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Summary

MicroRNAs (miRNAs) are a class of nearly 22 nucleotide-long, non-coding RNA
molecules involved in the post-transcriptional regulation of their target RNAs.
MiRNAs and their targets interact via a titration-like mechanism characterized by
threshold effects and cross-talk among targets. Threshold has to be understood as a
value of mRNA transcription rate such that above this value many target molecules
are available for translation while below it mRNA are bound to miRNA, rapidly
degraded and cannot be translated. It has been discovered that different RNA
species may compete for miRNAs binding with this inducing indirect interactions
amongst the miRNA targets which reciprocally influence their expression levels.
Moreover, also the fluctuations on their levels of expression are coupled through
miRNAs. It is of particular interest that an increase in noise leads to an increase in
cell variability and this may lead to bimodal cell population distributions with high
and low expression states of specific miRNA targets. This mechanism is particularly
relevant near the threshold, where stochastic fluctuations play an important role for
the cell fate. It is worth noting that bimodal expression of genes may lead to very
different phenotypes, where the modes of the distribution underlies healthy or sick
cells or two different stages of differentiation. An open question is whether these
bimodal distributions at the target level are due to extrinsic fluctuations on miRNA
pools or to intrinsic fluctuations on miRNA-target interaction strength. My thesis
aims to answer this question combining both experiments and theoretical modelling.
The experimental part consists of transfection experiments of bidirectional plasmids
in epithelial human cells (HEK293). The plasmids, circular DNA molecules, code
for two fluorescent proteins, a yellow fluorophore named eYFP and a red one
named mCherry. The sequence coding for mCherry contains a varying number
of miRNA binding sites, while the eYFP sequence is left unchanged. mCherry
and eYFP are thus respectively proxies for target expression and its constitutive
activity. Thanks to this genetic device it is possible not only to distinguish between
cells hosting plasmids or not but also to track gene expression in presence or in
absence of miRNA regulation by measuring cell fluorescence. To understand if
bimodal distributions are due to extrinsic noise in the miRNA pool or to intrinsic
noise in the miRNA-target interaction strength we need to distinguish between two
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scenarios: (i) a single cell scenario, in which bimodality is given by single cells near
the threshold that jump from one state to the other over time (this scenario is due to
intrinsic noise on the miRNA-target interaction strength); (ii) a population scenario,
for which bimodality is given by cells whose target may be in one state or the other
because of different miRNAs basal values (this is a situation of extrinsic noise in the
miRNA pool). These two situations can be distinguished by measuring transition
times between the two states when observing time trajectories of the target. Cells
are therefore observed over time with time-lapse microscopy experiments that allow
to record their fluorescence. Acquired images should be analysed to detect every
single cell, track it over time and obtain temporal trajectories of its fluorescence.
It can be expected that single cell transition times are distributed according to
exp(-kt): therefore we can estimate k for every time trajectory and, depending on
the distribution of k found, be able to understand which scenario underlies the
measurements.
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Chapter 1

Introduction

1.1 At the interface between physics and biology

This thesis work stands at the interface between physics and biology. One may
wonder why a physicist should be interested in biological processes. Schrodinger
cared about this issue in his book "What is life?" by saying that "We have inherited
from our forefathers the keen longing for unified, all-embracing knowledge" [1].
In this work, we would like to explore physical properties of a biological system by
combining theoretical knowledge and experiments. The focus of this thesis will be
on microRNAs (miRNAs), a class of small non-coding RNAs, that exerts regulatory
functions in both mammals and plants: miRNAs can induce translation repression
or degradation on their target genes [2]. Being gene expression stochastic [3], we will
make use of a probabilistic framework to study the behavior of a system composed
by microRNAs, their target mRNAs and proteins. In particular, we will focus
on protein expression. It is known that gene expression may vary across different
individuals subject to different environmental conditions but it may also vary in a
population of identical individuals subject to the same environment [4] [5]. We will
refer to "extrinsic noise" in the first case and to "intrinsic noise" in the second one.
Variability in gene expression is crucial in determining phenotypic diversity [6] and
miRNAs play an important role in this phenomenon [7]. In previous studies it has
been found out that miRNAs could lead to a bimodal expression of their target
genes [8], associated to phenotypic diversity in a cell population that is genetically
identical [9]. Moreover, miRNAs anomalous expression is associated with many
diseases ranging from cancer to central nervous system diseases [10].
In this thesis work, we want to distinguish the contribution of intrinsic and extrinsic
noise in generating protein bimodal distributions by looking at protein permanence
times in the two modes of their expression distribution.For this purpose, Gillespie
simulations [11] of the systems 3.1 and 3.34 will be performed. In the following,

1



Introduction

we will talk about miRNA biogenesis and functions. Next, we will explain how
miRNAs regulate protein expression via a threshold mechanism. Effects of different
types of noise on gene regulation will be taken into account by means of two
different models for microRNA-driven inhibition. The experimental set-up will
be described, together with analysis performed on experimental data. Population
permanence times in the two modes of bimodal expression distribution will be
studied. For the case of intrinsic noise, we will introduce the concept of double
potential well to justify the distribution of population permanence times in the two
modes.

