
POLITECNICO DI TORINO
Master’s Degree in Department of Control and Computer

Engineering

Master’s Degree Thesis

AI-Assisted Optimization of
Cloud Gaming Experience

Supervisors
Prof. Paolo Giaccone
Prof. Andrea Bianco
Dr. German Sviridov

Candidate
Bahadir Basaran

Academic Year 2020-2021

Abstract

Cloud Gaming technology is gaining immense popularity day by day. While the
idea of not paying any more for pocket-burning hardware sounds good at first, the
question immediately arises if we can at least get the same gameplay quality. The
extensive source-demanding nature of Cloud Gaming technology requires more se-
rious Quality of Experience (QoE) assessments on video games to preserve player
satisfaction.

Today, games are way more sophisticated than ever before: they are mostly
composed of various game stages such as environment exploration, action-combat,
dialogue with Non-player Characters (NPC). This thesis study follows the idea
that there may be a correlation between the stages of a game being streamed to
a player and the stream’s bitrate, and that game stages can be classified by ex-
ploiting this correlation. In this way, e.g., Cloud Gaming service providers can
allocate their resources among their players according to the instant game stages of
the players, and there would be many more in-game QoE optimization possibilities.

The result of this thesis study, in which a Deep Reinforcement Learning (DRL)
agent is used instead of the human factor that causes the QoE assessments to be
cumbersome, indicates that it is possible to classify instant game stages with high
accuracy by processing the corresponding instant bitrate values.

Contents

1 Introduction 5
1.1 Problem Description and the Motivation 5
1.2 Outline of Design and Implementation 6

2 Cloud Gaming 7
2.1 Cloud Gaming: Future of Gaming Industry 7

2.1.1 Pioneer Services . 8
2.1.2 Cloud Gaming Under the Hood 9
2.1.3 Limitations . 10

2.2 Related Work . 10

3 Design and Implementation 15
3.1 Game Selection . 15
3.2 A.I. Research Platform as an API to the Game 16
3.3 Deep Reinforcement Learning Agent Trained on the Game 17

3.3.1 Methodology . 17
3.3.2 Model Architecture . 17

3.4 Gameplay Dataset Generation . 18
3.4.1 Overview of Raw Dataset 21
3.4.2 Bitrate Calculation . 22

3.5 Gameplay Dataset Pre-processing 22
3.6 Gameplay Dataset Analysis . 25

3.6.1 General Statistics . 28
3.6.2 Variation in Average Bitrate of Adjacent Series of Stages . . 35
3.6.3 Bitrate Variation During Intra-stage and Inter-stage Transi-

tions . 43
3.6.4 Bitrate Variation on a Time Span Around Stage Transitions 46

3.7 Deep Learning Architecture and Frameworks Used in the Study . . 55
3.7.1 Artificial Neural Networks 55
3.7.2 Recurrent Neural Networks 56
3.7.3 LSTM: Long Short-term Memory 57
3.7.4 PyTorch and PyTorch Lightning 58

2

3.8 Implementation of the Model . 59
3.8.1 High Level Design of the Model 59
3.8.2 Data Partitioning . 61
3.8.3 Data Pre-processing . 63
3.8.4 Data Sequence Generation 64
3.8.5 Creation of the Model Core 65
3.8.6 Training Phase of the Model 67
3.8.7 Test Phase of the Model . 72

4 Evaluation of the Results 75
4.1 Experiments with Vanilla Machine Learning Methods 75
4.2 Experiments with the Created Model 78

5 Conclusion 87

Bibliography 89

3

4

Chapter 1

Introduction

1.1 Problem Description and the Motivation
The world of video gaming has witnessed many cool names for innovative technolo-
gies. One such innovative technology that is getting enormous attention from day
to day is Cloud Gaming.

Cloud Gaming is a technology that allows players to use any device to play
the most demanding games through a broadband Internet connection, without the
need to store any game data on their devices. While this technology has many
advantages, such as saving players from constantly spending money on hardware
and from storing many game data into their personal computers, it comes with lim-
itations due to massive data transmission over the network. Those limitations, e.g.,
latency, can have a disastrous effect on gameplay, especially on games with a high
level of dynamism, such as First Person Shooter (FPS) games. As a result, Quality
of Experience (QoE) assessments play a crucial role in tackling such limitations.

According to Qualinet (2013) [1], QoE measures the level of enjoyment or frus-
tration felt by a user while using a service or an application. It is the satisfaction of
the user’s expectations regarding the usability, functionality, and efficiency of the
application or service being used, according to the user’s personality and present
condition.

Involving human players in video games’ QoE assessments is quite inefficient,
with many limitations regarding cost, variability across players, and lack of trans-
ferability across games. Therefore, this thesis study follows the idea of using pre-
trained Deep Reinforcement Learning (DRL) agents -instead of human involvement-
to automate QoE assessments for more efficient outcomes.

Today’s video games combine various game stages such as exploration, action,

5

Introduction

dialogue in an immensely dynamic way. Particularly in competitive online games,
e.g., FPS genre, players’ tolerance to imbalanced network conditions can vary ac-
cording to their instant game stages. As discussed in Section Limitations, particular
game stages (e.g., action) are pretty fragile to imbalance, while others (e.g., dia-
logue with Non-player Characters) may have a high tolerance to imbalance.

This thesis study investigates if there is a correlation between the stages of a
game being streamed to a player and the stream’s bitrate, and proposes the idea
of taking automated in-game QoE assessments one step further by creating a DRL
agent capable of classifying game stages based on the instant bitrate values of the
stream. In this way, besides many in-game QoE optimization possibilities, Cloud
Gaming service providers can discriminate players’ instant game stages and allocate
high resources to those currently in an, e.g., delay-critic stage while allocating
relatively fewer resources to those currently in an, e.g., delay-tolerant stage.

1.2 Outline of Design and Implementation
The first section of Chapter 3 discusses the game selection of the thesis study and
the reasons behind the selection. In the following sections, the research platform
used as an Application Programming Interface (API) to the selected game and the
DRL agent trained on the game are explained. The training methodology and the
architecture of the agent are also illustrated.

Once having discussed the infrastructure, how the agent is exploited to generate
gameplay dataset, and how the generated dataset is processed for dataset analysis
are explained.

Section Deep Learning Architecture and Frameworks Used in the Study first
gives an insight about Neural Networks, together with the specific type of network
architecture used in this thesis study, and highlights the Machine Learning frame-
work used to train the model afterward. The model creation process is explained
with detailed diagrams in this section.

The training process of the model is analyzed with all components in detail.
In the end, the model is tested with data generated on different game maps and
different configurations.

6

Chapter 2

Cloud Gaming

2.1 Cloud Gaming: Future of Gaming Industry

Cloud Gaming, sometimes called Gaming-as-a-Service, is a game-changing tech-
nology that allows players to access their favorite games straight from the cloud,
rather than having topnotch gaming computers or consoles such as PlayStation,
Xbox.

In today’s technology, players are obligated to renew their hardware frequently
to play the latest games, and those games often require the utmost expensive hard-
ware. GPUs (Graphics Processing Unit) might be considered the most critical of
all. The number of people interested in Crypto Mining is increasing day by day,
and this causes a GPU shortage, hence transformation to the black market.

Figure 2.1: Cloud Gaming worldwide market value, reproduced from [2]

7

Cloud Gaming

The worldwide market value from 2013 to 2017 depicted in Figure 2.1 indicates
that Cloud Gaming Industry currently has a market value of over 200 million U.S.
Dollars, and according to the estimations, it will be approximately half a billion
U.S. Dollars in the next five years.

The difference observed in competitive -especially in First Person Shooter genre-
games between players with state-of-the-art equipment and players with old tech-
nology hardware cannot be ignored. However, the advantages of the technology
are not limited to getting rid of expensive hardware. Without dealing with time
and space-consuming updates, instant access to games is another point since ser-
vice providers have already dealt with them. Besides, since cheating is attempted
on the client-side, Cloud Gaming makes cheating almost impossible because games
run on the server-side.

Considering all the facts, giving players the freedom to access their games in-
stantly with any device by eliminating the dependence on hardware will form the
gaming industry’s future. Cloud gaming would not only alter players’ gaming ex-
perience, but it might also turn pocket-burning gaming computers and consoles
antiquated.

2.1.1 Pioneer Services
Although a flawless service is yet to come because of the limitations mentioned in
Section Limitations, it is evident that the significant players are sparing significant
sources to dominate this field.

No matter how ironic it looks, NVIDIA GeForce Now is considered the best
Cloud Gaming service at the moment. Although NVIDIA is the most prominent
GPU manufacturer and hence Cloud Gaming technology is a potential threat for
them, they have invested big in this technology rather than staying against it. Play-
ers can play games in high resolution across a wide range of devices such as mobile
devices, computers, TVs. There is a free-to-use subscription tier, and players have
to buy whatever they would like to play.

One of the most promising services is Google Stadia. Unlike GeForce Now, Sta-
dia does not have a third-party game store, and it does not mandate any payment
for streaming if the player already acquires the game. In addition, Stadia PRO
gives access to 4K HDR streaming of the acquired games.

Amazon has been working on Luna, a channel-oriented platform that offers 4K
game streaming, along with Twitch integration. However, Luna is still in the Beta
Phase.

8

2.1 – Cloud Gaming: Future of Gaming Industry

2.1.2 Cloud Gaming Under the Hood
In a nutshell, the most significant difference between the traditional gaming setup
and the Cloud Gaming setup comes from where the information is processed, as
seen in the diagrams below in detail.

Figure 2.2: An illustration of traditional gaming setup

Figure 2.2 illustrates the fundamental setup of traditional gaming. In the tra-
ditional setup, all source-demanding processes are operated on the client-side. The
client executes game commands, and the output graphics and sounds are rendered
directly by the client’s hardware components. Game servers are only involved for
one-time game data access in single-player gaming or interaction with other players
in multiplayer gaming.

Figure 2.3: An illustration of Cloud Gaming setup

Figure 2.3 illustrates the fundamental setup of Cloud Gaming. In the Cloud
Gaming setup, all source-demanding processes are operated directly on the service
provider side instead of burdening the client. Besides a desktop computer, laptop,
or console; the client can be any kind of device (dumb or not) with a controller:
mobile phone, tablet, TV.

The client only executes game commands, and the input is transferred to the ser-
vice provider’s servers through the Internet connection. All the game data, required

9

Cloud Gaming

hardware are stored directly on the service provider’s servers, and the client’s input
is directly processed on these servers. Graphics and sound are rendered according
to the client’s input and transferred back.

2.1.3 Limitations
The common belief is that Cloud Gaming services are pretty sufficient to take com-
puters or consoles’ places for single-player and casual multiplayer games. In these
kinds of games or game modes, an average player does not experience a significant
difference between traditional setup and Cloud Gaming service. An average player
can tolerate a slight latency, and even a professional player might be immune to a
slight latency in single-player or casual multiplayer games. However, in competitive
games such as the First Person Shooter genre, each millisecond is crucial, and many
cannot tolerate latency. Likewise, while 100 milliseconds of lag cannot be noticed
easily during a dialogue scene with an NPC (Non-Player Character), half of this
lag might cause a catastrophe during an action-combat scene.

Cloud Gaming services have more latency than local gaming setups such as
gaming PC and consoles. The reason behind this problem is quite apparent. As
shown in Figure 2.3, instead of being processed directly on the client’s device, each
client input must traverse the network, and resulting graphics and sounds must
traverse back. This loop introduces latency inevitably.

In this context, there are many significant factors to be evaluated and engi-
neered as of now. Players’ Internet connection speeds, distances to locations of
Cloud Gaming services’ servers are the crucial matters that come into mind first.
Considering how worldwide streaming services such as Netflix are burdening to
bandwidth today, the size of the problem will tremendously increase when the
gaming industry invades the Internet.

2.2 Related Work
The limitations depicted in Section Limitations clearly indicate the importance of
Traffic Engineering and Quality of Experience (QoE) assessments for Cloud Gam-
ing services.

Based on the subjective QoE assessments conducted by Laghari et al. (2019) [3],
the technical parameters that have an impact on Cloud Gaming QoE are specified
as bitrate, frame rate, throughput, packet loss, and delay rate.

Bitrate and frame rate are the measurements of the number of bits and frames

10

2.2 – Related Work

transmitted per unit time end to end, respectively. Throughput, the number of
bits transmitted over the network in a given time, is a similar term to bitrate.
However, the bitrate can be assumed as a design parameter, while throughput is an
observed, dynamic parameter. Higher bitrate and throughput, roughly, mean more
detailed graphics, and a higher frame rate provides a smoother view for players,
hence a better game experience. However, they all require more severe scaling on
the network in order to preserve the QoE.

Packet loss and packet delays are important network terms referring to drop
of data irrecoverably and late arrival of data between server and end-user, respec-
tively. Both of the situations degrade the user experience dramatically. Therefore
network must ensure lower loss and delay in terms of a better experience.

In the same sense, QoE assessment conducted on the famous game World of
Warcraft by Slivar et al. (2015) [4] indicates that packet loss and packet delay have
unignorable effects on QoE, especially packet loss with more influence than delay.

The following test scenarios are designed by Jarschel et al. (2011) [5] to assess
packet loss and delay effects on QoE.

Scenario ID Delay Packet Loss Direction
B 0 ms 0.0 % both
D1 80 ms 0.0 % both
D2 200 ms 0.0 % both
D3 300 ms 0.0 % both
L1 0 ms 0.3 % both
L2 0 ms 1.0 % both
M1 40 ms 1.5 % both
M2 180 ms 0.3 % both
A1 120 ms 1.0 % client to server
A2 120 ms 1.0 % server to client

Table 2.1: Test scenarios designed by Jarschel et al. (2011) [5]

The scenarios shown in Table 2.1 are tested by a group of casual and leisure
gamers on three different kinds of games: slow-paced, medium-paced, and fast-
paced. Each player is supposed to test each scenario for one minute, starting from
the baseline B. At the end of each scenario, players are asked to evaluate his/her
QoE by a scoring metric called MOS (Mean Opinion Score), from 1 to 5, with
increasing quality. Figure 2.4 below indicates the obtained MOS ratings per each
scenario and each type of game.

11

Cloud Gaming

Figure 2.4: MOS ratings per each scenario and game, reproduced from [5]

Based on Figure 2.4, it is easy to deduct that the faster the game or higher
the delay-loss, the lower the QoE. Another interesting deduction that supports the
claim in the Section Limitations is that players experience approximately the same
quality up to 80 milliseconds of delay during the slow and medium-paced games.
After 80 milliseconds, the delay starts to be noticeable by players.

The assessments discussed above are subjective assessments, which means the
active involvement of test groups. The last assessment described by Table 2.1 and
Figure 2.4 is composed of 79 test runs, with 790 player votes. Even though a
relatively small group of players carry out this experiment, it is quite time and
resource-consuming. Besides, the assessment process can vary from person to per-
son. The same person can perform very differently on different tests of the same test
case or while performing very well on one type of game genre, can perform poorly
on another one. These kinds of possibilities bring variability to results, damage
assessment reliability, and decrease transferability across games.

