scritti in ambi-
ente MATLAB/Simulink e integrati con il modello del DelFly Nimble, un drone ispirato alle
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mosche della frutta che sfrutta il volo battuto, sviluppato dall'Università Tecnica di Delft
(TUDelft).
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Chapter 1

Introduction

The present work aims at proposing a new fully on-board, range-only localization algorithm
for the estimation of the relative position in the three dimensions of MAVs, to enable a
�ocking behavior of �apping-wing drones. The project is intended for the application to
the DelFly robotic platform developed by the MAVLab, TUDelft, for performing indoor
entertainment shows.
The thesis is structured as follows:

Chapter 2: An overview on the theoretical background is given, presenting the �ocking
theory of boids, a review of the state of the art in the �eld of swarm robotics, an
introduction to state estimators for nonlinear systems and a mathematical description
of the concept of observability, with emphasis on the approach with Lie derivatives for
the study of nonlinear systems

Chapter 3: The problem of range-only relative position estimation is introduced and the
Extended Kalman Filter designed for solving it is explained, followed by a description
of the simulation environment built to test the estimator. The obtained results are
shown and a preliminary evaluation of the �lter's perfomance is proposed.

Chapter 4: The chapter is dedicated to the observability analysis with Lie derivatives. The
mathematical computation of the observability matrix and of its determinant is carried
out and the degree of observability of the system is studied with di�erent combinations
of inputs and states through the local weak observability index C−1 . The relevant
cases are analyzed more in depth and proof of the correctness of the approach is given
by tests in simulation. Finally, the EKF estimation quality is evaluated on the basis
of the results obtained through the observability analysis.

Chapter 5: Two �ocking algorithms are outlined, the �rst designed as a purely emergent
behavior dictated by local interactions, able to operate in a constrained environment,
the other obtained as a leader-follower task with collision avoidance within the �ock
and velocity matching.

Chapter 6: The chapter summarizes the results obtained and proposes a comparison with
the 2D case, highlighting the main di�erences between the two. Suggestions for further
studies on the basis of the results in the present work are proposed.
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2 1.1. MOTIVATION AND CONTEXT

1.1 Motivation and context

When we happen to observe the murmuration of starlings twisting in beautiful clouds in
the sky or herds of wildlife traversing the African savannah during the Great Migration, a
few questions pop up: how do they do that? How can groups of hundreds, or thousands, of
unwitting animals coordinate their motion in such a skillful manner? The mystery gets even
thicker when we observe the same behavior in crowds of humans performing in a �ash mob
or in a concert, when, unaware of the process that is occurring, we somehow �nd ourselves
getting the moves with our neighbor or raising with perfect timing in a "ola".

(a) Shoal of �sh (b) Flock of birds

Figure 1.1: Examples of �ocking in nature

This fascinating behaviour is inexplicable, and yet very common in nature, so much that
it bewitched researchers in di�erent �elds of science for decades, if not centuries, and it
has not been fully understood yet. The advantages driven by the species that manifest this
attitude, referred to as �ocking behavior, are undeniable: cooperation can allow a faster and
more e�cient completion of tasks, coordination can ensure a better coverage of a foraging
area and harmonization can make the �ock more robust to the attacks of predators.
It is not surprising, then, that the idea of exploiting such behavior in human applications
can be tempting. Imagine armies of rovers exploring the Mars surface without the need for
human guidance or any networked infrastructure, or �ocks of Micro Air Vehicles making
their way in wrecked environments, securing the path for the incoming rescue team. The
advantages would be stunning. For this reason, in recent years various branches of science
have developed an interest for such concepts like swarming and �ocking.
The �rst attempt to emulate this behavior can be found in the theory developed by C.
Reynolds in 1987 ([34]), known as the theory of boids: it introduces the concept of "boid",
an entity that can represent an imaginary animal, and it states that the ability of animals to
move as a single entity can be reconducted to the application of three simple rules, namely
alignment, cohesion and separation. The observation of neighbors triggers a response in each
individual, that adjusts its own velocity according to these three driving needs, producing
the incredible e�ect that we can observe.
Since then, Reynolds' theory, originally intended for graphic simulation, has provided the
bases to a new branch of engineering, known as "Swarm Robotics".
It this context, many approaches to the task have been put forward, ranging from formation
control, where agents occupy speci�c relative positions, to consesus algorithms for selecting
collectively a preferred trajectory.
Flocking �ts into the background of swarm robotics, providing an example of self-organized
behavior, produced solely by the dynamic interaction of each member with its neighbors.
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3 1.2. CONTRIBUTION OF THE PRESENT WORK

The advantage of this solution compared to the others is that this emergent behavior is a
consequence of purely local interactions within the group. For this reason, it could be ad-
vantageously exploited to produce fully autonomous �ocks, able to perform in any situation
indipendently of the environment. Very few examples of infrastructure-indipendent swarms
are available in literature, as the most common solutions available today usually rely on
external localization systems like Global Navigation Satellite System (GNSS) or take ad-
vantage of beacons strategically located in the area (see [6], [38] for a complete review of
current applications).
Very few examples exist which rely on only on-board equipment and range-only measure-
ment for 3D problems. An important work in this direction has been carried out by Trawny
in [33] and [32], where the authors aim at �nding a solution for the 6 degree of freedom
(d.o.f.) relative-pose estimation problem in 3D by using di�erent combinations of limited
information, like robot-to-robot distance measurement and dead-reckoning, bearing-only
measurement, bearing and distance measurement and distance-only measurement and �nd-
ing the minimum amount of measurements required to perform the estimation. The work is
completed by a nonlinear local weak observability analysis to �nd su�cient conditions for
the 3D relative pose to become locally weakly observable and by a nonlinear weighted least
squares estimator to validate the algorithm under di�erent amounts of noise.
The present work aims at �lling this gap, providing a novel solution for performing a fully
autonomous �ock of MAVs basing on a range-only relative localization procedure in the
three-dimensional space and deploying the designed algorithm onto the most exotic plat-
form provided by the DelFly Nimble.

(a) (b)

Figure 1.2: Swarm of UAVs (a) The DelFly Nimble (b)

1.2 Contribution of the present work

Making a step forward from the previous work [26], which aims at developing an estima-
tor for performing relative-localization in 2D using only range-mesurement, with this thesis
we try to move beyond the two-dimensional setting by adding the third dimension. The
drones are now moving in 3D and able to guess the relative position of the other agents by
estimating four states: the position pij in the three directions and the relative heading ψij .
The real altitude at which each robot is �ying is considered unknown, although it could
be estimated by a laser range: the reason for this choice is to produce a system that could
operate indi�erently on an uneven ground or at relevant heights and which is not in�uenced
by the orientation of the drone, that could a�ect the measurement of the distance especially
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4 1.2. CONTRIBUTION OF THE PRESENT WORK

in the case of �appers, which are able to make quick turns and change their roll angle very
sharply. The resulting system is expected to satisfy the fundamental requirements of collec-
tive robotics of robustness, �exibility and scalability by exploiting a modular structure of
the �ock, so that each robot results fully capable of navigating autonomously, relying only
on on-board equipment.
The available sensory knowledge is provided by an UWB antenna mounted on each drone,
which ful�lls the role of measuring the range from all the other members and broadcasting
the information on velocity and attitude as produced by the IMU. These measurements are
input to a state observer, which carries out the estimation of the relative position. The
Extended Kalman Filter is chosen as estimator because it seems to be the best �t for the
system model considered and its low processing and memory requirements make it suitable
for working on-board of small MAVs with limited computational capacity.
In order to quantify the EKF performance, an observability analysis is executed in terms of
Lie derivatives. To evaluate the observability of a system means to understand how good
the �lter is at providing an univocal output when a certain input is applied and can be done
by studying the observability matrix O of the system.
For nonlinear systems, like the one considered in this study, the observability matrix can be
built by computing the Lie derivatives of the measurement, the range h in this case. Once
O has been built, some speci�c indeces can be adopted to evaluate not only if the system
is observable, but also how well it is observable. This kind of study has proved to be very
useful to understand what to expect from the �lter and to identify possible manouvres that
could make the estimation unreliable.
The results obtained from this stage are exploited to design the �ocking algorithms, that
should dictate the trajectory followed by each agent basing on the estimated position com-
puted by the EKF. The algorithm plays the role of a controller by computing the desired
velocity for each MAV at every time step in such a way that a collective emergent behavior
can be obtained. Two algorithms have been designed, both suited for indoor applications,
as well as for outdoor ones.
The �rst one is inspired by [43] and [41], where a �ock simulation is carried out in 2D
by exploiting the alignment rule and the collision avoidance one; moreover, the algorithm
includes also a smart solution for embedding a wall avoidance feature by employing the
concept of "shill agents", mock agents that are used to keep the �ock within a bounded
arena. A self-propelling term is also added, which allows the boids to keep moving even in
the case where they are separated from the �ock. In this thesis, the algorithm is modi�ed to
be applied in three dimensions and integrated with the relative-position estimator and the
real model of the drone. The drones are restricted to a box that can be interpreted ideally
as a room, and the components that contribute to the computation of the target velocity
are weighted, drawing inspiration from the Cucker approach [9], that bases its model on the
postulation that each agent in the �ock adjusts its velocity as the weighted average of the
di�erence of its velocity with that of its neighbors.
The second algorithm is based, instead, on the Couzin model ([8]) and associates the imple-
mentation of Reynolds' rules for keeping the swarm cohesive and safe with a leader-follower
task. The advantage of this solution is the possibility of controlling the trajectory of the
�ock by imposing a path to one informed agent. The remaining of the �ock is able to travel
of a similar route thanks to a communication protocol, that propagates the information in
cascade through the �ock. This solution relies more heavily on the ability to correctly local-
ize the other members of the �ock compared to the previous one, as the relative position of
the preceding robot becomes a weighted component in the computation of th target velocity
of each drone.
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The signi�cant advantage of these solutions is the possibility of achieving a coordinated mo-
tion of the robots by relying on a minimum amount of equipment that can be easily carried
on-board even by the smallest MAVs.
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Chapter 2

Theoretical background

2.1 Theory of boids and �ocking behavior

Flocking is a collective behavior that can be observed in many species, ranging from birds
to �sh and insects. It has been traditionally object of study in the biological framework and
has recently gained popularity in other domains, like computer simulations and engineering.
The earliest attempt to emulate the �ocking behavior observed in natural systems can be
found in the work by C. Reynolds [34] 1987, in which a computational model of �ocking is
put forward. The theory is known as the theory of boids and set the path to this new �eld
of research.
The main focus of Reynolds' work is on the computer simulation of �ocks of birds and has
been applied in videogames and by the movie industry in productions like Batman Returns

(1992) and The Lion King (1994) for the generation of the wildbeest stampede and the bat
swarm respectively, but the theory can be equally applied to the modeling of schools and
herds, as a boid is generically de�ned as an arti�cial bird (or entity) with a an individual
velocity and direction of motion that is able interact with the other surrounding agents.
The theory of boids appeared at once to be signi�cantly appealing and soon gained popu-
larity thanks to its remarkable simplicity: its main �nding is that the behavior of �ocks can
be simulated with reasonable resemblance with natural networks by relying only on very
basic, yet fundamental rules. According to Reynolds' [34], the collective motion is the result
of each agent's tendency to obey to the following laws:

� Cohesion: the desire to stay in the group

� Separation: the necessity of avoiding collisions with the neighbors

� Alignment: the inclination to match velocities with nearby �ockmates

Basing on these three driving forces, each boid computes its own target velocity in terms of
direction and magnitude, obtaining a good similarity with natural �ocks.

The three drives a�ect the behavior of the �ock in a di�erent manner, as they are com-
puted relying on di�erent information about the sorrounding agents, and they can therefore
be classi�ed as static and dynamic [25]: separation and cohesion are referred to as static,
since they only require knowledge on the relative position of the other boids and lead to
a certain equilibrium of the system, while velocity matching is labeled as dynamic because
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(a) Separation (b) Alignment (c) Cohesion

Figure 2.1: Reynold's theory of boids

it is based only on the comparison of velocities in terms of direction and magnitude, with-
out considering the relative position. If we tried to simulate a �ocking behavior without
the alignment component, we could observe that the agents will tend to occupy a certain
position in the space and to progressively decrease their velocities to zero as they reach an
equilibrium point given by the concurrent application of repulsion and cohesion.
Cohesion, often referred to as �ock centering, models the agent's urge of staying within the
�ock. It can be seen as the need of the agent to be evenly surrounded by other boids by
occupying the center of the group formed by the nearby �ockmates within its �eld of view.
This allows the �ock to be compact and cohesive.
On the other hand, separation and velocity matching have the purpose of providing stability
and safety to the �ock: once the agents have come together thanks to the cohesion driving
force, separation allows the members to keep a "living space" around themseves, which re-
sults into a number of spheres centered on each agent that other boids cannot enter; velocity
matching can, instead, be thought as a predictive way of avoiding collisions, since once the
agents have found a suitable equilibrium between cohesion and separation, the alignment
of velocities helps to maintain it [25]. This is the reason why some theories have been de-
veloped which do not require the application of all of the rules: velocity matching proves
often enough to guarantee stability and cohesion of the �ock by allowing to select a common
direction of motion for all the members.
One example is the Vicsek's model ([42]), a pillar in the �eld of �ocking simulation, which
focuses only on alignment of the velocities. The model drives inspiration from the orienta-
tion of particles in ferromagnetic materials in the electromagnetism framework and obtains
motion of the particle between two time steps by applying only this concept. The system is
made-up by self-driven particles, which adjust their headings and acceleration as the average
of the neighbors' ones within a certain radius r between two time-steps. The resulting model
appears to show realistic dynamics, despite its intrinsic simplicity.
Another relevant instance of reasonable simulation without employing all of the rules is in-
troduced by Cucker and Smale in [9]: the model initially proposed a solution based on the
assumption that each agent dynamically adjusts its own heading and velocity by computing
a weighted average of the di�erences of its own velocity and the velocities of the other mem-
bers within sight. The theory was later modi�ed by adding a collision avoidance features,
that pre-empts hits within the group ([10]).
However, the best-known and widely applied model that exploits communication within the
�ock limited to a certain volume around the agent has been proposed by Couzin in 2002
[8] and has been dictated by an attentive attempt to study and understand the behavior of
natural systems. The Couzin model has inspired numerous works, ranging from robotic ap-
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plications to biological studies, and is based on the idea of providing a model to understand
the leadership mechanism and decision-making in animal groups. The theory introduces the
idea that �ocks may be made up by heterogenous members from the behavioral point of
view, as it distinguishes between gregarious agents, which only apply the three main rules
for �ocking [34], and informed agents, which add a will term that can be weighted and
represents their tendency to follow a preferred trajectory. The percentage of informed and
gregarious agents needed to follow the imposed path depends on the overall size of the �ock
in terms of number of entities and it a�ects the successfull tracking of the imposed trajectory.

