
Dipartimento di Automatica ed Informatica
Politecnico di Torino, Italy

July, 2021

Nonlinear climbing video indexing
Human pose estimation applied to climbing videos

Daniele Pace

Supervised by
Jaakko Lehtinen (Aalto University)
and
Bartolomeo Montrucchio

Final thesis report for the Master of Science in Computer Engineering,
made in collaboration with Aalto University

Asa nisi masa
8 1/2

Abstract

Human Pose Estimation is one of the most promising research areas in the

field that links together Artificial Intelligence and Computer Vision. Its appli-

cations are countless since it mimics one of the principal human capabilities:

understanding the physical space that surrounds us, and the interaction of

the context with people. Sport is the field that can most benefit from this

technology since it involves dynamic movements of individuals. I present in

this project the research and the development of a fully-working application

that exploits human pose estimation to perform nonlinear queries to retrieve

the exact pose and movements that the user is looking for. I applied this

framework to climbing, in which the training phase involves mostly figure out

how to perform a certain pose by looking at how other climbers have done it.

3

4

Contents

1 Introduction 7

2 Human Pose Estimation 11

2.1 Background . 13

2.2 Classical approaches . 14

2.3 Deep Learning based approaches 21

2.4 Why Human Pose Estimation 33

3 Nonlinear climbing video indexing Application 37

3.1 Preliminary work and research 38

3.2 OpenPose and the database 43

3.3 Prototype . 48

3.4 Frontend . 52

3.4.1 Navbar . 55

3.4.2 CameraViews . 56

3.4.3 Query . 57

3.4.4 RectangleSelection . 57

3.4.5 Skeleton . 58

3.4.6 Videos . 60

3.4.7 Scrubber . 62

3.4.8 Backend . 64

4 Results and Conclusions 69

5 Bibliography 73

5

6

Chapter 1

Introduction

Nonlinear climbing video indexing is an ambitious attempt to apply state-of-

art algorithms of Human Pose Estimation to sport videos in order to improve

the training phase, in particular to climb training.

The hardest part of the climbing workout is to figure out the right sequence

of poses to reach the top hold, and most of the time it means waiting for some-

one more experienced that shows you how to climb the route. Human Pose

Estimation perfectly fits with our needs since it makes the machine able to

trace the movement of a (or multiple) person(s) and collect the pose frame by

frame. The project consists in the development of a web-based application

that lets the user select an area over an image of the wall (usually the area

between the holds that you cannot manage to figure out) and a body key-

point, and retrieves from a database the part of each videos where the climber

has the selected body-parts in the selected area. To perform such nonlinear

query, the videos in the database are mapped with one of the most advanced

model in Human Pose Estimation, OpenPose, that performs an inference of

the body key points and limbs and saves in a Json file the position of key

points of each person in the video, frame by frame.

After the first chapter, containing the introduction, chapter number two is

a broad review of Human Pose Estimation, from the first research in Com-

puter Vision to the most advanced models; I’ve reconstructed the history of

Human Pose Estimation research, trying to define a logical path (that does

7

not always follow the chronological one) that ends up with the latest algo-

rithms, impressively close to human capabilities. I divided the review into

two sections: before and after deep learning, since such technology marked

a turning point in HPE performances. Finally, the last section of the chap-

ter is dedicated to practical use and applications of HPE. The second phase

(corresponding to the first two sections of the third chapter) includes some

preliminary work done before approaching the practical development. After

the review, the OpenPose model was selected for our project. It was developed

at Carnegie Mellon University and represents a turning point in multi-people

pose estimation. Besides the performances (almost unaffected with multiple

people or in case of corrupted/noise videos), it was selected due to the open

source code, the license compliant with our scopes, and technical details of

the algorithm. Before delving into the development phase, following the Agile

approach, my supervisor, Jakko Lehtinen, and I started to think about use

cases, defining some user stories that have been used as milestones for the

development. Based on user stories I’ve identified the main features of the

application: queries to the database based on space location and body key

points, scrubber to carefully explore the video, possibility to make comparison

between different videos gotten from the same query. Some initial sketches of

the user interface have been drawn in order to visualize how features could

be implemented. Preliminary research included the selections of architectural

patterns and technological framework to be used as well.

Third step is about data wrangling. Data collection consisted in taking

videotapes in the gym, hand-cut in order to have one video for each climb

from the beginning to the top, and mapping of videos with OpenPose. Out-

put of OpenPose is a collection of Json files, one for each frame. With the

mean of a custom script, I clustered them in a single Json file (one Json file

for each video), defining a dictionary with the number of frames as key and

an array with the coordinates of all 25 points found by OpenPose as value.

In case of multiple people in the frame, the values would be an array of ar-

rays. The entire process is described in the second section of the third chapter.

8

Before the development of the final application, I built a prototype that

helped me in testing core functionalities of the application, such as how accu-

rate videos were retrieved with respect to user intention and how to display

all retrieved videos, and clarify some features of the application in real-case

scenarios. It was built entirely in Python, as a single-page application. The

third section of chapter number three describes the development of the proto-

type and the conclusions that came after it. Thanks to this test I verified that

the videos were correctly mapped and retrieved, a selection of more than one

key point is preferable, the retrieved videos must also include some frames

immediately before the selected area.

Last two sections of chapter three are about the real application. It was de-

signed with a client-server architecture, in order to execute a secure access to

the data and move the most expensive computational part to the server (and

not on the client device). Data is exchanged through REST Apis, moving

almost all the logic parts in the server. The front-end is organized into three

different pages: the first one lets the user choose one among all the “views”

(i.e. walls) of the gym; in the second page the chosen view is displayed en-

larged: here the user can select an area on the image. Moreover, there is a

stylized skeleton that allows the user to select one or more key points. When

the user has selected an area and at least one key point, he can send the re-

quest to the server. The last page gets all the videos retrieved by the server,

and shows them in a vertical scroll bar on the right. The user can select one

of the videos, and it will be displayed on the left side, with a scrubber that

lets the user move back and forth on the video, carefully analyzing the video

frame by frame.

Through a REST Api, the server receives a list of key points, the selected

view, and the coordinates of the selected area. A function checks, for each

video belonging to that specific view (i.e. for each Json file), if at least one

climber has the selected key points in the chosen area. Once found, it collects

9

in an array the starting and the ending frames of the part of the video that

the user is looking for. After having checked each json, it sends the array

back to the front-end, which is displayed as a thumbnail the first frame of the

retrieved part.

10

Chapter 2

Human Pose Estimation

Human pose estimation is the problem of localization of human joints, i.e.

key-points that define the body structure, in images (monocular RGB) and

videos.

It is a critical task in Computer Vision, due to its countless applications

in real word scenario, that make this technology one of the most appeal for

both commercial and research aim; real-cases scenario that benefits from this

technology are, among all, systems to detect if a person has fallen down or

sick, understanding of full-body sign language, motion capture for augmenting

reality, motion tracking for console (without the support of any particular

hardware but a simple camera).

In the face of its versatility in use, it has been largely adressed by re-

searchers, but it is considered one of the hardest task in Computer Vision. In

particular, the complexity of human body articulations and degrees of free-

dom of human movement, occlusions, small and barely visible joints, clothing,

changes in lighting due to the complexity of environment, require the algo-

rithm to understand the environment, the context that surrounds the person,

in order to figure out the right guess among the huge number of possibilities,

once discovered the (most) evident joints.

The first part of this chapter is an ambitious attempt to reconstruct the

path of human pose estimation from the beginning, highlighting the most sig-

nificant research and milestone algorithms in the field. For ease of treatment,

I introduce some categories with which to organize the whole. Firstly, human

11

Figure 2.1: Example of human pose estimation algorithms’ output.

pose estimation can be split into two main groups: even if both of them look

at 2D images, there are models whose aims is to predict the 3D structure

of the pose, and others that track the movement (fig. 2.1), without defining

the whole 3D structure. I chose to investigate the latter, because of thesis

purposes. A second, important split can be made considering the number of

people that the algorithm can detect in the same image at a time (without

augmenting the computation time). Almost all discussed algorithms follow

the single-person approach; multi-people estimation is introduced in the last

part of the deep learning section in human pose estimation, along with most

recent researches. Inside multi-people pose estimation works two main ap-

proaches are identified: top-down, i.e. starting from the human detection

and moving down toward single key-points, and bottom-up, where the esti-

mation starts from single key-points moving upward in defining the whole

body.

It is worthy to mention the revolution that artificial neural networks have

brought to pose estimation when it first appeared in human pose estimation

research around 2014, leading to incomparable results in both efficiency and

accuracy. Accordingly, all works about human pose estimation can be chrono-

logically and logically divided into before and after deep learning. Section 2.2

is about classical approaches; section 2.3 deals with most recent techniques

based on deep learning.

The last part of the chapter is dedicated to the applications of human pose

estimation and an overview of its current implementation in commercial/non-

commercial systems, focusing on the practical impact that they have had.

12

2.1 Background

Human Pose Estimation history begins in the ’90 when a new application

domain of computer vision had been starting to emerge in some specialized

research centers. The extensive coverage in the vision literature is apparent

from the many special workshops devoted to this topic: the Looking at Peo-

ple workshop in Chambery (1994), the Motion of Non-Rigid and Articulated

Objects workshop in Austin (1994), and the two Automatic Face and Gesture

Recognition workshops in Zurich (1995) and Killington (1996). This domain

(frequently called ”looking at people”) was a comprehensive approach that

included face recognition, hand gesture recognition and whole-body tracking.

Applications of such tasks were many and revolutionary: from never-seen-

before human-machine interactions and a machine capable of perceiving the

environment just by ”seeing”, to movement tracking for animation or security

purposes.

Traditionally, human movement has been the object of study for several

disciplines, and human pose estimation at its very beginning drew on these

different fields.

In psychology, starting around 70s, human perception of biological motion

pattern was studied by Johansson [1], that with his experiment pointed out

how humans can instantly recognize biological pose and motion pattern (like

walking or dancing) or detect some small deviations from standard pattern.

This study analyzed for the very first time how the motion of some points

(human body joints) in a rather irregular way can be easily recognized and

associated with a well known human motion pattern.

In biomechanics, scientists have investigated how our body functions me-

chanically. A typical procedure involves obtaining 3-D joint data, performing

kinematic analysis, and computing the corresponding forces and torques for

a movement of interest [2].

Computer Graphic had already raised the question about spatial interac-

tions between human models [3], and in Computer Vision Martin A. Fischler

and Robert A. Elschlager introduced in 1973 the concept of Pictorial Struc-

tures: a statistical model for object that can be used to recognize it and its

13

constituent part in an image [4]. They were trying to address the task that

”given some description of a visual object, find that object in an actual pho-

tograph”. The object to be identified is composed of a number of rigid pieces

held together by ”springs” (fig. 2.2). The springs joining the rigid pieces serve

both to constrain relative movement and to measure the ”cost” of the move-

ment by how much they are ”stretched”. The semantic information, which

is application dependent, is embodied in the specific partitioning of the ref-

erence into coherent pieces, the placement and cost functions assigned to the

springs, and the cost functions associeted with the independent embedding of

the coherent pieces. The syntactic information, which is relatively indepen-

dent of the particular application, defines the class of description which the

algorithm can process.

Figure 2.2: Schematic representation of face reference, indicating components and their linkages.

