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Summary

In this thesis we consider the problem of the uncertainty on the Generalized
Signal to Noise Ratio (GSNR) value over optical networks. Optical networks are
considered in a partially disaggregated approach, where each optical line systems
(OLSs) separately contributes on the total capacity. Our project is based on a
Python implementation where we study the GSNR distribution in realistic scenarios
applying the Monte Carlo method and machine learning (ML) techniques.

In general, as in a real scenario, the connector input loss and the ripples are
not characterized and cannot be exactly estimated. We study the variation of the
GSNR distribution due to uncertainties over the considered parameters assuming
Gaussian fluctuations around reference values for both input connector loss and
ripples.

Our network topology is constructed by reconfigurable optical add-drop multi-
plexers (ROADMs), on wavelength-division multiplexing (WDM) C-BAND, con-
nected by independent OLSs. Additionally, we consider each OLS composed of
Standard Single Mode Fiber (SSMF) and Erbium-Doped Fiber Amplifier (EDFA).
These OLSs transport lightpaths WDM C-BAND optical signals are considered
as a fully loaded system from ROADM to ROADM independently. Every channel
propagated along the OLS is considered separately with respect to the other chan-
nels propagated. Additionally, we focus our study on a channel under test (CUT).
As we do not consider the Raman effect, we set as CUT the central channel of the
LP that represents the worst case scenario by means of the nonlinear degradation
introduced within the propagation through the entire OLS.

Each lightpath (LP) has been abstracted as an additive white Gaussian noise
(AWGN) channel. Along the OLS at the optimal working point, the quality of
transmission (QoT) of the line can be softwarized and predicted in order to optimize
the transmission. Moreover, the GSNR can be used as QoT metric over each LP.
The GSNR takes into account the accumulation of two main noise components: the
amplified spontaneous emission (ASE) and the nonlinear interference (NLI) noises.
The ASE noise is generated by the optical amplifiers used in-line as repeaters
and at the receiver side as pre-amplifiers, while the NLI noise is introduced by
the propagation through the fiber spans along the OLS and is always has been
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calculated at full spectral load in order to avoid load-dependent network behaviors.
This enables a deeper insight on launch power dependency of the GSNR, in

which the power channel is optimized for the maximum GSNR along the OLS.
To study the GSNR distributions, we analyse separately the ASE and NLI noises

introduced during the signal propagation and that affect the LP.
After a comprehensive description of the statistical features of the GSNR

distribution over a periodic OLS, we extend the results over an entire network.
In this wider scenario, we investigate the total GSNR inaccuracy over generic
lightpaths due to physical parameters uncertainty.

We create a dataset of GSNR variations using an abstraction of the OLSs
that simulates the signal propagation over a real optical network topology. The
generated dataset is formed by connections randomly chosen and deployed following
the algorithm of the shorted path from the source to the destination ROADMs.

On top of the collected GSNR for each lightpath propagated, we prove that
this quantity always have a Gaussian distribution. Therefore, the mean µ and
the standard deviation σ are essential metrics for all the QoT analysis that fully
characterize the GSNR statistics.

As a matter of fact, despite an accurate GSNR prediction can be produced
by various quality of transmission estimators (QoT-Es), the latter requires highly
precise knowledge of the physical parameter. As this condition is not guaranteed in
real case scenarios, the study of the GSNR fluctuations is a valuable tool in fixing
the proper system margins.

In general, if we work with a huge topology with a big number of available
connections, the creation of a dataset of the GSNR on all the full end-to-end
lines is very expensive in terms of computational complexity. Thus, we apply
statistical analysis to prove the relationship between the GSNR on a full path with
an analytical accumulation of the distribution of each node-to-node sub-path. By
means of this methodology, for a set of LPs we compare the estimated µGSNR and
σGSNR with the overall values using the Z-test method. We prove that the simulated
GSNR distribution on the entire LP done by Monte Carlo method is completely
consistent with the predicted GSNR distribution accumulated line-by-line.

The essential motivation of our study is to manage the uncertainty introduced
in the GSNR computation for each LP in order to be able to enable a reliable path
computation and, then, a minimal margin LP deployment.

In order to obtain a reliable LP GSNR, the nominal working points must be
properly accurate. Therefore, to deploy more traffic with an optimum exploitation
of the installed equipment, a limited system margin is required. Nevertheless, an
adequate margin is required to ensure the reliability of the predictions to guarantee
the proper system behavior in term of functionalities.

Given the GSNR Gaussian distribution, the applied margin has been chosen fol-
lowing the practical engineering rule of "3σGSNR" for which we expect a conservative
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GSNR estimation almost on the 99% of the connections.
Beside the statistical approach, this investigated framework represents an ideal

scenario for the application of ML on top of the statistics of GSNR fluctuations.
This may be achieved by collecting a dataset of the OLS responses to various

spectral loads in order to train a ML algorithm, allowing a QoT-E to be calculated
for both untested spectral load configurations and LPs which have not yet been
explored. In particular, we apply a transfer learning by using the deep neural
network (DNN) algorithm feeding it with a training dataset (based on the German
topology) aiming to correct the QoT-E in an unknown network topology (the
US network topology) that we consider as a testing dataset. Then we collect the
predicted GSNR by the ML algorithm.

In conclusion, we compare the QoT prediction results of the statistical approach
and the transfer learning on US network. In order to compare the predicted GSNRs
of both the ML and the statistical approach by means of accuracy and reliability.
The accuracy has been quantified in terms of the root mean squared error (RMSE)
by calculating the error distance between the actual and the predicted GSNR. On
the other hand, the reliability has been evaluated by calculating the percentage of
conservative GSNR predictions over the total number of investigated connections,
namely, the percentage of predicted GSNRs lower than the actual values.

The statistical approach is more accurate and gives a lower RMSE with respect
to the ML method. Also, the reliability of the statistical method is higher with a
high amount of reliable connection cases, instead the ML predicted results produce
higher probability of going out of service.

Indeed, the performance of the applied ML algorithm can be increased with
a more fine tuning of the hyper parameters. This improvement has not been
considered in this work and would require a further analysis of the investigated
scenario, especially to avoid any overfitting.

KEYWORDS: optical networks, Monte Carlo, quality-of-transmission, deep
neural networks, machine learning
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Chapter 1

Introduction

In general, data transmission was develop based on two fundamental types radio
and wire signals. This data transmission model has changed by the invention of
the fiber optics from the 1980 up to now.

In the world of open optical network domain, the communication system is
based on sending signals as lightpath in order to transfer information from a give
source to destination address. This communication can scale according to the
special need, starting from small connection between computers in offices going
to cover the world. The demand on the internet traffic is hugely increasing every
year in a dynamic way, and it requires a flexible response in term of quality of
transmission (QoT) and of service (QoS) and network efficiency performance.

Nowadays, the optical transmission is developed in a new paradigm introducing
new protocols as the WDM that ensure the transferring in an efficient way along
the optical network. The researchers proved that a network will work without
human interaction. That was possible by the introduction of SDN facilities that
enhance the flexibility in the network wavelength allocation and provide a huge
bandwidth satisfying the traffic network demands and enhance the QoS.

In fact, a very important role in optical transmissions goes to the amplifiers
included along optical line system (OLS) with the fiber spans. Thanks to their
ability of restoring the losses, they restore the optical input power even after
propagating a lightpath over a very long routing path.
Starting from a general overview of the optical domain, we describe the physical
layer abstraction for our network topology introducing the optical fiber links.

Our work presents a way of describing methodologies and algorithms based on
optimization tools for the network parameters. We discuss real network topologies
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Introduction

under examination with the relative analysis. Accordingly, results are obtained
during the research activity showing that the prediction of the network perfor-
mance by applying a margin of conservation satisfies the needs of the real network
simulations with impressive performances.

The extraordinary growth in the network traffic in the optical communication
domains implies the introduction of Machine learning techniques (ML). The ML
is able usually to learn from a topology, by a specific method, then predict the
QoT-E estimation and the performance of an unestablished propagated lightpath.

ML is a state-of-the-art technique that is used to analyze the traffic along
the network and chooses the useful data from it and makes decisions. Also, by
estimating of (QoT) is essential for lowering supplied margins and for optimizing
the optical network design.

1.1 Contributions and organization of the thesis
In this thesis we consider the problem of variation of the GSNR distribution due
to uncertainties over many parameters assuming Gaussian fluctuations around
reference values. The thesis is organized in the following chapters:

� Chapter 2: Background on fiber optics presents an overview of open and
disaggregated optical networks, presenting the WDM modulation, the concept
of Software Defined Networks and the Digital Signal Processing algorithm. In
this section, we also present the existing state of the art works in the open
optical domain.

� Chapter 3: Physical layer abstraction describes the data plane managed by
the OLS controller. The main focus is about the physical linear impairments
as: Chromatic Dispersion β2, Amplifier Spontaneous Emission Noise and the
power loss. While, the non-linear impairments that have the higher effect on
the channel degradation done by the nonlinear crosstalk among channels and
it is induced by the Kerr effect. The NLI is an additive Gaussian random
process that adds up to the ASE noise contributing to the overall GSNR
degradation as a unique parameter of QoT.

� Chapter 4: The activities describe our meshed weighted topology. It shows
an example of a real scenario of Telekom in German, in which the measure-
ments are done by having an overview of the logical connection between the
cities and their positions. Then creating 2 dataset: dataset1 that contain all
the information related to full path connections, instead dataset0 contains the
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node-to-node connections description.

The activities is split between sections in which, in section 1 we describe our
system operating system, that is partially aggregated under the orchestration
of an SDN paradigm.

In section 2 , we present the Montecarlo model applied to study the QoT for
our network topology.

Further, section 3 describes our network architecture as physical layer abstrac-
tion, and the positioning of our network elements along the optical line systems.

Section 4 represents the experimental study to calculate the GSNR for each
dedicated propagated lightpath in the routing space.

Instead, in section 5 we present the analytical method that compute the
predicted GSNR by regression along the sub-paths of a full OLS.

Then, in section 6 we prove graphically and statistically that our generated
GSNR distribution ,done by Montecarlo runs for every connection, is Gaussian.
The statistical normality test are : "Shapiro-Wilk Test" and "D’Agostino’s K2

Test".

Moreover, section 7 applies the "Z-test" in order to check the similarity in the
normal distribution done analytically and experimentally for the generated
GSNRs.

Also, section 8 describes the applied conservative margin to put an optimal
point for the analytical generated GSNR. The margin applied by the "3-sigma
limits". Then after applying the margin we count the percentage of going out
of service in our system.

Finally, section 9 studies the difference between the optimal and the applied
GSNR for every lightpath propagated by computing the corresponding RMSE
for all the generated connections.
section 10 Transfer learning application from a known network topology
to an unknown topology to obtain a QoT-E without uncertainties. Then
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application of statistical analysis for the prediction of GSNR with some
margin of conservation to adjust the ML results.

� Chapter 5: Results contains a discussion about the experimental and ana-
lytical studies for our optical network topologies and the evaluation metrics.
It also analyzes the results in tables of performances and graphs. The final
section compares the proposed methods among themselves and with a way
of optimizing the QoT to create a margin of conservation for the network
performance with an application of ML.

� Chapter 6: Conclusions concludes the work with a comment about the
results obtained and some possible future refinement work to be implemented
over our activities of predicting and optimization.
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Chapter 2

Background on fiber optical
networks

2.1 History of communication for open and dis-
aggregated optical networks:

Optical fibers represent a fundamental technological medium for modern commu-
nications, thanks to the development stage at which optical fiber links currently
are. Optical fibers have been already deployed over the continents and across the
oceans and they guarantee fast access between very far receivers. The optical-fiber
applications are numerous; they are diffused in offices and homes, so they can really
help to relate people and servers everywhere on Earth.
These applications involve the transmission of data, video or voice over distances of
less than a meter to hundreds of kilometers, using just few standard fiber designs
and several cable designs.

The request of data transferring and the capacity on the traffic demand along
the optical networks in an efficient manner nowadays grown exponentially and
opens new challenges. We require an answer to this capacity increasing demand,
we have to rely more on fiber optics than on copper cables that are still extensively
used for data transmission.
Multinational firms need secure, reliable systems to transfer data and financial
information between buildings to the desktop terminals and to transfer data around
the world.

The very high bandwidth provided by optical fibers makes it a subject of perfect
use for transmitting broadband signals, such as high-definition television (HDTV)
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Background on fiber optical networks

Figure 2.1: Optical Fibers distribution over the globe

telecasts [1].

