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Summary

Bitcoin is the first decentralized cryptocurrency ever created, and due to the
transaction limit of the blockchain it is not scalable.

To overcome the scalability problem, payment channel networks have been
developed. Payment channel networks reduce the number of transactions loaded
on the blockchain, allowing unbounded off-chain payments in almost instant time.

Lightning Network is the most prominent payment channel network built for
Bitcoin. With its time-based smart contract called HTLC, it allows off-chain
payments across channels without trusting other participants, with small fees to
route payments. Payments are routed with a few hops from peers across the
network.

Topological studies show that since channel creation takes funds from the
blockchain nodes tend to create few channels by connecting to central nodes in the
network rather than creating ad hoc ones.

A very important research field is understanding if there are nodes that may
have an important or central position in the network or if there are hubs. These
nodes can compromise the decentralization of the network and if they are not
cooperative, they can increase the rate of payments failure.

This work concerns the research of these nodes on the Lightning Network. There
are different centrality measures in graph theory that define different concepts
of centrality of a node based on several criteria. Main centrality measures were
presented, and the Lightning Network nodes that are central to these measures
were identified. For each centrality measure, the central nodes were removed,
and the topology of the network was studied. A random node removal was also
performed to test the network’s resistance and behavior to random attacks or
offline nodes. In addition to the topological analysis, in this work simulations on
the Lightning Network were performed: for each centrality measure, central nodes
were removed and the resulting network was simulated. To conduct simulations,
CLoTH was used, a simulator of the Lightning Network: it simulates payments on
the Lightning Network and produces performance measures, such as probability of
payment success and average payment time.

The topological results showed that removing a few central nodes was sufficient
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to detach many nodes in the network. Most of these nodes were isolated, confirming
that nodes had few connections to central nodes. Payments needed on average
more hops to reach the destination.

CLoTH simulations confirmed the increase of average number of hops, and
showed also that the average payment time and the rate of payment failure increase
when removing central nodes.

The results showed that Lightning Network has some nodes that are important
to the network. The removal of these central nodes creates inconveniences in the
success of the payments not comparable to a random removal of nodes. However,
despite their removal, the network is still fairly well connected.
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Chapter 1

Introduction

Bitcoin[1] is the first decentralized cryptocurrency that was ever developed. Its
main feature is that it allows transactions without the help of a trusted central
entity to control them.

The blockchain is the distributed ledger of Bitcoin where all transactions are
reported and replicated on all nodes of the peer-to-peer network. Every change
must be reported on all copies of the blockchain on the various nodes.

The blockchain requires a large amount of storage space and bandwidth. It
also requires time to ensure that the blockchain is propagated to as many users as
possible. These factors put a cap on the number of transactions per second. This
transaction throughput does not allow Bitcoin and others cryptocurrencies to scale
and consequently limits their large-scale use.

To solve the scalability problem and reduce the information load on the
blockchain, payment channels have been proposed. Payment channels allow for
off-chain transactions between two parties that do not need to be transcribed to the
blockchain and therefore are not subject to the blockchain throughput limitation.

Links between multiple payment channels create a payment channel network.
Payment channel networks allow for the exchange of money between two nodes
that do not have a direct channel between them.

Lightning Network[2] is the most popular Bitcoin payment channel network. At
the time of writing Lightning Network has approximately 10,440 nodes and 47,005
channels and has recently surpassed 1,500 Bitcoin in total capacity (approximately
$49.5 million). Lightning Network uses a smart contract called Hashed Timelock
Contract (HTLC) that allows off-chain payments to take place on a network across
channels without trusting other participants, with small fees to route payments.

Topological studies[3, 4, 5, 6, 7] showed that since channel creation takes funds
from the blockchain nodes tended to create few channels by connecting to central
nodes in the network rather than creating ad hoc ones.

This allows nodes to communicate with a larger window of the network with
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few channels created.
Since channel creation takes funds from the blockchain nodes tend to create few

channels by connecting to central nodes in the network rather than creating ad
hoc ones.

In this way, nodes are able to route their payments through a few intermediaries
without open new ad-hoc channels.

Nodes that have a strategic position in a network are called central nodes.
A very important field of research is trying to recognize central nodes that may

have an important position in the network.
These nodes are very influential in the network given their position and can

compromise the decentralization of the network or if they are not cooperative
they could reduce the robustness of the network, reduce the number of successful
transactions or increase the number of hops to route the payment.

The objective of this work was to study centrality on the Lightning Network.
To accomplish with this goal, both a topological analysis and simulations were
conducted in this work.

In the topological analysis, central nodes of the LN were idenitified, according
to the centrality measures provided by graph theory. For each centrality measure,
central nodes were removed, and the effect of the removal on the topology of the
network was studied.

The simulations were performed using CLoTH[8], a Lightning Network simulator.
CLoTH simulates payments on the LN and provides performance results such as
probability of payment success, average payment route length and average payment
time. For each centrality measure, simulations were performed, where the Lightning
Network without central nodes was given in input to CLoTH.

Topological results showed that removing a few central nodes can reduce the
number of nodes in the network. In addition, there was an increase in network
diameter and average distance between two nodes.

The simulations on CLoTH confirmed the results obtained from the topological
analysis performed previously such as the average increase in the number of hops
per payment, adding details regarding the increase in the average time for payments
and more payment failures.

The obtained results denote that the central nodes have indeed some influence
on the network. However, despite their removal, the network is still fairly well
connected.

The thesis work is structured as follows. The chapter 2 discusses the background
of Bitcoin, the blockchain, Lightning Network and introduces the main measures
of centrality. The chapter 3 presents the topological analysis of various centralities
on Lightning Network and the removal of central nodes. The chapter 4 presents
the CLoTH simulator and the simulations performed with the various versions of
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the network. Finally, the chapter 5 provides conclusions.
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Chapter 2

Background and Related
Works

The follow-up Chapter will present the background regarding Bitcoin and Lightning
Network and also present centrality measures presented in the networkx library to
give a context to the thesis.

The section 2.1 will discuss Bitcoin transactions and the blockchain. In the
section 2.2 introduces the concept of scalability and in 2.3 will be presented a
possible solution that is payment channel network of which Lightning Network
is the most popular. At the end, the section 2.4 will be discussed the various
characteristics of the main measures of centrality of networkx library.

2.1 Bitcoin, cryptography, and transaction
This section will briefly introduce Bitcoin, transactions, and the blockchain. The
following readings [1, 9, 10, 11] are recommended where these topics will be covered
in more detail.

Bitcoin (B) is the first implementation of a decentralized digital currency. It is
decentralised because, in contrast to most of the other payment systems, it does not
need a trusted third part like banks or governments for keep track of transactions
between participants in the Bitcoin network.

The Bitcoin network is a peer-to-peer network composed by all the nodes, such
as personal computers or smartphones, with a running open-source software, the
Bitcoin protocol.

Since Bitcoin is decentralised, this peer-to-peer network regulates transactions
and minting of new currency according to the consensus of the network. Transac-
tions are accepted through cryptography by nodes and inserted in the distributed
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public ledger of Bitcoin, the blockchain.

Asymmetric cryptography gives the security in the untrusted peer-to-peer
Bitcoin network. It consists in creation of a pair of keys, the public key, and the
private key.

The public key is the address of the Bitcoin node. It can be shared online and
it is utilized for sending money to the relative Bitcoin user. The private key proves
that a transaction belongs to the owner of the corresponding public key and gives
the possibility to spend bitcoins.

This method of encryption by the private key and decryption by the public key
is called digital signature.

Transactions consist of a change in bitcoin ownership from previous transactions.
It consists of one or more inputs and one or more outputs.

In the output there is the quantity of bitcoins that are transferred to another
user and a locking script that indicates certain condition required to spend the
relevant amount of bitcoins. An input refers to a previous output transaction via
a pointer and include the unlocking script that satisfies the conditions set in the
output locking script.

Typically, the locking script is the recipient’s public key (address). The owner
that wants to spend the money needs to unlock the locking script with his digital
signature on the hash of the relative transaction.

Exist complex locking scripts like the multi-signature script where N public keys
are recorded, and M is the minimum number of signatures relative to these public
keys required for validation. These transactions are called M-of-N multi-signature
transactions since they require M signatures between N to be validated.

The signature allows to verify the ownership, but it is impossible to verify that
this transaction was already spent.

Double spending is a digital payment fraud that consist of a malicious user that
make two transactions using the same money. In centralised digital payment system
this problem is simple to avoid because the central authority has a complete view
of all transactions and can therefore deny the second one. The Bitcoin network
utilizes the blockchain to solve this problem.

The blockchain is the public ledger of the Bitcoin network, and it is distributed in
all the Bitcoin nodes of the network. The blockchain differs from common payment
system ledgers since it does not record the total amount of bitcoins relating to each
owner but is a long chain of blocks within which transactions are present.

These blocks recreate all the Bitcoin’s transaction history since the genesis block,
and they also include the minting of new currency. A block is chained by the hash
of the previous block. The hash is useful to prevent modification in transactions
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inside a block because this changes the block hash that become invalid such as the
following blocks and hashes.

When nodes receive a transaction that refers to an already spent transaction,
they discard this last one to prevent the double spending. The chronological order
is given by the hash of the previous block that must already exist at the creation
of the next one. Every node in the Bitcoin network can add new blocks in the
blockchain, and they are called miners.

Mining is the process used to the nodes for add new blocks in the blockchain. This
process consists in arbitrarily collecting transactions broadcasted in the peer-to-peer
network into a block. Any node can create a block, but only one is added at the
blockchain. The choice of the next block of the blockchain is given by the resolution
of a proof-of-work.

The mining process rewards miners with the minting of new coin and the fees of
the transactions inside new blocks added in the blockchain.

This process incentivizes the nodes to behave correctly and to create valid blocks
since the invalid blocks would not be accepted by the other nodes on the network
and the attacker would not receive the reward.

In average, the resolution of a proof-of-work is every 10 minutes, and the Bitcoin
protocol adjusts its difficulty to maintain this average time. This time is necessary
to allow the nodes of the network to be notified of the creation of the new block
and update their version of the blockchain.

The proof-of-work is a mathematical puzzle and consists in finding the hash
of the new block. In the block there is a nonce which is a random number, the
proof-of-work algorithm consists in a continuous search for a value of this nonce
until the calculated hash is less than a given number.

The first node that complete this task, add his block in the blockchain and
notify all the network of the change. This process requires a lot of computing power
to increase chances of successfully finding the nonce before others. The probability
of success is directly proportional to the fraction of the computational power of
the network owned by the miner.

Fork When two miners find the solution of the proof-of-work and simultaneously
create their version of the new block, a fork occurs in the blockchain, two blocks
pointing to the same block.

The same situation would happen if an attacker rewrote an alternate block to
substitute the last one. This situation create ambiguity, break the consensus and
potentially a double-spending problem, so only one block must be chosen.

Bitcoin nodes to resolve this problem, choose the block that lies in the longest
path of the blockchain ignoring the other branches, because this branch is the one
that is considerate valid by most nodes.
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In the case a fork is at the top of the chain, both branches are potentially valid.
At the creation of the new block, the miner arbitrarily chooses one of the two

blocks in the branch, concatenate the new block with the hash of the chosen block.
Transactions inside this block now have a confirmation and that ensure that these
transactions are accepted by the network.

The other block now is in a shortest branch, so this block is discarded and
transaction inside are not considerate confirmed.

After six confirmation the block is considered irrevocable. All transactions inside
this block are considered accepted by whole the network. A malicious user that
wants to invalidate this block by create a longer alternative branch require a huge
amount of computational power to recalculate six blocks.

2.2 Scalability problem
An important question regarding Bitcoin and the blockchain regards the scalability.
Payment systems like Visa can process 1,700 transaction per second on average.

In contrast, Bitcoin network can process an average of only 4 transactions per
second with a peak of 7.

With the increase in the number of users and consequently in transactions, this
low throughput creates a bottleneck for large-scale use of Bitcoin.

This throughput is set by two main factors of the Bitcoin protocol. The size of
the blocks, less than 4MB and the generation time of new blocks[12].

Reparameterization The community can try to adjust these two parameters to
attempt to increase the throughput of the network like the Visa one. The block
size would need to be increased to 377.5 MB or the generation time reduce from 10
minutes to 1.6 seconds.

If the block size increase to much, it is difficult to run Bitcoin in common
personal computer, due to an increased storage space required for the blockchain
and to store transactions and for the bandwidth needed for the communication
with other nodes.

This solution affects the decentralization of the network because only some
nodes could manage these amounts of data at their best.

Reduce block generation time create some problem with the propagation time
of the new block. In just 1.6 seconds, the new mined block does not reach all the
nodes of the network.

In average a block needs 14 seconds to reach the 99% of the network. Setting the
new block generation time under 14 seconds leads to more forks and double-spending
attacks in the network.

If the block generation time is set at the time limit to reach the 99% of the
network, the throughput is about 188 transaction per seconds with block size of
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1MB, increasing this size affects the block propagation time[12].

Payment Channel Network One solution to the scalability problem is to reduce
the number of transactions on the blockchain. Payment channel networks have
been designed on this concept.

These transactions are just as valid as if they were reported on the blockchain.
Since they stay off-chain they do not have to undergo the limit given by block
space and latency times, allowing high throughput with short times.

2.3 Payment Channel Network
A payment channel network is a network of payment channels that allow off-chain
payments. These payments are not subject to the throughput imposed by the
Bitcoin network.

A payment channel is a two-way channel through which two parties can exchange
payments off-chain. For this reason, payment channel networks are considered layer
2 protocols.

The following will illustrate how a payment channel is used. At first, two users
Anna and Bob open a payment channel with each other by funding the channel
with a portion of their money, for example each with 0.5 B.