An interesting idea, which also constitutes the starting point of this study, is
put forward by Sviridov et al. (2020) [6]. Instead of conducting subjective tests on
Cloud Gaming QoE assessments, they propose to take human players out of the
assessment process by replacing them with Deep Reinforcement Learning (DRL)
agents to automatize this process.

This study is built on the idea that in-game score and player satisfaction are
positively correlated, so is QoE. To nurture this idea, a set of well-known Atari
games are selected as a testbed, and DRL agents to be replaced with human players
are trained on those games. After the training process, the agents are ready to play
the games in different test scenarios. The test scenarios being applied are poor
network conditions such as fixed latency, random latency, random keystroke drop
due to the nature of the study, and the obtained results indicate that DRL agents

12

2.2 – Related Work

can efficiently and successfully conduct QoE assessments instead of using human
players. Today’s games often contain multiple game stages such as exploration,
combat, dialogue, and one of the limitations of this work is that it is based on
games that required uniform gameplay. As suggested in the article, better QoE
assessments can be achieved if an agent can classify game stages in multistage
games. This idea forms the basis of this thesis study.

13

14

Chapter 3

Design and Implementation

3.1 Game Selection
Doom (1993) [7] is a widely-known old-school First Person Shooter (FPS) game
for MS-DOS that was released in 1993 by id Software. Players take on the role of
Doomguy, a space mariner whose duty is to fight hordes of invading demons from
hell.

Figure 3.1: Doom Cover, reproduced from [7]

Doom is regarded as one of the most influential titles in video game history
and is usually recognized as one of the best games of all time. Along with its
predecessor Wolfenstein 3D (1992) [8], it helped define the FPS genre and spawned
a slew of copycat games known as Doom clones. In addition, it was a pioneer in
online distribution and technology such as 3D graphics, multiplayer gaming, and
custom modification support through packed WAD files.

15

Design and Implementation

The player plays Doomguy through a sequence of levels set in army bases on
Mars’ moons and hell. In order to complete a level, the player must navigate
through the area until they reach a specified exit chamber. The levels are orga-
nized into designated episodes, with the last level focused on a boss battle against
a challenging opponent. While the environment is rendered in 3D, the opponents
and objects are rendered as 2D sprites from various predefined angles of view, a
practice called 2.5D graphics and scientifically as ray casting. Levels are frequently
labyrinthine, and a full-screen automap depicts the locations explored up to that
moment. The player must combat various attackers, such as devils and zombies,
while maintaining ammo, health, and armor supplies. Monsters frequently emerge
in huge groups, and the game has five difficulty settings that amplify the amount
and damage done by opponents, with enemies re-spawning after death and mov-
ing quicker than usual on the maximum difficulty setting. The monsters’ behavior
is relatively straightforward: they either move toward their opponent or strike by
shooting fireballs, biting, and scratching.

The most important reasons for using Doom in this thesis study are that Doom is
a pretty simple game that does not require high processing power and the possibility
to access and intervene its game engine.

3.2 A.I. Research Platform as an API to the Game
ViZDoom (2018) [9] is an Artificial Intelligence research platform based on the
famous old-school game Doom and enables the creation of Artificial Intelligence
agents that play Doom by exploiting raw visual data retrieved from the Screen
Buffer. It is primarily meant for experiments in Machine Learning, especially in
Deep Reinforcement Learning.

Figure 3.2: ViZDoom, reproduced from [9]

16

3.3 – Deep Reinforcement Learning Agent Trained on the Game

The main features of this platform are that being fast and lightweight while
providing easy access to the game engine, the depth buffer, and an API for Python.
Aside from the asynchronous and synchronous single-player and multiplayer modes,
custom scenarios are simple to design.

3.3 Deep Reinforcement Learning Agent Trained
on the Game

Arnold is a PyTorch implementation of the agent proposed in Playing FPS Games
with Deep Reinforcement Learning (2017) [10]. Arnold was built and trained on
ViZDoom and won the ViZDoom A.I. Competition 2017 [11].

Arnold includes a collection of 17 pre-selected maps for training and evaluation,
as well as five pre-trained models which can be visualized and played against,
including the ones that won the ViZDoom A.I. Competition 2017.

3.3.1 Methodology
In partially observable environments, an agent observes only a part of the environ-
ment, which is typically insufficient to deduce the whole state. Likewise, in Doom,
the agent’s point of view is confined to 90 degrees centered on its position. Deep
Recurrent Q-Networks are introduced by Hausknecht & Stone (2015) [12] to tackle
such situations by taking an extra input provided by the network at the previous
step into consideration. Arnold was built based on Deep Recurrent Q-Networks.

3.3.2 Model Architecture

Figure 3.3: Arnold model architecture illustration, reproduced from [10]

17

Design and Implementation

The two convolutional layers (Conv 1 and Conv 2) at the beginning are fed with
the screen buffer. Conv 1 and Conv 2 output are separated into two streams. The
bottom one flattens the output (Layer 3) and transmits it to the LSTM layer. The
top one transfers it to Layer 4, an additional hidden layer, and finally to a final
layer representing each game element.

3.4 Gameplay Dataset Generation
Figure 3.4 below illustrates how the agent is manipulated for frame extraction and
labeling.

Figure 3.4: An illustration of frame extraction and labeling process

As seen clearly in the figure, the agent does not directly interact with the game
engine. Instead, all interventions to the game engine should pass through ViZ-
Doom, and ViZDoom serves here as an Application Programming Interface (API).

In the agent’s every interaction with the environment, ViZDoom fetches the
instant vision of the agent by interacting with the game engine and sets the Screen
Buffer with the vision. ViZDoom also keeps track of all objects in the agent’s vision
and saves the labels of existing objects into the Labels Buffer.

18

3.4 – Gameplay Dataset Generation

Figure 3.5: An example moment of Labels Buffer, reproduced from [13]

In this way, it is possible to detect and classify objects in the agent’s vision to
deduct if there is an enemy on the scene and label the scene as a combat stage or
an exploration stage.

Pseudocode 1 summarizes the general mechanism behind the frame extraction
and labeling.

Pseudocode 1: Frame Extraction and Labeling
1: Create dataset directory
2: Set the chunkSize
3: frames← dict()
4: labels ← dict()
5: indexChunk ← 0
6: while experiment lasts do
7: Make an action
8: Fetch Screen Buffer through ViZDoom
9: Fetch Label Buffer through ViZDoom and detect the label

10: frames[indexChunk]← ScreenBuffer
11: labels[indexChunk] ← Label
12: indexChunk ← indexChunk + 1
13: if indexChunk = chunkSize then
14: Combine frames and labels into a chunk and save
15: indexChunk ← 0
16: frames← dict()
17: labels ← dict()
18: end if
19: end while

At the beginning of each experiment, an empty dataset directory is created.

19

Design and Implementation

Then, after initializing the data containers for frames and labels, the agent starts
taking action. Instead of saving whole data at once, chunk-by-chunk saving is pre-
ferred for better memory utilization.

Figure 3.6 below illustrates the dataset generation process. Once having saved
whole data chunks, the script Dataset Builder processes all those chunks as a se-
quence. It first extracts all frames and labels. Since all frames are in the form of
an array, they are converted to images. FFmpeg (2006) [14] processes the sequence
of images and calculates the bitrate per each timestamp. Dataset Builder receives
the raw data from FFmpeg, combines frames of each timestamp with corresponding
labels, and outputs the resulting dataset in CSV (comma-separated values) format.

Figure 3.6: An illustration of dataset generation process

Pseudocode 2 illustrates the dataset generation process.

Pseudocode 2: Dataset Generation Process
1: labels← list()
2: foreach chunk do
3: foreach (frame, label) in chunk do
4: image← frame
5: labels← labels + label
6: end foreach
7: end foreach
8: Run FFmpeg over images to generate dataset.csv
9: foreach (index, row) in dataset.csv do ▷ row: time, frameSize, frameType

10: row ← row + labels[index] ▷ row: time, frameSize, frameType, label
11: end foreach
12: return dataset.csv

20

3.4 – Gameplay Dataset Generation

3.4.1 Overview of Raw Dataset
Before diving into the pre-processing step and the dataset analysis, it is necessary
to discuss a raw form of a generated dataset. Table 3.1 illustrates a snippet of a
raw dataset. Each row in a raw dataset is in the form of Time, Frame Size, Frame
Type, Game Stage, respectively.

Time [s] Frame Size [bytes] Frame Type Game Stage
24.800 1414 P 1
24.828 1691 P 1
24.857 1823 P 1
24.885 1807 P 1
24.914 1591 P 0
24.942 1430 P 0
24.971 5054 I 0
25.000 813 B 0
25.028 752 B 0
25.057 927 B 0
25.085 1724 P 0
25.114 989 B 0
25.142 1423 B 0
25.171 804 B 0
25.200 1893 P 0
25.228 914 B 1
25.257 934 B 1

Table 3.1: A snippet of a raw dataset

The Time column indicates the time in seconds where frames are captured, and
the Frame Size column indicates the size of that particular frame in bytes.

Frame Type, also known as Picture Type (2020) [15], expresses the three types
of frames used in video compression. Although it is not in the scope of this thesis
study, it would be enlightening to summarize the characteristics of I, P, B frames:
Among all three types, I Frames (Intra-coded Frames) are the least compressible
frame types, yet they do not require other video frames to decode. I Frames can be
considered as a complete image. P Frames (Predicted Frames), also knows as Delta
Frames, are more compressible than I Frames. They only keep the changes from
the former frame to the current one. B Frames (Bidirectional Predicted Frames)
can use both former and latter frames for maximum possible compression.

The Game Stage represents the instant stage that the agent is currently in, and
the values 0, 1 indicate the exploration and the combat stages, respectively.

21

Design and Implementation

3.4.2 Bitrate Calculation
The definition bitrate refers to the number of bits that can be conveyed or processed
over a network in a given unit of time. In streaming, this unit is usually a second,
and in this thesis study, bitrate is measured in kilobits-per-second (kbps).

The frame rate of Doom is 35, which means the game runs at 35 frames-per-
second. Therefore, every 35 frames are collected in this context, and their sizes are
accumulated to calculate the bitrate.

bt =

⎧⎪⎪⎨⎪⎪⎩
t∑︂

n=t−f

sn, t ≥ f ;

0, otherwise
(3.1)

where bt is the bitrate at any time t, f is the frame rate, and st is the frame size
at any time t.

Time [s] Frame Size [bytes] Frame Type Bitrate [kbps] Game Stage
24.800 1414 P 301 1
24.828 1691 P 305 1
24.857 1823 P 315 1
24.885 1807 P 321 1
24.914 1591 P 328 0
24.942 1430 P 325 0
24.971 5054 I 360 0
25.000 813 B 358 0
25.028 752 B 358 0
25.057 927 B 354 0
25.085 1724 P 363 0
25.114 989 B 364 0
25.142 1423 B 371 0
25.171 804 B 364 0
25.200 1893 P 375 0
25.228 914 B 374 1
25.257 934 B 376 1

Table 3.2: A snippet of a the raw dataset including bitrate data

3.5 Gameplay Dataset Pre-processing
The main focus of this thesis study is on bitrate and game stages. Bitrate and game
stage data should be processed for consistency with real-world network scenarios.

22

3.5 – Gameplay Dataset Pre-processing

The sole pre-processing technique discussed in this section is the Data Smooth-
ing. Different pre-processing techniques applied to the data are discussed in the
following sections before starting the training process of the Deep Learning Model.

Data Smoothing is a technique to reduce, eliminate or manipulate volatility
and any noise in data. Smoothed data can highlight significant trends better and
help important patterns to stand out. However, despite the apparent advantages,
excessive smoothing may also cause information loss. Therefore, it is better to be
aware of the trade-off and be careful about finding the sweet spot.

Smoothing is applied easily through various methods. The method used in this
thesis study is the Exponential Moving Average (2004) [16]. The Exponential Mov-
ing Average, also referred to as an Exponentially Weighted Moving Average, is the
Moving Average technique that gives more credit to the most recent data samples.

Unlike the Simple Moving Average (1920) [17], which evaluates all observed data
samples with equal weight, the Exponential Moving Average treats observed data
samples with variable weighting factors, which decrease exponentially over time.

The Exponential Moving Average is applied recursively to a data series Y by
using Equation (3.2).

St =
{︄

Y1, t = 1;
αYt + (1− α)St−1, t > 1 and 0 < α < 1;

α = 2
w + 1 , w ≥ 1

(3.2)

where St is the Exponential Moving Average value at any time t, Yt is the actual
value at any time t, α is the Smoothing Factor, and w is the observation window
length, time span.

In order to preserve consistency, both the bitrate and game stage data should
be smoothed together. The window length w is selected 9 here (corresponds to
approximately a quarter-second, since the game runs at 35 frames-per-second) to
demonstrate the same dataset snippet in Table 3.2. Different values for window
length are evaluated in the data analysis phase.

Pseudocode 3 illustrates the logic of data smoothing.

23

Design and Implementation

Pseudocode 3: Data Pre-processing: Smoothing
1: Set the window length w
2: α← 2/(w + 1)
3: foreach (index, row) in dataset.csv do
4: if index = 0 then
5: β ← row[′bitrate′] ▷ β: last smoothed bitrate value
6: γ ← row[′stage′] ▷ γ: last smoothed game stage value
7: else
8: row[′bitrateSmoothed′]← α · row[′bitrate′] + (1− α) · β
9: row[′stageSmoothed′] ← α · row[′stage′] + (1− α) · γ

10: β ← row[′bitrateSmoothed′]
11: γ ← row[′stageSmoothed′]
12: if row[′stageSmoothed′] > 0.5 then
13: row[′stageSmoothed′]← 1
14: else
15: row[′stageSmoothed′]← 0
16: end if
17: end if
18: end foreach
19: return dataset.csv

Once smoothing having completed, the data snippet shown in Table 3.2 becomes
the snippet shown in Table 3.3.

24

3.6 – Gameplay Dataset Analysis

Time [s] Frame Size [bytes] Frame Type Bitrate [kbps] Game Stage
24.800 1414 P 287.794 1
24.828 1691 P 291.235 1
24.857 1823 P 295.988 1
24.885 1807 P 300.990 1
24.914 1591 P 306.392 1
24.942 1430 P 310.114 1
24.971 5054 I 320.091 1
25.000 813 B 327.672 0
25.028 752 B 333.738 0
25.057 927 B 337.790 0
25.085 1724 P 342.832 0
25.114 989 B 347.066 0
25.142 1423 B 351.852 0
25.171 804 B 354.282 0
25.200 1893 P 358.425 0
25.228 914 B 361.540 0
25.257 934 B 364.432 0

Table 3.3: A snippet of the smoothed dataset

3.6 Gameplay Dataset Analysis
Before the detailed analysis, the following bitrate-time figures generated in differ-
ent map-weapon combinations indicate the bitrate changes over time according to
those map-weapon combinations. Each episode below is limited to one minute for
better visibility.