Optical fibers are used by telecommunications companies to transmit telephone
signals, Internet communication and cable television signals.
The main advantages of optical networks are that they have high speed capability,
they can send up to 50 Terabits per second using a single fiber. Moreover, they
require low power and they have low signal attenuation and low signal distortion.

Figure 2.2: Optical Fibers design

An optical fiber is a very thin cylinder made usually in glass since it has very low
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Background on fiber optical networks

attenuation values at optical frequencies, consisting of a central “core” surrounded
by a “cladding” in which the core has a refractive index slightly higher than the
cladding as seen in figure 2.3 [2].

Figure 2.3: Comparison between a optical fiber and a copper cable

An optical fiber is single-mode if its Normalized Frequency Parameter ν is below
a threshold value ν ≤ 2.405.
Single-mode fibers are used for transmission distances longer than 1 km that’s why
in our work we focus on single mode fibers for which the multi-mode fibers are
used for LAN networks [2].

This optical communication system uses the light signals in order to transfer
data between nodes which is done over a network called "Switching nodes". These
nodes may be connected to nodes or to stations.

The switching nodes concern on routing the data from node to another, up to
when it reaches the destination.
The technique used in this communication system is the packet switching because
of the line efficiency, data rate conversion and the flexibility in which even heavy
packets are accepted avoiding blocking events.
After 2010, optical networks changed to a new paradigm in which they become
Elastic Optical Networks EON [3].
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2.2 wavelength division multiplexing modulation
technique

The wavelength division multiplexing (WDM) is a main modulation system used in
order to maximize the capacity of the transmission in an optical fiber transmission
system. In such system, a single optical fiber may be used to carry multiple optical
signals in what is called a wavelength division multiplex system which is which is a
very well-known approach.

As nowadays, the future of the networks channels is reaching a wide-area of a
backbone, the employment of the dense wavelength division multiplexing (DWDM)
and wavelength routing in optical networks is becoming an essential need to be
ready as a candidate for that future [4].

This employment of DWDM introduces the concept of reconfigurable wave-
length add/drop in nodes that are referred to as optical add/drop multiplexers or
(ROADM).
With this feature of wavelength add/drop function, particular wavelengths could
now be reconfigured, added and dropped in pre-planned network configurations.
A degree represents a direction in which the node is able to connect to another

Figure 2.4: Basic DWDM functions: a) multiplexing/demultiplexing; b) add/drop

node. Figure 2.4 shows a basic architecture of a ROADM having four degrees.2.4
In order to carry in a single medium multiple data signals, the multiplexing is

applied on these data signals by the WDM modulation technique.
This technique is done by dividing the available bandwidth of transmission on
a fiber optic into many different smaller channels treated as capacity bandwidth
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non-overlapping. For that reason, each of these channels is assigned to a different
carrier wavelength λ as shown in figure 2.5.

Figure 2.5: Wavelength division multiplexing scheme

In fact, these lightpaths are transparently routed in optical domain at a given
wavelength over the network as paths, and it is shown in figure 2.6 different
wavelengths are multiplexed within a fiber sharing the same medium single fiber,
then demultiplexed as the original deployed lightpath. In general, these routes
are defined by the switching matrices of switching nodes for each lightpath apart
over the passing by the inner hops as optical switching as shown in figure below 2.6 .

Figure 2.6: Lightpath propagation over a network topology
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All these dedicated lightpaths are on demand resources assigned as channels
or circuits from source to destination for every involved transceiver. As soon as
this lightpath reaches the desired destination, and the communication finishes, the
network turns down this assigned lightpath [2, 5].

Moreover, when a lightpath is established between any two nodes in a transpar-
ent optical network, the reserved traffic between these nodes can be routed without
buffering and it does not require any intermediate optical/electrical-optical (OEO)
conversion [4].

2.3 Software defined network:
This transparent optical networks evolution moved toward the implementation of
the openness paradigm; an architecture to control not just a networking device but
an entire network, which is called software defined network (SDN).

The SDN architecture constructed with three layers:

1) Infrastructure layer (Data plane layer)

2) SDN control layer (control plane layer)

3) Management plane

In principle, SDN separates and decouple the control plane and data plane
entities and it manages the routing and network configuration.

The controller becomes a brain orchestrator that controls and program the data
plane in a centralized approach which implies that the control plane must have a
global view of the optical network information. It manages and assigns rules for the
data plane and is responsible for managing resource connections in the network.
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Moreover, the data plane (also called transport plane) contains a set of optical
or other types of switches that perform switching data in the network by processing
and delivering the packets in a local forwarding state. The control plane has to
decide the routing algorithm and the destination of these packets by centralized
computations using the OpenFlow protocol.
These switches are connected by physical links in the optical network topology.
This plane will receive orders from the control plane, using the rules implemented
in forwarding tables.

The management of the control plane is done by the Management plane. Also,
it is responsible for configuring the routing area, the control plane resources and
transporting data in the control plane.

The main reason of the SDN is because networks are hard to manage, so it creates
a more flexible and manageable infrastructure by virtualizing the computation and
the storage.
Moreover, the advantages involves also the easier operation over the network with
the increase of the scalability and the reliability in which the design and the
planning is way simpler.

2.4 Optical Line System Controller:

Figure 2.7: SDN separation of control and data planes

Within the SDN architecture, an OLS controller (OLC) sets the working model
of each lightpath assigned to an OLS as the gain of each booster preamp amplifier
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of the line, the degree unit of the source and destination ROADMs along with the
in line amplifiers as shown in figure 2.7 the decoupling in SDN between control and
data plane.

Moreover, it sets consequently the power per channel at the input of each fiber
span and to optimize transmission (maximum Generalized signal to noise ration
(GSNR)).
In fact, The Quality of transmission (QoT) of the OLS line can be then predicted
and softwarized.

2.5 Fully disaggregated optical networks for Open
and Disaggregated Transport Networks:

The application of the openness paradigm SDN needs the optical network to be
partly or fully disaggregated. A fully disaggregated network means that each
network element is accessible by the SDN controller with common protocols, data
structures and control APIs [6].

In such a fully disaggregated model, the transport system is also disaggregated,
and the optical network elements ROADMs can be provided by different vendors
with open and standard APIs directly to the optical SDN controller. These APIs
can be based on the Open ROADM MultiSource Agreement (MSA).

The disaggregation goal is to provide a degree of flexibility such as component
migration. Open and Disaggregated Transport Networks shorten by (ODTN) are
implemented by DWDM systems, including transponders, Open Line Systems,
amplifiers, multiplexers, all-optical switches and ROADMs.
The combination between the disaggregation and software defined networks provide
a key point to the simplification and the automation of network operations.
SDN facilities underline and enrich the flexibility in wavelength allocation and
increase the backbone bandwidth to satisfy the quality of the service (QoS) for
connections and the QoT requirements for that transmission [7].

12



Background on fiber optical networks

2.6 Digital Signal Processing DSP:

Figure 2.8: Transparency in OLS propagation

The digital signal processing (DSP) is implemented in order to compensate to
the loss of power from the transmitter to the receiver ROADM by equalization of
the power.

The DSP based receiver compensates and recover the linear impairments such
as the chromatic dispersion apart from the electrical noises and the ASE noise.
Transceivers based on coherent technology compensate for all linear impairments
in fiber propagation and so as consequence the bit error rate (BER) only depends
on the amount of noise introduced by the fiber propagation.

When the network is completely transparent, the routing of the wavelength in
which any-to-any optical transmission is possible is done without any optical-to-
electrical conversion. Moreover, the novel paradigm becomes optical transparent
from the transmitter to the receiver.

The transparency in an OLS propagation introduces the fact that the optical
spectrum at the output of an OLS is equal to the input spectrum plus some amount
of noises as shown in figure 2.8.

The introduction of the latency in OLSs is done in optical transport and can be
abstracted by its noise impairments [2] .
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Chapter 3

Network physical layer
abstraction

The physical layer (PHY) of our setup is the optical transport network (OTN) and
it is implemented as optical transmission. The control and abstraction of the PHY
layer is used to optimize the network management.
The physical layer is dependent on the network type, reach access and the type of
the network as shown in the table below [4].

Network Type Reach access Type of element

opaque metro fiber spans

translucent core haul amplifiers

transparent long haul ROADM switches

Table 3.1: Network fundamental elements

Hence, there exist always techniques that are able to provide information of
the PHY layer to the control plane in an SDN network. This control plane will
run protocols that exploits this information efficiently in order to compute feasible
routes and wavelength according to routing algorithm as mentioned before in
section 3.2.
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3.1 OLS controller:
The introduction of SDN disaggregated control for the physical layer PHY in a
weighted graph have been included the need of an abstraction of the network
infrastructure according to the QoT degradation that translated the corresponding
weighted graph.

The OLS controller OLC is an essential part of the network control plane, and
sets the working point of each amplifier, and consequently the input power of each
fiber span along the OLS.

The WDM links over an OLS may introduce impairments into the signal path,
consequently the determination of the maximum transparency length in terms of
maximum distance or number of hops that an optical signal can travel is completely
detected by a receiver without requiring any conversion OEO. This transparency
reduces the possibility of the interaction at intermediate switching nodes along the
path between the electrical layer with the optical layer.

Hence, any distance traversed by a lightpath on a specific channel over an optical
path OLS depends on the following parameters:

a) the input optical signal power assigned as power per channel.

b) the length of each fiber span along the OLS.

c) the type dedicated for each fiber that can be: SSMF, LEAF or TrueWave.

d) the number of wavelengths on a single fiber for a WDM module.

e) the bit-rate (Rb) per each assigned wavelength for a lightpath.

f) the applied amplification technique and the number of amplifiers added for
the compensation.

g) the type and number of switching elements (nodes as ROADM) through which
the signals pass along the OLS before reaching the egress node or before
regeneration.

h) The design of links involving the chromatic dispersion compensation and the
loss coefficient [4].

The introduction of optical transparency in the physical layer impairment (PLI)
leads to obtain a flexible and dynamic optical layer having the possibility to include
intelligence such as fault management and optical performance monitoring. Hence,
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some PLIs are only for transparent networks such as crosstalk impairment.
It surely has impacts on the network design by adapting the size of the trans-
parent domains to WDM system so there is no impact of PLIs in the design process.

There exist two categories of physical impairments:

a) physical Linear impairments (PLI).

b) physical Non-linear impairments (PNLI).

The linear impairments are static and they don’t depend on the intensity in
fiber optics [8]. While, a non-linear impairments means intensity-dependent and
it’s dynamic in nature.
The main non-linear impairments that happens along an OLS and we will focus on
is the Non Linear Interference (NLI) which is mainly produced by the Self-Phase
Modulation (SPM) and the Cross-Phase Modulation (XPM). Instead, the linear
impairments that we consider in our work are the power losses, the Amplifier
Spontaneous Emission Noise (ASE) and the chromatic dispersion β2 [8].

3.1.1 Linear impairments:
In nature, the noise is a very important and difficult topic to describe and quantify.
Noises can be described as a random deviation of a physical parameter from an
expected value.
In communication systems, where electrical radio, or optical signals are transmitted,
the noise is considered as an impairment consequenced as a degradation and an
abasement of the signal information.

In an ideal case, where communication channels are noiseless, the achievement
of noiseless amplifiers and detectors becomes possible.
Hence, we will be able to communicate over wild and very long distances with very
small amounts of power and with a quite null latency. In such case, we are sure
there is no limit to the amplification that can be done on a signal.

As already mentioned before the noise is described as physical impairments that
is represented and defined by the linear and non-linear impairment, having in mind
that a transparent lightpath IS NOT practically impaired by linear propagation
effects that are completely compensated for by the DSP[2].

Chromatic Dispersion:

The chromatic dispersion is one of the main kerr-effects that causes degradation
on the spectral components of an optical signal during the propagation over an OLS.
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This degradation is a very critical linear impairment dispersion for systems
with a bit rate higher than Rb = 2.5Gbps and so it’s obvious that this dispersion
depends on the fiber parameters as the material properties, bit rate, the type of
the fiber and the modulation format used. These contributions approximately add
up to produce the whole dispersion [4].

