
POLITECNICO DI TORINO

Master’s Degree in

Mechatronic Engineering
(Ingegneria Meccatronica)

Master’s Degree Thesis

Implementing the control strategy
of an industrial exoskeleton and testbench simulation

Advisor: Candidate:
Prof. Luigi Mazza Ahmed Hassan
 Aboubakr Shaaban Ali
Co-Advisors:
Prof. Gabriella Eula
Prof. Terenziano Raparelli
Dr. Giuseppe Pepe
Eng. Francesco Pietrafesa

Academic Year 2020/2021

2

TABLE OF CONTENT
1 INTRODUCTION .. 9

1.1 MOTIVATION ... 9
1.2 HISTORY ... 10

1.2.1 Humanoid Robots .. 11
1.3 DEVELOPMENT OF EXOSKELETONS ... 13

1.3.1 Exoskeletons in teleoperation .. 14
1.3.2 Exoskeletons for power augmentation .. 14

1.4 BIOLOGICAL CONCEPT.. 15
1.5 HUMAN ANATOMY ... 16
1.6 STANDARDS AND SAFETY .. 17

1.6.1 ISO 13482 ... 17
1.6.2 NIST .. 19
1.6.3 Exoskeleton performance metrics .. 20

1.7 INDUSTRIAL EXOSKELETONS .. 22
1.7.1 Types of exoskeletons .. 25

1.8 OUR GOAL .. 29

2 CONTROLLED MODEL.. 31

2.1 CYCLE OF OPERATION .. 32
2.2 MODELING ... 33
2.3 CONTROL STRATEGIES ... 37

2.3.1 PID Control Strategy... 39
2.4 SIMSCAPE MULTIBODY MODELING ... 42

2.4.1 Simplified model using Simscape ... 42
2.4.2 Simscape multibody imported model from Solidworks .. 45
2.4.3 Human body ... 48

3 MATERIALS AND METHODS .. 50

3.1 MATERIALS ... 51
3.1.1 Electronic board and development environment ... 51
3.1.2 BNO055 9-axis absolute orientation BOSCH sensor ... 55
3.1.3 Pressure regulator.. 60
3.1.4 Electronic board ... 62

3.2 METHODS ... 68
3.2.1 Stateflow .. 68
3.2.2 Logical algorithm ... 73
3.2.3 Measuring angular data from 9 DOF sensor.. 74
3.2.4 Acceleration data filtering ... 79

4 TESTBENCH SIMULATION .. 85

4.1 PARTS AND ASSEMBLY ... 86
4.2 ACTUATION AND SENSING .. 89
4.3 ANALYTICAL CALCULATION OF FORCES .. 93

4.3.1 First state (Bending 0-20°) ... 94
4.3.2 Second state (Bending 0-50°) ... 95
4.3.3 Third state (steady bending) .. 96

3

4.3.4 Fourth state (Return to 20°) ... 98
4.3.5 Fifth state (Return to zero) ... 101
4.3.6 Sixth state (Resting at zero) ... 104
4.3.7 Full simulation .. 104

5 CONCLUSION AND FUTURE DEVELOPMENT .. 107

APPENDICES... 109

APPENDIX A .. 109
APPENDIX B .. 110
APPENDIX C .. 111
APPENDIX D ... 112
APPENDIX E .. 120
APPENDIX F .. 126
APPENDIX G ... 130
APPENDIX H ... 134
APPENDIX I ... 138
APPENDIX J ... 139
APPENDIX K .. 140
APPENDIX L .. 141

REFERENCES ... 142

4

TABLE OF FIGURES
FIGURE 1.1: STEAM POWERED LEGS. FIGURE 1.2: SOLDIER’S PASSIVE ASSISTIVE LEGS. 10

N. YANG [2] ... 10

FIGURE 1.3: STEAM POWERED MAN BY MOORE [3] .. 11

FIGURE 1.4: WORLD’S FIRST WALKING ACTIVE EXOSKELETON (A AND B); ACTIVE EXOSKELETON FOR

REHABILITATION OF PARAPLEGICS AND SIMILAR DISABLED PERSONS (C); ACTIVE EXOSKELETON WITH

ELECTROMECHANICAL DRIVES (D). ... 12

FIGURE 1.5: EXOSKELETON-TYPE MASTER ARM: (A) EXOSKELETON MASTER OF GE; (B) EXOSKELETON ARM OF

STANFORD [13]; (C) KIST EXOSKELETON ARM WITH ELECTRIC BRAKES ... 14

FIGURE 1.6: WALKING ASSISTIVE EXOSKELETON: (A) HAL-5 SYSTEM [16]; (B) BLEEX LOWER LIMB EXOSKELETON

[17]; (C) EXOSKELETON LEG FOR HUMAN’S WALKING POWER AUGMENTATION OF ZHEJIANG UNIVERSITY

 ... 15

FIGURE 1.7: COMPOUNDED KNEE ROTATION AND LIFT AT VARIOUS JOINT ANGLES. .. 17

FIGURE 1.8A: (A) HUMAN BODY REFERENCE PLANES. (B) ELBOW EXTENSION THROUGH FLEXION ANGLE. [19] (C)

SIDE-TO-SIDE JOINT ROTATION BETWEEN THE HUMERUS AND THE ULNA DURING NORMAL CARRYING

ANGLE. ... 17

FIGURE 1.8B: BASIC EXOSKELETON DESIGNS SHOWN IN ISO 13482 (A) LEG MOTION ASSISTIVE DEVICE, (B) BODY

WEIGHT SUPPORTIVE DEVICE, (C) EXOSKELETON WEARABLE ROBOT. .. 18

FIG. 1.9: (A) MEDICAL EXOSKELETON USED BY A PATIENT. (B) MEDICAL EXOSKELETON USED BY A CAREGIVER

DESIGNED BY [21]. (C) MILITARY EXOSKELETON. .. 23

FIGURE 1.10: (A) AUTOMOTIVE EXOSKELETON. (B) WEARHOUSE EXOSKELETON WORKER (C) RUBBLE RESCUER

WEARING AN EXOSKELETON. ... 24

FIGURE 1.11: OTTOBOCK PAEXO UPPER EXTREMITY EXOSKELETON. ... 25

FIGURE 1.12: REWALK ROBOTICS RESTORE SOFT EXOSKELETON TYPE OF EXOSKELETON. 26

FIGURE 1.13: GUARDIAN XO FROM SARCOS ROBOTICS. .. 26

FIGURE 1.14: PNEUMATICALLY POWERED ACTIVE (RIGID) TYPE EXOSKELETON. .. 27

FIGURE 1.15: PASSIVE TYPE EXOSKELETON. ... 27

FIGURE 1.16: MIXED TYPE EXOSKELETON BETWEEN ACTIVE AND PASSIVE. ... 28

FIGURE 1.17: DESIGN CONCEPT OF THE PNEUMATIC EXOSKELETON. ... 29

FIGURE 1.18: (A) SIDE-VIEW, (B) BACK-VIEW, (C) FRONTAL VIEW COMPLETE CAD DESIGN. 30

FIGURE 2.19: INPUT QUANTITIES TRENDS. ... 33

FIGURE 2.20: CSET VALUE OF THE TORQUE THAT IS 30% OF THE HUMAN TOQUE. .. 34

FIGURE 2.21: VOLTAGE PRESSURE CHARACTERISTICS OF THE PROPORTIONAL VALVE. 35

FIGURE 2.22: (A) TREND OF THE ANGULAR TORQUE-SPEED CHARACTERISTIC. (B) TREND OF THE CORRECTION

FACTOR FOR TORQUE. .. 35

FIGURE 2.23: PRIMARY SIMULINK SCHEME. ... 36

FIGURE 2.24: COMPARISON BETWEEN CSET AND CFB, AND THE ERROR DEVELOPED. 36

FIGURE 2.25: SOLIDWORKS SKETCH. .. 38

FIGURE 2.26: SCHEMATIC OF A PID CONTROLLER. ... 39

FIGURE 2.27: REFERENCE TORQUE. .. 40

FIGURE 2.28: REFERENCE, FEEDBACK AND THE ERROR BETWEEN THEM. ... 41

FIGURE 2.29: A BULL AND PICASSO’S “THE BULL.” ... 43

FIGURE 2.30: SIMPLIFIED MODEL. .. 43

FIGURE 2.31: FINAL SIMSCAPE SIMPLIFIED MODEL. ... 44

FIGURE 2.32: TORQUE PRODUCED AT JOINTS. ... 45

FIGURE 2.33: COMPLETE MODEL OF EXOSKELETON ON SIMSCAPE AFTER ASSEMBLY. 46

FIGURE 2.34: TORQUE PRODUCED BY THE IMPORTED SOLIDWORKS MODEL. ... 47

5

FIGURE 2.35: COMPARISON BETWEEN CONTROL SCHEME TORQUE AND IMPORTED MODEL TORQUE. 47

FIGURE 2.36: SIMSCAPE MODEL OF THE HUMAN BODY. .. 48

FIGURE: 2.37: COMPARISON BETWEEN THE TORQUE GENERATED BY THE FORMULA AND THE ONE PRODUCED

BY THE SIMSCAPE MODEL. .. 49

FIGURE 2.38: TORQUE PRODUCED BY THE AIR MOTOR AND THE HUMAN WITH AND WITHOUT THE

EXOSKELETON. .. 49

FIGURE 3.39: MYRIO – 1900 BOARD. ... 51

FIGURE 3.40: AVR STK200-DRAGON KIT. .. 52

FIGURE 3.41: ARDUINO UNO (APPENDIX I), ONE OF THE MOST COMMON ARDUINO BOARDS. 54

FIGURE 3.42: AS5600 GROVE 12-BIT MAGNETIC ROTARY POSITION SENSOR. .. 56

FIGURE: 3.43: NRH300DP NO-CONTACT, ROTARY POSITION SENSOR. ... 57

FIGURE 3.44: BOSCH BNO055 9-AXIS INTELLIGENT ABSOLUTE ORIENTATION SENSOR. 58

FIGURE 3.45: ADAFRUIT BNO055 ABSOLUTE ORIENTATION SENSOR (APPENDIX J). ... 59

FIGURE 3.46: FESTO PROPORTIONAL PRESSURE REGULATORS WITH DISPLAY OF TYPE VPPE-3-1-1/8-10-010-E1

(APPENDIX K) .. 61

FIGURE 3.47: LTSPICE SIMULATION OF THE ELECTRONIC BOARD. .. 62

FIGURE 3.48: INSTEK GPS-2303 0-30 VDC POWER SUPPLY. .. 63

FIGURE: 3.49: LM358-N OPERATIONAL AMPLIFIER AND THE PINOUT DATA. ... 63

FIGURE 3.50: TS7812 VOLTAGE REGULATOR AND PINOUT ... 64

FIGURE 3.51: STEP RESPONSE OF 0-5 V PWM WITH 50% DUTY CYCLE. ... 65

FIGURE: 3.52: COMPARING THE PWM SIGNAL FROM ARDUINO WITH 50% DUTY CYCLE WITH THE OUTPUT

FROM THE DESIGNED ELECTRONIC BOARD. .. 65

FIGURE 3.53: ELECTRONIC CIRCUIT CONNECTED ON BREAD BOARD AND ARDUINO INTEGRATED. 66

FIGURE 3.54: STEPPING DUTY CYCLE OUTPUT FROM ELECTRONIC BOARD. ... 66

FIGURE 3.55: PYTHON LINEAR REGRESSION OUTPUT (X-AXIS IS ARDUINO CODE DATA; Y-AXIS IS VALVE

PRESSURE). ... 68

FIGURE 3.56: COMPLETE STATEFLOW SCHEME. ... 70

FIGURE 3.57: FUNCTIONS USED TO DEFINE CONDITIONS TO TRANSLATE BETWEEN PHASES. 72

FIGURE 3.58: LOGICAL CONTROL REPRESENTING THE SATES OF OPERATION... 73

FIGURE 3.59: COUNTERCLOCKWISE GRAPHICAL ORIENTATION OF THE SENSOR. ... 75

FIGURE 3.60: MEASUREMENT OF THE ANGULAR POSITION (BLUE) IN COUNTERCLOCKWISE ROTATION (X-AXIS IS

TIME IN MS, AND Y-AXIS IS ANGLE IN DEGREES). .. 77

FIGURE 3.61: MEASUREMENT OF THE ANGULAR VELOCITY (YELLOW) IN COUNTERCLOCKWISE ROTATION (X-

AXIS IS TIME IN MS, AND Y-AXIS IS ANGLE RATE IN RAD/S). ... 77

FIGURE 3.62: MEASUREMENT OF THE ANGULAR ACCELERATION (WHITE) IN COUNTERCLOCKWISE ROTATION (X-

AXIS IS TIME IN MS, AND Y-AXIS IS VELOCITY RATE IN RAD/S2). ... 78

FIGURE 3.63: MEASUREMENT OF THE ANGULAR POSITION (BLUE) IN CLOCKWISE ROTATION (X-AXIS IS TIME IN

MS, AND Y-AXIS IS ANGLE IN DEGREES). ... 78

FIGURE 3.64: MEASUREMENT OF THE ANGULAR VELOCITY (YELLOW) IN CLOCKWISE ROTATION (X-AXIS IS TIME

IN MS, AND Y-AXIS IS ANGLE RATE IN DEGREES). .. 78

FIGURE 3.65: MEASUREMENT OF THE ANGULAR ACCELERATION (WHITE) IN CLOCKWISE ROTATION (X-AXIS IS

TIME IN MS, AND Y-AXIS IS VELOCITY RATE IN RAD/S2). .. 79

FIGURE 3.66: MEASUREMENT OF THE ANGULAR POSITION (BLUE) IN COUNTERCLOCKWISE ROTATION (X-AXIS IS

TIME IN MS, AND Y-AXIS IS ANGLE IN DEGREES) WITH DELAY FILTER. .. 80

FIGURE 3.67: MEASUREMENT OF THE ANGULAR VELOCITY (YELLOW) IN COUNTERCLOCKWISE ROTATION (X-

AXIS IS TIME IN MS, AND Y-AXIS IS ANGLE RATE IN RAD/S) WITH DELAY FILTER....................................... 80

FIGURE 3.68: MEASUREMENT OF THE ANGULAR ACCELERATION (WHITE) IN COUNTERCLOCKWISE ROTATION (X-

AXIS IS TIME IN MS, AND Y-AXIS IS VELOCITY RATE IN RAD/S2) WITH DELAY FILTER. 80

6

FIGURE 3.69: MEASUREMENT OF THE ANGULAR POSITION (BLUE) IN CLOCKWISE ROTATION (X-AXIS IS TIME IN

MS, AND Y-AXIS IS ANGLE IN DEGREES) WITH DELAY FILTER. ... 81

FIGURE 3.70: MEASUREMENT OF THE ANGULAR VELOCITY (YELLOW) IN CLOCKWISE ROTATION (X-AXIS IS TIME

IN MS, AND Y-AXIS IS ANGLE RATE IN DEGREES) WITH DELAY FILTER. .. 81

FIGURE 3.71: MEASUREMENT OF THE ANGULAR ACCELERATION (WHITE) IN CLOCKWISE ROTATION (X-AXIS IS

TIME IN MS, AND Y-AXIS IS VELOCITY RATE IN RAD/S2) WITH DELAY FILTER. ... 81

FIGURE 3.72: MEASUREMENT OF THE ANGULAR POSITION (BLUE) IN COUNTERCLOCKWISE ROTATION (X-AXIS IS

TIME IN MS, AND Y-AXIS IS ANGLE IN DEGREES) WITH WEIGHTS FILTER... 82

FIGURE 3.73: MEASUREMENT OF THE ANGULAR VELOCITY (YELLOW) IN COUNTERCLOCKWISE ROTATION (X-

AXIS IS TIME IN MS, AND Y-AXIS IS ANGLE RATE IN RAD/S) WITH WEIGHTS FILTER. 83

FIGURE 3.74: MEASUREMENT OF THE ANGULAR ACCELERATION (WHITE) IN COUNTERCLOCKWISE ROTATION (X-

AXIS IS TIME IN MS, AND Y-AXIS IS VELOCITY RATE IN RAD/S2) WITH WEIGHTS FILTER. 83

FIGURE 3.75: MEASUREMENT OF THE ANGULAR POSITION (BLUE) IN CLOCKWISE ROTATION (X-AXIS IS TIME IN

MS, AND Y-AXIS IS ANGLE IN DEGREES) WITH WEIGHTS FILTER. ... 83

FIGURE 3.76: MEASUREMENT OF THE ANGULAR VELOCITY (YELLOW) IN CLOCKWISE ROTATION (X-AXIS IS TIME

IN MS, AND Y-AXIS IS ANGLE RATE IN DEGREES) WITH WEIGHTS FILTER. ... 83

FIGURE 3.77: MEASUREMENT OF THE ANGULAR ACCELERATION (WHITE) IN CLOCKWISE ROTATION (X-AXIS IS

TIME IN MS, AND Y-AXIS IS VELOCITY RATE IN RAD/S2) WITH WEIGHTS FILTER. 84

FIGURE 4.78: TESTBENCH MAIN PARTS. ... 86

FIGURE: 4.79: TESTBENCH PARTS, A IS BASE, B IS PELVIC PART, C IS BACKFRAME. ... 86

FIGURE 4.80: THE BIGGER CYLINDER USED WITH THE BACKFRAME (2 CYLINDERS USED) (COLORS ARE ONLY FOR

VISUALIZATION). .. 87

FIGURE 4.81: THE SMALLER CYLINDER USED WIH THE PELVIC PART (1 CYLINDER USED) (COLORS ARE ONLY FOR

VISUALIZATION). .. 87

FIGURE 4.82: COMPLETE TESTBENCH MODEL. ... 87

FIGURE 4.83: COMPLETE ASSEMBLY OF THE TESTBENCH. .. 88

FIGURE 3.84: KINEMATICS OF THE HIP JOINT. (X-AXIS IS IN S)(Y-AXIS IS IN RAD, RAD/S AND RAD/S/S). 89

FIGURE 4.85:KINEMATICS OF THE PELVIC JOINT. (X-AXIS IS IN S)(Y-AXIS IS IN RAD, RAD/S AND RAD/S/S). 90

FIGURE 4.86: THE ASSEMBLY MODEL USED TO TRANSFER THE CYLOIDAL LAW TO THE CYLINDERS. 91

FIGURE 4.87: KINEMATICS OF THE LARGE UPPER CYLINDER. (X- AXIS IS IN S)(Y-AXIS IS IN M, M/S AND M/S/S). 91

FIGURE 4.88: KINEMATICS OF THE SMALL LOWER CYLINDER. (X- AXIS IS IN S)(Y-AXIS IS IN M, M/S AND M/S/S).