1.2 MiRNA biogenesis

MicroRNA (miRNAs) are single-stranded, non-coding RNA molecules with an
average length of 22 nucleotides. They have been discovered in 1993 first in
Cahernohabditis Elegans, a nematode, and some years later in various species of
plants and animals[12]. MiRNA biogenesis begins by means of RNA polymerase II
and III, which transcribe nucleotide sequences coding for miRNAs and later bind a
localized promoter in proximity of this sequence. The possible biogenesis pathways
can be classified in canonical and non-canonical.
The canonical pathway is the dominant way in which miRNAs are processed: they
are transcribed from DNA sequences into primary miRNAs (pri-miRNAs) and
processed into precursor miRNA (pre-miRNAs) by means of the microprocessor
complex, made of DiGeorge Syndrome Critical Region 8 (DGCR8), a protein which
recognizes precise motifs in pri-miRNAs, and Drosha, an enzyme which cleaves
them producing a characteristic stem-loop structure of about 70 base pairs long,
called pre-miRNAs. Once these latter have been generated, they are exported
from the nucleus to the cytoplasm by Exportin 5 and processed by Dicer, a RNase
III which removes the terminal loop forming a mature miRNA duplex. Mature
miRNAs strands have a certain directionality which determines their name: if
a strand derive from the 5Í end of the pre-miRNA hairpin then it is called 5p,
otherwise if it derives from the 3Í end it is called 3p. Depending on their stability,
either both strands can be loaded into the Argonaute family of proteins or only the
one with lower 5Í stability is loaded, taking the name of guide strand. The other
strand, called passenger, will be either cleaved by AGO2 and degraded by cellular
machinery (if it does not contain mismatches) or passively unwound and degraded
in the other case. Non-canonical pathways make use of different combinations
of previous proteins and they can be classified into Drosha/DCGR8-independent
and Dicer-independent. The first group of pre-miRNAs is directly exported to the
cytoplasm by mean of exportin 1 and does not need Drosha cleavage [13].
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Introduction

Figure 1.1: Scheme of the possible biogenesis processes, adapted from [13]. Bio-
genesis pathways are distinguished in canonical and non canonical. The difference
between the two is that while canonical pathway undergoes two maturation steps
(performed by Drosha and Dicer), non canonical biogenesis pathways bypass certain
steps [14].

1.3 MiRNA importance and functions

Numerous studies have pointed out the crucial role of miRNAs in both biological and
pathological processes. The latter are generated by changes in miRNA expression
[10]. Thus, it is essential to know the different functions miRNAs can exert
depending on their binding site. The most important ones are:
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1. MiRNA-mediated gene silencing via minimal miRNA-induced silencing com-
plex (miRISC), formed by the guide strand loaded into AGO, which is target
specific and binds complementary sequences on target mRNA, called miRNA
response elements (MRE). Depending on the degree of complementarity, there
are two possible scenarios:

• the complementarity between miRNA and mRNA is perfect leading to a
degradation of target mRNA via a cleavage mechanism process, which is
said to be slicer dependent [13] ;

• there are mismatches facilitating miRISC-mediated translational inhibition
and target mRNA decay [13].

2. MiRNA-mediated translational activation: it could arise from binding of
miRNAs with 5’ UTR of mRNAs and leads to an up-regulation of gene
expression [13].

3. MiRNA-mediated transcriptional and post-transcriptional gene regulation
within the nucleus: some studies have reported that low molecular weight
miRISC can interact with mRNAs within the nucleus and induce nuclear
mRNA degradation but they can also perform a direct regulation [13].

Some studies have proved that gene regulation mediated by microRNAs is a dynamic
and robust process in helping to buffer gene expression to a steady state [13]. The
focus of this work will be on gene silencing by mRNA target degradation.