The chromatic dispersion β2 adds a distortion mainly caused by the mismatch
between the spectral components. The dispersion β2 can be expressed as distortion
D which is related to β2 by a derivation of the wavelength and multiplying by
dispersion:

β2 [s
2

m
× 10−27] (3.1)

D = dW

dλ
β2 [ ps

nmkm
] (3.2)

The whole dispersion end to end on an OLS of a lightpath is the summation
of the dispersion on each fiber link assigned to the lightpath in which this last
dispersion on a fiber link is the aggregation of dispersions caused by fiber spans
that frame the correspondent link.
In case of N fibers are present and dispersion is constant over each fiber what we
get as total dispersion is the summation of the dispersion Di over all the fibers
over the path correspondent length Li, as presented in the formula below:

D =
N∑

k=1
DiLi (3.3)

Amplifier Spontaneous Emission Noise (ASE):

The optically amplified systems suffer the addition of the primary source of noises
ASE which is the main contributor to the LP QoT degradation. This ASE is
inserted by the optical amplifiers for which these amplifiers are used in line as
repeaters and at the receiver side as preamplifiers, depending on the working points
of the erbium-doped fiber amplifiers (EDFA)s within the OLSs[2, 3].

The noise figure (NF) is a parameter that mainly quantifies the noise. It is a
factor that shows how much is amplified the noise power spectral density at the
output end with respect to the input noise power spectral density multiplied by
the amplification factor and is often specified in decibels (dB)[4].

The amplifiers emit the ASE noise in both the forward and backward directions,
while only the forward ASE noise is a critical parameter taken into consideration
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in affecting the link performance since this noise co-propagate with the signal for
which it degrades the system performance.

The generated ASE in optical amplifiers, limits the achievable gain of the ampli-
fier and increases its noise level.
The ASE noise mixes with the optical signal and produces beat noise compo-
nents at the square-law receiver[4]. AS consequence, any ASE noise introduced
by each amplifier is statistically independent of the others, which means it ac-
cumulates incoherently over the line, permitting a spatially disaggregated approach.

Figure 3.1: Amplifier abstraction

psignal,t = (Flatloss ∗ Lossfiber) ∗Gainamplifiers ∗ psignal,t−1 (3.4)
pASE = h ∗ fref ∗Bn ∗NF ∗ (Gainamplifier − 1)[W ] (3.5)

Power Loss:

The power loss can be specified as the optical loss that is collected from source
to destination between switching nodes of the optical line systems along the fiber
link in the optical networks and is normally made up of intrinsic fiber losses and
extrinsic bending losses.

Intrinsic fiber losses are due to main reasons as: attenuation, absorption, reflec-
tions, refractions, Rayleigh scattering, optical component insertion losses.
Considering Pch as the power launched at the input of a fiber of length L; then the
output power Pout is given by the relation between pin and α where α is the fiber
attenuation loss coefficient.

The insertion loss is the loss introduced by the insertion of optical components,
such as couplers, filters, multiplexers/ demultiplexers, and switches, into the optical
communications system. This inserted noise is usually independent of wavelength.
The extrinsic losses are due to micro and macro bending losses. In this case,
additional losses occur due to the combined effects of dispersion resulting from
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inter-symbol interference (ISI)[4].

The power loss will be propagated along the optical line system by adding the
loss generated by the connector inputs, followed by the loss introduced at the
beginning of the fiber NLI and the ASE noise introduced by the amplifiers as a
penalty of amplification.

In a transparency system, we assume that the loss introduced in the optical line
system during the propagation is completely compensated by the gain introduced
by the amplifiers along the link.

At the end of the propagation we should obtain at the output at the destination
side a power more or less equal to the input power at the transmitter side regardless
the perturbation and the noises happening during the propagation.

3.1.2 Non Linear impairments:
Non Linear Interference NLI:

Nowadays, the fiber attenuation and fiber dispersion are the worries that are
plagued in the optical fiber communication over a propagation of a wavelength
from source node to a destination node along an OLS.
These points of issues however are handled by different dispersion compensation
techniques such the DSP and the addition of amplifiers over the OLSs.

However, the fiber non-linearities introduce diverse domains of drawbacks that
must be solved. The consequences of non-linear impairments are becoming critical
as the transmission lengths, transmission rates, number of wavelengths and optical
power levels increase in addition to reduction in channel spacing [9].

In optical fiber the non-linear effects occur for two main reasons:

1) due to change in the refractive index of the medium with optical intensity
(power).

2) due to inelastic-scattering phenomenon.

A general classification of non-linear effects in fiber medium is shown in figure
below 3.2.
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Figure 3.2: Non linear impairments

The dependence of the refractive index on the power is responsible for Kerr-
effects which produces three different kinds of effects depending on the type of
input signal as it’s shown in figures below where Cut represents the central channel
of the lightpath in which we have the worst(minimum) GSNR:

1) self-phase modulation (SPM):

Figure 3.3: self-phase modulation

PSP M,i = ηSP MP
3
i (3.6)
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2) cross-phase modulation (XPM):

Figure 3.4: cross-phase modulation

PXP M,i =
Nch∑
i=1
i /=j

ηXP M,ijPiP
2
j (3.7)

3) four-wave mixing (FWM):

Figure 3.5: four-wave mixing

PF W M,i =
∑

j

∑
k

∑
l

ηjkliPjPkPl (3.8)

As consequence, the final summation of the non linear effects NLI including each
of kerr-effects: SPM,XPM and FWM, is induced by the fiber propagation is in
formula below: [ [2]

PNLI,i = ηSP MP
3
i +

Nch∑
i=1
i /=j

ηXP M,ijPiP
2
j +

∑
j

∑
k

∑
l

ηjkliPjPkPl (3.9)
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All nonlinear effects, except SPM and XPM, provide gains to some channel at
the expense of consuming power from other channels.

The importance of non-linear effects is growing due to:

1) The increase of power levels in optical domains in order to enhance the optical
reach over long distances around the world.

2) The creation of more flexible networks recently by the developments in optical
components such as EDFA and DWDM systems.

3) The increase in the channel bit-rate to enlarge the traffic carrying capacity of
wavelengths.

4) Increase the number of wavelengths by decreasing the channel spacing to
improve the overall network capacity.

3.1.3 Gaussian-Noise model assumption:
The NLI depends on the power per channel Pch, on the channels active, on the
channel spacing, and on the symbol rate Rs. Hence, the amount of NLI is always
calculated at full spectral load in order to avoid load-dependent network behaviors.

In the Gaussian-Noise (GN) model, we have a perturbative approach which
models the power spectral density of the NLI assumed to be an additive Gaussian
noise disturbance with Gaussian statistics assumption for all the active channels.
In the worst-case assumption, the chromatic dispersion causes over a short distance
in a few kms, all modulated channels are assumed to be Gaussian modulated.

In general, over a perturbative approach the optical transparency over OLSs
is also introduced. We assume to have uniform power per channel in sense that
all channels are assumed to carry the same amount of power Pch and it has no
frequency-dependent effect.

In such model, the NLI predicted by the GN model refers to the center channel
"Cut", channel under test, supposing all the channels are active. This channel is
called the cut channel and it is used for all the activities in the implementation
and calculation of the parameters in the OLS to overcome the worst case scenario
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of the minor GSNR.
The NLI is considered a Gaussian noise component generated by the nonlinear
interaction of WDM channels.
In the analytical approximation, the NLI formula has the power spectral dependent
on the number of WDM channels Nch, power per channel Pch, symbol rate Rs,
WDM channel spacing ∆f , and also the fiber parameters as the loss and dispersion.

Figure 3.6: Fiber and amplifier abstraction

Loss = 10
−
αdB

10 Ls

(3.10)

Leff ≤
1
2 α (3.11)
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27π ∗ log
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(
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df

)
ch

 ∗ ( α

||β2||
) ∗ γ2 ∗ (

L2
eff

R3
s

) (3.12)

pNLI = η ∗ p3
signal ∗ Loss ∗ Flatloss (3.13)

The L effective Leff is the length of the fiber in which we have all the effects of
the non linear interference and it’s related to α loss coefficient.

By looking at the analytical approximation of the NLI we clearly see that the
NLI increases in cases where we have [2]:

1) The reduction of chromatic dispersion β2 as the chromatic dispersion is in-
versely proportional to η.
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2) Reduction of fiber loss.

3) Reduction of channel spacing.

4) Increase of nonlinear coefficient.

5) Increase of number of channel.

3.1.4 Generalized signal to noise ratio:
With the OLS at the optimal working point, the QoT of the line can be softwarized
and predicted in order to optimize the transmission.
Moreover, the parameter that characterize the QoT over a lightpath is considered
the generalized signal to noise ration (GSNR).
This GSNR is the same of signal to noise ratio SNR but it is more generalized, and
it takes into account the accumulation of two noise components: noise ASE and
NLI presented in the figure below3.6.

Figure 3.7: Optical Line System abstraction with ASE and NLI

GSNR = Pch

PASE + PNLI

= Pch

PASE + ηp3
ch

(3.14)
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Figure 3.8: GSNR over power sweep with ASE and NLI

The GSNR can also be derived from the SNR and the OSNR as where Pch is
the power per channel:

GSNR = (OSNR−1 + SNR−1) (3.15)

OSNR = Pch

PASE

(3.16)

SNR = Pch

PNLI

(3.17)

The OLS controller sets the working model of each amplifier and it aims at
maximizing performance by maximizing the GSNR.
In addition, The OLS controller aims at setting the Pch at the input of every fiber
span to maximize the GSNR over the line and as a consequence increase the Rb.
The GSNR is maximum at the optimal power that presents an optimum trade-off
between the ASE and NLI noises as shown in figure 3.8.
We can see that the ASE and NLI lines are tangent to GSNR and then we obtain
an optimum point because each line goes in a different direction and they cross on
an optimal point. Over a general OLS, the GSNR will take into consideration all
the losses, disturbance, noises and the gain introduces by the network elements.
Going from an input node A to an output node B with N fiber spans, the GSNR
over such OLS can be written as shown by the formula below for an end-to-end
OLS[2]:
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Figure 3.9: Optical Line System abstraction with ASE and NLI

3.2 The routing algorithm:
The routing algorithm is an operation to select a path from the available paths
within the network to provide the best possible and available route between source
and destination. The elements that should be taken into account in order to acquire
this approach are:
The SDN architecture constructed with three layers:

1) The Cost must be chosen for a path in a way to not add additional cost in.

2) The distance traversed by a lightpath must be short, so it should cross few links.

The routing algorithms that are defined in order to achieve the desired mentioned
reasons are:

1) Static routing: the routing table, the support, and the update are manually
done.
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2) Dynamic routing: routing table, maintenance and updating runs by routing
protocol.

3) Distance vector: according to the hop counts.

4) Link state: according to the state of the link.

3.2.1 Weighted graph
The key aspects in the design of optical transport networks are diverse, the most
important are to be able yo support mesh topologies, having a dynamic allocation,
an automated network control and light path setup.

A mesh networking means that each node in the network will behave like a
hope that gives facilities for a lightpath propagation rather that being a blocking
point in the road. For that reason the ROADM is introduced in a meshed optical
network topology.

In such a meshed topology, the graph is considered weighted graph in which
each edge element of the graph has specific positive value called "weight". Usually,
the weight of a node refers to it’s cost, that can be length of a route, the line
capacity, the energy required to propagate along the routing space [10].
In order to specify the route of a lightpath having a source and a destination, the
computed route is done by summing the weight of all the crossed nodes from source
to the destination.
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3.2.2 Shortest path algorithm:

Figure 3.10: Example of shortest path algorithm

In order to find a path along the weighted graph mentioned before3.2.1, giving
a source to destination end-to-end line, we run routing algorithms that take the
decision on the chosen route.
The most considered routing algorithm in the networking domain is the shortest
path algorithm. The graph topology done for a network is for the available paths
from a node source to a node destination in which a node in an optical domain is
a reconfigurable optical add-drop multiplexer (ROADM). Each edge represents a
communication link as an optical line system (OLS).
This algorithm will choose among all the available paths which path has less number
of hops to traverse and then this path will be allocated.

In the figure 3.10 above, node A sends a packet toward node B, the available
paths are:

1) A-D-E-B

2) A-F-G-B

3) A-C-B

4) A-H-I-J-B

As we can see from a number of hops point of view, Path1 and Path2 traverse 2
hops, Path3 1 hop and Path4 crosses 3 hops.
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path2 has the minimum and shortest-distance than all the other paths, which
means path2 has the lower cost and will be obviously chosen as a winner of shortest
path.

Moreover, the bandwidth demand driven by the internet and video traffic has
grown very fast and as consequence the network operators pushed for the lowest
network cost as a key point more than the performance [11].