The pictorial framework has become the standard approach for human pose

estimation both in classical approaches and in deep learning based ones.

2.2 Classical approaches

Classical approaches follow the Pictorial Structures, even if there have been

some experiments without explicitly model the shape of the object to be

recognized.

One general approach without shape models has been to bypass a pose

recovery step altogether and to describe human movement in terms of simple

low-level, 2-D features from the region of interest. An example is a system

developed for interpreting the motion in American Sign Language (ASL) [5];

the process involved detection of hand motion, tracking the hand location

based on the motion and classification of signs using adaptive clustering of

stop position, simple shape of trajectory, matching of the hand shape at the

14

stop position. Nearest neighbor criteria have been used to estimate posture in

reduced-model gesture input system [6], along with general pattern matching.

Nelson and Polana investigated in nineties motion recognition through robust

motion features [7]. The framework was used to recognized activity based on

object motion, using temporal textures of a-priori known activities: motion

detectors were used to locate and track moving objects while Fourier image

analysis was used to identify objects that moved periodically and matched

activity patterns. All the techniques were basically based on the exploitation

of a priori knowledge of human motion patterns, therefore very limited for

real-cases scenario.

The most popular approach made extensive use of the ”Pictorial Structure

Framework”, whose origins lay on the publication by A. Fischler and Robert

A. Elschlager discussed in the previous section [4]. The basic idea of repre-

senting an object as a collection of parts arranged in a deformable configura-

tion was further developed in ”Pictorial Structures for Object Recognition”

paper[8], where the appearance of each part is modeled separately, and the

deformable configuration is represented by spring-like connections between

pairs of parts. Concerning the 1973 model, the paper’s authors addressed

some previous limitations such as efficiency, the huge number of parameters

and the limited number (one) of best (minimum energy) match. Efficiency

was improved thanks to a restriction that made the computation doable in

polynomial time while preserving the accuracy: the graph modeling the re-

lationships between parts can be shaped as a tree structure. Even though

this assumption is not natural to the original Pictorial framework, had been

observed that many classes of objects followed on a tree-shaped model (such

as the human skeleton). Moreover, this restriction reduces the number of pa-

rameters in the matching algorithms. The limited number of best matching

(in their original work, Fischler and Elschlager only considered the problem

of finding the best match of a pictorial structure model to an image) was han-

dled by using a statistical framework that provided a natural way of finding

several good matches of a model to an image. Besides, the use of a statistical

15

formulation provides a way of learning pictorial structure models, given a pri-

ori knowledge of human body structure, unlike previous works that provided

a manual construction of the models (fig. 2.3) .

Figure 2.3: Inputimage, binaryimage, random sample from the posterior distribution of configurations.

The combination of tree-structured model and the use of machine learning

to learn part appearances was the dominant approach for subsequent works

and algorithms.

Iterative parsing was proposed by Deva Ramanan [9]. A soft estimation

of body part positions is done with matching on an edge-based deformable

model, then the estimated body part positions are used to build a rough

region model for each body part. The algorithm then builds a region-based

deformable model for body parts learning some differences (such as the color)

with respect to the background. Soft estimates of body position from the

new model are then used to build new region models, and the process is

repeated. The probabilistic model is a tree-structured conditional random

field (CRF) and the basic machinery used for inference is message-passing (the

sum-product algorithm) following the tree-structure. Moreover, the authors of

the paper built up one of the first (for the time) large datasets for human pose

estimation in a collection of 305 images, taking data from limited previous

sports datasets and personal pictures.

The iterative image parsing method deeply influenced subsequent works,

and we can find traces of their impact in advanced HPE algorithms such as

the Hourglass Stacked Network [31].

An enhancement of the pictorial structure was made by Sam Johnson and

Mark Everingham [11]: they addressed the problem of articulated 2-D human

16

pose estimation combining the pictorial structure with strong limb detectors,

making an extensive use of gradients and color segmentation. HOG (His-

togram of Oriented Gradients, fig. 2.4) descriptor, capturing local appearance

such as edge and shading while incorporating a controlled level of invariance

to local deformation, is used for capturing limb appearance and, combined

with segmentation cues for exploiting coherent properties of the limbs such

as uniform color, were proved to reach the state-of-the-art on the ”Iterative

Image Parsing” (IIP) dataset at the end the last decade (2009).

Figure 2.4: HOG descriptors for limb detection.

HOG descriptors were used by Kumal et al. as well [10], proposing an effi-

cient discriminative learning of part-based model, exploiting highly optimized

SVM-Light algorithm.

In 2010 a new annotated database of challenging consumer images, an order

of magnitude larger than other available, was introduced in order to overcome

the lack of training data [13]. Thanks to it, its authors reach the state-of-art

in pose estimation using a PSM based model [14]: nonlinear SVM classifier

(used with a cascade reduced set machine formulation to reduce the compu-

tational expense [12]) for learning the appearance terms among clusters (fig.

2.6) got by partitioning the space of human pose.

It’s clear the birectional development that research about Human Pose Es-

timation embraced: on one side the use of machine learning to automatically

learn appearance terms and posible poses and their likelihoods, on the other

17

side the embedding of a-priori known information to given constraints to the

model.

Pictorial Structure Model was significantly augmented by the work of Yang

and Deva Ramanan [15], which proposed a new representation of deformable

parts models using a mixture of small, non-oriented parts (fig. 2.5), in contrast

to warped templates used for modeling articulations. Mixture-of-parts model

an exponentially large set of global mixtures, but not all such combinations

are equally likely: the model learn notions of local-rigidity and other priors

about mixture co-occurences.

Figure 2.5: Classic approach (left). Mixture-of-parts model (middle). Warping a single template to different
orientation and foreshortening states for model articulation (top right). Small warps connected with a spring
(bottom right).

Figure 2.6: “Data-driven” approach to orientation-modeling by clustering the relative locations of parts with
respect to their parents. These clusters are used to generate mixture labels for parts during training.

Moreover, in the paper [15], the authors introduced a couple of new eval-

uation criteria for pose estimation. The classical evaluation criterium was

the so-called ”PCP”, or Probability of Correct Pose: a candidate body part

18

is labeled as correct if its segment endpoints lie within 50% of the length of

the ground-truth annotated endpoints. Issues of this method were its sensi-

tivity to the amount of foreshortening of a limb and the necessity of having

a candidate and ground-truth placed in correspondence. Common weak so-

lutions include evaluating the highest-scoring candidate given an image with

a single annotated person or a window returned by a person detector. The

first proposed evaluation criteria explicitly factors out detection by requir-

ing test images to be annotated with tightly-cropped bounding box for each

person, and the candidate keypoints is evaluated as correct if it falls within

α➲max(h,w) pixels of the ground-truth keypoint, where h and w are the height

and the width of the bounding box respectively, and α controls the relative

threshold for considering correctness.

The latter was a crucial passage since the possibility of efficiently evaluat-

ing an algorithm strongly influeces its potential.

So far every algorithm has leveraged on the assumption of representing the

human body as a tree-structured graph, but significant approaches that aug-

mented the tree structure have been proposed. Since tree-structured mod-

els allow efficient learning but fail to capture additional dependencies be-

tween body parts, other than kinematic constraints between connected parts,

a multiple-tree model was prosed by Y. Wang and G. Mori [16]. The hu-

Figure 2.7: Top row shows how the same piece of image patch is used to explain two body parts, the bottom
row shows how the multi-tree model occlusion reasoning mechanism can alleviate this problem.

19

man body is modeled as a weighted combination of several tree-structured

deformable models. In the paper the authors proposed a couple of trees: the

first one for kinematic constraints and the second one able to capture spatial

constraints and to perform occlusion reasoning (“occlusion” to refer to the

particular problem of using the same image patch to explain different body

parts, fig. 2.7).

Tree-structured was mantained but enforced with a new machine-learning

approach by Dantone et al., who proposed, within the pictorial structure

framework, a novel joint regressor based on two-layered random forests [17].

The first layer acts as a discriminative, independent body part classifier, that

is during both evaluation and training each sampled patch is evaluated with-

out taking its spatially surrounding potentials into account. The second layer

takes the estimated class distributions of the first one into account and pre-

dicts joint locations by modeling the interdependence and the co-occurrence

of the parts. The model was tested on the FashionPose dataset (a collection

of pictures with very high variation in cloth and appearance), outperforming

the state-of-art models at the time (fig. 2.8). Another approach worth re-

Figure 2.8: Detection accuracy for all joints at error thresholds 0.1 and 0.15.

porting, earlier that two previous methods, considered additional constraints

(beyond the kinematic constraints given by the tree structure) such as limb

20

coordination [18], through the introduction of a small number of latent vari-

ables to represent residual correlations between parts that are not captured

by a tree model.

2.3 Deep Learning based approaches

Deep Learning is a machine learning technique based on multi-layer artifi-

cial neural networks, imitating the working of the human brain in processing

data and creating patterns. The main advantage of deep learning with re-

spect to other machine learning techniques is the capability of automatically

extracting meaningful features from raw data, then used for the learning task.

A particular type of deep learning model that uses the convolution with a

kernel of custom dimension to map the input signal into the output feature

maps came out to be very useful for machine learning tasks with images as

input. The neural model learns convolutional weights able to extract mean-

ingful features, i.e. simple patterns like straight lines or particular colors in

the initial layers gradually more and more complex going deeper into the net-

work, combining with a convolutional approach features from previous layers.

This hierarchical path of processing visual information was inspired by the

way human (and in general animal) brain succeeds to extract pattern from

visual input: in 1959 David Hubel and Torsten Wiesel described how different

stages from the retina to striate cortex react differently with the respect to

the patterns of light stimuli [21] and, following up on that paper, introduced

in 1962 [22] the existence of simple and complex cells, the latter capable of

performing ”spatial invariance” pattern recognition by summing the output

of several simple cells that all prefer the same orientation but different recep-

tive field. The first work on modern convolutional neural networks occurred

in the 1990s [23], and demonstrated that a CNN model which aggregates sim-

pler features into progressively more complicated features can be successfully

used for handwritten character recognition, but only in 2012 a CNN called

AlexNet [24] achieved the state-of-the-art performance labeling pictures in the

ImageNet challenge (over 15 million labeled high-resolution images belonging

21

to roughly 22,000 categories).

Impressive performances achieved by deep learning are only possible with

a huge amount of data (which means a lot of meaningful information used

to train the model and make it able to generalize) and computational power,

characteristics that made it popular just in the last decade.

In 2010 a paper from New York University [19] proposed a nonlinear em-

bedding to handle the problem of visually matching people in similar poses.

The model, called Convolutional NCA (Neighbourhood Components Analy-

sis) regression (C-NCAR), consisted of a stack of convolutional layers followed

by a single fully-connected layer (fig. 2.9), and trained following the siamese

framework [20], used for a pair of examples; the distance between resulting

codes drives parameter learning.

Figure 2.9: Convolutional NCA regression (C-NCAR).

Although it was the first paper that proposed the use of convolutional

networks for embedding information regard human pose estimation, only four

years later DeepPose [25] proposed a deep learning-based regression of human

body joints. The network consists of 5 convolutional layers (followed by a

ReLU nonlinearity and a pooling layer) and 2 fully connected layers, that

implicitly captured interactions between joints. Since the network-fixed size

input (220x220) implies a limited capacity to look at details, in order to

achieve better precision, the authors proposed a cascade of pose regressor:

each stage is a refinement of the previous one, receiving as input the original

22

images cropped around the predicted joint location from the previous stage.