1.4 Threshold effects
Having established the importance of gene regulation by miRNAs, a question arises
spontaneously: how does a target’s gene protein expression change in presence
and in absence of miRNA regulation? Mukherji et al. developed a model [15] to
show that under a certain threshold level of target mRNA, protein level is strongly
repressed. Threshold has to be intended as a value of target transcription rate
under which the concentration of free miRNA is much greater than target’s one.
We will call repressed state the one associated to miRNA’s abundance with respect
to targets. Over the threshold, instead, the concentration of free target is high and
miRNA are almost all bound in complexes with their targets. When the system
is in this situation, we will say that it is in the expressed state. At the threshold
there is a situation of equimolarity which makes stochastic fluctuations of crucial
importance (See Figure 1.2). Mukherji et al. model is based on protein-protein
titration reactions [16], where titration is defined as "the process of determining
the quantity of a substance A by adding measured increments of substance B,
the titrant, with which it reacts until exact chemical equivalence is achieved (the
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equivalence point) (Worsfold,2005) [17]. It describes the concentration of free target
mRNA under the regulation of miRNA as a function of non-regulated transcriptional
activity, under the assumption that proteins can be produced solely by the target
[15]. The crucial point is the formation of a complex miRNA-target. From an
experimental point of view, a construct allowing for monitoring of the system
in presence and in absence of regulation has been obtained with a bidirectional
promoter driving two genes that code for two fluorescent proteins, named mCherry
and eYFP. mCherry is a red fluorescent protein that accounts for regulation and
has its 3ÚTR engineered to contain a certain number N = 0,1,4,7 of binding sites,
while eYFP accounts for unregulated transcriptional activity. The model strongly
depends on two parameters: g, that is the rate at which miRNA binds target,and λ,
which gives a measure of the sharpness of the threshold and it inversely proportional
to g [15]. According to this model, the threshold can be sharpened by increasing g
that is equivalent to adding miRNA binding sites to the system [15]. Increasing
miRNA binding sites entails that the probability of a miRNA binding a target is
higher so a higher level of targets are necessary to obtain the expression we would
have in absence of regulation. The increasing in the sharpness of the threshold is
greater in going from 1 to 4 binding sites than in going from 4 to 7 binding sites
[15].

Figure 1.2: Figure adapted from [8]. Under threshold there are more free miRNAs
than targets. Over threshold, miRNAs are almost all bound in complexes and the
number of free targets is much grated than that of free miRNAs. At the threshold
the number of free targets is comparable to that of free miRNAs.
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Figure 1.3: (a) Two color fluorescent reporter system that co-regulates eYFP,
yellow fluorescent protein, and mCherry,red fluorescent protein, which are proxies
for transcription activity in absence and in presence of regulation. (b) Sample
fluorescence microscopy data. (c) Trend of mCherry as a function of eYFP for
N=0,1 miRNA binding sites showing the appearance of a non-linear behaviour
when increasing the number of miRNA binding sites.

1.5 Intrinsic and extrinsic noise effects in gene
regulation

In this section we want to investigate the possible sources of noise that can act on
our system and their effects on it. Stochasticity is widespread in nature [18] and it is
present as well in gene expression [3]. It is known that a population of identical cells
exposed to the same environmental conditions can present phenotypic differences
or a different level of expression from cell to cell [19]. The type of stochasticity
related to biochemical reactions, which we will call "intrinsic", is strictly related to
the size of the system: the larger the size of the system, the lower the fluctuations
are [19] [20]. A measure for noise is given by the coefficient of variation, defined as
the standard deviation to mean ratio for a certain quantity xi:

CVxi
= σ<xi>

< xi >
(1.1)

Anyway, this is not the only possible kind of noise that can affect a system. A
variability in gene expression may also be induced by fluctuations on transcription
rate or, more in general, by factors that are external to biochemical reactions [19].
We will refer to this type of noise as "extrinsic" noise. In the following, we will
introduce two models 3.1 and 3.34 accounting for intrinsic and extrinsic noise. The
model for intrinsic noise consists of a gene r that it’s transcripted (in mRNA R)
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and translated (into protein P ) and can interact with the transcription product
S of another gene s. Gene s codes for microRNA S. MicroRNA, target mRNA
and protein can be degraded. In this model, the unique source of noise will come
from the stochasticity of biochemical reactions and it will be taken into account by
means of stochastic simulations. The model for extrinsic noise 3.34 is essentially
the same, with the exception that extrinsic noise is introduced as a fluctuation on
miRNA transcription rate. This stochasticity will be added to the one coming from
biochemical reactions. Despite the models are similar, the results are profoundly
different as we can see in Figures 1.4a and 1.4b. Intrinsic noise-induced bimodal
distribution is obtained at single cell level while extrinsic noise-induced bimodal
distribution is obtained at population level.

(a) Bimodal population distribution of free mRNA molecules amount given by
intrinsic noise: single cells sample the two modes of the distribution.

(b) Bimodal population distribution of free mRNA molecules amount given by
exstrinsic noise: some cells never change state.

Figure 1.4: Intrinsic and extrinsic noise-induced bimodal population distributions.
Figures adapted from [8].
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Chapter 2