The channel will have a total capacity of 1 B and the respective balances of the
two participants of 0.5 B each.

Now that the channel is established, Anna and Bob can make transactions
with each other without the need to notify the network and transcribe into the
blockchain.

Their balances will be updated accordingly. For example, if Anna wants to pay
Bob 0.1 B, the channel balances will be updated to 0.4 B to Anna and 0.6 B to
Bob. Channels are bidirectional so a transaction from Bob to Anna is also possible.

The payment channels network is established by connecting these channels. This
avoids the creation of ad hoc channels with all participants in the network.

For example, Anna has to pay Carl but there is no payment channel between
them. Anna and Carl both own a payment channel with Bob. Anna transfers the
amount of bitcoin that she has to pay to Bob. Bob sends the same amount to Carl
via their payment channel.

Lightning Network is the mainstream implementation of a payment channel
network in the Bitcoin network.

2.3.1 Lightning Network
Lightning Network[2] is the most widely used payment channel network that relies
on the blockchain. The Lightning Network protocol defines how to create new
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channels and how to route payments through the network. In the following sections,
channel creation and payment routing will be explained.

Channel opening is initialized by a funding transaction by the two owners,
Anna and Bob. The funding transaction funds the newly created channel with
some bitcoins from the participants. This transaction must be committed to the
blockchain. Funding transaction will take in input bitcoins from both participants.
For example, Anna and Bob create a 1 B channel by funding each with 0.5 B. At
this time both will have 0.5 B of initial balance in this channel.

The output of the funding transaction is the total initial amount, in this case
1 B. The output is one locking script a 2-of-2 multi-signature, and a transaction
needs both the signatures of Anna and Bob in input to spend this money.

When the funding transaction is committed to the blockchain, the channel is
open. Both parties also create a commitment transaction where the two signatures
of the participants are present as input. The commitment transaction has in input
the funding transaction output. The output returns balances to their respective
owners. Anna signs the commitment transaction and send it to Bob who also signs
it.

The commitment transaction is not written to the blockchain until a party wants
to close the channel.

Commitment transaction is used to make payments in the payment channel.
When one party wants to send bitcoins to the other, it creates a commitment
transaction and sends it signed. The receiver in turn signs the transaction and
sends it back.

Output balances are updated according to this new transaction. Commitment
transactions can be done by both parties instantly without updating the status on
the blockchain. An off-chain transaction of this type is done for every exchange of
money between the two parties.

Closing a channel to close a channel the two parties need to broadcast the most
recent commitment transaction at the blockchain. The two balances are refund
according to the commitment transaction to the two parties. Once this transaction
is confirmed, the channel is closed.

Channel closing can be done even if one of the two participants is uncooperative
or unresponsive.

Punishment Anna pays some bitcoins to Bob via a commitment transaction and
the balances are updated. Anna could later cheat Bob and close the channel by
transmitting a previous transaction to the network as it would bring her more
money back.
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Lightning Network’s protocol allows to punish misbehaviour by malicious users.
If a user sent an old transaction to the blockchain, the protocol allows to the
counterpart to demonstrate the malicious behaviour of the first one. The malicious
user will lose all the fund in the channel. The protocol allows the punishment of a
malicious user. The cheated user can prove that the submitted transaction is older
than another one. The protocol will then punish the first user by depriving him of
all his funds in the channel that will go to the cheated user.

This mechanism is not automatic, users must actively check the blockchain. If a
user does not check the blockchain within a certain timeout from the transmission
of the transaction, the malicious user will succeed in his intent.

This mechanism allows for the creation of channels without necessarily trusting
the other party.

Hashed Time Lock Contracts (HTLC) is a smart contract used in Lightning
Network. HTLC is a locking script that allows secure transaction through the
payment channel network without the need for trusted participants.

HTLC consist in a hash of a secret number R and a time lock that is an expiration
time. The secret number R is a preimage create by the final recipient given to a
hashed function.

A user that wants to redeem the transaction must show the secret R within the
expiration time, otherwise the payment is denied. In fact, the time lock ensures a
refund if the secret was not revealed within this expiration time.

Now it will be illustrated a payment using HTLC. Let us assume that exist
2 channels, 1 between Anna and Bob and one between Bob and Carl. All these
channels have 1 B of capacity and all the balance are 0.5 B in the initial state.

Anna wants to pay 0.1 B to Carl trough the network without opening a new
direct channel ad hoc to him. Both Anna and Carl have a channel with Bob, so
exist a route between them.

Carl, that is the final recipient of the transaction generate a random number R
and keep it secret. Carl calculates the hash H of the random number and share
this hash with Anna, the initial payer.

Anna creates a HTLC, payable to the hash H, and a timeout TL that there is
a number of block in the future, i.e. 6 blocks. The total amount of this payment
counts not only the amount that Anna wants to pay at Carl but also some fees for
the intermediary Bob and send it to him for instance 0.101 B . This transaction
scales from Anna’s balance in the channel with Bob this amount. The HTLC will
pay Bob if he proves that he knows the secret R, otherwise Anna will get the
bitcoins back after the timeout.

The balance of the channel in the commitment transaction that represent the
state of the channel now has 3 outputs, 0.5 B balance of Bob, the balance of Anna
0.399 B, and 0.101 B committed in the Anna’s HTLC.
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Bob can redeem this commitment only with the secret number generated by
Carl before the timeout of 6 blocks.

Now Bob establish a HTLC with Carl. The commitment transaction has 3
output with 0.4 B balance of Bob, 0.5 B balance of Carl, and 0.1 B committed in
the Bob’s HTLC. The timeout in the HTLC is reduced, i.e. 5 blocks in the future.

Carl knows the secret number R because it is created by him, so he can claim
the HTLC offered by Bob. Carl sends the secret number R to Bob that can pay
Carl and claim the HTLC of Anna.

If R is not revealed after the timeout, HTLCs failed and refunds the payer of
each channel. The timeout is decreasing so that each participant has time to receive
the secret and be able to use it.

The balances of the two channels now are 0.399 B balance of Anna and 0.601 B
balance of Bob in the channel between Anna and Bob, and 0.4 B balance of Bob
and 0.6 B balance of Carl in the channel between Bob and Carl.

The payment was successful, and Bob earned a small amount of money for
participating. These fees incentive the network’s users to cooperate.

Lightning Network also allows these payments to be routed through multiple
intermediaries. The only limits are that there must be a route between the payer
and the receiver and that these channels must have sufficient capacity to route the
payment and the fees.

One of the most interesting studies that can be done on Lightning Network is to
find nodes that can be central to the network.

We can consider the Lightning Network as an undirected graph. The nodes
are the users of Lightning Network, edges represent channels. The graph is an
undirected graph because the channels are bidirectional, and we cannot make
assumptions about the balances.

There are different criteria with which to define central a node. Some centrality
measures from the networkx library[13] and their criteria for defining a node as
central will be discussed below.

2.4 Centrality Measures
A very important concept for the study of complex networks, like the Lightning
Network, is the identification of the most important nodes. The importance of a
node in network theory is given by a centrality measure.

There are many different centrality measures, each one considers a different
criterion to evaluate the relative topological importance for a node in the network.
Because of this there is not a best centrality measure a priori, but one could describe
very well one network feature and poor another[14].
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On following will be presented various centrality measures and what features of
nodes are considered to the computation of the relative measure, and the Adjacency
Matrix[15] that is very useful in some centrality measure.

For a more in-depth reading see "The structure of complex networks: theory and
applications" Estrada(2012)[16].

Adjacency Matrix: each element aij of the adjacency matrix A indicates if exist
an edge between node i and node j. If exist the connection between the two nodes,
the element aij is equal to 1 and the two nodes are nearest-neighbors, 0 otherwise.

The elements on the diagonal of the matrix are all zeroes if there are no self-loops
in the network. If the network is a directed network, the corresponding adjacency
matrix may not be symmetrical.

An interesting fact is that multiply k times the adjacency matrix by itself, the
elements element aij of the resulting Ak matrix give us the number of k-length
paths between nodes i and node j.

Degree Centrality: the degree centrality[17, 18] for a node in a network is defined
by the number of edges that are incident upon the node itself.

For this centrality more a node has connections with other nodes, more is
important and bigger his degree is. Often this value is standardized by dividing it
by the number of network’s nodes minus one.

The degree centrality most important feature is that it takes under consideration
only the node’s influence for its nearest neighbors. We can deduce the degree for a
node in a network from the corresponding row of the Adjacency Matrix.

This centrality measure tells us that a node more is connected with other nodes
of the network, more for the network is important.

In the case where the network that we are taking under consideration is a directed
network we can discern two different centrality measures, indegree and outdegree
centralities. Each one of these centralities take in consideration respectively only
the numbers of edges incident to a node and the number of edges incident from a
node.

The principal weakness of this method is that is common that more than one
node has the same degree.

Eigenvector Centrality: the eigenvector centrality[19, 20], in contrast to the
degree centrality that accounts only the influence of nearest neighbors to a given
node, counts the effects of the influence also for the other nodes.

The degree centrality awards 1 point for the centrality for each edge of the node,
the principle behind eigenvector centrality is that nodes are not all equally relevant
in a network. In fact, a node that have a high degree does not necessarily have a
high eigenvector centrality and vice versa.
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Bonacich [21] proposed the eigenvalue centrality in which a node’s centrality is
its summed edges to others, weighted by their centralities. The method behind
is to find eigenvalues λ of the adjacency matrix A and find the non-zero vector x
that satisfies the equation λx = Ax. If it is defined in the function the parameter
“weight” it is used this attribute of the edge instead of the elements of adjacency
matrix.

This vector is an eigenvector of A and exist only one eigenvector for each
eigenvalue. Usually, the largest eigenvalue is the preferred one. This eigenvalue
gives us the principal eigenvector.

Since λ and x are both unknown, to resolve this problem is used the power
method to compute the eigenvector, but the convergence is not guaranteed.

One important characteristic of the eigenvector centrality is that can differentiate
two or more nodes with the same degree, except in case of regular networks where
all the nodes have the same number of neighbors.

For directed networks, similarly at the degree centrality, there are two different
measures, left eigenvector centrality and right eigenvector centrality. The first
one is an extension of the indegree centrality and is also known as “prestige”, the
second one an extension of the outdegree.

Apply these two centralities methods could give rise some difficulties if the
network presents some nodes with indegree/outdegree equal to zero, because the
corresponding node has left-eigenvector/right-eigenvector centrality equal to zero
and nodes with edges pointing to this node would not receive any score for point
to it.

Katz Centrality: like the eigenvector centrality, the computation of the Katz
centrality[22] for a node takes in consideration centralities of its nearest neighbors
and the other nodes of the network that are reachable through them.

For compute The Katz centrality we need two important parameters: the
attenuation factor α and β that represents an extra weight to provide to the
immediate neighbors.

The attenuation factor α takes consideration of the topology of the net and so
attenuate the importance of the node by this value for each step. The value of
this parameter should be positive and strictly minor to the inverse of the principal
eigenvalue of the adjacency matrix.

To give at nodes a small amount of centrality and to avoid the problem of the
directed networks presented of the eigenvector centrality, it is used the bias β.

The Katz centrality is a generalization of the eigenvector centrality (if α is equal
to the inverse of the principal eigenvalue of A and β = 0 we have the eigenvector
centrality).

Closeness Centrality: in the closeness centrality nodes of interest are those that
are relatively close to all other nodes of the network with few steps. For this
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measure is not relevant the number of edges of a node or if the nodes are connected
with others important nodes, a node is central if can reach the other nodes with
short paths.

On average these nodes could communicate with the others in the shortest
number of steps. This centrality measures the mean distance from a node to the
others. The closeness centrality is the inverse of this mean distance of shortest
paths. Nodes with a high closeness centrality score have shortest distances to all
other nodes.

The shortest path distance of two nodes i and j in a network is the number of
edges in the shortest path between the two nodes.

In directed networks the distance between i and j could be different to the
distance between j and i.

A problem situation in networks is that because this is an average sum this
method cannot distinguish two nodes that have the same closeness centrality, but
one could be more central because needs fewer steps to reach nodes rather than
the other.

We need a fully connected network or component to calculate this centrality.

Information Centrality / Current-Flow Closeness Centrality: the infor-
mation centrality[23] is equivalent to the Current Flow variant of the Closeness
Centrality. The closeness centrality assumes that the information flows along only
in the shortest path, without that the possibility of split this information. The
current flow closeness centrality let the information flow and split like current in
an electrical network.

Current Flow closeness centrality uses the resistance distance notion that differs
from the typically distance used on graphs like the shorter path.

The resistance distance is used to avoid some drawbacks in the other distance
measures like for instance the other paths, longer than the shorter one, give no
contribution to the measure.

Resistance distance has some interesting characteristic. This measure considers
the existence of multiple paths between two nodes. More paths of the same length
there are between two nodes more the two nodes are closer. The resistance distance
considers also that two nodes separated by paths than taken in pairs do not share
edges are closer than two nodes that have redundant paths. Similarly at the shortest
path, for this distance two nodes are closer if the path is shorter.

Harmonic Centrality: the harmonic centrality is a variant of the closeness
centrality used to solve the problem with unconnected graph of the closeness
centrality.

This variant instead of the inverse of the sum of shortest paths, uses the sum of
the inverses of those distances for the calculation of the average distance[24].
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Betweenness Centrality: the betweenness centrality measures how often a node
lies on shortest paths between the other nodes. These nodes are central for the
network because they have influence in the network by virtue of the control over
the information passing between others.

Nodes that are central for this measure are very important in the communica-
tions. In fact, removal of one of the most important of these nodes could disrupt
communication between other nodes. This because they lie on the largest number
of paths between nodes.