The same architecture is used at each stage but each one learns different

parameters.

The required amount of training data was supplied by a couple of datasets:

Frames Labeled in Cinema (FLIC) [26] (which consists of 4000 training im-

ages) and Leeds Sports Dataset [27]. The model outperformed all other ap-

proaches using PCP (percentage of Correct Parts) and its modified version

PDJ (Percentage of Detected Joints), where the joint is considered detected

if the distance between the predicted and the true joint is within a certain

fraction of the torso diameter.

Hong Kong Chinese University developed a deep learning model for human

pose estimation [28] as well, almost simultaneously with DeepPose. They

combined in a unique nonlinear deep neural model different kinds of source

information: visual appearance score, appearance mixture type and deforma-

tion, mixing their high-level representations obtained through some additional

hidden layers (hence not mixed in the first layer). Moreover, the task for de-

tecting humans and the task for estimating body locations are jointly learned

using a single deep model. They obtained results slightly better than Deep-

Pose.

At this point was clear that Deep Learning would have been the leading

approach in Human Pose Estimation. Several researchers then tried to apply

some of the most advanced deep learning techniques, developed for other task

related to Computer Vision, for the task of ”looking at the people”.

Critical issues of DeepPose were linked to the direct regression of joint

locations, i.e. mapping from RGB input images to a coordinate location. A

novel model [29] from New York University solved this problem using a new

multi-resolution model (fig. 2.10) that outputs a coarse heat-map for each

joint, then used as input for the next model in a cascade-like architecture.

The model was further improved with a custom dropout called ”Spatial

23

Figure 2.10: Cascade architecture.

Dropout”, which maps adjacent pixels in the dropped-out feature map ei-

ther all 0 (dropped-out) or all active.

Convolutional Pose Machine [30] was a model developed at Carnegie Mel-

lon University, consisting of a sequence of convolutional neural networks that

repeatedly produce 2D belief maps for the location of each part. Benefits

of such a model were the capability of capturing long-range dependencies

between image and multi-part cues and tight integration between learning

and inference, thanks to convolutional networks, with a larger receptive field

at each stage, that directly operates on intermediate belief maps and learns

implicit image-dependent spatial models of the relationships between parts

(without using graphical models). The problem of vanishing gradient, due to

the huge number of layers, was addressed with intermediate supervision pe-

riodically through the network. This method achieved state-of-art but failed

with multiple people in close proximity. Once again the iteration of similar/i-

dentical models proved to be the secret ingredient to get better results.

Now I’m going to introduce the killer model that settled a new standard for

human pose estimation, adding (with respect to the previous model) the anal-

ysis of multi-resolution features as a key ingredient. It was called the Stacked

Hourglass Network [31]. The network captures and consolidates information

across all scales of the image, with a stack of downsampling-upsampling net-

works (fig. 2.11), placing modules together end-to-end.

Convolutional and max-pooling layers are used to process features down to

24

Figure 2.11: Hourglass (single) network.

a very low resolution. At each max pooling step, the network branches off

and applies more convolutions at the original pre-pooled resolution. After

reaching the lowest resolution, the network begins the top-down sequence of

upsampling and combination of features across scales. Residual units are

used as skip connections between downsampling and upsampling sides. After

reaching the output resolution of the network, two consecutive rounds of 1x1

convolutions are applied to produce the final network predictions. The output

of the network is a set of heatmaps where for a given heatmap the network

predicts the probability of a joint’s presence at each pixel.

Multiple hourglasses are stacked in an end-to-end fashion, feeding the out-

put of one as input into the next; intermediate supervision is used after each

module in order to avoid gradient vanishing, using the same ground truth

(weights are not shared between different hourglass modules).

The Stacked Hourglass Network pushed forward human pose estimation

results for single person pose estimation, but was still less performing with

occlusion and multiple people. Some relevant further works tried to improve

performances by changing the residual unit.

Figure 2.12: Pyramid Resid-

ual Module.

It was observed that outputs of two residual units

summed up caused a doubling of the variance that

may lead to issues during optimization. Yank et al.

proposed a different residual unit for the Hourglass

network called Pyramid Residual Module [32], able to

25

learn multi-scale feature pyramids: given input fea-

tures, the module obtains features of different scales

via subsampling with different ratios (fig. 2.12).

The model achieved the state-of-art on the MPII

dataset [33], totaling peaks of 98.5 score for head

recognition, 96.7 for shoulders recognition, 92.5 for elbows.

Similar results were achieved by a cross-study work by The Chinese Univer-

sity of Hong Kong, Tsinghua University, and Johns Hopkins University [34].

Starting from Stacked Hourglass Network, they prosed a novel model with

different residual unit and the massive exploitation of attention maps from

features at multiple resolutions with various semantics. The baseline was a

stack with eight hourglass networks, with intermediate supervision at each

stack. Residual Units were replaced with the novel micro hourglass residual

(HRUs) units, consisting of three branches: the identity mapping, residual

blocks like in ResNet [35] and a third stack with one 2x2 max-pooling, a

couple of 3x3 convolutions followed by ReLU nonlinearity, and an upsam-

pling operation. Within each hourglass, the multi-resolution attention maps

are generated from features of different scales, mapping features at each level

of the upsampling part of the hourglass, modeling spatial correlation with

Conditional Random Fields, and then summing them into a single attention

map. Different stacks are with different semantics: lower stacks focus on local

appearance, while higher stacks encode global representations.

The attention maps help to drive the network to focus on hard negative

samples. After several stages of training, the attention maps fire on the hu-

man body region, where the true positive samples are highlighted by attention

maps. The refined features are used for learning classifiers for the regions with

human body, with easy background regions removed at the feature level by

the learned attention maps. Consequentially, for part attention maps, the

classifiers focus on classifying each body joint based on well-defined human

body regions, without considering the background.

26

Figure 2.13: Framework of the multi-semantics attention hourglass network.

Hourglass network was used as the base model for the Multi-Scale Structure-

Aware Network for human pose estimation [37]. The original model was

improved with four key addition: the multi-scale supervision to strengthen

contextual feature learning in matching body keypoints by combining fea-

ture heatmaps across scales; the multi-scale regression network at the end

to globally optimize the structural matching of the multi-scale features; the

structure-aware loss used in the intermediate supervision and at the regres-

sion to improve the matching of key-points and a keypoint masking training

scheme that can handle occlusions. The multi-scale supervision network is

designed to learn deep features across multiple scales, while supervision is

performed by calculating the residual at each deconv layer using the cor-

responding down-sampled ground-truth heatmaps in the matching scale (it

localizes body keypoints in a way similar to the ”attention model”). The

multi-scale regression network (fully convolutional) is used after conv-deconv

stacks to globally refine the multi-scale keypoint heatmaps: the regression

can effectively combine heatmaps across all scales to refine the estimated

poses. The structure-aware loss, based on human skeletal graph, is used for

intermediate supervision in order to avoid gradient vanishing in deep stack of

conv-deconv networks.

Hourglass Networks (and its derived methods) had demonstrated remark-

able performance in human pose estimation, but still suffered from several

27

problems related to the compositionality of visual patterns. None of the

methods discussed so far decomposes entities as hierarchies of meaningful

and reusable parts or infers across different semantic levels, approach used by

Tang, Yu and Wu [36] for their milestone work.

With their model, called DLCM, exploiting deep learning for human pose

estimation went further: it attempts to explicitly learn the hierarchical com-

positionality of visual patterns via deep neural networks: CNNs are used to

model Spatially Local Information Summarization (SLIS). As previous deep-

learning based model, the first part (bottom-up stage) is used to regress target

joints directly from the images; then, score maps of higher-level parts are re-

cursively estimated from those of their children. In the top-down stage, score

maps of lower-level parts are recursively refined using their parents’ score

maps as well as their own score maps estimated in the bottom-up stage.

Figure 2.14: (a) Compositional structure, with three semantic level. (b) Network architecture of DLCM.

The problem of efficiently defining priors regard human body was handled

in an original way using GANs (Generative Adversarial Network)[38], an ar-

chitecture composed of two networks: the generator and the discriminator.

The first one has the task of generating data from initial random values, picked

from a certain distribution; the discriminator, on his side, has to recognize if

the input data are synthetically generated (from the generator network) or

come from the real dataset. Two different losses guide the learning for each

network. The result of this particular architecture is a network capable of

generating data that, eventually, are indistinguishable from the real ones, i.e.

28

lay on the same distribution of the real data.

This model was embedded in the Adversarial Posenet [39] architecture, ex-

ploiting the capability of the discriminator of distinguishing the real poses

from the fake ones, improved by the generator. The model is composed of

three parts: the multi-task pose generator network; a pose discriminator,

which have to distinguish the fake poses from the real ones, based on the

encoder-decoder architecture in order to use low and high-level information

to infer if the predicted poses are biologically plausible; and the confidence

discriminator, to discriminate the high-confidence predictions from the low-

confidence predictions.

So far the analysis is mostly focused on single-person pose estimation, i.e.

techniques that require computing power proportional to the number of peo-

ple. In real case scenarios, the number of people is unpredictable and it’s

required a predictable computational cost, therefore the algorithms that had

the most relevant commercial use were ones following the multi-people pose

estimation approach. Among them, I have found a categorization based on

the way the model infers the human body pose: the so-called top-down ap-

proach, which regresses the body joints starting from the whole body, and the

bottom-up approach, which starts by defining the candidate joints to regress

the whole body structure in the final steps. Although this division can be

applied to single person pose estimation as well, it’s particularly meaning-

ful when analyzing and approaching the multi people estimation, due to the

complexity of the regression, and the brilliant approaches that it requires.

Typically, the top-down approach is easier to implement than the bottom-

up approach as adding a person detector is much simpler than adding asso-

ciating/grouping algorithms.

For the top-down approach, the most notable algorithm, different from the

ones already discussed, is the Cascaded Pyramid Network for Multi-Person

Pose Estimation [40]. It was introduced to deal with the problem of ”hard”

keypoints: occluded or invisible keypoints in complex backgrounds. The latter

29

was addressed using a couple of models: GlobalNet, used to extract useful fea-

tures with a pyramid network, similar to the widely cited Hourglass Network.

RefineNet was added to explicitly address the problem of ”hard” keypoints,

by concatenating all the pyramid features. The multi-person pose estimation

problem was addressed with a top-down pipeline. Human detector is first

adopted to generate a set of human bounding boxes, followed by the Cas-

caded Pyramid Network for keypoint localization in each human bounding

box.

Even if the joints regression performed well, still remains the problem com-

mon to all top-down methods: they are usually dependent on the accuracy of

the person detector, as pose estimation is performed on the region where the

person is located. Hence, errors in localization and duplicate bounding box

predictions can cause the pose extraction algorithm to perform sub-optimally.

To overcome this issue, another popular framework was proposed, RMPE (or

AlphaPose) [41].

The model exploits the Symmetric Spatial Transformer Network, capable

of extracting high-quality single person region from an inaccurate bounding

box. The firstly generated proposals are refined by a Parametric Pose NMS,

which performs pose non-maximum suppression; moreover, the proposals gen-

erator is pose-guided: having the ground truth pose and an object detection

bounding box for each person, a large sample of training proposals (with the

same distribution as the output of the human detector) is generated. This

approach partially solved the problem of human detection accuracy.