Each map and weapon has different characteristics, and this reflects on bitrate-
time graphs. For example, while the missile and shotgun can kill opponents with a
single shot, the pistol usually needs more than one shot to kill.

25

Design and Implementation

Figure 3.7: An episode recorded in Map 1 with a missile

Figure 3.8: An episode recorded in Map 1 with a missile, smoothed

First of all, it is obvious to see the effect of smoothing the bitrate, considering
the Figure 3.7 and Figure 3.8. The figure belonging to the smoothed data is way
cleaner and noise-free. In this way, it is easier to get an insight into the trend of
the data.

The background colors indicate the game stage for a particular moment. Since
the smoothing operation is also applied to the game stage data for the sake of
coherency, game stage values for each timestamp can also be alternated. As an
example, one can see this alternation on the seconds approximately 23 - 26. While
there are two combat stages on this range in Figure 3.7, those combat stages do
not exist on the same range in Figure 3.8. In the same way, it is not possible to see
the last exploration stage in Figure 3.7 and Figure 3.8.

The episode indicated with the following figures is recorded in Map 3, with the
agent uses a pistol as a weapon.

26

3.6 – Gameplay Dataset Analysis

Figure 3.9: An episode recorded in Map 3 with a pistol

Figure 3.10: An episode recorded in Map 3 with a pistol, smoothed

The first noticeable fact in the Figures 3.9 and 3.10 is that the bitrate fluctuates
in a narrower band, compared to the figures above, the episode recorded in Map 1
with a missile.

One can clearly say that there is a more prominent bitrate fluctuation compared
to the figures above, the episode recorded in Map 1 with a missile. The primary
reason behind these sharp fluctuations is that, as mentioned above, the agent in
the first configuration uses a missile that can kill an opponent with a single shot,
whereas the agent here uses a pistol that requires more shots to kill an opponent.
Each pistol shot emits a fire burst, and this affects the bitrate, hence increases the
level of noise.

In the same sense, since the pistol requires more shots to be fired, the required
time to kill an opponent is longer than the required time in using a missile, and
eventually, this results in longer combat scenes. It is easy to realize this effect by
comparing the periods of combat scenes in both Figure 3.7 and Figure 3.9. It is
again possible to observe the effect of smoothing here, as in the previous figures. It
eliminated some noise to help for better pattern analysis.

27

Design and Implementation

The episode indicated in the following figures is recorded in Map 7, with the
agent uses a shotgun as a weapon.

Figure 3.11: An episode recorded in Map 7 with a shotgun

Figure 3.12: An episode recorded in Map 7 with a shotgun, smoothed

The behavior of the shotgun is similar to the behavior of the missile depicted
in Figure 3.7. Both weapons have similar fire strengths, and they can kill an op-
ponent with a single shot. The difference is the shape of the fire bursts that are
emitted by the two weapons. This difference can introduce slightly different levels
of noise. However, since both of the weapons can kill the opponents with a single
shot, it is possible to observe the fact that the periods of combat stages are similar
in Figures 3.7 and 3.11.

By considering the episodes recorded in three different maps, the existence of
more sharp spikes in bitrate in Map 1 can be addressed to the structure of the
corresponding map because of more dramatic scene transitions.

3.6.1 General Statistics
The rest of the analysis is based on the same map-weapon configuration for the
sake of simplicity.

28

3.6 – Gameplay Dataset Analysis

The episode used in these analyses is recorded on approximately 72 minutes
of gameplay in Map 1 and encoded in 400 kbps. In this configuration, the agent
uses a missile as a weapon, making the agent able to kill opponents with a single
shot. Being able to kill the opponents with a single shot reduces the noise in the
generated data since each shot brings a burst into the agent’s vision.

On the other side, the agent is given God Mode by intervening in the game
engine, which makes the agent immortal. The reason behind giving immortality to
the agent is that the agent is resurrected in a random spot in the map after each
death, and this causes a dramatic change in the environment instantly, hence in
the bitrate.

The experiment is evaluated below in different data smoothing configurations.
The window lengths used in the experiment are 9, 18, 35. Since the game runs
at 35 frames-per-second, these configurations correspond to the quarter-second,
half-second, and one-second time windows, respectively.

Smoothing with Quarter-second Time Window

According to Equation (3.2), Smoothing Factor α equals 0.2 for given window length
9. Smoothing the dataset in this configuration produces the following statistics
throughout the episode.

Game Stage Min Max Mean Coefficient of Variation Fraction (%)
Exploration 29 9643 1373 0.52 54.96

Combat 19 8719 1500 0.59 45.04

Table 3.4: Overall frame statistics throughout an episode

The minimum, maximum, and mean frame sizes illustrated in Table 3.4 are
measured in bytes, and they indicate the statistics of frames seen in each kind of
game stage throughout the episode. Mean frame sizes of both stages are pretty
close to each other. Therefore it is not a strong indicator here.

Coefficient of Variation (CV) is a statistical measure that evaluates the distri-
bution of data samples around the Mean of the data. As seen in Equation (3.3),
the Coefficient of Variation is the ratio of Standard Deviation to the Mean.

CV = σ

µ
(3.3)

where σ is the Standard Deviation of the data, and µ is the Mean of the data.

29

Design and Implementation

Coefficient of Variation is a good measure in comparing the variations of differ-
ent data series, even when the means of those series are totally different. According
to the test by Forkman (2009) [18], the two Coefficient of Variation values belong-
ing to the exploration and combat stages are significantly different from each other,
considering the sample sizes. Therefore, it is possible to discriminate those stages
from each other.

The fraction, which indicates the distribution of frames across game stages, is
an essential indicator because if there is an imbalance in a dataset, Machine Learn-
ing models usually tend to learn the dominating data. However, even though the
number of frames belonging to the Exploration stage is higher than the number of
frames belonging to the Combat stage in this case, there is no significant difference
to cause a bias. Therefore there is no need to use techniques such as oversampling
to balance the dataset.

Table 3.5 shows the overall bitrate statistics per game stage throughout the
episode. The bitrate values are measured in kbps. Mean bitrates of both stages are
similar; therefore, it is hard to deduce by only looking at this indicator.

Game Stage Min Bitrate Max Bitrate Mean Bitrate
Exploration 89.60 794.72 392.45

Combat 76.88 754.49 408.80

Table 3.5: Overall bitrate statistics throughout an episode

Figure 3.13 indicates the dispersion of frames of each game stage over the dif-
ferent bitrate bands.

30

3.6 – Gameplay Dataset Analysis

Figure 3.13: Frame distribution histogram over the different bitrate bands

According to Figure 3.13, the number of frames that belong to the bitrate band
up to 200 kbps is significantly low compared to the rest of the bitrate bands. There-
fore, they are neglectable in the context of this experiment. On the other hand, the
vast amount of frames belong to the bitrate band between 300 kbps and 500 kbps,
especially from 300 kbps to 400 kbps. Hence, this band is the most important one.

Transition Matrix 3.6 below indicates the transition frequencies from one stage
to another. According to the result, it is possible to observe that most of the
transitions happen between the same game stages.

Game Stage Exploration Combat
Exploration 0.98 0.02

Combat 0.02 0.98

Table 3.6: Game stage transition matrix

Smoothing with Half-second Time Window

According to Equation (3.2), Smoothing Factor α equals approximately 0.105 for
given window length 18, and this results in similar results in the former evaluation.
Following statistics are staged below for completeness.

31

Design and Implementation

Game Stage Min Max Mean Coefficient of Variation Fraction [%]
Exploration 23 9643 1373 0.52 55.02

Combat 19 8719 1499 0.59 44.98

Table 3.7: Overall frame statistics throughout an episode

Changing the window length w from 9 to 18 affects the game stages slightly.
By considering the total number of frames in the current episode, this adjustment
results in the change of approximately 100 frames. However, there is still no sig-
nificant difference to cause a bias. Besides, the two Coefficient of Variation values
belonging to the exploration and combat stages are still significantly different than
each other, considering the sample sizes. Hence, it is still possible to discriminate
those stages from each other.

Game Stage Min Bitrate Max Bitrate Mean Bitrate
Exploration 93.20 775.21 392.51

Combat 82.60 729.94 408.74

Table 3.8: Overall bitrate statistics throughout an episode

Based on Tables 3.7 and 3.8, mean frame sizes and mean bitrate values of the
both stages are highly close each other. Therefore, it would not be reliable to make
an observation by only looking at these indicators.

32

3.6 – Gameplay Dataset Analysis

Figure 3.14: Frame distribution histogram over the different bitrate bands

Since the distribution of frames over exploration and combat stages is almost
equal to the scenario in the former evaluation, distribution and transition of the
frames are pretty identical to the former case. The bitrate band up to 200 kbps,
even up to 300 kbps, is still neglectable. The most critical bitrate band is still the
band starting from 300 kbps to 500 kbps.

Game Stage Exploration Combat
Exploration 0.98 0.02

Combat 0.02 0.98

Table 3.9: Game stage transition matrix

Transition Matrix 3.9 indicates that changing the Smoothing Factor does not
affect the fact that the great majority of the transitions occur between the scenes
belonging to the same game stage.

Smoothing with One-second Time Window

According to Equation (3.2), Smoothing Factor α equals approximately 0.055 for
given window length 35, and this results in highly similar results in the former
evaluations. Following statistics are staged below for completeness.

33

Design and Implementation

Game Stage Min Max Mean Coefficient of Variation Fraction (%)
Exploration 23 9643 1372 0.52 55.14

Combat 19 8719 1500 0.60 44.86

Table 3.10: Overall frame statistics throughout an episode

Game Stage Min Bitrate Max Bitrate Mean Bitrate
Exploration 101.14 733.17 392.32

Combat 98.97 687.63 409.02

Table 3.11: Overall bitrate statistics throughout an episode

According to Tables 3.10 and 3.11, mean frame sizes and mean bitrate values
in both game stages are still close to each other. Still, using these metrics would
not be reliable.

As expected, adjustment of the window length w from 18 to 35 still does not
bring much difference. By considering the total number of frames in the current
episode, this adjustment results in the change of approximately 300 frames. Thus,
there is still no significant difference to cause a bias.

Game Stage Exploration Combat
Exploration 0.99 0.01

Combat 0.02 0.98

Table 3.12: Game stage transition matrix

Transition Matrix 3.12 shows that the number of in-stage transitions in the
exploration stage is slightly higher than the previous cases, and in the same sense,
the number of transitions from exploration stage to combat stage is slightly lower
than the previous cases. However, the difference is neglectable.

34

3.6 – Gameplay Dataset Analysis

Figure 3.15: Frame distribution histogram over the different bitrate bands

Since the distribution of frames over exploration and combat stages is almost
equal to the scenarios in the former evaluations, distribution and transition of the
frames are quite the same in the former case. The bitrate band up to 200 kbps,
even up to 300 kbps, is still neglectable. The most critical bitrate band is still the
band starting from 300 kbps to 500 kbps.

Considering the results of all three smoothing configurations, changing the
smoothing window length w does not make a significant difference in game stage
average bitrates, yet it is still helpful to decrease the level of noise.

3.6.2 Variation in Average Bitrate of Adjacent Series of
Stages

One approach followed in this thesis study -to deduct a pattern among game stage
transitions- is to evaluate the average bitrate values stage-by-stage and how the
stages’ average bitrates are affected during transitions from the exploration stage
to combat stage and vice versa.

35

Design and Implementation

Figure 3.16: Average bitrate calculation per stage

µn = Sn+1 − Sn

tn+1 − tn

· 0.008 =
∑︁n+1

t=n st

tn+1 − tn

· 0.008 (3.4)

where µn is the average bitrate of a game stage, Sn is the accumulated size in
bytes at the beginning of a stage n, Sn+1 is the accumulated size in bytes at the
end of a stage n, and st is the frame size in bytes at any time t.

Pseudocode 4 illustrates the mechanism of average bitrate calculation stage-by-
stage.

36

3.6 – Gameplay Dataset Analysis

Pseudocode 4: Average Bitrate Calculation per Game Stage
1: Smooth the bitrate and game stage data ▷ Pseudocode 3
2: foreach (index, row) in dataset.csv do
3: if index = 0 then
4: accumulatedSize← row[”size”]
5: row[′accSize′] ← accumulatedSize
6: continue
7: end if
8: row[′accSize′] ← row[′size′] + accumulatedSize
9: accumulatedSize← row[′accSize′]

10: end foreach
11: avgBitrates← dict()
12: foreach (index, row) in dataset.csv do
13: if index = 0 then
14: tmpRow ← row
15: continue
16: end if
17: if row["gamestage"] != tmpRow["gamestage"] then ▷ Stage change
18: timeDiff ← row[′time′]− tmpRow[′time′]
19: stageBitrate ← (row[′accSize′]− tmpRow[′accSize′]) / timeDiff
20: timeMidStage← tmpRow[′time′] + timeDiff / 2
21: avgBitrates[timeMidStage]← (stageBitrate, tmpRow[′gamestage′])
22: tmpRow ← row
23: end if
24: end foreach

After calculating the average bitrate of each adjacent game stage, data struc-
ture avgBitrates in Pseudocode 4 keeps each game stage’s average bitrate and the
corresponding game stage in its values. Thus, it is easy to calculate the variation
of average bitrates among adjacent series of game stages by iterating over this data.

Considering the transition from stage n-1 to the stage n in Figure 3.16, the
variation of average bitrates is calculated by Equation (3.5).

V ar = µn − µn−1

µn−1
(3.5)

where µn is the average bitrate of the latter stage, µn−1 is the average bitrate
of the former stage.

µn−1, the former stage’s average bitrate, is the baseline bitrate. According to
baseline bitrates, each variation is categorized in one bandwidth class to achieve
fine-grained evaluation.

37

Design and Implementation

Smoothing with Quarter-second Time Window

Since the episode is approximately 72 minutes of gameplay, it is impossible to fit all
the average bitrate indicators into a single figure in terms of visibility. Therefore,
all the figures are limited to one and a half minutes of gameplay to see a pattern.

Figure 3.17: Average bitrates per stage, smoothed with window length w 9

Tables 3.13 and 3.14 depict the average bitrate variation statistics of game stage
transitions between the exploration and the combat stages. The leftmost column
indicates the baseline bitrate, the average bitrate of the former stage just before
transition.