 ... 92

FIGURE 4.89: KINEMATICS OF THE LARGE FRONTAL CYLINDER. (X- AXIS IS IN S)(Y-AXIS IS IN M, M/S AND

M/S/S). ... 92

FIGURE 4.90: 0-20° CYCLOIDAL BENDING ON HIP JOINT. .. 95

FIGURE 4.91: LEFT: UPPER CYLINDER FORCE (N), RIGHT: LOWER CYLINDER FORCE (N). 95

FIGURE 4.92: 0-50° CYCLOIDAL BENDING OF THE PELVIC JOINT. .. 96

FIGURE 4.93: LEFT: UPPER CYLINDER FORCE (N), RIGHT: LOWER CYLINDER FORCE (N). 96

FIGURE 4.94: STEADY BENDING OF A TOTAL OF 70°. .. 97

FIGURE 4.95: LEFT: UPPER CYLINDER FORCE (N), RIGHT: LOWER CYLINDER FORCE (N). 98

 FIGURE 4.96: RETURN OF THE PELVIC JOINT TO ZERO DEGREES AND 100% TORQUE CALCULATION. 99

FIGURE 4.97: LEFT: UPPER CYLINDER FORCE (N), RIGHT: LOWER CYLINDER FORCE (N). 99

FIGURE 4.98: RETURN OF THE PELVIC JOINT TO ZERO DEGREES AND 70% TORQUE CALCULATION. 100

FIGURE 4.99: SUMMATION OF THE LOWER BACK CYLINDER FORCES IN FOURTH STATE AND THE FINAL FORCE

REQUIRED FROM THIS CYLINDER AT THIS STATE (FORCES IN N). .. 100

FIGURE 4.100: FRONT CYLINDER FORCE (N). .. 101

FIGURE 4.101: RETURN TO UPRIGHT POSITION. ... 101

FIGURE 4.102: LEFT: UPPER CYLINDER FORCE (N), RIGHT: LOWER CYLINDER FORCE (N). 102

FIGURE: 4.103: RETURN TO UPRIGHT POSITION AND 70% TORQUE CALCULATION. ... 102

7

FIGURE 4.104: : SUMMATION OF THE LOWER BACK CYLINDER FORCES IN FIFTH STATE AND THE FINAL FORCE

REQUIRED FROM THIS CYLINDER AT THIS STATE (FORCES IN N). .. 103

FIGURE 4.105: FRONT CYLINDER FORCE (N). .. 103

FIGURE 4.106: A) UPPER BACK CYLINDER FORCE. B) LOWER BACK CYLINDER FORCE. C) FRONT CYLINDER FORCE.

 ... 105

FIGURE 4.107: A) TORQUE ON THE HIP JOINT. B) TORQUE ON THE PELVIC JOINT. ... 106

 TABLE OF TABLES

TABLE 1.1: THE COMPARISONS BETWEEN THE EXOSKELETON TECHNOLOGY AND THAT CONCEPT IN BIOLOGY. 16

TABLE 2.2: 4 PHASES OF THE LIFTING OPERATION. .. 32

TABLE 3.3: ARDUINO INPUT DATA TO THE VALVE AND PRESSURE. .. 67

8

Abstract

The ergonomics study is dominant in every workshop such that due to fatigue loads

that the workers undertake for prolonged periods of work which can cause several

human joint and bone diseases and malfunctions and these problems does not

appear after short notice, however, after long periods, a few people experience

illness caused by labor work. Exoskeletons are devices used to enhance the

ergonomics studies and to ensure better experiences for labor workers along

several other applications as well. This thesis study oriented to the design and

development of an industrial-type pneumatically powered exoskeleton that is used

in labor to assist workers during fatigue loads during lowering and lifting loads.

Moreover, designing a testbench in lab to perform all the tests needed on the

device. The exoskeleton relieves the wearer of 30% of his weight load during

bending through his hip joint. First, the designed model of the exoskeleton was

available on MATLAB, Simscape along with the dedicated control law to actuate

the device at the correct torques and trajectories. In this thesis, other control

strategies were tested and compared to reach the ultimate law. Afterwards,

implementing the control law on a target hardware and developing the coding

procedures was studied and implemented soldering a PCB to implement the control

law on a proportional pressure regulator FESTO valve controlled by an arduinoUNO

board. Finally, importing CAD models of the testbench into MATLAB, Simscape and

performing simulations to emulate the human dynamics by the testing device.

9

1 Introduction

1.1 Motivation

In recent years, exoskeletons have widely spread throughout different fields. Most

widely in the industrial manufacturing sector as it introduces new ways of

enhancing work production as well as task effectiveness, precision and relieving

very hard efforts from wearer’s body. Exoskeletons make use of the human

intelligence with the robustness and dexterity of mechanical systems. In our scope,

the development of an industrial type exoskeleton is a necessity to keep pace with

industrial developments and need in different fields. Thus, the main goal of this

thesis is to continue the work of previous colleges on the studying, design and

control optimization of our industrial type exoskeleton that factory workers could

wear to hinder lower-back and hip pain.

10

1.2 History

As stated, before exoskeletons have different areas of application, but as a starting

point the history of their introduction to life was studied in several fields. It started

in the seventeenth century that the human body can be supported by a purely

mechanical device that can be, for instance, steam powered. In 1738, the first

exoskeleton was introduced by Jacques de Vaucanson, which was an android

playing a flute. Then in the eighteenth century a steam powered legs were

introduced (Fig. 1.1) (Kazerooni, 2008)[1]. Near the end of the 1800s, the scientist

Nicolas Yang designed another shape for the exoskeleton using leaf springs that

was used to assist Russian soldiers to run faster and jump to higher amplitudes

(Fig. 1.2) [2].

Figure 1.1: Steam powered legs. Figure 1.2: soldier’s passive assistive legs.
 N. Yang [2]

11

In 1893, George Moor created a steam man (Fig. 1.3). The system was powered by

a 0.5 hp gas fired boiler and reached a speed of 14 Km/h.

Figure 1.3: Steam powered man by Moore [3]

1.2.1 Humanoid Robots

Although all previous examples were studied but they were not implemented due

to technological limitations then. Ideas kept on developing till the mid-1900s as

the humanoid robots were introduced and implemented. One of the world’s first

active exoskeletons was implemented at the Mihailo Pupin Institute in 1969, under

the guidance of Prof. Vukobratovic [4] [5] [6] [7]. It should be noted that legged

locomotion systems were developed first. In the previous articles attempts to

produce the first exoskeletons to assist handicapped persons were introduced.

These exoskeletons were mainly pneumatically powered and some of them had

12

more complex realization using electric controls. The world’s first active

exoskeleton in (Fig.1.4a, b) was pneumatically powered and partly Kinematically

programmed for producing andromorphic gait. Most successful version of an

active exoskeleton for rehabilitation disabled persons, pneumatically powered

and electronically programmed. It was realized and tested at Belgrade Orthopedic

Clinic in 1972 (fig. 1.4c). Then in 1974, exoskeletons with electromechanical drives

and electronically programmed were build and used to develop electro-

mechanical drives for active orthotic devices. This was the first example known in

the world of active exoskeleton that used electric motors as actuators (Fig1.4d).

As such, it can be considered as a predecessor of the contemporary humanoid

robots driven by electric motors.

Figure 1.4: World’s first walking active exoskeleton (a and b); active exoskeleton for rehabilitation of
paraplegics and similar disabled persons (c); Active exoskeleton with electromechanical drives (d).

In the mid-20th century, NASA details the background of ‘man–machine

relationship in the report space exploration on a large scale. As in the 60s and 70s,

a b c d

13

the field of Artificial Intelligence (AI) was advancing, scientist thought out its

research. As the philosopher Hubert Dreyfus argued in his book ‘What computers

can’t do? The limitation of artificial intelligence’ [8], he presented four

progressively weaker interpretations of the physical system hypotheses that he

termed the biological, psychological, epistemological, and ontological

assumptions of traditional AI. And so, during the end of the previous century many

scientists and researchers acknowledged that the interference of human

intelligence side by side with AI is a necessity and is more beneficial than spending

research in another end. Two of these scientists: Lu and Chen [9] from Zhejiang

University, introduced the concept of humachine [10, 11] which defines the man-

machine system.

1.3 Development of exoskeletons

In the timeline of the development of humachines or exoskeletons and specifically

in the period from 1960s till the beginning of this century, they could be classified

into three stages. The first one is as an arm used in telerobotics and then followed

by a tool for human upper limb or finger pose measurements and finally for

rehabilitation usage for the disabled.

These three stages introduced slowly the force feedback systems and as the

development of feedback control systems prevailed in 1990s, force feedback

exoskeletons were widely employed. And with the human intelligence in the

system sideways with force feedback, the exoskeleton systems improved very

rapidly into several fields as power amplification and haptic devices. Presented

below two main areas of development.

14

1.3.1 Exoskeletons in teleoperation

Due to the advances already mentioned the master slave robots can generate a

realistic feeling as if a human is doing the task. In 1970s, several companies and

universities developed master system for robotic teleoperation as GE and

university of Washington [12], Ohio state university and Stanford [13, 14].

However, all these models were not portable. In this thesis we are dealing with

the other type which is power augmentation of a wearable device for workers

rather than a virtual master-slave arm.

Figure 1.5: Exoskeleton-type master arm: (a) exoskeleton master of GE; (b) exoskeleton arm of
Stanford [13]; (c) KIST exoskeleton arm with electric brakes

1.3.2 Exoskeletons for power augmentation

Many researchers and scientists all over the world are working to develop a new

type of exoskeleton acting as power amplifier to help human workers accomplish

tasks with heavy loads which exceed the human power and can be a cause of

serious health problems. The robotics laboratory at UC Berkley designed a system

called ‘Human Powered Extender’ to assist the workers on assembly lines[15] such

that when the worker is operating a 100 kg load he only feels 5% of the load while

the remaining 95 kg are supported by the exoskeleton. Thus, by combining the

15

human operator and the robotic body the difficulties of the gait task is simplified

and solved in a manner that is more comfortable for the human operator so he

can be more able to accomplish more tasks and work for longer shifts and longer

distances with less effort exerted.

Figure 1.6: Walking assistive exoskeleton: (a) HAL-5 system [16]; (b) BLEEX lower limb
exoskeleton [17]; (c) exoskeleton leg for human’s walking power augmentation of Zhejiang

University

1.4 Biological concept

The concept of our exoskeleton was extracted from nature as the term

exoskeleton is a biological term which indicates an external covering of an animal’s

body to supply it with protection or covering such as a shell of a crab. It also

provides the animal with w surface for muscle attachments, a water seal, and a

sensory interface with the surroundings. And the table below (Table 1.1)

illustrated the main resemblance between the biological and industrial concept of

exoskeletons.

16

Table 1.1: The comparisons between the exoskeleton technology and that concept in biology.

1.5 Human anatomy

During the design procedure of exoskeletons, the human anatomy is studied and

resembled on the exoskeleton to assist the movements of the body and the

muscles. The human links as the thigh have several elements: passive as bones,

ligaments, and discs as well as active as the muscles. And because humans vary on

a large scale in their body formations designing exoskeletons to perfectly fit

different wearers are not possible, which makes it even more hard for

manufacturers to accept a design and refuse another. Unfit exoskeletons not only

are not comfortable but also can have diverse effects on the wearer as can cause

a joint to rotate around an axis of rotation that is not perfectly true causing serious

injuries. For instance, the knee joint axis of rotation moves with each deflection of

the joint (Fig. 1.7). Thus, several design guidelines related to sizing and fitting of

exoskeletons to wearers were described in [15] such that if the device does not fit

well the wearer is to make the adjustments. A device called the goniometer was

designed to measure the joint axis of rotation locations due to its movement

during rotation which highly depends in the measurement on the alignment of the

device with the limb. However, it’s known exactly the position of rotational axes

17

of several human joints. Although it may differ for a single human being between

left and right limbs. Below are figures to discuss human joints. (Fig.1.8A)

Figure 1.7: Compounded knee rotation and lift at various joint angles.

Figure 1.8A: (a) Human body reference planes. (b) Elbow extension through flexion angle. [19] (c) Side-
to-side joint rotation between the humerus and the ulna during normal carrying angle.

1.6 Standards and safety

1.6.1 ISO 13482

In 2014 after several years of developments the international standardization

organization (ISO) 13482 [16] made a publication to address the safety concerns

18

of robots including exoskeletons including the exoskeletons used for health care

services (Fig.1.8B). On the other hand, those used for rehabilitation of the disabled

where excluded from the publication. However, the safety standard does not

include any normative requirements on the analysis and data collection of the

Figure 1.8B: Basic exoskeleton designs shown in ISO 13482 (a) Leg motion assistive device, (b) Body
weight supportive device, (c) Exoskeleton wearable robot.

exoskeleton under validation to understand mainly the long-term effects of its

usage. But these test data are needed by manufactures to replicate on the

standards and tests in a formal manner. These tests and data collected have an

impact in understanding the long-term problems and their consequences on the

human and environment. Thus, exoskeletons have some safety considerations. For

instance, what are the issues faced upon usage of low extremity exoskeletons on

the wearer? To what extent can the device provide lift to augment the wearer so

that after a long period of wearing and performing tasks, as crouching and

standing up, wearing the exoskeleton, what are the signs of fatigue or maybe sore

skin that the wearer encounters? Are there any signs of overdrive to the human

joints that can cause fatigue of the joints and can have an impact on the long run?

And if we have one or more of these problems or other ones how should they be

19

encountered and treated? Are there some problems neglected, or all

complications must be accounted for and provide radical solutions? So, how

should the exoskeleton be designed to be safe? Thus, manufacturers must be

provided with formal test methods and standards to implement their designs and

be able to have a comparison between safety and capability to perform specific

tasks according to their design. Moreover, performance tests also provide results

about specific tasks of the extent the device is improved and can perform its tasks

better. For example, better trajectory, higher speeds, higher loads, more comfort

to the wearer and better precision in positioning. Unfortunately, nowadays there

are no such tests or standards to provide manufacturers with broad guidelines of

how they should design and evaluate their products to provide the market with

human safe robots. Additionally, there are no commonly agreed upon

physiological measurements of the human user to provide baseline measurements

of before and after long term use of exoskeletons.

1.6.2 NIST

Although the ISO has no data about testing of exoskeletons but The National

Institute of Standards and Technology (NIST), Robotic Systems for Smart

Manufacturing (RSSM) Program [17] provides test methods and measurement

science for stationary and mobile robot arms as well as vehicles to support

calibration, measurement, and advance understanding of current and target

performance of emerging new capabilities for manufacturing applications. The

program develops and deploys advances in measurement science that enhance U.

S. innovation and industrial competitiveness by improving robotic system

performance to achieve dynamic production for assembly-centric manufacturing.