Like for the closeness centrality, exist a current flow version of this measure
that use an electrical current model for the spreading of the information in the
network[25].

Communicability Betweenness Centrality: the concept behind this measure
is the same of the betweenness centrality[14], but in this case to calculate the
importance of nodes, this measure takes in consideration not only shortest paths,
but all possible routes with the introduction of a scaling factor such that longer
walks carry less importance.

This measure is very useful not only to see what happens in the network when
edges of a certain node are removed, but also to measures the sensitivity of a node’s
communicability when its edges are subject to infinitesimally changes.

Group (Betweenness/Closeness/Degree/Indegree/Outdegree) Centrali-
ties: all the previous centralities measures are applied for individual nodes.

This group of centralities are the same kinds of centralities presented before but
are version that take in consideration set of nodes and the relationships between
this group and all the other individual nodes of the network.

In fact, if the group is composed by only one node the result is the same of the
relative one-node counterpart[26].

Load Centrality the load centrality is often considered erroneously to be the
same measure as the betweenness centrality.

The difference of these two measures is that in the load centrality each node
sends a unit amount to each other node. This amount from the respective source
is passed to the node’s neighbors closest to the target, and in the case that these
nodes are more than one this amount is divided equally among them.

The total amount passing through a node during all this process defines its
load[27].

Subgraph Centrality: the importance of a node for the subgraph centrality is
characterise by its participation in all the closed walks that start and end from the
node itself.
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We can find for a node i the number of closed walks of length k by the ith
element of the diagonal of the kth power of the Adjacency Matrix.

The subgraph centrality of a node is defined by the sum of all its closed walks
of different length with decreased contribution in function of the length of the
relative closed walk. This is possible by the Estrada index that also guarantee the
convergence[28].

Dispersion: this centrality measure is an extension of the embeddedness of two
nodes. Embeddedness tells us how related two nodes are based on the number
of neighbors they have in common. The underlying concept considers that if two
nodes have a correlation between them, common neighbors of them are part of the
same relationship.

The dispersion of the i-j link is defined to be the sum of all pairwise distances
between nodes in the set of common neighbors of the two nodes i and j.

The dispersion tells how much two nodes can reach nodes that are not directly
related to each other. The distance function used give us 1 when the two nodes are
not directly connected and they do not have common neighbors in the same set, 0
otherwise[29].

Reaching Centrality: local reaching centrality of a node i is the portion of all
nodes of a directed network that are reachable starting from the node i itself
through its outgoing edges to its neighbors. This measure tells us the number of
nodes that are reachable with a finite and positive distance.

The average over all nodes of the difference between the local and the highest
local reaching centrality of any node give us the global reaching centrality of the
network[30].

Percolation Centrality: the percolation centrality is peculiar for the study of
percolation scenarios. A percolation scenario can be a change of nodes’ status like
the spreading of a virus through a computer network. The state of a node can
change due a spread of the information over the link between the node and his
neighbor.

Usually, the state is a real number between 0.0 and 1.0 or binary values. This
measure quantifies the relative impact of nodes based on their topological connec-
tivity.

The percolation centrality is an extension of the betweenness centrality, if the
state of all nodes is the same the two measures are equivalent[31].

Second Order Centrality: The Second Order centrality is a measure meant for
overcome the issues relative to the distribution of centrality computation.

The relative importance of the node in the topology of the graph it is like the
betweenness centrality. The measure is time based. The algorithm consider a single
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random walk visiting the network, starting by an arbitrary node in the network
and choosing the next node with uniform probability among its neighbors.

To compute their centrality, nodes record the return time of that walk, and the
standard deviation of this return time is the second order centrality of a node. So
lower value of second order centrality indicates higher centrality for the node.

The intuition behind this measure is that bridge nodes are visited more regularly
in a random path than other nodes.

Comparing standard deviations is also useful to detect the presence of critical
paths, or traps in the topology. To compute meaningful deviation results each node
needs to be visited a few times by this random walk[32].

Trophic Level: the trophic level is used in the food chains to give a score to
various organism in the chain and the transfer of energy from one part of the
ecosystem (producer) to another (consumer). Producers are edges incident of a
node, like the in-degree centrality. Consumers are the equivalent of out-degree
centrality. In a directed network the trophic level of a node i is defined as the
average distance between producers and consumers of a given node plus one. In
fact, producers by convection have trophic level equal to 1 (like plants).

VoteRank: VoteRank is an iterative method used to identified top influential
nodes of the network that can spread the information very well.

VoteRank search influential nodes by a voting algorithm. This algorithm looks
for important nodes that do not have a sphere of influence that overlaps too much.

VoteRank identify a set of decentralized influential nodes that have the best
spreading ability of the information. These influential nodes are elected by scores
given by their neighbor.

In subsequent interactions, the elected spreader nodes cannot vote and the vote
of their neighbors will be decreased by a factor. The number of interactions is
equal to the number of spreaders that we want[33].

Weight parameter and Mixed network: it is important to specify what the
weight parameter represents in the various measures.

It is important to specify what the weight parameter represents. The main
measures as explained above refer to the case in which the weight parameter is not
present. The measures considered all edges equals and is seen as a binary case in
which the presence of an edge or not is given respectively by the value one or zero.

The meaning of centrality measures considering the weight parameter change
drastically. Second order and Vote rank does not accept the weight parameter in
the graph.

For the degree centrality if the weight parameter is defined, a node is more
central if the sum of the weights of its edges is high. It is also called node strength.
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A simple example can be made with degree centrality in the figure 2.1, in the
binary scenario, node 2 is the one with the most connections and according to the
degree centrality it is the more central node. In the weighted scenario the best
node would be the 1 because the sum of the weights of its connections is greater.

(a) Degree Binary (b) Degree Weighted

Figure 2.1: Degree Binary-Weighted differences

The weight parameter of an edge in degree centrality and eigenvector cen-
trality is represented by the capacity of the corresponding channel.

Therefore, in the weighed case the number of connections is no longer important,
but how strong they are, in fact it is also known as strength of a node. So the
measure in the weighted case is no longer connected to the original idea of the
degree centrality, and the information about how much connection they have is
also lost.

This argument is discussed by Opsahl et al. (2010)[34] where they said that
this generalizations proposed also for the betweenness and the closeness have solely
focused on the edge weight and non in the number of connections which was the
initial concept behind these measures.

They also discuted that it is possible to combine the two different measures,
the generalized case with the weight parameter and the binary network case by a
positive tuning parameter α, which indicates the relative importance of the number
of ties compared to the weights.

The degree centrality measure proposed by Opsahl et al. is the product of the
nearest neighbors of a focal node, and the average weight to these nodes adjusted
by α [34].

Cwα
D (i) = ki ×

3
si
ki

4α
Where ki is the degree and si the strength of a ith node. If 0 < α < 1 then having
high degree is advantageous, else if α > 1 then are preferred nodes that have low
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degree and high strength.
In the two borderline cases of α = 0 and α = 1, the formula is equivalent

respectively at the degree and the strength [34].
For the betweenness centrality and the closeness centrality weighted ver-

sions compute the shortest path length using Dijkstra’s algorithm. In this case the
weight parameter it’s considered as a cost or a distance.

In the case of Lightning Network, the weight parameter cannot be considered a
cost for these two centralities since a channel with high capacity would be considered
negative. In fact, nodes connected to high-capacity channels are more likely to be
used for making payments than smaller-capacity channels.

According to the study of Opsahl et al. in this scenario the capacity is a
parameter to be considered as a tie strenght and not a cost, so before analysis, it is
appropriate to compute the reciprocal of the capacity that will be used in the
Dijkstra’s algorithm to find the shortest-paths using this as a cost. High values
depict weaks channels and low values represent strongers channels.

Also for these measures they proposed a mixed measure where the inverted
weights are transformed by a similar tuning parameter used in the degree centrality
before using them as distances in the Dijkstra’s algorithm [34].

dwα(i, j) = min
A

1
(wih)α

+ · · · + 1
(whj)α

B

Also in this case the positive tuning parameter α adjusts the proportion by weighted
and the binaries distances. With a value of α closely to 0, the algorithm chooses
a shortest-path with weak ties, while with a value of α close to 1, is preferred a
longer-path but composed of strongest ties [34].

The study of the important nodes of the Lightning Network is one of the most
interesting studies to understand the behavior of the network. These important
nodes are defined as such according to various criteria.

Most researchers investigating nodes’ centrality in Lightning Network to under-
stand the behavior of the network and possible problems on critical issues have
commonly utilized various centralities’ measures mainly the degree centrality, the
between centrality, the eigenvector centrality, and the closeness centrality.

2.5 Recent Works
A significant analysis and discussion on the subject was presented by Martinazzi
(2019). He studied the evolution of Lightning Network’s topology during the first
year by its introduction and he showed that the Network present a diassortativity.
Diassortativity indicates that nodes with lower degree usually open new channels
with higher degrees nodes.
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This could potentially lead to the formation of hubs nodes. This is justified by
the fact that it is expensive to open new channels, so for new nodes it is easier to
connect to these hubs to have a large window of reachable nodes[3, 4].

Some of these hubs, according to Jian-Hong Lin et al.(2020)[6] have many
connections, the largest one has 121 of degree, and is linked on the 34,2% of nodes
of the Network.

Furthermore, to study the robustness of the Network, Martinazzi(2019) im-
plements various attack strategies for the removal of important nodes based on
topological centrality, like degree centrality (most specifically the strength of a
node, determined as the weighted sum of all its edges), betweenness centrality and
random node removal.

This analysis shows that Lightning Network is very resistant to random faultiness
and the attack based on the weighted betweenness centrality is the most effective.

In fact, the removal of the best 50 nodes for this centrality decrease the size of
the Largest Connected Component of the network by more the 35% against about
20% of Strength and Eigenvector.

The evaluation of random failures is important because emulate the case in
which a peer is offline or the shutdown of a channel between two nodes and they
obviously cannot participate to the routing of payment[3, 4].

Elias Rohrer et al. (2019) studied the state of Lightning Network’s topology
and assess its resilience to random failures and target attack. They found that the
Lightning Network’s central point dominance (maximum betweenness centrality
of all nodes) is of the same order of a scale-free graph, a graph characterized by
a few nodes with high degree and many nodes having low degree with a degree
distribution similar to a power law distribution where the fraction of nodes is
P (k) ∼ k−α (with k degree and α between 2 and 3) suggesting that Lightning
Network relies in few central nodes in order to process payments.

In fact, a peculiar factor that distinguishes a Scale-free networks is that a
new node can choose with freedom its neighbors and normally prefers to create a
connection with well-connected nodes, as demonstrated by the previously analysis
carried out by Martinazzi (2019).

These networks are generally robust to random failures than a random graph,
but they are disposed to targeted attacks. In this study is also showed that in
comparison with a random network, the Lightning Network is more clustered
showing the typical characteristic of Small-world Networks with nodes that tend to
cluster and a high density of edges[5].

Similar results were found in Topological Analysis of Bitcoin’s Lightning Network
performed by I. A. Seres et al. (2019) for the diassortative property and the
robustness of the network regarding random failure and targeted attacks.

Going into details, they show how the removal of the highest degree node
fragments the graph of Lightning Network into 37 connected components and the
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removal of the 30 largest hubs causes the shredding into 424 components, among
which most are singles nodes that are completely isolated from the network.

They also show that targeted attacks to the hubs greatly affect the length
of shortest paths and the available liquidity of the network and this cause the
increasing of the failed payments ratio, in fact the removal of 37 of these nodes
decrease the available funds by more than 50% [7].
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Chapter 3

Topological Analysis on
Centrality

The following chapter is structured as follows: the section 3.1 will discuss the Light-
ning Network dataset where the information needed to understand the structure
of the network will be taken, in section 3.2 will discuss the degree distribution
of the Lightning Network and the composition of the graph as diameter, average
shortest path length and central point dominance, articulation nodes and connected
components, in section 3.3 will present the choices regarding the centrality measures
taken, in the section 3.4 the algorithms used for node removal are introduced and
finally in the section 3.5 the results obtained are discussed.

3.1 Dataset
From the "channels_ln.csv" file, the information needed to understand the
topological structure of Lightning Network was extracted. The csv file consists of
various fields among which the most important are the ids of the nodes connected
by the channel and the total capacity of the channel itself.

From the snapshot of the network it can be seen as shown in Table 3.1 that
Lightning Network is composed of 6,006 nodes connected together through a total
of 30,457 channels. The lowest channel capacity is 1,100 satoshi or 0.000011 B and
maximum capacity is 500,000,000 satoshi or 5 B. The total capacity of the network
is 104,055,781,879 satoshi or 1040.56 B with an average capacity of 0.039 B.

Some nodes have multiple channels between them, for the study done for each of
these situations an equivalent channel will be considered and its capacity the sum
of the capacities of the channels between the two nodes. The creation of equivalent
channels reduces the total number of channels by 3,357, or 11% of total channels.
A total of 27,100 channels will be considered for analysis.
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Lightning Network
Total Nodes 6,006

Channels:
Total Channels 30,457
Channels after merging 27,100
Merged Channels 3,357 (11%)

Max Capacity 5.0 B
Min Capacity 1.1 × 10−5 B

Total Capacity 1040.56 B
Average Capacity 0.038 B

Diameter of LCC 7
Central Point Dominance 0.15
Average Shortest Path 3.17

Table 3.1: Lightning Network Dataset

3.2 Topological features of the Lightning Net-
work

Studying the composition of the network it is possible to deduce important data
regarding the nodes and the connections between them including the distribution
of the degree that gives indications on the number of connections of the various
nodes.