Over the commitment to person detection, top-down approaches suffer

in handling spatial dependencies across different people. Some approaches

started to consider inter-person dependencies, extending the pictorial struc-

tures to take a set of interacting people, but still requires some apriori person

detector to initialize detection hypotheses.

Starting from top-down approach issues, such as already mentioned the

failure of human body detector with close proximity between people, Pis-

30

chulin et al. proposed the first relevant bottom-up approach[42]: poses of

all people is jointly estimated by minimizing a joint objective. Properties of

this model are the capacity of dealing with an undefined number of people,

reliability given by non-maximum suppression based on the entire sets of can-

didates (not only on individual part candidates), computational advantage

given from the Integer Linear Programming Approach, that, although is a

NP-Hard problem, ensures a certified optimality gap. The model was further

improved [43] with deeper networks in the joints regression and with a novel

image-conditioned pairwise term given by a CNN-based part detectors, that

significantly speeded-up the inference.

Figure 2.15: In the upper part there are shown the pairwise terms combined. In the lower part there are the
unaries.

The model performed very well with cases with only a subset of body

parts of a person visible in the image, as well as with rare body articula-

tions, but still the multi-people factor represented an issue: in some cases the

model failed to disambiguate between people in close proximity, or to assign

spurious body configurations that can not be assigned to any ground-truth

annotation. Nonetheless, the model significantly reduced the run-time and al-

lowed to almost double the pose estimation accuracy in the multi-person case.

The last model I want to present is OpenPose [44], the one I chose for

my project. The authors of the model had to face a number of challenges

31

related to multi-people pose estimation: the unknown number of people at

any position and scale, interactions among them (that may lead to contact,

occlusions), real-time performances. The chosen approach was bottom-up,

avoiding issues related to the dependency from person detectors and exploiting

a global inference, taking into account all the key points per time. It was for

the first time presented a bottom-up representation of association scores via

Part Affinity Fields(PAFs) [45], i.e. a set of 2D vector fields that encode the

location and orientation of limbs over the image domain. After several changes

to the first experiments with PAFs, in 2019 they came up with Openpose.

The input is a color image, firstly analyzed by a CNN that generates a

set of feature maps F that is input to the first stage. The network in the

first stage produces a set of PAFs (part affinity fields), and at each subse-

quent stage, the predictions from the previous stage and the original image

features are concatenated and used to produce refined predictions. After a

certain number of repetitions, the process is repeated for the confidence map

detection. Differently with respect to previous models with PAFs, here the

PAFs detection and the confidence maps detection are divided in two different

stages, the latter starts from the most updated PAFs detection, rather than

repeating the two stages together at each iteration.

Figure 2.16: PAFs of right forearm across stages.

Part Affinity Fields are very suitable for part association because they pre-

serve both location and orientation information across the region of support

of the limb. Each PAF is a 2D vector field for each limb, that encodes the

direction that points from one part of the limb to the other.

Multi-person parsing is computed performing non-maximum suppression

32

on the detection confidence maps to obtain a discrete set of part candidate

locations. Each candidate is scored using the line integral computation on the

PAF; the problem of finding the optimal parse corresponds to a K-dimensional

matching problem that is known to be NP-Hard. In the paper, the authors

proposed some relaxations to efficiently compute the inference on the graph:

minimal number of edges to obtain a spanning tree skeleton of human pose

rather than using the complete graph and decomposition of the matching

problem into a set of bipartite matching subproblems. The latter is feasible

because, while relationship between adjacent nodes is modeled explicitly by

PAFs, the relationship between non-adjacent tree nodes is implicitly modeled

by the CNN (trained with a large receptive field).

Figure 2.17: Graph matching. (a) Original image with part detec-tions. (b)K-partite graph. (c) Tree
structure. (d) A set ofbipartite graphs.

2.4 Why Human Pose Estimation

Human Pose Estimation is a central research topic in artificial intelligence be-

cause it investigates one of the central tasks of human life: the ability to per-

ceive complex human movements, and their interactions with the surrounding

space. It involves a bunch of tasks, from the vision, to object detection, up

to the inference about the relationship between detected pose(s) and the con-

text. Given the central role that this ability plays in everyday life, practical

applications are countless. Trying to define an order, I’ve categorized ac-

tual implementations of Human Pose Estimation techniques considering the

purposes of the applications:

33

❼ Motion tracking for virtual reality, animation, videogames,

❼ Human-computer interaction,

❼ Safety,

❼ Security,

❼ Sport and training,

❼ Others.

The field that was (and is) revolutionized the most by human pose esti-

mation is the world of animation, including videogames and augmented and

virtual reality. Every expensive and awkward hardware can be replaced by a

simple camera (or a couple, for 3D-oriented animations), and the movements

are immediately transferred to an alter ego in a fantasy videogame, or a first-

person point-of-view hand in a virtual reality context.

Figure 2.18: Example of motion tracking in augmented reality.

The capability of a machine to perceive the surrounding space and fore-

seeing human movements makes it able to physically interact with people.

Human-computer interaction is the field that studies the interfaces between

people and computers, taking into account several factors from behavioral

sciences and design to biomechanics and neuroscience in the most advanced

34

researches. Human pose estimation is a unique tool for enabling new and

more human-oriented interaction based on familiar human gestures: it makes

possible remote controlling of an application using arms and hands poses or

content creation (writing, drawing, etc.) using particular body poses.

Human pose estimation has a wide application in system concerning safety.

In autonomous cars, an intelligent system able to map human body position

can prevent pedestrians’ movements in order to avoid road accidents or simply

detect persons going across the pedestrian stripes. Home applications for fall

detection can be very useful in case of fainting, falls in the case of older people,

or tracking movements of babies.

Even if such applications could be incredibly beneficial, but their practical

implementations is limited by the required accuracy, close to 100% that is

required since the delicate situations that such systems have to handle.

Security has massively exploited human pose estimation, usually embedded

in most modern intelligent surveillance systems. Pose detection can automat-

ically identify dangerous situations like fights or robberies, or have a trace of

a suspicious person.

Sport is the field where human pose estimation has had and has the largest

commercial application. Almost every sport that includes some physical ac-

tivity can benefit from pose recognition, for several purposes: training, evalu-

ation, comparison between athletes, simulations of real situations. The most

common human pose estimation based applications regard self-training: the

model can follow the user movements and discover wrong poses, like a per-

sonal trainer. The algorithm can figure out from the relative position of the

joints if the user is performing a wrong movement, and instantly it can sug-

gest the custom correction, keeping trace of each movement (data that might

be used for medical purposes). Based on our peculiar body and movements

the algorithm can also identify which is the training that best fits our natural

poses.

35

Figure 2.19: Example of home training analyzed by a digital personal trainer.

In sports with dynamic schemas, such as football or basket, human pose

estimation can be used to analyze the position and trace the movements of

each player taking part in the attack or defense pattern, both to figure out

the opposing team’s tactics and to improve your team’s ones.

Sports like dance can benefit from human pose estimation as well, having

a powerful tool to analyze specific poses and choreography.

Human pose estimation can be applied to almost every situation in which

can be useful having a trace of human pose: some other applications are pars-

ing clothes, i.e. segmentation of different clothes exploiting joints positions,

nonlinear video exploration, or nonlinear database queries.

Our application combines the latter two techniques with sports videos,

specifically climbing videos.

36

Chapter 3

Nonlinear climbing video indexing

Application

As a climber, the most difficult part of the training session is to figure out

which is the right sequence of movements to send the route, and very often

the only way is to wait for someone smarter and more experienced to do the

route and following his movements.

To face this common issue, my supervisor, Jaakko Lehtinen, and I decided

to develop an application where the user can get pieces of different videos

where the climber is in the requested pose, or in a certain passage of the

route. We applied human pose estimation to climbing videos to create a

database that can be accessed from the pose of interest, and a smart interface

to get all interesting parts of different videos and to compare, with the usage

of a scrubber, how different climbers have done the same passage.

The first section of this chapter is about the work and research done be-

fore starting the implementation: human pose estimation algorithms review,

current applications, user stories, sketches about user interface and user ex-

perience, analysis of the best software architecture to accomplish our goals.

The second section is about the database: after a brief review of OpenPose

and how it fits with our goals, I described where I have taken the data and

how pose data are stored in the database.

The third section is about the first implementation I did, programming a

prototype to test the basic functionalities of the application and how well it

performs.

37

The fourth and fifth sections are about the final application, explaining step

by step the frontend, the user interface, and information flow with respect to

user actions, and all the components of the server, i.e. where almost all the

logic takes place.

3.1 Preliminary work and research

The first step was defining the actual benefits that the application should have

brought. I chose the agile framework for development, and the first step that

this approach suggest is defining some user stories, in order to identify who,

how and in which scenario will benefit from the application. After several

discussions with my professor, we have identified three main user stories:

❼ As a user, I want to get all the videos where a selected body part is in a

selected area of the wall I’m going to climb, in order to look at how other

climbers have done that passage. (fig. 3.1)

❼ As a user, I want to scrub across different clips in order to make a com-

parison between different climbs on the same passage. (fig. 3.3)

❼ As a user, I want to get all the clips where the climber is in a certain pose

by selecting the frame (with the climber in that particular pose), to look

at how different climbers had done a certain movement.

Each user story corresponds to a specific feature of the application.

With three sketches, I’ve defined the structure of the interfaces for the

different pages of the application, linking each of them with the user stories

(and corresponding features). They showcase the user experience, i.e. how

I imagine the information flow and the path that the user has to follow to

achieve his scope.

The first page (fig. 3.1) shows the different views of the gym: each image

corresponds to a wall or part of a wall. It lets the user select the wall with

the route of interest. The second one (fig. 3.2) enlarges the selected view,

where the user can select the area of interest (e.g. the area within the holds

38

of the difficult passage); a stylized skeleton on the left lets the user choose 1

out of the 25 body key points that OpenPose detects.

Figure 3.1: First page of the application.

Figure 3.2: Second page of the application.

39

Figure 3.3: Third page of the application.

The third page (fig. 3.3) shows all the videos gotten from the query. The

user can select the video that will be displayed, starting from the requested

frame, i.e. the first frame where the climber has the selected body part in the

selected area. The video can be closely explored with a scrubber that lets the

user go back and forth frame by frame.

Once the general shape of the application was defined, the first issue was

finding the best algorithm (considering different metrics and features) to map

the videos and to get the pose of the climber frame-by-frame.

The first feature was the ability to perform human pose estimation within

certain conditions, specifically with video of medium quality, blurry, hard-to-

follow, and noisy at times, since the main sources are users’ smartphones and

gym security cameras (where available).

The second requirement was the open-sourceness, with an inspectable code

and a license compliant with our research project.

Regard performances, I did not establish a specific threshold for metrics

like accuracy, precision, or recall, but empirically I’ve checked an overall per-

formance that guaranteed application usability within our conditions. Even

40

if the detection misses some frames, the model has to guarantee a full detec-

tion in at least one frame per second, in order to retrieve the pose that is

almost the same as the missing frames. Linked to the latter point, I sought

an algorithm that performs detection frame by frame, without considering in-

formation about previous frames, i.e. considering each frame as stand-alone.