In the previous discussion there have been numerous references to the concept of neigh-
bours: this is an important point to be considered, which is linked to the criterion according
to which the agents choose how many and which other �ockmates to interact with and to the
communication protocol that regulates the information di�usion within the swarm. It has
been proved ([34]) that birds do not consider all the members of the �ock to compute their
own motion, but only a small subset of it. Many approaches have been put forward that
hypotize a topological interaction, that exploits communication with the M closest agents in-
dependently by their distance, or a range-based interaction like the Couzin model [8], where
the liasion takes place with all the members within a certain distance or that fall within a
given angle of sight ("�eld of view" of the agent); for these reasons, it is important to de�ne
the concept of "nearby �ockmates" when addressing a �ocking problem, since the elected
communication protocol will a�ect the overall behavior of the system.

To summarize, the main foundation of Reynolds' theory is that the emergent behavior
obtained with the application of these three basic rules takes the traits of a self-organizing
operation and it is the result of purely local interactions, without the need for a complex
centralized superstructure. The implications of this assumption are that the the boid has
a local perception of the world within a given range or �eld of view that results into a
number of perception spheres corresponding to each boid. It is important to stress this con-
cept since it provides the main motivation for applying �ocking algorithms to engineering
problems. It is, in fact, the decentralized nature of such solutions that provides the most
relevant advantages for developing fully scalable and robust systems. The expression of such
�eld of research is in swarm robotics, a new and auspicious branch of engineering that aims
at addressing diverse engineering problems by proposing solutions based on a cooperative
approach and distributed control of multiple agents.

2.2 State of the art of swarm robotics

Swarm robotics is a very promising �eld of research that has gained attention in the last
decade thanks to the large envisioned potential, although real-world applications are still
rare nowadays. The goal of this branch of engineering is to produce teams of autonomous
robots that can collectively solve tasks by exploiting coordinated motion. The source of
inspiration is drawn from natural behaviors of social animals, such that of birds or bees,
that are able to join forces to carry out activities that would be impossible to accomplish by
a single individual. The main limitation to industrial applications comes from the numerous
challenges that arise when the requirements for the design of individual robots that are able
to safely and autonomously navigate the environment meet those derived from the design
of controllers that can allow the implementation of the swarm.
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(a) (b)

Figure 2.2: Examples of swarm robotics performed with MAVs at the GRASP Lab [24] (a)
and with small wheeled robots (b)

The common methods for performing �ocking behavior exploit external equipment that
can provide the positioning of the agents with respect to a common, global reference
frame. For outdoor applicationa GNSS is normally employed to provide the localization
data ([12],[37],[40],[14]). The main issue carried by the GNSS is the limited applicability,
as it can not be used in indoor environments and GPS denied ones; moreover, it is a�ected
by low accuracy of the positioning, which makes it less suited for employment on MAVs
that need to �y tightly spaced and avoid collisions. An alternative can be found in the set
up of the environment, which can be arranged with a network of transreceivers, like UWB
beacons. The agents receive information about their own position in a global reference frame
and about the other members locations from these devices. Some examples are provided in
[44] and [30]. The drawbacks of this solution lie in the staticity of the structure, that has
to be settled in advance and that limits the area of applicability to the coverage provided
by the systems. On the other hand, the accuracy is increased with respect to GNSS, which
makes it suited for indoor applications that require an elevated precision.
In order to obtain a more versatile solution, agents should be able to perform all the mea-
surements needed for relative localization relying only on on-board equipment. The most
immediate solution would be to employ vision through a camera mounted on-board, al-
though this method is limited by the �eld of view of the instrumentation. Moreover, for
platforms with higher dynamics the working of the camera can be a�ected by the orientation
of the robot.
One solution that has been put forward recently is to rely on omnidirectional sensors based
on radio signals such as UWB antennas on each robot ([13]). Each transreceiver is able to
estimate the relative spacing with respect to any other robot in the �ock and concurrently
keep track of its own position from a starting point gaining information from on-board sen-
sors. The problem of this solution is that, over time, these measurements may be subject
to drift.
Another method put forward by [7] proposes the use of bluetooth for communicating the
measurements between MAVs such as velocities, height and orientation, while the distance
is estimated by considering the strength of the signal.
The drawback of these solutions is that they need to refer the localization information to a
common global frame, which requires the knowledge about each MAV's heading to North,
acquired through magnetometers, which are subject to drift and sensitive to local magnetic
disturbances [1], especially indoor.
In order to overcome this problem, [15] proposes a solution that removes the dependency on
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the heading by developing a range-based relative localization method that expoloits informa-
tion from the IMU and the range measured by the UWB antennas mounted on each drone.
A similar solution is then used to implement a fully-autonomous swarm of MAVs in indoor
in [26]. Here, each MAV is able to accurately localize any other MAV in the swarm basing
only on the measurement of the range and on the communication of velocities, orienation
and yaw rates as provided by the IMU. The model can estimate only the relative position
in 2D (x and y direction), while the relative height is computed by comparing the height
measured by each drone with a laser ranger.
The model made up by two MAVs, where MAVi attempts to estimate the relative position
of MAVj, is described as follows:

Ẋij = f(Xij) =

[
R(ψij)vj − vi − Sripij

rj − ri

]
(2.1)

R(ψij) =

[
cos(ψij) −sin(ψij)
sin(ψij) cos(ψij)

]
(2.2)

S =

[
0 −1
1 0

]
(2.3)

where ψij is the relative yaw angle, ri and rj are the yaw rates, vi and vj are the veloc-
ities and Xij = [xij , yij , zij , ψij ]

T is the state vector.

The present work employs [15] and [26] as a starting point for the relative localization
algorithm by extending it to 3D and by removing the information about the height. In the
following sections, the relative localization algorithm described in 2.1 will be referred to as
the 2D case for making a comparison with the solution developed in this thesis.

2.3 Extended Kalman Filter

There exist situations where a system presents states that are needed to design a controller,
but their value cannot be measurend directly, or where the measurement is a�ected by noise
and therefore is unreliable and has to be obtained my merging the information from dif-
ferent sensors. Various examples can be found in any engineering �eld, like guidance and
navigation systems, computer vision and signal processing. To tackle these problems, some
smart solutions have been found, naming the optimal state estimators.
An optimal state estimator is able to �nd the best approximation of an unknown variable
without measuring it directly or to merge the information coming from a number of noisy
sensors to optimally estimate that variable.
One of the best known solutions is the Kalman Filter, introduced in the '60s by the Hungar-
ian - American engineer Rudolf Emil Kalman (1930 - 2016) in [35] and [36]. It has originally
been designed for linear systems, but through time new versions has been proposed to solve
also nonlinear problems.
It has the form of a recursive algorithm that performs an a-priori estimation of the states and
the expected error covariance and corrects it with an a-posteriori update with the knowledge
about the expected values of both thanks to the measurement of some quantity. The �lter
provides an optimal solution from a statistical point of view and operates through these two
steps (a-priori and a-posteriori) both in the linear and non-linear applications.
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2.4 Kalman Filter

Kalman Filter is an optimal state estimator that addresses linear systems.
In order to explain the functioning of an optimal state estimator, let's consider a general
LTI DT system described in state-space form as follows:

xk = Axk−1 +Buk−1 + wk

yk = Cxk−1 +Duk−1 + vk
(2.4)

where xk is the state, uk is the input and yk is the set of measurements performed by
the system. The notation k indicates the time step considered and k-1 the previous step.
Since the measurements yk are obtained through real measurement instruments, it cannot
provide a perfect reading of the quantity and the output will be a�ected by noise; the same
can be said for the possible disturbances to which the system might be subject between
two time steps. For this reason, it is possible to account for such noise by adding the
terms vk and wk, referred to, respectively, as the measurement noise and the process noise.
Although these signals are random and don't follow a pattern, the most realistic and easy-to-
handle description can be derived from probability theory using their average properties, by
representing them as zero-mean white gaussian noise. The distribution of the disturbances
can be described as follows:

vk = N(0, R)

wk = N(0, Q)
(2.5)

where the 0 implies that the error due to the noise will be mostly around 0, while R and
Q are the error covariance matrices. For simplicity, they are assumed to be equal to the
error variance, σ2

v and σ
2
w. If the system has more than one state/measurement they become

diagonal matrices with the error covariance of each state/measurement on the diagonal. A
graphical representation of the distribution is shown in Figure 2.3:

Figure 2.3: Zero-mean white noise gaussian distribution

Choosing the values for the covariance matrices is not trivial at all, as it can heavily a�ect
the performance of the �lter. A realistic estimation of the noise is important to guarantee

V. Munaro Fully autonomous �ocking behavior of �apping wing robots



12 2.4. KALMAN FILTER

a good prediction of the state. This topic will be investigated in detail in Chapter 3, where
the design of the optimal state estimator used in this thesis will be addressed.

To recap the conditions of the problem addressed by state estimators, we can recall
that, due to noisy information coming from sensors the measurements are unreliable: it is
therefore necessary to �nd a way to correct this knowledge. A common solution is to derive
a model of the system that is as close as possible to the real behavior of the plant, apply the
input uk to it and then use the estimated state x̂k. This estimate will also be unreliable due
to the inevitable approximations of the model and to the process noise wk. Here is where
the state observer goes on stage: it merges the estimated state with the noisy measurement
coming from the sensors to provide an optimal state estimate. The resulting distribution
has a smaller variance and the mean value of the probability density function corresponds
to the optimal estimation of the state [27].
Speci�cally, the Kalman Filter is able to converge to the real value of the states by means of
a two-step prediction (notation(−) indicates estimate before measurement update and (+)
indicates estimate after update):

A-Priori Estimate

The state and the error covariance at time k are predicted by the following equations

x̂−k = Ak−1x̂
+
k−1Bk−1uk−1

P−k = Ak−1P
+
k−1A

T
k−1 + Qk−1

(2.6)

A-Posteriori Estimate

On the basis of the measurements yk, the output of the prediction step is updated

x̂+
k = x̂−k + Kk[yk −Hkx̂

−
k ]

P+
k = [I−KkHk]P−k

(2.7)

where Kk is the optimal Kalman gain at time k, which have the purpose of weighting
the e�ect of the information from the prediciton step and from the measurements according
to the degree of reliability of each component as suggested by the variance of measurement
and process noise. It is de�ned as follows

Kk = P−kH
T
k [HkP

−
kH

T
k + Rk]−1 (2.8)

R and Q are the error covariance matrices and H is the measurement matrix.
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Figure 2.4: Optimal state observer - graphical representation [27]

Figure 2.5: Kalman Filter estimation steps [27]

2.5 Non linear state estimators

The applications of the Kalman Filter are limited to linear sytems. What happens if we
try to apply a KF to a nonlinear system?
Nonlinear equations that can describe a system model are 2.9 for continuous time and 2.10
for discrete time

ẋ(t) = f(x(t),u(t)) + w(t),

y(t) = h(xk) + vk
(2.9)

x̂k = φk−1(xk−1,uk−1) + wk,

yk = h(xk) + vk
(2.10)
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One basic assumption of Kalman Filters is that the considered distribution must be gaussian.
If the state transition function f(x) is a linear function, then the property is preserved and
the probability density function maintains the zero-mean gaussian distribution after the
application of the function.
If the transformation function is, instead, nonlinear, then the resulting distribution might not
be gaussian and the �lter might not be able to converge (the same holds for the measurement
function h(x)).
The solution to this issue can be found in the design of non linear state estimators.

2.5.1 Extended Kalman Filter

One of the best known nonlinear state estimators is the Extended Kalman Filter. It solves
the problem of estimating the states of nonlinear systems by linearizing the measurement and
state transition functions around a point (the current state estimate) and applies Jacobians
of the measurement and states to compute the covariance estimates using the same equations
as in 2.6 and 2.7. Unlike the Kalman Filter, the EKF is not always optimal and stable, but
it can be guaranteed to meet the expected performance only when the system meets speci�c
requirements [5],[22],[29].
The equations becomes as follows

x̂−k = φk−1(x̂+
k−1,uk−1),

x̂+
k = x̂−k + Kk[yk + hk(x̂−k )],

(2.11)

and the Jacobians are de�ned in 2.12

Ak =
∂f(x)

∂x
,

Bk =
∂f(x)

∂u
,

Hk =
∂h(x)

∂x

(2.12)
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Figure 2.6: Linearization performed by the Extended Kalman Filter

2.6 Observability analysis

The concept of observability in control theory can be thought as a measure of how easily the
states of the system can be retrieved knowing the inputs. The principle was �rst introduced
by Rudolf E. Kálmán [18] for LTI systems and later extended to nonlinear ones by applying
Lie derivatives [16].
From a control point of view, a system is said to be observable if, by considering two initial
states x1,x2 ∈ Rn, they are distinguishible, i.e. for every possible input u, the corrisponding
outputs y are not identical on their common interval of existance [16].
In other words, a system is said to be observable if the evolution of its states can be entirely
determined by observing its outputs [3].
However, the property of observability of a system must not be considered as a static one
that either applies to the case of study or it doesn't, but, as it will be shown in [2], it can
be seen more as a local concept, that can be measured in terms of degree of observability
for a given combination of states and inputs.
In the following, the methods for evaluating the observability of a system are described for
linear time invariant and nonlinear systems.

2.6.1 Observability of LTI systems

Let's consider a LTI CT system Σl described by the following state-space form:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(2.13)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rp is the input vector, y(t) ∈ Rq is the output
vector, while the matrices A ∈ Rn,n, B ∈ Rn,p, C ∈ Rq,n and D ∈ Rq,p are respectively the
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state matrix, input matrix, output matrix and feedforward matrix.
A system of this form is said to be observable if the following matrix O is full rank [16]:

O =



C
CA
CA2

.

.

.
CAn−1


(2.14)

This condition is known as the rank condition and it is a valid preliminary index to
determine whether, in general, the system is observable or not. The approach is valid also
for non linear systems, where, however, the observability matrix has to be built using a
di�erent computational procedure.

2.6.2 Observability of nonlinear systems

Let's consider now a general continuous time nonlinear dynamic system Σnl described by
the following model:

ẋ = f(x,u)

y = h(x)
(2.15)

where x = [x1, x2, ...xn]T ∈ Rn is the state vector, u ∈ Rp is the input vector and y ∈ Rm
is the output vector.
In this case, the condition expressed for linear systems is not applicable anymore, since the
condition 2.14 is a particular case of a more general condition [16].
For nonlinear systems, a de�nition of local weak observability can be given as follows ([3]).
Assume that x1,x2 ∈ Rn are the initial states of 2.15 and V is an open set containing them.
The two initial states are said to be V-distinguishable in time T at a local level if, for every
input u, the outputs are di�erent for t <= T for states that belong to V for t <= T .
The system Σ is locally weakly observable at x0 if there exists an open neighborhood U
of x0 such that, for every open neighborhood V of x0, the set of points V-indistinguishable
from x0 coincides with x0. This condition must be veri�ed for every x ∈ Rn. In other
words, local weak observability at x0 corresponds to the possibility of �nding at least one
input u such that x0 is distinguishable from all its close states or a system is locally weakly
observable if it is possible to istantaneously distinguish each initial state from its neighbors
[3],[16],[31].
The former de�nition can guarantee that system Σnl is locally weakly observable at x1 for
an input u if the following matrix O is full-rank for some index k ∈ N:

O =



∇L0
fh

∇L1
fh

.

.

.
∇Lkfh

 (2.16)

The entries of O can be computed by recalling the de�nition of Lie derivatives of the
measurement y [3],[16]:
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L0
fh = h(x)

L1
fh = ∇L0

fh · f
L2
fh = ∇L1

fh · f
L3
fh = ∇L2

fh · f
...