Experimental work

Having introduced the general problem, let us focus on the physical understanding
of the system under study. The aim of the experiments is to perform single-cell
tracking under different conditions of miRNA-mRNA interaction strength to see
how single cells behave in time.
I took advantage of BIOMed Lab, the new interdepartmental laboratory belonging
to Politecnico di Torino, to perform transfection experiments of bidirectional
plasmids in epithelial human cells (HEK293). A plasmid is a circular DNA molecule
separated from the chromosomal DNA that can duplicate independently from it.
Although they are more common in bacteria, they can also be found in archea
and in eukaryotes [21]. They are characterized by the presence of certain genes
that make them resistant to specific antibiotics [21]. In the experiment here
described, tetracycline-inducible plasmids coding for two fluorescent proteins, a
yellow fluorophore named eYFP and a red one named mCherry, have been used.
The 3úntraslated (UTR) region of mCherry has been engineered to contain a
varying number of miRNA binding sites (N = 0,1,4,7), while the eYFP sequence
is left unchanged. mCherry and eYFP are thus respectively proxies for target
expression and its constitutive activity. Thanks to this genetic device it is possible
not only to distinguish between cells hosting plasmids or not but also to track
gene expression in presence or in absence of miRNA regulation by measuring cell
fluorescence [15]. The process by means of which these plasmids are inserted
into cells is called "transfection" and it has been performed using effectene as a
transfection agent. Cells have been filmed 24h after transfection, for ≈ 70h, with
the aim of a fluorescence miscroscope. Taking advantage of Nikon Lipsi platform
[22], screenshots have been taken every twenty minutes.

As a result of these experiments, data have been extracted from time-lapse and
organized in various files each one accounting for a different part of filmed cells
plate and a fixed number of binding sites. Data analysis has been performed using
Image Processing package belonging to Matlab in order to segment and track cells
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(a) Screenshot on eYFP channel of trans-
fected cells seen under fluorescent mi-
croscopy.

(b) Screenshot on mCherry channel of
transfected cells seen under fluorescent mi-
croscopy.

and extract important information such as the fluorescence level.
As a first thing, levels of eYFP and mCherry have been measured at fixed time in
order to reproduce threshold behavior [15] with the increasing in the number of
binding sites. Sorting cells according to an increasing level of eYFP, it is found
that for N=0 binding sites there is a linear relationship between mCherry and
eYFP levels (see Figure 3.5d). For N =1,4,7 binding sites, instead, a non-linearity
(threshold) in mCherry level appears and it varies with time (see Figure 3.5d).
Remembering previous discussion, it is expected that in proximity of the threshold
there is a bimodal population distribution for mCherry expression level so a small
range of eYFP has been isolated near the threshold and the distribution of mCherry
levels corresponding to that values of eYFP has been plot (see Figure 2.1).
Having shown that these bimodal distributions exist (see Figure 2.1), it is now
interesting to look at the trajectories of cells present in them. In order to do
it, a single cell tracking has been performed. The idea behind the code is the
following: once cells are segmented and labelled, each cells is "followed" over time.
As cells are expected not to deviate too much from their position passing from one
frame to another, one could assume that at time t a particular cell will be in the
neighborhood of its position at time t− 1. Looking in this neighboring region, the
cell is identified as the nearest to the oldest position and take the same label of the
cell in the previous frame if this is still available (it has not been assigned to another
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Figure 2.1: Bimodal mCherry distribution obtained from experimental data with
7 miRNA binding sites.

cell). If the label has already been assigned and the cell is in the neighborhood of
a cell of the previous frame, a new label is assigned to the new cell. This situation
may appear when a cell in the previous frame has divided giving rise to two cells.
If we don’t find a match with a cell in the previous frame, the possible scenarios
are two: the first is that the cell is new, meaning that it is the first time we see its
fluorescent signal. The second is that the cell has already been seen in previous
frames and then it has disappeared for some frames (e.g. due to an out-of-focus ):
in this case we assign to it the old label. In this way, the trajectory of every single
cell is reconstructed over time.
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Figure 2.2: Schematic diagram of code for cells tracking.
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Chapter 3

Models and methods

In this chapter, we will study the impact of intrinsic and extrinsic noise on the
system under study. First, to assess the case with pure intrinsic noise, changes in
the shape of the bimodal population distribution will be investigated by varying
miRNA-mRNA interaction strength and target transcription rate. Then, it will be
shown that a single cell trajectory summarizes the entire population, meaning that
the system is ergodic. Moreover, we will introduce the concept of double potential
well to explain cells permanence time distribution in the two states of intrinsic
noise-induced bimodal population distribution. Then, extrinsic noise will be added
to the system and its changes on bimodal population distribution with respect to
the intrinsic noise case will be investigated. Permanence times of the system in
the two states of extrinsic noise-induced bimodal population distributions will be
studied as well.

3.1 Intrinsic noise-induced bimodality
Let’s consider two distinct genes, r and s, transcribed independently at constant
transcription rates kR and kS. Gene r codes for target mRNA R while gene s
codes for microRNA S. The first RNA is translated into protein at rate kP and can
interact with a fraction α of miRNA S with an interaction strength g. Both RNAs
and proteins are then degraded with rates gR, gS and gP .

This model can be described in terms of the following system of ordinary
differential equations (ODEs):

dR
dt

= kR − gRR− gRS
dS
dt

= kS − gSS − αgRS
dP
dt

= kPR− gPP

(3.1)
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Figure 3.1: Scheme of the reactions involved in the model for intrinsic noise.
Gere r codes for target mRNA R while gene s codes for miRNA S. A fraction α of
the latter interact with R with an interaction strength g. Both R and S can be
degraded at rate gR and gS. Gene R can be translated at rate kP into protein P ,
which can be degraded at rate gP . Figure adapted from [8].