After a broad review of the most popular open-source frameworks and mod-

els for human pose estimation, presented in the previous chapter, I came up

with OpenPose [44]. In the section about the database, I demonstrate how it

perfectly fits with the application’s needs.

Once the main features of the application were defined and the algorithm

for pose estimation was selected, I started to think about the architecture of

the application itself.

Each climbing gym has to collect its own video set, based on its views and

routes. Videos can be manually collected (and added), shot with every kind of

camera (from smartphones to professional cameras), or can be automatically

taken from fixed cameras in the gym like security cameras or simple webcams.

Once the database is set up, the application is intended to be used from two

main devices: a personal phone or a (shared) screen in the gym. I choose to

model the architecture following the client-server framework, using Rest API

to communicate, with the entire logic part located in the server.

Figure 3.4: Rest API framework.

An API, or application programming

interface, is a set of rules that define

how applications or devices can connect

to and communicate with each other;

it enables an application or service to

access a resource within another ap-

plication or service. The application

or service doing the accessing is called

the client, and the application or ser-

vice containing the resource is called

the server. A Rest API is an API that

41

conforms to the design principles of the

Rest, or representational state transfer architectural style. Principles of this

framework are:

❼ Uniform interface: specification of the API is a contract between the app

and the server. The app needs to know that it can hit the same URI to

get a particular piece of data, and needs to know that it’ll get the data

in the format that it expects, and that format will not change.

❼ Statelessness: The specification of the API should provide all the infor-

mation. It does not expect nor assume that any state from previous calls

has been preserved. The server should have no knowledge of prior re-

quests. The client needs to provide all the information necessary for the

server to provide a response.

❼ Client-Server model: The point of intersection between the server and the

app is the database schema. The two most important points of intersec-

tion between the client (frontend) and the server (backend) are the data

format that client needs and the granularity of the information.

❼ Caching: Caching is the temporary storage of information outside of the

server.

❼ Layered architecture: The application is organized in layer: each layer

knows about the layer next to it, and no more and it is responsible for a

specific role.

I choose this pattern in order to reduce the computational demand on the

user device (that might vary from a smart tv in the gym to a smartphone),

to have a protected and supervised access to the database.

To make the application portable (i.e. easily accessible from different de-

vices) the frontend part was developed as a web-based application, using

React framework (discussed in section 3.4). Such a framework is suitable for

mapping onto a mobile-based application, for further developments.

42

Since Python allows most of the scientific computation required by the logic

part, the server was built up with Flask Python (discussed in section 3.5),

using a React native proxy server in Javascript.

3.2 OpenPose and the database

OpenPose is the selected algorithm for human pose estimation. It was de-

veloped at Carnegie Mellon University by Zhe Cao, Gines Hidalgo, Tomas

Simon, Shih-En Wei, and Yaser Sheikh [44], in 2018 (the general idea and

overall pipeline are still the same as the first model developed around the

idea of Part Affinity Field, 2016 [45]). The first requirement was the open-

source code, it is entirely on Github and is very well documented. OpenPose

is originally written in C++ and Caffe.

The pipeline is structured as follows. An input RGB image is first analyzed

by a pre-trained convolutional neural network such as the first 10 layers of

VGG-19, to produce a set of feature maps F. Feature maps are fed as input

into a ”two-branch multi-stage” CNN. Two branch means that the CNN pro-

duces two different outputs; multi-stage is intended the stacked architecture

of the model (where each network is on top of the other at every stage).

Figure 3.5: Architecture of the two-branch multi-stage CNN.

The top branch, shown in beige, predicts the confidence maps of different

body parts location such as the right eye, left eye, right elbow, and others.

The bottom branch, shown in blue, predicts the affinity fields, which represent

43

a degree of association between different body parts. PAF are mathematically

defined as

L = (L1, L2, L3...Lc)

Lc ∈ Rw×h×2

C ∈ {1...C}

Figure 3.6: Key points detected by OpenPose.

C is the total number of limbs, i.e.

part pairs, defined by a couple of con-

nected key points. The latter depends

on the dataset that OpenPose is trained

with; I choose a model pre-trained on

COCO keypoint dataset [47] plus a cus-

tom dataset for foot, with a total of 25

key points that define the human body

(fig. 3.6).

Each element in the set L is a map

of size w x h where each cell contains a

2d vector representing the direction of

pair elements.

At the first stage, the network pro-

duces an initial set of detection con-

fidence maps S and a set of part

affinity fields L. Then, in each subse-

quent stage, the predictions from both

branches in the previous stage, along

with the original image features F, are concatenated and used to produce

more refined predictions. In the OpenPose implementation, the final stage t

is chosen to be 6.

Finally, the confidence maps and affinity fields are being processed by

greedy inference to output the 2D key points for all people in the image.

In order for the network to learn how to generate the best sets of S and

L, the authors apply two loss functions at the end of each stage, one at each

44

branch respectively. The paper uses a standard L2 loss between the estimated

predictions and ground truth maps and fields. The combined loss function

are summed up together to come up with the overall objective.

The base pipeline detects the body, including the feet; it can be further

extended with face detection, which exploits the facial keypoints output of

the core block (ears, eyes, nose, neck), and hand detection, generated starting

from hand keypoints. The core block was enough for our purposes; moreover,

hands are often hidden by the climber body or the holds, so hard to detect

reliably.

OpenPose turned out to be the best choices for our purposes for the fol-

lowing reasons:

❼ State-of-the-art performance regardless of the number of people, useful

with crowded walls. With videos recorded with means of security cam-

eras, or smartphones, videos are automatically sent to the database: the

algorithm has to perform well and in a reasonable time regardless of the

number of people, potentially many on the view of a camera.

❼ High performance with medium/low-quality videos. As told before, videos

are supposed to be recorded without professional supports: most likely

videotape will be taken with smartphones or cameras provided by the

gym (security cameras, webcam, etc.). Such an unforeseeable scenario

requires a model able to perform well even in presence of noise, blurred

scenes, or low-quality videotapes.

❼ Open-source code. The code has to be inspectable, in order to study the

exact behavior and figure out if it fits with our specific purposes.

❼ Stateless algorithm between frames. Given the unreliable quality of videos,

some frames can be difficult to detect. The application requires that the

model detects correctly at least one frame per second, meaning 1 over 25.

In this way the application guarantees that the pose of missing frames can

be approximate to the closest detected frames, without any inconsistency.

45

1 {

2 "version":1.3,

3 "people":[{"person_id":[-1],

4 "pose_keypoints_2d":[0,0,0,839.338,480.219,0.9287,868.807,483.189,0.844,..],

5 "face_keypoints_2d":[],

6 "hand_left_keypoints_2d":[],

7 "hand_right_keypoints_2d": [],

8 "pose_keypoints_3d":[],

9 "face_keypoints_3d":[],

10 "hand_left_keypoints_3d":[],

11 "hand_right_keypoints_3d":[]}]

12 }

Another main advantage of OpenPose is its license: it allows academic and

research use.

The code can be cloned and forked from Github [48]. After the building,

that required the change of a couple of lines to adopt a new version of C++,

the executable takes a video as input and store a JSON file for each frame.

The json schema is represented above. For each person it defines a se-

ries of detection: the core is the pose keypoints 2d, that contains 75 values

(25x3): each of the detected 25 keypoints (body+feet) is represented with

the coordinates of the point (x, y) plus a value k that reports the confi-

dence of the detection, between 0 and 1. The other keys (face keypoints 2d,

hand left keypoints 2d, ...) are void in the basic usage. You can call the

executable passing as argument flags for enabling hand (- - hand) and face

detection (- - face).

The first step was mapping the entire set of files to one file per video. We

assume each video contains exactly just one climb till the top of a route (even

if there are other people in the view); this means that long videos have to

be splitted, producing one video for each climb, from the beginning to the top.

1 for file in files:

2 if file.endswith(".json"):

3 with open(dir_path+"/"+file) as f:

4 data = json.load(f)

5 if len(data[✬people ✬]) >0:

6 n=int(file.split(✬_✬)[1])

7 data = data[✬people ✬][0][✬pose_keypoints_2d ✬]

8 videoFrames[n] = data

46

1 {

2 "0": [[83.465, 918.788, 0.0782075, 883.4, 930.514, 0.678635, ...]],

3 "1": [[0, 0, 0, 883.465, 927.718, 0.884475, 907.018,930.466, 0.822, ...]],

4 "...": [[....]],

5 "274": [[974.785, 568.51, 0.061777, 965.892, 598.028, 0.902364, ...]],

6 "...": [[....]],

7 "n-frame": [....]

8 }

The code loops for every JSON file of the videos, and collect in an array the

values of pose keypoints 2d for each person detected in the frame. The final

output for each video is a single JSON as shown above.

The JSON collects a list of pair key-values, with the number of the frame

as key and the list of the 75-entries array (one for each person detected) as

value. Other entries of the original JSON are ignored.

Files, i.e. videos and JSON, are organized in a file system.

root

camera1

video

video1.avi ...

video json

video1.avi.json ...

... camera n

video

climb 234.mp4 ...

video json

climb 234.mp4.json ...

First access to the database is the number of the camera, that corresponds

to a view of the gym. Several routes can be on the same view. Each view

has two folders: video, which contains all video belonging to that view, each

one stored with its original name, and video json, which contains one JSON

file for each video of the view. The name of the latter file is the same as the

47

corresponding video (with .json extension). In this way, each video can be

automatically loaded on the database without any persistency of metadata

about videos (like new names, IDS, etc.) and JSON files. Nonrelational

databases like MongoDB could be the best solution for storing the data.

Each gym has to collect its own videos, based on its views and routes.

They can be recorded from any source, e.g. smartphones, webcams, security

cameras, with the only requirements of fixed point of view. Long videos has

to be splitted in a series of videos, where each video correspons to a climb

from the beginning to the top. OpenPose can help in identifying when the

climber begins the climb, and when (and if) he reaches the top. To recognize

the climber on the top can be used a query on the mapped video, seeking the

frame where the climber has both the hands on the last holds, and follows

the path forward till the beggining of the climb. Eventually, once detected

path of the climber of that specific video, data regard other people (detected

on the same video) can be removed.

Human Pose Estimation can help in cleaning the raw video: data of people

too close to the camera (meaning not on the wall) can be detected using a

threshold on the distance between every key points. This latter part is outside

of the project scopes.

3.3 Prototype

Before implementing the real application, I did some experiments to verify

the basic usage and test some behaviors of the application with respect to

real scenarios. The prototype was a stand-alone, single window application.

It lets select the view, choose the interesting area, choose the key points (just

four in this case) and get all the parts of the videos where the climber has

the selected body parts in the selected area.

I present the prototype starting from the Graphic User Interface, then talk-

ing about features and technical details.

It is entirely built in Python, using numpy package for scientific compu-

48

Figure 3.7: GUI of the prototype.

tation (array and matrices operations), PIL package for image manipulation,

pygame and OpenGL for building the User Interface. The latter is a set of

Python modules designed for writing videogames, but allows to create multi-

media programs as well; it can rely on different backends for graphic rendering:

I selected the most used one, OpenGL. It requires an initialization with the

definition of the size of the interface, the selected backend, the creation of the

context, and the render.
1 pygame.init()

2

3 size = 1854, 990

4

5 pygame.display.set_mode(size , pygame.DOUBLEBUF | pygame.OPENGL)

6

7 imgui.create_context ()

8 impl = PygameRenderer ()

The images (images of the views and thumbnails for retrieved videos) have

to be mapped into the TEXTURE variable, required by PyGame for the ren-

der of the images.