Lkfh = ∇Lk−1f h · f

(2.17)

2.6.3 Indices of observability

The observability of a system must not be considered as a property that is either owned
or not, but rather as the degree of accuracy with which the estimation of the states can be
conducted. In this regard, some measures to quantify the level of observability of a system
have been introduced ([2]) which rely on the inspection of speci�c properties of matrix O.
In particular, the system results more observable if the matrix is well conditioned. The
conditioning of the matrix cannot be reliably evaluated by observing only the determinant,
as this observation does not give any information about how far the matrix is from being
singular, but only tells us whether it is full rank or not. On the other hand, it can be shown
([11]) that a good way to perform this evaluation is to monitor its minimum singular value.
A matrix with a very low minimum singular value will be ill-conditioned, while in the case
where the minimum singular value is higher it will be better conditioned [11].

By keeping these de�nitions in mind, the local estimation condition number C of the
nonlinear system has been de�ned as the ratio between the largest singular value and the
smallest singular value of O ([2]). Favourable conditions on the system will result into a
large C, while a ill-conditioned estimation problem will give place to a rather small C.
In this thesis, the inverse C−1 of the local estimation number has been adopted in place of
C. The choice is dictated by the greater handiness of C−1, which can have values in the
range [0, 1], leading to more readable plots.

C−1 =
min(sing(O))

max(sing(O))
(2.18)

where sing(O) are the local singular values of matrix O obtained through the singular
values decomposition.
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Chapter 3

Extended Kalman Filter for

relative localization

The most important information for developing a �ock of robots is knowing the location of
all the agents in the 3D space. In order to make the swarm fully autonomous, it is necessary
to allow each robot to reliably perform this estimation independently in their own body
frame, without referring to an inertial frame common to the other robots. Therefore, the
core of this thesis is to develop a localization algorithm able to estimate the 3D relative
position of a MAVj (tracked) in the body frame of a MAVi (host), {j|j ∈ N, j 6= i} where
N = {1, 2, ..., N}, N number of robots in the �ock within sight of MAVi.
The system is supposed to rely only on on-board equipment and to provide a localization
in all the three dimensions. One important feature of the proposed solution is that the true
height of the drones is assumed unknown and their relative vertical position is counted among
the states to be estimated. In real-world applications an initial value for this parameter must
be of course available, since the estimation concerns only the relative vertical spacing, but
for these simulation that information is not needed.
In this chapter, the state observer designed to obtain the estimation is described. First, the
available sensory equipment on the robotic platform is described in order to introduce the
expected quality on the information in terms of noise on the measurements and to tailor the
designed solution to the limitations of the gear. Then, the continuous time model of a system
of two MAVs is described, followed by the discretized model of the same system and by the
equations of the estimator. An Extended Kalman Filter has been chosen to address the
problem for its computational power and low memory requirements, which make it suited
for application on-board of small robots like the DelFly. Finally, a preliminary evaluation of
the approach is proposed, which helps appreciating indicatively the feasibility of the solution.

3.1 Robotic platform: the DelFly Nimble

In order to provide an accurate description of the problem, it is important to understand the
robotic platform considered and the available sensory inputs. In the following, a description
of the DelFly Nimble is given with the purpose of providing an overview of the on-board
equipment available and of the speci�c dynamics of the drone.

The most common robots used to implement �ocking are wheeled robots, because they
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make the problem easier by restricting the relative positioning to two dimensions and be-
cause they need to coordinate their motion only on the plane. Among the drones, the most
fortunate are beyond any doubt quadrotors: there are some examples of application that use
�xed-wing drones ( [14]), but they make a less appealing solution due to their lower agility.
Quadcopters, on the other hand, can virtually operate in 2D as their rest position is parallel
to the ground and their yaw, pitch and roll angles have a limited amplitude. Moreover, they
constitute an advantageous solution thanks to the relative simplicity of design, to the simple
dynamics and to their ability to take-o� vertically
The robot adopted in this work is, instead, a very unusual platform, since it does not belong
to neither the �xed-wing family nor the quadrotors one: it is a �apper.
It may seem curious that the only �ying solution that can be found in nature is that of a
�apping wing, as it is adopted by all the species gifted with this enviable ability, and yet
human solutions usually prefer �xed-wing and rotary-wing to emulate it, leaving projects
like the ornithopter to dreaming geniuses like Leonardo da Vinci. Flappers in nature ac-
tually demonstrate a superior agility and quicker reactions compared to traditional drones,
enabling complex maneuvres and a general greater nimbleness in navigating the environ-
ment. By imagining engineering applications of this �ight strategy, it appears that a soft
�apping wing would me more suited for employment near human beings, due to lower noise
and a safer, lighter structure compared to a rotor, along with a more appealing impression
due to the natural-looking shape of the robot.
For these reasons, reasearch to develop robotic platforms that mimic the �apping �ight of
animals has gained interest. Some examples of the state-of-the-art may be found in liter-
ature, like the Nano Hummingbird [28] and the Robobee [21]. The mentioned platforms,
however, present some limitations in terms of possible maneuvres and �ight autonomy. In
this thesis, the robot model employed is that of a tiny, fully autonomous, free-�ying robot
inspired by fruit �ies. The characterisctics of the DelFly Nimble are described in [20].

3.1.1 Flying mechanism and morphology

The robot is designed to emulate the behavior of �ying insects. It is therefore tailless and
consequently its motion in the space is obtained only through adjustmens of the orientation
of the wings and of the �apping rate. It has two soft wings per side that can �ap in coun-
terphase, exploiting a clap and peeling mechanism [20]. Like many other �ying robots and
insects, it is able to control 4 degrees of freedom (DOFs) and to successfully achieve motion
in a 6-DOFs space. The model allows to directly control roll, pitch and yaw orientation
and the vertical �ight through regulation of the thrust. The longitudinal motion is obtained
with the body pitch, while the lateral one can be regulated by the roll angle, following the
helicopter model.
Control over the 3D orientation is achieved by producing torques around the body axes:
yaw torque through the wing root angle, roll torque by asymmetrical �apping frequency on
the left and right side of the drone, pitch torque by changing the dihedral angle.
The main limitations of the platform are due to its small size, which determines a small
payload and a low battery capacity, that allows an autonomy of about 5 minutes [20].
These drawbacks are compensated by the outstanding agility of the robot, which can per-
form angular accelerations around 5000°s−2 through 360° roll and pitch �ips. The speed
reaches 7 m/s in forward �ight and 4 m/s in sideways. These characteristics result into a
remarkably agile structure, able to perform sharp maneuvres and to move more freely in the
3D space.
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Figure 3.1 shows the structure of the DelFly Nimble:

Figure 3.1: DelFly Nimble ([20])

3.1.2 Sensory equipment

The small payload makes it a must to reduce as much as possible the on-board equipment in
order to extend the battery life and autonomy of the drone. The sensory hardware employed
to develop this work is made up by sensors for attitude estimation, 3-axis gyroscope and
accelerometer [20], a small autopilot and an optical �ow sensor for measuring the velocities.
An Ultra wide-band antenna is mounted on each robot to provide information on about the
range between the host drone and any other robot within the working range of the UWB.
The antenna is also exploited for communication among the drones, by broadcasting the
information from the IMU and about the range through the �ock. This solution has been
selected because it is able to provide omnidirectional information, has a high communication
rate and a low weight [15]. It seems also suited because it can satisfy both requirements of
sensor and broadcasting device.

3.2 Kinematic model of a system of two MAVs in 3D

In this section the kinematic model of a two-robot system is introduced. First, the processing
of the sensory inputs available to each drone is described in terms of common conventions;
then, the derivation of the continuous time model of the swarm is addressed, along with a
description of the results obtained by simulation of the system.

The sensory equipment described in 3.1 provides the necessary information to each drone
for performing the relative positioning of any other robot within the UWB allowed range.
For simplicity, the state observer designed for performing this estimation is applied to a
generical system made up by two MAVs, where MAVi attempts to estimate the relative
position of MAVj in its own body frame, {j|j ∈ N, j 6= i} where N = {1, 2, ..., N}, N number
of robots in the �ock within sight of MAVi.
The available data coming from the sensors consists in the 3-axis velocity in the body frame
vb = [vb,x, vb,y, vb,z]T that can be obtained by fusing the optical �ow measurements with
the IMU ones; the yaw rate rb, always in the body frame, coming from the gyroscope and
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the range measurement dij provided by the ultra wide-band antenna, which measures the
distance between MAVi and MAVj. Information about the true height is not used in this
simulation, as the relative vertical position is numbered in the states to be estimated.
The fact that all the measurements performed by each drone are in its own body frame, a
dissertation concerning the reference frames employed is called for. Since it is very di�cult
from the computational point of view to handle vectors in mobile body frames, but, at the
same time, the setup of this thesis needs to avoid referring to a common inertial frame in
order to spare the use of heading measurements, which, as explained in [15], are prone to
interference and uncertainties due to disturbances in the local magnetic �eld as measured
by magnetometers, a solution must be found to slim down calculations and maintain an
autonomous approach to the problem. For all the models in the following analysis, an hori-
zontal reference frame denoted by Hi, will be used, which is di�erent from the body frame
Bi �xed to each robot; frame Hi and frame Bi are both centered in the robot centre of
mass (CoM), but, while Bi uses the three Euler angles to describe the drone's orientation
in space, Hi corrects this orientation by the gravity vector g, providing an horizontal frame
parallel to the ground. For this reason, the quantities measured in the body-�xed frame Bi
need to be transformed to Hi before being broadcasted by the UWB. It is possible to obtain
the needed velocity and yaw rates by trasforming them using Cardan angles parametrization.

3.2.1 Euler angles

The common angles employed in the aerospace and maritime applications to describe the
orientation of a body with respect of an inertial frame are the Euler angles, introduced in
the 18th century by Leonhard Euler. The Euler angles (RPY) can be described by the ele-
mentary rotations roll, pitch and yaw (φ, θ, ψ) around the mutually orthogonal basic vectors
of the body frame. The order in which the roations are applied does matter: the rules of
pre-multiplication of rotations around the �xed axis and of post.multiplication of rotations
about the mobile axis are applied. This representation can be conveniently applied to de-
compose a proper orthonormal matrix R which describes the transformation between two
frames that share the same origin, like the representation of the vectors in the body frame
Bi into the horizontal frame Hi, which can be described as a multiplication of elementary
rotations.

Elementary rotations

The rotations about the basic vectors of a Cartesian reference system are referred to as
elementary rotations and are implemented by the following matrices:

R(i, φ) =

1 0 0
0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)

 (3.1)

R(j, θ) =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

 (3.2)
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R(k, ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (3.3)

The matrix decomposition can be performed as follows:

R = R(φ, θ, ψ) = R(k, ψ)R(j, θ)R(i, φ) =

=

cφcψ − sφcθsψ −cφsψ − sφcθcψ sφsθ
sφcψ + cφcθsψ −sφsψ + cφcθcψ −cφsθ

sθsψ sθsψ cθ

 (3.4)

R = R(φ, θ, ψ) = R(i, φ)R(j, θ)R(k, ψ) =

=

 cθcψ −cθsψ sθ
sφsθcψ + cφsψ −sφsθsψ + cφcψ −sφcθ
−sθcψcφ + sφsψ cφsθsψ + sφcψ cφcθ

 (3.5)

where 3.4 indicates rotations about the mobile axis and 3.5 about �xed axis, while the
notation s(.) and c(.) indicate respectively the sin(.) and cos(.).

3.2.2 Body frame and horizontal frame

As stated at the beginning of 3.2, the model of the system uses two di�erent frames: the
body-�xed frame Bi and the horizontal frame Hi. Both frames share the same origin, lo-
cated at the CoM and therefore the transformation between them can be described by a
simple composition of rotations. The peculiarity of frame Hi is that it is corrected by the
gravity with respect to Bi, resulting into a reference frame with the z-direction othogonal
to the ground pointing down and x-direction and y.direction forming a plane parallel to the
ground. The two reference systems are shown in Figure ??, where Bi is indicated with the
label body while Hi appears as inertial.
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Figure 3.2: Reference frames ([19])

On the basis of the theoretical concepts described before, it is possible to ouline now
the transformations before use that are needed to be applied to the quantities measured by
on-board sensors. In particular, these involve the 3-axis body-frame velocity vb and the yaw
rate rb, which have to be processed before being broadcasted to the rest of the �ock.
It is possible to obtain the velocity in the horizontal frame v by rotating the vector in the
body frame in X and Y, following this order:

v =

 c(θ) 0 s(θ)
s(φ)c(θ) c(φ) −c(θ)s(φ)
s(θ)c(φ) s(φ) c(φ)c(θ)

vb (3.6)

For what concerns the yaw rate r, it can be obtained by recalling the relationship between
the angular velocity vector and the angular velocities measured in the body frame:

ω = rb

0
0
1

+ qb

−s(ψ)
c(ψ)

0

+ pb

c(ψ)c(θ)
s(ψ)c(θ)

0

 (3.7)

where pb indicates the roll rate measured by the gyroscope.

r =
s(ψ)

c(θ)
qb +

c(φ)

c(θ)
rb (3.8)

where qb is the pitch rate as measured by the gyroscope.
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3.2.3 Continuous time model

By considering two MAVs, it is possible to derive using the Newton formula the continuous
time kinematic model f(Xij) describing the relative motion of the drones in the three di-
mensions. The model takes as input the velocities in the horizontal frame Hi and the yaw
rates and computes the derivative of the relative position of MAVj in the transformed frame
of MAVi. The input vector can be expressed as Uij = [vi,vj , ri, rj ]

T and the state vector
as Xij = [xij , yij , zij , ψij ]. The prediction is obtained by considering the range between
the two MAVs dij , which is the only observation available. Heights are not measured. The
equations describing the model are the following, as in [26]:

Ẋij = f(Xij) =

[
R(ψij)vj − vi − Sripij

rj − ri

]
(3.9)

where the 3-axis velocitites are expressed by vj = [vxj , v
y
j , v

z
j ]T and vi = [vxi , v

y
i , v

z
i ]T ,

the yaw rates are rj and ri, pij = [xij , yij , zij ]
T is the realtive position vector in the three

dimensions, R(.) is the elementary rotation matrix about z that rotates jth frame to ith

frame by the relative yaw angle, ψij , ans S is the skew-symmetric matrix.

R(ψij) =

cos(ψij) −sin(ψij) 0
sin(ψij) cos(ψij) 0

0 0 1

 (3.10)

S =

0 −1 0
1 0 0
0 0 0

 (3.11)

The relative state to be estimated is Xij = [pij , ψij ] and it has to be computed according
to 3.10 by using the measurement of the range dij and the input vector Uij .