Exploration → Combat # Transitions Min Var. Max Var. Avg Var.
0-200 kbps 9 40.82 % 339.05 % 135.85 %

200-300 kbps 99 - 51.22 % 228.16 % 48.98 %
300-350 kbps 258 - 50.93 % 125.71 % 20.42 %
350-400 kbps 687 - 54.69 % 297.30 % 8.94 %
400-450 kbps 400 - 50.35 % 64.76 % - 0.11 %
450-500 kbps 121 - 55.97 % 126.30 % - 6.4 %
500-∞ kbps 104 - 75.05 % 32.40 % - 21.42 %

Table 3.13: Average bitrate variation stats, transitions from exploration to combat

38

3.6 – Gameplay Dataset Analysis

Combat → Exploration # Transitions Min Var. Max Var. Avg Var.
0-200 kbps 5 55.71 % 184.28 % 103.46 %

200-300 kbps 93 - 55.70 % 143.85 % 36.89 %
300-350 kbps 213 - 58.94 % 110.84 % 16.07 %
350-400 kbps 497 - 67.01 % 263.38 % 1.67 %
400-450 kbps 409 - 59.95 % 85.18 % - 6.91 %
450-500 kbps 243 - 54.96 % 59.42 % - 14.5 %
500-∞ kbps 218 - 75.41 % 113.74 % - 24.16 %

Table 3.14: Average bitrate variation stats, transitions from combat to exploration

As seen in Figure 3.13, since the number of frames up to 200 kbps is quite
neglectable, the tables above spare only one chunk for this bitrate range while frag-
menting the rest of the ranges by the length of 50 kbps chunks. The second column
indicates the number of transitions for each bitrate range.

Tables 3.13 and 3.14 indicate that most of the transitions occur in the baseline
bitrate band between 350 kbps and 450 kbps, while the number of the transitions
up to 200 kbps is almost zero as expected.

All the transitions from the exploration stage to the combat stage and vice
versa up to the baseline bitrate 200 kbps always increase the bitrate, considering
the minimum variation in this band is positive. Besides, according to the average
variation values, one can say that the most significant variations usually occur in
this band. On the other hand, while the value of baseline bitrate increases up
to 400 kbps, the value of average variation decreases, which makes total sense.
Meanwhile, according to the average variation values, transitions in both directions
until the baseline bitrate of 400 kbps usually increase the bitrate. The bitrate
seems to remain still in the transitions from the exploration stage to the combat
stage from 400 kbps to 450 kbps. However, transitions in the opposite direction
usually decrease the bitrate in the same band. After the baseline bitrate of 450
kbps, transitions in both directions tend to decrease the bitrate. Transitions af-
ter the baseline bitrate of 500 kbps can decrease the average bitrate even up to 75%.

Should the two transitions are compared by considering the average variation
values, one can say that the transitions from the exploration stage to the combat
stage up to the baseline bitrate of 350 kbps usually increase the bitrate more than
the opposite transitions in the same baseline bitrate band. Likewise, the transitions
from the combat stage to the exploration stage after the baseline bitrate of 400 kbps
usually decrease the bitrate more than the opposite transitions in the same baseline
bitrate band.

39

Design and Implementation

Smoothing with Half-second Time Window

Figure 3.18: Average bitrates per stage, smoothed with window length w 18

Exploration → Combat # Transitions Min Var. Max Var. Avg Var.
0-200 kbps 6 105.71 % 404.29 % 165.31 %

200-300 kbps 54 - 22.67 % 147.64 % 42.66 %
300-350 kbps 210 - 43.22 % 123.89 % 20.95 %
350-400 kbps 609 - 55.01 % 85.19 % 8.43 %
400-450 kbps 370 - 52.27 % 95.80 % - 0.72 %
450-500 kbps 101 - 49.69 % 35.16 % - 9.31 %
500-∞ kbps 82 - 66.90 % 43.06 % - 20.14 %

Table 3.15: Average bitrate variation stats, transitions from exploration to combat

Combat → Exploration # Transitions Min Var. Max Var. Avg Var.
0-200 kbps 4 100.00 % 141.14 % 121.68 %

200-300 kbps 74 - 15.57 % 134.45 % 44.31 %
300-350 kbps 172 - 54.97 % 117.70 % 14.83 %
350-400 kbps 448 - 81.72 % 119.95 % 3.34 %
400-450 kbps 356 - 55.20 % 224.66 % - 5.89 %
450-500 kbps 203 - 71.63 % 69.83 % - 14.74 %
500-∞ kbps 175 - 59.62 % 113.74 % - 24.08 %

Table 3.16: Average bitrate variation stats, transitions from combat to exploration

Tables 3.15 and 3.16 indicate that most of the transitions occur in the baseline
bitrate band between 350 kbps and 450 kbps, while the number of the transitions
up to 200 kbps is almost zero as expected.

40

3.6 – Gameplay Dataset Analysis

All the transitions from the exploration stage to the combat stage and vice
versa up to the baseline bitrate 200 kbps always increase the bitrate, considering
the minimum variation in this band is positive. Besides, one can say that the most
significant variations usually occur in this band according to the average variation
values.

While the value of baseline bitrate increases up to 400 kbps, the value of av-
erage variation decreases, which makes total sense. Meanwhile, according to the
average variation values, transitions in both directions until the baseline bitrate of
400 kbps usually increase the bitrate. In the transitions from the exploration stage
to the combat stage in the band between 400 kbps and 450 kbps, the bitrate seems
to remain still. However, transitions in the opposite direction in the same band
usually decrease the bitrate. After the baseline bitrate of 450 kbps, transitions in
both directions tend to decrease the bitrate.

After the baseline bitrate of 500 kbps, transitions from the exploration stage
to the combat stage and vice versa can decrease the average bitrate up to 67%
and 60%, respectively. These values are lower than the values in the former case,
smoothing with the window length w 9.

Should the two transitions are compared considering the average variation val-
ues, one can say that the transitions from the exploration stage to the combat stage
up to the baseline bitrate 350 kbps usually increase the bitrate more than the oppo-
site transitions in the same baseline bitrate band. In the same sense, the transitions
from the combat stage to the exploration stage after the baseline bitrate 400 kbps
usually decrease the bitrate more than the opposite transitions in the same baseline
bitrate band.

Smoothing with One-second Time Window

Figure 3.19: Average bitrates per stage, smoothed with window length w 35

41

Design and Implementation

Exploration → Combat # Transitions Min Var. Max Var. Avg Var.
0-200 kbps 6 80.57 % 308.87 % 145.25 %

200-300 kbps 45 - 25.64 % 123.08 % 42.29 %
300-350 kbps 148 - 33.33 % 79.47 % 19.31 %
350-400 kbps 536 - 43.85 % 84.55 % 9.30 %
400-450 kbps 317 - 47.76 % 86.89 % - 1.63 %
450-500 kbps 80 - 50.91 % 28.78 % - 7.55 %
500-∞ kbps 58 - 62.43 % 28.13 % - 20.69 %

Table 3.17: Average bitrate variation stats, transitions from exploration to combat

Combat → Exploration # Transitions Min Var. Max Var. Avg Var.
0-200 kbps 1 135.63 % 135.63 % 135.63 %

200-300 kbps 61 - 27.84 % 140.89 % 40.20 %
300-350 kbps 132 - 59.08 % 90.79 % 16.46 %
350-400 kbps 361 - 60.96 % 100.55 % 3.51 %
400-450 kbps 324 - 50.11 % 51.24 % - 6.49 %
450-500 kbps 179 - 61.46 % 39.41 % - 15.60 %
500-∞ kbps 132 - 49.91 % 58.78 % - 24.04 %

Table 3.18: Average bitrate variation stats, transitions from combat to exploration

Tables 3.17 and 3.18 indicate that the most of the transitions occur in the
baseline bitrate band between 350 kbps and 450 kbps, while the number of the
transitions up to 200 kbps is almost zero as expected.

Considering the minimum bitrate variation up to the baseline bitrate of 200 kbps
is positive in both cases, all the transitions between the exploration stage and the
combat stage always increase the bitrate in this band, even though the transitions
from the combat stage to the exploration stage can be accepted as an outlier since
there is only one transition in this band. Besides, according to the average variation
values, one can say that the most considerable variations usually occur in this band.

As the value of baseline bitrate increases up to 400 kbps, the value of average
variation decreases, which makes total sense. Meanwhile, according to the average
bitrate variation values, transitions in both directions until the baseline bitrate of
400 kbps usually increase the bitrate. After the baseline bitrate of 400 kbps, tran-
sitions in both directions tend to decrease the bitrate more and more.

After the baseline bitrate 500 kbps, transitions from the exploration stage to the
combat stage and vice versa can decrease the average bitrate up to 62% and 50%,
respectively. These values are lower than the values in the former case, smoothing

42

3.6 – Gameplay Dataset Analysis

with the window length w 18.

Should the two transitions are compared by considering the average bitrate
variation values, one can say that the transitions from the exploration stage to the
combat stage up to the baseline bitrate of 350 kbps usually increase the bitrate more
than the opposite transitions in the same baseline bitrate band. In the same sense,
the transitions from the combat stage to the exploration stage after the baseline
bitrate of 400 kbps usually decrease the bitrate more than the opposite transitions
in the same baseline bitrate band.

According to the results of the three test configurations, the average bitrate
variation values indicate that it can be possible to discriminate the exploration
and the combat game stages during most of the baseline bitrate bands, except the
baseline bitrate band between 400 kbps and 450 kbps.

3.6.3 Bitrate Variation During Intra-stage and Inter-stage
Transitions

In this section of the study, the question of “What can be observed if the bitrate
variations during intra-stage and inter-stage transitions are analyzed?” is asked to
understand whether there is a pattern between the transitions. For this purpose,
variation of each transition is calculated by Equation (3.6).

V ar = bL − bF

bF

(3.6)

where bL is the bitrate after the transition, and bF is the bitrate before the
transition (baseline bitrate).

Pseudocode 5 illustrates the calculation of intra-stage and inter-stage transition
variations.

43

Design and Implementation

Pseudocode 5: Calculation of Intra-stage and Inter-stage Transition Variations
1: Smooth the bitrate and game stage data ▷ Pseudocode 3
2: varExpCombat, varCombatExp← dict()
3: varExpExp, varCombatCombat← dict()
4: i← 0
5: while index < len(data) - 1 do
6: formerStage, latterStage← data[index, stage], data[index + 1, stage]
7: baselineBitrate← data[index, bitrate]
8: variation← (data[index+1, bitrate]−baselineBitrate) / baselineBitrate
9: if formerStage = EXP and latterStage = CMB then

10: varExpCombat[baselineBitrate]← variation
11: else if formerStage = CMB and latterStage = EXP then
12: varCombatExp[baselineBitrate]← variation
13: else if formerStage = EXP and latterStage = EXP then
14: varExpExp[baselineBitrate]← variation
15: else if formerStage = CMB and latterStage = CMB then
16: varCombatCombat[baselineBitrate]← variation
17: end if
18: i← i + 1
19: end while

In Pseudocode 5, EXP and CMB are used as global variables to define the
exploration and combat stages. At the end, the data structures varExpCombat,
varCombatExp, varExpExp and varCombatCombat keep the relevant transitions
as key-value pairs where the baseline bitrate as a key, and the corresponding vari-
ation as a value.

After saving the transitions, each data structure is split into different baseline
bitrate bands, and the relevant operations such as getting the minimum, maximum,
mean are applied.

The analysis results of all transition directions are illustrated in the following
tables.

44

3.6 – Gameplay Dataset Analysis

Exploration → Combat Min Var. Max Var. Avg Var.
0-200 kbps - 1.15 % 0.47 % - 0.22 %

200-300 kbps - 1.34 % 4.78 % 0.81 %
300-350 kbps - 2.10 % 3.90 % 0.23 %
350-400 kbps - 3.44 % 3.37 % 0.16 %
400-450 kbps - 3.39 % 2.53 % - 0.07 %
450-500 kbps - 2.32 % 2.06 % - 0.20 %
500-∞ kbps - 3.37 % 1.58 % - 0.23 %

Table 3.19: Bitrate variation stats, transitions from exploration to combat

Combat → Exploration Min Var. Max Var. Avg Var.
0-200 kbps 1.80 % 5.33 % 3.62 %

200-300 kbps - 1.75 % 3.13 % 0.53 %
300-350 kbps - 1.61 % 1.80 % 0.03 %
350-400 kbps - 2.67 % 2.21 % 0.05 %
400-450 kbps - 1.83 % 2.36 % 0.13 %
450-500 kbps - 2.17 % 2.52 % - 0.08 %
500-∞ kbps - 1.93 % 1.69 % 0.06 %

Table 3.20: Bitrate variation stats, transitions from combat to exploration

Exploration → Exploration Min Var. Max Var. Avg Var.
0-200 kbps - 1.15 % 0.47 % - 0.22 %

200-300 kbps - 1.34 % 4.78 % 0.81 %
300-350 kbps - 2.10 % 3.90 % 0.23 %
350-400 kbps - 3.44 % 3.37 % 0.16 %
400-450 kbps - 3.39 % 2.53 % - 0.07 %
450-500 kbps - 2.32 % 2.06 % - 0.20 %
500-∞ kbps - 3.37 % 1.58 % - 0.23 %

Table 3.21: Bitrate variation stats, transitions from exploration to exploration

45

Design and Implementation

Combat → Combat Min Var. Max Var. Avg Var.
0-200 kbps 1.80 % 5.33 % 3.62 %

200-300 kbps - 1.75 % 3.13 % 0.53 %
300-350 kbps - 1.61 % 1.80 % 0.03 %
350-400 kbps - 2.67 % 2.21 % 0.05 %
400-450 kbps - 1.83 % 2.36 % 0.13 %
450-500 kbps - 2.17 % 2.52 % - 0.08 %
500-∞ kbps - 1.93 % 1.69 % 0.06 %

Table 3.22: Bitrate variation stats, transitions from combat to combat

According to the tables above, the average bitrate variation values indicate that
analyzing frame-to-frame transitions, whether intra-stage or inter-stage, does not
provide helpful insight into the data. These values show that the bitrate is not
affected significantly during single frame transitions. Therefore, this methodology
became impractical for this thesis study.

3.6.4 Bitrate Variation on a Time Span Around Stage Tran-
sitions

Another approach followed in this thesis study to deduct a pattern among game
stage transitions is calculating the bitrate variation in each game stage transition
moment by taking that moment as an origin and evaluating the bitrate values k
frames before and k frames after the origin.

Figure 3.20: Calculation of bitrate variation around stage transitions

The point that should be noted in these figures while calculating the bitrate
variation is the difference in the locations of markers B1 and B2. Bitrate variations

46

3.6 – Gameplay Dataset Analysis

around stage transition moments are calculated by Equation (3.7).

V ar = B2 −B1

B1
(3.7)

As mentioned above, the methodology proposes to advance k frames back and
forth around the moment of game stage transitions. By taking the game stage
transition moment as the origin, the left figure is the case of observing the same
former game stage in each back-pass through k frames and observing the same
latter game stage in each forward-pass through k frames without an interruption
of another game stage.

However, if there is an intervention by another game stage in one of the direc-
tions (in m-th frame from the origin), bitrate variation calculation is performed as
in the right figure.

Pseudocode 6 illustrates the logic behind the methodology. Line 10 illustrates
the decision depicted in Figure 3.20.