The above mentioned system 3.1 must be solved to find the location of the
threshold (see Figure 1.2). The system should be at the stationary state because
we do not want the number of molecules to vary over long times.
However, gene expression is a stochastic process [3]: we said in previous sections that
with the term "intrinsic" noise we will refer to the one induced by the stochasticity
of biochemical reactions. In this framework, the variation of target and miRNA
quantities leads to a bimodal distribution for target, where the two modes of the
distribution account for the scenarios in which target is bound to miRNA or not
[8]. Another source of noise can arise from environmental conditions: we will refer
to this type of noise as "extrinsic" [8] and it will be introduced in our model as
a fluctuation on miRNA transcription rate. From an experimental point of view,
we are looking at cells that are in different phases of their cell cycle because they
are not synchronized. It is known that miRNA changes value in a way related to
its cell cycle [23] so it is as if we were looking at cells having different values of
miRNA transcription rate.
In light of the stochasticity of gene expression, the most appropriate description for
our system seems to be a master equation 3.2, which allows us to have information
on fluctuations even in presence of few molecules. In order to write the master
equation, let’s write the probability distribution of observing nR molecules of target
mRNA, nS molecules of miRNA and nP molecules of protein at a certain time
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t, given the set of parameters W = {kR, kS, kP , g, gR, gS, gP , α}. Recalling that
concentration ρ = ncell

Vcell
, where Vcell is the typical volume of a cell, the master

equation reads:

dP (n̄, t)
dt

= kR[P (nR − 1, t)− P (n̄, t)]+
gR

Vcell
[(nR + 1)P (nR + 1, t)− nRP (n̄, t)]+

kS[P (nS − 1, t)− P (n̄, t)]+
kPnR
Vcell

[P (nP − 1, t)− P (n̄, t)]+
gP

Vcell
[(nP + 1)P (nP + 1, t)− nPP (n̄, t)]+

gα

V 2
cell

[(nS + 1)(nR + 1)P (nR + 1, nS + 1, t)− nSnRP (n̄, t)]+

g(1− α)nS
V 2
cell

[(nR + 1)P (nR + 1, t)− nRP (n̄, t)]

(3.2)

where n̄ = (nR, nS, nP ) [8]. Solving the master equation might be a complex
task due to the non linear term that couples miRNA and target mRNA. A good
alternative could be that of performing stochastic simulations until reactions reach
a stationary state and search for bimodal distributions in the neighborhood of the
threshold. In this work, Gillespie direct method algorithm has been employed to
simulate the Markov processes described by the master equation 3.2. Given that n̄
is the vector of species counts, a(n̄) are the propensity functions of an elementary
reaction, t is the current time and τ is an infinitesimal time, direct method consists
in the following steps:

1. Initialize the time t = t0 and the system’s state n̄ = n̄0

2. Evaluate the functions aj(n̄) and their sums q
aj(n̄)

3. Effect the next reaction by replacing t←ò t + τ and n←ò n + νj

4. Record (n̄, t)

3.1.1 Bimodal population distributions
The aim of this section is to investigate the changes in bimodal population distribu-
tions when the system moves away from the threshold or miRNA-target interaction
strength is lowered or raised. This task is accomplished by running 100000 Gillespie
simulations for a time tsteady = 100000s ≈ 28h and by taking protein values at
t = tsteady.
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Using parameters in table 3.1, the trend of proteins at the steady state as a function
of target transcription rate shows a well-defined threshold (see Figure 3.2).

Figure 3.2: Protein trend at the steady state as a function of the transcription
rate kR. Under the threshold, target mRNA are bound in complexes with miRNAs
and the concentration of free miRNA is higher than that of mRNAs (we will say
that the system is repressed). Over the threshold there are more free mRNAs than
miRNAs (the system is expressed). At the threshold there is equimolarity between
miRNAs and mRNAs: fluctuations are crucial to determine the behaviour of the
system.

Parameter Value Units Description
kr 0.1095 s−1 Transcription rate of mRNA
ks 0.085 s−1 Transcription rate of miRNA
kp 0.06 s−1 Translation rate
gr 4 ∗ 10−4 s−1 Degradation rate of mRNA
gs 2 ∗ 10−4 s−1 Degradation rate of miRNA
gp 2 ∗ 10−4 s−1 Degradation rate of protein
g 7 ∗ 10−3 s−1 miRNA-mRNA interaction strength
α 0.8 1 Fraction of recycled miRNA

Table 3.1: Values of parameters used to generate reference bimodal population
distribution. Gillespie algorithm works with number of molecules and propensity
rates. [11]