Moreover, NIST also works on developing the performance of remotely operated

20

emergency response robots by evaluating the standard tests and qualifications

required to specify the system capabilities under Emergency Response Robot

Project. [18]

One of the examples of RSSM program is the development of test methods for

mobile arms that are used for assembly. Assembly arms must have very high

precision and accuracy of some variables as speed and trajectory when performing

a task as gear meshing or inserting a pin into a socket. In addition, when evaluating

the test results, one of the important aspects to be measured is the repeatability

so as when performing a task that needs high precision the arm or exoskeleton

should be able to redo the task in the same precise variables. Thus, the lesson to

be noted form studying measurement methods is applying them to exoskeletons

where, positioning of loads or human knee or elbow joints should be performed

in a repeatable way. Also, there are more tests to be studied and accounted for

and published in the future that need to be developed by understanding

exoskeleton performance metrics.

1.6.3 Exoskeleton performance metrics

Tests on industrial robot systems does not include human-in-the-loop testing

procedures because robot functions are automatically actuated and are separated

from human impacts. However, this perspective is changing when dealing with

response robot systems as the main concept of its operation is combining the

human intelligence with the robustness and power of mechanical systems such

that a human operator is performing a task with no loads and the slave robot is

mimicking the movements inside the workspace with all working conditions. From

[19], we extract common metrics for task-oriented mobile robot human-robot

interaction that may also apply to exoskeletons:

21

• Navigation: ability of the exoskeleton to support the wearer in gait and in

lifting actions.

• Perception: ability of the exoskeleton to acquire body movements and act

upon it.

• Management of tasks: ability of the exoskeleton to act upon emergency

situations as facing an obstacle or sudden human movements.

• Manipulation: ability of the exoskeleton to move the supported human limb

in the correct trajectory to perform the specified task.

• Duration: comparison between the task performance duration with and

without wearing the exoskeleton.

• Speed: Comparison between the velocities of performance with and

without wearing the exoskeleton.

• Acceleration/Deceleration: Comparison between the rate of change of the

velocities with and without wearing the exoskeleton.

• Pose uncertainty includes accuracy and precision to perform a task in a

correct manner, as well as repeatability to provide the ability of the devise

to repeat the same task exactly each time.

• Control force: the force required to move one or all components of the

exoskeleton weather or not they are under actuation.

• Ergonomics: the comfort sensed by the wearer during usage of the

exoskeleton in complex tasks or for long periods of time.

• Ingress/Egress complexity: complexity of putting on or taking off the

exoskeleton.

• Ease of use: easiness of learning how to use the exoskeleton and perform

tasks faster using it.

22

• Other: such as cost and battery life.

1.7 Industrial exoskeletons

As mentioned before exoskeletons has several applications in several fields. As an

example: medical, military, and industrial. In medical fields, there are two

branches depending on usage either used by a patient or by a caregiver. Patients

recovering form accidents or even the disabled own a huge segment in the

manufacturing market of exoskeletons (Fig. 1.9a). However, caregivers who work

for prolonged hours with the elderly and their job is about lifting another person

to assist them, they mostly suffer from severe back pains. As it has been studied

in [20] lower back pain occurs under compression of lumbar region to elevated

forces reaching 3,400N which corresponds to a lifting weight of 34 Kgs according

to [21] (Fig. 1.9b). Secondly, in the military field that is still expanding day by day,

many researches were made to design exoskeletons to assist soldiers with their

heavy gear and to perform abnormal tasks to human ability (Fig. 1.9c).

 (a)

23

 (b) (c)

Fig. 1.9: (a) Medical exoskeleton used by a patient. (b) Medical exoskeleton used by a caregiver
designed by [21]. (c) Military exoskeleton.

In our study, we are designing a pneumatic powered active exoskeleton to be used

in industrial applications such as workers in factories with heavy loads as

automotive fields (Fig. 1.10a), inside warehouses (Fig. 1.10b) or rubble rescuers

(Fig. 1.10c).

24

 (a)

 (b)

 (c)

Figure 1.10: (a) Automotive
exoskeleton. (b) Wearhouse

exoskeleton worker (c) Rubble
rescuer wearing an

exoskeleton.

25

1.7.1 Types of exoskeletons

Due to Diversity in applications and design, to categorize exoskeletons we find

several classifications.

Firstly, by body part:

• Upper extremity exoskeletons: These provide support to the upper body,

including the arms, shoulders, and torso. Such as Ottobock Paexo (Fig. 1.10).

Figure 1.11: Ottobock Paexo Upper extremity exoskeleton.

• Lower extremity exoskeletons: These provide support to the legs, hips, and

lower torso. Such as ReWalk Robotics Restore soft exoskeleton (Fig. 1.12).

26

Figure 1.12: ReWalk Robotics Restore soft exoskeleton type of exoskeleton.

• Full body exoskeletons: These combine the first two types thus, supports

the upper and lower extremities concurrently which makes them the most

powerful yet most complicated types of exoskeletons. Such as Guardian XO

from Sarco Robotics (Fig. 1.13).

Figure 1.13: Guardian XO from Sarcos Robotics.

27

Secondly, By Formation:

• Rigid/Hard/Active: These exoskeletons use rigid links, joints and actuators

and include an external source of power so that they provide very high-

power ratings (Fig. 1.14).

Figure 1.14: Pneumatically powered active (rigid) type exoskeleton.

• Soft/Passive: Made of soft materials as fabrics and bands made of fabrics

such that they provide support for the muscle during actuation by human.

This makes the power provided by these types of exoskeletons very small

compared to the first type (Fig. 1.15).

Figure 1.15: Passive type exoskeleton.

28

• Mixed: Many exoskeletons nowadays have both powered actuators on

some joints and passive straps on others to make a functional suit that

emulates several human joints (Fig.1.16).

 Figure 1.16: Mixed type exoskeleton between active and passive.

29

1.8 Our Goal

Previous master’s student colleagues and I are working sequentially on developing

a pneumatically powered active industrial exoskeleton. It shall be used to assist

30% of the weight being carried. In the previous studies, my colleagues made some

design procedures (Fig. 1.17) and components selection and then others

developed CAD drawings and simulation tools (Fig. 1.18) and finally some control

schemes where presented by my predecessor who developed a complete model

on MATLAB which comprises different control schemes using PID, LQR and MPC

side by side with the CAD design on Simulink, Simscape thus, integrating the whole

system on MATLAB.

Figure 1.17: Design concept of the pneumatic exoskeleton.

30

(a) (b)

(c)

Figure 1.18: (a) Side-view, (b) Back-View, (c) Frontal view Complete CAD design.

31

2 Controlled model

Defining a simple mathematical model that is yet enough to describe our

pneumatically powered exoskeleton was already developed and simulated to

provide accurately 30% of the work done by the wearer, which is our main goal.

Then comes the stage of developing a robust control strategy based of studied

control theories and implemented on similar projects. At this stage, several control

laws were implemented, simulated and tested to provide several outputs that are

all highly efficient for our project. Finally, the best control law was chosen, verified

and tested.

32

2.1 Cycle of operation

The lifting operation of a human can be modeled into several scenarios. Simply,

we defined this operation as a cycle which consists of 4 phases and are repeated

continuously. These phases are defined according to (table 2.1) and (fig. 2.19).

With integrating the 4 phases the trajectory of the operation is present and the

following step is modeling the different components of the exoskeleton system

and defining the inputs, outputs and reference to the control law.

Table 2.2: 4 phases of the lifting operation.

33

Figure 2.19: Input quantities trends.

2.2 Modeling

After studying the work cycle, modeling of different components step is evaluated

such as:

1) Human body: The human model is described through simple equation

that has as output CSET which is the human torque (fig.2.20) .As

described before the input to the control law is supposed to be the

torque whose the value is defined which is 30% (our goal). Thus, the

human model developed has as an output the human torque and

34

therefore the input to the controller of our plant is 30% of that torque.

Yet defining the torque as the input to the control law.

2) Proportional valve: Its model defines the voltage-pressure

characteristics of the valve through a simple graphical

representation. (fig.2.21)

3) Air motor: The actuator is chosen pneumatic for several reasons. For

instance: high power to weight ratio to account for the overall weight

of the device as well as ability to work in dusty atmosphere. It is

reported in detail the trend of the angular torque-speed

characteristic (Fig. 2.22a) and the trend of the correction factor for

torque only (Fig. 2.22b).

 Figure 2.20: CSET value of the torque that is 30% of the human toque.

35

Figure 2.21: Voltage Pressure characteristics of the proportional valve.

Figure 2.22: (a) Trend of the angular torque-speed characteristic. (b) Trend of the correction
factor for torque.

36

After assembling all these models in a Simulink scheme including the controller,

which is to be defined, we can simulate a primary evaluation of the entire plant.

The whole scheme is found in (fig.2.23). Understanding that CSET is the input to

controller and the generated torque as output (CFB) and comparing them to

guarantee a zero-tracking error and a robust system (Fig.2.24).

Figure 2.23: Primary Simulink Scheme.

Figure 2.24: Comparison between CSET and CFB, and the error developed.

37

2.3 Control Strategies

Model-based control system is a typical exoskeleton control strategy. According to

the model, the control strategy for the skeleton is classified into two types: the

dynamic model and the muscle model-based control [22]. The dynamic

exoskeleton model is implemented by modeling the human body as rigid links

joined by joints. This model is built from combination of inertial, gravitational,

Coriolis and centrifugal effects. The dynamic model can be obtained through two

ways; the mathematical model and the system identification.

The Mathematical model, already described, is obtained by theoretical modelling

based on physical characteristics of the system. The good practice of this control

system is our model of the exoskeleton. It consists of two joints in the pelvic region

with the same direction of motion. The flexion-extension at the hip is actuated

while rotation. The model at hand relies on its dynamic model to aid the user’s

movement, with force/torque sensor to detect the interaction between the user

and the exoskeleton. The control goal is to attain the system with high sensitivity,

yet safe on the user. However, this sort of control aim demands the precise

dynamic model. However, that high level of precision is not possible with our

computing capabilities. So, simpler models were developed for the human body,

the air motor and the rigid links. The second way to obtain the dynamic model is

the system identification method. This method is used since it is difficult to attain

a good dynamic model by using theoretical mathematic model. Thus, defining the

following steps in our modeling procedures. A complete model of the exoskeleton

38

was developed on SolidWorks with all the design parameters including masses,

weights, inertia, etc. (Fig.2.25).

Figure 2.25: SolidWorks sketch.

Based on the physical parameters, the exoskeleton control system can be

categorized into position/velocity/acceleration or torque/force. The position

control scheme is commonly utilized to make sure the exoskeleton joints turn in a

desired angle (for example is PID controller) Fig.2.26. The position controller is

mostly implemented as low-level controller.

39

Figure 2.26: Schematic of a PID controller.

Exoskeletons existing nowadays have several implemented control strategies.

After studying several control theorems as PID (Proportional, Integral, Derivative)

control, Linear quadratic control based on linear quadratic regulator that the

solver searches for the perfect poles and zeros according to some weighted

parameters and finally, using predictive control in which a defined model is

simulated and the solver computes a so called minimizer that predicts the

upcoming values of certain variables and selects the value at the first time instant

then neglects the rest. No exoskeleton has several control laws implemented

together. However, each application has its own best control law which is chosen

by simulation, validation and testing. Moreover, the cost of implementing a certain

control law can be a great factor with respect to the complexity of the application.

2.3.1 PID Control Strategy

Starting with the PID control, the solver continuously computes an error value

which is the difference between the reference value wanted and the output

generated. Then, the controller continuously performs operations on that error

value which can be just a proportionality with the error to manipulate the results

to the desired output. Alternatively, the error can vary in an integral or derivative

40

manner with the output according to how much the following or preceding values

of the output at a certain instant affects the numbers at any other instant. Below

is the defining equation for any PID controller.

𝐶(𝑠) = 𝐾𝑝 +
𝐾𝑖

𝑠
+ 𝐾𝑑 ∗ 𝑠 = 𝐾𝑝 ∗ (1 +

1

𝑇𝑖∗𝑠
+ 𝑇𝑑 ∗ 𝑠)

Kp, Ki, Kd are called proportional, integral and derivative gains respectively, while

𝑇𝑖 and 𝑇𝑑 are the integral and derivative time constants that are defined as

follows:

𝑇𝑑 =
𝐾𝑑

𝐾𝑝
 𝑇𝑖 =

𝐾𝑝

𝐾𝑖

After defining the control law, tuning the law parameters is the main basis that

verifies the validity of the PID control strategy for our application. Using Simulink

and thanks to the PID controller tool, all the previous values were defined

obtaining very good results of the CSET, CFB and the error between them (Fig. 2.27,

Fig.2.28).

Figure 2.27: Reference Torque.

41

Figure 2.28: Reference, feedback and the error between them.

Analyzing the results, we obtained from PID control strategy, it is obvious that this

control method is very enough for our exoskeleton application due to extremely

low error which is in the transient period only. Very short time constant for our

system validates the robustness of the design which leads to short settling and rise

times. Moreover, the steady state tracking error is zero which concludes the

validity of this control law.

Simulink results:

Maximum overshoot 6.59%

Rising Time 0.11 s

Settling Time 0.516 s

42

However, other control theories were studied as well. More complex theories yet

poor outputs compared to PID control leads to the choice of PID control over the

other theories.

2.4 Simscape multibody modeling

After studying simpler models for our plant and the human body simulated as well

as selecting the control scheme and validating its efficiency using the simpler

models on Simulink, more complex models for the system must be implemented

and simulated before the execution of the exoskeleton and testing on a test bench.

MATLAB offers a toolbox in Simulink that enables engineers to draw 3D models of

different shapes, sizes, masses and inertia. Simscape toolbox is a very powerful

tool to complete the design and simulation procedures in one place and integrate

different systems together as mechanical, electrical and pneumatic.

In order to validate the modeling procedure, two stages were defined:

1. Simplified model using Simscape.

2. Imported model from SolidWorks.

2.4.1 Simplified model using Simscape

To obtain data that can be compared to validate the design of a final model we

start by defining a much simpler model. Validation phase mainly tests the accuracy

of the representation of the real system. It consists of assumptions that must

return true after simulation the model at hand. These assumptions fall into two

categories: structural assumptions and data assumptions.

43

Structural assumptions define how the model at hand works as well as its shape.

For example: the famous model of a bull made by Picasso (Fig. 2.29) where the

main concept of this example is to explain how he simplified the reality into several

simple parts integrated together that show the structure and satisfy the pull shape

and structure.

Figure 2.29: A bull and Picasso’s “The Bull.”

Similarly, a simplified model was implemented consisting of three parts only (Back

frame, Leg link and Traction system) that resembles the reality of the designed

exoskeleton found in Fig. 2.30.

Figure 2.30: Simplified model.

44

After studying Simulink, Simscape, designing a model for the three components

listed above becomes easy. They were integrated together using various

subsystem blocks and revolute joints that implement the degrees of freedom of

the robot. To model the air motor, at the driving joints, elasticity and damping in

the joints are as well considered to satisfy the internal mechanics of the joints:

• Spring Stiffness = 1.13 Nm/deg

This is the torque required to rotate the joint primitive by a unit angle.

• Damping Coefficient = 0.3 Nm/(deg/s)

This is the torque required to maintain a constant joint primitive angular

velocity between base and follower frames.

Finally, editing the joints blocks in the final Simscape simplified model (Fig. 2.31)

allows us to add measurement ports where measuring the torque produced (Fig.

2.32) is possible to have the result of the simplified model in order to make a

comparison with the actual model to validate our design.

Figure 2.31: Final Simscape simplified model.

45

Figure 2.32: Torque produced at joints.

2.4.2 Simscape multibody imported model from

Solidworks

As presented in the introduction chapter, a complete sketch of the exoskeleton is

already implemented on Solidworks with different parts, pulleys, bearings and

finally assembled. Using Simscape tool, it is possible to import Solidworks models

into Simulink using STEP file generated from Solidworks. Thus, importing different

parts separately and assembling them on Simulink with creating subsystems and

using rigid transform and joints blocks. (Fig. 2.33)

46

Figure 2.33: Complete model of exoskeleton on Simscape after assembly.

By adding measurement port on the joint as done in the simplified model to

measure the torques produced by the actuator in order to make the comparison

between the torque generated by the simplified and the actual model, it was

found that the torques are precisely the same (Fig. 2.34). To further validate the

control scheme, a comparison, as well, is studied between the control torque and

the torque generated through Simulink complete exoskeleton model. It returns

some separation from the control model due to inertia consideration as well as

mass, damping and stiffness study in the exoskeleton imported model from

Solidworks. (Fig. 2.35)

47

 Figure 2.34: Torque produced by the imported Solidworks model.

Figure 2.35: Comparison between control scheme torque and imported model torque.

48

2.4.3 Human body

Our exoskeleton is designed to assist 30% of the weight carried by the carrier,

which is, according to standards, is equivalent to a torque of 80 Nm (as described

before), while the human body can support up to 260 Nm. Under ISO-7250-2 [25],

defining an average weight for a human body for an industrial worker and the

weight that should be supported by him/her without medical issues, the values

chosen for the exoskeleton to support weights is chosen. Thus, modeling of a

human body in Solidworks and importing it as well into Simscape (Fig. 2.36) is a

must to perform a complete simulation of the system and perform the tests

needed in simulation (Model-in-the-loop). To perform the Model-in-the-loop

procedure the human torque is defined by a formula (2.2) and then compared to

the Simscape model results.