In the figure 3.1 it is represented the distribution of the degree in Lightning
Network in a log-log plot. The x-axis shows the degree of the nodes, and the
ordinates show the number of nodes per degree. The figure shows that Lightning
Network follows a power law distribution with a negative trend, so the network
consist in few nodes with high degrees and many nodes with low degree that prefer
to connect with first ones to partecipate at the Network, because it is less expensive
than open many others channels.

The table 3.2 shows more precisely the number of nodes with a certain degree
and the relative percentage of the network. It can be seen that 2,588 nodes in the
network possesses only one channel and represent 43% of the total number of nodes.
More than half of the nodes, 3,448 or 57% of the network has 2 or less channels.
Considering the nodes with 5 or less channels we have 76% of the network with
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4.573 nodes while the 90% of the network (5.394 nodes) is reached considering
the nodes with 14 or less channels. The node that has the maximum number of
connection is the node with ID 2 that has degree 1,185, and in the ranking of nodes’
degree the seventh node has about half of first node’s neighbors with 571, and only
283 the 5% of total nodes have a neighborhood of at least 30 nodes.

Figure 3.1: Degree distribution of Lightning Network

Other important network data can be found by studying the dataset such as the
number of connected components, diameter, center point dominance, and average
shortest paths.

Connected components are subgraphs of the network whereby nodes are reach-
able from each other. The snapshot of the network has 8 connected components,
seven of which consist of only two nodes. For the purposes of this study, the 7
connected components composed of two nodes each represent two users who have
created a channel between themselves but without participating in the collective
network. For this reason they are irrelevant and will not be considered. The
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Lightning Network
# of nodes %

Total Nodes 6,006
Nodes in the LCC 5,992 99.8%
Nodes with 1 degree 2,588 43%
Nodes with 2 degree or less 3,448 57%
Nodes with 5 degree or less 4,573 76%
Nodes with 14 degree or less 5,394 90%
Nodes with 30 degree or more 283 5%

Table 3.2: Lightning Network Distribution

remaining 5,992 nodes in the network form the largest connected component (LCC)
and as reported in the table 3.2 it is 99.8% of the Lightning Network.

Diameter in a network represents the maximum distance of short paths between
two nodes. The diameter of the Lightning Network graph is 7. This measure is
interesting in that it indicates the maximum number of hops a transaction would
take to get to its destination. The path in question does not consider channel
capacity and any fees but only the connections between nodes. The average
shortest path length between nodes is 3.17.

Central point Dominance of the network is represented by the node that lies
more often on the short paths among all the other nodes, that is the maximum
betweenness centrality of the nodes of the network.

A value closely to one, indicate that almost all the payments pass through this
node, therefore it would indicate a potential centralization of the network. The
central point dominance in Lightning Network is 0.15 and is relative to the node
with ID 2, the same node with the highest degree. Having a low value of central
point dominance is preferable to avoid a few nodes having high control of the
payment flow.

These three parameters will be analyzed after removing nodes in each centrality
measure to see how they change in the network.

Articulation Nodes another important analysis is the search for the articulation
points of the Lightning Network graph. An articulation point is a node that
removed separates the graph into multiple parts. So removing them will form
connected components. By analyzing the largest connected component there are
338 articulation nodes in Lightning Network.
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Articulation Nodes
Node ID LCC Connected Components (size)
4254 5,889 1(3) 2(2) 95(1)
5239 5,989 1(2) 0(1)
928 5,989 1(2) 0(1)
468 5,953 1(2) 36(1)
350 5,977 1(2) 12(1)
177 5,960 1(2) 29(1)

Table 3.3: Articulation Nodes

It is interesting to understand which of these nodes upon removal create con-
nected components composed of multiple nodes and not just isolated nodes, and to
see if they turn out to be among the central nodes in subsequent analyses.

Most of the articulation nodes (332) form only isolated nodes. The remaining 6
nodes are shown in the table 3.3 showing the composition of the remaining largest
connected component upon removal of the articulation node and the connected
components that are created. Five of them, create only one connected component
composed of a couple of nodes, and the other one break the network in 4 but two
of the connected components are maded up by only 2 nodes and the last one by 3
nodes.

3.3 Centrality Measures
An undirected graph will be used to represent Lightning Network since it is
impossible to know the state of the two balances between the two edges of a
channel.

The centrality measures that can be used only for direct graphs presented in
the previous chapter or the in and out versions of degree centrality, local reaching
centrality and trophic levels will be discarded. In addition, the analysis is carried
out on single nodes so all versions of group centrality will not be considered.

As in the past work the main measures of centrality will be used, such as degree
centrality, eigenvector centrality, closeness centrality and betweenness centrality.
Other measures that have not been used previously will be tested on the network as
the second order centrality, load centrality, the current flow betweenness centrality
and Vote rank.

To represent Lightning Network and study the centrality measures will be used
two different graphs based on the use or not of the weight attribute of the edges.
The two graphs will be called binary network and weighted network.
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In the binary network the weight of the edges connecting two nodes will not
be considered, if there is a channel between two nodes the corresponding edge
attribute is 1, 0 otherwise. The binary network considers only the links between
nodes. This graph will be used on all analyzed measures.

In the weighted network instead there are two different edge attributes accord-
ing to the measure of centrality with which the network is analyzed. The capacity
of the channel will be used in degree centrality and eigenvector centrality, while
for closeness centrality, betweenness centrality and its current flow version will be
used the reciprocal of the capacity.

This graph will not be used in the second order centrality and vote rank because
they do not accept weighted graphs for their calculation.

The weighted network will also be used to analyze the network using mixed
versions of the centrality measures presented in the previous chapter.

The α paramenter will be tuned by degree centrality and used the same value
for closeness centrality and betweenness centrality.

3.4 Algorithm for Central Nodes Removal
For each version of the network and for each centrality measure, several tests were
performed, the main ones being one with elimination of the list of central nodes in
one iteration (One iteration), and one with iterative computation and removal of
central nodes (Iterated).

There are also different approaches based on the centrality measure considered.
The various approaches used on the various centrality measures will be explained
below.

One iteration: One iteration means one calculation of the centrality measure.
For each measure, the centrality of all nodes in the network is calculated and a
list of central nodes is created. Then the nodes of the list are removed from the
graph only if they are present in the largest connected component created by the
previous removal.

If the central node considered was an isolated node or belonged to a different
connected component than the current largest, it would not be removed. This will
be done until the number of nodes within the largest connected component is less
than half the number of nodes in the original network, or 3,003. The One iteration
will be performed on all the centrality measures taken into account, both binary
and weighted.

Iterated: in the Iterated version of the algorithm, the centrality measure was
recalculated at each iteration. Therefore every time a node was removed the largest
connected component was found again and the centrality on it was recalculated.
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The Iterate was used on the four main measures in both the binary network
and the weighted network and load centrality. The Iterate algorithm has not been
used on the Second order and the current flow betweenness centrality because they
required too much time to carry out the calculations.

Since Vote Rank uses a specific algorithm so using the Iterated removal would
give identical results to those obtained from the degree centrality iterated on the
binary network.

Vote Rank Iteration: with One iteration vote rank is not able to succeed in
halving the largest connected component, and the Iterative is identical to degree
centrality. For this reason, two different iterations were done. The first one
recalculating the centrality on the remaining network, the second one finding a
number of removed central nodes so increasing again the voting ability of the nodes
that had voted the previous central nodes after a certain number of iterations.
This hyperparament was tuned on the smallest number of central nodes needed
to halve the largest connected component and was found 49. After 49 removals
therefore the centrality was recalculated. These two methods for vote rank are
called 2-Iteration and 49-Iteration.

Mixed analysis: a mixed analysis was also performed that considers both the
binary and weighted measure. This was done by tuning the hyperparameter α
which indicates whether to give more importance to the binary measure or the
weighted measure.

The hyperparameter has been tuned on the degree centrality Iterated. It were
used for the other centrality measures for which the mixed distance was defined,
i.e. betweenness centrality and closeness centrality.

The choice of the α parameter fell on the value for which the necessary number
of central nodes is minimized. In the case two or more values gave the same number
of nodes, it has been chosen the value of α closer to zero, giving therefore more
importance to the number of connections.

For each test, the topology of the network was studied. Specifically, the following
topological characteristics were measured: the number of connected components
and isolated nodes, the total capacity of the network, and the size of the largest
connected component. Other data that were considered in the results were network
diameter, average short path length, and central point dominance.

The size of the largest connected component was used as a limit to removal
to see how many central nodes are needed to halve the number of nodes in the
network.

Finally, nodes that were important for all centrality measures were found and
the same analysis was performed. A random removal of nodes was also performed
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to test the resilience and behavior of the network to random attacks or offline
nodes.

3.5 Results
This section will discuss the main results obtained from the various centrality
measures shown in the table 3.4.

The table 3.4 shows the main results obtained after the various removals of the
central nodes. For each measure the number of central nodes to be removed to
halve the largest connected component, the composition of the remaining part of
the nodes detached from the LCC in connected components of size 2 nodes, 3 nodes
and other sizes as appropriate and the percentage of isolated nodes compared to
the number of initial nodes.

Centrality
Measure

Nodes
Rem-
oved

Connected
Components Sizes Channels Diam Central

Point
Dom

Avg
Short
Paths2 3 other 1 Tot Merged Max Tot B Avg

Deg(Bin,1) 80 37 6 1(11) 47% 7,890 7,306 3.00 B 164.52 B 0.023 B 12 0.05 4.39
Deg(Bin,iter) 75 37 6 1(11) 47% 8,273 7,672 3.00 B 173.50 B 0.023 B 12 0.06 4.31
Deg(W,1) 162 50 5 47% 6,100 5,634 0.20 B 52.53 B 0.009 B 12 0.24 4.60
Deg(W,iter) 113 47 5 47% 6,808 6,323 0.25 B 71.29 B 0.011 B 11 0.12 4.54
Deg(α=0.2,iter) 74 39 6 1(11) 47% 8,438 7,792 3.00 B 158.39 B 0.020 B 12 0.08 4.26
Eig(Bin,1) 187 52 8 1(4) 1(6) 47% 5,241 4,807 3.00 B 84.03 B 0.017 B 13 0.18 5.12
Eig(Bin,iter) 101 46 5 47% 6,710 6,224 3.00 B 109.53 B 0.018 B 13 0.12 4.71
Eig(W,1) 342 62 7 1(4) 1(6) 42% 5,418 4,934 0.59 B 40.26 B 0.008 B 12 0.28 4.49
Eig(W,iter) 144 47 5 46% 6,779 6,178 0.25 B 55.85 B 0.009 B 11 0.20 4.44
Bet(Bin,1) 71 34 4 1(11) 47% 9,469 8,674 3.00 B 239.33 B 0.028 B 12 0.07 4.05
Bet(Bin,iter) 76 38 6 1(11) 47% 8,272 7,624 3.00 B 189.60 B 0.024 B 12 0.05 4.32
Bet(W,1) 83 37 4 1(11) 47% 9,114 8,412 0.59 B 130.06 B 0.015 B 12 0.15 4.01
Bet(W,iter) 97 42 5 1(11) 46% 7,784 7,103 0.59 B 90.95 B 0.013 B 12 0.15 4.28
Bet(α=0.2,1) 75 37 4 1(11) 47% 9,186 8,469 3.00 B 162.60 B 0.019 B 12 0.10 4.07
Bet(α=0.2,iter) 79 40 6 1(11) 47% 8,244 7,592 3.00 B 140.61 B 0.019 B 12 0.09 4.27
Clo(Bin,1) 296 50 5 2(4) 1(5) 1(6) 43% 5,095 4,676 3.00 B 75.25 B 0.016 B 13 0.32 4.96
Clo(Bin,iter) 113 45 4 1(6) 46% 6,536 6,023 3.00 B 106.11 B 0.018 B 13 0.12 4.81
Clo(W,1) 294 61 9 1(4) 42% 5,582 5,108 0.20 B 41.68 B 0.008 B 11 0.28 4.42
Clo(W,iter) 155 49 6 47% 5,891 5,440 0.51 B 54.95 B 0.010 B 14 0.14 4.79
Clo(α=0.2,1) 221 58 6 44% 5,609 5,169 0.25 B 46.26 B 0.009 B 12 0.29 4.63
Clo(α=0.2,iter) 121 48 4 46% 6,394 5,911 3.00 B 78.06 B 0.013 B 11 0.15 4.72
VRank(iter) 75 37 6 1(11) 47% 8,273 7,672 3.00 B 173.50 B 0.023 B 12 0.06 4.31
VRank(2−iter) 420 30 4 42% 12,413 11,336 3.00 B 409.37 B 0.036 B 9 0.06 3.38
VRank(iter,49) 73 37 4 1(11) 47% 9,721 8,965 3.00 B 232.24 B 0.025 B 12 0.08 4.00
Load(W,1) 83 37 4 1(11) 47% 9,114 8,412 0.59 B 130.06 B 0.015 B 12 0.15 4.01
Load(W,iter) 97 42 5 1(11) 46% 7,784 7,103 0.59 B 90.95 B 0.013 B 12 0.15 4.28
Bet(flow) 72 32 5 1(11) 1(14) 1(15) 47% 10,054 9,226 5.00 B 336.51 B 0.036 B 12 0.09 3.92
SecondOrder 124 52 4 1(6) 46% 6,103 5,616 3.00 B 97.52 B 0.017 B 13 0.16 4.85
Random 2,107 4 15% 11,436 10,143 5.00 B 452.82 B 0.045 B 8 0.23 3.17

Table 3.4: Centrality Measures Results

Total channels of the remaining network are also shown with the number of
equivalent channels, maximum, minimum and average capacity per channel. The
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last three columns show the network diameter, the average shortest path length,
and the central point of dominance of the network. In general, the network diameter
averaged over the various measures increased to 12. Most tests on the measures
result in the total number of channels being reduced by one-third after removing
the center nodes.