Pseudocode 3.6: Calculation of Bitrate Variation Around Stage Transitions
1: Smooth the bitrate and game stage data ▷ Pseudocode 3
2: frameRange ← k ▷ k = 9 or 18
3: bitrateV ariances← dict()
4: foreach (index, row) in dataset.csv do
5: if index = 0 then
6: tmpRow ← row
7: continue
8: end if
9: if row[’gamestage’] != tmpRow[’gamestage’] then ▷ Stage change

10: if another transition m frames back or forth then ▷ m < frameRange
11: baselineBitrate← dataset.csv[index−m]
12: latterBitrate ← dataset.csv[index + m]
13: else
14: baselineBitrate← dataset.csv[index− k]
15: latterBitrate ← dataset.csv[index + k]
16: end if
17: key ← (row[”time”], baselineBitrate)
18: variation← (latterBitrate− baselineBitrate) / baselineBitrate
19: bitrateV ariances[key]← (variation, tmpRow[′stage′], row[′stage′])
20: tmpRow ← row
21: end if
22: end foreach

47

Design and Implementation

After calculating the bitrate variation over a time span around each game stage
transition, data structure bitrateV ariances in Pseudocode 6 keeps each transition
time stamp, baseline bitrate when a transition occurred, bitrate variation due to
a transition, and game stages before and after a transition. By iterating over this
data structure, it is easy to group the transitions for statistical analyses based on
the baseline bitrates and the transition directions.

As in previous analyses, this methodology is also evaluated in three different
smoothing configurations.

Smoothing with Quarter-second Time Window

In each smoothing configuration, the experiments are conducted using two different
frame ranges for the transitions from the exploration stage to the combat stage and
vice versa.

The tables below depict the bitrate variation statistics over a time span around
game stage transitions between the exploration and the combat stages, depend-
ing on frame range k. The leftmost column indicates the baseline bitrate, B1 in
Figure 3.20.

Experiment with Frame Range k 9

Exploration → Combat Min Var. Max Var. Avg Var.
0-200 kbps - 23 % 73 % 25.50 %

200-300 kbps - 27 % 66 % 15.59 %
300-350 kbps - 17 % 58 % 7.80 %
350-400 kbps - 25 % 34 % 2.00 %
400-450 kbps - 28 % 27 % - 2.28 %
450-500 kbps - 25 % 24 % - 4.35 %
500-∞ kbps - 39 % 18 % - 7.22 %

Table 3.23: Bitrate variation stats around transitions from exploration to combat

48

3.6 – Gameplay Dataset Analysis

Combat → Exploration Min Var. Max Var. Avg Var.
0-200 kbps 45 % 173 % 84.75 %

200-300 kbps - 21 % 78 % 13.10 %
300-350 kbps - 14 % 36 % 5.73 %
350-400 kbps - 22 % 44 % 2.70 %
400-450 kbps - 21 % 35 % 0.41 %
450-500 kbps - 38 % 30 % - 1.69 %
500-∞ kbps - 32 % 31 % - 3.96 %

Table 3.24: Bitrate variation stats around transitions from combat to exploration

Experiment with Frame Range k 18

Exploration → Combat Min Var. Max Var. Avg Var.
0-200 kbps - 26 % 149 % 37.46 %

200-300 kbps - 45 % 90 % 23.04 %
300-350 kbps - 17 % 73 % 10.44 %
350-400 kbps - 29 % 50 % 3.20 %
400-450 kbps - 34 % 41 % - 3.23 %
450-500 kbps - 31 % 24 % - 7.69 %
500-∞ kbps - 51 % 24 % - 12.82 %

Table 3.25: Bitrate variation stats around transitions from exploration to combat

Combat → Exploration Min Var. Max Var. Avg Var.
0-200 kbps 45 % 300 % 119.17 %

200-300 kbps - 21 % 112 % 24.27 %
300-350 kbps - 25 % 83 % 9.90 %
350-400 kbps - 43 % 63 % 3.86 %
400-450 kbps - 37 % 70 % 0.01 %
450-500 kbps - 38 % 43 % - 2.53 %
500-∞ kbps - 42 % 39 % - 7.78 %

Table 3.26: Bitrate variation stats around transitions from combat to exploration

Since the number of frames up to the baseline bitrate of 200 kbps is quite
neglectable as seen in Figure 3.13, the tables above spare only one chunk for this
bitrate band while fragmenting the rest of the bands by the length of 50 kbps
chunks. The second column indicates the number of transitions for each bitrate
range.

49

Design and Implementation

If the transitions in the same direction are compared according to the frame
range k, it is possible to say that selecting the frame range k 18 would affect the
bitrate more than the case of selecting the frame range k 9. More strictly speaking,
up to baseline bitrate 400 kbps, selecting the frame range k 18 increases the bitrate
more than the case of selecting the frame range k 9. On the contrary, selecting the
frame range k 18 decreases the bitrate more than the other case after the baseline
bitrate band of 400 kbps.

Regardless of the frame range k, the values of average variation in the tables
indicate that while transitions in the direction of combat stage up to the baseline
bitrate of 200 kbps usually increases the bitrate, transitions in the opposite direc-
tion in the same band always increases the bitrate, since the corresponding values
of minimum variance are positive. Besides, considering the average variation val-
ues, one can say that the most significant bitrate variations usually occur in this
band. Transitions from the combat stage to the exploration stage up to the baseline
bitrate of 400 kbps usually increase the bitrate more than the opposite transitions
in the same baseline bitrate band. In the same sense, the transitions from the
exploration stage to the combat stage after the baseline bitrate of 400 kbps usually
decrease the bitrate more than the opposite transitions in the same baseline bitrate
band.

In all cases above, as the value of baseline bitrate increases up to 400 kbps,
the value of average variation decreases, as expected. Meanwhile, according to the
average variation values, transitions in both directions until the baseline bitrate of
400 kbps usually increase the bitrate. During transitions from the combat stage to
the exploration stage in the baseline bitrate band between 400 kbps and 450 kbps,
the bitrate seems to remain still, however in the same band, transitions in the op-
posite direction usually slightly decrease the bitrate. After the baseline bitrate of
450 kbps, transitions in both directions tend to decrease the bitrate.

Smoothing with Half-second Time Window

Experiment with Frame Range k 9

50

3.6 – Gameplay Dataset Analysis

Exploration → Combat Min Var. Max Var. Avg Var.
0-200 kbps - 17 % 57 % 17.83 %

200-300 kbps - 25 % 71 % 15.81 %
300-350 kbps - 14 % 56 % 6.30 %
350-400 kbps - 22 % 31 % 1.94 %
400-450 kbps - 23 % 23 % - 2.11 %
450-500 kbps - 26 % 15 % - 4.85 %
500-∞ kbps - 34 % 15 % - 7.36 %

Table 3.27: Bitrate variation stats around transitions from exploration to combat

Combat → Exploration Min Var. Max Var. Avg Var.
0-200 kbps 26 % 136 % 64.25 %

200-300 kbps - 17 % 63 % 13.18 %
300-350 kbps - 14 % 43 % 5.15 %
350-400 kbps - 20 % 36 % 2.44 %
400-450 kbps - 19 % 34 % 0.51 %
450-500 kbps - 32 % 25 % - 2.16 %
500-∞ kbps - 26 % 30 % - 2.57 %

Table 3.28: Bitrate variation stats around transitions from combat to exploration

Experiment with Frame Range k 18

Exploration → Combat Min Var. Max Var. Avg Var.
0-200 kbps - 31 % 139 % 27.75 %

200-300 kbps - 46 % 91 % 22.66 %
300-350 kbps - 16 % 59 % 9.19 %
350-400 kbps - 31 % 45 % 2.89 %
400-450 kbps - 26 % 33 % - 2.86 %
450-500 kbps - 30 % 21 % - 8.08 %
500-∞ kbps - 47 % 22 % - 12.88 %

Table 3.29: Bitrate variation stats around transitions from exploration to combat

51

Design and Implementation

Combat → Exploration Min Var. Max Var. Avg Var.
0-200 kbps 26 % 253 % 94.83 %

200-300 kbps - 17 % 111 % 22.73 %
300-350 kbps - 20 % 55 % 8.56 %
350-400 kbps - 38 % 60 % 3.64 %
400-450 kbps - 34 % 68 % 0.18 %
450-500 kbps - 32 % 41 % - 2.57 %
500-∞ kbps - 38 % 35 % - 6.55 %

Table 3.30: Bitrate variation stats around transitions from combat to exploration

If the transitions in the same direction are compared according to the frame
range k, it is possible to say that selecting the frame range k 18 would affect the
bitrate more than the case of selecting the frame range k 9. More strictly speaking,
up to baseline bitrate 400 kbps, selecting the frame range k 18 increases the bitrate
more than the case of selecting the frame range k 9. On the contrary, selecting the
frame range k 18 decreases the bitrate more than the other case after the baseline
bitrate band of 400 kbps.

Regardless of the frame range k, the values of average variation in the tables
indicate that while transitions in the direction of combat stage up to the baseline
bitrate 200 kbps usually increases the bitrate, transitions in the opposite direction
in the same band always increases the bitrate since the corresponding values of
minimum variance are positive. Besides, considering the average variation values,
one can say that the most significant bitrate variations usually occur in this band.
Transitions from the combat stage to the exploration stage up to the baseline bi-
trate 400 kbps usually increase the bitrate more than the opposite transitions in the
same baseline bitrate band. In the same sense, the transitions from the exploration
stage to the combat stage after the baseline bitrate 400 kbps usually decrease the
bitrate more than the opposite transitions in the same baseline bitrate band.

As the value of baseline bitrate increases up to 400 kbps, the value of average
variation decreases, as expected. Meanwhile, according to the average variation
values, transitions in both directions until the baseline bitrate 400 kbps usually
increase the bitrate. During transitions from the combat stage to the exploration
stage in the baseline bitrate band between 400 kbps and 450 kbps, the bitrate seems
to remain still, however in the same band, transitions in the opposite direction usu-
ally slightly decrease the bitrate. After the baseline bitrate 450 kbps, transitions
in both directions tend to decrease the bitrate.

Increasing the smoothing window length w, hence decreasing the Smoothing
Factor α, results in a slight decrease in bitrate variation, as expected.

52

3.6 – Gameplay Dataset Analysis

Smoothing with One-second Time Window

Experiment with Frame Range k 9

Exploration → Combat Min Var. Max Var. Avg Var.
0-200 kbps - 20 % 76 % 10.14 %

200-300 kbps - 24 % 50 % 10.64 %
300-350 kbps - 11 % 31 % 4.74 %
350-400 kbps - 16 % 27 % 1.71 %
400-450 kbps - 20 % 14 % - 1.73 %
450-500 kbps - 19 % 10 % - 3.80 %
500-∞ kbps - 26 % 11 % - 6.59 %

Table 3.31: Bitrate variation stats around transitions from exploration to combat

Combat → Exploration Min Var. Max Var. Avg Var.
0-200 kbps 1 % 97 % 34.67 %

200-300 kbps - 11 % 34 % 9.21 %
300-350 kbps - 10 % 37 % 3.60 %
350-400 kbps - 15 % 27 % 1.59 %
400-450 kbps - 18 % 24 % 0.64 %
450-500 kbps - 21 % 22 % - 1.57 %
500-∞ kbps - 19 % 23 % - 1.96 %

Table 3.32: Bitrate variation stats around transitions from combat to exploration

Experiment with Frame Range k 18

Exploration → Combat Min Var. Max Var. Avg Var.
0-200 kbps - 20 % 86 % 21.43 %

200-300 kbps - 45 % 110 % 16.64 %
300-350 kbps - 15 % 59 % 7.36 %
350-400 kbps - 24 % 44 % 2.66 %
400-450 kbps - 23 % 22 % - 2.33 %
450-500 kbps - 33 % 19 % - 7.08 %
500-∞ kbps - 39 % 17 % - 10.36 %

Table 3.33: Bitrate variation stats around transitions from exploration to combat

53

Design and Implementation

Combat → Exploration Min Var. Max Var. Avg Var.
0-200 kbps 1 % 97 % 46.50 %

200-300 kbps - 11 % 94 % 16.47 %
300-350 kbps - 14 % 47 % 6.73 %
350-400 kbps - 25 % 49 % 2.41 %
400-450 kbps - 25 % 47 % 0.51 %
450-500 kbps - 26 % 33 % - 2.43 %
500-∞ kbps - 32 % 28 % - 5.56 %

Table 3.34: Bitrate variation stats around transitions from combat to exploration

Should the transitions in the same direction are compared according to the
frame range k, it is possible to say that selecting the frame range k 18 would affect
the bitrate more than the case of selecting the frame range k 9. Selecting the frame
range k 18 increases the bitrate more than selecting the frame range k 9 up to
the baseline bitrate of 400 kbps. On the contrary, selecting the frame range k 18
decreases the bitrate more than the other case after the baseline bitrate band of
400 kbps.

Regardless of the frame range k, the values of average variation in the tables
indicate that while transitions in the direction of combat stage up to the baseline
bitrate of 200 kbps usually increases the bitrate, transitions in the opposite direc-
tion in the same band always increases the bitrate, since the corresponding values of
minimum variance are positive. Besides, considering the average variation values,
one can say that the most significant bitrate variations usually occur in this band.
Transitions from the combat stage to the exploration stage up to the baseline bi-
trate 400 kbps usually increase the bitrate more than the opposite transitions in the
same baseline bitrate band. In the same sense, the transitions from the exploration
stage to the combat stage after the baseline bitrate 400 kbps usually decrease the
bitrate more than the opposite transitions in the same baseline bitrate band.

As the value of baseline bitrate increases up to 400 kbps, the value of average
variation decreases, as expected. Meanwhile, according to the average variation
values, transitions in both directions until the baseline bitrate 400 kbps usually in-
crease the bitrate. After this point, transitions in both directions tend to decrease
the bitrate.

This analysis explicates that increasing the smoothing window length w up to
35, corresponding to a window of one second, causes slightly more information loss
than the other smoothing settings. Therefore, it would be better to proceed with
smoothing with either window length w 9 or 18. It can be possible to discriminate
the exploration and the combat game stages from each other in both cases.

54

3.7 – Deep Learning Architecture and Frameworks Used in the Study

3.7 Deep Learning Architecture and Frameworks
Used in the Study

After having completed the dataset analysis, this section is devoted to explaining
the fundamental concepts of Deep Learning. Before diving into the model structure,
training, and test processes, it is essential to understand the core concepts such as
Recurrent Neural Networks and the frameworks used in this thesis study.

3.7.1 Artificial Neural Networks

An Artificial Neural Network -usually referred Neural Network- is a set of cells (neu-
rons) that emulates the working process of the human brain to learn and recognize
underlying patterns or relations in vast amounts of data.

Figure 3.21: An illustration of a simple Neural Network, reproduced from [19]

A Neural Network is made up of layers of nodes that are linked together. These
nodes are called neurons, and they are basically mathematical functions that col-
lect and process information related to the network architecture. The connections
between neurons are called edges. Neurons and edges have weights that the Neural
Network itself continuously updates during the learning process.

Every single neuron in a network receives multiple inputs from the neurons
that are interconnected with it, aggregates those inputs considering the weights (a
weight may increase or decreases the input signal) of the edges of each input, and
if and only if it is activated, feeds the forward neurons with its output.