 𝐶𝑚𝑢𝑠𝑐 = 𝑚𝑔𝐿𝐺 sin 𝜃 − (𝐼 + 𝑚𝐿𝐺
2)𝜃̈ (2.2)

Figure 2.36: Simscape model of the human body.

49

The results shown (Fig. 2.37) illustrates that there are differences in the graphs

due to varying design parameters in Simscape model. However, both graphs show

that the human torque lies around 260 Nm during flexion. And due to the use of

the exoskeleton the human body then would be supporting not 260 Nm but 180

Nm due to the exoskeleton effort of 180 Nm. (Fig. 2.38)

Figure: 2.37: Comparison between the torque generated by the formula and the one produced
by the Simscape model.

Figure 2.38: Torque produced by the air motor and the human with and without the
exoskeleton.

50

3 Materials and methods

Defining all the hardware materials used in implementing the control law already

defined and then to start the coding procedure, it is a must to define the cycle of

operation of the device. Luckily, the exoskeleton operation is cyclic, and the cycles

can be easily defined through simulation (Stateflow). Defining two cycles of

operation depending on the bending angle that the wearer does. Each cycle has

four states that the controller must navigate through to constantly be functional

and assist the wearer whichever movement he/she makes. Following the

Stateflow procedure, selection of several components becomes the next step. Air

flow valves, angular position sensor and the micro-controller are the main

components that should be selected.

51

3.1 Materials

3.1.1 Electronic board and development environment

Implementing the control system designed before is the main scope of this thesis

study. To have a fully functional exoskeleton, software development of the control

system is performed. As mentioned before, the control law used in simulation and

tested compared to other control strategies is PID. Among the very wide range of

development boards running on different environments, selection of an

appropriate development hardware and its environment becomes a challenge.

There are several manufacturers of microcontroller boards as: Texas Instruments,

ARM, PIC, Arduino, AVR, National Instruments, (etc..). All these tools take the

messy details of microcontroller programming and wrap it up in an easy-to-use

package. For instance, the National Instruments myRIO board (fig.3.39) is an

expensive board that has lots of capabilities than AVR STK200-DRAGON (fig.3.40).

Figure 3.39: myRIO – 1900 board.

52

Figure 3.40: AVR STK200-DRAGON Kit.

Development boards capabilities vary very widely from one board to another and

they are related to the price of the board. Following is some of these specifications:

• Real-Time capabilities.

• FPGA.

• WIFI and Bluetooth.

• Processing power.

• Storage size and type.

• Number and types of peripherals.

• Number of digital and analog pins included.

• Development environment used.

• Interactivity with the board to allow debugging easily.

• Ability to extend the capabilities of the board (ex: by using shields as in

Arduino and Raspberry Pi).

• Ability to extend the capabilities of the software (ex: by making it an open

source as in Arduino).

• Cross-platform capability.

• Finally, the cost.

So, the selection of the board or microcontroller is application oriented. And a

variety of boards can be stuffiest for the robot to be functional. That is because, the

application at hand does not need very high processing power or very large memory

storage. The exoskeleton does not need to be connected to another device

wirelessly as well thus, there is no use of WIFI or Bluetooth on the board. Simply,

the robot has a position sensor integrated that acts as an input to the board with a

simple output of a signal to act on a solenoid air flow valve to open it at the

53

appropriate position to control the air flow rate. To narrow the selection of

development boards, myRIO and Arduino are selected and compared to choose the

most appropriate with respect to specifications as well as cost.

Arduino is an Italian electronics company working on developments boards

(fig.3.41), who defined Arduino as:

“Arduino is an open-source electronics platform based on easy-to-use
hardware and software. Arduino boards can read inputs - light on a

sensor, a finger on a button, or a Twitter message - and turn it into an
output - activating a motor, turning on an LED, publishing something

online. You can tell your board what to do by sending a set of
instructions to the microcontroller on the board. To do so you use

the Arduino programming language (based on Wiring), and the
Arduino Software (IDE), based on Processing.”

https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Reference/HomePage
http://wiring.org.co/
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://processing.org/

54

Figure 3.41: Arduino UNO (Appendix I), one of the most common Arduino boards.

The concept of the board was created in Ivrea interaction design institute. It was

aimed as to encourage students to work in the field of electronics and programming.

The concept prevailed which led to development of the simple concept into making

several boards and shields that have a wide range of applications and advanced ones

as IoT applications and embedded environments. The main peculiarities of Arduino

boards are that they are open source platform where engineers and programmers

can use others work and develop on it freely with no fees for the software. Secondly,

the hardware is extendable using the shields or by designing their own modules as

well as there is a breadboard version of the module. Moreover, it is flexible, offers

a variety of digital and analog inputs, SPI and serial interface and digital

and PWM outputs. It is inexpensive, around 30 euro per board and comes with free

authoring software. However, myRIO board has advantages over Arduino, which

cannot be called disadvantages of Arduino boards. Firstly, the myRIO runs a linux-

based real-time operating system, this means you can run your LabVIEW code on it

as well as it is having other utilities to allow you to configure it. myRIO has included

FPGA so, the user can run extremely high-speed logic, data acquisition and filtering

at 40 MHz clock rates. myRIO as well has WIFI included while in Arduino a shield

must be used to provide WIFI. Moreover, it has more I/O digital and analog pins

than Arduino. However, myRIO boards cost 200+ euro, which is relatively expensive.

To make an appropriate selection based on the exoskeleton robot at hand, it is

simple to just follow the straight-forward quote found on the National Instruments

forum website [26], that states:

55

“Do you write programs in C? Do you want them to run head less

without needing to be connected to a PC? Do you want built in WIFI,
USB Host, do you want an FPGA also written in C? Do you want to

leverage the power of the Linux community? Do you have a need for
vision application via a USB camera?”

Answering all these questions is simple and forward according to the application.

the programing language used is C, and it will run both with and without being

connected to the computer in different procedures. However, no WIFI capabilities

are needed and there is no visual data needed in this application.

3.1.2 BNO055 9-axis absolute orientation BOSCH sensor

Implementing the desired control strategy there are two main concepts: firstly,

controlling the torque output from the air motors and thus making a feedback

signal with the acquired data from a torque transducer, secondly, instead of using

a torque senor, it is possible to calculate the torque required from the air motors

by measuring the angular position, velocity and acceleration of the exoskeleton at

all times and feed this data into an algorithm which computes the required torque

at each instant in time. Following the second conduct, research have been done

to make an effective selection of a desired sensor to feed the three types of data

needed. However, velocity and acceleration data can be computed from the

position by taking the rate of change consecutively. This logic is correct in theory,

56

on the other hand, it is hard to be implemented in real time due to very small

ripples in the data acquired by a position sensor will lead to very high ripples in

velocity calculation and extremely un acceptable data in case of acceleration.

There are several sensors in industry that can measure angles position with hall

effect which depends mainly on the magnetic field of a magnet placed on the

rotating shaft and the sensor facing this piece of magnet with a very small air gap

up to a few millimeters. Some theses sensors are AS5600 Grove 12-bit Magnetic

Rotary Position Sensor (fig.3.42), and several Penny+Giles sensors which are used

in the industry of automotive applications to acquire the throttle valve position in

internal combustion engines. (fig.3.43)

Figure 3.42: AS5600 Grove 12-bit Magnetic Rotary Position Sensor.

57

Figure: 3.43: NRH300DP NO-CONTACT, ROTARY POSITION SENSOR.

All the hall effect sensors have the same limitations in this thesis application:

firstly, they all need to be mounted very close to a rotating shaft while there is no

rotating shaft in the designed model, moreover, they only read position which is a

bad conduct as explained before.

Accordingly, the sensor needed must feed angular position and velocity at least

and have the acceleration part computed with no problem. In September 2013,

the

German

company

BOSCH

designed an

intelligent 9-axis

absolute

orientation

sensor called

58

BNO055 (fig.3.44) which has integrated 3 different sensors: 3-axis accelerometer,

3-axis gyroscope, 3-axis magnetometer. The sensor has intelligent data fusion

algorithms that uses all data inputs and feed as output quaternions, linear

acceleration, rotation, gravity and robust heading. It is used in several applications

as: automotive to feed the orientation and acceleration of a vehicle, robotics

applications and even gaming joysticks to define heading of the controller in the

gamer hands.

Figure 3.44: BOSCH bno055 9-axis intelligent absolute orientation sensor.

Moreover, to interface this sensor with Arduino, Adafruit designed a board that

integrates this sensor along with a controller to feed data into Arduino using I2C

communication protocol. (fig.3.45)

59

Figure 3.45: Adafruit BNO055 absolute orientation sensor (Appendix J).

According to the right-hand rule, the three coordinates are defined. The pinout of

this board is defined as follows:

1) VIN: 3.3-5.0V power supply input.

2) 3VO: 3.3V output from the on-board linear voltage regulator, you can grab

up to about 50mA as necessary.

3) GND: The common/GND pin for power and logic.

4) SCL - I2C clock pin, connect to your microcontrollers I2C clock line. This pin

can be used with 3V or 5V logic (there's a 10K pullup on this pin).

5) SDA - I2C data pin, connect to your microcontrollers I2C data line. This pin

can be used with 3V or 5V logic (there's a 10K pullup on this pin).

6) RST: Hardware reset pin. Set this pin low then high to cause a reset on the

sensor. This pin is 5V safe.

 Y

 Z

 X

60

7) INT: The HW interrupt output pin, which can be configured to generate an

interrupt signal when certain events occur like movement detected by the

accelerometer, etc. (not currently supported in the Adafruit library, but the

chip and HW can generate this signal). The voltage level out is 3V.

8) ADR: Set this pin high to change the default I2C address for the BNO055 if

you need to connect two ICs on the same I2C bus. The default address is

0x28. If this pin is connected to 3V, the address will be 0x29.

9) PS0 and PS1: These pins can be used to change the mode of the device (it

can also do HID-I2C and UART) and also are provided in case Bosch provides

a firmware update at some point for the ARM Cortex M0 MCU inside the

sensor. They should normally be left unconnected.

The Adafruit company provides an Arduino library to interface the BNO055 sensor.

Thus, using the sensor fusion algorithm to measure angular position, using the

gyroscope to acquire angular velocity (in radians/s) and, finally, computing the

angular acceleration by taking the time derivative of the gyroscope data in coding

as the baud rate is set to 115200 bauds per second which implies that 115200

signal level changes are happening within a second. Finally, two parts of this sensor

is used to measure the angles in the lumbar and hip joints respectively. Thus, using

two sensors with different I2C addresses which is supported by this board type by

applying 3.3V on the ADR pin it changes the address from 0x28 to 0x29.

3.1.3 Pressure regulator

The Arduino and the whole control logic are intended to control the pneumatic

pressure into the air motors to manipulate the torque generated. This means that

the actuator at hand is a pressure regulator which can be operated with the output

voltage range of the Arduino PWM outputs. However, the pressure regulator

61

available in the fluid automation lab is the Festo proportional pressure regulators

VPPE with display of type VPPE-3-1-1/8-10-010-E1 (fig.3.46) which, according to

the data sheet, is proportional pressure regulator with switching valve head, 3-

way valve, with a maximum pressure up to 10 bar which can be decreased in

settings, with an operating signal which is analog voltage in the range of 10 VDC,

a voltage supply of 24 VDC and finally with a 7-segment LED display.

Figure 3.46: Festo proportional pressure regulators with display of type VPPE-3-1-1/8-10-010-
E1 (Appendix K)

62

From the electric point of view, using a 24 VDC supply, available in the lab, the

regulator is operated. However, the input control signal is needed to be 0-10 VDC

which correspond to 0-10 bar of regulated pressure. However, the pneumatic supply

to the exoskeleton is going to be only up to 6 bar (relative) and given the Arduino

analog output as a 0-5 V PWM signal raises the urge to design a filter to provide a

pure digital signal with no PWM components and an amplifier to raise the output of

the Arduino from 0-5 V to 0-10 VDC.

3.1.4 Electronic board

Using LTspice simulation tool, a model of the intermediate stage between Arduino

and the Festo regulator is simulated with components available in the lab (fig.3.47)

Figure 3.47: LTspice simulation of the electronic board.

Using the available lab equipment, a 24 VDC Instek GPS-2303 power supply

(Fig.3.48) is used to operate the control circuit which is represented by V2 in figure

3.47. However, to operate the Arduino UNO board (pin Vin) and operational

amplifier LM358-n (Appendix A) used (fig.3.49) a 12 VDC supply is required.

63

Figure 3.48: Instek GPS-2303 0-30 VDC power supply.

Figure: 3.49: LM358-n operational amplifier and the pinout data.

To step down the voltage a pressure regulator of type TS7812 (Appendix B)

(fig.3.50) is used. According to the datasheet of the op-amp, it is recommended to

use on the supply line 0.33 µF and on the output line 0.1 µF to ensure decoupling

of supply. The LM358 series are operational amplifiers which can operate with only

a single power supply voltage, have true-differential inputs, and remain in the

linear mode with an input common-mode voltage of 0 VDC.

64

Figure 3.50: TS7812 Voltage regulator and pinout

The Arduino UNO output signal is a 0-5V PWM signal (0-255 in code) which is used

to operate the Festo proportional valve, However the valve is operated with 0-10

VDC signal. So, the Arduino output PWM is fed into an RC filter to remove the

ripples and then to a non-inverting amplifier with a ratio at 2 to step up the voltage

into twice its value. This means that when applying a signal in Arduino code with

a value of 255 the voltage output on the proportional valve is going to be 10 VDC.

The designed RC filter should provide fast response with as low ripples as possible,

however, some ripples will not damage the Festo valve as it was tested to PWM

signals and It works perfectly. Studying the transient response of the capacitor the

R and C values were chosen. The output is represented with a transfer function of:

𝐺(𝑠) =
31.25

𝑠 + 31.25

The cutoff frequency is chosen to be:

𝑓𝐶 = 4.974 𝐻𝑧

Final max ripple voltage:

𝛥𝑉𝑃𝐾−𝑃𝐾 = 79 𝑚𝑉

Settling time (0-90% Vin):

𝑇𝑠 = 73 𝑚𝑠

65

The step response of a 0-5 V PWM with 50% duty cycle is shown. (fig.3.51)

Figure 3.51: step response of 0-5 V PWM with 50% duty cycle.

Finally, the op-amp is operated with a single supply not a differential one as the

application at hand is only DC and any negative signal is not needed and should be

removed. The overall circuit shown in figure 3.49 is simulated with the following

output. (fig.3.52)

Figure: 3.52: comparing the PWM signal from Arduino with 50% duty cycle with the output
from the designed electronic board.

Following the simulation, the circuit was implemented on a bread board and using

electronic components found in the lab and connecting the Arduino board as input

66

and Festo valve as output while picking the signal to the valve on an oscilloscope.

The Arduino input was set to be a stepping increase in the duty cycle to see all the

outputs in real time. (fig.3.53) (fig.3.54)

Figure 3.53: electronic circuit connected on bread board and Arduino integrated.

Figure 3.54: stepping duty cycle output from electronic board.

The oscilloscope shows an offset in the voltage which can be read in zero step (zero

duty cycle), however, this offset is not from the board design but can be from the

oscilloscope itself or from the valve as when zero voltage to the valve the output

had the same offset of 3.1 bar. Taking table (Table 3.2) shows voltage inputs and

67

pressure outputs to be used to calibrate the Festo valve which, according to the

datasheet, is linear.

V(Arduino) V(Festo) Bar V(Arduino) V(Festo) Bar
0 0.31 0.32 130 5.41 5.36

5 0.51 0.51 135 5.61 5.57

10 0.7 0.685 140 5.8 5.74

15 0.9 0.905 145 6 5.93

20 1.09 1.1 150 6.19 6.06

25 1.29 1.295 155 6.39 6.06

30 1.485 1.49 160 6.59 6.06

35 1.68 1.7 165 6.78 6.06

40 1.88 1.85 170 6.87 6.06

45 2.07 2.065 175 7.07 6.06

50 2.27 2.25 180 7.26 6.06

55 2.47 2.47 185 7.45 6.06

60 2.66 2.625 190 7.64 6.06

65 2.86 2.82 195 7.84 6.06

70 3.06 3.025 200 8.03 6.06

75 3.25 3.245 205 8.22 6.06

80 3.45 3.42 210 8.41 6.06

85 3.645 3.62 215 8.6 6.06

90 3.84 3.82 220 8.8 6.06

95 4.04 4.03 225 8.99 6.06

100 4.23 4.195 230 9.19 6.06

105 4.43 4.39 235 9.38 6.06

110 4.63 4.58 240 9.58 6.06

115 4.82 4.8 245 9.79 6.06

120 5.02 4.97 250 9.97 6.06

125 5.21 5.165 255 10.17 6.06

Table 3.3: Arduino input data to the valve and pressure.