1 def loadImage(image , widthm):

2 textureSurface = pygame.transform.flip(image , False , True)

3

4 ratio = textureSurface.get_width ()/widthm

5

49

6 width = textureSurface.get_width ()/ratio

7 height = textureSurface.get_height ()/ratio

8

9 textureSurface = pygame.transform.scale(textureSurface , (int(width), int(height)))

10

11 textureData = pygame.image.tostring(textureSurface , "RGBA", 1)

12

13 texture = gl.glGenTextures (1)

14 gl.glBindTexture(gl.GL_TEXTURE_2D , texture)

15 gl.glTexParameteri(gl.GL_TEXTURE_2D , gl.GL_TEXTURE_MAG_FILTER , gl.GL_LINEAR)

16 gl.glTexParameteri(gl.GL_TEXTURE_2D , gl.GL_TEXTURE_MIN_FILTER , gl.GL_LINEAR)

17 gl.glTexImage2D(gl.GL_TEXTURE_2D , 0, gl.GL_RGBA , width , height , 0, gl.GL_RGBA ,

18 gl.GL_UNSIGNED_BYTE , textureData)

19

20 return texture , width , height , ratio

It offers a series of components for the design of the interface: I used boxes,

scrollbars, buttons.

At the beginning, the application shows just the vertical box with a scroll-

bar (fig. 3.7) on the left, containing the set of the available views.

Once the user selects one of them (by clicking on the image itself), the

second huge box in the upper-right area (fig. 3.7) is shown. It contains the

enlarged selected view. The box on the upper-right corner (fig. 3.7) with

selectable body points is displayed as well. Available body points in this first

implementation, selectable one per time, are left and right hand, and left and

right foot. In the real application, the user can choose among all the 25 body

key points detected by OpenPose, more than one per query.

The user can select an area on the enlarged imaged and choose one among

the four key points (left hand, right hand, left foot, right foot). Automat-

ically the database is queried in order to get the requested parts of the videos.

Logic part is similar to the final application. The code of the main function

of the logic part in the prototype is shown below.

1 for file in files:

2 frames = []

3 if file.endswith(".json"):

4 with open(camera_name+"/videoJson/"+file) as g:

5 data = json.load(g)

6

7 for num in data:

8 #print(frames)

9 frame = data[num]

10 #print(num ,frame ,✬\n✬)

11 #time.sleep (0.5)

50

12 if frame[selectedPart]/ selected [2]> start [0] and frame[selectedPart]/

selected [2]<end[0] and frame[selectedPart +1]/ selected [2]>start [1] and frame[selectedPart

+1]/ selected [2]<end [1]:

13 frames.append(int(num)) #Collect the frame number where the dected

part is inside the interesting area

14 date.append ((frame[selectedPart]/ selected [2],frame[selectedPart +1]/

selected [2])) #Collect the coordinates for trace later the detected points (Extra

feature)

15 if len(frames) >0:

16 actual = []

17 max = frames [0]

18 min = frames [0]

19 for g in range(len(frames)):

20 if frames[g]>max:

21 max = frames[g]

22 if frames[g]<min:

23 min = frames[g]

For each file in the video json folder (i.e. for each json mapping each video

belonging to the view), are selected the frames in which the climber has the

selected body part in the selected area; they are collected in an array, storing

the number of the frame. If at least one frame is found, the application checks

the first and the last frames where the selected body parts were found. The

part of the video selected is in between the min and max frames.

Once videos are found, they are shown in the box on the bottom-left area.

There is a thumbnail for each video retrieved, that the user can click to start

the video player on new window, displayed using matpoltlib package.

Core features tested with the prototype are:

❼ Query videos in a nonlinear way, exploiting spatial configuration of body

parts.

❼ List all the retrieved (part of) videos.

❼ View each retrieved video one per time.

An additional feature of the prototype was that it highlights each pixel

in which the selected body part was at least once, shown in yellow on the

enlarged image (fig. 3.7): the result is a kind of path along the selected

area. The feature was removed in the final application, because the selection

of multiple key points, introduced in the final application, makes it hard to

51

highlight each pixel of each keypoint along the path.

Several conclusione comes up after the prototype. First of all, I ascertain

that pose and movements of the climber can be efficiently retrieved by se-

lecting the area of interest and the body parts. This lets me go on with the

development of the real application.

Testing out the prototype, and using it in a real case scenarios, I realized

that the most interesting use is selecting the are between two holds, to find

out the right pose between them. Studying one passage per time, it can be

repeated for the entire path, defining the entire way to the top.

The prototype lets the user choose just one key point per time, but it can be

actually much more interesting query the pose based on multiple key points,

e.g. the user may want to get all the videos in which the climber has both

the hands over the last hold (meaning that he has reached the top).

The user may want to figure out not just the pose he selected, but the pose

right before as well, in order to analyze how to get to that specific pose. To

add this features, the retrieved video has to include some frames in which the

climber is not yet in the selected area.

Then I’ve started the development of the final application, starting from

the research and consideration done at the beginning and the conclusions that

came up with the prototype.

3.4 Frontend

After preliminary research, case studies and prototyping, I started to build

the final application. As said before, I choose the server-client architecture: it

is a distributed application in which the server component provides functions,

services and resources to one or many clients, which initiate requests for such

services. Main advantages of client-server model are:

❼ Centralization: all necessary information are placed in a single location.

Access to all the resources is controlled by the server, that redirects the

client to the proper data.

52

❼ Security: access control can be added to enforce security, and grant access

just to authorized users.

❼ Scalability: whenever the user needs the network can increase the number

of resources such as clients and servers.

❼ Management: since all the files are stored in the central server, it is rather

easy to track, find and manage records of required files.

Besides, almost all the computation takes place in the server, without increase

the computation demand on the devices (supposedly with far less capacity

compared to a central computer).

The communication between two sides, client and server, happens through

the means of Rest APIs, whose benefits and features are explained in the

section 3.1.

The framework chosen for the development of the frontend is React. It

is an open-source JavaScript library for building user interfaces, created and

mainteined by Facebook with a large community. Main concern of React is

the state management and rendering of that state to the DOM (Document

object model, representing the HTML tree-structure of the user interface of

web sites); several other libraries are used within React in order to manage

routing between pages, style frameworks (e.g. Bootstrap), pre-built compo-

nents, dynamic page switcher.

React was developed with principles that have become the standard of web

programming. First af all, components approach: every element of the dom is

an encapsulated component, with its own variables and functions; components

can be nested and organized together in order to compose the User Interface.

This approach shapes the web page as a components structure, where each

one can be easily and dynamically substituted or changed, without compro-

mising the entire page. Such feature lead to the second principle of React:

simplicity. It uses a special syntax called JSX, built on top of JavaScript,

that makes the rendering logic inherently coupled with other UI logic, such as

event handling, state changes, how data is prepared for display. In a way JSX

makes able the creation of components that contain both logic and markup

53

in a single field, making far simpler the management and the control over the

entire page behaviour and appearance. Simplicity implies that React is easy

to learn, supported from a huge community of developer in the world (React

results the second most used language, with a share of 35.9%, preceded only

by JQuery). Another important feature of React is the native approach. It

can be used to create mobile application (native, as they were build with

native languages, meaning without losing any performance), using JavaScript

and JSX as programming languages. In this way, it is possible to develope at

the same time IOS, Android and web-based native applications. High perfor-

mance can be guarateed following the several warnings that React includes

in case of bad use of memory, components or functions. Moreover, with the

deployment the user can select the the production version, that encapsulates

and optimizes the code, producing a folder with all the code that can be easily

deployed on a web server.

The entire application (frontend side) is configured in the App.js, which

includes the fixed components (the bootstrap container and the navbar), and

redirect the interface to some pages or another based on the current path,

using react-router package.
1 class App extends React.Component{

2

3 constructor(props){

4 super(props)

5 this.state = {}

6 }

7

8 render (){

9 return(

10 <>

11 <BrowserRouter >

12 <Container fluid >

13 <Navbars/>

14 <Row className="justify -content -center box_views">

15 <Switch >

16 <Redirect exact from="/" to="views"/>

17 <Route path="/views" component ={ CameraViews}>

18 </Route >

19 <Route path="/query" component ={Query}>

20 </Route >

21 <Route path="/videos" component ={ Videos}>

22 </Route >

23 </Switch >

24 </Row >

25 </Container >

26 </BrowserRouter >

54

27 </>

28)

29 }

30 }

BrowserRoute wrap the entire interface, and enables the dynamic switching

between pages, rendering the new components without reloading the entire

page.

Each component is defined as a javascript class; they mantain inner vari-

ables in a variable called state, and, when invoked, can takes properties from

parent component through the props variable. A special method, called com-

ponentDidMount is the default method that React uses to launch something

as soon as the page is rendered. Every component includes the rendering

HTML as return argument of the render function.

I’m going to present every component of the application, each one corre-

sponsing to a single file.

3.4.1 Navbar

Bootstrap elements are used to model the navbar. It contains only a symbol

on the left ,that varies depending on the current page, followed by the name

of the project, Nonlinear Climbing Video Indexing (fig 3.8). The boolean

value home, in the state variable, switch between the ”home” button or the

”go back” one. The componentDidMount function checks if the current path

is the homepage, otherwise it changes home value to False. When shown, the

”go back” button calles the goBack function, that go back in history queue

of the browser.

Figure 3.8: The upper image is the navbar rendered in the home page, the lower is the navbar in the following
pages.

The Bootstrap container, the navbar, and a second container defined as a

Bootstrap Row element are fixed in the page: inner components are removed

or added but they remain in the view.

The route component switch between three views:

55

❼ /views : the home page, where different views are shown, i.e. images of

the walls in the gym.

❼ /query : second page, where the user can select the area in the image, and

body key points on a stylized skeleton.

❼ /videos : the last page, where there is the list of the thumbnail, one for

each retrieved video. It lets the user select one video and scrub frame by

frame on it.

When the application is launched, the user is redirect to views (fig 3.9).

Parent component rendered through the route component is the CameraViews

component.

Figure 3.9: /views page.

3.4.2 CameraViews

Loaded value in the state variable of the component is initialized to False. As

soon as the component is rendered, the function componentDidMount gets all

the available images that are exposed by the server, maps them in the right

HTML code to be displayed, and changes loaded value. It is started a second

rendering that add to the page the images. Once the user click on one of

the displayed images, the Link component (react-router) redirect the user to

the new page, /query (fig,3.10), passing as state value the id of the selected

56

images.

Figure 3.10: /query page.

3.4.3 Query

Query component is rendered when the user is redirect to the query path.

It recieves just one variable from the parent components, i.e. the id of the

selected image.

The selected image, taken through the id, is shown enlarged (fig. 3.10), and

on it is mounted the RectangleSelection component. On the left is rendered

the Skeleton component. A button is used to send the query, with area and

selected body parts.

3.4.4 RectangleSelection

1 export default class ReactRectangleSelection extends React.Component {

2 constructor(props) {

3 super(props);

4 this.animationInProgress = null;

5 this.state = {

6 hold: false ,

7 selectionBox: false ,

8 selectionBoxOrigin: [0, 0],

9 selectionBoxTarget: [0, 0],

10 animation: "",

11 found: false

12 };

13 }

Constructor of the component mantain in the state variable memory of the

following information:

57

❼ hold : true il the user is currently drawing the box on the image (mouse

down on the image).