55

Design and Implementation

Activation of a neuron is basically a mathematical decision, an Activation Func-
tion with a pre-defined threshold. A neuron is triggered if the aggregated and pro-
cessed input crosses its threshold. Neurons in different layers in a network may
operate different kinds of activations depending on the purpose of the application.

Neural Networks are gaining more and more popularity day by day and are
widely used in various application domains, e.g., from fault detection in production
to auto-piloting technologies and fraud detection in stock markets. One promising
application of Neural Networks would be implementing the idea of this thesis study
for better QoE assessments in Cloud Gaming.

3.7.2 Recurrent Neural Networks
Recurrent Neural Networks are specific application types of Artificial Neural Net-
works. They are tailored for sequential data, e.g., time-series, and they are com-
monly used in temporal use cases such as Natural Language Processing (NLP),
Speech Recognition, and translation.

While Feed-forward Neural Networks assume that inputs and outputs are in-
dependent of one another, Recurrent Neural Networks differentiate themselves by
using the information inherited from previous inputs while processing their current
input. For example, the idiom “Break a leg!” means “Good luck!”. If this idiom is
processed by a Feed-forward Neural Network, it would not be possible to capture
the real meaning because the word “break” means literally “breaking something”
for the network. This word gets a different meaning when combined with the word
“leg", and only a Recurrent Neural Network can capture this relation due to their
temporal nature.

Figure 3.22: An illustration of Recurrent Neural Networks, reproduced from [20]

Figure 3.22 illustrates the main difference between Recurrent Neural Networks
(the graph on the left) and Feed-forward Neural Networks (the graph on the right).
The loops on the left represent the internal state, “memory”, to process sequences
of inputs.

56

3.7 – Deep Learning Architecture and Frameworks Used in the Study

One of the critical differences between these two types of Neural Networks is
that while Feed-forward Neural Networks have different weights on each node, Re-
current Neural Networks share the same weight within each network layer.

In order to understand the loops (internal states) on Figure 3.22, the figure
below unrolls the representation above.

Figure 3.23: An unrolled illustration of RNNs, reproduced from [20]

3.7.3 LSTM: Long Short-term Memory
No matter how Recurrent Neural Networks seem quite helpful in processing data
sequences in theory, they are having difficulties in capturing long-term dependen-
cies. For example, a “vanilla” Recurrent Neural Network can do a pretty good job
of predicting the last word in a sentence, such as “There are flowers in the garden.”.
However, when it comes to a sentence such as “I grew up in Turkey. I have spent
my twenty years there and lived in several cities. I speak fluent Turkish.”, the net-
work most likely fails to capture this long-term dependency between the country
and the language. Due to the problems such as Vanishing Gradients -which is not
discussed in this thesis study since it is too much detail for the context-, as the gap
between related inputs grows, the network becomes unsuccessful.

In order to tackle such problems, Long Short-term Memory (LSTM) is intro-
duced by Hochreiter & Schmidhuber (1997) [21]. LSTM is the revolutionary im-
plementation of Recurrent Neural Networks that can comprehend long-term de-
pendencies. Because of their outstanding performance compared to the traditional
Recurrent Neural Networks, LSTMs are widely used today.

57

Design and Implementation

The figures depicted below illustrates the structural difference between standard
Recurrent Neural Networks and Long Short-term Memory Networks.

Figure 3.24: Cell structure of a traditional RNN, reproduced from [22]

Figure 3.25: Cell structure of an LSTM Network, reproduced from [22]

While the repeating cells in traditional Recurrent Neural Networks are com-
posed of a single tanh Layer, LSTMs replace this structure with four layers as seen
in Figure 3.25.

The top horizontal line seen in Figure 3.25 is the most crucial element in LSTMs,
which is the cell state. Cell state flows from a cell to another through this flow.
LSTM can manipulate the cell state through the gates. The Sigmoid Layer (σ)
controls how much data should be passed through. It outputs a value ranging from
0 to 1, meaning “block all” and “let all pass”, respectively.

3.7.4 PyTorch and PyTorch Lightning
PyTorch is an open-source Machine Learning framework developed by Facebook
AI. Characteristically, it is a modular and flexible Deep Learning framework de-
signed for academic research, product development, and product deployment. It is
an optimized Tensor library that interacts with Graphics Processing Unit (GPU)
and Central Processing Unit (CPU).

58

3.8 – Implementation of the Model

A Tensor is an object in a vector space in mathematics, defining multi-directional
relations among a set of objects. In the context of Machine Learning and PyTorch,
Tensors are data containers that can accommodate multi-dimensional data. It is
possible to embody a one-dimensional tensor as a vector, a two-dimensional tensor
as a matrix.

Figure 3.26: Illustrations of different shaped Tensors, reproduced from [23]

PyTorch Lightning is a lightweight PyTorch wrapper that provides a high-level
API for PyTorch to build and deploy Machine Learning models quickly. It was
started being developed to solve the problems of the PyTorch Community who
were having problems while, e.g., multi-GPU training, TPU (Tensor Processing
Unit) training, 16-bit precision.

PyTorch Lightning scales the models better to run on any processing units from
CPUs to TPUs without changing the model structure. It decouples the research
code from the core code, therefore allows us to create more readable codes and
more reproducible models. In addition, it automates the training and optimization
processes and provides seamless integration with popular visualizing and logging
frameworks. In this thesis study, TensorBoard is used for logging and visualizing
purposes.

3.8 Implementation of the Model
This section is devoted to explaining the core components of the model creation
and training processes. Once having described the process at a high level, each
component in the high-level scheme is explained in the following sub-sections.

3.8.1 High Level Design of the Model
Figure 3.27 illustrates the high level design of the model.

59

Design and Implementation

Figure 3.27: An illustrations of the model at high level

The dataset is partitioned into training, validation, and test sets at the begin-
ning of the process. The splits are passed through the pre-processing operation.
The resulting sets are forwarded into Data Sequence Generator module to create
training, validation, and test sequences.

PyTorch and PyTorch Lightning operate on data structures named Tensors, as
discussed in Section PyTorch and PyTorch Lightning. Therefore, the sequences are
converted into Tensors. The training, validation, and test sequence Tensors are
passed to Data Module to create the train, validation, and test Data Loaders to be
used in the training phase. These Data Loaders are packed into a Data Module
object to be forwarded to the PyTorch Lightning Trainer module.

60

3.8 – Implementation of the Model

The Trainer module of PyTorch Lightning is a wrapper class that interacts with
the core PyTorch to automate the training process. The Game Stage Classifier
module first initiates an LSTM (Long Short-term Memory) object, and in each
iteration, it forwards a batch of data sequences and receives a corresponding output
back. These iterations form the training and test steps.

3.8.2 Data Partitioning
The dataset is generated after the set of operations in Section Gameplay Dataset
Generation. Based on the analysis results, Smoothing Window Length w is selected
as 18. There is no big difference in results between a quarter-second window and a
half-second window, but using a one-second window causes some information loss.
The dataset is read by using the read_csv method of Pandas (2020) [24]. Pandas
is an open-source data analysis library developed for Python.

Figure 3.28 illustrates the game stage distribution of the dataset.

Figure 3.28: Game stage distribution of the dataset

Since there is no significant difference between the number of frames of each
game stage, the frame distribution over the exploration and the combat stages is
balanced. There is no need to do oversampling to prevent bias.

In order to use the dataset to train the Deep Learning model, it should be parti-
tioned into training, validation, and test sets. Although the creation of a validation
set is not a mandatory step, it is considered a good practice.

train_test_split method of Scikit-learn (2013) [25] is used to split the dataset.
Scikit-learn is an open-source Machine Learning library for predictive data analysis,
with seamless integration with Python.

61

Design and Implementation

The following code block is an illustration of how the dataset is read and par-
titioned into training, validation, and test sets.

import numpy as np
import pandas as pd

data = pd.read_csv('dataset.csv')

X_train, y_train = data[['bitrate']], data[['gamestage']]

X_train, X_test, y_train, y_test = train_test_split(X_train, y_train,
test_size=0.2,
shuffle=False)

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train,
test_size=0.2,
shuffle=False)

The parameter test_size is set to 0.2 after each call. This setting leads to ob-
taining the test set as 20% of total data, and while the remaining 80% of the data
goes into the training set. The validation set receives the 20% of the training set.

Disabling the shuffling prevents the data from being shuffled while getting split.
It is not a good idea to shuffle time-series data because it cause breaking the tem-
poral structure of the data.

Figure 3.29 illustrates the data distribution over training, validation and test
splits after partitioning.

Figure 3.29: An illustration of data distribution after partitioning

62

3.8 – Implementation of the Model

3.8.3 Data Pre-processing

Figure 3.30: The data pre-processing snippet of high level design

The data pre-processing in this section should not be confused with the data
pre-processing discussed in Section Gameplay Dataset Pre-processing. The former
pre-processing step is conducted during the dataset generation. The data pre-
processing operation discussed in this section is to prepare the dataset to be used
in the training phase of the Deep Learning model. The technique used in this thesis
study is Feature Scaling.

In a significant amount of datasets used in Machine Learning applications, the
values in data fluctuate substantially. For example, in a dataset of a supermarket
inventory, the values in the “price” feature vary between 100 and 100.000, while the
values in the “quantity” feature vary between 1 and 100. In such cases, objective
functions in Machine Learning algorithms may not perform well enough. For ex-
ample, algorithms of some classifiers measure the distance between data samples.
If one of the features has a significantly greater range of values as in the example,
this feature may suppress the other one, which would result in the model biased
towards the dominating feature.

In a case of a Deep Learning application, as it is in this case, randomly ini-
tialized weights in a network may struggle to cope with the scale of features, and
this may cause activation functions to saturate. Feature Scaling is also vital for
appropriate Regularization (for the penalization of coefficients) and for fastening
the convergence of Gradient Descents.

In order to prevent such problems, the data splits are scaled by using the tech-
nique named Standardization. Standardization, also called Z-score Normalization,
is a technique to give each data sample zero mean and unit variance.

x′ = x− µ

σ
(3.8)

63

Design and Implementation

where x is a data sample of the feature, x′ is the scaled value of the data sample,
µ is the Mean of the feature and σ is the Standard Deviation of the feature.

StandardScaler method of Scikit-learn exactly performs the technique depicted
in Equation (3.8). The critical detail to note here is that only the training set is fit
to the scaler object in order to avoid data leak to test and validation sets.

from sklearn.preprocessing import StandardScaler
import pandas as pd

scaler = StandardScaler()
scaler = scaler.fit(X_train)

X_train_scaled = pd.DataFrame(data = scaler.transform(X_train),
index = X_train.index,
columns = X_train.columns)

X_val_scaled = pd.DataFrame(data = scaler.transform(X_val),
index = X_val.index,
columns = X_val.columns)

X_test_scaled = pd.DataFrame(data = scaler.transform(X_test),
index = X_test.index,
columns = X_test.columns)

3.8.4 Data Sequence Generation

Figure 3.31: The sequence creation snippet of the high level design

In order to feed a PyTorch model with time-series data, data should be passed
to the model sequence by sequence.

64

3.8 – Implementation of the Model

Pseudocode 7 illustrates the logic behind the data sequence creation.

Pseudocode 7: Function Definition for Sequence Creation
1: function createSequences(featureData, targetData, sequenceLength):
2: Input : featureData: DataFrame,
3: targetData : DataFrame,
4: sequenceLength: Integer
5: Output: sequences: list()
6: sequences← list()
7: i← 0
8: while i < len(featureData) - sequenceLength do
9: seq ← featureData[i : i + sequenceLength]

10: label← targetData[i + sequenceLength][′gamestage′]
11: sequences← sequences + (seq, label)
12: i← i + sequenceLength
13: end while
14: return sequences
15: end function

The important point to note in Pseudocode 7 is that all sequences should have
the same length to be compatible with PyTorch. Therefore, line 6 ensures that the
residual data is excluded. Another option to achieve the same purpose would be
padding, but it is unnecessary to use the residual data.

As the design criteria, sequence length is chosen as 5, and a label of any se-
quence is the label of the data sample that comes right after the last element of the
sequence.

After creating the function createSequences as in Pseudocode 7, train, valida-
tion, and test sequences are created by using the scaled data as follows:

trainSequences = createSequences(X_train_scaled, y_train, SEQUENCE_LENGTH)
validationSequences = createSequences(X_val_scaled, y_val, SEQUENCE_LENGTH)
testSequences = createSequences(X_test_scaled, y_test, SEQUENCE_LENGTH)

3.8.5 Creation of the Model Core

65

Design and Implementation

Figure 3.32: The Data Module object creation snippet of the high level design

Once having created the training, validation, test data sequences, it is essential
to discuss the Data Module.

The Data Module is a class written for this model that encapsulates the required
steps to process the data. It inherits PyTorch Lightning LightningDataModule. In
the most basic sense, it receives the generated training, validation, and test data
sequences and outputs the corresponding Data Module object to be used in the
training phase. The following part explains this process step by step.

First of all, the Data Module object is initiated as follows, with a batch size
equals 64:

dataModule = DataModule(trainSequences, validationSequences,
testSequences , batch_size=BATCH_SIZE)

66

3.8 – Implementation of the Model

In Section PyTorch and PyTorch Lightning, it is stated that PyTorch (and
also other well-known frameworks such as TensorFlow) operates on data structures
named Tensors. Therefore, PyTorch expects to receive the dataset in the form of a
Tensor dataset.

Once the Data Module object having initiated, the class calls the Tensor Gener-
ator Class that is inherited from PyTorch Dataset Class. The duty of this generator
class is to convert each sequence-label pair to the form of tensor sequences and pass-
ing them back to the Data Module. When the Data Module receives those tensor
sequences, it creates the training, validation, and test tensor datasets from the rele-
vant sequences. Finally, these tensor datasets are used to create the corresponding
Data Loaders as follows.

def train_dataloader(self):
return DataLoader(self.trainDataset,

batch_size=self.batchSize,
shuffle=False,
num_workers=cpu_count())

def val_dataloader(self):
return DataLoader(self.valDataset,

batch_size=self.batchSize,
shuffle=False,
num_workers=cpu_count())

def test_dataloader(self):
return DataLoader(self.testDataset,

batch_size=self.batchSize,
shuffle=False,
num_workers=cpu_count())

Data Loaders wrap the datasets to provide easy iteration over them. As a result,
the initiated Data Module object that encapsulates the training, validation, and
test Data Loaders is used during the model training.

3.8.6 Training Phase of the Model
After the creation of the Data Module object, the Game Stage Classifier module is
created for the interactions with the core of the network (LSTM Module) through
PyTorch Lightning Trainer API during the training.

67

Design and Implementation

Figure 3.33: The training phase of the high level design

During the construction of Game Stage Classifier (inherited from PyTorch Light-
ning LightningModule), the LSTM Module (inherited from PyTorch nn.Module) is
created based on the features of the dataset. Referring to Figures 3.21 and 3.25,
the number of cells in each hidden layer and the number of layers are assigned 256,
3, respectively.

One essential technique worth mentioning here is the Dropout Regularization.