Analyzing the table data, the Arduino PWM output is nearly linear with the pressure

from the valve except for the zero voltage. Moreover, the maximum pressure

output on the valve is 6.06 bar as the supply was set to this maximum value and this

is according to the application.

68

Using python linear regression tool, a perfect fit line can be computed (Appendix C)

to map the signal from Arduino to the pressure required on the valve (fig.3.55).

Figure 3.55: Python linear regression output (x-axis is Arduino code data; y-axis is valve
Pressure).

Analyzing the line, it has the following line equation:

𝑷𝒓𝒆𝒔𝒔𝒖𝒓𝒆 = 𝟎. 𝟎𝟑𝟖𝟕𝟏𝟓 ∗ 𝑨𝒄𝒐𝒅𝒆 + 𝟎. 𝟑𝟐𝟐𝟑𝟕𝟗

Moreover, the regression correctness as acquired from the SciPy library in python,

with 1 as highly correct and zero as incorrect, is 0.9999.

3.2 Methods

3.2.1 Stateflow

69

Stateflow has been chosen to manage the transition between the four states

mentioned before which are: Resting, Bending, Working and Lifting phases. The

design should accommodate for the slight bending angle due to the wearer

movements as walking. It should also accommodate for reverse cycle of two

phases as the wearer can bend and then not flex till the bending angle is zero

degrees, instead, the exoskeleton can be in the bending phase followed by the

lifting phase then bending again instead of resting. All these phases and the

transition among them with valid conditions is illustrated through Stateflow.

In Stateflow we should define:

1. Input signals: as: Power switches and Angular position, velocity and

acceleration.

2. Output signals: Displays to show the angular quantities computed.

3. Diagram that illustrates the states and transitions. (fig.3.56)

70

Figure 3.56: complete Stateflow scheme.

Defining the different phases as follows:

1. REST Phase: when the bacino angle (Pb) is less than 5° so the wearer is

standing up right and the tolerance of 5° is to accommodate for simple

movements and bending during walking or tilting with a very small angle.

2. BENDING Phase: Can be entered when the bending angle exceeds 5° but less

than 20°. This is due to the existence of two separate angles in the pelvic

region: Pb (bacino) and Ps (structure). Where Pb has a maximum of 20° while

Ps is 70° with respect to Pb. this phase is followed by one of the two phases:

either WORK phase or BENDINGbacino phase.

3. WORK Phase: this phase is entered either from the BENDING or LIFT phases.

In case of BENDING, WORK phase is established only when the velocity of

71

the bacino joint is zero (this means that the wearer was bending and

stopped in order to stand up again or even return by a short angle and thus

needs to be assisted). While in case of LIFT, this phase is entered when the

velocity of the bacino joint is zero as well, but the difference is that there is

a flag that states that the cycle passes through the WORK phase before.

4. LIFT Phase: It is entered also by two conditions. Firstly, from WORK (cycle

1), when the velocity of the bacino joints is less than zero (i.e. the wearer is

moving in the other direction and standing up). Finally, from LIFTbacino

(cycle 2), when the bacino angle is between 5° and 20° as well as a flag to

indicate that the cycle passed through the WORKbacino.

5. BENDINGbacino Phase: it can be entered either from BENDING or

WORKbacino. The first occurs when the bacino angle is 20° while the bacino

joint velocity is still greater than zero so the wearer is still bending and is

going to bend the structure angle (Ps). while the second possibility is when

the structure angle velocity is greater than zero and there is a flag that

indicates the cycle passed through BENDINGbacino.

6. WORKbacino Phase: Can be entered either from BENDINGbacino or

LIFTbacino. The first one when the structure joint velocity is zero as well as,

a flag that indicated that the cycle entered the BENDINGbacino. While the

second is when the structure joint angle is less than 70°, velocity is zero and,

finally, a flag that indicates that the cycle entered the LIFTbacino.

7. LIFTbacino: Is entered if and only if the structure angle is equal to 70° and

the velocity is less than zero.

There are wo cycles defined in the previous phases:

1. Cycle 1: Defined through phases 1 through 4 and finished by 1 again.

72

2. Cycle 2: Defined through the phases 1 -> 2 -> 5 -> 6 -> 7 -> 1.

Where the air motor should operate during these phases only: 3,4,6,7.

In the following diagram are the functions used in Stateflow to define the

transition conditions between different phases (fig.3.57):

Figure 3.57: Functions used to define conditions to translate between phases.

73

3.2.2 Logical algorithm

This thesis mainly focuses on the implementation of the control strategy already

defined in previous colleague’s work. Previously, it was defined the states of

operation of the exoskeleton through Stateflow. Arduino is coded using the

Arduino IDE software where the programming language is C++. The concept of the

Stateflow diagram is to simulate the model and to generate the logical

representation of the coding procedure. Thus, using the Stateflow diagram the

states were defined into logical data that can be code with C++ easily(fig.3.58).

Maintaining the outputs of the logical circuit as only one output which is the signal

to the Festo valve, the lift phase defines that this is the only state in which the

valve is operating with a pressure corresponding to the bending angle of the user

which is then transferred into torque on the air motor.

Figure 3.58: logical control representing the sates of operation.

74

However, the main difference between this logical representation of the states

and the C++ code designed (Appendix D) is that the states are only stored in one

string which unlatches when the state changes. Moreover, the angles from the

two sensors must be read each cycle not with an interrupt that feeds the angle at

constant time stamps and this is because of the very large mechanical response

delay of the Festo valve which can be nearly 0.5 second. However, the execution

of the code is at 115200 baud rate which will be useful not only in rapid execution

of the control strategy but also to log data into simulation environments to

monitor the operation of the device.

3.2.3 Measuring angular data from 9 DOF sensor

The underhand BNO055 sensor is a 9 DOF sensor as described before. It has

integrated an accelerometer, gyroscope and magnetometer which sends

acceleration, angular velocity, magnetic field strength data respectively. BOSCH

company made an algorithm to fuse the data from these sensors together to

provide other types of outputs as well. For instance, the fusion algorithm provides

absolute orientation in space for the three axes depending on the sensor

orientation in space. Moreover, they provide quaternion data as well as gravity

vector on the three axes.

In the application at hand, only one axis of rotation is required as the exoskeleton

is a 1 DOF structure at each joint with angular limits (0-20° at the lower joint and

20°-70° at the upper joint). This implies using the data fusion orientation data to

provide the angular position of the sensor; however, this sensor is as intelligent as

it is designed to recalculate the offsets from the vertical and horizontal plane each

time the sensor is operated. This feature is not recommended to be used in this

application as the user should be perfectly standing vertically each time the device

75

is operated. Moreover, this feature is automatically set in the sensor and cannot

be switched off.

Instead, it’s better to use the fusion gravity vector data to compute the orientation

at a certain instant which is better than using the accelerometer data as the

accelerometer data changes not only with gravitational acceleration but also with

any acceleration component along the axis referred to.

Solving the trigonometric problem (fig.3.59)with the sensor mounted in the

vertical position if the positive x-axis of the sensor is pointing in the positive gravity

vector, the angular position can be precisely computed with only a single limitation

that the measured angle is only between -90° up to 90° for if it exceeds 90° in a

certain direction it goes to -90° not 91°.

 Y

 X

Figure 3.59: Counterclockwise graphical orientation of the sensor.

Y

X

α

α

gx’

gy’

X’

Y’

76

By taking the tangent of the angle α from the sketch, the heading can be

computed:

𝐭𝐚𝐧 𝜶 =
𝒈𝒚′

𝒈𝒙′

𝜶 = 𝐭𝐚𝐧−𝟏
𝒈𝒚′

𝒈𝒙′

Secondly, the sensor is used to measure angular velocity (ω) via the gyroscope

sensor raw data which indicates the velocity as positive when the sensor is rotates

counterclockwise and negative clockwise. Finally, the angular acceleration (𝝎̇) is

computed as the time derivative of the angular velocity:

𝝎̇ =
𝑑𝝎

𝑑𝑡
 =

Δ𝝎

Δ𝑡

In coding it is computed as the difference between the data at a certain instant

and the data at the previous cycle as the baud rate is very high (115200), so the

time slot is negligible.

Using SerialPlot, a software designed to catch data from the serial bus and

represent it as a plot with the desired data on the y-axis and the time as x-axis, it

is possible to monitor the sensor outputs across time (Appendix E). Firstly, tilting

the sensor from 0 to 45° (counterclockwise) (fig.3.60) and then doing the same

movement but while measuring velocity (fig.3.61) and finally repeating again while

measuring acceleration (fig.3.62). Secondly, tilting from 0 to -45 (clockwise) and

measuring the same data again respectively. (fig.3.63) (fig.3.64) (fig.3.65)

The graphical representations show the validity of the data measured by the

sensor as the angular position resembles reality and the velocity profile is

77

increasing till a certain value and then is constant for a short amount of time and

then returns to zero as the movement is terminated while the computed angular

acceleration contain very high ripples and the computed data are rejected. This

acceleration behavior is unacceptable and is explained by the very minute

difference in velocity will produce a very large signal in acceleration which leads

to the urge of filtering these data.

Figure 3.60: Measurement of the angular position (blue) in counterclockwise rotation (x-axis is
time in ms, and y-axis is angle in degrees).

Figure 3.61: Measurement of the angular velocity (yellow) in counterclockwise rotation (x-axis
is time in ms, and y-axis is angle rate in rad/s).

78

Figure 3.62: Measurement of the angular acceleration (white) in counterclockwise rotation (x-
axis is time in ms, and y-axis is velocity rate in rad/s2).

Figure 3.63: Measurement of the angular position (blue) in clockwise rotation (x-axis is time in
ms, and y-axis is angle in degrees).

Figure 3.64: Measurement of the angular velocity (yellow) in clockwise rotation (x-axis is time
in ms, and y-axis is angle rate in degrees).

79

Figure 3.65: Measurement of the angular acceleration (white) in clockwise rotation (x-axis is
time in ms, and y-axis is velocity rate in rad/s2).

3.2.4 Acceleration data filtering

Very high ripples in the angular acceleration data acquired from the calculation of

the rate of angular velocity will lead to incorrect calculation of the torque required

by the air motors which is controlled by the varying pressure from the Festo

proportional valve. There are two main concepts on filtering any type of data in

code: first, by using a delay between every computation and the previous one or

using a so called “low pass filter”.

The delay algorithm: is as obvious as it is called as instead of measuring data in

high rate and computing these data in the same rate, the data are only recognized

in a lower rate i.e. the data read from the sensor device is the same data and at

the same rate but some of them are rejected depending on a specified delay that

is set to better visualize the correct data needed. Moreover, this method leads to

rejection of small ripples acquired from unneeded movements of the sensor in

space as in the exoskeleton, a human is operating the devise while wearing it, so

80

the sensor is not fixed in space and the only motion present is not of the joint

angular motion but also the normal human movements.

As per (Appendix F), the same tests done in the previous section is repeated while

introducing the delay filtering method and then reading the angular position,

velocity and acceleration in counterclockwise (fig.3.66), (fig.3.67), (fig.3.68)

respectively and clockwise directions (fig.3.69), (fig.3.70), (fig.3.71) respectively. In

this filter, data is read every 100 ms and the filter delay is 200 Ms.

Figure 3.66: Measurement of the angular position (blue) in counterclockwise rotation (x-axis is
time in ms, and y-axis is angle in degrees) with delay filter.

Figure 3.67: Measurement of the angular velocity (yellow) in counterclockwise rotation (x-axis
is time in ms, and y-axis is angle rate in rad/s) with delay filter.

Figure 3.68: Measurement of the angular acceleration (white) in counterclockwise rotation (x-
axis is time in ms, and y-axis is velocity rate in rad/s2) with delay filter.

81

Figure 3.69: Measurement of the angular position (blue) in clockwise rotation (x-axis is time in
ms, and y-axis is angle in degrees) with delay filter.

Figure 3.70: Measurement of the angular velocity (yellow) in clockwise rotation (x-axis is time
in ms, and y-axis is angle rate in degrees) with delay filter.

Figure 3.71: Measurement of the angular acceleration (white) in clockwise rotation (x-axis is
time in ms, and y-axis is velocity rate in rad/s2) with delay filter.

As shown in the acceleration profiles the spikes are more obvious and closer to

reality, however this method has a drawback which is the very large delay time

that the sensor high data rate is wasted. However, the proportional valve has a

high mechanical response delay so this filter can be used in this application.

Moreover, the delay times can be chosen with smaller values to increase the data

82

rate, but this depends on the real time, hardware in the loop (HIL) testing phase

to show the best data profile acquired.

The weights algorithm is mainly defined by assigning weight for the data acquired

at a certain instant and adding it to the weighted data at the previous instant. The

weights should be defined as the previous instant measurand weight is more than

90% while the new instant measurand weight is less than 10%. This guarantees

that any high change in the measured data will not be trusted, however, only a

small percent of the new measurand is taken into consideration. This method is

effective in the angular acceleration calculation as it results in more stable

behavior which resembles the function of a low pass filter as it rejects very high

ripples generated from minor movements of the sensor in space.

As per (Appendix G), the same tests done in the previous sections is repeated while

introducing the weights filtering method and then reading the angular position,

velocity and acceleration in counterclockwise (fig.3.72), (fig.3.73), (fig.3.74)

respectively and clockwise directions (fig.3.75), (fig.3.76), (fig.3.77) respectively. In

this filter, the code is executed without any delay and with 115200 as baud rate.

Figure 3.72: Measurement of the angular position (blue) in counterclockwise rotation (x-axis is
time in ms, and y-axis is angle in degrees) with weights filter.

83

Figure 3.73: Measurement of the angular velocity (yellow) in counterclockwise rotation (x-axis
is time in ms, and y-axis is angle rate in rad/s) with weights filter.

Figure 3.74: Measurement of the angular acceleration (white) in counterclockwise rotation (x-
axis is time in ms, and y-axis is velocity rate in rad/s2) with weights filter.

Figure 3.75: Measurement of the angular position (blue) in clockwise rotation (x-axis is time in
ms, and y-axis is angle in degrees) with weights filter.

Figure 3.76: Measurement of the angular velocity (yellow) in clockwise rotation (x-axis is time
in ms, and y-axis is angle rate in degrees) with weights filter.

84

Figure 3.77: Measurement of the angular acceleration (white) in clockwise rotation (x-axis is
time in ms, and y-axis is velocity rate in rad/s2) with weights filter.

As seen from the acceleration figures, the angular acceleration data are more

accepted than the data obtained without filtering, however, for this type of

filtering the actual values of the acceleration can be not very close to reality at it

requires a period of time for the measured value to settle at the new instant but

again the very high baud rate validate accepting these values.

85

4 Testbench Simulation

Before the exoskeleton can be used by human, it is tested using a designed

testbench. This device is to emulate the user whom the exoskeleton is mounted

on and strapped to its links where the joints are aligned. This device is actuated by

pneumatic cylinders to perform the trajectory of the human bending phases

described before. Firstly, the device is designed on SolidWorks and then imported

for testing on MATLAB. Using the Simscape library a complete model is designed

to compare with the calculations of the forces of the air cylinders and the desired

torques on the joints are validated as well.

86

4.1 Parts and assembly

The test bench mainly consists of three parts that are joined through revolute

joints (fig. 4.78): Base (fig. 4.79A), Pelvic part (fig. 4.79B) and Backframe (fig.

4.79C). These three parts emulate the human better than with only one joint

between the backframe and base and it services well the exoskeleton device as it

is actuated by two rotary joints.

Figure 4.78: Testbench main parts.

 Figure: 4.79: Testbench parts, A is Base, B is Pelvic part, C is Backframe.

A

B

C

87

Moreover, the testbench is actuated by pneumatic cylinders which were imported

from the manufacturer CAD files as well. Three pneumatic cylinders are used to

actuate the model, two of which are the same (fig. 4.80) used to actuate the

backframe from the front and back and the third is a smaller (fig. 4.81) one used

to actuate the pelvic part.

Figure 4.80: The bigger cylinder used with the backframe (2 cylinders used) (colors are only for

visualization).

Figure 4.81: The smaller cylinder used with the pelvic part (1 cylinder used) (colors are only for
visualization).

The complete model (fig. 4.82) is then assembled with the correct orientation of

the connection frames which were defined on the parts geometry instead of using

rigid transform blocks as the origin of the imported step files are defined not

correctly, however, this does not affect the simulation.

Figure 4.82: Complete testbench model.

88

As shown in the assembly (fig. 4.83), the joints of the base and pelvic part which

are two joints with rotational motion, however in simulation only one joint is used

on the midpoint along the centerline connecting the two joints and this is because

during simulation the more the joints, the more complications occur during

simulation as the simulating tool actuates with precise trajectories and minute

data values always cause kinematic singularities which makes it impossible to

simulate the model. This is also done on the joint between the pelvic part and

backframe, where there are three rotational joints and only the one in the middle

is actuated. Finally, all these rotational joints are aligned with the midplane of the

testbench where the midplane of the cylinders in position coincide.