3.3 EKF for relative localization derivation

In this section the equations for implementing the Extended Kalman Filter for range-based
relative localization are derived from the continuous time model of the system.
First, it is needed to discretize the equations 3.9, since the EKF works in DT (a CT would
be also possible, but DT form is adopted in this thesis), obtaining the �rst equation in 3.12:

X̂k+1|k = F (X̂k,Uk) = X̂k + ẊkTs,

Pk+1|k = AkPk|kA
T
k + BkQk|kB

T
k

(3.12)

where Ts is the time interval to update the EKF and it is assumed equal to the sampling
time used in the simulation, X̂k+1|k is the vector of states predicted on the basis of X̂k|k,
the estimated state at the current time step. The second equation in 3.12 determines the
prediction of the error covariance P, which is computed by considering the process noise
covariance matrix Q (noise on the input) and the error covariance as predicted at the current
time step Pk|k. The matrices Ak and Bk denote respectively the state Jacobian matrix and
the input Jacobian matrix. They can be derived as follows:
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A =
∂F

∂X
=


1 riTs 0 Ts(−sin(ψij)v

x
j − cos(ψij)v

y
j )

−riTs 1 0 Ts(cos(ψij)v
x
j − sin(ψij)v

y
j )

0 0 1 0
0 0 0 1

 (3.13)

B =
∂F

∂U
=


−Ts 0 0 Tscos(ψij) −Tssin(ψij) 0 Tsyij 0

0 −Ts 0 Tssin(ψij) Tscos(ψij) 0 −Tsxij 0
0 0 −Ts 0 0 Ts 0 0
0 0 0 0 0 0 −Ts Ts

 (3.14)

The previous equations make up the prediction stage of the EKF. The outputs of this
step are updated by merging this information with the measurement of the range, denoted
by:

h = h(Xij) =
√
x2ij + y2ij + z2ij (3.15)

from 3.15 it is possible to derive the equations for the update stage. In particular, the
Jacobian matrix of the observation is obtained as:

H =
∂h

∂X
= [xij/h, yij/h, zij/h] (3.16)

S = (HkPk|k−1H
T
k + RT )−1

yres = h(X̂k|k−1)

Kk = Pk|k−1H
T
k S

X̂k = X̂k|k−1 + Kk(zk − yres)

(3.17)

Figure 3.3 shows the structure of the EKF as developed in Simulink. The Matlab func-
tion EKF_predict performs the prediction of the states X according to the equations 3.12;
the ouputs of the stage are the predicted states X̂k+1|k and the predicted error covariance
P̂k+1|k and they provide the input to the Matlab function EKF_update, where the formulas
in 3.15 3.16 and 3.17 are implemented. The input u corresponds to the input vector u of
velocities and yaw rates, to which a process noise with zero-mean white gaussian distribution
vk is added through the Process noise block. Input h is the measurement of the range as
provided by the UWB, while the constants qv and qw are the variance of the error on the
velocities and the yaw rates respectively.

3.4 Simulation with two drones

This section describes the preliminary simulation of the system performed with two drones
in order to evaluate the performance of the �lter. Realistic values have been assigned to
the �lter's parameter and to the amount of noise applied to measurement and inputs. The
main indeces that are studied in order to quantify the e�ciency of the estimator are the
convergence time and the quality of the prediction.
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Figure 3.3: Simulink model of the EKF structure

The simulation has been run �rst using a simple simulator to check the behavior of the
�lter with a plant with simpler dynamics; afterwards, the model of the DelFly has been
plugged in. The overall results are not signi�cantly far away from each other, therefore, in
the following, the reported experimental results are from the �nal simulation with the real
drone model.

3.4.1 Parameters con�guration and simulation environment

In this section the values for the parameters of EKF and simulation are reported.

Parameter Symbol Value

Sampling time Ts 0.01 s
Input noise deviation - velocity σv 0.25 m/s
Input noise deviation - yaw rate σw 0.4 rad/s
Measurement noise deviation σr 0.1 m

Table 3.1: Simulation parameters

The parameters for the EKF are computed as follows:

Q =



σ2
v 0 0 0 0 0 0 0

0 σ2
v 0 0 0 0 0 0

0 0 σ2
v 0 0 0 0 0

0 0 0 σ2
v 0 0 0 0

0 0 0 0 σ2
v 0 0 0

0 0 0 0 0 σ2
v 0 0

0 0 0 0 0 0 σ2
w 0

0 0 0 0 0 0 0 σ2
w


=
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=



0.252 0 0 0 0 0 0 0
0 0.252 0 0 0 0 0 0
0 0 0.252 0 0 0 0 0
0 0 0 0.252 0 0 0 0
0 0 0 0 0.252 0 0 0
0 0 0 0 0 0.252 0 0
0 0 0 0 0 0 0.42 0
0 0 0 0 0 0 0 0.42


R = σ2

r = 0.12 (3.18)

Since 3.12 uses information from the previous time step, the EKF has to be initialized
in terms of initial P and output vector X. To avoid a�ecting the estimation in any way, the
relative position of Robotj in Roboti frame is initialized at a random value, by assigning to
xj , yj , zj an arbitrary value in the range [−5, 5] m. For what concerns the covariance matrix
P, it is assigned an initial value of :

P =


10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 0.1


In 3.4 the Simulink model for the simulation is shown. The blocks "Robotj" and "Roboti"
contain the DelFly Nimble model and the matlab function that performs the projection of
the velocities from the body frame Bi to the horizontal frame Hi. The velocities in the hori-
zontal frame and the yaw rates enter the subsystem named "Input", where they are merged
to form the vector u that serves as input to the EKF. The positions in the inertial frame
are, instead, employed to compute the range between the two drones in the block "Range
computation": this compuatation is not actually performed by the drone, but it is needed
to simulate the information provided by the UWB antenna. Finally, subsystem "Extended
Kalman Filter" contains the �lter and its structure is shown in 3.3.

Figure 3.4: Full simulink model

The estimated states obtained through the state observer and simulation environment
described in this chapter are shown in Figure 3.5. The red plot shows the real relative
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position and relative yaw angle, while the blue plot refers to the same quantities as estimated
by the EKF.
From this preliminary evaluation, it appears that the �lter is capable of correctly converge to
the true value, although this approximation takes longer than the 2D case, as it can be seen
by comparing this results to those obtained by [26]. That model, which aimed at estimating
only the relative position in the x and y direction, is able to converge in about 20s, while
with the setup presented in this thesis the convergence time apears to be around 40s.
This delay was intuitively foreseen, as by adding the third dimension we are also increasing
the ambiguity of the real state corresponding to the same set of inputs. This point will be
discussed in detail in the following chapter dedicated to the observability analysis of the
system.

Figure 3.5: Estimation of the four states through a range-based EKF

In order to verify the correctness of convergence time, the system has been simulated
multiple times for 80s under di�erent initial conditions both in terms of the distribution
of the robots and of initialization parameters of the �lter. Figure 3.6, which shown the
estimation error in the �rst three states, con�rms that most of the runs are able to converge
to a null estimation error around 40s.
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Figure 3.6: Simulink model of the EKF structure
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Chapter 4

Observability analysis via Lie

derivatives

This chapter is dedicated to the observability analysis of the system. The objective of the
analysis is to identify possible combinations of inputs and states that could jeopardize the
correct functioning of the �lter.
The results obtained through this study are used to test the ability of the �lter to converge
to the true values of the states under observable conditions and in unobservable (or less
observable) ones. The e�ort has proved useful in order to anticipate what to expect from
the EKF and to design the second algorithm presented in Chapter 5, which relies heavily
on the ability of each robot to correctly localize the preceding one in the �ock.
As discussed throughly in Chapter 2, a common method for studying the observability of
nonlinear systems, like the one considered in this work, is to build an observability matrix
O through Lie derivatives and to analyze its properties in terms of rank and determinant.

In the following, �rst the mathematical procedure to extract the entrances of matrix O
from the system equations and to compute its determinant is carried out. Once the results
of the operation are derived, they are analyzed to deliver a preliminary evaluation of the
properties of the matrix by checking the rank condition and evident unobservable conditions.
At this point, the degree of observability of the system is studied by introducing a measure
of observability, the local estimation condition number ([2] and [3]). The purpose of this
step is to give a qualitative overview on how the observability of the system is a�ected by
variations of the inputs and of the states and to perform a comparison with the 2D case
([26] and [15]). Finally, the theoretical results are veri�ed by experimental evidence obtained
through simulation by testing the EKF performance with di�erent trajectories imposed to
the drones.

4.1 Observability matrix derivation

In this section, the entrances of the observability matrix O are computed from the system
equations using Lie derivatives in order to perform a local weak observability analysis of the
EKF for range-based relative localization in 3D are computed.
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Let's consider the non-linear system Σ describing the problem under study in Chapter 3
through the following state-space equations:

Ẋij = f(Xij) =

[
R(ψij)vj − vi − Sripij

rj − ri

]
y = h(Xij) = dij

(4.1)

where Xij = [xij , yij , zij , ψij ]
T is the state vector, u = [vi,vj , ri, rj ] is the input vector

and y is the measurement of the range. The states indicate the relative position of MAVj
with respect to MAVi p = [xij , yij , zij ]

T and the relative yaw angle ψij , the inputs are
the 3-axis velocities and the yaw rates of the two MAVs in the horizontal frame Hi. dij =√
x2ij + y2ij + z2ij is the measured range.

By observing the structure of the problem, it is possible to notice that the number of states
to be estimated is four. Therefore, in order to study the local weak observability of the
system according to the theory expressed in Chapter 2, the derivation of Lie derivatives
must reach the third order. The rank condition states, in fact, that for a system to be
locally weakly observable the observability matrix must be full rank [16]. For this reason,
matrix O will have the following shape:

∇L0
f (h)

∇L1
f (h)

∇L2
f (h)

∇L3
f (h)

 =


∂L0

fh/∂Xij

∂L1
fh/∂Xij

∂L2
fh/∂Xij

∂L3
fh/∂Xij

 (4.2)

In order to simplify the equations, the observation can be expressed in the power format
1
2p

Tp for the following computations.
In this section, the notations pij , R, S, vi, vj are referred to the 2D components of the
quantities, so they stand for the x and y components of the vectors, while the z component
is written separately. The choice has the double purpose of making the formulas more
readable and of highlighting the e�ect due to the addition of the third dimension: as it
will be discussed in the following, the behavior of the system along the vertical direction is
often detached from the one in the plane and the two a�ect the observability of the system
separately.
The derivation of the Lie derivatives is then performed as follows:
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L0
fh = h(Xij) =

1

2
pTp

∇L0
fh = [xij , yij , zij , 0]

L1
fh = ∇L0

fh · f

∇L1
fh = [(Rvj − vi)

T , vzj − vzi , pTijRSvj ]

L2
fh = ∇L1

fh · f

∇L2
fh = [(−riSvi + rjRSvj)

T , 0, −2viRSvj − rjpTijRvj ]

L3
fh = ∇L2

fh · f

∇L3
fh = [(r2i vi − r2jRvj)T , 0, 3(rj − ri)vTi Rvj − r2jpTijRSvj ]

(4.3)

The equations in 4.3 are used to build by substitution the observability matrix O:

O =



pij zij 0

(Rvj − vi)
T vzj − vzi pTijRSvj

(−riSvi + rjRSvj)
T 0 −2vTi RSvj − rjpTijRvj

(r2i vi − r2jRvj)T 0 3(rj − ri)vTi Rvj − r2jpTijRSvj


(4.4)

The study that will follow in the upcoming sections will require the comparison with the
observability in the 2D system. To this end, the observability matrix obtain in this case in
[26] is reported here and indicated as O2D.

O2D =


pij 0

(Rvj − vi)
T pTijRSvj

(−riSvi + rjRSvj)
T −2vTi RSvj − rjpTijRvj

 (4.5)

The properties of the matrix in 4.4 are used to study the local weak observability of the
system under di�erent conditions in the following section.

4.2 Rank condition veri�cation

The �rst veri�cation that is done is to check that the matrix is full rank, meaning that
its determinant is not null. This is called the rank condition and ensures that the matrix
is well-posed. It is a veri�cation that can tell whether, in general, given these inputs and
these measurements, the set of states can be estimated by observing the outputs. The ranl
condition can be immediately veri�ed with MATLAB.
Since this method is very general, it is important to determine the conditions that can lead
to the loss of this property.
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4.2.1 Intuitively unobservable conditions

After obtaining the shape of the observability matrix 4.4, it is possible to make some pre-
liminary observations concerning its rank.
As it can be noticed, the third column depends only on the relative motion and position
of the drones in the vertical direction. One intuitively unobservable condition is therefore
found in the case where the robots belong to the same horizontal plane and are not
moving vertically or are moving vertically at the same velocity: if the relative velocity
in z goes to zero and the drones happen to be on the same horizontal plane (zij = 0), then
the third column becomes null and the matrix loses rank.
Another unobservable condition would occur if the two MAVs occupied the same spot in
space: this is not possible due to their physical dimension, that prevents them from over-
lapping. This result is, however, interesting if compared to the study in 2D carried out in
[15] and [26]: in that case, the EKF estimated the relative position of MAVj with respect to
MAVi in x and y directions and from the observability analysis it resulted that if the two
MAVs where to �nd themselves in the same position in x and y, but separated by height, the
system would have been unobservable. Here, on the other hand, the same situation appears
not to lead to unobservability, since, as it appears from 4.4, the decoupled nature of the
behavior in z from the behavior on the horizontal plane, gurantees that the observability
matrix preserves its rank as long as at least one among xij , yij , zij is non-zero.
A third intuitive condition that would lead to unobservability of the system can be drawn
by observing that all the terms but the �rst row depend on the velocity of MAVj, vj . It
appears that MAVi is able to correctly estimate the relative position of MAVj only if the
latter is moving. The opposite is not true, as even in the case where MAVi is stationary, it
is still capable of correctly carrying out the estimation.
The intuitive unobservable conditions are summarized as follows:

1. zij = 0 and vzj = vzi

2. p = 0

3. vj = 0

Figure 4.1 shows a graphical representation of how unobservable conditions found in [15]
and [26], become only limit condition with the 3D EKF:

Figure 4.1: Limit conditions to the observability of the system
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If the drones lie on the same vertical direction the system is still observable; if they
belong to the same horizontal plane and their relative velocity in such plane is the same,
they can localize each other provided that the relative vertical velocity is di�erent from zero.
Thi �ndings suggest that the number of situations in which observability is guaranteed are
increased with respect to the application in 2D.

4.3 Determinant computation

The previous conditions can be veri�ed also by computing the determinant of O. Now, the
task appears really hard given the complexity of the matrix.
The procedure followed to extract |O| is to replace all the huge terms with letters and pro-
cede with a symbolic cofactor expansion in cascade along the third column, order the result
conveniently and then replace the letters with the original entries of the matrix. All of the
computations have been double-checked with the MATLAB Symbolic Math Toolbox.

4.3.1 Mathematical procedure

First, the larger terms are replaced in a symbolic manner:

O =



xij yij zij 0

a b vzj − vzi A

c d 0 B

e f 0 C


(4.6)

Now, the determinant is derived through cofactor expansion. The two cofactors can be
computed according to the following formulas:

M1 = (−1)4 zij det


a b A

c d B

e f C

 (4.7)

and

M2 = (−1)5 (vzj − vzi ) det


xij yij 0

c d B

e f C

 (4.8)

Given the complexity of each term, they can be further expanded as the sum of the
determinant of two cofactors. In particular, cofactor expansion is performed for both M1
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and M2 along the last column. The resulting expressions are in 4.10

M1 = zij [A(cf − de)−B(af − be) + C(ad− bc)]

M2 = −(vzj − vzi ) [−B(fxij − eyij) + C(dxij − cyij)]
(4.9)

The determinant can therefore be computed as the sum of the two:

det(O) = M1 + M2 (4.10)

4.3.2 Terms ordering and analysis

The form of 4.9 and 4.10 is not convenient for verifying the intuitive conditions previously
observed, nor for identifying additional unobservable situations. In the following, the terms
are manipulated and written in a handy manner.