Nodes with one degree isolated from the Network
Measure Isolated Deg(1) Deg(1) & Iso % Deg(1) % Isolated
Deg(Bin,1) 2,848 2,588 2,017 78% 71%
Deg(Bin,iter) 2,816 2,588 2,010 78% 71%
Deg(W,1) 2,812 2,588 1,855 72% 66%
Deg(W,iter) 2,808 2,588 1,917 74% 68%
Deg(α=0.2,iter) 2,815 2,588 2,013 78% 72%
Eig(Bin,1) 2,843 2,588 1,785 69% 63%
Eig(Bin,iter) 2,828 2,588 1,918 74% 68%
Eig(W,1) 2,496 2,588 1,463 57% 59%
Eig(W,iter) 2,737 2,588 1,833 71% 67%
Bet(Bin,1) 2,845 2,588 2,084 81% 73%
Bet(Bin,iter) 2,843 2,588 2,026 78% 71%
Bet(W,1) 2,832 2,588 2,066 80% 73%
Bet(W,iter) 2,792 2,588 1,965 76% 70%
Bet(α=0.2,1) 2,820 2,588 2,061 80% 73%
Bet(α=0.2,iter) 2,811 2,588 2,013 78% 72%
Clo(Bin,1) 2,566 2,588 1,489 58% 58%
Clo(Bin,iter) 2,773 2,588 1,858 72% 67%
Clo(W,1) 2,542 2,588 1,489 58% 59%
Clo(W,iter) 2,815 2,588 1,877 73% 67%
Clo(α=0.2,1) 2,657 2,588 1,623 63% 61%
Clo(α=0.2,iter) 2,760 2,588 1,861 72% 67%
VRank(iter) 2,816 2,588 2,010 78% 71%
VRank(2−iter) 2,537 2,588 2,000 77% 79%
VRank(iter,49) 2,833 2,588 2,072 80% 73%
Load(W,1) 2,832 2,588 2,066 80% 73%
Load(W,iter) 2,792 2,588 1,965 76% 70%
Bet(flow) 2,802 2,588 2,054 79% 73%
SecondOrder 2,778 2,588 1,778 69% 64%
Random 876 2,588 774 30% 88%
elitenodes 1,630 2,588 1,104 43% 68%

Table 3.5: Isolated Nodes with one degree after removal
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An important study was also to understand which nodes result isolated from the
network after the various removals after the various tests, specifically if there were
many nodes with degree one among them.

The table 3.5 shows the number of isolated nodes in the network in the various
tests and specifically those with degree one. The first column shows the number of
isolated nodes, the second column shows the number of degree one nodes in the
network, and the third column shows the number of nodes that had degree one
and remained isolated from the network after central node removals. The last two
columns show the percentage of isolated nodes with degree one compared to the
total number of nodes with degree one, and the percentage of isolated nodes with
degree one compared to the total number of isolated nodes.

From the percentages it can be deduced that most of the nodes isolated after the
removal of the central nodes in the various tests were nodes with only one channel.

In fact, in all measures, the results show that more than half of the isolated
nodes are nodes with degree one, confirming the tendency of these nodes to connect
with central nodes to communicate with the network.

This might indicate that transactions between the remaining nodes in the
network could still be performed without too many problems since most of the
isolated nodes were nodes with one degree.

Degree Centrality Binary Network: with One Iteration, the removal of the
1st best node in this case caused the isolation of 68 nodes from the network. After
the removal of the 4th best node the number of individual nodes increased up to
534 and there was also a formation of a first connected component consisting by a
pair of nodes.

The number of isolated nodes increased up to 1,197 after the removal of the
11th best node and the number of connected components disjointed by the largest
connected component was about 11 composed by 2 nodes each one.

At the removal of the 50th node the largest connected component was the 60% of
the original size with 3,580 nodes, the other nodes were divided into 26 connected
components consisting of 2 nodes and 2 connected components consisting of 3
nodes.

At the end of the analysis the original LCC was dismembered into 37 connected
components consisting of 2 nodes, 6 of 3 nodes and one of 11 nodes and 2,848
isolated nodes while the remaining 2,961 constituted the new LCC after removal of
80 nodes.

Similar results were obtained in the case of the iterative removal of nodes. In
fact, for the first 24 nodes removed the results were exactly the same, as the nodes
removed in the two scenarios were the same.

Despite this, it performed better overall after removing the 50th node, managing
to dismantle the LCC in half with only 75 nodes. Both results showed a very large
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reduction in the number of network nodes with few nodes removed, with the 47%
of the nodes were completely isolated and the 2% of the LCC is scattered in small
connected components.

There was also an increase in the diameter and average shortest path of the
network. The most distant nodes, in order to perform a transaction, had to perform
12 hops to reach the most distant node in the best case, and the average of these
hops increased slightly from 3.17 to 4.39 and 4.31, respectively. The network also
had a reduction in central point dominance from 0.16 to 0.05 and 0.06 respectively
indicating a lower centrality.

The total capacity of the network had been reduced to 16% of the initial amount
of 1040.56 B with a total of 164.52 B and 173.50 B. If all nodes in the network
were removed except for those 75 or 80 central nodes chosen by the algorithm, the
total capacity would be about double 325 B, and 345 B respectively. This showed
that these nodes had some control over the network, and had many important
channels, especially between them.

Degree Centrality Weighted Network: After removal of the 51th strongest
node both the One Iteration and the Iterated reduced the LCC size to 80% and
70% of the original size, respectively, with 1,130 individual nodes and 7 connected
components formed by 2 nodes for the One Iteration versus 1,676 individual nodes
and 19 connected components of size 2 for the Iterated removal.

To complete the task, the two measures needed the removal of 162 and the parts
detached from the LCC were a total of 55 connected components including 5 of
size 3 nodes and 2,812 disconnected nodes for the One Iteration, while the Iterated
needed the removal 113 stronger nodes with 2,808 isolated nodes and 52 connected
components including 5 of size 3.

The diameter increased in both cases, slightly more in the One Iteration to 12
than in the Iterated to 11. There was a larger increase in the average shortest
paths length compared to the binary network calculations, with a value of 4.60
with one iteration and 4.54 in the iterated. In the one iteration case there was
also an increase in network center point dominance from 0.15 to 0.24 while in the
Iterated it was 0.12.

The total funds within the network after the removal of these nodes decreased
significantly, up to 5% of the initial value in One Iteration. Also in the weighted
network, the Iterated perform slightly better.

Degree Mixed Network: after the two previous methods, it is interesting to
try to mix them and use the hybrid measure provided by Opsahl et al. and the
formula that they proposed.

The tuning of the α parameter was performed with various values between 0
and 1 inclusive, and choose the value of α which minimizes the number of central
nodes needed to halve the LCC. Since the parameter could be even greater than
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Figure 3.2: Degree Centrality: Total amount of B

Figure 3.3: Degree Centrality: Isolated Nodes

one, also values greater than 1 was tried. For α > 1.0 the number of central nodes
needed for the task increased, so this could indicate that strongest nodes with few
connection were not necessarily the best nodes for this task. Because of this the
choice of the α parameter fell on a value between 0 and 1. It was found that the
value that satisfies these conditions is for α = 0.20 with 74 nodes for complete the
task.

Since many values of α gave the same result, the lowest one was chosen, this is
to give more importance to the number of ties than to their strength. The results
were very similar to those of the Iterated case of the binary network, but due to
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the consideration of the weight parameter the total funds decreased to 158.39 B
compared to 173.50 B of the Iterated.

Figure 3.4: Degree Centrality: Size of LCC

Figure 3.5: Degree Centrality: number of Connected Components

The figures represent the trend of the network at the removal of the various nodes
according to the degree centralities taken into consideration: in figure 3.2 the total
number of Bitcoins present in the remaining network, in figure 3.3 the number
of isolated nodes accumulated at the removals, the size of the largest connected
component in figure 3.4 and the number of connected components that were created
in figure 3.5.
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Eigenvector Centrality Binary Network: the One Iteration test with eigen-
vector centrality needed 187 central nodes to complete the task, while the Iterated
needed 101 central nodes.

With the remotion of central nodes the LCC separated into 52 connected
components consisting of two nodes, 8 of 3 nodes, 1 of 4 and 1 of 6 and 2,483
isolated nodes in the One Iteration test. On the other hand, in the Iterated test
the LCC was divided into 46 connected components of 2 nodes, 5 of 3 nodes and
2.828 isolated nodes.

The total capacity of the network was reduced to 84.03 B in the One Iterated
and 109.53 B in the Iterated with a similar average per channel of 0.017 and 0.018
B respectively.

The diameter was almost doubled with 13 hops to connect the most distant
nodes in both tests. The average length of the shortest paths in the One Iteration
case was 5.12 hops, the largest of all the tests performed, while 4.71 in the Iterated
case. The central point of dominance increases in the One Iteration to 0.18 while
in the Iterated test the central point of dominance decreases to 0.12.

Figure 3.6: Eigenvector Centrality: Total amount of B

Eigenvector Centrality Weighted Network: in the One Iteration needed 342
central nodes to halve the LCC and 144 in the Iterated. The connected components
formed were 62 of size 2 nodes, 7 of size 3, 1 of size 4 and 1 of size 6 and a total
of 2,496 isolated nodes in the One Iteration, while in the Iterated there were 47
connected components of size 2, 5 of size 3 and 2,737 isolated nodes.

The total capacity of the network in both tests was reduced to about 5% in
both tests with 40.26 B in the One Iteration test and 55.85 B in the Iterated.

The diameter increased to 12 in the One Iteration while in the Iterated case it
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Figure 3.7: Eigenvector Centrality: Isolated Nodes

increased to 11. The mean length of the shortest paths increased to 4.49 in the
One Iteration and 4.44 in the Iterated. The central point of dominance increased
to 0.28 and 0.20 respectively.

Figure 3.8: Eigenvector Centrality: Size of LCC

The figures represent the trend of the network at the removal of the various nodes
according to the eigenvector centralities taken into consideration: in figure 3.6 the
total number of Bitcoins present in the remaining network, in figure 3.7 the number
of isolated nodes accumulated at the removals, the size of the largest connected
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Figure 3.9: Eigenvector Centrality: number of Connected Components

component in figure 3.8 and the number of connected components that were created
in figure 3.9.

Betweenness Centrality Binary Network: for the attack based on the be-
tweenness centrality on the binary network both the measures performed very well.
They needed few of 80 nodes to halved the LCC.

Only the betweenness centrality needed more nodes in the Iterated, 76 central
nodes respect to the One Iteration, 71 nodes. The betweenness centrality One
Iteration in the binary network needed the lowest number of central nodes for
achieved the task of halved the LCC.

By removing central nodes in the binary network One Iteration were obtained
34 connected components composed of 2 nodes, 4 composed of 3 nodes and one of
11 nodes with 2,845 isolated nodes. Similar results were obtained in the Iterated
network with an additional 4 connected components composed of 2 nodes and 2 of
3 nodes and 2,843 isolated nodes.

The total network capacity decreases from 1040.56 B to 239.33 B in One Iteration
and 189.60 B in Iterated with average capacity per channel of 0.028 B and 0.024 B,
respectively.

The diameter in both cases increased from 7 to 12 and the average short path
length also increased from 3.17 to 4.05 in the One Iteration and slightly more in
the Iterated at 4.32.

Betweenness Centrality Weighted Network: in the weighted network, the
two iterative methods needed more removed central nodes than the binary network
case to complete the task, with 83 and 97 respectively.
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The LCC breaks down into 37 connected components of size 2 nodes, 4 of size
3 nodes, and 1 from 11 nodes while there are 2,832 isolated nodes in the One
Iteration.

In the Iterated instead there are 5 connected components made by 2 nodes and
1 by three nodes, more than in the previous test and a total of 2,792 isolated nodes.

The maximum channel capacity is decreased to 0.59 B in both tests, there is
also a decrease in the total amount of funds at 130.06 B for the One Iteration and
90.95 B for the Iterated.

The center point dominance resulted unchanged respect to the original network
with a value of 0.15 in both cases and there was a small increase in the average
length of the shortest paths at 4.01 for One Iteration and slightly higher for Iterated
with 4.28.

Betweenness Centrality Mixed Network:the analysis on the mixed network
has been made with the alpha calculated on the degree centrality and both the
One Iteration and the Iterated have been made.

Both tests needed less central nodes to remove to complete the task than the
same tests on the weighted network but more nodes than the same tests on the
binary network, more precisely 75 for the One Iteration and 79 for the Iterated.

The LCC was divided into 37 components of 2 nodes, 4 of 3 and one of eleven
with 2,820 nodes isolated in the One Iteration and 40 components of 2, 6 of 3 and
1 of 11 and 2,811 nodes isolated in the Iterated.

The diameter had grown to 12 in both cases and the central point of dominance
was very similar between the two tests with 0.09 and 0.10 respectively. The results
obtained were intermediate between the tests performed on the previous networks.

Load Centrality: the tests performed on the two networks gave exactly the same
results as the respective tests performed on betweenness centrality and the nodes
removed were exactly the same, which is why it is no longer considered in the rest
of the analysis.

Betweenness Current Flow Centrality: for the current flow betweenness only
the One Iteration test was done on the weighted network. This is because it would
require a lot of computational time to run the other tests as well.

This test needed 72 central nodes to fulfill the task. From the LCC, 32 connected
components consisting of 2 nodes, 5 of 3, one of 11, one of 14 and one of 15 and
2802 isolated nodes were detached. The current flow betweenness centrality was
the test that split into more connected components of different sizes throughout
the analysis.