Reference bimodal population distribution in Figure 3.3 has been generated
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with parameters in Table 3.1. To ensure that the distribution we have found is
bimodal, a fit has been performed using the sum of an exponential and a Gaussian
function with 5 parameters among which only 4 of them are independent. It is
known that an unregulated gene is normally distributed, as in the case of high
free target mRNA concentration. When free miRNA are much more than free
targets, the distribution of this latter is exponential: the system behaves as in
presence of an absorbing wall. For what concern the number of parameters, one
may argue that 5 is a high number and may lead to overfitting but we are doing
this fit just to extract the values of means and standard deviations, necessary to
compute permanence times. The expression used for the fitting reads:

bim(x) = c1e−kx + c2e(−((x−µ)2)/2σ2 (3.3)

The parameter acting on the amplitude of the exponential function has been written
in terms of other parameters by noticing that it must holds the followingÚ inf

0
(c1e−kx + c2e(−((x−µ)2)/2σ2)dx = 1 (3.4)

Computing the first term in the equation one gets:Ú inf

0
c1e−kxdx = c1

k
(3.5)

For the second term, it is useful to recall the following formula:Ú inf

0
e−x2

dx =
√

π

2 erf(z) (3.6)

By changing variable one obtainsÚ inf

0
e(−((x−µ)2)/2σ2

dx =
√

π

2 erf(− µ√
2σ

) (3.7)

and finally the value of c1 is found:

c1 = k[1− c2σ

√
π

2 erf(− µ√
2σ

)] (3.8)

From the fitting, resulting parameters are k = (0.21 ± 0.03)ofmolecules, c2 =
(0.0075± 0.0002), µ2 = (47± 5)ofmolecules and σ2 = (59± 4)ofmolecules.

Now, we want to investigate the changes in bimodal distribution shape obtained
by moving the system away from the threshold, both increasing and decreasing
target transcription rate. From previous theoretical work we know that increasing
target mRNA transcription rate causes a decreasing in the number of available
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Figure 3.3: Reference bimodal population distribution obtained in case of pure
intrinsic noise with parameters in 3.1. The black line is the fitting obtained with
expression 3.3

miRNAs [15]: the expressed state will become more and more important leading to a
Gaussian distribution in which the repressed state has disappeared. Decreasing kR,
instead, all targets are bounded by miRNAs and thus their expression is repressed
[15]: the population distribution will be exponential because the first mode prevails.
Figures 3.4 and 3.5 show various bimodal population distributions with different
kR.
An analogous discussion could be done for miRNA-target interaction strength. A
bimodal distribution appears only in cases of high coupling between miRNA and
target: this is a single-cell effect meaning that only cells with strong coupling can
pass from a repressed state to an expressed one near the threshold. Moreover,
the higher is the strength g, the wider is the interval of kR for which a bimodal
distribution exists [15]. In Figure 3.6, four different cases for increasing value of
g have been shown. When miRNA-target interaction strength is very low as in
Figure 3.20 protein values are Gaussian distributed. With the increasing of the
strength g the distribution becomes bimodal and the height of the leftmost barrier
increases.
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kR k c µ2 σ2
(s−1) (# of molecules) (number) (# of molecules) (# of molecules)
0.107 0.016± 0.01 0.0075± 0.0003 34± 8 54± 5
0.1095 0.22± 0.03 0.0075± 0.0002 47± 5 59± 4
0.112 0.11± 0.03 0.0073± 0.0002 72± 3 56± 3
0.115 0.16± 0.07 0.0072± 0.0001 95± 1 57± 1

Table 3.2: Values of the parameters estimated from the fit of bimodal population
distributions with relative errors. The fit has not been performed for transcrip-
tion rate k = 104s−1 and k = 124s−1 in that these are not bimodal population
distribution so we cannot compute permanence times in the two states for them.

g k c µ1 σ2
(s−1) (# of molecules) (number) (# of molecules) (# of molecules)

3.5 · 10−3 0.021± 0.006 0.004± 0.001 79± 7 40± 9
7 · 10−3 0.22± 0.03 0.0075± 0.0002 47± 5 59± 4

3.5 · 10−2 0.56± 0.05 0.0071± 0.0002 52± 3 55± 2
7 · 10−2 0.6± 0.1 0.0070± 0.0003 55± 4 51± 3

Table 3.3: Values of the parameters estimated from the fit of bimodal population
distributions with relative errors. The fit has not been performed for a miRNA-
target interaction strength g = 7 · 10−4s−1 because its population distribution is
not bimodal.

(a) Probability distribution function
with kR = 0.104s−1 < kref .

(b) Probability distribution function
with kR = 0.107s−1 < kref .

Figure 3.4: Probability distribution functions for target transcription rate kR
under threshold.
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(a) Probability distribution function
with kR = 0.112s−1 > kref .

(b) Probability distribution function
with kR = 0.115s−1 > kref .

(c) Probability distribution function
with kR = 0.124s−1 > kref . The
distribution is Gaussian.

(d) Plot of all distributions with 0.107s−1 ≤
kR ≤ 0.124s−1

Figure 3.5: Different bimodal distribution for increasing transcription rate kR.
The higher target transcription rate is, the higher the number of free targets in the
distribution and the more important the expressed state becomes.