Numerical expression of M2

We �rst consider M2 and we notice that it can be seen as made up by two parts with
−(vzj −vzi ) as a common coe�cient, both depending on the relative position of j with respect
to i on the horizontal plane (pij): we can therefore try to write M2 as a function of pij .

M2 = −(vzj − vzi )[−B(fxij − eyij) + C(dxij − cyij)]

Coe�cient −(vzj − vzi )

TERM 1 −B(fxij − eyij)

−B(fxij − eyij) = −B[e f ]

[
0 −1
1 0

] [
xij
yij

]
= −B[e f ]Spij (4.11)

TERM 2 C(dxij − cyij)

C(dxij − cyij) = C[c d]

[
0 −1
1 0

] [
xij
yij

]
= C[c d]Spij (4.12)

The numerical form of M2 can be written as follows:

M2 = −(vzj − vzi )[(2vTi RSvj + rjp
T
ijRvj)(r

2
i vi − r2jRvj)T

+ (3(rj − ri)vTi Rvj − r2jpTijRSvj)(−riSvi + rjRSvj)
T ]Spij

(4.13)

What to notice about the previous result:

� All of the terms depend on vj

� All of the terms depend on pij

� All of the terms depend on Rvzj − vzi
� All of terms depend on a factor that goes to zero if the velocities in the plane are
parallel
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Numerical expression of M1

Now the �rst half of the determinant, M1, is to be considered.

M1 = zij [A(cf − de)−B(af − be) + C(ad− bc)]

Coe�cient zij

First it can be noticed that the second and the third terms depend on a and b, so it is
possible to consider those two terms separately from the �rst term A(cd − de) in order to
arrange them to collect a and b.

TERM 2 −B(af − be)

−B[e f ]

[
0 −1
1 0

] [
a
b

]
= −B[e f ]S[a b]T (4.14)

TERM 3 C(ad− bc)

C[c d]

[
0 −1
1 0

] [
a
b

]
= C[c d]S[a b]T (4.15)

In this way, TERM 2 and TERM 3 can be rewritten as a function of [ab]T ain the
following way: (C[c d]−B[e f ])S[a b]T .
It is noteworthy that [a b] = (Rvj − vi)

T , which actually express the velocity di�erence
in the ith frame. This means that this part of the determinant becomes zero for parallel
velocities of the two robots in the horizontal plane.
At this point, the �rst term of M1 is studied.

TERM 1 A(cf − de)

It can be noticed that A = pTijRSvj = vTj RSpij , which actually depends on the same
term Spij as the expanded M2.
By manipulating the term as done with M2, it is possible to obtain:

A(cf − de) = A[e f ]S[c d]T (4.16)

and by substituing the terms:

A(cf − de) = (r2i vi − r2jRvj)TS(riS
Tvi − rjRSTvj)vTj RSpij (4.17)

With the information about the expanded terms of M1 , it is possible to write this part
of the determinant as follows:

M1 = zij{(r2i vi − r2jRvj)TS(riS
Tvi − rjRSTvj)vTj RSpij+

[(3(rj − ri)vTi Rvj − r2jpTijRSvj)(−riSvi + rjSRvj)
T+

(2vTi RSvj + rjp
T
ijRvj)(r

2
i vi − r2jRvj)T ]S(Rvj − vi)}

(4.18)
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4.4. RESULTS FROM THE OBSERVABILITY MATRIX O DETERMINANT

ANALYSIS

What to notice about the previous result:

� All of the terms depend proportionally on Rvj − vi

� All of the terms depend on zij

It is interesting to notice that M1 depends on the relative position in the vertical direc-
tion, but not on the relative position in the horizontal direction. On the other hand, M2

depends on the relative position pij in the plane, but not on the relative height. These two
terms suggest that the system can be observed as long as

� the drones belong to the same plane, but occupy di�erent (x,y) positions

� the drones occupy the same (x,y) position, but they belong to di�erent planes

� the drones occupy di�erent (x,y,z) positions

For what concerns the velocities, since all of the terms depend on the velocity di�erence
in the x and y direction vi −Rvj and on vj alone, two general conditions to guarantee ob-
servability are that the "tracked" robot must be moving in the plane and that the velocities
in the plane must be non parallel.
The velocity di�erence in the z direction a�ects only one term (M2), therefore intuitively
having the same vertical direction might make the system less observable, but not unob-
servable.

4.4 Results from the observability matrix O determinant

analysis

Since this system is the 3D version of the one studied in 2D by [15], it is possible to compare
the two results.
In the 2D case, the conditions for unobservability were the same found here for what concerns
the velocities (i.e. vj = 0 or vi = Rvj) and pij = 0.
On the other hand, the 3D system seems to guarantee observability in a larger number
of cases. In fact, in the 3D case the condition linked to the relative position in the z
component ensures observability where in the 2D case the system would have turned out
unobservable, speci�cally the system remains observable even when the (x,y) coordinates
coincide, provided that the planes are di�erent. In the 2D system the relative vertical
position was not considered, so the coincidence in (x,y) was enough to lose observability.
This is due to the fact that zij and pij do not appear in all the terms of the determinant
concurrently and therefore the presence of one of the two conditions does not send the entire
determinant to 0.
To wrap it up, the following unobservable situations have been found:

� the two robots occupy the same spot in space

� the two robots move with parallel velocities in the three directions

� the two robots travel with parallel velocities in the z direction and they belong to the
same horizontal plane

� the tracked robot (j) is still
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The occurrance of partial conditions (like zij = 0 or pij = 0 for example) might intuitively
make the system less observable, because the value of |O| becomes smaller, but the fact that
there is no term in the determinant expression that depend concurrently on both parameter
suggests that a weak observability of the system is maintained.

This analysis has been useful to understand the limit conditions that guarantee the
correct working of the relative position estimator and to identify the situations that lead to
unobservability the 2D system, but not the 3D one. It is not possible, however, to appreciate
from the rank condition if the observability of the system is enough to guarantee the correct
functioning of the estimation.
It would be interesting to study how well conditioned the system is, or, in other words, how
easy it is to distinguish uniquely one state from the other basing on the measurement h.
Some interesting parameters have been introduced in [2], which are based on the observability
gramian and other indeces that can be estracted from it.
In the present study, the inverse of the local estimation condition number will be used.

4.5 Measures of observability

The rank veri�cation can be a valid method for understanding whether a system is locally
weakly observable or not, but it does not provide any information about the degree of
observability, i.e. how observable the system is. In this section we study the e�ect of the
inputs and of the states combined on the level of observability of the model by monitoring
the changes that occur in the value of the inverse of the local estimation condition number

C−1 presented in Chapter 2. This parameter helps us to understand how well posed the
matrix O is, or, in other terms how far it is from being singular. High values of C−1 indicate
a better conditioning, while low values suggest that the current disposition of the agents
does not allow a good estimation of the states.
The analysis has been carried out by showing graphically the variation of the local estimation
condition number in the colormaps and by building level maps. Di�erent parameters of the
system are checked by �xing all the other terms and varying only the one of interest around
a given initial set of conditions. The results are compared to those obtained in the 2D case in
order to see how a�ected the observability of the system is by the estimation of the relative
position in the third dimension. Finally, some relevant cases are identi�ed and studied in
detail through simulation of the system with these particular conditions.

4.5.1 Unobservable conditions

The �rst veri�cation that is carried out concerns the unobservable conditions detected in
the previous section. This evaluation is useful not only to validate the analytical �ndings,
but also to con�rm the correctness of the method that we undertake to implement.
In Figure 4.2, the three unobservable cases highlighted in Section 4.2.1 are shown: the index
C−1 is studied by �xing all the parameters but the relative position in the horizontal plane
of the two robots, px and py, which vary around the initial position px = 0 m and py = 0
m in the range [−5, 5] m. The colorbar beside each plot indicates that C−1 = 0 for any
relative position of the robots for all the three cases: parallel velocities in the three directions
vi = kRvi, MAVj still vj = 0 m/s and drones on the same horizontal plane zij = 0 m with
the same vertical velocity vzj = vzi .

V. Munaro Fully autonomous �ocking behavior of �apping wing robots



39 4.5. MEASURES OF OBSERVABILITY

Figure 4.2: Sensitivity to measurement noise

4.5.2 Comparison with the 2D case

In this section the e�ect of all the relevant parameters on the observability index is studied
in the 2D and 3D case. Since the observability of the system is de�ned as the possibility
of obtaining distinguishable outputs as a result of the application of di�erent inputs [16],
intuitively the expected result is to �nd that the new �lter results less observable compared
to the 2D case; in fact, now the ambiguity in the determination of the true relative position
of MAVj is increased due to the fact that the same measured range associated to certain
velocity vectors can correspond to an agent belonging to a sphere of radius dij around MAVi,
while in 2D the ambiguity is only between two possible positions of MAVj with respect to
MAVi on the plane (left or right). The results of the study con�rm this supposition and are
reported in the following.

Before building the colormaps it is necessary to study the e�ect of two parameters on
the overall behavior of the system, as they can a�ect di�erently the 2D and 3D �lter. It is,
in fact, important to provide the same conditions to both the systems under study, in order
to avoid setting up a combination of parameters that can be favourable to one of the two,
but not to the other. To this end, the e�ect of the relative yaw angle ψij and of the relative
vertical position zij on the observability of the systems is plotted.
For the simulation to estimate the e�ect of ψij and of zij , the parameters of the system are
�xed as shoen in 4.1.
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Parameter Value

pij [2, 2]T m/s
zij 0 m
vi [−2,−2,−2]T m/s
vj [5, 5, 5]T m/s
ψij 160°
ri 10°/s
rj −20°/s

Table 4.1: Parameters for the analysis of ψij and zij

The relative height zij is set to 0 m in order to test the two systems under the same
conditions.

E�ect of ψij on the observability index

The �rst parameter to be studied and compared is the relative yaw angle ψij . The impor-
tance of this preliminary evaluation is dictated by the need of �xing this value in all the
other simulations where the focus is on the impact of other inputs on C−1: the choice of ψij
appears therefore not trivial, as it will set one common condition to the two systems.
In Figure 4.3 the relative yaw angle varies between 0° and 180° in order to see the trend of
C−1 for all the possible relative orientations of the two MAVs.

Figure 4.3: E�ect of relative vertical position

The blue plot corresponds to the behavior oserved in the 2D: as expected by considering
the results in [15], the observability of the system drops for values close to 0° and 180°, which
correspond to parallel velocities, while it shows a positive tendency between 10° and 160°
with a signi�cant peak around this last value. On the overall, the observability ondex takes
values between 0 when the MAVs are parallel and 0.17 for the best conditioned case.
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An interesting result is found, instead, for the 3D case. The �rst observation that can be
made is that the unobservable condition (C−1 = 0) is never reached, thanks to the vertical
dynamics imposed to the system, which prevent the matrix O from losing rank if the veloci-
ties in the horizontal plane are parallel, as long as the vertical components are di�erent 5.2.1.
However, it can be noticed that C−1 reaches in general lower values with respect to the 2D
case, ranging from 0.01 to 0.065, suggesting that the 3D system remains on the overall less
observable. The curious result is that the minimum in the observability index is reached
around ψij = 90°, meaning when the two drones are �ying with orthogonal velocities. This
�nding is unexpected since intuitively the relative position should not be relevantly ambigu-
ous in this condition. This case will be studied more in detail in the following sections.

E�ect of relative vertical position zij on the observability index

The second parameter to be tested is the relative vertical position zij , which is relevant only
for the 3D case, since it does not appear in O2D. It is fundamental to evaluate the response
of the system to variations in this quantity since it is the only parameter that a�ects only
the 3D system and it is needed for studying the di�erence in the observability of the two
cases in similar conditions, that is to say when the two MAVs belong to the same horizontal
plane (zij = 0m). To this end, the 3D system has been simulated for values of zij ranging
from −6m to 6m, where a positive value indicates that MAVj is �ying higher than MAVi
and a negative value suggests the opposite.

Figure 4.4: E�ect of relative vertical position zij

In Figure 4.4, the plots show the trend of the local estimation condition number C−1 for
di�erent values of zij when the drones are in the same vertical direction px,yij = 0 (left) and
when they are not (right). It can be observed that in the �rst case the observability of the
system has a symmetrical course for positive and negative values of zij around zij = 0m,
which corresponds to an unobservable condition as explained in 4.2.1. On the other hand,
when the drones do not belong to the same horizontal plane, the trend of C−1 is not sym-
metrical around 0, but it steadily increases as MAVj occupies a position furtherly above
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MAVi. This asymmetry will be observed also in other simulations in the following sections,
and determines a distribution of the observability di�erent according to the relative vertical
position of the drones.

E�ect of the relative position on the observability index

In light of the �ndings of the previous section, it is now possible to �x the values for ψij and
zij to study the impact of the relative position in the horizontal plane, of the yaw rates and
on the relative velocities on the observability of the system.

Figure 4.5 reports the colormaps obtained by varying the relative (x,y) position of the
drone in the range [-5, 5] m and keeping constant all the other parameters as �xed in Table
4.1. The index C−1 changes its value as indicated in the colorbar. It is important to pay
attention to the fact that the same color in the two maps does not correspond to the same
value of the number.
This study has been conducted by considering the MAVs on the same height, in order to
appreciate the di�erence in the behavior under the same conditions.

Figure 4.5: E�ect of relative horizontal position

The main consideration thatcan be done is that in the 2D case C−1 reaches higher values
with respect to the 3D case: 0.4 and 0.09. The distribution of the observable areas appears
to be symmetrical around a line that divides the mapping in two halves: the position of this
line varyies according to the parameters that are �xed at the beginning of the analysis and
can be shifted, reversed or moved by tuning the relative yaw angle and relative yaw rate.

E�ect of velocity of MAVj on the observability index

In Section 4.2.1 it has been observed that the velocity of MAVj is a critical parameter: it
appears, in fact, that MAVi is not able to track MAVj anymore if the latter is not moving.
For this reason, in this section the e�ect of the velocity of MAVj in the horizontal plane is
varied in the range [-8, 8] m/s in order to see how this a�ects the index C−1. The drones
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(a) (b)

Figure 4.6: Level maps of C−1 under the variation of the relative horizontal position

are again assumed to belong to the same plane.
The results are shown in Figure 4.7 and 4.8.

(a) (b)

Figure 4.7: E�ect of the velocity of MAVj on C−1

(a) (b)

Figure 4.8: Level maps of C−1 under the variation of MAVj velocity

The results are comparable to those found by varying the relative position: the 2D system
is more observable and the distribution of the observable conditions shows some symmetry
around an unobservable line that depends on other �xed parameters.
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E�ect of yaw rates on the observability index

In this section, the e�ect of the yaw rates ri and rj is studied. The yaw rates are varied
around the initial value [0, 0]°/s in the range [−90, 90]°/s for both the 2D and 3D cases. The
results are shown in Figure 4.9 and Figure 4.10, which show the value reached by C−1.