❼ selectionBox : true if the user has defined a box in the image.

❼ selectionBoxOrigin and selectionBoxTarget : contains the coordinates of

the box.

❼ found and animation : are used to render the box (fig. 3.11).

When the user clicks the mouse on the image, handleMouseDown(event)

function is called. It resets, if any, the previous box, stores the coordinates

of the mouse and trigger the flag hold in the state element, in order to save

that the user started the selection. OnMouseMove property calls another

function when the user moves the mouse : if the user is moving the mouse

without releasing the click, it simply trigger to True the selectionBox value,

otherwise, if the mouse down is released, it stores in selectionBoxTarget the

current position of the mouse. We now have stored the origin and the target

point of the selected area. OnMouseUp calls a closeSelectionBox function,

that highlights in red the selected area. The data about the selection are sent

back to the parent with a little trick: in the props variable, are sent to the

child a function that stores in the parent’s memory the values of coordinates

of the selected box.

Figure 3.11: On the right, the box shown while the user is still drawing the box. On the left, the box rendered
after the selection has ended.

3.4.5 Skeleton

The component initializes each key point in the state element:

58

1 nose: {onClick: (click => this.onclick(✬nose✬, this.state.nose)), x: 746/ scale , y: 364/ scale

, fill: ✬#FFFFFF ✬, radius: 7},

2

3 left_shoulder: {onClick: (click => this.onclick(✬left_shoulder ✬, this.state.left_shoulder)),

x: 540/ scale , y: 648/ scale , fill: ✬#FFFFFF ✬, radius: 7},

4

5 ...

Each point contains information about coordinate (parametrized with scale

variable), color (white if not selected, red if selected), the radius of the circle

(7 if not selected, 13 if selected). The onClick function changes the color

and the dimension of the rendered point, to highlight that the point has been

selected (or deselected).

They are linked through limbs, i.e. lines that connect two body key points

(fig. 3.12). They are initialized in the state element as well.

1 neck_to_rShoulder: { points: [this.state.neck.x, this.state.neck.y, this.state.

right_shoulder.x, this.state.right_shoulder.y], stroke: this.state.neck.fill },

2

3 neck_to_midHip: { points: [this.state.neck.x, this.state.neck.y, this.state.mid_hip.x, this.

state.mid_hip.y], stroke: this.state.neck.fill },

4

5 ...

Figure 3.12: Stylized skeleton

with key points selected by the

user.

The skeleton is drawn with react-konva package,

which makes available pre-built components that

represent geometrical structure. The combination

of them can be used to represent more complex fig-

ures. Elements used for the skeleton are just circles

and lines; every time the user selects a point, the

skeleton is rendered again with updated parameters

of circle radius and color.

1 <Layer >

2 {Object.values(this.state).map(elem => create_point(elem))}

3 {Object.values(this.limbs).map(elem => create_limb(elem))}

4 </Layer >

The component Layer wrap the components, that

will be later rendered in the canvas. Data stored in

the state variable are mapped with functions that

take data of points and limbs (coordinates, color,

radius) and maps them in the Line and Point com-

ponents.

59

Beneath the image and the skeleton, there is the

button that sends the request to the server. It redi-

rects the user to the last page, /videos (fig. 3.13), passing as state the fol-

lowing variables: the id of the selected view, the id of the selected key points,

the coordinates of the selected area. Coordinates are normalized taking them

with respect to the image, and dividing them by the width and height of the

image itself.

Key points and their ids are: nose - 0, neck - 1, right shoulder - 2, right elbow

- 3, right hand - 4, left shoulder - 5, left elbow - 6, left hand - 7, mid hip -

8, right hip - 9, right knee - 10, right ankle - 11, left hip - 12, left knee - 13,

left ankle - 14. Other key points are not taken into account since are not

useful for climbing pose purposes.

Figure 3.13: /videos page.

3.4.6 Videos

Videos component receives from the previous page coordinates of the selected

box and ids of selected key points. if one of the four values defining the box

(x origin, y origin, x target, y target) is negative, or the length of the array

containing the selected key points is 0, a variable in the state component is

toggled to True. While rendering, if any of the variables indicating the error

is set to True, an error message is displayed, with a button to go back to the

previous page. If there are no errors, at the first render a waiting box is dis-

played, while the function componentDidMount calls the getVideos function

60

from API file.

API file contains all the asynchronous functions that communicate with the

server, sending the proper HTTP (following the Rest framework). API called

by videos page at first rendering is getVideos function. It takes coordinates

of the box, the id of the image, and ids of body key points, and sends the

request to getVideos endpoint of the server. The request consists of a POST

HTTP request that contains in the body all the parameters it has received.
1 async function getVideos(x_origin , y_origin , x_target , y_target , image_name , body_parts){

2 console.log(x_origin , y_origin , x_target , y_target , image_name , body_parts)

3 let url = ✬/getvideos ✬

4 return new Promise ((resolve , reject) => {

5 fetch(url ,{

6 method: ✬POST✬,

7 headers: {

8 ✬Content -Type✬ : ✬application/json✬,

9 },

10 body: JSON.stringify ({ x_origin: x_origin , y_origin: y_origin , x_target: x_target ,

y_target: y_target , image: image_name , joints: body_parts })

11 }).then(res => {

12 if(res.ok){

13 res.json().then(list => resolve(JSON.parse(list)))

14 } else {

15 res.json().then(obj => reject(obj))

16 }

17 })

18 })

19 }

The response from the server contains a list of maps with the URL of the

retrieved video and the frame where the climber enters with the selected key

points in the selected area.

Once all the data are fetched and stored in the frontend, the page is ren-

dered again. It contains a wide, void grey box on the left (where later will be

displayed the selected video, along with the scrubber), and a vertical scroll-

bar on the right with all retrieved videos, as images of the first frames of the

requested videos (fig. 3.13).

The list is created with a mapping function create containers, that trans-

forms each element of the array returned by the server in a complex HTML

component.
1 function create_containers(elem , click){

2 return(

3 <>

4 <div className="container_video" onClick ={click} id={elem.url} frame ={elem.frame}>

5 <div style ={{ pointerEvents: ✬none✬}}>

61

6 <Player src={elem.url} startTime ={elem.frame /25} muted ={true} playsInline ={true}

preload=✬auto✬>

7 <ControlBar disableCompletely ={true} className="my -class" />

8 <BigPlayButton disabled ={true}/>

9 </Player >

10 </div >

11 </div >

12 </>

13)

14 }

It takes the element of the array and a function that handles the click

event. Most external div manage the information with the parent component

(id, frame, onClick function). The Player component is imported with the

external package video-react. I used this package to display the video as

an image of the requested frame. The player package takes the URL of the

video, which is exposed by the server, the start time, in this case, given by the

number of the frame divided by 25 (i.e. the number of frames per second),

muted component, set to true. Inside the player component, ControlBar

component can be used to disable the control bar; the final result is that the

video is fixed to the started frame, i.e. the frame in which the climber enters

the interesting area with the selected key points.

If the user selected one image, it is called the onclick function: it simply

changes the state of the component, setting selected element to the id of

the corresponding video, frame element to the frame number. Moreover, it

stores in the state variable the height, the width, and the duration of the

entire video. This information is used later by the scrubber. The page is

rendered again, filling the empty, large grey box on the left with the Scrubber

component (fig. 3.14).

3.4.7 Scrubber

The component receives, under the props property, the selected frame, the

number of the first frame, height, width, and duration of the video. It

stores all the variables in the state element, along with a flag variable called

main extracted, by default set to False.

After the first render, while it is displayed the loading component, com-

ponentDidMount function calls the asynchronous function extractInterest-

62

Figure 3.14: Page once the user has selected a video to visualize.

ingFramesFromVideo. Since the scrubber takes an array of images, one for

each frame of the video, frames have to be extracted from the video. The

extractInterestingFramesFromVideo does exactly this: it receives the URL of

the video, the requested frame, the framerate (default set to 25) and gives

back an array with all the frames. To do so, the function uses a fake canvas

element (that is not attached to the DOM of the page), with the same di-

mension of the video, to transform frame-by-frame the video into images. I

decided, following the conclusions after the prototype to set the central point

to the frame where the climber enters into the interesting area, and get 200

frames before that frame, and 200 frames after that frame. This number,

even if slows down a little bit the application, since all the extraction is in-

evitably done on the client-side, lets the user explore the pose starting from

some seconds before it.
1 while(currentTime < interval*final) {

2 video.currentTime = currentTime;

3 await new Promise(r => seekResolve=r);

4 context.drawImage(video , 0, 0, w, h);

5 let base64ImageData = canvas.toDataURL(✬image/jpeg✬, 0.5);

6 frames.push(base64ImageData);

7 currentTime += interval;

8 }

Inside our custom scrubber, is included an external Scrubber component,

from react-scrubber package. It takes min and max values, current value, and

calls a function onScrubChange. When started, the value of the scrubber is at

200, i.e. in the middle, and the first frame is shown in a simple img component

above the scrubber. When the user changes the value of the scrubber, it is

63

changed the image shown by the img component, rendering from the array

the frame at the index corresponding to the new scrubber value (fig. 3.15).

Figure 3.15: The rendered image with the scrubber bar.

The user can select one video per time, explore with the mean of the scrub-

ber the video frame by frame, and figure out how to do a particular pose.

Let’s now dive into the backend.

3.4.8 Backend

There are two backends linked together, one the React default server built in

Javascript, and a second one built in Python, using the web framework Flask

to module the server. The React backend serves and manages the components

of the page, by default initialized with the React project. The second one is

the server of the application where the logic happens, which exposes the API

and media resources.

Flask is a collection of libraries and modules that enable web application

developers to write applications. It is very suitable for small projects, that

require a robust yet simple server to handle HTTP requests; strengths of

Flask are:

64

❼ It’s easy to set up;

❼ It’s supported by an active community;

❼ It’s well documented;

❼ It’s very simple and minimalistic;

❼ It’s flexible enough that you can add extensions if you need more func-

tionality (not our case).

The backend folder contains all the files related to the backend develop-

ment. It contains the static folder, which contains all the media resources

that the server exposes to the client: view images and videos. The venv

folder contains all the resources required by flask, i.e. binaries and libraries.

The start.sh script launches the flask environment and the application.

The starting script launches the api.py files, that is the file that initializes

the server, listens to the requests, and handles them.

The GetVideos class contains the API exposed by the server. The post

function transforms in a JSON object the body of the post request. It takes

the id of the view from the json object and builds the name of the folder

where are all the resources of that view. For each file in the videoJson folder,

the function reads the file inside a JSON object, and for each frame of the

JSON object checks if all the requested body parts (taken from the body of

the request) are in the selected area (taken from the request body as well).

The first frame that contains the selected body parts in the selected area is

stored in a variable. The variable url list contains all the videos that have at

least one interesting frame, storing a couple of pair key-value, containing the

URL of the video and the number of the frame.

The variable is eventually encoded as a JSON object and returned as a

response to the HTTP call.