3.2.3 Lightpaths over optical line systems:

Figure 3.11: Optical line systems

The lightpath (LP) is a transparent route (or path) over the network at a given
λ defined by switching matrices of the switching nodes and is a dedicated optical
channel from source to destination.
LPs are dynamically allocated which allows the WDM to be implemented in a
virtual way with the application programming interface (API) to independently
manage the network subsystems.

An optical line system (OLS) is the combination of fiber and amplifier in which
they are managed as a single network unit and they are considered bidirectional
and symmetric.
At the input of an OLS there exists a set of WDM channels distributed on the
transmission bandwidth according to the WDM grid Df.

In general, it is a point-to-point optical transparent bidirectional link 3.11 con-
necting two switching nodes considered as ROADM nodes, and made of fiber
spans pairs. These fibers are transmission fiber lines in which they are periodically
amplified by in-line amplifiers; two fibers one for each direction furthermore in-line
amplifiers each is made of two amplifiers).

In an OLS, the Booster/preamp amplifiers are amplifiers at the output/input of
switching nodes.
These amplifiers are key enabling technology for all optical networks in which the
Erbium-Doped Fiber Amplifier (EDFA) is an optical amplifier used in the C-band.
The gain bandwidth in C-band defines the transmission bandwidth in most of the
networks. Typically, boosters and preamps are integrated with the switching node.
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3.3 Digital twin in optical communication sys-
tems

The digital twin (DT) has been used largely in multiple fields. From a point of view
of the technical challenges faced in optical communication, DT has the potential to
provide a low-cost and lightweight solutions in order to address the wide challenges,
and it has a fully broad application in the optical communication domain.
The introduction of DT to optical communication is used to apply multiple func-
tions. These applications include the fault management, hardware configuration,
and the transmission simulation.
The DT technology is applied in optical communication in order to ensure the safety
and the stability of the operation of optical communication systems, optimizing the
hardware and the network resource efficiency. It provides a dynamic monitoring
and capability of numerical analysis of the transmission system.
The designed framework of DT for optical communication is composed of applica-
tion layer, data layer,physical layer and model layer. The physical layer in optical
communication system, contains various optical equipment, network elements,
transmission modules and fiber links.
In general, inside an optical communication, right from the physical layer to the
network layer, we expect a significant amounts of generated data from a wide
range of sources. These data include a real-time update data according to the
network status, the operating state of the equipment, and the performance of the
transmission system.

However, using virtual models, the DT establishes a real-time connection be-
tween the digital and physical worlds through. It describes the physical state by
applying a technological module, simulating the operation process, forecasting the
tendency of changes, and optimizing the object performance.

In fact, the optical signal data contain the entire information from the transmitter
up to the receiver. These information involve characteristic of the channel, the signal
quality, and the performance of the transmission process. The optical transmission
systems contains in the physical space, optical transmitters and optical channels,
optical amplifiers, and receivers.
Instead, in the digital space, the simulation process of the transmission describes
the entire process of optical signal transmission starting from the transmitter, going
through fiber links. All is done after relay amplifications to the receiver [12].
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3.3.1 GnPy model

The Telecom Infra Project (TIP) is a is a global community of engineering-focused
companies, organizations and startups working on an initiative to develop and
accelerate the deployment of open, disaggregated, and standards-based technology
solutions [13].
Within TIP, the Open-Optical Packet-Transport Group (OOPT) is working on the
adoption on a large scale of white-box models in optical networks for high quality
connectivity [14].

Figure 3.12: Telecom Infra Project network

The deployment has been open up, in order to have the ability to predict the
performances of an optical line system based on an accurate information of the
optical transmission system. The OOPT environment exploits the Physical Simula-
tion Environment (PSE) in order to provide an Open-Source developed software
for planning, analysis and optimization. Its representation in Python is the GNPy
(Gaussian Noise model in Python) [15].

Gnpy is used for QoT estimation and it successful because it is aware of
the physical layer inter-networking. the GNPy exploits nodes input spectrum
information accumulation on the decision signal, in order to calculate all the
amount of the noise generated by the amplifier as the Amplifier Spontaneous
Emission Noise (ASE) and the non linear interference generated by the fiber NLI.
As already mentioned in this chapter, the total amount of NLI and ASE noises
are the main elements to determine the generalized signal to noise ratio GSNR
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starting by a specific power per channel

GSNR = Pch

(PASE + PNLI) (3.18)

The GSNR is the unique quality of transmission (QoT) figure for lightpaths, de-
pends only on the spectral load and on the deployed equipment. Thus, the GSNR
is used as a QoT meter in many heterogeneous environments for planning and
controlling purposes, provided that it can be easily evaluated from common APIs
running on network elements.
The input parameters for the GnPy model include a network topology as a json file
described as a directed graph between network elements (Transceiver, Amplifier,
Roadm and Fiber) in which each element is listed with its parameters [16].
In our work the json file related to fiber spans contains the fiber configuration, the
simulation configuration and the spectral configuration, as in figure ??.

For this computation, some vendors engineering make use of the transparency
in which the same channel power (or spectrum power density) is forced to be the
same in all spans regardless of their length/loss which is a sub-optimal strategy
because ASE and NLI noise contributions should be balanced in each span with the
launched power, but it brings simplicity in the design and the network configuration
[16, 17, 18].
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Analysis

4.1 Optical Network operating system

Nowadays, the big data-centers as Facebook, google, Amazon have been found a
strategy to achieve very high efficiency while having a reduction in the cost by
introducing the disaggregation of the software from the hardware.
This disaggregation is based on the use of Transport API (TAPI)s decoupled from
the operating system controller [19].

Our network architecture is based on a ’partially disaggregated’ optical multi-
domain, an OLS multi-layered WDM to control and management. Hence, the
amplified lines connecting ROADMs may be independent WDM OLSs [3].
It is composed of multi-vendor OLSs while the transceivers use the WDM tech-
nology by introducing the ROADMs along a spectrum path in which we have
continuous optical spectrum between the edge-nodes in the WDM layer.

The SDN controller system orchestrates the OLS transceivers and it relies on
an optical SDN controller.
The interface between OPTICAL SDN and the OLS domain is based on the TAPIs,
in which their contest topology is represented as nodes and links and can expose
the internal topology. The OLS controller has an overall view of the topology, and
exposes the real abstract topology for the scalability needed in an optical topology
[20].It computes the end-to-end lightpath dedicated path computation element
(L-PCE) between each source and destination point by exploiting the internal
TAPI. Then, after having the list of connections for a path from the source to the
destination, it implements the routing and spectral assignment algorithm for each
propagated lightpath.
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By requesting an optical signal, the OLS controller must provide the WDM con-
nection between the involved transponders. The fist step is done by the optical
network controller (ONC) that specifies the available routes and wavelengths in
the system to be able to propagate that transparent LP. This propagation is done
after running the routing and wavelength assignment (RWA) algorithm to select
the links and allocates available cores.

After choosing a connection between a source city ’s’, toward a destination city
’d’, in the considered transparent infrastructure, the L-PCE has a necessary need of
the QoT-E in order to negotiate the topological graph that describes the network
WDM layer and supported flexible grid in the C-band.
Each of the allocated WDM connections network domain, contains ROADMs based
on wavelength selective switches with EDFA, 80 km of SSMF transmission line and
an SDN controller (OLS controller) in which each transponder is equipped with a
C-band modulated wavelength.

4.2 Optical Network analysis

4.2.1 Montecarlo Method

The Montecarlo simulations are used by multiple variable domains, including engi-
neering, finance, supply chain, and science.
The basic idea is to assign multiple variety of values to an uncertain variable, in
order to achieve multiple outcomes. The second step is to compute the mean
averaged over the generated data to obtain a clear estimation of that variable.

In telecommunications and networking engineering, the Montecarlo analysis is
used to evaluate and estimate network performance (in our case GSNR) in different
variable scenarios (connection nodes in a network). Hence, the aim is always to
optimize the network performance under an optimal point defined by each network
scenario. It can be considered as a predictable outcome, hard to see in advance
sometimes. Starting from the idea that when we increase the number of runs
for a simulation, we initiate the development of the skeleton and the type of the
distribution assigned to our results. The main two parameters while running a
Montecarlo are the equation for the evaluation and the random variables for the
input.

The main library of math calculation in python is called Numpy and is used
with Pandas library to construct the model and create the generation of multiple
results to study them in a relatively easy ’five-finger exercise’.
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4.2.2 Fundamental network architecture set-up under con-
sideration

The disaggregated re-configurable optical add-drop multiplexers (ROADMS) and
switches are at the helm of the responsibility to address the available channels
wavelengths, according to the switching matrix, from a given input OLS to a given
output OLS.
These ROADM switches, define the spectral load at the input of each line system
in the abstraction of the network. The assigned software must accumulate metrics
and then properly propagate signal information lightpaths in the routing space [3].

Our network topology is constructed by ROADMS on WDM C-BAND, con-
nected by independent OLSs that include : the degrees of the ROADM multiplexers
and demultiplexers, fibers of a single type "SSMF" and the same transmission
equipment with a dispersion D= 0.5 10−5. It contains input connectors right
after the fibers, and amplifiers "EDFA" (booster, inline and preamp) as shown in
figure 4.1. These OLSs transport lightpaths WDM C-BAND optical signals are
considered as fully loaded system from ROADM to ROADM independently. Hence,
every channel propagated along the OLS is uncorrelated with the other channels
propagated contemporary.
Additionally, we focus our study on the channel under test ( "cut" channel). Hence,
when we don’t have Raman effect, this channel becomes the representative case
that represent the most of the non-linearity as a worst GSNR.

The following figure 4.1 present the architecture of an OLS in our network
topology:

Figure 4.1: Conceptual schema of a ROADM-to-ROADM WDM optical line
system

In a network topology, the problem of having a uncertainty on the input
parameters that directly affect the QoT remains an essential key that we study in
our system.
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Instead of considering a constant input connector loss, constant ripples , and a
unique length of connections, we work on a real topology that collect in the routing
space multiple node to node connection each of different length, with random input
of connector loss and ripples.
The length of each connection between ROADMs is collected according to the real
distance in a real topology of Deutsche Telekom (DT) of German shown by the
following figure 4.2.

Figure 4.2: German topology DT from python
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Moreover, as shown in figure 4.2 we collect the lengths for OLS between each
couple of connected cities, then we introduce a fiber span for each sub-path of
tranche of length varying between 50 km and 100 km, knowing that the NLI effects
are always created at the first 30 km of the OLS.

Then, in our python code, for each lightpath propagated, after computing the
numberNfiber spans that are needed for the corresponding length of connection, we
assign Namplifiers for that OLS in order to compensate for all the power loss caused
by the fibers.

In general, the operator in real systems have uncertainties, and it doesn’t have
the real description of the connector input loss, ripples and fiber span losses at the
input of each OLS.

Figure 4.3: input connector loss pdf
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Figure 4.4: Heat-map of the normalized gain ripple profile PDF vs. frequency

We generate the input connector loss following a Gaussian distribution as shown
in figure 4.3 in which we start by picking randomly choice of loss to the first span,
then we pick another choice to assign it for the second and so on up to the end of
the OLS. Hence, all these parameters are statistically independents.
Then, we assign for each of these losses a random Gaussian distribution of the
ripples added by the amplifiers in which each vertical line in the ripples 4.4 is a
Gaussian distribution around the mean.
The propagation of lightpaths in our system is done in transparency, which means
we have the same fiber type along all the OLS end-to-end. Therefore, we assign
the same power at the input of all the fibers in line.

In real lines, after each amplifier there is a connector with the next fiber. The
output connector doesn’t affect the non-linearity, so we neglect it’s effect, because
NLI depends on the power per channel Pch. The NLI is created at the end of the
propagation of the fiber span. In order to obtain the real NLI at the end of the
fiber span, we have to multiply the NLI by the loss fiber due to fiber attenuation.
Then, ASE noise is also generated by each amplifier trying to compensate to the
NLI noise generated by the fiber span at the input in order to have the exact input
power at the output destination port.
The amplifier read the total power at the input and at the output. So after all the
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added gain, if the end power is not the desired one, it applies a shift.

Hence, the implementation of the propagation is done in order to obtain after
the EDFA the same input power before the input connector even if it was a random
input.
The amplifiers are provided to compensate for signal attenuation, When the infor-
mation signals are transmitted over long distances, or between links of optical fiber
cable.
Therefore, according to the losses, we set the gain to every amplifier and then all
the amplifiers are equipped by input power and output recovered compensated
power.