Figure 4.9: E�ect of the yaw rates

(a) (b)

Figure 4.10: Level maps of C−1 under variation of the yaw rates

As before, the �rst aspect to be noticed is that the local estimation condition number
assumes signi�cantly higher values in the 2D case with respect to the 3D case: 0.35 against
0.07.
Another interesting aspect is that the variation of the relative vertical position a�ects the
observability conditions: it appears that for drones belonging to the same plane the area
characterized by higher values of C−1 is smaller than that observed for MAVs on di�erent
horizontal planes. This observation con�rms again the positive e�ect on the system of guar-
anteeing the operation on di�erent levels.
Finally, a new test has been proposed to check the unobservability of the system under
variations of the yaw rates when one of the unobservable conditions discussed in section
4.2.1 occurs, speci�cally when zij = 0 m and vzj = vzi . The system results, as expected,
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unobservable for any value of ri and rj , validating the results of the rank condition check.

Asymmetry due to the relative vertical position

A �nal test has been run in order to validate the trend of C−1 connected to the relative
position in the vertical direction of MAVi and MAVj as observed in Section 4.5.2. To this
end, the system has been simulated by varying the velocity of MAVj in the horizontal plane
(Figure 4.11) and the relative (x,y) position of MAVi and MAVj for di�erent zij (Figure
4.12), by keeping all the other parameters of the system �xed.
It can be observed that the maximum value of C−1 is the same for all the levels studied and
equal to 0.08. However, the distribution of the observable conditions appears to be highly
a�ected by the relative vertical position zij .
By observing Figure 4.11, it can be noticed that the situation where MAVj is found at a
lower height with respect to MAVi is bene�cial from the observability point of view, result-
ing into a wider observable area. Moreover, this distribution appears to be inverted if MAVj
is instead above MAVi (positive zij): in the �rst case, the best values for MAVj velocity
are negative in the x direction and positive in the y direction, while in the second case the
parameters are switched.

Figure 4.11: E�ect of the asymmetry in the observability of the system due to di�erent relative
vertical position of the MAVs - varying relative horizontal velocity
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The same asymmetry is observed also when the relative horizontal position is varied:
starting from a situation where MAVj is higher than MAVi (positive zij), the best condi-
tioned distributions appear to shift as MAVj climbs down under the level of MAVi, moving
from negative px and py for positive px and py. The distribution of the asymmetry has
been observed also to depend on the relative yaw rates. In this case the system has been
simulated with ri = 10°/s and rj = −20°/s: by inverting them, the distribution appears to
be reversed.

Figure 4.12: E�ect of the asymmetry in the observability of the system due to di�erent relative
vertical position of the MAVs - varying relative horizontal position

4.5.3 Conclusions on the observability analysis through local esti-

mation condition number

On the basis of the results obtained by the examples described, it is possible to drive some
conclusions about the degree of observability of the system:

� The 3D system is in general less observable than the 2D one. This is due to the
rìgreater di�culty of distinguishing the states to be estimated given the same range
and velocity vectors, as the measured outputs can correspond to a higher number of
combinations of states and inputs and the solution is not unique (same range and
inputs can be associated to a relative position of MAVj belonging to any point of a
sphere centered in MAVi and with radius dij).
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� The 3D system guarantees a local weak observability in a higher number of cases, such
as coincident (x,y) position and same horizontal velocites.

� The distribution of the observable situations strongly depends on the relative position
in the vertical direction, on the relative yaw angle and on the relative yaw rate.

On the overall, the number of parameters that concur in the well-posedness of matrix O are
numerous and hard to isolate. The multifactorial nature of the problem requires a deeper
and more attentive study in order to determine the real impact of every parameter. The
one proposed here is just qualitative and shows the most glaring e�ects.
One �nal consideration is that the local estimation condition number tìnever overcomes the
value of 0.1 in the model presented in this thesis, whil in 2D it is observed to be signi�cantly
higher in most observable situations: this observation raises the question about whether this
value would be su�cient for deploying the system in real practice. It may be possible that
the grade would be too low for guaranteeing convergence of the estimation.

4.6 Veri�cation through simulation

In order to evaluate the correctness of the results obtained through the observability anal-
ysis, it is necessary to validate them by simulating the system while keeping in mind the
�ndings from the study. To this end, the system described in Chapter 3, made up by two
moving drones, where MAVi attempts to estimate the relative position of MAVj in its own
body frame is used.
The main focus of this simulation is to understand the relationship between the value of the
local estimation condition number and the convergence time of the EKF in real situations.
The parameters that are selected for evaluating the quality of the estimation are the con-
vergence time of the estimation error E, the local estimation condition number C−1, the
eigenvalues of the error covariance matrix P and the minimum singular value of matrix O
min(sing(O)). The choice is dictated by the mutual dependence that exists among these
quantitie: the value of the smallest eigenvalue of O determines a smaller C−1; a small local
estimation condition number suggests that the system is not observable and consequently
the uncertainty in the estimation is expected to be relevant, resulting into larger eigenvalues
of P and a longer convergence time of the estimation error. This behavior is what we want
to validate by observing it in realistic simulation.
In the following, the results obtained when imposing random trajectories to the drones and
when adopting trajectories that avoid on purpose unobservable conditions 4.14 are reported.
The ideal conditions imposed in Figure 4.14 aim at being favourable to the estimation per-
formed by the EKF and involve careful design both of the paths followed by the drones and
of the velocities to be used. The setup consists of letting MAVi �y along a clockwise circular
trajectory of radius ρ at an angular velocity ω at a height zi, which oscillates in a sinusoidal
way. Mavj, on the other hand, follows a circular path concentric to MAVi, counterclockwise,
with a radius ρ + 3, an angular velocity 2ω and a height zj 6= zi. With this setup, parallel
velocities are avoided, as well as possible hits between the MAVs. Moreover, the di�erence
in the velocity magnitude allows to excite the system with su�cient dynamics.
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Figure 4.13: Simulation with random trajectories

Figure 4.14: Simulation avoiding unobservable conditions

As it can be noticed by comparing Figure 4.13 to Figure 4.14 the reults obtained by
imposing favourable trajectories are relevant. The average value of the local estimation
condition number C−1avg is increased from 0.0173 to 0.06. This is due to the better conditions
of matrix O, which can be seen in the higher value of the minimum singular value in Figure
4.14, and to the less uncertainty in the estimation, resulting into lower eigenvalues of matrix
P. Finally, the improvement becomes tangible when observing the e�ect on the convergence
time of the system: when the trajectories are random, the estimation error E converges in
20s, while by imposing concentric paths the convergence time is decreased to 10s.
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4.6.1 Orthogonal trajectories

This kind of veri�cation has proved useful also from an other point of view. By observing
closely �gure 4.13, it is possible to see that after the convergence of the �lter around 20s, the
estimation error increases again to high values between 37s and 47s. This behavior suggests
that around those instants some condition occurs that determines a situations where either
due to the input velocities of the drone or to their relative position (or a combination of
both), such that the system becomes less for long enough to jeopardize the correct conver-
gence of the EKF. In order to understand the reason beyond this behavior, a snapshot of
the trajectories of the drones between 35s and 50s has been taken and is shown in �gure 4.15.

Figure 4.15: E�ect of relative vertical position

The �rst observation that can be done is that around 40s the two drones cross each
other normally, although on di�erent planes, such that no collision occurs. The fact that
orthogonal trajectories may decrease the local estimation condition number of the systems
sounds counterintuitive, although evidence has been found already with the observability
analysis in Section 4.5.2. Here, in fact, the local estimation condition number appears to
drop in the 3D case when ψij approaches 90°. The observations from simulation appear
to validate this behavior, although it is still to be determined wheter it depends only on
the orthogonality of the trajectories or if there are other underlying condtions that are not
accounted for and that determine this behavior.
By verifying also the conditioning of the observability matrix O, it has been observed that
the determinant decreases signi�cantly when orthogonality is imposed, because the entries
in the last column very low values.

4.7 EKF performance evaluation

In light of the results obtained through the observability analysis and its validation through
simulation, it is possible to evaluate the performance of the EKF, keeping in mind the e�ect
of states and inputs on the observability of the system.
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The focus of interest is on the quality of the estimation provided and on the convergence
time, which here indicates the time that the �lter requires to reach an acceptably small
estimation error.
To this end, the system made up by two MAVs, MAVi (host) and MAVj (tracked), is
simulated by imposing various trjectories, some designed to be favourable to the estimation
problem, others randomized.

4.7.1 Convergence time

The convergence time of the estimation error computed as the norm of the error on the
three states for the relative position in the three dimensions is certainly the most revealing
parameter for evaluating the qualituìy of the optimal state estimator.
It is useful to know the expected time that the EKF will take to converge in view of the
design of a rela-time simulation. In fact, when deploying the algorithm on real drones it is
necessary to include an initialization lapse of time in order to allow the �lter to converge
before applying the �ocking algorithm, so that the robots would be able to correctly localize
each other to avoid computing their own trajectory on the basis of incorrect information.
Knowing this exact period of time needed on average by the EKF can be helpful to optimize
this initialization procedure.
In order to exctract this information, the system is simulated 70 times with randomly as-
signed initial positions of the drones within a given volume, random initialization of the
�lter and random initial inputs. The resulting estimation error is shown in Figure 4.16.

Figure 4.16: Convergence time - random trajectories

In order to verify the �ndings of the observability analysis, a second experiment has
been conducted with the same setting as the previous one, with the di�erence that this
time the imposed trajectories are not random anymore, but speci�cally designed to avoid
unobservable maneouvres and to excite the system with enough dynamics to maximize its
observability. The designed trajectories are similar to those described in Section 4.6. the
result is shown in 4.17.
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Figure 4.17: Convergence time - favourable trajectories

By comparing Figure 4.16 and Figure 4.17 it is possible to see that the application of
favourable trajectories relevantly a�ects the convergence time of the �lter.

4.7.2 Sensitivity to measurement noise

A �nal veri�cation of the EKF robustness has been carried out to evaluate the e�ect of a
noisy range measurement on the ability of the estimator to predict the relative position of
MAVj with respect to MAVi. It is especially important to assess the e�ect of uncertain
data on the observation in the problem addressed in the present thesis because it is the
only measurement employed to perform the estimation, so uncertainty on this quantity is
expected to a�ect signi�cantly the convergence of the �lter. Moreover, from the observability
analysis, it results that the system needs information from up to the third Lie derivative
and therefore it is predictable that the EKF will see a deterioration in the quality of the
estimation as the noise on the range measurement increases.
The experiment is carried out by designing trajectories for the two MAVs that avoid on
purpose unobservable conditions: the robots travel on di�erent planes, avoiding parallel
trajectories and moving in a sinusoidal way on the vertical direction. Moreover, since from
the observability analysis it results that a delta in the the magnitude of the velocity is a
favourable condition, MAVj moves at a velocity that is double in module of that of MAVi.
In this way, the system is excited with su�cient dynamics to reach a good observability.
In order to avoid the e�ect of process noise, the variance σv and σw are set to zero.
Finally, also the states and inputs are initialized to the true values, so that the error due to
�lter initialization will not a�ect the output of the experiment.
An increasing value for the measurement noise variance σr is applied to the system and
the quality of the estimation depending on the noise on the observation is evaluated from
a statistical point of view, by simulating the system 100 times for 60s for each standard
deviation. At each run, the estimation error is computed by combining the error in the
estimation of the three states (relative position pij in the three dimensions) as:

Err =
√

(err2x + err2y + err2z) (4.19)
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After 100 runs, the AMAE of the error (Absolute Mean Absolute Error) is computed to
understand the average estimation quality for each noise realization and the standard devi-
ation of each mean error MAE (Mean Average Error) is extracted to evaluate its variation.
The results are summarized in Table 4.2 and in Figure 4.18.

Range noise (σr) (m) 0.1 0.25 0.5 1 2 5 8

AMAE (cm) 2.89 4.27 7.60 22.74 67.00 192.00 290.00

SD (cm) 1.90 3.56 4.00 15.00 36.00 50.00 79.00

Table 4.2: AMAE and standard deviation for di�erent noise realisations on the measured
range

Figure 4.18: Sensitivity to measurement noise
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Chapter 5

Flocking algorithms for �apping

MAVs

In this section, two algorithms for performing fully autonomous �ocking with MAVs using
only on-board equipment and knowledge about the range are presented.
Both are obtained by applying Reynolds' theory of boids ([34]) and are based on purely
range-based local interaction within the �ock. The main characteristic that is looked for is
the ability of the agents to group up and show an emergent behavior without the need for a
prede�ned trajectory, in order to navigate the environment as a single entity and to reach a
consensual direction. The algorithms must also guarantee the avoidance of collisions within
the �ock and a fast convergence of velocities to a similar magnitude.

The �rst algorithm aims at developing a self-organizing �ocking behavior in a constrained
environment, by employing agents with the same set of available information and able to
navigate in a limited space thanks to a wall avoidance feature.

The second algorithm embeds a leader-follower task, where one of the agents is as-
signed with a preferred trajectory that is communicated in cascade through the followers; to
guarantee safety within the �ock, also separation and collision avoidance rules are applied.
Cohesion is not used, because the coherence of the �ock is already guaranteed by the allo-
cation of a desired trajectory.

The models have been tested �rst without the Extended Kalman Filter and the real
model of the drones in order to see the e�ect of each drive's component on the overall look
of the �ock and a varying number of agents has been simulated to understand how the
algorithms performed by scaling the size of the group. For this �rst step, the simulation
environment has been built only in MATLAB.
Once the algorithms were veri�ed to work conceptually well, the EKF for relative localiza-
tion and the drone model were added. This step required to modify some of the parameters
in order to optimize the performance and the building of a more complex environment in
MATLAB and Simulink.
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5.1 Simulation environment

In this section, the �nal simulation environment is described.
It has been built in MATLAB and Simulink and it is common to both algorithms. What
has been modi�ed to apply the two di�erent procedures is the code inside the MATLAB
function that implements the �ocking algorithm and the communication protocol among the
agents.
The overall structure of the Simulink model is shown in Figure 5.1:

Figure 5.1: Simulink model - Five agents

In Figure 5.1 it is possible to see the �ve subsystems that correspond to each agent in
the �ock: as it can be noticed, the model has a modular structure, since every drone cor-
responds to an indipendent system; in this way, it is easy to see that adding or removing a
block would not a�ect signi�cantly the overall system, making the �ock fully scalable. The
"GoTo" and "From" blocks are needed to move the information coming from the IMU and
the UWB around the group: the multiplexers on the left collect all the knowledge about
(from top to bottom): position, velocity and yaw rate as measured by the IMU and
transformed from the body frame Bi to the horizontal frame Hi, as discussed in Chapter
3. The information is input to each agent's subsytem and is employed for performing the
relative position estimation of the other agents and for computing the personal target ve-
locity according to the �ocking algorithm. The data about all the agents is spread to the
entirety of the �ock, although the actual use of this information is decided by the code that
implements the �ocking algorithm and depends on the topological relative position or on
the range between two speci�c members, which is determined by the working distance of the
UWB: depending on the range measured from the other agents, the host drone can decide
which rules to apply, if any. For instance, if out of four sorrounding agents, one is further
than the maximum communication range, two are closer than the minimum separation range
and one is midway between these two radii, then the host will apply only separation from the
two closest ones and alignment to the fourth, while the furthest agent will not be considered
in the computation of the target velocity.