3.1.2 Single-cell trajectory
In the previous section, different bimodal population distributions generated by
intrinsic noise have been shown. The idea behind their existence is that single
cells composing the population jump from a repressed state to an expressed one,
sampling the two modes of the distribution. The question we want to address now
is whether we can actually observe a bimodal population distribution by looking
at one single cell for a very long time. We are wondering if the system is really
ergodic.
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(a) Probability distribution function
with miRNA-target interaction strength
g = 7 · 10−4s−1. The coupling is not strong
enough to give rise to a bimodal population
distribution.

(b) Probability distribution function with
miRNA-target interaction strength
g = 3.5 · 10−3s−1.

(c) Probability distribution function
with miRNA-target interaction strength
g = 3.5 · 10−2s−1.

(d) Probability distribution function
with miRNA-target interaction strength
g = 7 · 10−2s−1.

Figure 3.6: Different bimodal population distribution for increasing miRNA-target
interaction strength g. When this interaction strength is low, as in Figure 3.6b, the
bimodal distribution can’t be seen. Increasing the coupling between miRNA and
target the distribution becomes bimodal and the expressed state begins to flatten.

In order to answer this question, a single Gillespie simulation has been run for a time
t = 30000000s, keeping the same parameters used to simulate the reference bimodal
distribution. As the protein value has been saved every time a reaction occurs, the
vector of protein values is not equally spaced.To solve this issue, the trajectory
3.9a has been reconstructed (starting from the steady state tsteady = 100000s) by
sampling it at temporal steps δt = 0.1∗avgt, where avgt is the average time between
a reaction and the subsequent one. In order to obtain independent samples, we

20



Models and methods

need an estimate of the auto-correlation time of this new trajectory. This time
has been estimated to be tautocorr = 340000s 3.9b. Sampling the trajectory with a
step t = tautocorr, the obtained data reproduce a bimodal population distribution.
In order to verify if the obtained single cell distribution is compatible with the
population distribution in Figure 3.3, an Approximate Two Sample Kolmogorov-
Smirnov statistical test has been performed 3.7. This test is used to compare two
different datasets (our single-cell and population distributions). The null hypothesis
h0 entails that the two datasets have been extracted from the same distribution
[24]. As expected, it comes out that the two sets of data have been extracted from
the same distribution with 95% of confidence and so a single cell trajectory is able
to recapitulate the behaviour of the entire population.

Figure 3.7: Result of Kolmogorov-Smirnov statistical test performed on bimodal
population distribution and single cell bimodal distribution. With 95% of confidence
the null hypothesis, entailing that the compared datasets have been extracted from
the same distribution, is verified.
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Figure 3.8: Comparison between bimodal population distribution and bimodal
single cell distribution. Performing a Kolmogorov-Smirnov statistical test it has
been proved that a single cell trajectory summarize the behaviour of the entire
population.

(a) Reconstructed trajectory of a single
cell simulated for a time t = 30000000s.

(b) Auto-correlation computed on the recon-
structed trajectory as a function of real time.

Figure 3.9: Trajectory of a single cell and its auto-correlation function.
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3.1.3 Permanence times
We have just proven that single cells in presence of pure intrinsic noise jump from
one state to the other. We want to describe this situation as a dynamic process
between two states A and B in which particles jump from A to B with rate kAB
and from B to A with rate kBA. Calling pA(t) the probability that our system is in
state A at time t and pB(t) the probability that it’s in state B at time t, we can
write the following master equation:

dpA(t)
dt

= kBApB(t)− kABpA(t) (3.9)

dpB(t)
dt

= kABpA(t)− kBApB(t) (3.10)

This equation can be easily solved and its solution is of the form:

pA(t) = peqA + δpA · e−kt (3.11)
pB(t) = peqB + δpB · e−kt (3.12)

with the condition that k = kAB + kBA. This solution shows that the probability
to be in a state decreases exponentially in time. In physical terms, the two states
can be associated to the minima of a double well potential function.
Having seen how bimodal population distribution changes as a function of parame-
ters g and kr, permanence times of the population in the expressed and repressed
state can be studied for various cases.
First of all, there is the need to define what is the expressed state and what is the
repressed state. In this work, two different definitions have been used: the first is
obtained considering the states as µi ± bi · σi (i=1,2), where bi is the considered
percentage of σi, and the second one is to define as repressed all protein values
xrepressed ≤ µ1 + b1 · σ1 and as expressed that values x ≥ µ2 − b2 · σ2. The function
that computes these times has been defined in the following way: all values belong-
ing to the repressed state have been set to the value 1 , all those belonging to the
expressed state have been set to the value 2 and those that don’t belong neither to
the first nor to the second, that are transition times, have been set to 3.
Let’s begin by exploring permanence times of the reference probability distribution
in Figure 3.3 with the first definition. At the beginning, the first permanence times
have been studied with the idea to compare them with permanence times extracted
from the single trajectory . These times are exponentially distributed both for the
repressed state and for the expressed one (see Figure 3.10). The same is true for
the distributions of all times (see Figure 3.11).
With the second definition, instead, the distributions of Figures 3.12 and 3.13 have
been obtained. The distribution of first permanence times in the expressed state
shows a peak on long times. A possible explanation for this phenomenon is the
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following: with this definition we are considering values of protein expression that
are in the tails of the distribution, so values that are very unlikely. We think that
these peaks will disappear by increasing observation time.
Now we may wonder how permanence times of cells in the two states of the bimodal
distribution change with changing miRNA-mRNA interaction strength g and target
transcription rate kR. Let’s begin with the case of bimodal population distribution
with kR = 0.107s−1, kR = 0.112s−1 and kR = 0.115s−1. The analysis has been
performed using the definition xrepressed ≤ µ1 + bi · σ1 and xexpresseed ≥ µ2 − bi · σ1
and the results are in Figures 3.10, 3.11, 3.12 and 3.13.