The power per channel must be sufficient to provide an adequate GSNR in the
presence of the ASE noise from the amplifiers, necessitating a high amplifier total
output power for systems with high fully-loaded capacity.
The launch power per channel Pch into each span should ideally be re-optimized
according to the changing WDM comb characteristics. This function is typically
attributed to a “physical-layer aware” Control Plane (CP). Basing on the future
state, the overall network should automatically optimize all values of Pch[21] after
a reconfiguration.
In order to set the optimal power for each input fiber, we start from the last
amplifier. The signals arrive to a node with a fixed power, in our case -1dB. Then,
the last amplifier should have a gain that bring the signal to the original propagated
power = -1dB.
Knowing the loss of the last fiber, we set the optimal power at the end port for the
last amplifier, then we proceed backward in order to recover the input power.

4.2.3 Experimental simulated method

A transparent optical network is considered as a meshed weighted topology where
ROADMs nodes and switches are connected by OLSs. Thanks to the capability of
switches to address any wavelength from any source to destination, wavelengths
propagates transparently, over the corresponding lightpath. These wavelengths are
impaired by the crossed OLSs and the in line switching nodes.

In order to have a real efficient description of a WDM optical transport from a
data structure, we study the topology of weighted graph, in which the graph edges
are the OLSs and the nodes are switches and ROADMs.
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Starting from the network of German DT 4.2 having 14 cities connected ac-
cording to a meshed weighted topology graph considering as a weight the GSNR
corresponding to each city-to-city line in which we assign for them a dataset.

The weight of nodes and edges are main description for the QoT in which the
overall merit of a lightpath is summarized by the "GSNR".

Using the algorithm of finding the path from a source to a destination city
based on the ’shortest-path’ and the minimum number of crossed nodes (hopes), we
propagate a high number of independent lightpaths by creating connections based
on the Montecarlo approach between a source Roadm and a destination ROADM.
Accordingly, it collects the number of fiber spans needed, the starting and the end
city name.
All the other possible paths from the source city to the destination are not consid-
ered.
In order to perform our study analysis, we create another dataset based on Monte-
carlo runs for all the propagated connections, containing the information needed
for the QoT-E ( optimal power, GSNR mean and standard deviation).

The QoT-E must be used in order to compute the GSNR of a transparent LPs to
assess network performance before, after and during deployment. This estimation is
done by enabling an implementation of the lightpath computation engine (L-PCE).

In this work we perform an experimental validation of the consistency between
GSNR calculated by prediction along an OLS from ROADM input to a ROADM
output methodology, and the GSNR calculated by an analytical method as an
optimal conservative GSNR.

Our assumption is done by considering the operation of LPs as additive white
Gaussian noise (AWGN) channels. After collecting the set of propagated connec-
tions, we continue our calculation by running the Montecarlo of 10,000 number of
runs for each single connection of variable input connector loss and EDFA gain
and ripple. Then, we measure the NLI and the ASE for a set of input powers, each
with distinct gain ripple and loss respectively that follows a Gaussian distribution.
Our approach takes into account as nonlinear effects NLI the SPM only without
including the XPM, FWM and the Raman effects.

Thanks to the relation between Pch, ASE and NLI, we compute the predicted
GSNR. This GSNR is obtained by the study done along each OLS for the corre-
sponding lightpath connection in a point-to-point optical amplified line, containing
N erbium-doped fiber amplifiers and N fibers. The GSNR is considered as a first
analysis to search for a common statistical characterization.
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The number N of fibers is chosen by our python code according to the total
length of the connection allocating a fiber followed by an amplifier each 80 km, for
example for a connection from Ulm to Munich:

Nfibers = distance(Ulm,Munich)km

80 (4.1)

We obtain at the end 10,000 values for each of GSNR, OSNR and SNRNL

according to the values generated by Montecarlo for each propagated lightpath.

4.2.4 Analytical method
In addition to the approach done experimentally, we implement an analytical model
on top of all the created connections for the same network topology in order to
predict the GSNR optimal, and for comparing the estimated end-of-line GSNR
degradation to real QoT measurements done by the system.

What we do is, for each city connection we take the entire path with all the
hops traversed by the transparent LP, then we split for each consecutive couple of
cities source "s" and destination "d". Each couple is treated aside taking data from
our dataset of node-to-node connections. This dataset contains information for
mean and standard deviation of GSNR on the corresponding optimal power, fol-
lowing the same procedure done on top of the 500 full line connections computations.

The prediction on the mean of the total GSNR end-to-end line connection is
collected as:

GSNRs,d = 1∑OLS
i,j

1
GSNRi,j

(4.2)

While the standard deviation is predicted as the sum of normally distributed
independent variables as these sub-couple-paths that are statistically uncorrelated.
Hence, these independent random variables are normally distributed, then their
sum is also normally distributed.
The total standard deviation along the OLS is computed as:

stds,d =
√∑

i,j

stdi,j
2 (4.3)

where i,j are labels that represents the ROADM OLS source and destination
crossed by the LP, while GSNRi,j is refers in turn to the respective GSNRs for the
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specified wavelength of the channel under test (CUT), λCUT . The spectral load
and the OLS model are provided to the QoT-E by the ONC. The original QoT
provided is the GSNRi,j that is expressed as:

GSNRi,j = 1
1

OSNRi,j

+ 1
SNRi,j

(4.4)

OSNRi,j = PCUT,ij

PASE,ij

(4.5)

SNRNL,ij = PCUT,ij

PNLI,ij

(4.6)

These QoTs parameters are the optical SNR that are collected from a ROADM
source city "s" to a ROADM destination city "d". They are accumulated thanks
to the knowledge of the ASE noise, PASE,ij, and the NLI interference, PNLI,ij ,
respectively.
However, PCUT,j is the power of the channel under test that we input at the
beginning of the destination ROADM of for a specific OLSij , and surely the power
considered is the power optimal.

4.3 Gaussian distribution normality Tests:
In statistics and data science, hypothesis testing and statistical inference relies
heavily on the normal distribution. Hence, what we look at in order to do our
study, firstly, to prove that our generated distribution are normal then using
the first and the second mode of a distribution: Mean µ and Standard devia-
tion σ. Then, in order to obtain a precise estimation of the total GSNR within
the OLS under consideration, it is enough to compute for GSNR µGSNR and σGSNR.

We base our assumptions on the The Central Limit theorem (CLT) which says
that if we sum an infinite number of a distribution, no matter what is the distribu-
tion of each variable, we should obtain a Gaussian distribution. This normality is
obtained in case the variables are statistically uncorrelated [22].

In this section, our main interest is falling on proving that our data samples
of GSNR of size 10,000, follows a normal distribution by using multiple graphical
statistical tests.
The graphical test are based on plotting the generated dataset to check if the
behavior is consistent with a bell-curve, the extended for a more robust graphical
check with the Q-Q method.
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Then, the analytical tests assume that the sample is drawn from a Gaussian
distribution following the so-called null hypothesis(H0). We prove this assumption
by putting a threshold level that we compare to an output called p-value returned
by the test to accept or reject the assumption H0.

1) H0 = The sample comes from a normal distribution.

2) H1 = The sample is not coming from normal distribution.

The normality of our generated data is a basic assumption that we seek to
obtain. It is defined by the density of probability [23]:

f = 1
σ
√

2π
e

(x− µ)2

2σ2 (4.7)

Where µ is the mean value, σ standard deviation of the corresponding dataset
x. We test the normality by two basic tests of normality: Test of "Shapiro-Wilk"
and "D’Agostino’s K2 Test". We use multiple prove for the normality because the
failure of one normality test means that your data is not normal [24].

4.3.1 Shapiro-Wilk Test
In practice, the Shapiro-Wilk test is believed to be a reliable test of normality. It
evaluates a data sample and quantifies how likely it is that the data was drawn
from a Gaussian distribution. Shapiro-Wilk test returns a critical value and the
p-value that should be compared to a threshold called α which is typically equal to
α= 0.05. Anyway, α is the probability of rejecting the null hypothesis H0 when it
is true.

1) p ≤ α: reject H0=> not normal.

2) p > α: fail to reject H0 => normal.

What we seek for is to obtain a p-value larger than α enough to accept the
assumption that our data samples are normally distributed [25].

In python, the shapiro() SciPy function calculates the Shapiro-Wilk on a given
dataset as shown by the code below:
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# Shapiro-Wilk Test

from scipy.stats import shapiro

# normality test
stat, p = shapiro(data)
# interpret
alpha = 0.05
#initialize the normal variable by False
Normal=False
#update when p> alpha
if p > alpha:

Normal=True

Having the null hypothesis H0 is the hypothesis that the dataset is normally
distributed. The Critical values in a statistical test are a pre-defined range signifi-
cance boundaries at which H0 fail to be rejected if the calculated statistic is less
than the critical value.

We can interpret the results by failing to reject the hypothesis H0 and that the
data is normal in case the calculated test statistic is less than the critical value at
a chosen significance level.

4.3.2 D’Agostino’s K2 Test
Agostino K2 test is our third normality check, and one of the most important.
The summary calculated by this test of the statistics from the data are called
Krtosis and skewness[26]. However, our casual interest is to determine if the data
distribution departs from the normal distribution.

1) Skew: it is a measure of asymmetry in the distribution. It quantifies how
much a distribution is pushed left or right.

2) Kurtosis: It is a statistical test for normality, it quantifies how much of the
distribution falls in the tail.

This test compare also the critical value α to a p-value calcuated by the test, in
which we expect for the normality that p > α [27].

The D’Agostino’s test can be applied via the normal test() SciPy function in
python, and it returns the test statistic with the p-value as shown in the following
code:
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# D'Agostino and Pearson's Test
from scipy.stats import normaltest
# normality test
stat, p = normaltest(data)
# interpret
alpha = 0.05
#initialize the normal variable by False
Normal=False
#update when p> alpha
if p > alpha:

Normal=True

4.4 Statistical analysis:
In general, an analytical accumulation analysis is a set of statistical methods that
we use in order to estimate the relationships between a dependent variable and
one or more independent variables. These analysis are used to demonstrate the
strength of the relationship between variables and to model the future relationship
between them [28].
In our activities, we use statistical analysis to prove the relationship between our
QoT simulated GSNR on a full path with an analytical separated independent
variable coming from the accumulation of sub-paths of the same path 4.2.

4.4.1 Comparing Distributions: Z-test
Z-test is one of the most important tests in statics that is used to compare the
distribution of two samples and conclude if both of them follow the same normal
distribution. The purpose of this test is to see if two distributions are significantly
different from one another. In general, Z-test performs as a hypothesis test in
which the z-statistic follows a normal distribution.

In addition, in this test, comparing two Samples dataset means finding the
difference of the two sample means in units of sample mean errors. This difference
in terms of significance is computed as Z-significant [29]:

Z = (X1 −Xx2)√
σ2

x1 + σ2
2

(4.8)

σx1 = σ1√
N1

(4.9)

σx2 = σ2√
N2

(4.10)
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X1 and X2 are the averaged mean of data sample 1 and data sample 2 respec-
tively. Meanwhile, σx1 and σx2 are the standard deviation of each of sample 1 and
2 divided by the size of each sample N1 and N2 respectively.
We suppose to have these assumptions:

1) H0: Both dataset follow the same normal distributions

2) H1: The two distributions are different.

We apply the two-tailed test that by convention is used to determine significance
at the 5% level, which means each side of the distribution is cut at 2.5%.

Our rejection region is : Z <= - Z2.5 and Z>=Z2.5 (assuming 5% significance
level, split 2.5 each on either side).
This calculated Z with a 95% probability will fall between the two limits defined
by: - Z2.5 = -1.96 and Z2.5 = 1.96 as a confidence interval[30].

Figure 4.5: Z test using two-tailed test rejection region

4.4.2 Extreme conservative margin with Euclidien dis-
tance

Three-sigma limits

The Three-sigma limits also called the Empirical rule is an engineering quick
estimating tool of the spread of data in a normal distribution. This test is done by
considering a statistical calculation in which the data under test are within three
standard deviations σ from a mean µ. Graphically, On a bell curve, it gather all
data that lie above the average and beyond the three-sigma line represent less than
1% of all data points.

The steps to follow in order to do the Three-sigma limits test [31]:
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1) First, calculate the mean µ of the observed data.

2) Second, calculate the standard deviation σ of the set.