In 5.1, the �rst subsystem in yellow corresponds to the so called "agent 1", which is
identical to all the other boids in the group in the �rst algorithm named Flocking algorithm

without leadership, but it takes on a special role in the second algorithm, referred to as
Flocking algorithm with informed agent : with this protocol, in fact, the aim is to develop a
swarming behavior able to follow approximatively a given trajectory in space; to this end,
the "agent 1" acts in this context as an "informed leader", which is the only robot in the
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�ock that does not compute its own trajectory exclusively as a result of the interaction with
the remaining of the �ock, but it has a preferred trajectory that has to be communicated
in cascade to the followers. The structure of "agent 1" subsystem is identical to that of the
other drones, but the code that dictates the computation of the target velocity is modi�ed.
The internal structure of the agents' subsystems is shown in 5.2, which displays the model
for "agent 2", but it can be considered representative of all the drones in the �ock. The
blocks can thus be described from left to right, following the �ow of information:

� Relative position estimation

� Flocking

� DelFly model

Figure 5.2: Simulink model - Agent subsystem blocks

The Relative position estimation subsystem collects all the information coming from
the demultiplexers on the left and performs the range computation that represents the
information coming from the UWB and uses this knowledge to perform the relative position
estimation of all the othr agents in the swarm by means of the Extended Kalman Filter
described in Chapter 3. The inner model is shown in 5.3: here, it is possible to notice
that each subsystem corresponds to one of the other four members of the �ock, each one
receiving as input its own position, velocity and yaw rates at the previous time step and the
same information of the host MAV that is carrying out the observation. The output of the
blocks is the range and the relative position in the host MAV body frame. The quantities
are collected by two multiplexers on the right and enter the following MATLAB Function
Flocking (5.2).
The Flocking code implements the designed �ocking algorithm, by selecting which agents to
consider as part of the host MAV's neighborhood on the basis of the computed range and by
weighting the components that concur to the computation of the target velocity: separation,
cohesion, velocity matching and the leader-follower task in the second algorithm. The target
velocity is used for computing the trajectory setpoint of MAVi on the basis of the current
position and velocity as computed by the algorithm according to the classical formula

xk+1 = xk + vkTs (5.1)
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The computed trajectory is used as setpoint for the DelFly model in the subsystem
DelFly model : the block contains the model of the drone and the equation for converting
the measurements in the body frame to the horizontal frame, as explained in Chapter 3. The
current position, velocity and yaw rate measured by the drone are output and are broad-
casted through the �ock by means of the GoTo and From, closing the loop.
Figure 5.4 shows the blocks used for the computation of the range, mimicking the UWB
information, of the input velocities and of the EKF for relative position estimation.

Figure 5.3: Simulink model - Relative position estimation subsystem

Figure 5.4: Simulink model - EKF and inputs processing
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5.2 Flocking algorithm without leadership

The �rst algorithm designed for simulating a swarming behavior is described in the following.
The main aim of this solution is to provide a fully emergent behavior suited for indoor
applications in a constrained environment. The only additional information needed by the
drones other than that described in the previous chapters, is their initial position relative
to the walls of an ideal arena. This information would not be needed if the drones were
equipped with sensors for obstacle avoidance, as the only purpose is to make them aware of
their current distance from the walls.
The �ocking algorithm employed in this work is the 3D extension of the model presented in
[43] and [41], optimized for the application to the DelFly Nimble and for uncertain knowledge
about the relative position of the drones due to the range-only estimation with the EKF.
In these works the authors aim at proposing a self-propelled, tunable �ocking algorithm.
The formulas reported in Section 5.2.1 are partly taken from [43] and [41] and extended to
include the third dimension.

5.2.1 Flocking model and simulation parameters

In this section the �ocking model is described in terms of mathematical formulation of the
algorithm. The target velocity is computed by each drone as the composition of di�erent
components that take a speci�c value depending on the measured range between MAVi and
MAVj.
First, the repulsion term is expressed in 5.2. It is applied only when the distance between
the two is lower than a certain threshold rmin, de�ned the Separation radius. If the drones
are safely spaced, this term goes to 0.

vsij =

c rj
dij − rmin

dij
, if dij < rmin

0, otherwise
(5.2)

where dij is the range between MAVi and MAVj and rj is the relative position of MAVj
in the ith frame. c is the separation coe�cient.
The resulting escape velocity direction is computed for each drone as the sum of the e�ects
exerted by each drone within its own safe sphere:

vsi =
∑
j 6=i

vsij (5.3)

For what concerns the alignment component, it is implemented as a friction force that
can be applied depending on the velocity error between the two agents. It has the double
function of synchronizing the motion of the �ock and of damping the oscillations caused
by repulsion. A friction parameter is therefore introduced to weight this component of the
velocity, which is much higher than the other weights as this term is responsible for the
correct functioning of the �ocking behavior, and is ful�lls the task of reducing the velocity
alignment error. The following equations describe the alignment term. A more detailed
description of the principle can be found in [41] and [43].

valignij =

Cfric
vj − vi

(max(dij , rmin))2
, if dij < rc

0, otherwise
(5.4)
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valigni =
∑
j 6=i

valignij (5.5)

Finally, the e�ect of the approaching to the walls is accounted for with the shill term.
The walls are seen by each agent as a fake agent which is travelling towards the centre of
the arena. They a�ect the trajectory of real drones as another member of the �ock would
do, by triggering the repulsion term. In this way, when a MAV is �ying too close to the
walls it is forced to modify its own trajectory in order to avoid them. The same principle
could be employed to perform obstacle avoidance.

vshilli = Cshill s

(
vflock

xshill
|xshill|

− vi

)
(5.6)

where xshill is the distance of MAVi from the center of the arena, |xshill| is the norm
and s is a parameter whose value is decided depending on

s =


0, if |xshill| ∈ [0, R]

k sin

(
π

dd
(|xshill| −R)− π

2

)
+ 1, if |xshill| ∈ [R,R+ dd]

1, otherwise

(5.7)

where dd is a safety margin from the wall called the characteristic width of the wall.
To the three components described, a fourth one is added in order to provide a self-propelling
term able to keep the drone moving even in the case it is separated from the �ock.
The �nal formulation of the target velocity is expressed by 5.8.

vdi =
vi
|vi|

vflock + vsi + valigni + vwalli (5.8)

By considering the speci�cs of the drone [20], a maximum speed is introduced so that
the desired velocity computed in 5.8 can be saturated at this value in terms of magnitude,
while the components in the three directions are kept:

vi =
vdi
|vdi |

min{|vdi |, vmax} (5.9)

The values of the parameters in the equations from to 5.9 are obtained by referring to
[41] and tuned by trial and error. The �nal values employed in the simulation are showed
in Table 5.1:
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Term Symbol Value

Sampling time Ts 0.01 s
Flock velocity vflock 15 m/s
Maximum �ock velocity vmax 15 m/s
Size of the arena R 80 m
Cohesion radius rc 5 m
Separation radius rmin 2 m
Characteristic width of the wall dd 0.5
Shill parameter Cshill 10
Shill coe�cient k 0.5
Separation coe�cient c 0.2
Friction parameter Cfric 60

Table 5.1: Parameters' values for the �ocking without leadership algorithm

5.2.2 Simulation results

In order to evaluate the performance of the �ock with the real drone model and the EKF,
a simulation lasting 120s is run. The initial positions and velocities are randomly assigned
within a range of 10 m and the EKF is initialized with random values. An initialization pro-
cedure is used in order to allow the �lter to converge before applying the �ocking algorithm:
the drones �y for 30s following random trajectories in the space, attempting to localize each
other in the meantime. Once the 30s are expired, the agents start using the information
from the �ock mates to compute their own trajectory by applying the algorithm described
in Section 5.2.1. The results of this simulation are reported in this section.
The �ock is expected to be able to self-organize by collectively select a common direction
for all the agents, that tend to match velocities and stay cohesive. When approaching the
walls of the arena, the agents should avoid them by picking an escape route and then rejoin
in a group.
The resulting behavior of the �ock is shown in Figure 5.6: the colored cluster in the middle
of the arena corresponds to the random trajectories followed by the agents during the initial-
ization procedure of 30s. After this time lapse, the �ocking algorithm is applied and starts
computing the target velocity for each drone according to 5.9. As it can be noticed, four
agents out of �ve are able to collectively select one common direction by actively interacting
with each other. Only the drone named agent 2 is separated from the �ock. By simulating
the system for longer than 120s, it was noticed that this agent was able to rejoin the group
after a while, when the others fell again within its radius of sight.
It is interesting to notice how easily the drones are able to pick a new direction when ap-
proaching the walls, by turning away from them in a clean way. It is observed that this
ability is remarkably improved when the model of the DelFly is introduced, compared to
the simulation with the simpler model made up of dots: this attitude can be explained by
the speci�cs of the �apper [20], which is able to navigate with a greater agility compared to
common quadrotors. The capability of performing quick turns and more complex maneu-
vres makes it suitable for rejecting the walls, as it increases the number of possible escape
directions. A comparison between the two silmulations can be made by observing Figure 5.5
and 5.6, where the �rst one shows the simulation with the dots and the second one the full
system with EKF for relative localization and the drone model. The system simulated in
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5.5 appears to experience greater oscillations when approaching a wall; moreover, the �ock
tends to stay close to the boundaries for a long time after meeting them, suggesting a kind
of bouncing behavior. This can be due to the poor ability of �nding an escape rout. On the
other hand, the introduction of the DelFly model improves the overall behavior of the �ock,
both in terms of cohesion and of change in the trajectory to stay away from the walls, as it
can be seen in Figure 5.6.

Figure 5.5: Simulation without EKF and DelFly model

Figure 5.6: Simulation with EKF and DelFly model

The simulation shown in Figure 5.6 can be studied more in detail by observing the
development of the velocity components of the agents. It is possible to recall that one of
the drives imposed to the �ock is that of reaching a consensus concerning the selection of a
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common velocity, that matches both in magnitude and in direction. In Figure 5.7 the three
components of the velocity of each agent are shown: �rst, in the initial 30s dedicated to
initialization of the �lter, the agents follow the randomly imposed trajectories; after 30s, the
�ocking algorithm takes over and the drones are able to promptly �nd a common direction
of motion. The only exception is represented by agent 2, which cannot join the �ock at
the �rst attempt, but after 105s it can be noticed that it is able to catch up with the �ock
mates eventually. It is interesting to observe the e�ect of the approach to the walls on the
behavior of the swarm, as it triggers a di�erent response depending on the point at which
the multi-robot team �nds itself with respect to the borders of the arena.

Figure 5.7: Velocity components - �ocking algorithm without leadership

Figure 5.8 refers to a simulation when no separation took place and shows the magnitude
of the velocity of each agent. The �rst 30s correspond to the initialization procedure for
allowing the convergence of the �lter, but after this period the agents are able to quickly
select collectively a velocity value, which is around the value assigned by the self-propelling
term of the algorithm. The vertical dashed lines show the time step at which the agents
enter within the radius from the walls that triggers the action of the wall avoidance term:
around this instant there is a sharp change in the magnitude of the velocity. During this
simulation, the �ock comes twice close enough to the boundaries of the arena to be forced
to turn away from it. The �rst occasion occurs around 63s, when the �ock approached a
wall in its middle: in this case, it is possible to see that the members are able to quickly
recover from the change of direction and to match velocities again in a few seconds. The
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second situation is observed around 105s and this time it appears that the �ock takes longer
to organize itself again and the velocities experience a relevant oscillation for over 10s: in
this case, it was observed that the swarm approached the border of the arena around one of
its upper corners. This situation creates di�cult conditions for the selection of a new route,
as many escape directions are blocked by the intersection of three walls. One aspect that
has been observed to cause this confusion in the presence of a corner is the oscillations of
velocities that are probabilbly due to the con�ict between the need to avoid the walls and
the need to stay cohesive and match velocities with the neighbors. This could be tackled by
designing a new algorithm for selecting the escape direction from the walls by, for example,
electing a temporary leader that can scan the available getaway angles and drive the �ock
out of the blockage. A similar suggestion has been expressed in [4] and can be a source of
inspiration for a future work.

Figure 5.8: Velocity matching - �ocking algorithm without leadership

5.3 Flocking algorithm with informed agent

The second algorithm that has been designed exploits the theory proposed by Couzin [8],
adding to the simple self-organizing behavior a leader-follower feature, that allows the �ock
to follow a pre-de�ned trajectory in the space. The solution can be useful to simulate a
�ock with a natural appearance that, at the same time, can be easily controlled to move in
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a desired pattern. The algorithm, as in the previous case, has been tested �rst without the
EKF and the drone model, and later by adding both the state-estimator and the drone.
In order to verify the correct performance of the EKF under di�erent conditions, various
trajectories have been designed and tested.

In this section the �ocking model is described along with the setting for the simulation.
The main source of inspiration for this algorithm is to be found in the Couzin model [8]
and the Cucker model [9]. The two algorithms are joined and a leader-follower feature is
added, so that the emerging �ock is able to follow the trajectory imposed by the leader
and concurrently maintain safe conditions within the swarm. The main di�erence from the
�rst algorithm is that in this case the drones are not con�ned in a given volume, but the
compactness of the �ock is achieved by applying the Reynolds' cohesion rule [34] and by
adding the leadership feature.

5.3.1 Algorithm design and simulation parameters

The algorithm has been designed for a number N = 5 of MAVs that move in the 3D space.
They determine their behavior on the basis of local interaction with neighbors that are able
to localize autonomously and which give access to information about their own velocity
through communication by means of the UWB antenna. Within the group, only one agent
is informed about a prede�ned trajectory to follow and this knowledge is spread throught
the �ock in cascade. The need to follow the leader replaces in this algorithm Reynolds' rule
of cohesion and it is able to maintain the coherence of the �ock by forcing a preferential
direction as dictated by the relative position of the preceding drone. The drives that de-
termine the computation of the target velocity for each agent are described in the following
and are inspired by the Couzin model ([8]). Each component is then weighted according to
the level of priority de�ned for each task with an approach similar to that employed in the
Cucker model ([9]).

Mathematical implementation

First, the main characteristics of the Couzin model are introduced. The fundamental idea
is that the boids communicate according to a range-based protocol. The space around each
agent can be divided into concentric spheres centered on the boid, where the closest one of
radius rr de�nes the volume inside which the other agents shall not enter and where the only
applied drive is that of separation; the most external one is the cohesion sphere of radius rc,
where cohesion rule is applied; at midway between the two there is the alignment sphere,
ra, where the agents align their velocity to those of their neighbors. Separation rule is the
only one existing below rr, while for ranges dij ∈ [rr, rc] alignment and cohesion might be
applied concurrently.
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Figure 5.9: Couzin model - range for separation, alignment and cohesion

The equations 5.10, 5.11 and 5.12 show the computation of the three components of
separation, cohesion and alignment respectively. Ni is the number of boids within sight of
agent i, pj is the position of boid j and pi is the position of boid i. It can be noticed that
separation and cohesion are identical drives, but they impose a reaction in the boid which
has opposite direction.