The total capacity of the remaining network was 336.51 B more than double
the weighted network test of normal betweenness centrality this was also due to
the larger connected components that formed.
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Figure 3.10: Betweenness Centrality: Total amount of B

Figure 3.11: Betweenness Centrality: Isolated Nodes

The diameter also rises in this test to 12 hops and the average length of the
shortest paths to 3.92 while the central point of dominance drops to 0.09.

The figures represent the trend of the network at the removal of the various nodes
according to the betweenness centralities taken into consideration: in figure 3.10
the total number of Bitcoins present in the remaining network, in figure 3.11 the
number of isolated nodes accumulated at the removals, the size of the largest
connected component in figure 3.12 and the number of connected components that
were created in figure 3.13.

40



Topological Analysis on Centrality

Figure 3.12: Betweenness Centrality: Size of LCC

Figure 3.13: Betweenness Centrality: number of Connected Components

Closeness Centrality Binary Network: The two tests in the binary network
in closeness centrality showed similar results for removing the top 50 nodes, with
slightly better performance in Iterated. In the end to halve the LCC, the One
Iteration needed 296 central node removals with 50 connected components of size 2,
5 of size 3, 2 of size 4, 1 of size 5, and 1 of size 6 with 2,566 isolated nodes. Iterated
required 113 central node removals with 45 connected components of size 2, 4 of
size 3 and 1 of size 6 and 2,773 isolated nodes.

The Closeness centrality One Iteration needed at least 33 nodes to reduce the
LCC by 20% of the original size, three times the number of nodes that degree
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centrality needed in both tests in the binary network.
There was also a decrease in the total amount of funds, with a total of 75.25 B

in One Iteration and 106.11 B in Iterated.
There is an increase in diameter, 13 in both cases, and average shortest path

with a slightly higher value in the One Iteration case with 4.96 in contrast to 4.81
in the Iterated. There was an increase in center point dominance with 4.96 in One
Iteration and 4.81 in Iterated.

Closeness Centrality Weighted Network: the One Iteration needed the re-
moval of 294 central nodes to halve the LCC by breaking it down into 61 connected
components of size 2, 9 of size 3, 1 of size 4, and 2.542 isolated nodes. The Iterated
on the other hand needed 155 central nodes to be removed forming 49 connected
components of size 2, 6 of size 3, and 2,542 isolated nodes.

In the analysis performed in the weighted network the closeness centrality is
one of the measures that needs more nodes to reduce the LCC of the 10% with 50
central nodes. The network capacity was reduced below 6% of the total in both
cases by 41.68 B and 54.95 B respectively.

The diameter of the net after the One Iteration test had increased to 11 while
for the Iterated to 14 hops, the highest result among all tests of all measures. The
central point of dominance doubled from the original point of dominance in One
Iteration while it remained unchanged in Iterated.

Figure 3.14: Closeness Centrality: Total amount of B
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Figure 3.15: Closeness Centrality: Isolated Nodes

Closeness Centrality Mixed Network: the One iteration in the mixed network
performed better in terms of nodes to be removed, it needed 221 central nodes
removed, 70 nodes less than the two respective One Iterations in the other 2
networks. Considering the Iterated it needed 121 central nodes removed, 34 nodes
less than the Iterated on the weighted network but 8 nodes more than the binary
one.

In the One Iteration from the removal of the central nodes 58 connected compo-
nents of size 2 nodes, 6 of size 3 and 2,657 isolated nodes were formed from the
LCC. In the Iterated one, 48 connected components of size 2 and 4 of size 3 and
2,760 isolated nodes were formed.

In both tests it also gave intermediate results regarding the diameter respectively
12 for the One Iteration 11 for the Iterated with average length of the shortest
paths respectively 4.63 and 4.72. For the central point of dominance the results are
both similar to their counterparts calculated on the weighted network respectively
0.29 and 0.15.

The figures represent the trend of the network at the removal of the various nodes
according to the closeness centralities taken into consideration: in figure 3.14 the
total number of Bitcoins present in the remaining network, in figure 3.15 the number
of isolated nodes accumulated at the removals, the size of the largest connected
component in figure 3.16 and the number of connected components that were
created in figure 3.17.
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Figure 3.16: Closeness Centrality: Size of LCC

Figure 3.17: Closeness Centrality: number of Connected Components

Vote Rank: for Vote Rank, nodes would vote for the best node in its neighborhood,
the node receiving the most votes was out for subsequent votes and the voting
ability of its neighbors decreased, iteratively.

The final list of central nodes for this method with one iteration consisted of
415 nodes, the remaining ones had a negative score according to the algorithm.

With the removal of all nodes in the list Vote Rank was not able to halve the
LCC.

The algorithm performed well for the first 50 nodes, reducing the LCC with
less nodes than the degree centrality, after 40 best nodes the LCC is 60% of the
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original size.
On the other hand, after 50 nodes, further node removals in the ranking did

not perform as well as the previous ones. In fact, after removing all nodes in the
ranking, the LCC was still not halved.

For the 2-Iteration of Vote Rank once the first list of central nodes was
calculated and removed, the second list was calculated. The Vote Rank recalculation
required 5 nodes to complete the task of halving the LCC, with a total of 420
central nodes required.

This removal created 30 connected components consisting of 2 nodes, 4 of 3
nodes, and 2.537 isolated nodes. The total funds dropped to 409.37 B and the
average per channel to 0.036 B.

The diameter at the end was 9, only two jumps more than the original size with
an average shortest path length of 3.38 and central point dominance of 0.06.

For Vote Rank with the Iterated method, the nodes that were chosen were
exactly the same as the Iterated degree centrality for the binary network, as nodes
that had more channels received more votes, and their neighbors restored their
initial and reinstated voting capacity for the next vote, if they were not isolated
nodes.

Figure 3.18: Vote Rank: Total amount of B

Recalculating the Vote Rank after removing 49 nodes per list, the algorithm
needed 73 nodes to complete the task. Removing these nodes created 37 connected
composites consisting of 2 nodes, 4 of 3 and one of 11, and 2,833 isolated nodes.
Total funds dropped to 232.24 B and average per channel to 0.025 B. Network
diameter increases to 12 with average short path length of 4.00 and central point
of dominance dropped to 0.08.
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Figure 3.19: Vote Rank: Isolated Nodes

Figure 3.20: Vote Rank: Size of LCC

The figures represent the trend of the network at the removal of the various nodes
according to iterated methods used with Vote Rank and the degree centrality
Iterated in the binary network: in figure 3.18 the total number of Bitcoins present
in the remaining network, in figure 3.19 the number of isolated nodes accumulated
at the removals, the size of the largest connected component in figure 3.20 and the
number of connected components that were created in figure 3.21.
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Figure 3.21: Vote Rank: number of Connected Components

Second Order Centrality: After removal of the best 25 nodes in this case the
LCC was reduced by about 20%, and with 45 nodes at 70% of its original size. The
task was completed with the removal of the 124th best node, with 56 connected
components of size 2 and 3, 52 and 4 respectively, and 2,778 isolated nodes. The
results were similar to other previous cases such as the Iterated cases of degree
centrality and betweenness in the weighted network cases, and eigenvector centrality
and closeness centrality in the binary network.

Figure 3.22: Second Order Centrality: Comparison total B

The total capacity of the network decreased to 97.52 B with an average per
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Figure 3.23: Second Order Centrality: Comparison isolated nodes

Figure 3.24: Second Order Centrality: Comparison LCC size

channel of 0.017 B.
The diameter increased to 13 hops, the average shortest path length increased

to 4.85, and the center point dominance 0.16.

The figures represent the trend of the network at the removal of central nodes
according to the Second Order and most similar trends like eigenvector centrality
and closeness centrality Iterated in the binary network, degree centrality and
betweenness centrality Iterated in the weighted network.

In figure 3.22 the total number of Bitcoins present in the remaining network,
in figure 3.23 the number of isolated nodes accumulated at the removals, the size
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Figure 3.25: Second Order Centrality: Comparison connected components

of the largest connected component in figure 3.24 and the number of connected
components that were created in figure 3.25.

Random: The network proved to be very robust in the analysis performed with
random removal. In fact it takes about one third of the nodes in the total network
to reduce the LCC to half.

Among the various tests with random removal, the best result was obtained after
the removal of 2,107 nodes, the 35% of the total nodes of the network. Only four
connected components consisting of 2 nodes and 876 isolated nodes were detached
from the LCC. The removal of random nodes caused a linear drop in network nodes.

Figure 3.26: Random removal isolated nodes
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Figure 3.27: Random removal LCC size

Figure 3.28: Random removal number of connected components

The network did not experience any noticeable increase in terms of the number
of hops per transaction, and the total network funds dropped to 452.82 B with
average per channel of 0.045 B.

The diameter increased by only one hop from 7 to 8, while the average shortest
path distance remained unchanged at 3.17 and the central point dominance increased
to 0.23.

The figures represent the trend of the network at the random removal: in figure 3.26
the number of isolated nodes accumulated at the removals, the size of the largest
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connected component in figure 3.27 and the number of connected components that
were created in figure 3.28.

3.5.1 Elite Nodes
At the end of all the analyses, all the centrality scores that were obtained from the
various nodes on all the measures considered were collected.

An important study on the network was to find if there was any node that
satisfied the condition of being a removed central node on all calculated measures.
For simplicity of notation these nodes will be called Elite Nodes below.

Elite Nodes Removal: Network Stat
Nodes Removed 41

Total Nodes 4,335 (72%)

Connected Components: (LCC)
Size 2 19
Isolated 1,630 (27%)

Channels:
Total Channels 14,287 (47%)
Channels after merging 13,013 (48%)
Merged Channels 1,274 (9%)

Max Capacity 5.0 B
Min Capacity 1.1 × 10−5 B

Total Capacity 405.63 B (39%)
Average Capacity 0.031 B

Diameter of LCC 10
Central Point Dominance 0.17
Average Shortest Path 3.76

Table 3.6: Elite Node Results

This analysis showed that there were a total of 41 nodes that were central for
all centrality measures. The node with ID 2 which was the node with the most
connections in the network was well ranked in many of the centrality measures
taken in the binary network. In contrast, it was central but on the low ladder
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in the rankings of the centrality measures taken in the weighted network. This
denoted that the node had many connections and was also well connected but these
connections resulted in not strong ties.

Other nodes of interest were the articulated nodes found earlier. Of these six
nodes, only three were part of the Elite Nodes. In particular, the node with ID 177
was well ranked in every measure of centrality, both binary and weighted network.
In contrast, the node that best disassembled the network into multiple connected
components, the node with ID 4254, was not present among the Elite Nodes.

The table 3.6 shows the situation of the network after the removal of the Elite
Nodes. The network presented itself with 72% of the total nodes of the original
network, that is 4,335 nodes of which 19 components connected of size 2 nodes, 12
formed by the removal of the Elite Nodes. Of these nodes 52% had only one channel.
The node with the highest degree has 415 neighbors, and only 164 nodes have more
than 30 channels. The removal of the Elite Nodes resulted in the isolation of 1,630
nodes.

The total number of channels was almost halved, and the total capacity of the
network is 405.63 B, 39% of the initial funds.

Figure 3.29: Elite Nodes isolated nodes

The diameter increased slightly with a maximum distance of 10 hops 3 more
than the original network and an average shortest path distance increased to 3.76,
the central point dominance is almost unchanged from 0.16 to 0.17.

Elite Nodes removal was shown to be more effective than random node removal.
The network diameter and average shortest path lengths obtained from Elite Nodes
removal were greater than those obtained from random removal. In addition, the
total network bottom decreased more with the removal of Elite Nodes than with the
2,107 random nodes. This showed that some nodes may indeed have an influence
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Figure 3.30: Elite Nodes LCC size

Figure 3.31: Elite Nodes number of connected components

on the network.

The figures represent the trend of the network at the removal of Elite Nodes: in
figure 3.29 the number of isolated nodes accumulated at the removals, the size
of the largest connected component in figure 3.30 and the number of connected
components that were created in figure 3.31.

In the next chapter, payment simulations using CLoTH will be performed.
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Chapter 4

Simulations on Centrality

The following will introduce CLoTH the Lightning Network simulator for simulating
payments in a payment network. Section 4.1 will cover CLoTH in general and the
functions used within it to simulate payments. Section 4.2 will discuss previous
analyses on two networks of interest and results obtained. Finally the section 4.3
will present the analyses performed in this work and the results obtained.

4.1 CLoTH in general
CLoTH[8] is a Lightning Network simulator. It simulates payments on the Lightning
Network and produces performance measures such as the probability of successful
payments, the average time per payment and the average length of payment routes.

The functions implemented in CLoTH to perform payment simulations are based
on those used to route HTLCs defined on lnd, one of the various Lightning Network
implementations.

The simulator takes as input a definition of a payment network and a list of
payments to be simulated. The network in the simulations is represented by three
files that contain the data structure that defines the various element of the network:
the channel file, the edge file, and the node file.

A channel is defined by the ids of the two nodes it connects, the ids of the
edges that indicate the two directions of the channel, and the total capacity of
the channel. An edge is defined by the channel id to which it belongs, the current
balance in this edge, fixed fee for payments and a fee proportional to the value of
the payment, the timelock of the HTLC, and the minimum value for a payment to
be routed for this direction. The node is defined by its id.

These data structures are easily modified and adaptable to case studies such as
removing the various central nodes of centrality measures.

Payments consist of the id of the sender node, id of the receiver node, the
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amount of the payment and the time in which it occurs in the simulator. Payments
in the simulation will be randomly generated.

The following will briefly describe how simulations work on CLoTH. For more
details the reader is referred to [8].

The simulator works to discrete events. These events changing the state make
to advance the simulation of the execution of the payment. The simulated CLoTH
functions are mapped to the HTLC messages according to the type of node that
forwards them, thus performing different functions depending on the case explained
briefly below.