3) Finally, calculate three-sigma (3σGSNR), which is three standard deviations
more or less the mean µ.

This test predicts that 99% of observations falls within the first three standard
deviations of the mean (µGSNR ± 3σGSNR), thus, 1% lies outside of three standard
deviations. In general, the Empirical rule is used in statistics for forecasting espe-
cially when obtaining the exact data is difficult.

Generally, in an optical network, vendors provide nominal values for the opera-
tional parameters of each network element (NE) that personalize the physical layer.
NEs experience a modification in the working point that insert an uncertainty from
the nominal value, which implies an uncertainty in the GSNR computation and
requires the deployment of a system margin.
Also, due to hardware aging and to the change is the OLS spectral load, the
equipment installed is affected by a fluctuation between the operational and the
nominal point. This variation makes the simulated GSNR be different with respect
to the nominal value computed by the QoT-E.

In our system, we have uncertainty on the ripples and the input connector loss,
and that leads us to set a margin on top of our computed GSNR nominal on a LP
in order to avoid out-of-service (OOS) events.
For each generated LP we establish the lowest possible margin required for the
OoT-E. Then we apply the Empirical test to set an optimal margin for our predicted
GSNRs by applying the 3*σGSNR below the nominal GSNR mean that we estimated,
in order to avoid the system to run out of service while propagating a GSNR smaller
than the needed one.
This margin is applied to set the maximum out of service probability in our network
topology.

Euclidean distance

Furthermore, we check how much our predictions are far from our simulated data
after applying the margin of conservation on the predicted values. Besides, we
apply the Euclidean distance in order to calculate the Root Mean Square Error
(RMSE) .

The Euclidean distance and the RMSE are represented in the following formula:
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d (GSNRSIMULAT ED, GSNRoptimal) =
√√√√ n∑

i=1
(GSNRSIMULAT ED,i −GSNRoptimal,i)2

(4.11)

RMSE =

√
d (GSNRpredicted, GSNRactual)

N
(4.12)

in which N is the size of our data sample under test. This method is characterized
by the ability to give the facility to eliminate the methods that have the most
significant errors [32].

4.5 Transfer learning application for QoT-E
The transfer learning techniques are mainly deployed in order to have a method to
decrease the uncertainty that we face on the GSNR computation and to arrive for
a minimum applied margin of conservation.

In optical networks, the ML is a paradigm that is expertly applied to monitor the
performance of the network. For this reason, an algorithm is introduced to perfectly
exploit the available database to design margins and reduce the uncertainties in
the network [3].

The neural network model applied is deep neural network (DNN) and is trained
to predict the QoT-E in term of GSNR before the deployment of an optical LP
from the source to the destination.

In our activity, we consider two networks characterized by different topologies,
German topology and the USNetwork topology. These two networks have the
same transmission equipment(NF, chromatic dispersion and frequency), fiber type
(SSMF) and amplifier type (EDFA).

Then, we initiate by training a ML agent running on top of the dataset generated
for the known German network topology. In general, as the uncertainty in a LP
QoT is not realistic, the ML scope is to be able to correct the GSNR computation in
order to reduce this uncertainty due to EDFA ripples and the input connector losses.

The schematic of the ML model trained on the dataset of German network
topology of 500 connections is implemented within the QoT-E of US network to be
able to correct the prediction on the GSNR. This correction must be done before
the deployment of the LP.
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The main elements of ML model are the features with the label that we feed
the network to do a transfer learning. As features, we consider the input connector
loss, ripples and the number of fiber spans per connection, while we consider the
GSNR as a label to be predicted.
In fact, our work is done basing on the open-source project Tenserflow library.

A dataset is created to train the ML based on the German topology, whereas
a test dataset is generated from the US topology to test the efficiency of our
ML model and to study the prediction of the GSNR as a QoT. With these fixed
parameters, we guarantee that the input connector loss and the ripples are the
same on the shared independent propagated sub-lines.
We train the network of exact powers regarding GSNR and then we test by transfer
learning on the test dataset in US network.

49



Chapter 5

Simulation results

In this section we present the created dataset with the results obtained by applying
the activities on top of them.
Firstly, we generated all the data related to the 500 randomly chosen connections
for each city by running the first Montecarlo.

The essential elements remain to collect for the network are the GSNR, OSNR
and SNR that mainly come from the calculation of the ASE and NLI noises along
the OLS. These parameters are collected on the optimal power for the central
channel "channel-cut" that is a WDM C-Band channel, in which all the channels
are considered fully loaded in the network topology with no Raman effects and no
dependency between the channels.
For that reason, We pass these information to another Montecarlo on a fixed
OLS that is running on top of the uncertainties of the input connector loss and
the ripples, and generating for each single connection 10,000 runs for each line
connection by propagating a lightpath in a fast propagate method implemented in
python. Then, this program do the collection for each run the ASE and the NLI
per power propagated, picked from a power sweep.

5.1 Synthetic dataset generation

5.1.1 Dataset1: d1
This dataset is for the experimental analysis, it contains 500 different random
generated connections from a given source to a destination city. This connection
should always be chosen according to the shortest path. Then, the length of every
chosen path is collected to find the number of fiber spans along the OLS.
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We expect our generated dataset are normally distributed for the mean and
standard destination following the Central Limit Theorem (CLT) concept of the
many repetition of a Montecarlo model. As mentioned before, we collect the
averaged mean and standard deviation of the GSNR over the total runs of the
second Montecarlo, along the OLS, allocated between each couple of cities as an
essential metric of study measurement. In fact, we collect the averaged mean of
the QoT parameter. Example from dataset1

connection Nfibers GSNRmean [dB] GSNRstd OLSlength [km]
Bremen->Hannover->Frankfurt

->Stuttgart->Ulm 10 18.999 0.151 729.7

Leipzig->Numberg->Stuttgart 6 21.644 0.1 463.4
Berlin->Hannover-> Bremen 6 22.6348 0.0868 416.2

Table 5.1: Examples of connections in dataset1

5.1.2 Dataset0: d0

On the other hand, this dataset is for the analytical study. This dataset0 is a more
smaller dataset that contain the connection between each couple cities connected
by an independent OLS as shown in on our weighted graph. This means that each
connection is made by only 2 node-to-node connected cities.
For each line, we run again the 10,000 Montecarlo algorithm in order to collect the
same parameters for the QoT study. As done in dataset1, we collect for dataset0
GSNR, OSNR and SNR after inserting a specific input power and we work on the
optimum one and the central cut-channel over a WDM C-Band.
Example from Dataset0

connection Nfibers GSNRmean [dB] GSNRstd OLSlength[km]
Essen->Bremen 4 25.67 0.05 278.5

Leipzig->Frankfurt 5 22.63 0.086 352.6
Berlin->Hannover 4 25.69 0.049 294.9

Table 5.2: Examples of connections in dataset0
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5.2 Distributions of GSNR, OSNR and SNR for
d0 and d1:

5.2.1 Normality tests:
In general, a large fraction of the field of statistics is concerned with data that follow
a Gaussian distribution. In this section, we want to prove the CLT concept that
explain the fact of repeating an event for a high number of runs gives a Gaussian
distribution specifically for the GSNR, OSNR and SNR parameters in which each
of them is a dataset of 10,000 values.

We start by showing graphical results in order to be able to see that a distribu-
tion is Gaussian by the bell-shaped curve histogram as a first step. Then, we plot
the quantile–quantile (Q-Q) plot in order to have more accurate graphs that show
the normality to be true beyond doubt.

In addition to the graphical show, we prove by an analytical approach to make
the magic of obtaining a Gaussian shape be confirmed in reality by statistical
computations.

5.2.2 Graphical normality check using Histogram
The graphical method is used for plotting the histogram of our generated data and
qualitatively evaluate whether the data looks Gaussian as a bell-shaped curve [24].
We focus our study on estimating the GSNR over each connection and evaluating
the alternation in the quality of the signal that happens when modifying the
spectral load connection.
Given the different signal power dependencies of the ASE and NLI contributions, in
an optimal working point scenario the former is the most significant contributor to
the GSNR degradation, as it is twice the NLI. We present how every per-wavelength
GSNR distribution can be completely approximated as Gaussian distributed.

From DT German topology, we choose randomly a connection for each of
dataset1 and dataset0 and we plot the histogram of the distribution for GSNR,
OSNR and SNRNL. On top of each of these histogram distribution, we plot a real
normal distribution by computing the mean and the standard deviation for the
corresponding connection dataset.
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connection between Berlin-> Numburg:

Figure 5.1: GSNR, OSNR and SNRNL distribution from dataset1, Berlin->
Numburg

Connection between Frankfurt->Ulm:

Figure 5.2: GSNR, OSNR and SNRNL distribution from dataset1 Frankfurt
->Ulm
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Connection between Essen->Bremen

Figure 5.3: GSNR, OSNR and SNRNL distribution from dataset D0 Essen
->Bremen

Connection between Ulm->Munich :

Figure 5.4: GSNR, OSNR and SNRNL distribution from dataset D0 Ulm -
>Munich

the figures above 5.4, 5.3, 5.2 and 5.1 clearly show that the distribution of GSNR,
OSNR and SNRNL for dataset1 and dataset0 is always shaped as a bull-curve, and
they are distributed around the average nominal value according to a probability
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density function (PDF) that is well approximated as Gaussian. This result is in
complete agreement with the Gaussian distribution and is centered around the
normalized correspondent mean.

5.2.3 Graphical normality check using Q-Q plot
In some cases, the histogram plot may show a bell-shape curve, but in fact the
distribution just looks normal instead they may come from a student distribution.
In order to ensure our assumption, we trace the Q-Q plot. We assume already that
our data are compared to a Gaussian distribution passing the line argument as ‘s‘
to the qqplot() statsmodels function python ( qqplot( GSNRs, line=’s’)).

In general, Q-Q plots the data samples, sorts them in an ascending order, then
plots them versus quantiles calculated from a theoretical distribution. The number
of quantiles is selected to match the size of our samples data[33].
Hence, the perfect match is presented by a line of dots on a 45◦ angle from the
bottom left of the plot to the top right. Often, a line is drawn on the plot to help
make this expectation clear. However, any dispersion by the dots from the line
shows a deviation from the expected distribution.
We tried the Q-Q plot over all the generated GSNRs for every single connection
and all of them showed a perfectly line of dots following the 45◦ angle line for
the normal distribution. For simplicity, we present a couple of connections from
dataset1 and dataset0.

Essen->Bremen

Figure 5.5: GSNR distribution from dataset0 Essen->Bremen
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Stuttgart->Frankfurt

Figure 5.6: GSNR distribution from dataset0 Stuttgart->Frankfurt

Hannover ->Berlin

Figure 5.7: GSNR distribution from dataset0 Hannover ->Berlin

Essen ->Dortmund

Figure 5.8: GSNR distribution from dataset0 Essen ->Dortmund
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Essen ->Hannover

Figure 5.9: GSNR distribution from dataset1 Essen ->Hannover

Koln ->Berlin

Figure 5.10: GSNR distribution from dataset1 Koln ->Berlin

As clearly shown by the figures plots above 5.10, 5.8, 5.7, 5.6, 5.5 and 5.9
examples between random couple of cities, all the quantile points lie along the
red lines of 45◦ from the bottom of the graph in each connection. The quantiles
represent our data sorted in ascending order, and they tent to dispose in the shape
of a line almost entirely straight.

5.2.4 Statistical Tests:
In this section we present the statistical methods that we used on our dataset to
quantify how likely the data was drawn from a Gaussian distribution.
Each of these tests looks at the normality from a different perspective, and like
that we ensure the Gaussian distribution for our generated parameters.
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Hence, these tests are applied on top of the whole dataset of 500 connections
for each OLS connection, and clearly we prove statistically not only graphically
that the distribution of GSNR follows a normal distribution .
In term of simplicity, we choose randomly paths from the whole dataset and we
show the successive results related to each test of normality.