Figure 4.83: Complete assembly of the testbench.

89

4.2 Actuation and sensing

The function of the testbench is to emulate the human movement to test the

exoskeleton on it. This movement is emulated by the three pneumatic cylinders

only which are actuated using linear motion and forces. However, during studying

the human movement, it was defined by a cycloidal law on the rotary joints of the

hip and pelvis and the torques generated at them. Thus, to translate the cycloidal

law from the revolution joints to the cylinders, the model was actuated at the

rotary joints with the desired motion which is:

• 0-20° cycloidal law on the hip joint (lower joint) during (0 to 1s) and then

fixed at 20° during (1s to 35s) followed by 20°-0 during (35s to 36s). Finally,

steady at 0 till 60s. (fig. 4.84)

• 0 on the pelvic joint (upper joint) during (0 – 1s) followed by 0-50° cycloidal

during (1s to 3s) then fixed at 50° during (3s to 33s) then 50°-0 cycloidal

during (33s to 35s). Finally, steady at 0 till 60s. (fig. 4.85)

Figure 3.84: Kinematics of the hip joint. (x-axis is in s) (y-axis is in rad, rad/s and rad/s/s).

90

Figure 4.85: Kinematics of the pelvic joint. (x-axis is in s) (y-axis is in rad, rad/s and rad/s/s).

The cycloidal law is transformed to the pneumatic cylinders through actuating the

previously described kinematics on the rotational joints of the assembly model

(fig. 4.86) in the model and automatically computing the kinematics of the

cylinders then. The result kinematics (fig. 4.87,4.88,4.89) on the three cylinders

are always stored into the workspace to be used with the models used to

analytically compute the forces required from the cylinders which is the main

scope of this simulation.

91

Figure 4.86: The assembly model used to transfer the cycloidal law to the cylinders.

Figure 4.87: Kinematics of the large upper cylinder. (x- axis is in s) (y-axis is in m, m/s and
m/s/s).

92

Figure 4.88: Kinematics of the small lower cylinder. (x- axis is in s) (y-axis is in m, m/s and m/s/s).

Figure 4.89: Kinematics of the large frontal cylinder. (x- axis is in s) (y-axis is in m, m/s and
m/s/s).

93

4.3 Analytical calculation of forces

The testbench is actuated using three pneumatic cylinders which are connected to

the pelvic part and the backframe which is the real kinematics of a human with a

slight modification as during human bending the pelvis rotates around an axis

through itself not through the hip joint. This is compensated as when the

exoskeleton is mounted on the testbench, it is mounted on the pelvic part of the

testbench such that the whole pelvis of the exoskeleton rotates.

Forces computations were made, and air cylinders were already selected at the

time of simulation. The forces were computed by relaxing some of the movements

of the testbench. Such that the cylinder connected to the pelvic part was selected

to only provide the kinematics of this joint to correctly emulate the human motion

but was not used as part of the dynamics calculations to provide the correct

torques at specified joints.

As mentioned before, the exoskeleton provides 30% of the load generated by the

human body during bending where the maximum value is at 70° bending angle.

The torque then is calculated a simulated to be 266 N*m, which is the maximum

torque provided by the exoskeleton and then, the maximum torque required by

the testbench.

The main concept of choosing the mounting positions of the three cylinders were

such that, for the two back cylinders, forces in the extension direction is required

to produce the kinematics, however for the frontal cylinder, the main function is

to produce 70% of the human torque while in working positions (WORKING, LIFT

stateflow states). The frontal cylinder is only used to assist the exoskeleton such

94

that, when the exoskeleton produces 30% and the cylinder produces 70% the total

torque reacts to the 100% torque produced by the two back cylinders. This means

that to simulate the testbench forces through the complete cycle of 60s (through

all the states), each state should be simulated alone and tested and then all the

states are integrated together to produce the forces profiles through the 60s. This

means that the cycle is broken into six states with six models to calculate the forces

and twelve models to test them and finally a model to check the torques of the

rotational joints when the testbench is actuated by the forces on the cylinders and

the kinematics on the rotational joints

4.3.1 First state (Bending 0-20°)

These calculation of forces models all have the same concepts where the

rotational joints are actuated by the required torques and the cylinders are

actuated by the correct kinematics calculated before. Thus, the prismatic joints

provide the forces required to produce the kinematic law on the prismatic joints

in the opposite direction which is corrected by multiplying the analytically

calculated forces by (-1).

The first state, with a period of 1s, is bending the hip joint 0-20° by cycloidal law

while the pelvic joint is fixed at zero degrees. (fig. 4.90)

95

Figure 4.90: 0-20° cycloidal bending on hip joint.

During this state the back cylinders are the only ones actuated with forces (fig.

4.91) as the exoskeleton is passive (it only senses the bending position and it

computes the torques by itself). Thus, the frontal cylinder is passive in this state.

Figure 4.91: Left: upper cylinder force (N), Right: lower cylinder force (N).

4.3.2 Second state (Bending 0-50°)

As done in the previous state, this time the hip joint is fixed at 20° and the pelvic

joint is actuated by the torque required to produce the cycloidal motion of (0-50°)

in 2s (1s - 3s). this torque is the not computed as the torque of the bending of 50°,

however it is computed as the rest of the torque of the 70° after subtracting the

torque of the previous state and this is because the exoskeleton has only one air

motor that is producing all the torque. The prismatic joints are actuated by the

computed kinematics. (fig.4.92)

96

 Figure 4.92: 0-50° cycloidal bending of the pelvic joint.

During this state, as well, the back cylinders are the only ones actuated with forces

(fig. 4.93) as the exoskeleton is passive (it only senses the bending position and it

computes the torques by itself). Thus, the frontal cylinder is passive in this state.

Figure 4.93: Left: upper cylinder force (N), Right: lower cylinder force (N).

4.3.3 Third state (steady bending)

97

During this state, the testbench model (fig. 4.94) is bending by the whole 70° and

is producing a torque of 266 N*m where the exoskeleton is supporting 30% and

the frontal cylinder should be supporting the rest 70%. However, the front cylinder

can be passive in this state as well and the back cylinders only produce 30% of the

load which will be supported by the exoskeleton and this is in order to decrease

total error in calculations and to relax the actuated forces to prevent any failure.

The hip joint is actuated by 30% of the torque produced at 20° and the pelvic joint

is actuated by 30% of the rest of the torque produced at 70°. These torques are

constants where the rates are always zeros for 30s (3s – 33s).

Figure 4.94: Steady bending of a total of 70°.

During this state, as well, the back cylinders are the only ones actuated with forces

(fig. 4.95) as the exoskeleton is supporting these forces (it only senses the bending

position and it computes the torques by itself). Thus, the frontal cylinder is passive

in this state.

98

Figure 4.95: Left: upper cylinder force (N), Right: lower cylinder force (N).

4.3.4 Fourth state (Return to 20°)

This is the first state in which the front cylinder will be actuated to support 70% of

the load of the emulated human such that along with the 30% torque produced by

the exoskeleton, they react to the forces of the back cylinders.

From basic dynamics, to measure dynamics, one should actuate with kinematics

and vice versa. And due to the fact that the model of the testbench is a closed loop

model so, it is impossible to actuate the three cylinders with kinematics at the

same time in the same simulation as this produces a kinematic singularity even if

the kinematics were computed analytically. So, the model should be actuated with

kinematics on the back cylinders and then use these forces in another model to

actuate the frontal cylinder.

First of all, a model (fig. 4.96) is created to calculate the forces required from the

back cylinders to produce 100% of the human emulated torque in the

counterclockwise direction at the dedicated kinematics of (50°-0) on the pelvic

joint and 20° on the hip joint for 2s (33s – 35s). The back cylinder forces (fig. 4.97)

are then computed.

99

 Figure 4.96: Return of the pelvic joint to zero degrees and 100% torque calculation.

Figure 4.97: Left: upper cylinder force (N), Right: lower cylinder force (N).

Secondly, another model (fig. 4.98) is created and actuated by 70% of the human

emulated torque in clockwise direction on the rotational joints and with the

kinematics on the front cylinder and lower back cylinder together. This is because

if only the front cylinder is actuated by kinematics, there will be no constraints to

the motion of the hip joint as it is controlled only by the lower back cylinder. So, in

this case the front cylinder and the lower back cylinder are used to actuate the

70% of the required torques in clockwise direction. Thus, the calculated force for

100

the lower back cylinder in figure (4.97 Right) is just a component of the total force

required by this cylinder, while the total force (fig. 4.99) is the superposition of the

two forces calculated in two models. The lower back cylinder force along with the

front cylinder force (fig. 4.100) assist the exoskeleton to produce the 100%

emulated human torque.

Figure 4.98: Return of the pelvic joint to zero degrees and 70% torque calculation.

Figure 4.99: Summation of the lower back cylinder forces in fourth state and the final force
required from this cylinder at this state (Forces in N).

101

Figure 4.100: Front cylinder force (N).

4.3.5 Fifth state (Return to zero)

During this state, the testbench model (fig. 4.101) return the final 20° on the hip

joint to reach the upright position. The back cylinder is used to generate the 100%

human torque as the previous state and the front cylinder is used along the back

lower cylinder to produce the reaction 70% which is added to the exoskeleton 30%

of the torque.

Figure 4.101: Return to upright position.

102

The same procedure of calculating the forces needed to produce 70% of the

torque in the previous state is used in this state as well. Where the back cylinders

produce forces (fig. 4.102) that produce 100% of the torque in counterclockwise

direction. While another model (fig. 4.103) where, the lower back cylinder along

with the frontal one are used to produce 70% in the clockwise direction. Finally,

forces calculated on the two models in the lower back cylinder are also added

together to provide the total force (fig. 4.104) on this cylinder. So, the front

cylinder force (fig.4.105) is integrated with the lower back one to assist the

exoskeleton 30% of the torque.

Figure 4.102: Left: upper cylinder force (N), Right: lower cylinder force (N).

Figure: 4.103: Return to upright position and 70% torque calculation.

103

Figure 4.104: Summation of the lower back cylinder forces in fifth state and the final force
required from this cylinder at this state (Forces in N).

Figure 4.105: Front cylinder force (N).

104

4.3.6 Sixth state (Resting at zero)

At this state, all the values are zero. The forces are zero, the torques are zero and

the testbench is standing in the upright position and there is no motion due to

friction between the joints of the testbench and the exoskeleton is not actuated.

This state is added to simulate the total 60s that were defined in the simulation

models of the exoskeleton with the human body. This state is 24s (36s – 60s).

Finally, all the previous force calculations were tested with other models of the

testbench where the forces are applied as input and the kinematics are applied on

the rotational joints at the correct times and the torque on each rotational joint is

measured and compared to the initial requirements. In the first three states the

torque calculations were simple as the frontal cylinder is always passive. However

the fourth and fifth states, the testing was done by the same method and the

output torques on the two rotational joints (hip and pelvic joints) were added

together to check the total torque to be always 30% of the emulated human

torque but in the clockwise direction which is perfectly correct as this is the torque

produced by the exoskeleton when it is tested on the testbench.

4.3.7 Full simulation

Finally, after analytically calculating all the forces of all the three cylinders (fig.

4.106A, B, C). They are used to actuate the model and the rotational joints are

actuated with kinematics to measure torques on both joints. (fig. 4.107A, B)

105

Figure 4.106: A) Upper back cylinder force. B) Lower back cylinder force. C) Front cylinder force.

A

B

C

106

Figure 4.107: A) Torque on the hip joint. B) Torque on the pelvic joint.

To
rq

u
e

o
n

 h
ip

 (
N

*
m

)

Time (s)

A

To
rq

u
e

o
n

 p
el

vi
s

(N
*m

)

Time (s)

B

107

5 Conclusion and future development

The design of exoskeletons is perfect mechatronic project as it encounters several

fields as control, simulation, embedded software and electronics. In this thesis

study, developments were added to a work in progress project of an industrial

exoskeleton and designing a testbench to test the device kinematics and dynamics.

The thesis starts with defining the control law to be applied and optimizing the

selection of a control strategy by comparing between different methods and

implementing this strategy in simulation through stateflow. Afterwards, stateflow

was used to define the states of operation of the device and actuate it through

these states in simulation and translating these states to logic operations to be

implemented on the dedicated hardware. Secondly, the peripherals of the systems

were defined as a 9-axis sensor which is used to measure the angular, position,

velocity and acceleration on two rotational joints that emulate the hip and pelvic

joints and calibrating this sensor from BOSCH to the exoskeleton system. Then,

using python visual library (Appendix H), designing a simple model of the

exoskeleton and visualizing the real-time motion of the sensor using data logging

to the computer into python and MATLAB. Moving forward to designing an

electronic board to accurately process the signal of the controller to actuate the

proportional pressure regulator of FESTO to precisely actuate the control law and

implementing these electronic devices on a PCB (Appendix L). Finally, designing

and simulating the testbench on Simscape multibody tool and use the model to

calculate and verify the forces that are to actuate the device into the correct

108

function. Last but not least, the exoskeleton and the testbench were assembled in

the lab during this study.

For future developments, the control law should be actuated on the Arduino board

and connected to exoskeleton device to do the required function. A load cell can

be used to measure the relative force between the exoskeleton and the wearer

which will contribute to the control law to perform the testing on the device. The

testbench cylinder forces should be actuated using a controller on the cylinders

and controlled through another pressure regulator valve or a flow control valve

and a controller should be designed to actuate the forces. Finally, HIL testing

should be implemented and perform more development to the device, if needed.

109

Appendices

Appendix A

110

Appendix B

111

Appendix C

import matplotlib.pyplot as plt

from scipy import stats

x = [0,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,1

20,125,130,135,140,145,150]

y = [0.32,0.51,0.685,0.905,1.1,1.295,1.49,1.7,1.85,2.065,2.25,2.47,2.625,2.82,3.

025,3.245,3.42,3.62,3.82,4.03,4.195,4.39,4.58,4.8,4.95,5.165,5.36,5.57,5.74,5.95

,6.06]

slope, intercept, r, p, std_err = stats.linregress(x, y)

def myfunc(x):

 return slope * x + intercept

mymodel = list(map(myfunc, x))

plt.scatter(x, y)

plt.plot(x, mymodel)

plt.show()

print(slope,intercept,r)

112

Appendix D

#include <Wire.h>

#include <Adafruit_Sensor.h>

#include <Adafruit_BNO055.h>

#include <utility/imumaths.h>

uint16_t BNO055_SAMPLERATE_DELAY_MS = 10; //how often to read data from the

board

uint16_t PRINT_DELAY_MS = 500; // how often to print the data

uint16_t printCount = 0; //counter to avoid printing every 10MS sample

// Check I2C device address and correct line below (by default address is 0x29

or 0x28)

// id, address

Adafruit_BNO055 bno1 = Adafruit_BNO055(55, 0x28);

Adafruit_BNO055 bno2 = Adafruit_BNO055(56, 0x29);

//input/output pins

int valve = 0;

// variables

String state = "start";

bool PowerON = true;

float alfaB = 0 , wB = 0 , alfaS = 0 , wS = 0 , accB = 0 , accS = 0;

float p_alfaB = 0 , p_wB = 0 , p_alfaS = 0 , p_wS = 0;

float millisOld;

//int nowTime = 0 , p_nowTime = 0;

float C , Setpoint;

//constants

const int m = 57; // massa tronco (kg)

const float g = 9.81; // accelerazione gravitazionale (m/s^2)

const float Lg = 0.5; // posizione baricentro (m)

113

const float Inerzia = 7.7; // inerzia sistema (kgm ^2) --> (I+mLg^2)

const float k = 0.3; // effetto utile esoscheletro--> per

riduzione 30%

const int i_rid = 100; // rapporto di riduzione harmonic drive

void setup() {

 // put your setup code here, to run once:

 Serial.begin(9600);

 if(!bno1.begin() ||!bno2.begin())

 {

 /* There was a problem detecting the BNO055 ... check your connections */

 Serial.print("Ooops, no BNO055 detected ... Check your wiring or I2C

ADDR!");

 while(1);

 }

 delay(1000);

 Serial.println(state);

 analogWrite(valve,0);

 millisOld=millis();

 read_angles();

}

void loop() {

 // put your main code here, to run repeatedly:

 while ((0 < alfaB <= 5) && (0 < alfaS <= 5))

 {

 if (state == "LIFT........." || PowerON)

 {

 PowerON = false;

 state = "REST.........";

 analogWrite(valve,0); //valve off

114

 Serial.println(state);

 }

 read_angles();

 }

 while ((5 < alfaB <= 20) && (5 < alfaS <= 20))

 {

 if ((wB > 0) && (state == "REST........." || state == "WORK........."))