Dropout Regularization, also known as Dilution, is an important regularization
technique, introduced by Hinton et al. (2014) [26], in Artificial Neural Networks
to prevent model overfitting and proposes the idea of randomly and temporarily
ignoring “dropping-out” some of the network nodes during the training.

According to this technique, randomly selected nodes are dropped out in each
forward call during the training phase.

Figure 3.34: An illustration of Dropout Regularization, reproduced from [26]

68

3.8 – Implementation of the Model

Created LSTM Module brings Dropout Layers on top of each LSTM Layer out-
put excluding the last layer, with dropout probability equal to 0.75.

The output of an LSTM node is linked to a PyTorch layer named Linear. This
class is a linear unit that applies a linear transformation to received data.

After completing the creation of the LSTM network, Game Stage Classifier
Node defines a Loss Function inside its constructor. Loss Function, also known as
Error Function, is a mathematical term that maps decisions to their related costs.
In optimization problems, the goal is to minimize the Loss Function. Since Ma-
chine Learning has been all about optimization, Loss Functions measure how wrong
the predictions are, i.e., how far an estimated prediction from the actual value in
each prediction. Based on this distance, the model optimizes itself iteratively until
reaching the minimum distance and the minimum possible loss.

The Loss Function used in this model is the PyTorch CrossEntropyLoss which
combines the Softmax and the Negative Log-Likelihood Losses. This Loss Func-
tion is ideal in multi-class classification tasks, but in the case of binary classification
tasks, Cross-Entropy is calculated as the average Cross-Entropy across all data. Al-
though the current dataset consists of two classes, Cross-Entropy Loss still works
well enough, and it is also suitable for datasets with more than two game stages.

Another core component of the model is the optimizer. Optimizer is a mecha-
nism that acts based on the outcome of the Loss Function to optimize the model
by adjusting the network weights to make the model closer to the minimum loss
possible. Due to its computational efficiency, the optimizer used in this model is
the Adam Optimizer, introduced by Kingma & Ba (2017) [27].

The creation of the Game Stage Classifier and the LSTM Modules concludes the
construction of the network core. There is still a need to set some components for
the training phase. The first component discussed here is the Model Checkpoint.
ModelCheckpoint is a PyTorch Lightning class that saves the model periodically
based on the defined metrics.

callbackCheckpoint = ModelCheckpoint(
dirpath = "checkpoints",
filename = "best_checkpoint",
verbose = True,
save_top_k = 1,
monitor = "val_loss",
mode = "min")

69

Design and Implementation

According to the checkpoint defined in the code block, the model monitors the
Validation Loss and seeks the minimum Validation Loss value. If the model reaches
a lower Validation Loss value after an iteration, it overrides the existing model pa-
rameters with the current ones.

save_top_k defines the number of best models to be saved, and this configura-
tion ensures to save only the best model.

The second concept to be discussed here is Early Stopping. Early Stopping is
another metric monitoring mechanism that terminates the training early if the
model stops improving, i.e., settles on a plateau. EarlyStopping is a PyTorch
Lightning class that monitors the training on the defined metrics and terminates
the training if it decides that the model is not improving anymore.

callbackEarlyStopping = EarlyStopping(
monitor="val_loss",
patience=EARLY_STOP_AFTER_EPOCHS,
min_delta=EARLY_STOP_MIN_DIFFERENCE)

According to the Early Stopping defined above, the model monitors the Val-
idation Loss in each iteration. In the default configuration, patience defines the
number of iterations without any improvement, after which the training phase
will be terminated. This parameter is set to EARLY_STOP_AFTER_EPOCHS
which is defined as 5. min_delta defines the minimum change in the monitored
metric that would be accepted as an improvement. This parameter is set to
EARLY_STOP_MIN_DIFFERENCE which is defined as 0.005. In this particular
setting, if the change of Validation Loss is below 0.005, that change is not qualified
as an improvement.

The last essential component for the training phase is the PyTorch Lightning
Trainer that automates the training phase by using the Data Module object to-
gether with the Game Stage Classifier.

trainer = pl.Trainer(
logger = TensorBoardLogger("logs", name="Doom_Experiment"),
checkpoint_callback = callbackCheckpoint,
callbacks = [callbackEarlyStopping],
max_epochs = NUM_EPOCHS,
gpus = 1,
progress_bar_refresh_rate = 30)

70

3.8 – Implementation of the Model

TensorBoardLogger is used to monitor the model performance, and defining a
logger enables to log the process throughout the training. The defined checkpoint
and Early Stopping callbacks are introduced to the Trainer. max_epochs defines
the number of training epochs after which the training phase will be terminated,
and it is set to NUM_EPOCHS which is defined as 100.

As discussed at the beginning of Section Training Phase of the Model, Game
Stage Classifier Module is created as below.

model = GamestageClassifier(n_features=NUM_FEATURES,
n_classes =NUM_CLASSES)

The way of the Data Module object creation has already been explained in
Section Creation of the Model Core. After these essential steps, the training phase
starts with fitting the model to the Data Module through the Trainer API.

trainer.fit(model=model,
datamodule=dataModule)

At the beginning of the training phase, the Trainer constructs all the modules
discussed in Sections Creation of the Model Core and Training Phase of the Model.

The Game Stage Classifier fetches a batch of sequences and a corresponding
batch of labels from the Data Module in each iteration. It forwards the batches to
the LSTM Module.

LSTM Module first flattens the parameters and then pushes the data into the
LSTM network. The output of the last layer of the LSTM network passes through
the final layer, which is the Linear unit. The LSTM Module returns the outcome
of the Linear unit.

When the Game Stage Classifier receives the outcome of the Linear Unit, it calls
the Loss Function, which is the CrossEntropyLoss in this case. The Loss Function
evaluates the received outcome (predicted classes) by comparing them with the
actual labels. As a result of this evaluation, Game Stage Classifier calculates the
loss value. Finally, the optimizer updates the network weights according to the
calculated loss value to achieve the minimum loss.

At the end of each training step, the model runs a validation step to observe
how the model behaves on unseen data, which is the validation data. Based on this
performance, the model is updated, and the following epoch is run.

71

Design and Implementation

According to the model performance in each epoch, the created Checkpoint
Callback compares the Validation Loss of the current epoch with the minimum one
achieved so far. In case of achieving a lower Validation Loss than the last saved
model’s Validation Loss, this callback saves the model as the best model so far.

In the same sense, the created Early Stopping Callback compares the current
Validation Loss with the former one, and if the difference is lower than the defined
threshold, it marks the current epoch as an “epoch without an improvement”. If the
number of adjacent epochs without an improvement reaches a certain threshold,
the model’s training process is terminated by the callback.

3.8.7 Test Phase of the Model
Creating the testing module is way more straightforward than the creation of the
training process.

It is stated in the training phase that a set of parameters that provide the best
model performance is saved as a checkpoint in each iteration. Therefore, before
starting to test phase, first, the best version of the model, in terms of Validation
Loss, is retrieved from the saved checkpoints.

trainedModel = GamestageClassifier.load_from_checkpoint(
checkpoint_path = trainer.checkpoint_callback.best_model_path,
n_features = NUM_FEATURES,
n_classes = NUM_CLASSES)

trainedModel.freeze()

The loaded model is frozen because it is used only for inference. Freezing dis-
ables the Dropout and gradient calculations.

The test dataset to be used for inference is already prepared and wrapped by
the Data Module object. Each item of the test dataset keeps a sequence-label pair
in the form of Tensors. When the inference starts, it iterates over each item in the
test dataset, and in each iteration, the item is split into sequence and label. The
sequence is forwarded to the loaded model, and the class prediction according to
the input sequence is inserted into a data container. In the same sense, the actual
label is inserted into a data container. Once having iterated over all the items, the
actual and the predicted classes are compared to calculate the model performance.

Pseudocode 8 illustrates the mechanism behind the function that runs a test on
a test dataset.

72

3.8 – Implementation of the Model

Pseudocode 8: Definition of the Test Function
1: function runTest(trainedModel, testDataset):
2: Input : trainedModel : GamestageClassifier→model
3: testDataset : dataModule→testDataset
4: Output: confusionMatrix: sklearn.metrics→confusion_matrix
5: predictions← list()
6: labels ← list()
7: foreach item in testDataset do
8: sequence ← item[′sequence′]
9: label← item[′label′]

10: _ , output ← trainedModel(sequence)
11: prediction ← torch.argmax(output, dim = 1)
12: predictions← predictions + prediction.item()
13: labels← labels + label.item()
14: end foreach
15: confusionMatrix← confusion_matrix(labels, predictions)
16: return confusionMatrix
17: end function

Confusion Matrix, also known as Error Matrix, is a useful performance mea-
surement technique in Machine Learning to measure model accuracy. The axes of a
Confusion Matrix represent actual and predicted target classes. Instead of observ-
ing only the ratio of correctly classified data samples, a Confusion Matrix allows
us to observe how the predictions disperse over different target classes.

The evaluation of the inference results is analyzed in the following chapter.

73

74

Chapter 4

Evaluation of the Results

The final chapter is devoted to analyzing the outcomes of different experiments.
Since the structure of the test process has already been discussed, this chapter
solely focused on the results of the experiments. All of the experiment results are
evaluated by using confusion matrices.

4.1 Experiments with Vanilla Machine Learning
Methods

The first experiment is conducted to evaluate the dataset with the traditional Ma-
chine Learning methods. The theoretical backgrounds or model architectures of
the methods used in this section are not examined in detail to not detract from the
main focus of the study.

Even though the created model is a Deep Learning model, or the dataset con-
sists of time-series data, this experiment is carried out only to have a starting point,
a reference point, and to see what would be the outcome in case of applying some
of the “Vanilla” Machine Learning Methods to the dataset.

The first algorithm implemented in this section is K-means Clustering. K-means
Clustering is an Unsupervised Learning algorithm that aims at partitioning data
into k-clusters. Each data sample is placed into a cluster whose center is the closest
to it among all clusters. Since it is an Unsupervised Learning algorithm, K-means
Clustering does not aware of any label in its nature.

The created model for this algorithm processes only the bitrate data, and it is
not aware of any game stage. The metric used by the model is the distance between
the data samples, in the most basic sense. The result of the K-means Clustering
algorithm is evaluated in two aspects: Silhouette Score and Accuracy Score.

75

Evaluation of the Results

Silhouette Value for each data sample in the dataset refers to how similar a
data sample is to the cluster it was placed in compared to other clusters. The value
varies between -1 and 1, where the higher values represent a better placement and
the lower values represent otherwise. Silhouette Score is computed by taking the
average of each Silhouette Value corresponding to each data sample.

The result of the experiment indicates a Silhouette Score equals 0.51. This re-
sult indicates that there is a poor performance while placing the data samples into
the correct clusters.

If the predicted game stages, which are two clusters in this case, and the actual
game stages are compared, the result of this experiment is as follows.

Figure 4.1: The experiment results of the K-means Clustering algorithm

According to the confusion matrix above, the K-means Clustering algorithm can
not provide adequate performance. The figure indicates that both data samples be-
longing to the exploration and the combat game stages are correctly classified by
almost 48%, which basically means a random classification. The result can be con-
sidered as consistent with the Silhouette Score and as pretty weak as expected,
since the temporal relation between the data samples has been broken.

The second algorithm implemented in this section is K-nearest Neighbors. Un-
like the K-means Clustering, it is a Supervised Learning algorithm, which means
that the model learns based on target classes. K-nearest Neighbors algorithm is a
Supervised Learning algorithm that can be used both for classification and regres-
sion tasks and proposes the idea that similar things exist close to each other.

In its simplest version in a classification task as in this thesis study, when a
K-nearest Neighbors algorithm seeks to classify a data sample, the k closest data

76

4.1 – Experiments with Vanilla Machine Learning Methods

samples to the sample to be classified are fetched, and the majority label of those
closest data samples is assigned to the sample to be classified.

Comparison of the predicted game stages and the actual game stages indicates
the following result in Figure 4.2.

Figure 4.2: The experiment results of the K-nearest Neighbors algorithm

Although the classification accuracy of the exploration stages is higher than the
case in the K-means Clustering algorithm, the K-nearest Neighbors algorithm still
lacks the correct classification ability. The model can barely achieve 50% accuracy,
considering the True Positives and True Negatives are 54% and 47%, respectively.

The last algorithm implemented for this experiment is the Support Vector Ma-
chines. Support Vector Machines is another type of Supervised Learning algorithm
that can be used both for classification and regression tasks. In a data space of
any dimension, the Support Vector Machines algorithm aims at finding the hyper-
plane with the largest possible margin that separates the closest samples of each
data class for the lowest generalization error. Since the algorithm is extensively
heavyweight for large datasets as such, only a portion of the dataset is used for this
experiment, and the result of the experiment is as follows.

77

Evaluation of the Results

Figure 4.3: The experiment results of the Support Vector Machines algorithm

Support Vector Machines can be considered a more robust algorithm than the
former methods due to the flexibility of using complex kernels. As a result of this
power, the model can classify the exploration stages with 63% accuracy, which is
apparently higher than the former algorithms, yet it is still highly insufficient in
the classification of the combat stages. Therefore, the overall performance is still
pretty low. Besides, it should be noted that due to the kernel complexity, it is
almost impossible to apply this model to the actual dataset because of its size.

The experiments above are held using the Grid Search technique to tune hyper-
parameters to seek the best performing hyperparameter configurations. Neverthe-
less, the performance of the models cannot exceed a certain threshold besides the
heavyweight workloads of the algorithms.

The reason behind this problem is frankly quite obvious: the bitrate data sam-
ples are meaningful only when they are evaluated as a sequence. Clustering algo-
rithms or traditional Supervised Learning algorithms treat data as a set of singular
data points, which breaks the temporal relation between the samples. Hence, mod-
els cannot achieve decent performance.

4.2 Experiments with the Created Model
In this section, the test results of the main Deep Learning model are evaluated.

The hyperparameters in the created Deep Learning Model are explained through-
out the previous chapter in detail, but it might be helpful to summarize the de-
cisions. As stated in the previous chapter, analyses of the dataset indicated that
smoothing with a time window of half-second is the most suitable option. There-
fore, the dataset is smoothed with a half-second time window for the experiment.

78

4.2 – Experiments with the Created Model

The batch size is defined as 64; hence the training process is accelerated. Although
the skeleton of the model remains the same, the following results are obtained in
different network complexities.

The first experiment is orchestrated to see whether the model can bring an
acceptable performance in a reasonably basic network architecture. This network
consists of 32 LSTM nodes in a single layer. The figure below is automatically
generated by the TensorBoard and illustrated the training and validation Learning
Curves of a model with a single layer that accommodates 32 LSTM nodes over
a varying number of frames. The graphs provide insight into the training and
validation of the model.

Figure 4.4: Learning Curves of the model with 32 LSTM nodes on 1 layer

Both curves decrease as the number of processed frames increases. The decrease
of the loss is an expected fact since as long as a model is trained, it makes fewer
mistakes. Therefore, the loss decreases. However, these curves indicate that the
model cannot learn because even after 30k frames, the loss cannot decrease be-
low 60%. Hence, the model can barely achieve 40% classification accuracy. The
shadow behind the curve of train loss is not important. TensorBoard automatically
smoothes the graph to get rid of the noise introduced during the training phase.