Shapiro-Wilk Test

In this test we generated for each GSNR the p-value in which we compare with the
typical α value =0.05 instead of generating a list of critical values. The normality
is present for the dataset GSNR in case p> α.

paths from Dataset1

paths α P-value GSNR Normality check
Dusseldorf-> Leipzing 0.05 0.5 Normal
Hamburg-> Munich 0.05 0.54 Normal
Frankfurt->Ulm 0.05 0.3 Normal

Table 5.3: Normality check using Shapiro-Wilk Test for D1

paths from Dataset0

paths α P-value GSNR Normality check
Essen->Bremen 0.050 0.550 Normal
Ulm->Munich 0.050 0.885 Normal

berlin->Hannover 0.050 0.415 Normal

Table 5.4: Normality check using Shapiro-Wilk Test for D0

In general, we present the results of this test by it’s mean and standard deviation.
The test presented successful output of normality for all the connections in dataset1
and dataset0. To present the results we report the mean and the standard deviation
of the p-values over all the connections propagated in our dataset0 and 1.
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Dataset µP −value σP −value

D0 0.447 0.140
D1 0.427 0.11

Table 5.5: Normality check using Shapiro-Wilk

As shown by table 5.5 the mean of p-value for both dataset is greater than the
threshold α 0.05 with a standard deviation around 0.1 from the mean.
Then, we can accept the hypothesis H0 with a probability equal to the mean
calculated 0.447. As conclusion, this test confirms our hypothesis of the normality
distribution.

D’Agostino’s K2 Test

paths from Dataset1

paths α P-value GSNR Normality check
Dusseldorf-> Leipzing 0.050 0.463 Normal
Hamburg-> Munich 0.050 0.424 Normal
Frankfurt->Ulm 0.050 0.502 Normal

Table 5.6: Normality check using D’Agostino’s K2 Test D1

paths from Dataset0

paths α P-value GSNR Normality check
Essen->Bremen 0.050 0.510 Normal
Ulm->Munich 0.050 0.091 Normal

Berlin->Hannover 0.050 0.136 Normal

Table 5.7: Normality check using D’Agostino’s K2 Test D0

The normality testing is done over all our files obtained, for each connection
generated by each of dataset1 and dataset0. However, the tables above 5.6 and 5.7
present some randomly chosen paths with their corresponding normal test from
the original dataset.

The table 5.8 shows the averaged results of p-value for dataset0 and dataset1.
As we expected, this test shows also that our dataset of GSNR in both dataset
follow always a Gaussian distribution with a mean of p-value greater than the
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Dataset µP −value σP −value

D0 0.398 0.11
D1 0.523 0.09

Table 5.8: Normality check using Shapiro-Wilk test

threshold value of 0.05. In this way, we proved the assumption of the CLT that the
values of our data sample must accumulate normally when it is big enough with
independent variables.

5.3 Comparison between GSNR simulated on full-
path from d1 and predicted along sub-paths
from d0:

In this experiment we predict analytically the GSNR 4.2.4 in order to check it’s
compatibility with the GSNR simulated by the system from an experimental point
of view by applying Montecarlo along a full path connection taken from dataset1.
Hence, for each propagated lightpath, we apply the formulas of regression 4.2 and
4.4 on the data collected from dataset0 to predict the mean and the standard
deviation from sub-paths for the whole path of dataset1. For example, to propagate
a lightpath from Numberg to Berlin:

1) The shortest calculated path obtained by our algorithm is Numberg, Leipzig
then Berlin.

2) We collect the distribution of the simulated GSNRsimulated applied by the
system in which we focus on the optimum applied power.

3) We compute the predicted GSNRanalytical mean and standard deviation by
regression on the whole path as the following 4.4:

GSNRNumberg,Berlin = 1
1

GSNRNumberg,Leipzig

+ 1
GSNRLeipzig,Berlin

(5.1)

while the predicted Standard deviation is calculated as follows:

stdNumberg,Berlin =
√
stdNumberg,Leipzig

2 + stdLeipzig,Berlin
2 (5.2)
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In fact, the final standard deviation can be the summation of the node to node
sub-paths connections because they are uncorrelated, for each lightpath the variance
of the total GSNR is the sum for the variances for each span.

4) Finally, we compare all the corresponding predicted accumulated GSNR from
sub-paths with the experimental simulated GSNR for the same path as shown in
5.11 and we show it statistically by the following activities.

Figure 5.11: Picture of the 4 chosen paths for German

We choose randomly 4 paths from dataset1, and we present the distribution
followed by GSNRsimulated for each of them against the accumulated GSNRanalytical

on the sub-paths followed by each lightpath λ from dataset0. The predicted GSNR
is normally distributed and is presented by it’s mean and standard deviation on
top of the GSNRsimulated distribution in the following graph 5.11.
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5.3.1 Graphical comparison of GSNR distribution
In the following figures, we show the total agreement between the distribution of
GSNR coming from dataset1 and the one predicted by regression from dataset0
for the same path connection. Clearly, the red line completely fall on top of the
histogram distribution of GSNR in blue.

connection1: λ1 from Berlin->Ulm

Figure 5.12: Comparison of GSNR distribution for Berlin->Ulm

connection2: λ2 from Ulm->Hamburg

Figure 5.13: Comparison of GSNR distribution for Ulm->Hamburg
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connection3: λ3 from Essen->Frankfurt

Figure 5.14: Comparison of GSNR distribution for Essen->Frankfurt

connection4: λ4 from Dusseldorf->Leipzig

Figure 5.15: Comparison of GSNR distribution for Dusseldorf->Leipzig

According to the graphics above 5.12, 5.13, 5.14 and 5.15 we obviously prove
that what we expected statistically converge in a way very similar to the simulated
GSNR. The red line shows always the distribution of the statistical computation on
top of the distribution of the histogram showing the distribution of the simulated
GSNR. This simulated GSNR applied as a QoT for a propagated connection in
the routing space is in agreement regarding the normal distribution with what we
expect for the nominal GSNR.

5.3.2 Analytical comparison of GSNR distribution: Z-test
Furthermore, in this section we apply a statistical test (Z-test) in order to show the
compatibility between the distribution of the estimated GSNR and the simulated
GSNR in a more robust way. As shown before, the distribution in any case should be
normal, but we seek to show how much these 2 entities have an equivalent matching.

63



Simulation results

In statistics, the more samples you have, the more reliable the mean is. For that
reason, our dataset samples are always formed of 10,000 elements.
We apply the formula mentioned in 4.8, for all the 500 connections taken from
dataset1 and compared to each of the calculated GSNR mean and σ over all the
sub-paths of the same whole path connection.

We perform the test on the whole dataset1 in which the computations on all the
500 connections output a Z-score that falls in our confidence interval and confirms
our hypothesis that the 2 samples are identically shaped, and so they behave as
Gaussian following the same distribution.

On top of the analytical identity distribution test, we provide a graphical
overview representing the GSNR distributions of the compared samples.

In the following table 5.9, we present 4 randomly chosen lightpath connec-
tion paths as presented in figure 5.11 for each λ, in which we show that Z-
critical as explained 4.4.1 that should always fall in the interval of confidence
−196 ≤ Zcritical ≤ 1.96 .

lightpath µ1 σ1 µ2 σ1 Z-score
λ1 18.518 0.1283 18.5172 0.1286 0.139
λ2 18.998 0.151, 18.99846 0.15197 0.068
λ3 20.831 0.114 20.8257 0.1105 1.056
λ4 18.078 0.138 18.07138 0.1376 1.074

Table 5.9: Table of the 4 chosen lightpaths for German

As shown by table 5.9, the mean Z-score falls in the interval of confidence that
w take on 95% with a mean of 0.297± 0.122 (−196 ≤ 0.297 ≤ 1.96 ) of has a very
low average, as the difference of the Gaussians must be low.
The Z-score measurement seems a bit not a stable representation because of the low
value of first quartile ( also known as the 25th percentile) and correspondingly the
high value of the third quartile. This spread is due to the fact we are comparing
random chosen paths:
Some of them, taken from dataset 1, are just a line of a couple of city hops, exactly
equal to the compared paths from dataset 0. For example from Bremen to Essen,
there is no hops to cross and they are directly connected, so the obtained is Z-score=
0.003 very low. Instead, many other lightpaths have to travel a long OLS made
of 2 to 6 crossed hops. In this second case, we assist to the analytical GSNR
computations that can slightly differ from the experiment ones.

According to the graphical and statistical results 5.9, we conclude that when we
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have a big dataset for a huge network, instead of calculating the GSNR on every
propagated connection, we can simply only compute the distribution on sub-lines
and then estimate the full-line GSNR distribution.

5.4 Margin of correction on the analytical GSNR
The observation of Gaussian distribution makes us think of proposing a method
for setting the needed margin on a network, given the standard deviation of the
GSNR. This margin sets a fixed maximum tolerable out of service percentage.

In our optical network, the network controller estimates a nominal GSNR value.
Due to the variation in NEs working point, this estimated nominal GSNR has
always some degree of uncertainty. Our predictions must be compared to the real
values that the network has as simulated GSNR from dataset1.
This predicted nominal GSNR may be a bit optimistic, so we add a margin of
conservation on the estimated nominal GSNR in order to check our system behavior
in term of functionalities.

Hence, the GSNR applied by the optical system could be higher or smaller
than the nominal predicted GSNRnominal. In case our simulated GSNR is smaller,
we will face a problem of running out of service. Instead, by applying a GSNR
higher than the predicted GSNRnominal we perform lost of our potential resources
capacity, but it will not cause a problem regarding the functionality.

The margin of conservation applied is the "Three-sigma" test mentioned in
4.4.2, used to assign a statistical assumption to ensure that the distribution of
uncertainties covers all the possibilities for the quality of performance in our optical
network topology.
This margin will be calculated by considering the nominal GSNRs predicted in
dataset0, then we apply a subtraction of "three-sigma" ( 3σGSNR) for each single
connection, in order to set the minimum control limits of 1% in statistical domain
for the simulated GSNR of running out of service.
Accordingly, the average over all the applied margin for all the connections is of
0.258 dB with a minimum of 0.147 dB and as maximum 0.28 dB.
Thanks to this limit of conservation, we can calculate the percentage for which our
system may go out of service among all the propagated connections.

GSNRoptimal = GSNRnominal − 3σGSNR (5.3)

Accordingly, we collect for each single propagated connection in German topology,
among all the generated GSNRs by the Montecarlo runs, the number of connections
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that has a simulated GSNR higher than the optimal conservative GSNR.

∆GSNR = GSNRactual −GSNRpredicted (5.4)

We assign for the number of connections that are successfully propagated the name
NSuccessful all the cases when ∆GSNR > 0.

Hence, we collected the averaged mean µ and the standard deviation σ for the
NSuccessful over all the connections propagated in which they are respectively:

µ= 9963.766 and σ= 7.171.

Hence, this means that in average we have 99.637% of connections are successful
among our generated GSNRs from the 10,000 runs in which they exceed the optimal
conservative margin that we applied.
Instead, 0.363% of these generated GSNRs are less than the optimal conservative
GSNR, which lead for an out of service because the optical system needed more
resources to propagate correctly the lightpath.
We conclude that in general the probability of running out of service with a
margin = 3σ is poos=0.363%.

Therefore, here we present an example of a random connection going from
’Numberg’ to ’Essen’ 4.2, taken from German DT topology:

Figure 5.16: GSNR simulated from dataset1 from Numberg to Essen

Thus, the figure above shows operative conservative GSNR with margin
GSNRoperative = 22.373 in green on top of the distribution obtained for the GSNR
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generated for this specific connection with mean shown by the red line of µ1=
22.533.
Also, this connection has a NSuccessful= 9975 (99.75%), so clearly the tail of
the GSNR Gaussian distribution shows the maximum allowable oos= 0.25% of
unaccepted propagated lightpaths that goes out of service from all the 10,000
random generated.

After all, this margin is applied in order to correct and to enhance the prediction
of GSNR for our propagated connections in the routing space.
Hence, we notice graphically that more than 99% of the cases are above our
observative extreme margin of conservation 5.16 and less than 1% ( the tail) of the
generated GSNRs are smaller.

5.5 Euclidean distance of the GSNRs between
dataset1 and dataset0:

In order to have a metric of our calculation of the conservative margin of the GSNR,
we apply the Euclidean distance between the optimal and the simulated GSNRs.

This metric is applied to check the error that we make if we use the conservative
GSNR for all the dataset1. The error is the distance between our parameters in
which is represented in term of RMSE as mentioned in 4.4.2 and is done for all the
generated connections in dataset1.

In general, the higher is the value of the RMSE the poorer is the ability of the
system to predict correctly the analytical GSNR from dataset0.
Anyway, we collect the mean and standard deviation on all the 500 collected values
of RMSE and what we obtain is a: µRMSE= 0.3004 dB and σRMSE= 0.0976.