The find_route() simulates a sender node that looks for a routing path for a
new payment or a previously failed one to retry it. This function also records the
payment statistics used to calculate the performance measures of the simulator.
The blacklists of nodes and edges are updated by removing them if a timeout has
expired.

At the end the modified Dijkstra is used to find the route. If the route is found
a send_payment is called otherwise the payment fails.

The send_payment() simulates a sender nodes that checks if the forwarding edge
is known or has the necessary balance to forward the payment. If at least one of
these conditions is not met the edge is blacklisted and find_route() is called.

If both checks are verified the edge balance is scaled by the amount of the payment
simulating the creation of an HTLC between the two nodes and a forward_payment
event is created.

The forward_payment() simulates payment routing by intermediate nodes. It
checks that the next node is cooperative before and after the HTLC is established.
If the node is non-cooperative before the HTLC is established, a receive_fail
event is scheduled, in the second case it waits for the timelock of the established
HTLC to release the funds. The edge is blacklisted in both cases.

A check on the presence of the forward edge is done as in send_payment. If
the check fails the function generates a forward_fail event to notify the previous
hops of the failed payment up to the previous node to the sender which generates
a receive_fail.

Another check is done on the edge balance as in send_payment. If the outcome
is positive and the next node is an intermediary node another forward_payment
event is created, otherwise a receive_payment is generated if the next node is the
payment receiver.

The receive_payment() simulates the receipt of payment by the receiving node.
It increments the balance of the opposite edge directed to the previous hop after
checking for cooperativity. A forward_success event is generated at the end.
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The forward_success() simulates the forwarding of a payment success by an
intermediate hop. It checks the cooperativeness of the node with which an HTLC
already exists, and if it is positive, the balance is reduced in the edge directed to
the opposite node. If the next node is the sender it creates a receive_success
event otherwise another forward_success if it is another intermediate hop.

The receive_success() simulates the receipt of a payment success by the sender.
Payment statistics are recorded and it does not create any subsequent events as
the payment is completed.

The forward_fail() simulates the receipt of a failed payment from an intermediate
node. It restores the previous state of the balance before the payment attempt.

Generates a forward_fail or a receive_fail event depending on whether the
next node is an intermediate node or the sender of the payment.

The receive_fail() simulates the receipt of a failed payment from the sender.
Restores the previous state of the budget related to the HTLC between the sender
and the intermediate node. Generates a find_route event to retry the payment.

After the discrete time events simulation, the simulator carries out one phase of
post-processing where it collects the obtained data transforming them in measures
of performance useful to fine statistical purposes.

The performance of the network will be given by the probability of a payment to
be successful, the probability of failure due to the absence of budget, the probability
of failure due to the lack of a path that connects the two nodes sender and receiver,
the average time to complete a payment, the average number of attempts needed
to payments and the average length of the path of payments.

4.2 Previous Simulations
Two analyses were done, one using a snapshot of the Lightning Network and testing
various parameters by combining them. This analysis was used to understand what
instances of network inoperability were present and what they were due to.

Another analysis was done on a synthetic network created using the parameters
entered into the CLoTH simulator. This analysis is useful to understand the impact
of the parameters entered into the simulator on the performance of the payment
network.

Lightning Network snapshot: an initial analysis was performed via CLoTH on
a snapshot of the Lightning Network mainnet from June 2018 (1,221 nodes and
5,167 channels with average capacity of 381,350 satoshis) using network composition
as fixed parameters and other variable parameters as input to the simulator [8].
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These variable parameters were the probability of a node being uncooperative,
before the HTLC was established and after, the average payment rate, the number
of payments, and the tuner of the payment amount which is defined by the order
of magnitude in satoshis. For each of these parameters the tuning has been made
on various intervals.

The purpose of the simulation was to discover cases of non-operativeness. A
case of non-operativeness indicates that the percentage of success falls under the
50%. The used strategy previewed to use for every variable a not stressing value,
which does not negatively affect the simulation such as a percentage of failure
equal to zero, and a stressing value that influences on the simulation, for example
a percentage of failure different from zero.

The initial simulation was done with all variables with the not stressing value,
then the stressing value was used one at a time on different simulations. If a case
of not operating occurred for one of these simulations, no further simulations were
done with other variables with stressing values. Otherwise, a stressed value on
another variable was used.

The results of the various simulations showed that some combinations created
cases of not working. Stressing the payment amount from the tuner by giving
value 5 rather than the relaxed value 1 decreased the performance of the network
bringing the probability of successful payment to 46.13% or below 50%. Moreover
the probability of payment failure for no route found increased from 24.16% to
46.11%. This was due to the fact that the channels did not have the necessary
capacity to route payments with large amounts.

The stressed value of the payment rate also affected the performance of the
network. The relaxed value of 10 was increased to 100 reducing the probability of
a successful payment to 43.88%. This was due to an unbalance of channels that
were exhausted due to the high rate of payments being submitted.

Another non-operational case was found with a combination of tuner payment
amount set to 4 and the probability of a node uncooperative set to 10%. The
success rate dropped to 46.1% mostly due to too high payments and lack of routes
to route them. This analysis led to the conclusion that one of the main problems
on the Lightning Network is the routing of payments with high amounts.

Synthetic network: another analysis was done on a synthetic network generated
using the network generator included in the CLoTH simulator. These simulations
were performed with the purpose of studying the impact of each input parameter
individually on network performance.

These input parameters in addition to those tested in the previous simulation
were specifically: the number of nodes in the network, the average number of
channels per node, channel capacity, and a topology tuner where a value equal
to 0 indicated the centralized case where a hub node was connected with all
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the remaining nodes instead a value that tends to inf indicated a completely
decentralized topology with nodes that were all the same size and no hubs were
present.

In this simulation, the variables were considered individually and the others set
to a default value so as not to affect the calculations.

The default synthetic network was totally decentralized (inf) composed from
100,000 nodes with an average of 5 channels each with average capacity of 100,000
satoshis.

The results obtained in this analysis stated that in a decentralized network three
channels per node were not sufficient to have a robustly connected network. The
probability of success of payments was 59.61% and the probability of failure for
lack of route was 23.34% while for lack of funds was 16.77%.

With 5 channels per node, the success rate increased to 99% and the optimal
condition for which there were no failed payments was found with 11 nodes per
node.

The probability of node non-cooperation did not give a significant impact on
network performance. Only the worst case with an improbably high probability of
non-cooperation of 10% caused a probability of failure of 11.83%.

The results regarding network topology showed that payment times were lower
with a centralized topology (333.16 ms) than with the fully decentralized case
(1,391.92 ms). In addition there was an increase in average hops per payment from
2.90 to 10.34 but it did not affect the payment success rate.

4.3 Simulations on centrality with CLoTH
Simulations with CLoTH were performed on centrality analyses on networks where
nodes were removed using the One Iteration algorithm. The central nodes removed
were those that are central from the beginning of the removal process. This choice
was made to focus the analysis on the performance of the Lightning Network in
its initial state and in the state immediately following the removal of the central
nodes.

In fact, the Iterated analysis after node removal and recalculation of the centrality
measure studied a Lightning Network graph in a different state than the previous
one in each iteration.

Simulation Inputs: in addition to the network specifications defined by the
channel files, edges and nodes, other parameters regarding payments had to be
given as input to be necessarily defined to the simulator for the generation of
random payments between two nodes in the network. These payments were chosen
with a low value, on average 100 satoshis.
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For the analysis, 50,000 payments were generated to be simulated at a rate of
100 payments per second. This number was chosen based on analyses done in past
studies so that it did not have a heavy impact on computation time, but gave
relevant results.

For each centrality measure computed in the previous chapter using the One
Iteration algorithm, simulations were conducted on the Lightning Network removing
the central nodes. In addition to the removal of the total list of central nodes, three
intermediate simulations were also conducted for each quarter of the list to show
the performance trend of the network upon removal of a portion of central nodes.

The simulator gave network performance measures in various aspects such as
payment success rate, failure rate due to lack of route, and lack of budget.

Other performance measures given in the output included average payment time,
average route length, and number of attempts required for successful payment.

The results obtained from simulations on the various centrality measures and
their intermediate removals will be discussed below for each performance measure.

The various analyses will compare the original network with the removal of the
obtained central nodes of the related centrality measures and their intermediate
steps. The original network has a payment success rate of 99.02%. The failure rate
was mainly due to lack of paths of 0.61% and 0.37% due to lack of budget in the
channels. The average route length of payments in simulations was 3.17 hops with
an average time for payment of 635.11 ms.

4.3.1 Simulation with Degree Centrality
This section will discuss the results obtained from degree centrality on the binary
and weighted network simulations.

The results regarding the success, failure and the average length of the payments
obtained in the original network, after the removal of all the central nodes and in
the intermediates are visible in the figure 4.1 regarding the binary network, while
in the figure 4.2 regarding the weighted network. At the end in the table 4.1 are
reported the final results with also the average time of payments obtained from
the simulations.

Degree Binary: in the binary degree centrality after the removal of all central
nodes presented a drop in performance of almost 8% having a success rate of 91.91%
with a sharp decline after the three-quarter removed. The drop in performance is
mainly due to lack of paths of 7.57% and 0.52% due to lack of funds.

In the performance of intermediate simulations, payments still have a good
success rate. With the removal of half of the central nodes the success rate drops
to 97.99% mainly due to lack of path 1.44% and a small part due to lack of funds
0.56%.
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In the binary degree centrality the failure of payments was mainly due to the
lack of paths between nodes after the removal of the central ones. There was also
an increase in average payment time to 878.35 ms as can be seen in the table 4.1.

Also as illustrated in Figure 4.1 removing three-quarters of total nodes causes
more failures due to lack of budget than removing all nodes. This may mean that
some of these central nodes had low capacity channels or channels that were often
used by a single direction and therefore saturated. After the removal of these nodes
in fact there is an increase in failures due to the absence of path and decrease in
failures due to the budget.

Figure 4.1: Success rate and failure in Degree Binary

Degree Weighted: in weighted degree centrality the removal of all central nodes
resulted in a drop in payment success rate of almost 10% with a 90.85% success
rate. Payment failure is primarily due to lack of path between nodes for 8.41% of
payments while only 0.74% for no balances. The average length of payment paths
increases to 4.62 hops.
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Regarding the intermediate results, there was a fairly linear decrease in the
payment success rate. With the removal of the first quarter of nodes it decreases
to 98.25% increasing to 95.85% with the removal of half and 94.04%. Even in the
intermediate cases, the main cause of failure was due to pathways.

Average payment times increased to 942.35 ms after removal of all central nodes,
over 300 ms compared to the original network. Intermediate removals show a linear
increase in times to node removal.

Figure 4.2: Success rate and failure in Degree Weighted

Table 4.1 shows the results obtained from the two degree centrality analyses.
Removing the weighted degree centrality nodes was found to be more effective in
dropping network performance but requires twice as many nodes to be removed.
There was an increase in average payment time in both simulations that was slightly
higher in the weighting.
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Comparison of simulations
Original Degree Binary Degree Weighted

Nodes removed 80 162
Success 99.02% 91.91% 90.85%
Fail no Path 0.61% 7.57% 8.41%
Fail no Balance 0.37% 0.52% 0.74%

Average Time 635.11 ms 878.35 ms 942.35 ms
Average Route Length 3.17 4.39 4.62

Table 4.1: Comparison of performance in original Lightning Network and Degree
Centralities

4.3.2 Simulation with Eigenvector Centrality CLoTH

This section will discuss the results obtained from eigenvector centrality on the
binary and weighted network simulations.

The results regarding the success, failure and the average length of the payments
obtained in the original network, after the removal of all the central nodes and in
the intermediates are visible in the figure 4.3 regarding the binary network, while
in the figure 4.4 regarding the weighted network. At the end in the table 4.2 are
reported the final results with also the average time of payments obtained from
the simulations.

Eigenvector Binary: The success of payments in the eigenvector centrality
dropped to 89.11% in the simulation with the removal of all central nodes. Again,
the largest percentage was due to paths for 10.21% and a small portion for the
balance 0.68% of failures. In addition, the average length of payment paths goes up
2 hops to 5.12. The intermediate cases do not yield results of interest. Removing
the first node reduces the probability of success for both failure cases by 0.44%.
Only after three-quarters of the central nodes does the success rate drop below
95% and the average path length rises to 4.20 hops. Even in eigenvector centrality,
payment failure is mainly due to the lack of paths between nodes after the removal
of the central ones. The average time of the payments rises above a second with
1,030 ms on average, as can be see in Table 4.2.
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Figure 4.3: Success rate and failure in Eigenvector Binary

Eigenvector Weighted: In weighted eigenvector centrality the success rate
dropped linearly based on intermediate removals. The payment success rate
dropped below 94% due primarily to path failure, after the remotion of half nodes.

With the removal of all the central nodes the success rate of payments dropped
to 88.64% with 10.51% caused by path failures and 0.85% for balance failure. The
average time per payment increases to 912 ms.

This was the centrality measure for which the rate of failures rose more between
all the tests, but it was also that one that demanded more central nodes in order
to halve the largest connected component, with 342 central nodes.
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Figure 4.4: Success rate and failure in Eigenvector Weighted

Table 4.2 shows the results obtained from the two eigenvector centrality analyses.
Removing nodes from the binary eigenvector centrality was more effective in terms
of average time and average path length in dropping network performance, requiring
about half as many nodes to be removed. The weighted eigenvector, on the other
hand, is more effective in dropping the success rate but requires more nodes. With
the same amount of nodes removed in the binary case, the weighted eigenvector
would reduce the hit rate to about 88.64%.
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Comparison of simulations
Original Eigenv. Binary Eigenv. Weighted

Nodes removed 187 342
Success 99.02% 89.11% 88.64%
Fail no Path 0.61% 10.21% 10.51%
Fail no Balance 0.37% 0.68% 0.85%

Average Time 635.11 ms 1,030.83 ms 912.43 ms
Average Route Length 3.17 5.12 4.51

Table 4.2: Comparison of performance in original Lightning Network and Eigenvector
Centralities

4.3.3 Simulation with Betweenness Centrality

This section will discuss the results obtained in the Betweenness centrality on the
binary and weighted network simulations.