Si(k + 1) = −
∑
bi∈Ni

pj(k)− pi(k)

|pj(k)− pi(k)|
(5.10)

Ki(k + 1) =
∑
bi∈Ni

pj(k)− pi(k)

|pj(k)− pi(k)|
(5.11)

Mi(k + 1) =
∑
bi∈Ni

vj(k)

|vj(k)|
(5.12)

In the present work, the cohesion rule is replaced by a leader-follower feature which is
implemented by letting each agent communicate its own position to the closest follower, if
this is within sight (dij ≤ rc). The communication protocol for the leader tracking task is
shown in Figure 5.10.
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Figure 5.10: Communication protocol for the leader-follower task

The computation of the target velocity is performed as a weighted sum of each com-
ponent, as shown in 5.14. In this algorithm, only the alignment and separation terms are
employed, so the component Ki is not used. Therefore, the radii considered are only the
repulsion radius rr and the cohesion radius r : c, which in this case corresponds to the
maximum communication range and de�nes the distance at which the alignment drive is
applied. �ag is a �ag used to apply only separation when the drones are close to each other
and cohesion and leader-follower for ranges greater than the minimum spacing and lower
than the maximum communication radius. It is de�ned as follows:

flag =

{
0, if dij ≤ rmin
1, otherwise

(5.13)

S, M ang G are the weights assigned to separation, alignment and leader-follower tasks
respectively, while g(k) is the relative position of the precedeing drone at time step k.

vi(k + 1) = S s(k) f + (1− f)mM(k) + (1− f)G
g(k)

|g(k)|
(5.14)

The target position is then computed using the kinematic formula 5.16, where vagent is
the velocity module assigned to the drone and de�ned as

vagent = min(vmax, |vi(k)|) (5.15)

xi(k + 1) = xi(k) + vagent Ts
vi(k)

|vi(k)|
(5.16)

Table 5.2 shows the values assigned to the parameters of the algorithm.
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Term Symbol Value

Sampling time Ts 0.01 s
Flock velocity vflock 4 m/s
Maximum �ock velocity vmax 7 m/s
Weight of the alignment term m 0.7
Weight of the cohesion term G 1.4
Weight of the separation term S 5
Alignment radius ra 5 m
Separation radius rr 1 m

Table 5.2: Parameters' values for the �ocking with informed agent algorithm

5.3.2 Simulation results

Just as for the �rst algorithm presented, also in this case the system has been simulated �rst
with a dot model and later with the DelFly model and the EKF. The di�erence now is that
it is possible to study the performance of the algorithm by evaluating the capability of the
�ock to follow the trajectory imposed to the leader and in terms of cohesion and velocity
matching of the team mates.
Bearing in mind the results obtained from the observability analysis in Chapter 4, di�erent
trajectories have been tried in order to test the performance of the relative localization �lter
under di�erent situations, since, as extensively discussed in 4, the successfull estimation of
the states is heavily a�ected by the inputs and states of the system. The results of these
simulations are presented in this section.

Figure 5.11 shows the trajectories followed by the �ve agents when the system is simulated
with the dot model and the EKF estimator. The blue line corresponds to the path of the
leader, with the starting point coinciding with the empty dot and the arrival point with
the empty diamond. The trajectory imposed in this experiment is that of a helix. It is
possible to observe that depending on the initial relative position each drone will receive the
information about the trajectory to follow from its predecessor. In fact, in the shown case,
the drone labeled as agent 2, happens to be the last one reached by the information, which
has been spread across the entire �ock. For this reason, it can be observed that it is the one
whose position di�ers the most from the leader's one. On the overall, the trajectory imposed
appears to be favourable to the observability of the system, by avoiding parallel velocities
of the drones and by preventing them from belonging to the same horizontal plane.
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Figure 5.11: Helix trajectory - simulation with dot model

Figure 5.12 shows the results of the same simulation in terms of distribution of the �ock
in the 3D space. Each dot corresponds to one agent and it is possible to appreciate how the
�ock is able to gradually come together after the 30s of initialization procedure. The top
left box shows the position of the drones during te initial phase, when the trajectories are
random and they do not apply �ocking, such that they are randomly distributed. Starting
from the top right box, the agents begin to apply the �ocking algorithm. From this point on,
it is possible to see that the agents that are not leaders initially group up under the e�ect
of the �ocking rule of alignment; then, they start following the leader (blue) and arrange
themeself in a queue behind it, reaching the �nal distribution about 2 min of simulation.
The �ock is able to maintain the same shape from that moment to the end of the simulation.

Figure 5.12: Snapshots of the �ocking behavior at di�erent time instants
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The same simulation has been run after integrating the �ocking algorithm and the EKF
with the DelFly model. This time, the trajectory imposed to the leader was changed from
an helix to a more complex shape obtained as a composition of sinusoids:

vx = 5 cos
t

10

vy = 15 cos

(
3 t

10
+

π

2

)
vz = 2.5 cos

π

6

(5.17)

The path followed by the agents is shown in Figure 5.13. It can be noticed that the
introduction of the DelFly model and of the EKF can reduce the quality of the performance,
however the drones appear to be able to successfully follow the leader along the trajectory.

Figure 5.13: Generic 3D trajectory

Finally, Figure 5.14 shows the EKF performance for each drone. The estimation is
shown for the relative position in the x and y direction of the preceding drone for the four
followers, which is actually the only localization needed to apply the leader-follower task. As
it can be noticed, the quality if the prediction decreases as agents further along the �ock are
considered. This is expected because the information about the trajectory to follow is less
accurate as it is moved along the �ock. Moreover, due to the communication delay between
the agents, the followers at the bottom tend to cut corners in order to reach the target
position that is communicated by the preceding agent, therefore reducing the dynamics
between themselves and the tracked drone.
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Figure 5.14: Relative position estimation for the �ve agents
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Chapter 6

Conclusions and future work

6.1 Conclusions

The study carried out in the present thesis demonstrates the applicability of a fully au-
tonomous, infrastructure-independent, heading-independent, range-based 3D relative local-
ization system for �apping-wing MAVs, which can be employed to perform �ocking in GPS-
denied, constrained environments with scalable teams .
The 2D �lter developed in [26] is proved to work also for 3D applications, therefore broaden-
ing the potential implementations in the real world to more complex systems. The designed
solution does not use height measurements, but it includes the relative vertical position
among the states to be estimated by the observer: this aspect can prove very useful when
employing platforms that can provide unreliable height measurements due to complex dy-
namics, or for application very far from the ground, where it is not possible to have vertical
position readings. Moreover, this spares the use of an additional sensor, like down-facing
camera or laser-ranger, saving precious load on MAVs, which have already a limited capac-
ity. The method developed overcomes the sensory limits that are required on small payload
platforms by exploting only light, commercial and simple pieces of hardware, which makes
the work easily replicable for other projects.
One advantageous aspect of the solution lies in its full autonomy: the successfull implemen-
tation of a system that relies only on on-board equipment and does not need to refer to a
common heading or reference frame can be suited for performing teaming in a ready-to-use
manner, with application to heterogenous platforms and in constrained environments. The
independence from UWB anchors or GPS allows deployment in indoor and outdoor indis-
tinctly, while the modular structure of the swarm brings a high scalability to the system and
robustness to the loss of agents. Finally, the self-organizing nature of the �ocking behavior
ensures dynamic adaptabily to the environment and freedom from human supervision and
guidance.

The subsequent observability analysis validates the overall feasibility of the approach in
a punctual manner, by demonstrating the strengths of the method and revealing the weak-
nesses and limitations of the relative-localization estimator. This study has proved useful
not only for analyzing the features of the system, but also for planning the swarming algo-
rithms developed and opens the way to further studies. As a matter of fact, the results from
the observability analysis suggest that the swarming behavior requires an attentive planning
in order to avoid unobservable situations, which can be e�ectively handled by designing
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�ocking algorithms that rely less heavily on the information on the relative position of the
other agents in the �ock, but can leverage the knowledge about the range coming from the
UWB, which can be communicated directly and carries a reasonable amount of noise, with-
out being a�ected by the observability of the system. A leader-follower task would be more
tricky to perform and requires the maintenance of not parallel velocities between the agents
of the �ock. By joining the leader-follower feature to the application of Reynolds' theory,
the advantages from both approached can result in a more stable and reliable demonstration
of swarming behavior.

An interesting way for evaluating the performance of the new state observer with respect
to the 2D one developed in [26] is to compare the convergence rate in the two situations. In
order to perform this experiment, the system made up by two MAVs described in Chapter 3,
where MAVi is performing the estimation (host) and MAVj is the observed drone (tracked),
is simulated 50 times for 80s. The three situations that are considered are:

� 2D set-up: MAVi and MAVj have knowledge about their height and MAVi attempts
to estimate the relative position of MAVj in the plane (x,y directions)

� 3D set-up described in Chapter 3: the trajectories imposed try to avoid unobservable
conditions

� 3D set-up described in Chapter 3: the trajectories imposed are random

On every run the convergence time of the Extended Kalman Filter is recorded: here it is
de�ned as the time after which the estimation error, considering the combination of the error
in the estimation of the relative position in the three directions, reaches a value between 0.1
m and −0.1 m and remains within this belt until the end of the simulation. The convergence
rate indicates in this work the percentage of runs that have reached convergence at each time
step, from the starting of the simulation to its end. It is a telling parameter to understand
how fast the �lter is at estimating the states and what is the average convergence time. This
information has a relevant impact on the design of the setup for real-world applications, as
it dictates the time needed for initializing the system and can be helpful in order to realize
the e�ective autonomy in terms of battery availability after the initialization.
Figure 6.1 compares the convergence rates obtained through the simulation of the system
that performs relative localization in 2D (red) and of the one in 3D, when excited with
trajectories that favour the observability of the system (yellow) and random ones (blue).
The results obtained suggest that the 2D �lter works remarkably better, as most of the
simulations converge within the �rst 20s and by the 80s all of the runs have converged. On
the other hand, the 3D �lter has an overall slower convergence, that is not guaranteeed for
all of the simulations and for a small percentage of runs (12%) it is never reached. This
behavior is explained by observing the values of the observability index introduced in Chap-
ter 4, the local condition estimation number, which reaches values always lower in the 3D
case compared to the 2D one. This is due to the higher ambiguity in determining the true
relative position of the other drone when adding the third dimension and relying on the
same set of inputs, in fact with this set up the same combination of inputs and state can
correspond to a greater number of undistinguishable outputs, as the same parameters may
refer to any position of the robot on a spehere, while in 2D this uncertainty was limited to
a plane.
On average, the convergence time for the 3D case is expected to be around 40s for trajecto-
ries that avoid unobservable conditions, but it can be increased to 60s when less favourable
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settings are imposed. These aspects underline the need for a precise study of the behavior
of the �lter under di�erent circumstances and calls for a deeper analysis of the e�ect of each
parameter on the observability of the system.

Figure 6.1: Convergence rate with 2D and 3D relative position estimator

Finally, the �ocking algorithms designed o�er a valid solution for performing swarming
behavior in constrained environments. They have been speci�cally designed for indoor
application, but the same concepts can be potentially extended to outdoor implementation.
With the solution that does not require a leader, the model presented in [41] has been
extended to a three-dimensional case and optimized to be applied to �apping wing MAVs.
The DelFly Nimble model has shown to be very e�cient when approaching the walls thanks
to the quick avoidance maneuvres that it can perform. The system has shown a remarkable
robustness to the splitting, as by continuing the simulation all of the members are able to
rejoin in a cohesive group after separation.
The second algorithm joins a leader-follower feature to the application of Reynolds' rules of
�ocking, taking advantage from both and resulting into a system able to follow a prede�ned
path in the three dimensional space, successfully avoiding internal collisions a separation of
the swarm.

6.2 Future work

There is plenty of envisioned applications that can be derived from the �ndings presented
in this work.
For a start, the relative localization procedure proposed has the peculiarity of being ex-
tremely �exible and adaptable and it can be employed in a variety of environments and
situations. It would be interesting to test the algorithms in real-world situations and to
adapt them to address actual problems. Some of the most interesting applications could be
found in precision agriculture, for gathering data for damage or production assessment in
�elds; the wall avoidance feature of the �rst algorithm can be easily extended to implement
also an obstacle avoidance, useful to perform exploration of inaccessible environments, like
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wrecked buildings; �nally, teams of coordinated MAVs could be exploited to speed up the
complexion of tasks such as mapping of large areas or inspection.

A deeper analysis could be done concerning the observability of the EKF in order to
identify other note-worthy situations that can jeopardize the correct convergence of the es-
timation. As a matter of fact, the observability of the systems is a multi-factorial problem
and the value for the local estimation condition number can be the results of the in�uence of
many conditions that are not simple to single out. For this reason, it would be auspicable to
provide a more profound evaluation of the e�ect of the di�erent parameters and their com-
bination. Moreover, the �nding concerning orthogonal trajectories raised in Section 4.6.1
does not have a �nal explanation, as it is corroborated by evidence in more steps of the anal-
ysis, but it has not been justi�ed by intuitive understanding. There could be underlining
conditions that determine this behavior which have not been accounted for or there might
be other reasons that could explicate those observations. For sure, the study done on the
observability has proved interesting for predicting what to expect from the �lter and can be
potentially explored inde�nitely for enhancing the overall performance of the �lter.

One interesting improvement that can be suggested concerning the �ocking algorithms
would be to employ a machine learing approach to the problem, like reinforcement learning
methods for data aggregation, near-optimal computations and online trajectory recon�gu-
ration. Some examples can already be found in literature, like in [39], where the authors
employ deep reinforcement learning (DRL) to perform �ocking in complex environments
with dynamic obstacles. It would also be auspicable to apply distributed control strategies
in order to ensure e�cient task allocation for the team of UAVs and guarantee consensus
and autonomy.

Unfortunately, the measures for containing the outbreak of Covid-19 made it impossi-
ble to test the system on a real platform in laboratory due to limitations in the personnel
allowed inside the universities and to restrictions to mobility. Consequently, one natural
follow-up of this thesis would be to test the relative localization preocedure and the �ocking
algorithms on the real drones. This step would be fundamental in order to verify the consis-
tency of the results obtained through simulation and to tune the �lter's parameters to real
values. Moreover, it would be essential to check the robustness of the EKF to noise on the
measurement, which, as explained in Chapter 4, is a crucial point, as the range is the only
measurement used for performing the estimation and the system requires information up to
the third Lie derivative, therefore uncertainties on this observation could a�ect critically the
convergence of the �lter.
In this framework, it would also be possible to try and scale up the team of drones to validate
the �ndings with larger �ocks and the robustness and scalability of the algorithms. To this
end, basing on the considerations concerning swarming with informed agents in [8], it could
be expected that with larger teams the complexity of the problem would not increase signif-
icantly, as the percentage of leaders decreases with the size of the �ock. Some concern could
derive from the communication within the group for larger numbers of agents, so another
starting point for improvement could lie in the development of more e�ective communica-
tion algorithms, that could be experimented both leveraging a topological communication
among the M closest agents, or a range-based approach like the one employed in this thesis.
The target would be to produce a faster broadcasting of the information within the team of
robots to compensate for the delays due to the physical transfer of the signals and enhance
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the overall performance of the �ock.
Finally, it would be interesting to tackle the problem of autonomous realtive localization in
3D by using di�erent combinations of measurements and inputs, according to the sensory
equipment available to the elected platform. The one designed in this thesis has been dic-
tated by the choice of the DelFly Nimble as robot model, but the application to other robots
could result into a di�erent design of the estimator.
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