Clearly, what we obtain is a small value of the µRMSE= 0.3 dB with a deviation
around the mean of 0.097 which reflects that the model can relatively predict the
data accurately because the closer is the value of RMSE to 0 the more accurate is
the model in predicting results.
It seems that our system is able to predict very accurate results, and as consequence,
we are able to propagate the lightpath successfully from a source ROADM to the
destination without going out of service more than 0.37% as was proved by the
applied conservative margin.
So, the error between the observative GSNR and the applied GSNR over all the
10,000 GSNRs realization is very little shown by our accurate results.
We present as an example, the connection from ’Koln’ to ’Ulm’ in German topology
4.2. For this propagated lightpath, the RMSE between the GSNR predicted by our
system and the simulated GSNRs realization is RMSE= 0.27 dB. That obviously

67



Simulation results

means that what we expected as optimal conservative GSNR to propagate this
lightpath, is accurate with the simulated propagated GSNR over the routing space.
Hence, we conclude that the connection can be successfully propagated starting
from our prediction with a small RMSE .

5.6 Transfer Learning results for US topology
5.6.1 Machine learning accuracy

Figure 5.17: US optical network topology

The mainly aim of our ML application is to effectively train a known model to
make it able to have a reliable QoT-E in order to correct the GSNR uncertainties
in the network controller for an unknown network. However, As we have a dataset
on the German topology network, we exploit these data to do a transfer learning
on a new network topology US network to estimate the GSNR.

We generate he training dataset from German topology and is done by 500
connections. Hence, in order to have the same generated input connector losses and
ripples on every shared line, we consider them fixed without including uncertainties.
Similarly, we create a testing dataset from US network 5.17, and as done for the
training dataset, we fix both input connector losses and gain ripples. For each of
these datasets, we compute the QoT GSNR and then we feed our machine learning
model with these data to be able to estimate the QoT for US network topology.
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Example from training dataset: German topology

Nfibers GSNR [dB] Ripples [dB] Losses [dB]
7 20.14 0.987 0.749
5 21.644 0.987 0.749

Table 5.10: Examples of training dataset for connections in German

Example from testing dataset: US topology

Nfibers GSNR [dB] Ripples [dB] Losses [dB]
45 9.685 0.987 0.749
41 10.530 0.993 0.75

Table 5.11: Examples of testing dataset for connections in US network

The tables above present an example of the trained and tested dataset respec-
tively 5.10 and 5.11 for some connections after collecting the feature (GSNR) and
the labels (number of fiber spans, constant gain ripple and input connect loss).

The used DNN is characterized by several optimized parameters, considering as
training steps = 1000 and a default learning rate = 0.01.

Although, the number of hidden layers in DNN is a very essential characteristic.
After trying multiple models with different number of hidden layers and neurons
we arrive to a trade-off between the performance of our algorithm and the time
needed to execute all the predictions. Hence, an increase in the number of these
parameters may overfit the network, especially if the network dataset is not very
big as in our case 500 training and 100 testing. So, we decide for 3 hidden layers
each with 3 neurons as an optimum option for our dataset.

Firstly, we divide in three subsets of the German network dataset, then we
perform the training, validation, and testing; we apply as 70% training ratio and
30% testing ratios as proportions.

Accordingly, we collect for each single propagated connection in USnetwork
topology the number of connections from the testing dataset that has a GSNR
higher than the GSNRpredicted by ML algorithm applying the following formula:

∆GSNR = GSNRactual −GSNRpredicted (5.5)
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in which GSNRactual is the GSNR calculated for a lightpath along the OLS
with fixed gain ripples and input connector losses. We assign for the number of
connections that are successfully propagated the name NSuccessful all the cases
when ∆GSNR > 0.
What we obtain is a ∆GSNR=89% with an accuracy in term of RMSE=0.54 dB.
This means that in average, 11% of the propagated connections may run oos.
The penalty obtained when running oos by applying the transfer learning from
a known network to another new network, opens a path to apply a margin of
conservation for a more conservative architecture with more accurate predictions.

5.6.2 Statistical analysis on USnetwork
In this section, we consider the new topology "US network" that we base our
study on. We consider the input connector losses and the gain ripples as variables
with uncertainties. We collect a dataset for US network over all the connections
propagated, by computing the GSNR over a full line from ROADM-to-ROADM
connection and we call the GSNR as GSNRactual. Then, we do the statistical
analytical analysis in which we create another dataset as done for dataset0 by
considering the GSNR of sub-paths, node-to-node connections 5.1.2.
On top of the estimated GSNR in dataset0, we apply the margin of conservation
3σGSNR in order to check the extreme conservative GSNR and to put a maximum
of going out of service for our propagated connections using the formula:

∆GSNRconservative = GSNRpredicted − 3σGSNR (5.6)

In order to check the degree of conservation that we obtain from the statisti-
cal approach, we compute the difference between the GSNRactual already com-
puted for each connection considering fixed losses and ripples and the calculated
GSNRconservative. This GSNRactual is used also for the comparison with the ML
predicted GSNR.

∆GSNR = GSNRactual −GSNRconservative (5.7)

as done before, we check the cases where ∆GSNR>0 and we consider such con-
nection as successful avoiding running out of service with a margin of conservation.
Hence, we obtain 99% of the connections that propagate successfully with a
∆GSNR>0. We also compute the RMSE to check the error difference between
the GSNRs, and we obtain a RMSE= 0.37 dB.

We compare the percentage of difference obtained by the transfer learning to
what we obtain statistically. Hence, what we predict by the statistical method with
a margin of conservation seems to be more accurate and more consistent with the
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GSNRactual with constant gain ripples and input connector loss. Moreover, the
error RMSE= 0.58 dB committed by the ML results is higher than the accuracy
RMSE= 0.37 dB done by applying the statistical approach.
So, the ability of the transfer learning to predict our QoT GSNR seems to be
weaker than applying the statistical approach along each OLS lightpath propagated
with a conservative margin.
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Chapter 6

Conclusions

In this thesis we investigated the problem of uncertainties of the connector input
losses and the ripples introduced respectively by the fibers and amplifiers, in a real
network scenario. We assigned the GSNR as a QoT for lightpaths propagated over
the routing space in real network scenarios.

6.1 GSNR computation by Simulated method
We started by generating a dataset of 500 random connections from the German
topology, applying the shortest path algorithm. On top of the generated connec-
tions.
For this purpose, we applied a Montecarlo method with a high number of runs to
obtain a distribution of our data, assuming Gaussian fluctuations around reference
values for both input connector loss and ripples aiming for analysing the GSNR
distribution. We inspected separately the ASE and NLI noises introduced during
the signal propagation and considering always the optimal power in which we have
a maximum GSNR and by considering only the cut-channel as a channel under
test.

Additionally, we devised and implemented a test for Gaussianity for the GSNR
metric, based on the Characteristic Function cf, which interprets the problem in a
more robust way respect to the graphical methods proposed. Additionally, we have
shown this test to be a very powerful check for Gaussianity.
Hence, by using two graphical shows (histogram and Q-Q) and two statistical
methods (Shapiron-Wilk and Agostino k2 test) we proved that for each lightpath
connection, the GSNR generated follows a perfectly normal distribution according
to the CLT.
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6.2 GSNR computation by Statistical method
In general, in case of a huge topology with a big number of connections propagated,
it is very expensive in terms of computational complexity to compute the GSNR.
For this motivation, we created a second estimated dataset for the same connections,
with the difference that here we applied a simulation along the path between each
node-to-node connection.
What we care about was to ensure that the Monte Carlo approach is directly
consistent with the implemented statistical analytical model. Hence, between the
simulated GSNR and the estimated nominal GSNR.
For this reason, we compared the distribution of GSNR estimated and simulated
graphically by the bell-curve and by using the Z-test model with a 95% as confidence
interval.
Graphically, we obtained a perfect alignment by plotting the distribution of the
predicted GSNR using the mean and standard deviation on top of the generated
GSNR distribution simulated. Moreover, we acquired from the Z-test a z-score
that always falls in the interval of confidence with a mean of 0.3 and a standard
deviation of 0.2. Hence, this means that what we estimated was very consistent
with what the network simulates.

Moreover, the estimated nominal GSNR could be a bit optimistic, so we added
on top of it a margin of conservation to check the functionality and to save our
system behavior.
Hence, this minimum margin deployed to decrease the uncertainty introduced in
the GSNR computation for each LP, and so to enable a reliable path computation
to rely on the overall LP GSNR.
Therefore, to deploy more traffic by an optimum exploitation of the installed
equipment, we must apply a lower system margin. The margin of conservation is
applied on all the propagated LP by decrementing the 3σ limit for each estimated
GSNR to obtain an optimal working point for each connection.
The average applied margin is of 0.258 with a minimum of 0.147 dB and as maxi-
mum 0.281 dB.
For all the connections, we obtained in average poos=0.363% and 99.637% of con-
nections are successful among our generated dataset GSNRs that they exceed the
optimal GSNR after the application of the conservative margin.

Aiming for having a metric for the distance between the optimal and the simu-
lated GSNR, we applied the Euclidean distance between to check the error that
we make if we use the conservative GSNR for all the dataset1. The error is the
distance between our parameters and is represented in term of RMSE on top of all
the propagated connections over the routing space.
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What we achieved is µRMSE= 0.3004 dB and σRMSE= 0.0976. In fact, the lower
is the value of the RMSE, the better is the ability of the system to predict correctly
the analytical GSNR from this dataset.
Clearly, our system is able to predict very accurate results, and as consequence,
we are able to propagate the lightpath successfully from a source ROADM to the
destination without going out of service more than 0.37% as was proved by the
applied conservative margin on top of the nominal estimated GSNR.

6.3 Transfer learning and statistical correction
on USnetwork

In this work, we proposed the application of a transfer learning from a trained
dataset comes from German topology to correct the GSNR computation by the
QoT-E in an unknown network topology USnetwork. We generated dataset syn-
thetically for both networks, for training and testing purposes.
For both dataset we have fixed all the uncertainties coming from input connector
loss and gain ripples in order to guarantee the same values for the shared sub-paths
on different propagated connections.

The results obtained by the transfer learning shows the low capability of our
DNN model of predicting the GSNR with a high penalty of going out of service.
We extend our study to apply the statistical method with a margin of conservation
in order to obtain a QoT-E. The predicted GSNRs are collected by considering the
uncertainty on the input connector losses and the gain ripples, then compared to
the same actual GSNR we used to check the system behavior in the ML model.
Accordingly, the statistical method is more accurate and more reliable in predicting
the QoT and by reducing the uncertainty done by the fluctuations coming from
the NEs in our optical network and it gives way lower poos and RMSE.

6.4 Future work, ways of improving
What we mainly proved in our work is that the GSNR follows a Gaussian dis-
tribution independently line-by-line system by considering the uncertainties on
the connector input loss and the ripples. In general, when we can rely on a full
knowledge of the physical layer and it is statistics, it opens a green field to exploit
this additional knowledge in order to minimize the margin applied on the network.
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A way of improving our study can be achieved by doing a full statistical regres-
sion beside finding the statistics of the GSNR that accumulates on the network that
we have done and by checking the statistic of the uncertainty of some components.

Nowadays, typically in optical networks, when we know the nominal GSNR we
should apply a margin on top of it, because we considered the fluctuations within
the network and we apply a GSNR smaller than the nominal one. This smaller
GSNR introduces a huge loss of capacity because we have to stay conservative.
Instead, if we can have an exact characterisation of the statistics and we can have
a full knowledge of the fluctuations that affects GSNR on a lightpath, we expect an
exact prediction of GSNR. In general, the optical network infrastructure is already
installed but with high traffic demand. The operators must keep the infrastructure
trying to have a return of the money spent on it.

We can come up with a better way to exploit all the network capacity from the
infrastructure having already deployed the physical layer.
A good strategy for decreasing the uncertainty introduced by the fluctuations,
using GnPy model as a prediction of the QoT and so we can work on improving
the QoT-E and then on filling this gap of knowledge which is a big objective.
This approach takes data from the field to reduce the uncertainty. This means
larger GSNR, larger bit rate, then deploy larger traffic in a reliable way and then
gain more money.

Moreover, for future analyses the considered set of configurations can be further
enhanced and enlarged by introducing Raman amplification alongside EDFAs and
by considering different fiber types and lengths taking into account the inter channel
stimulated Raman scattering.

Finally, in order to make the studies wider, the uncertainties introduced by the
input connector losses and the gain ripples can be extended by including any kind
of PDF not only normal.
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