65

1 HTTP REQUEST

2

3 Headers:

4

5 POST /getvideos HTTP/1.1

6 Host: localhost:3000

7 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0

8 Accept: */*

9 Accept-Language: en-US,en;q=0.5

10 Accept-Encoding: gzip, deflate

11 Referer: http://localhost:3000/videos

12 Content-Type: application/json

13 Origin: http://localhost:3000

14 Content-Length: 152

15 Connection: keep-alive

16 Cookie: _ga=GA1.1.1970342238.1598883523

17 Sec-GPC: 1

18

19 Request Body:

20

21 {

22 image: "camera_2"

23 joints: [0: 7, 1: 4]

24 x_origin: 0.3423

25 x_target: 0.6234

26 y_origin: 0.5704

27 y_target: 0.7801

28 }

29

66

1 HTTP RESPONSE

2

3 Headers:

4

5 POST /getvideos HTTP/1.1

6 Host: localhost:3000

7 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0

8 Accept: */*

9 Accept-Language: en-US,en;q=0.5

10 Accept-Encoding: gzip, deflate

11 Referer: http://localhost:3000/videos

12 Content-Type: application/json

13 Origin: http://localhost:3000

14 Content-Length: 153

15 Connection: keep-alive

16 Cookie: _ga=GA1.1.1970342238.1598883523

17 Sec-GPC: 1

18

19 Response Body:

20

21 {

22 "[{\"url\": \"/static/video_1.mp4\", \"frame\": \"211\"}]"

23 }

24

67

68

Chapter 4

Results and Conclusions

The project started around the idea of combining two common passions of my

professor and me: computer science, specifically deep learning, and climbing;

Human Pose Estimation was the perfect intersection between both of them.

The project was since the beginning the development of a fully-working ap-

plication, where the user could benefit from the mapping of climbing videos

performed by Human Pose Estimation algorithm. With the use of User Sto-

ries we defined some common situations that each climber faces during the

training phase, and starting from them we defined the main features of the

application.

The organization of the database and key points data retrieved by Open-

Pose was not trivial, since they needed to be stored in a way that facilitated

the research (i.e. coordinates of the point included in a certain area). I moved

all the JSON files, one per frame, in a unique JSON file, per video. It facili-

tates the check performed by the Python script called by the API.

The first practical development of the application was the prototype, which

demonstrated successfully that climbing videos, mapped with OpenPose, can

be queried using spatial coordinates and body parts. It was useful for having

a clear picture of the features of the real software as well. Starting from the

prototype results, I moved to the final application. since the beginning the

idea was about the development of an application with features and archi-

tecture that could be used in a real scenario. I structured the application

69

with a client-server framework, considering the issues that could show up in

a practical situation. Flask framework was used to manage the server and

Rest API requests. The User Experience was carefully designed: three pages

let the user select the proper area on the wall and body points. The retrieved

videos are displayed on a scrollbar on the left; once selected, the video is

processed to extract the interesting frames. Frames are collected in an array

and rendered in the canvas based on the scrubber value. This method makes

the scrubber smooth since it does not have to compute the frame on-demand.

400 frames are selected, computed, and stored in the array, using the first

frame retrieved by the server as reference point. The scrubber is initialized in

the middle, and goes from 0 to 400: each value corresponds to a specific frame.

The result of the project is an application built in React and Python, with

the full code open-source. I and my professor did not intend the application

to be used for commercial purposes. The main contributions of the project

are:

❼ Amatorial climbing videos can be mapped with OpenPose.

❼ Client-server architecture, with Rest API communication, can be used

to manage the connection between one central database and all the re-

sources.

❼ Video can be queried using coordinates and body key points.

❼ The scrubber with pre-loaded frames is an efficient tool for the user to

explore the video.

Code is opensource at available on GitHub

(https://github.com/danielekp/nonlinear-climbing-video-indexing).

Regard the application, I did not implemented a way to exploit Human Pose

Estimation to cut and select videos to feed the database. Data are supposed

to be taken from the gym following the restriction about a fixed point of view.

Considering a long videotape, Human Pose Estimation can be used to identify

in which part of the video the climber has reached the top, following back

70

the path in order to identify the started point of the climb; having starting

and the top point of the climb the video can be cut and added to the database.

Human Pose Estimation applied to climbing videos can also be used to

interactively exploring a long climbing videotape, e.g. competition videos,

where a fixed camera records hours of different climbers trying the same

routes. The video can be navigated by selecting a particular area and au-

tomatically get all the frames where the climber is in the selected in area. It

can be used to evaluate different performances and make comparison as well

as well.

A final consideration is that all my implementation was based on climbing

videos, but Human Pose Estimation offers unlimited benefits to every sports,

from training, to analysis and evaluation.

71

72

Chapter 5

Bibliography

[1] G. Johansson, Visual perception of biological motion and a model for its

analysis, Perception Psychophys.14(2), 1973, 201–211.

[2] T. Calvert and A. Chapman, Analysis and synthesis of human movement,

in Handbook of Pattern Recognition and Image Processing: Computer Vision

(T. Young, Ed.), pp. 432–474. Academic Press, San Diego, 1994.

[3] N. Badler, C. Phillips and B. Webber, Simulating Humans, 1993.

[4] M. A. Fischler and R. A. Elschlager, The representation and matching of

pictorial structures, IEEE Transactions on Computer, 22(1), 1973.

[5] C. Charayaphan and A. E. Marble, Image processing system for interpret-

ing motion in American Sign Language, Journal of Biomedical Engineering,

Volume 14, 419-425, 1992.

[6] E. Hunter, J. Schlenzing and R. Jain, Posture estimation in reduced-model

gesture input system, 1995.

[7] Randal C. Nelson and Ramprasad Polana, Motion Detection and Recogni-

tion Research, https://cs.rochester.edu/u/nelson/research/motion/motion.html,

1990-1995.

[8] Pedro F. Felzenszwalb and Daniel P. Huttenlocher , Pictorial structures

for Object Recognition, International Journal of Computer Vision, 2005.

73

[9] D. Ramanan, Learning to Parse Images of Articulated Bodies, Advances

in Neural Information Processing System Conference, 2006.

[10] M. Pawan Kumar, A. Zisserman and P. H. S. Torr, Efficient Discrimina-

tive Learning of Part-based Models, 2009

[11] S. Johnson and M. Everingham, Combining Discriminative Appearance

and Segmentation Cues for Articulated Human Pose Estimation, 2009.

[12] S. Romdhani, P. Torr, B. Schölkopf and A. Blake. Efficient face detection

by a cas-caded reduced support vector expansion, proceedings of the Royal

Society, 460(2501), 2004.

[13]

[14] S. Johnson and M. Everingham, Clustered Pose and Nonlinear Appear-

ance Models for Human Pose Estimation, 2010.

[15] Yi Yang and D. Ramanan, Articulated Human Detection with Flwxible

Mixtures-of-Parts, 2010.

[16] Yi Yang and G. Mori, Multiple Tree Models for Occlusion and Spatial

Constraints in Human Pose Estimation, 2008.

[17] M. Dantone, J. Gali, C. Leistner and L. Van Gool, Human Pose Estima-

tion Using Body Parts Dependent Joint Regressors, 2013.

[18] X. Lan and D.P. Huttenlocher, Beyond Trees: Common Factor Models

for 2D Human Pose Recovery, 2010.

[19] G. W. Taylor, R. Fergus, G. Williams, Ian Spiro and C. Bregler, Pose-

Sensitive Embeddingby Nonlinear NCA Regression, 2010.

[20] S. Becker and G. Hinton, Self-organizing neural network that discovers

surfaces in random-dot stereograms, Nature, 1992.

[21] D. H. Hubel and T. N. Wiesel, Recptive Fields of Single Neurones in the

74

cat’s Striate Cortex, Journal of Physiology, 1959.

[22] D. H. Hubel and T. N. Wiesel, Recptive Fields, Binocular Interaction

and functional architecture in the cat’s Visual cortex, Journal of Physiology,

1962.

[23] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, Gradient-Based Learning

Applied to Document Recognition, 1998.

[24] A. Krizhevsky, I. Sutskever and G, E. Hinto, ImageNet Classification

with Deep Convolutional Neural Networks, 2012.

[25] A. Toshev and C. Szegedy, DeepPose: Human Pose Estimation via Deep

Neural Networks, IEEE, 2014.

[26] B. Sapp and B. Taskar, Modec: Multimodal decomposable models for

human pose estimation, InCVPR, 2013.

[27] S. Johnson and M. Everingham, Clustered pose and nonlinear appearance

models for human pose estimation, InBMVC,2010.

[28] W. Ouyang, X. Chu and X. Wang, Multi-source Deep Learning for Human

Pose Estimation, 2014.

[29] J. Tompson, R. Goroshin, A. Jain, Y. LeCun and C. Bregler, Efficient

Object Localization Using Convolutional Networks, 2015.

[30] Shih-En Wei, Varun Ramakrishna, Takeo Kanade, Yaser Sheikh, Efficient

Convolutional Pose Machines, 2016.

[31] Alejandro Newell, Kaiyu Yang, Jia Deng, Stacked Hourglass Networks

for Human Pose Estimation, 2016.

[32] Wei Yang, Shuang Li, Wanli Ouyang, Hongsheng Li, Xiaogang Wang,

Learning Feature Pyramids for Human Pose Estimation, 2017.

[33] https://pose.mpi-inf.mpg.de/ .

75

[34] Xiao Chu, Wei Yang, Wanli Ouyang, Cheng Ma, Alan L. Yuille, Xiaogang

Wang, Multi-Context Attention for Human Pose Estimation, 2017.

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual

Learning for Image Recognition, 2015.

[36] Wei Tang, Pei Yu, and Ying Wu,Deeply Learned Compositional Models

for Human Pose Estimation, 2018.

[37] Lipeng Ke, Ming-Ching Chang, Honggang Qi, and Siwei Lyu, Multi-Scale

Structure-Aware Network forHuman Pose Estimation, 2018.

[38] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David

Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, Generative Ad-

versarial Nets, 2014.

[39] Yu Chen, Chunhua Shen, Xiu-Shen Wei, Lingqiao Liu, Jian Yang, Adver-

sarial PoseNet: A Structure-Aware Convolutional Network for Human Pose

Estimation, 2017.

[40] Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang Zhang, Gang Yu,

Jian Sun, Cascaded Pyramid Network for Multi-person Pose Estimation,

2018.

[41] Fang, Hao-Shu and Xie, Shuqin and Tai, Yu-Wing and Lu, Cewu, RMPE:

Regional Multi-person Pose Estimation, 2017.

[42] Leonid Pishchulin, Eldar Insafutdinov, Siyu Tang, Bjoern Andres, Mykhaylo

Andriluka, Peter Gehler, Bernt Schiele, DeepCut: Joint Subset Partition and

Labeling for Multi Person Pose Estimation, 2015.

[43] Eldar Insafutdinov, Leonid Pishchulin, Bjoern Andres, Mykhaylo An-

driluka, Bernt Schiele, DeeperCut: A Deeper, Stronger, and Faster Multi-

Person Pose Estimation Model, 2016.

[44] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, Yaser Sheikh, Open-

76

Pose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields,

2018.

[45] Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh, Realtime Multi-

Person 2D Pose Estimation using Part Affinity Fields, 2016.

[47] T.Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,P.

Doll’ar, and C. L. Zitnick, Microsoft COCO: common objects incontext, 2014.

[48] https://github.com/CMU-Perceptual-Computing-Lab/openpose

77