The second experiment increased the model complexity to see the minimum
required complexity to achieve decent performance. This network consists of 64
LSTM nodes in a single layer.

79

Evaluation of the Results

Figure 4.5: Learning Curves of the model with 64 LSTM nodes on 1 layer

According to the figures above, increasing the model complexity improved the
model performance significantly. The training and validation losses decreased over
time simultaneously, as expected, and after 30k frames, they reached approximately
30% loss, which refers to an acceptable model accuracy.

Figure 4.6: Confusion Matrix of the model with 64 LSTM nodes on 1 layer

The Confusion Matrix indicates the model performance on the unseen data,
which is the test dataset. Based on the values, one can say that the model accu-
racy is approximately 70%, and the model is able to classify the exploration game
stages slightly more accurately than the combat stages. This network configuration
can be accepted as a threshold to achieve an adequate model performance.

The third experiment adopted an architecture with 128 LSTM nodes on dou-
ble layers, which can be assumed as a significant change compared to the former
architectures.

80

4.2 – Experiments with the Created Model

Figure 4.7: Learning Curves of the model with 128 LSTM nodes on 2 layers

Figure 4.7 presents the learning curves that are dramatically better than the
curves in the former architectures. The significant change in the model architecture
brought significant change to the learning phase. The decrease in both validation
and training curves indicates that the model did not face an overfitting problem
because, in such a case, the validation loss usually remains stable in a high value
as the training loss decreases. Besides the excellent fit, the validation loss indicates
that the model reaches approximately 90% accuracy in 20k frames, which is way
shorter than the former cases.

Figure 4.8: Confusion Matrix of the model with 128 LSTM nodes on 2 layers

According to the Confusion Matrix above, it is possible to say that the model
can reach an impressive accuracy on the test dataset for both game stages.

The following experiment is held in a network architecture of 256 LSTM nodes
in triple layers. The figures below illustrate the validation and training losses.

81

Evaluation of the Results

Figure 4.9: Learning Curves of the model with 256 LSTM nodes on 3 layers

Figure 4.10: Confusion Matrix of the model with 256 LSTM nodes on 3 layers

According to Figure 4.9 and Confusion Matrix 4.10, one can say that the last
model architecture is the best model architecture by far. Besides achieving an out-
standing accuracy on the unseen data for both game stages, the model can reach
90% accuracy with approximately 10k frames and can converge after approximately
17k frames. The former architecture, where there are 128 LSTM nodes with two
layers, can reach 90% accuracy after 20k frames and can converge after approxi-
mately 30k frames.

In the last two experiments, the accuracy of correctly classified exploration
stages is slightly higher than the accuracy of correctly classified combat stages.
The reason behind this would be a thin bias towards the exploration stages since
the number of frames belonging to the exploration stage is higher than the number
of frames belonging to the combat stage, as it is depicted in Figure 3.28.

82

4.2 – Experiments with the Created Model

Another experiment idea is testing the created model using a manually recorded
dataset instead of using the dataset generated by the Deep Reinforcement Learning
Agent. In order to implement this idea, manual control is activated by disabling
the agent, and the exact frame-label pairs recording mechanism is implemented to
the manual control.

The manually recorded dataset is significantly smaller than the previous exper-
iments’ dataset because playing the game manually while the frame-label pairs are
being recorded in the background is quite memory-consuming. Figure 4.11 illus-
trates the game stage distribution of the manually recorded dataset. According
to the figure, the distribution of the exploration and the combat game stages is
approximately 60% to 40%, respectively. Therefore, it is possible to say that there
is no steep difference between the number of stages that would cause a bias.

Figure 4.11: Game stage distribution of the manually recorded dataset

Figure 4.12 illustrates the result of the experiment conducted by using this
manually recorded dataset. The result is quite similar to the previous results, yet
there is a slight difference. Unlike the former experiments, the accuracy of correctly
classified combat stages is slightly higher than the accuracy of correctly classified
exploration stages in this outcome. Nevertheless, there is no critical difference
between the accuracies to require thinking about.

83

Evaluation of the Results

Figure 4.12: Confusion Matrix of the experiment with manually recorded dataset

Once having seen these impressive results, an idea arose to test the model’s
sanity with a corrupted dataset. For this purpose, the target column of the same
dataset was iterated label by label, and labels are either inverted or left untapped
randomly.

Figure 4.13: Confusion Matrix of the target corruption experiment

As shown in Figure 4.13, the result is entirely random as expected. The model
fails in predicting the game stage. It is unable to deduct a pattern between the
frames because of the label corruption.

The objective of the final experiment is to run cross-map tests to observe how
does a model which is trained on a specific game map perform on another map.

In order to evaluate this idea, three different game maps are used in this exper-
iment. Three different models are trained on these three maps, and each one of the
models is tested on all maps. Table 4.1 indicates the experiment results.

84

4.2 – Experiments with the Created Model

Map ID Map 1 Map 2 Map 3
Exp. Combat Exp. Combat Exp. Combat

Map 1 Exp. 0.970 0.029 0.929 0.070 0.931 0.068
Combat 0.036 0.963 0.058 0.941 0.072 0.927

Map 2 Exp. 0.934 0.065 0.978 0.021 0.922 0.077
Combat 0.061 0.938 0.020 0.979 0.080 0.919

Map 3 Exp. 0.937 0.062 0.927 0.072 0.963 0.036
Combat 0.080 0.919 0.063 0.936 0.031 0.968

Table 4.1: The experiment results of the cross-map testing

In this experiment, it is decided to indicate the values in a table instead of
using Confusion Matrices because pacing nine different confusion matrices would
take much place and would cause confusion.

In Table 4.1, a block identified by a row map identifier x with column map iden-
tifier y depicts a confusion matrix of an experiment where the model is trained on
map x and tested on map y. As in the former confusion matrices, the column-wise
game stages indicate the actual game stages, whereas the row-wise game stages
indicate the predicted game stages.

According to the table, all the models trained on a particular map and tested on
the same map achieved impressive test accuracies. The models trained and tested
on different maps achieved lower accuracies than the models trained and tested
on the same map, yet they performed well enough. This difference is reasonably
expected.

Even though the impressive results on cross-map tests seem surprising, this can
be considered reasonable. Doom is a very primitive game. Almost all the maps are
pretty small and primitive. They are highly similar to each other, and the game flow
on these different maps is almost the same. Besides, the agent and enemies have
limited action space. All these facts together lead to similar bitrate fluctuations and
hence to similar model performances. Most likely that in implementing the same or
similar techniques to today’s games, the performance of models would dramatically
change.

85

86

Chapter 5

Conclusion

Due to the increasing interest in Cloud Gaming, the increasing complexity of games,
and the inadequacy of current Cloud Gaming service providers, especially in com-
petitive games such as the First Person Shooter (FPS) genre, the need for better
in-game Quality of Experience (QoE) assessments are more than before. In order
to achieve better in-game QoE, this thesis study investigates if there is a corre-
lation between the stages of a game being streamed to a player and the stream’s
bitrate, and proposes the idea of taking the automated in-game QoE assessments
one step further by creating a Deep Reinforcement Learning (DRL) agent capable
of classifying game stages based on the instant bitrate values of the stream.

Based on the proposed methodology, a Deep Reinforcement Learning agent
plays a game to generate a dataset. The generated dataset is analyzed in detail in
terms of the idea’s feasibility, and the analysis results indicate that there might be
a correlation between the bitrate and the game stages. Based on this correlation,
a Deep Learning model is created, trained, and tested extensively.

The test results show that it is possible to classify instant game stages with high
accuracy by processing the corresponding instant bitrate values. Therefore, besides
many in-game QoE optimization possibilities, Cloud Gaming service providers can
achieve better resource allocation among their players by implementing this idea.
Hence, it can be possible to conduct better in-game Quality-of-Experience assess-
ments in Cloud Gaming.

One question that cannot be answered in this thesis study is how successful this
methodology would be in a state-of-the-art complex game, as an old-school game
had to be used due to some of the limitations discussed in detail in the study. This
question will remain open until the method is tested in today’s games.

87

88

Bibliography

[1] Kjell Brunnström, Katrien De Moor, Ann Dooms, Sebastian Egger-Lampl,
Marie-Neige Garcia, Tobias Hossfeld, Satu Jumisko-Pyykkö, Christian Keimel,
Chaker Larabi, Bob Lawlor, Patrick Le Callet, Sebastian Möller, Fernando
Pereira, Manuela Pereira, Andrew Perkis, Antonio Pinheiro, Ulrich Reiter,
Peter Reichl, Raimund Schatz, and Andrej Zgank. Qualinet White Paper on
Definitions of Quality of Experience. 03 2013.

[2] Sarah Feldman. The Sky Is the Limit for Cloud Gaming. https://www.
statista.com/chart/17501/cloud-gaming/, 2019.

[3] Asif Laghari, Hui He, Kamran Ali, Rashid Laghari, Imtiaz Halepoto, and
Asiya Khan. Quality of Experience (qoe) in Cloud Gaming Models: A Review.
Multiagent and Grid Systems, 15:289–304, 10 2019.

[4] Ivan Slivar, Mirko Suznjevic, Lea Skorin-Kapov, and Maja Matijasevic. Em-
pirical qoe Study of In-home Streaming of Online Games. Annual Workshop
on Network and Systems Support for Games, 2015, 01 2015.

[5] Michael Jarschel, Daniel Schlosser, Sven Scheuring, and Tobias Hossfeld. An
Evaluation of QoE in Cloud Gaming Based on Subjective Tests. 06 2011.

[6] German Sviridov, Cedric Beliard, Andrea Bianco, Paolo Giaccone, and Dario
Rossi. Removing Human Players From the Loop: Ai-assisted Assessment of
Gaming qoe. pages 1160–1165, 07 2020.

[7] Wikipedia contributors. Doom (1993 video game) — Wikipedia, the free en-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Doom_(1993_
video_game)&oldid=1028755673, 2021.

[8] Wikipedia contributors. Wolfenstein 3d — Wikipedia, the free encyclopedia,
2021. [Online; accessed 12-July-2021].

[9] Marek Wydmuch, Michał Kempka, and Wojciech Jaśkowski. Vizdoom Com-
petitions: Playing Doom From Pixels. IEEE Transactions on Games, 2018.

[10] Guillaume Lample and Devendra Singh Chaplot. Playing FPS Games with
Deep Reinforcement Learning. 2017.

[11] Marek Wydmuch, Michał Kempka, and Wojciech Jaśkowski. Visual Doom AI
Competition (VDAIC). http://vizdoom.cs.put.edu.pl/, 2017.

[12] Stone Hausknecht. Deep Recurrent Q-learning for Partially Observable MDPs.
arXiv, (1507.06527), 2015.

89

https://www.statista.com/chart/17501/cloud-gaming/
https://www.statista.com/chart/17501/cloud-gaming/
https://en.wikipedia.org/w/index.php?title=Doom_(1993_video_game)&oldid=1028755673
https://en.wikipedia.org/w/index.php?title=Doom_(1993_video_game)&oldid=1028755673
http://vizdoom.cs.put.edu.pl/

Bibliography

[13] Marek Wydmuch, Michał Kempka, and Wojciech Jaśkowski. Vizdoom. http:
//vizdoom.cs.put.edu.pl/, 2018.

[14] Suramya Tomar. Converting Video Formats with FFmpeg. Linux Journal,
2006(146):10, 2006.

[15] Wikipedia contributors. Video Compression Picture Types — Wikipedia,
the Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=
Video_compression_picture_types&oldid=994295522, 2020.

[16] Charles Holt. Forecasting Seasonals and Trends by Exponential Weighted
Moving Averages. International Journal of Forecasting, 20:5–10, 03 2004.

[17] W.I. King. The Elements of Statistical Method. Macmillan, 1920.
[18] Johannes Forkman. Estimator and Tests for Common Coefficients of Variation

in Normal Distributions. Commun. Stat. Theory Methods, 38, 01 2009.
[19] Facundo Bre, Juan Gimenez, and Víctor Fachinotti. Prediction of Wind Pres-

sure Coefficients on Building Surfaces Using Artificial Neural Networks. En-
ergy and Buildings, 158, 11 2017.

[20] IBM. Recurrent Neural Networks. https://www.ibm.com/cloud/learn/
recurrent-neural-networks, 2020.

[21] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-term Memory. Neural
Computation, 9:1735–80, 12 1997.

[22] Christopher Olah. Understanding LSTM Networks. https://colah.github.
io/posts/2015-08-Understanding-LSTMs/, 2015.

[23] Dmytro Shulga, Oleksii Morozov, Volker Roth, Felix Friedrich, and Patrick
Hunziker. Tensor B-Spline Numerical Methods for PDEs: a High-Performance
Alternative to FEM. 04 2019.

[24] The Pandas Development Team. pandas-dev/pandas: Pandas, February 2020.
[25] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas

Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt,
and Gaël Varoquaux. API Design for Machine Learning Software: Experiences
from the Scikit-learn Project. In ECML PKDD Workshop: Languages for Data
Mining and Machine Learning, pages 108–122, 2013.

[26] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research, 15(56):1929–1958, 2014.

[27] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization, 2017.

90

http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
https://en.wikipedia.org/w/index.php?title=Video_compression_picture_types&oldid=994295522
https://en.wikipedia.org/w/index.php?title=Video_compression_picture_types&oldid=994295522
https://www.ibm.com/cloud/learn/recurrent-neural-networks
https://www.ibm.com/cloud/learn/recurrent-neural-networks
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

	Introduction
	Problem Description and the Motivation
	Outline of Design and Implementation

	Cloud Gaming
	Cloud Gaming: Future of Gaming Industry
	Pioneer Services
	Cloud Gaming Under the Hood
	Limitations

	Related Work

	Design and Implementation
	Game Selection
	A.I. Research Platform as an API to the Game
	Deep Reinforcement Learning Agent Trained on the Game
	Methodology
	Model Architecture

	Gameplay Dataset Generation
	Overview of Raw Dataset
	Bitrate Calculation

	Gameplay Dataset Pre-processing
	Gameplay Dataset Analysis
	General Statistics
	Variation in Average Bitrate of Adjacent Series of Stages
	Bitrate Variation During Intra-stage and Inter-stage Transitions
	Bitrate Variation on a Time Span Around Stage Transitions

	Deep Learning Architecture and Frameworks Used in the Study
	Artificial Neural Networks
	Recurrent Neural Networks
	LSTM: Long Short-term Memory
	PyTorch and PyTorch Lightning

	Implementation of the Model
	High Level Design of the Model
	Data Partitioning
	Data Pre-processing
	Data Sequence Generation
	Creation of the Model Core
	Training Phase of the Model
	Test Phase of the Model

	Evaluation of the Results
	Experiments with Vanilla Machine Learning Methods
	Experiments with the Created Model

	Conclusion
	Bibliography