 {

 state = "BENDING......";

 Serial.println(state);

 analogWrite(valve,0); //valve off

 }

 if ((wB = 0) && (state == "BENDING......" || state == "LIFT........."))

 {

 state = "WORK.........";

 Serial.println(state);

 analogWrite(valve,0); //valve off

 }

 if ((wB < 0) && (state == "WORK........." || state== "LIFT........."))

 {

 state = "LIFT.........";

 Serial.println(state);

 airmotor(alfaB , accB); //valve work

 }

 read_angles();

 }

 while ((5 < alfaB) && (20 < alfaS < 70))

 {

 if ((wS > 0) && (state == "BENDING......" || state == "WORKbacino..."))

 {

 state = "BENDINGbacino";

 Serial.println(state);

 analogWrite(valve,0); //valve off

115

 }

 if ((wS = 0) && (state == "BENDINGbacino" || state == "LIFT........."))

 {

 state = "WORKbacino...";

 Serial.println(state);

 analogWrite(valve,0); //valve off

 }

 if ((wS < 0) && (state == "WORKbacino..." || state== "LIFT........."))

 {

 state = "LIFT.........";

 Serial.println(state);

 airmotor(alfaS , accS); //valve work

 }

 read_angles();

 }

 while (alfaS >= 70)

 {

 state = "exceed70.....";

 Serial.println(state);

 if (wS < 0)

 {

 state = "LIFT.........";

 Serial.println(state);

 airmotor(alfaS , accS); //valve work

 }

 read_angles();

 }

}

/***

/* Method: read_angles

/* In: sensor1(bacino), sensor2(structure) : data read from i2c

/* Out: position, velcity, acceleration of bacino and structure sensors

/* Description: compues the velcity and acceleration values

116

/***/

void read_angles()

{

 unsigned long tStart = micros();

 //read sensor 1

 /* Get a new sensor event */

 sensors_event_t angVelData1 , angVelData2;

 bno1.getEvent(&angVelData1, Adafruit_BNO055::VECTOR_GYROSCOPE);

 bno2.getEvent(&angVelData2, Adafruit_BNO055::VECTOR_GYROSCOPE);

 /*sensors_event_t event1;

 bno1.getEvent(&event1);

 alfaB = event1.orientation.x;

 /* Display the floating point data */

 float grav_X1 = bno1.getVector(Adafruit_BNO055::VECTOR_GRAVITY).x();

 float grav_Y1 = bno1.getVector(Adafruit_BNO055::VECTOR_GRAVITY).y();

 float grav_X2 = bno2.getVector(Adafruit_BNO055::VECTOR_GRAVITY).x();

 float grav_Y2 = bno2.getVector(Adafruit_BNO055::VECTOR_GRAVITY).y();

 alfaB = - atan2 (grav_Y1/9.81 , grav_X1/9.81) /2 /3.141592654 *360;

 alfaS = - atan2 (grav_Y2/9.81 , grav_X2/9.81) /2 /3.141592654 *360;

 wB = angVelData1.gyro.z;

 wS = angVelData2.gyro.z;

 float dt=(millis()-millisOld)/1000;

 millisOld = millis();

 accB = (wB - p_wB)/dt;

 accS = (wS - p_wS)/dt;

 p_wB=wB;

 p_wS=wS;

 if (printCount * BNO055_SAMPLERATE_DELAY_MS >= PRINT_DELAY_MS)

117

 {

 //enough iterations have passed that we can print the latest data

 Serial.print("alfaB: ");

 Serial.println(alfaB);

 Serial.print("wB: ");

 Serial.println(wB);

 Serial.print("accB: ");

 Serial.println(accB);

 Serial.print("alfaS: ");

 Serial.println(alfaS);

 Serial.print("wS: ");

 Serial.println(wS);

 Serial.print("accS: ");

 Serial.println(accS);

 /*

 Serial.print(alfaB);

 Serial.print(" , ");

 Serial.print(wB);

 Serial.print(" , ");

 Serial.print(accB);

 Serial.print(" , ");

 Serial.print(alfaS);

 Serial.print(" , ");

 Serial.print(wS);

 Serial.print(" , ");

 Serial.print(accS);

 */

 printCount = 0;

 }

 else {

 printCount = printCount + 1;

 }

 while ((micros() - tStart) < (BNO055_SAMPLERATE_DELAY_MS * 1000))

118

 {

 //poll until the next sample is ready

 }

 /*

 //read sensor 2

 sensors_event_t event2;

 bno2.getEvent(&event2);

 alfaS = event2.orientation.x;

 Serial.print("alfaS: ");

 Serial.print(event2.orientation.x, 4);

 nowTime = millis();

 float interval = (double)(p_nowTime - nowTime); // Calculate the time

it takes to run a cycle

 p_nowTime = nowTime;

 if ((0 < alfaB <= 20) && (0 < alfaS <= 20))

 {

 wB = 1000 * (p_alfaB - alfaB) / interval;

 accB = 1000 * (p_wB - wB) / interval;

 p_alfaB = alfaB;

 p_wB = wB;

 Serial.println("alfa_B:");

 Serial.print(alfaB);

 Serial.println(" w_B:");

 Serial.print(wB);

 Serial.println(" acc_B:");

 Serial.print(accB);

 }

 else if ((20 < alfaB) && (20 < alfaS))

 {

 wS = 1000 * (p_alfaS - alfaS) / interval;

 accS = 1000 * (p_wS - wS) / interval;

119

 p_alfaS = alfaS;

 p_wS = wS;

 Serial.println("alfa_S:");

 Serial.print(alfaS);

 Serial.println(" w_S:");

 Serial.print(wS);

 Serial.println(" acc_S:");

 Serial.print(accS);

 }

 */

}

/***

/* Method: compute the output to valves

/* In: position and acceleration of angles

/* Out: control value on valves (analogWrite)

/* Description: caomputes the control value depending on position

/**/

void airmotor(float pos, float acc)

{

 //C = m * g * Lg * sin((pos * 3.14 / 180)) - Inerzia * acc; //torque equation

 //Setpoint = 0.3 * C;

 //add ctrl law here

 //analogWrite(valve,255); //analogWrite values from 0 to 255

}

120

Appendix E

#include <Wire.h>

#include <Adafruit_Sensor.h>

#include <Adafruit_BNO055.h>

float dt = 0 , millisOld = 0;

float velold , tilt, vel , grav_X , grav_Y , gamma;

double xPos = 0, yPos = 0, headingVel = 0;

uint16_t BNO055_SAMPLERATE_DELAY_MS = 10; //how often to read data from the

board

uint16_t PRINT_DELAY_MS = 500; // how often to print the data

uint16_t printCount = 0; //counter to avoid printing every 10MS sample

//velocity = accel*dt (dt in seconds)

//position = 0.5*accel*dt^2

double ACCEL_VEL_TRANSITION = (double)(BNO055_SAMPLERATE_DELAY_MS) / 1000.0;

double ACCEL_POS_TRANSITION = 0.5 * ACCEL_VEL_TRANSITION * ACCEL_VEL_TRANSITION;

double DEG_2_RAD = 0.01745329251; //trig functions require radians, BNO055

outputs degrees

// Check I2C device address and correct line below (by default address is 0x29

or 0x28)

// id, address

Adafruit_BNO055 bno = Adafruit_BNO055(55, 0x28);

void setup(void)

{

 Serial.begin(115200);

 // if (!bno.begin())

 if (!bno.begin(Adafruit_BNO055::OPERATION_MODE_NDOF))

 {

 Serial.print("No BNO055 detected");

 while (1);

121

 }

 delay(1000);

 millisOld=millis();

}

void loop(void)

{

 uint8_t system, gyros, accel, mg = 0;

 bno.getCalibration(&system, &gyros, &accel, &mg);

 //

 unsigned long tStart = micros();

 sensors_event_t orientationData , linearAccelData , angVelData ,

accelerometer;

 bno.getEvent(&orientationData, Adafruit_BNO055::VECTOR_EULER);

 bno.getEvent(&angVelData, Adafruit_BNO055::VECTOR_GYROSCOPE);

 bno.getEvent(&accelerometer, Adafruit_BNO055::VECTOR_ACCELEROMETER);

 bno.getEvent(&linearAccelData, Adafruit_BNO055::VECTOR_LINEARACCEL);

 xPos = xPos + ACCEL_POS_TRANSITION * linearAccelData.acceleration.x;

 yPos = yPos + ACCEL_POS_TRANSITION * linearAccelData.acceleration.y;

 // velocity of sensor in the direction it's facing

 headingVel = ACCEL_VEL_TRANSITION * linearAccelData.acceleration.x /

cos(DEG_2_RAD * orientationData.orientation.x);

 //float vec = bno.getVector(Adafruit_BNO055::VECTOR_ACCELEROMETER).x();

 //enough iterations have passed that we can print the latest data

 /* Serial.print("Heading: ");

 Serial.println(orientationData.orientation.x);

 Serial.print("Headingy: ");

 Serial.println(orientationData.orientation.y);

 Serial.print("Headingz: ");

 Serial.println(orientationData.orientation.z);

122

 Serial.print("Position: ");

 Serial.print(xPos);

 Serial.print(" , ");

 Serial.println(yPos);

 Serial.print("Speed: ");

 Serial.println(headingVel);

 Serial.print("acc ");

 Serial.print(linearAccelData.acceleration.x);

 Serial.print(" , ");

 Serial.print(linearAccelData.acceleration.y);

 Serial.print(" , ");

 Serial.println(linearAccelData.acceleration.z);

 Serial.print("acclerometer ");

 Serial.print(accelerometer.acceleration.x);

 Serial.print(" , ");

 Serial.print(accelerometer.acceleration.y);

 Serial.print(" , ");

 Serial.println(accelerometer.acceleration.z);

*/

 grav_X = bno.getVector(Adafruit_BNO055::VECTOR_GRAVITY).x();

 grav_Y = bno.getVector(Adafruit_BNO055::VECTOR_GRAVITY).y();

 // float grav_Z = bno.getVector(Adafruit_BNO055::VECTOR_GRAVITY).z();

 tilt = -atan2(grav_Y/9.81,grav_X/9.81)/2/3.141592654*360;

 vel = angVelData.gyro.z;

 dt=(millis()-millisOld)/1000;

 millisOld=millis();

 //Serial.println("------------------------------------");

 // Serial.print(" dt ");

 // Serial.print(millis());

123

 // Serial.print(" , ");

 // Serial.print(millisOld);

 // Serial.print(" , ");

 // Serial.println(dt);

 gamma = (vel - velold)/dt;

 velold = vel;

//Serial.println("------------------------------------");

 // Serial.print(" Temp ");

 // Serial.println(bno.getTemp());

 // Serial.print("gravity: ");

 // Serial.print(grav_X);

 // Serial.print(" , ");

 // Serial.print(grav_Y);

 // Serial.print(" , ");

 // Serial.println(grav_Z);

 //Serial.print(" Angular position: ");

 // Serial.print(" , ");

 Serial.print(system);

 Serial.print(" , ");

 Serial.print(gyros);

 Serial.print(" , ");

 Serial.print(accel);

 Serial.print(" , ");

 Serial.print(mg);

 Serial.print(" , ");

 Serial.print(tilt);

// Serial.print("Angular velocity: ");

 Serial.print(" , ");

 Serial.print(angVelData.gyro.z);

 Serial.print(" , ");

124

// Serial.print("Angular acc: ");

 Serial.println(gamma);

 //Serial.println(vec);

 // Serial.print(" , ");

 // Serial.println(modeback);

 // Serial.println("-------");

}

void printEvent(sensors_event_t* event) {

 Serial.println();

 Serial.print(event->type);

 double x = -1000000, y = -1000000 , z = -1000000; //dumb values, easy to spot

problem

 if (event->type == SENSOR_TYPE_ACCELEROMETER) {

 x = event->acceleration.x;

 y = event->acceleration.y;

 z = event->acceleration.z;

 }

 else if (event->type == SENSOR_TYPE_ORIENTATION) {

 x = event->orientation.x;

 y = event->orientation.y;

 z = event->orientation.z;

 }

 else if (event->type == SENSOR_TYPE_MAGNETIC_FIELD) {

 x = event->magnetic.x;

 y = event->magnetic.y;

 z = event->magnetic.z;

 }

 else if ((event->type == SENSOR_TYPE_GYROSCOPE) || (event->type ==

SENSOR_TYPE_ROTATION_VECTOR)) {

 x = event->gyro.x;

 y = event->gyro.y;

 z = event->gyro.z;

 }

125

 Serial.print(": x= ");

 Serial.print(x);

 Serial.print(" | y= ");

 Serial.print(y);

 Serial.print(" | z= ");

 Serial.println(z);

}

126

Appendix F

#include <Wire.h>

#include <Adafruit_Sensor.h>

#include <Adafruit_BNO055.h>

int zz;

float dt = 0 , millisOld = 0;

float velold , tilt, vel , grav_X , grav_Y , gamma;

double xPos = 0, yPos = 0, headingVel = 0;

uint16_t BNO055_SAMPLERATE_DELAY_MS = 10; //how often to read data from the

board

uint16_t PRINT_DELAY_MS = 50; // how often to print the data

uint16_t printCount = 0; //counter to avoid printing every 10MS sample

//velocity = accel*dt (dt in seconds)

//position = 0.5*accel*dt^2

double ACCEL_VEL_TRANSITION = (double)(BNO055_SAMPLERATE_DELAY_MS) / 1000.0;

double ACCEL_POS_TRANSITION = 0.5 * ACCEL_VEL_TRANSITION * ACCEL_VEL_TRANSITION;

double DEG_2_RAD = 0.01745329251; //trig functions require radians, BNO055

outputs degrees

// Check I2C device address and correct line below (by default address is 0x29

or 0x28)

// id, address

Adafruit_BNO055 bno = Adafruit_BNO055(55, 0x28);

void setup(void)

{

 Serial.begin(115200);

 // if (!bno.begin())

 if (!bno.begin(Adafruit_BNO055::OPERATION_MODE_NDOF))

 {

 Serial.print("No BNO055 detected");

 while (1);

127

 }

 delay(1000);

 millisOld = millis();

}

void loop(void)

{

 uint8_t system, gyros, accel, mg = 0;

 bno.getCalibration(&system, &gyros, &accel, &mg);

 //

 unsigned long tStart = micros();

 sensors_event_t orientationData , linearAccelData , angVelData ,

accelerometer;

 bno.getEvent(&orientationData, Adafruit_BNO055::VECTOR_EULER);

 bno.getEvent(&angVelData, Adafruit_BNO055::VECTOR_GYROSCOPE);

 bno.getEvent(&accelerometer, Adafruit_BNO055::VECTOR_ACCELEROMETER);

 bno.getEvent(&linearAccelData, Adafruit_BNO055::VECTOR_LINEARACCEL);

 xPos = xPos + ACCEL_POS_TRANSITION * linearAccelData.acceleration.x;

 yPos = yPos + ACCEL_POS_TRANSITION * linearAccelData.acceleration.y;

 // velocity of sensor in the direction it's facing

 headingVel = ACCEL_VEL_TRANSITION * linearAccelData.acceleration.x /

cos(DEG_2_RAD * orientationData.orientation.x);

 //float vec = bno.getVector(Adafruit_BNO055::VECTOR_ACCELEROMETER).x();

 if (printCount * BNO055_SAMPLERATE_DELAY_MS >= PRINT_DELAY_MS) {

 //enough iterations have passed that we can print the latest data

 grav_X = bno.getVector(Adafruit_BNO055::VECTOR_GRAVITY).x();

 grav_Y = bno.getVector(Adafruit_BNO055::VECTOR_GRAVITY).y();

 // float grav_Z = bno.getVector(Adafruit_BNO055::VECTOR_GRAVITY).z();

 tilt = -atan2(grav_Y / 9.81, grav_X / 9.81) / 2 / 3.141592654 * 360;

 vel = angVelData.gyro.z;

128

 dt = (millis() - millisOld) / 1000;

 millisOld = millis();

 gamma = (vel - velold) / dt;

 velold = vel;

 Serial.print(system);

 Serial.print(" , ");

 Serial.print(gyros);

 Serial.print(" , ");

 Serial.print(accel);

 Serial.print(" , ");

 Serial.print(mg);

 Serial.print(" , ");

 Serial.print(tilt);

 Serial.print(" , ");

 Serial.print(angVelData.gyro.z);

 Serial.print(" , ");

 Serial.print(gamma);

 Serial.print(" , ");

 Serial.print(millis());

 Serial.print(" , ");

 Serial.println(millis()-zz);

 zz=millis();

 printCount = 0;

 }

 else {

 printCount = printCount + 1;

 }

 while ((micros() - tStart) < (BNO055_SAMPLERATE_DELAY_MS * 1000))

 {

 //poll until the next sample is ready

 }

}

129

void printEvent(sensors_event_t* event) {

 Serial.println();