The results regarding the success, failure and the average length of the payments
obtained in the original network, after the removal of all the central nodes and in
the intermediates are visible in the figure 4.5 regarding the binary network, while
in the figure 4.6 regarding the weighted network. At the end in the table 4.3 are
reported the final results with also the average time of payments obtained from
the simulations.

Betweenness Binary: in the binary betweenness centrality after the removal of
all central nodes presented a drop in performance of almost 7% having a success
rate of 92.72%. The drop in performance is mainly due to lack of paths of 6.84%
and 0.52% due to lack of funds.

In the performance of intermediate simulations, payments still have a good
success rate. With the removal of half of the central nodes the success rate drops
to 98.01% mainly due to lack of path 1.34% and a small part due to lack of funds
0.65%. Also as illustrated in Figure 4.5 removing half or three-quarters of total
nodes causes more failures due to lack of budget than removing all nodes.

In the binary betweenness centrality the failure of payments was mainly due to
the lack of paths between nodes after the removal of the central ones. There was
also an increase in average payment time to 814.25 ms as can be seen in the table
4.3.
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Figure 4.5: Success rate and failure in Betweenness Binary

Betweenness Weighted: in weighted betweenness centrality the removal of all
central nodes resulted in a drop in payment success rate of almost 8% with a
92.24% success rate. Payment failure is primarily due to lack of path between
nodes for 7.22% of payments while only 0.54% for no balances. The average length
of payment paths increases to 4.62 hops.

Regarding the intermediate results, there was a fairly linear decrease in the
payment success rate. With the removal of the first quarter of nodes it decreases
to 98.38%. With the removal of half central nodes, there is an decreasing to
97.67% in payment success and a 95.69% of payment success after the removal of
three-quarters of central nodes. Even in the intermediate cases, the main cause of
failure was due to pathways.

Average payment times increased to 807.11 ms after removal of all central nodes,
over 300 ms compared to the original network. Intermediate removals show a linear
increase in times to node removal.
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Figure 4.6: Success rate and failure in Betweenness Weighted

Table 4.3 shows the results obtained from the two betweenness centrality analyses.
These two analysis give similar results in all performances, but the weighted needed
more nodes.

4.3.4 Simulation with Closeness Centrality

This section will discuss the results obtained from closeness centrality on the binary
and weighted network simulations.

The results regarding the success, failure and the average length of the payments
obtained in the original network, after the removal of all the central nodes and in
the intermediates are visible in the figure 4.7 regarding the binary network, while
in the figure 4.8 regarding the weighted network. At the end in the table 4.4 are
reported the final results with also the average time of payments obtained from
the simulations.
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Comparison of simulations
Original Between. Binary Between. Weighted

Nodes removed 71 83
Success 99.02% 92.72% 92.24%
Fail no Path 0.61% 6.84% 7.22%
Fail no Balance 0.37% 0.44% 0.54%

Average Time 635.11 ms 814.25 ms 807.11 ms
Average Route Length 3.17 4.06 4.02

Table 4.3: Comparison of performance in original Lightning Network and Betweenness
Centralities

Closeness Binary: Simulation on the network after all central nodes were removed
according to closeness centrality gave a discrete performance drop. The success
rate of the payments fell to 89,96% with 9,43% of failures due to the path while
0,61% to the balance. With half of the central nodes removed, the success rate
dropped below 95% and the average payment route length was 3.95 hops with an
average time per payment of 797 ms. Removing all nodes further increased the
payment time to 1 second and the average route length to 4.98 hops.

The removal of three-quarters of nodes the rate of failed payments decreased
mainly for no-balance compared to the simulation with half nodes removed, from
0.72% to 0.64%. This trend resumes also with the removal of all the central nodes
going down to 0,61%.

Closeness Weighted: for the simulations carried out on the network after the
removal of the central nodes according to the weighted closeness centrality there
was a decrease in the success rate of payments under 90% with 88.74%. The 10.45%
of the failures was due to the lack of path between the nodes and the remaining
0.81% instead for no balance.

Table 4.4 shows the results obtained from the two closeness centrality simulations.
The removal performed in the weighted closeness centrality is found to be more
effective in dropping network performance. The simulation on the binary network,
on the other hand, made the average time spent on transactions and the average
path length increase.
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Figure 4.7: Success rate and failure in Closeness Binary

Comparison of simulations
Original Closeness Binary Closeness Weighted

Nodes removed 296 294
Success 99.02% 89.96% 88.74%
Fail no Path 0.61% 9.43% 10.45%
Fail no Balance 0.37% 0.61% 0.81%

Average Time 635.11 ms 1004.13 ms 894.72 ms
Average Route Length 3.17 4.98 4.43

Table 4.4: Comparison of performance in original Lightning Network and Closeness
Centralities
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Figure 4.8: Success rate and failure in Closeness Weighted

4.3.5 Second Order and Current Flow Betweenness
This section will discuss the results obtained from second order centrality and the
current-flow betweenness centrality simulations.

The results regarding the success, failure and the average length of the payments
obtained in the original network, after the removal of all the nodes and in the
intermediates are visible in the figure 4.9 regarding the network with random
removal, while in the figure 4.10 regarding the weighted network.

Second Order: for the simulation after the removal of all 124 of central nodes
according to the second order centrality network the success rate of the payments
fell to 90,78% with 8,63% of failures due to the path while 0,58% to the balance.

With half of the central nodes removed, the success rate dropped to 97,68% and
the average payment route length was 3.68 hops with an average time per payment
of 738.26 ms. Removing all nodes further increased the payment time to 968.55 ms
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and the average route length to 4.83 hops.

Figure 4.9: Success rate and failure in SecondOrder

Current Flow Betweenness: the simulation with the removal of central nodes
according to the current flow centrality resulted in a drop in payment success
rate of with a 91.00% success rate. Payment failure is primarily due to lack of
path between nodes for 8.50% of payments while only 0.50% for no balances. The
average length of payment paths increases to 3.91 hops.

Regarding the intermediate results simulations, the success rate dropped to
98.07% with the remotion of half centrality nodes, the majority of failures was
due to no path with 1.39% and 0.54% for no balance, the network still had good
performance. Removing three quarters of the total central nodes in simulations,
the success rate was 96.40% and the failures due mainly to no path for 2.80% and
the remaining 0.80% for no balance.

Average payment times increased to 783.82 ms after removal of all central nodes,
148 ms compared to the original network. Intermediate removals show a linear
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increase in times to node removal.

Figure 4.10: Success rate and failure in Current Flow
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4.3.6 Simulation with Random removal and Elite Nodes
This section will discuss the results obtained from the random removal and the
removal of the Elite Nodes simulations.

The results regarding the success, failure and the average length of the payments
obtained in the original network, after the removal of all the nodes and in the
intermediates are visible in the figure 4.11 regarding the network with random
removal, while in the figure 4.12 regarding the weighted network. At the end in
the table 4.5 are reported the final results with also the average time of payments
obtained from the simulations.

Random removal: after the removal of all the nodes in the list of removal network
performance didn’t drop by much. In fact, after removing all 2,107 nodes from
the list, the success rate dropped by only 1% compared to the original network, or
98.02%. 1.51% of the failures were due to the path not found and the remaining
0.46% were due to funds. There was also no increase in the average route length as
showed in table 4.5.

Elite Nodes: the simulation after removing all 41 Elite Nodes in the network gave
a discrete decrease in network performance. The success rate dropped to 96.75%
with the majority of failures due to no path with 2.56% and the remaining 0.69%
due to balance. Removing three-quarters of the total Elite nodes the network still
had good performance as the success rate was 98.09% and the failures due mainly
to no path for 1.35% and the remaining 0.56% for no balance.

Average payment times increased to 756.76 ms after removal of all central nodes,
over 120 ms compared to the original network. Intermediate removals show a linear
increase in times to node removal.

Table 4.5 shows the results obtained from the random and the Elite Nodes removal.
From the table it can be seen that removal of Elite Nodes is much more effective
than random removal of nodes. With only 41 nodes or 0.68% of the nodes in the
network reduced the success rate more than the random removal of 2,107 nodes,
96.75% and 98.02% respectively. Among the random nodes removed there were
also 12 of these Elite Nodes but too few to affect the performance of the network
with their removal.

The average path length was greater after Elite node removal than the average
length found in the simulation run after random removal, 3.77 hops versus 3.18
hops.

The results obtained on the various measures of centrality showed that the
network had a decrease in performance in the absence of central nodes. These
nodes mainly cause with their removal a lack of paths between nodes as seen from
the results obtained.
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Figure 4.11: Success rate and failure in random removal

Despite this, the remaining network possessed enough links to ensure transactions
between the remaining nodes with a good success rate. In fact, the lowest value of
the success rate obtained in the weighted eigenvector centrality was 88.64%.
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Figure 4.12: Success rate and failure in Elite Nodes

Comparison of simulations
Original Random Elite Nodes

Nodes removed 2,107 41
Success 99.02% 98.02% 96.75%
Fail no Path 0.61% 1.51% 2.56%
Fail no Balance 0.37% 0.46% 0.69%

Average Time 635.11 ms 643.87 ms 756.76 ms
Attempts 1.015 1.045 1.029
Average Route Length 3.17 3.18 3.77

Table 4.5: Comparison of performance in original Lightning Network, after random
removal and Elite Nodes
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Chapter 5

Conclusions

Lightning Network is the most popular payment channel network on Bitcoin
designed to solve the scalability problem. Thanks to its smart contracts called
HTLC, it allows unbounded off-chain payments in almost instant time through
trustless intermediaries, with small fees to route them.

Since channel creation takes funds from the blockchain nodes tend to create few
channels by connecting to central nodes in the network rather than creating ad
hoc ones.

Central nodes can compromise the decentralization of the network and if they
are not cooperative they can increase the rate of failed payments or the average
distances to cover for payment and consequently an increase of the fees.

This study focused on finding these various nodes based on different centrality
measures and seeing the behavior and topology of the Lightning Network after the
removal of the central nodes.

For the study, several tests were performed for the various centrality measures.
The binary network and the weighted network were considered by changing the
weight value for the edges (considering or not considering the weight parameter).

Network analyses were conducted by removing nodes based on their centrality
by performing two removal strategies.

In the first, the removed nodes were sequentially chosen from the list after a
single iteration of the centrality measure. In the second, the centrality measure
was recalculated after each removal and then the node removed. The number
of detached connected components, isolated nodes, and the size of the largest
connected component were reported for each node removed. This analysis stopped
when the largest connected component had half of the initial nodes in the network.

Topological analyses were followed by simulations using CLoTH. CLoTH is a
Lightning Network simulator. It simulates payments on the Lightning Network
and produces performance measures, such as probability of payment success and
average payment time. For each centrality measure, simulations were conducted on
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the Lightning Network removing the central nodes. In addition of the remotion of
the total list of central nodes three intermediate simulations were also carried out
for each quarter of the list.

Topological results showed that few central nodes are enough for halve the
largest connected component. Most of these nodes are isolated, confirming that
nodes have few connections with central nodes. Payments needed on average more
hops to reach the destination after the removal of the central nodes. There was
also an increase in network diameter, the maximum distance between two nodes.

There was also a significant reduction in the number of channels, from 30,457 in
the original network to a minimum of 5,095 during the analysis with an iteration
of closeness centrality in the binary network. There was also a notable reduction
in total capacity which drops to a minimum of 40 B in the eigenvector centrality
iterated on the weighted network.

The simulations on CLoTH confirmed the results obtained from the topological
analysis performed previously such as the average increase in the number of hops
per payment, adding details regarding the increase in the average time for payments
and more payment failures.

On average, removing the various central nodes for each centrality measure
reduced payment success by 9%, from 99% in the original network to an average of
91%. The most significative reduction was obtained by eigenvector centrality on
the weighted network with 89% successful payments.

Average payment times had an increase of about 268 ms from 635 ms in the
original network to 903 ms on average across measures. Payments have to take one
extra hop to reach their destination.

For the test with random removal, the network was very robust experiencing no
actual change on arrival times from 635 ms to 644 ms and only 1% of payments
fail with a 98% of success rate. The test with the removal of Elite Nodes gave the
following results: the success rate decreased to 97% and the average payment time
increased to 757 ms with an increase of 122 ms compared to the original network.

The analysis and the simulations showed that in the network there were indeed
central nodes that with their non-cooperation to the network can create inconve-
niences to it. In fact, the removal of 41 (0,7% of the total nodes) central nodes
for all the measures considered was much more effective than a random removal
of 2.107 (35% of the total nodes) nodes for the simulations with CLoTH, giving
higher results in all fields.

Despite these results, the remaining network appeared to be well connected in
as it did not have too low a success rate. In fact the vast majority of nodes that
remained isolated from the network belonged to small users connected only to one
of these central nodes.

Future work will investigate different centrality measures such as group measures
of nodes. In this study the nodes were treated individually, but it is also interesting
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to understand if in the network there are nodes even distant that taken together
can divide the largest connected component in several chunks of considerable size
as opposed to small connected components formed by a few nodes.

In addition, other future work of interest will be simulations using CLoTH
studying the intermediate stages of the network during the removal Iterated and
study whether the removal of these nodes causes more or less damage to the network
than the study carried out on this thesis work.
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