 Serial.print(event->type);

 double x = -1000000, y = -1000000 , z = -1000000; //dumb values, easy to spot

problem

 if (event->type == SENSOR_TYPE_ACCELEROMETER) {

 x = event->acceleration.x;

 y = event->acceleration.y;

 z = event->acceleration.z;

 }

 else if (event->type == SENSOR_TYPE_ORIENTATION) {

 x = event->orientation.x;

 y = event->orientation.y;

 z = event->orientation.z;

 }

 else if (event->type == SENSOR_TYPE_MAGNETIC_FIELD) {

 x = event->magnetic.x;

 y = event->magnetic.y;

 z = event->magnetic.z;

 }

 else if ((event->type == SENSOR_TYPE_GYROSCOPE) || (event->type ==

SENSOR_TYPE_ROTATION_VECTOR)) {

 x = event->gyro.x;

 y = event->gyro.y;

 z = event->gyro.z;

 }

 Serial.print(": x= ");

 Serial.print(x);

 Serial.print(" | y= ");

 Serial.print(y);

 Serial.print(" | z= ");

 Serial.println(z);

}

130

Appendix G

#include <Wire.h>

#include <Adafruit_Sensor.h>

#include <Adafruit_BNO055.h>

float dt = 0 , millisOld = 0;

float velold , tilt, vel , grav_X , grav_Y , gammaM , gammaold , gammanew;

double xPos = 0, yPos = 0, headingVel = 0;

uint16_t BNO055_SAMPLERATE_DELAY_MS = 10; //how often to read data from the

board

uint16_t PRINT_DELAY_MS = 500; // how often to print the data

uint16_t printCount = 0; //counter to avoid printing every 10MS sample

//velocity = accel*dt (dt in seconds)

//position = 0.5*accel*dt^2

double ACCEL_VEL_TRANSITION = (double)(BNO055_SAMPLERATE_DELAY_MS) / 1000.0;

double ACCEL_POS_TRANSITION = 0.5 * ACCEL_VEL_TRANSITION * ACCEL_VEL_TRANSITION;

double DEG_2_RAD = 0.01745329251; //trig functions require radians, BNO055

outputs degrees

// Check I2C device address and correct line below (by default address is 0x29

or 0x28)

// id, address

Adafruit_BNO055 bno = Adafruit_BNO055(55, 0x28);

void setup(void)

{

 Serial.begin(115200);

 // if (!bno.begin())

 if (!bno.begin(Adafruit_BNO055::OPERATION_MODE_NDOF))

 {

 Serial.print("No BNO055 detected");

 while (1);

131

 }

 delay(1000);

 millisOld=millis();

}

void loop(void)

{

 uint8_t system, gyros, accel, mg = 0;

 bno.getCalibration(&system, &gyros, &accel, &mg);

 //

 unsigned long tStart = micros();

 sensors_event_t orientationData , linearAccelData , angVelData ,

accelerometer;

 bno.getEvent(&orientationData, Adafruit_BNO055::VECTOR_EULER);

 bno.getEvent(&angVelData, Adafruit_BNO055::VECTOR_GYROSCOPE);

 bno.getEvent(&accelerometer, Adafruit_BNO055::VECTOR_ACCELEROMETER);

 bno.getEvent(&linearAccelData, Adafruit_BNO055::VECTOR_LINEARACCEL);

 xPos = xPos + ACCEL_POS_TRANSITION * linearAccelData.acceleration.x;

 yPos = yPos + ACCEL_POS_TRANSITION * linearAccelData.acceleration.y;

 // velocity of sensor in the direction it's facing

 headingVel = ACCEL_VEL_TRANSITION * linearAccelData.acceleration.x /

cos(DEG_2_RAD * orientationData.orientation.x);

 grav_X = bno.getVector(Adafruit_BNO055::VECTOR_GRAVITY).x();

 grav_Y = bno.getVector(Adafruit_BNO055::VECTOR_GRAVITY).y();

 // float grav_Z = bno.getVector(Adafruit_BNO055::VECTOR_GRAVITY).z();

 tilt = -atan2(grav_Y/9.81,grav_X/9.81)/2/3.141592654*360;

 vel = angVelData.gyro.z;

 dt=(millis()-millisOld)/1000;

 millisOld=millis();

 gammaM = (vel - velold)/dt;

 velold = vel;

132

 gammanew = .9*gammaold + .1*gammaM ;

 gammaold = gammanew;

 Serial.print(system);

 Serial.print(" , ");

 Serial.print(gyros);

 Serial.print(" , ");

 Serial.print(accel);

 Serial.print(" , ");

 Serial.print(mg);

 Serial.print(" , ");

 Serial.print(tilt);

 Serial.print(" , ");

 Serial.print(angVelData.gyro.z);

 Serial.print(" , ");

 Serial.println(gammanew);

}

void printEvent(sensors_event_t* event) {

 Serial.println();

 Serial.print(event->type);

 double x = -1000000, y = -1000000 , z = -1000000; //dumb values, easy to spot

problem

 if (event->type == SENSOR_TYPE_ACCELEROMETER) {

 x = event->acceleration.x;

 y = event->acceleration.y;

 z = event->acceleration.z;

 }

 else if (event->type == SENSOR_TYPE_ORIENTATION) {

 x = event->orientation.x;

 y = event->orientation.y;

 z = event->orientation.z;

 }

 else if (event->type == SENSOR_TYPE_MAGNETIC_FIELD) {

133

 x = event->magnetic.x;

 y = event->magnetic.y;

 z = event->magnetic.z;

 }

 else if ((event->type == SENSOR_TYPE_GYROSCOPE) || (event->type ==

SENSOR_TYPE_ROTATION_VECTOR)) {

 x = event->gyro.x;

 y = event->gyro.y;

 z = event->gyro.z;

 }

 Serial.print(": x= ");

 Serial.print(x);

 Serial.print(" | y= ");

 Serial.print(y);

 Serial.print(" | z= ");

 Serial.println(z);

}

134

Appendix H

from vpython import*

from time import *

import serial

ad=serial.Serial('com3',115200)

sleep(1)

scene.range=20

toRad=2*pi/360

toDeg=1/toRad

scene.forward=vector(1,0,0)

scene.width=600

scene.height=600

pos_labl = label(pos=vector(0,15,15), xoffset=10 , yoffset=50, text="Tilt =

{:.3f}".format(1) , height=16 , border=4)

vel_labl = label(pos=vector(0,13,15), xoffset=10 , yoffset=50, text="Vel =

{:.3f}".format(1))

acc_labl = label(pos=vector(0,11,15), xoffset=10 , yoffset=50, text="Acc =

{:.3f}".format(1))

pos_display = graph(xtitle="Time", ytitle="Position")

pos_curve = gcurve(color=color.red, label = "Position") # Plot with datapoints

connected.

vel_display = graph(xtitle="Time", ytitle="Velocity")

vel_curve = gcurve(color=color.green, label = "Velocity") # Plot with datapoints

connected.

acc_display = graph(xtitle="Time", ytitle="Acceleration")

acc_curve = gcurve(color=color.blue, label = "Acceleration") # Plot with

datapoints connected.

xarrow=arrow(lenght=2, shaftwidth=.1, color=color.red,axis=vector(1,0,0))

yarrow=arrow(lenght=2, shaftwidth=.1, color=color.green,axis=vector(0,1,0))

135

zarrow=arrow(lenght=4, shaftwidth=.1, color=color.blue,axis=vector(0,0,1))

sphere(radius=0.1)

circle = shapes.circle(radius=0.05)

lumbar1 = extrusion(pos=vector(-5,0,0), path = [vector(-5,0,0),vector(-

5,3,0),vector(-5,3,-4),vector(-5,0,0)], shape = circle , color=color.green)

lumbar2=lumbar1.clone(pos=vector(5,0,0))

sphere(radius=0.2,pos=lumbar1.pos)

lumbar=compound([lumbar1,lumbar2])

backframel1=cylinder(axis=vector(0,1,0),pos=vector(-5,1.5,2.05),

size=vector(10,0.1,0.1),color=color.red)

backframel2=cylinder(axis=vector(1,0,0),pos=vector(-5,10.5,2.05),

size=vector(5,0.1,0.1),color=color.red)

backframer1=backframel1.clone(pos=vector(5,1.5,2.05))

backframer2=cylinder(pos=vector(5,10.5,2.05),axis=vector(-1,0,0),

size=vector(5,0.1,0.1),color=color.red)

backframeup=compound([backframel1,backframel2,backframer1,backframer2])

backframedown=backframeup.clone(pos=vector(0, -3.5,

2.05),color=color.red,opacity=0)

backframedown.rotate(axis=vector(1,0,0), angle=pi)

backframe=compound([backframeup,backframedown])

leglinkl=cylinder(axis=vector(0,-1,0),pos=vector(-5,-1.5,2.05),

size=vector(5,0.1,0.1),color=color.red)

leglinkld=cylinder(axis=vector(0,1,0),pos=vector(-5,-1.5,2.05),

size=vector(5,0.1,0.1),color=color.red,opacity=0)

leglinkr=cylinder(axis=vector(0,-1,0),pos=vector(5,-1.5,2.05),

size=vector(5,0.1,0.1),color=color.red)

leglinkrd=cylinder(axis=vector(0,1,0),pos=vector(5,-1.5,2.05),

size=vector(5,0.1,0.1),color=color.red,opacity=0)

leglink=compound([leglinkl,leglinkr,leglinkld,leglinkrd])

136

angle1old=0

angle2old=0

time = 0 # Time in simulation.

dt = 0.1 # Time step size.

while (time <= 1000):

 while (ad.inWaiting()==0):

 pass

 dataPacket=ad.readline()

 dataPacket=str(dataPacket, 'utf-8')

 splitPacket=dataPacket.split(',')

 systemCal1=float (splitPacket[0])

 gyroCal1=float (splitPacket[1])

 accelCal1=float (splitPacket[2])

 mgCal1=float (splitPacket[3])

 angle1=-float (splitPacket[4])

 speed1=float (splitPacket[5])

 acc1=float (splitPacket[6])

 #print("I am in endless loop")

#print("SCal1=",systemCal1,"GCal1=",gyroCal1,"ACal1=",accelCal1,"MCal1=",mgCal1,

"angle1=",angle1,"speedz1",speed1,"acc1=",acc1)

 backframe.rotate(axis=vector(1,0,0), angle=(angle1*pi/180)-

(angle1old*pi/180))

 #leglink.rotate(axis=vector(1,0,0), angle=pi/4)

 ##text

 pos_labl.text="Tilt = {:.3f}".format(angle1)

 vel_labl.text="Vel = {:.3f}".format(speed1)

 acc_labl.text="Acc = {:.3f}".format(acc1)

137

 '''

 pos_labl.text="Tilt = {:.3f}".format(angle2)

 vel_labl.text="Vel = {:.3f}".format(speed2)

 acc_labl.text="Acc = {:.3f}".format(acc2)

 '''

 ##plots

 pos_curve.plot(pos=(time, angle1))

 vel_curve.plot(pos=(time, speed1))

 acc_curve.plot(pos=(time, acc1))

 '''

 pos_curve.plot(pos=(time, gngle1))

 vel_curve.plot(pos=(time, speed1))

 acc_curve.plot(pos=(time, acc1))

 '''

 time = time + dt

 angle1old=angle1

'''

Here is documentation on the older VPython 6 (the "visual" module), which as of

January 2016 is still available but no longer supported. The main differences

are that vectors must now be represented as vector(x,y,z) or vec(x,y,z), not

as (x,y,z), the name "display" has been changed to "canvas", the name "gdisplay"

has been changed to "graph", and the curve and points objects have a new set of

methods. This Python program does an imperfect but useful job of converting old

programs to the new syntax.

'''

138

Appendix I

139

Appendix J

140

Appendix K

141

Appendix L

142

References

1. H. Kazerooni, “Exoskeletons for human performance augmentation,”in Springer

Handbook of Robotics. Springer, 2008, pp. 773–793.
2. M. K. Vukobratovic, “When were active exoskeletons actually born?”International

Journal of Humanoid Robotics, vol. 4, pp. 459–486,2007.
3. Mark E. Rosheim, Robot Evolution – The Development of Anthrobotics, John

Wiley & Sons, Inc, 1994. USA.
4. Vukobratovic M., Hristic D., Stojiljkovic Z., "Development of Active

Anthropomorphic Exoskeletons", Medical and Biological Engineering, Vol. 12, No
1, 1974.

5. Vukobratovic M., Legged Locomotion Robots and Anthropomorphic Mechanisms
(in English), research monograph, Mihailo Pupin Institute, Belgrade, 1975, also
published in Japanese, Nikkan Shumun Ltd. Tokyo, 1975, in Russian "MIR",
Moscow, 1976, in Chinese, Beijing, 1983.

6. Hristic D., Vukobratovic M., “Active Exoskeletons Future Rehabilitation Aids for

Severely Handicapped Persons”, Orthopedie Technique, 12/1976, pp 221-224,
Stuttgart, Germany.

7. Vukobratovic M., Borovac B., Surla D., Stokic D., Scientific Fundamentals of
Robotics, Vol. 7, Biped Locomotion: Dynamics, Stability, Control and Application,
Springer-Verlag 1989.

8. Vukobratovic M., Borovac B., Stokic D., Surdilovic D., Active Exoskeleton, Ch. 27:
Humanoid Robots, pp 727-777, Mechanical Systems Design Handbook:
Modeling, Measure and Control, CRC Press, 2001.

9. Dreyfus, H. L. What computers can’t do? the limitation of artificial intelligence,
1979 (Harper & Row, HarperCollins, New York).

10. Lu, Y. X. and Chen, Y. Foundation of the Humachine System (in Chinese). Chin.
J. Mech. Eng., 1994, 30(6), 1–9.

11. Yang, C. J. Study on the theory of humachine intelligent system and its
application. PhD Thesis, Zhejiang University, Hangzhou, 1997.

12. Rosen, J., Hannaford, B., and Burns, S. Neural control of an upper limb powered
exoskeleton type system-grant report. In the First NSF Robotics and Computer
Vision (RCV) Workshop, Las Vegas, Nevada, 26–27 October 2003, pp. 21–23.

13. 16 Turner, M. L., Findley, R. P., Griffin, W. B., Cutkosky, M.R., and Gomez, D. H.
Development and testing of a telemanipulation system with arm and hand motion.
In Proceedings of the ASME Dynamic Systems and Control Division, Orlando, FL,
2000, pp. 1057–1063.

14. 17 Koyamal, T., Yamano, I., Takemura, K., and Maeno, T. Multi-fingered

exoskeleton haptic device using passive force feedback for dexterous

143

teleoperation. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, Lausannne, Switzerland, 2002, pp. 2905–2910.

15. Lockheed Martin, Fortis Exoskeleton User’s Manual, Version 1.0, 2016.
16. Available from http://www.me.berkeley.edu/hel/hydextender.htm.
17. Available from http://sanlab.kz.tsukuba.ac.jp/HAL/indexE.html.
18. Zoss, A. B., Kazerooni, H., and Chu, A. Biomechanical design of the Berkeley

lower extremity exoskeleton (BLEEX). IEEE/ASME Trans. Mechatronics, 2006,
11(2),128–138.

19. ISO 13482:2014 Robots and robotic devices -- Safety requirements for personal
care robots, http://www.iso.org, 2014.

20. NIST Robotic Systems for Smart Manufacturing Program,
https://www.nist.gov/programs-projects/robotic-systems-smart-manufacturing-
program, accessed August 21, 2017.

21. NIST Emergency Response Robots Project, https://www.nist.gov/programs-
projects/emergency-response-robots, accessed August 21, 2017.

22. Steinfeld A, Fong T, Kaber D, Lewis M, Scholtz J, Schultz A, Goodrich M,
“Common metrics for human-robot interaction”, Proceedings of the 1st ACM

SIGCHI/SIGART conference on Human-Robot Interaction, pp. 33-40, ACM, Mar
2, 2006.

23. M. Aragane, T. Noritsugu, M. Takaiwa and D. Sasaki, "Power assist wear for
upper limb driven by sheet-like pneumatic rubber muscle", Proceeding of the 7th
JFPS International Symposium on Fluid Power, Toyama, September 2008.

24. Kimdaejung Convention Center, Gwangju, Korea, “A mechanism design of waist

power assist suit for a caregiver by using torsion springs” International
Conference on Control, Automation and Systems (ICCAS 2013), Oct. 2013.

25. Lo, H.S. and S.Q. Xie, 2011. Exoskeleton robots for upper-limb rehabilitation.
26. https://forums.ni.com/t5/LabVIEW/myRIO-Vs-Arduino/td-

p/3733362?profile.language=it.

http://www.me.berkeley.edu/hel/hydextender.htm
http://sanlab.kz.tsukuba.ac.jp/HAL/indexE.html
https://forums.ni.com/t5/LabVIEW/myRIO-Vs-Arduino/td-p/3733362?profile.language=it
https://forums.ni.com/t5/LabVIEW/myRIO-Vs-Arduino/td-p/3733362?profile.language=it