Figure 3.10: First permanence times of the system with kR = 0.1095s−1 for
repressed and expressed state in case of pure intrinsic noise with states defined as
µi ± bi · σi.
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Figure 3.11: All permanence times of the system with kR = 0.1095s−1 for
repressed and expressed state in case of pure intrinsic noise with states defined as
µi ± bi · σi.

Figure 3.12: First permanence times of the system with kR = 0.1095s−1 for
repressed and expressed state in case of pure intrinsic noise with states defined as
xrepress ≤ µ1 + b1 · σ1 and xexpress ≥ µ2 − b2 · σ2.
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Figure 3.13: All permanence times of the system with kR = 0.1095s−1 for
repressed and expressed state in case of pure intrinsic noise with states defined as
xrepress ≤ µ1 + b1 · σ1 and xexpress ≥ µ2 − b2 · σ2.

Figure 3.14: First permanence times of the system with kR = 0.107s−1 in the
repressed and the expressed state computed using the definition xrepress ≤ µ1+b1 ·σ1
and xexpress ≥ µ2 − b2 · σ2.
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Figure 3.15: All permanence times of the system with kR = 0.107s−1 in the
repressed and the expressed state computed using the definition xrepress ≤ µ1+b1 ·σ1
and xexpress ≥ µ2 − b2 · σ2.

Figure 3.16: First permanence times of the system with kR = 0.112s−1 in the
repressed and the expressed state computed using the definition xrepress ≤ µ1+b1 ·σ1
and xexpress ≥ µ2 − b2 · σ2.
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Figure 3.17: All permanence times of the system with kR = 0.112s−1 in the
repressed and the expressed state computed using the definition xrepress ≤ µ1+b1 ·σ1
and xexpress ≥ µ2 − b2 · σ2.

Figure 3.18: First permanence times of the system with kR = 0.115s−1 in the
repressed and the expressed state computed using the definition xrepress ≤ µ1+b1 ·σ1
and xexpress ≥ µ2 − b2 · σ2.
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Figure 3.19: All permanence times of the system with kR = 0.115s−1 in the
repressed and the expressed state computed using the definition xrepress ≤ µ1+b1 ·σ1
and xexpress ≥ µ2 − b2 · σ2.

Figure 3.20: First permanence times of the system with g = 3.5 ∗ 10−3s−1 in the
repressed and the expressed state computed using the definition xrepress ≤ µ1+b1 ·σ1
and xexpress ≥ µ2 − b2 · σ2.
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Figure 3.21: All permanence times of the system with g = 3.5 ∗ 10−3s−1 in the
repressed and the expressed state computed using the definition xrepress ≤ µ1+b1 ·σ1
and xexpress ≥ µ2 − b2 · σ2.

Figure 3.22: First permanence times of the system with g = 3.5 ∗ 10−2s−1 in the
repressed and the expressed state computed using the definition xrepress ≤ µ1+b1 ·σ1
and xexpress ≥ µ2 − b2 · σ2.
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Figure 3.23: All permanence times of the system with g = 3.5 ∗ 10−2s−1 in the
repressed and the expressed state computed using the definition xrepress ≤ µ1+b1 ·σ1
and xexpress ≥ µ2 − b2 · σ2.
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Figure 3.24: First permanence times of the system with g = 7 ∗ 10−2s−1 in the
repressed and the expressed state computed using the definition xrepress ≤ µ1+b1 ·σ1
and xexpress ≥ µ2 − b2 · σ2.

Figure 3.25: All permanence times of the system with g = 7 ∗ 10−2s−1 in the
repressed and the expressed state computed using the definition xrepress ≤ µ1+b1 ·σ1
and xexpress ≥ µ2 − b2 · σ2.
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Figure 3.26: Caption

The same procedure has been followed for the distributions with g = 3.5·10−3s−1,
g = 3.5 · 10−2s−1 and g = 7 · 10−2s−1. Results can be found in Figures 3.20, 3.21,
3.22, 3.23, 3.24 and 3.25. These results are qualitative but we would like to have a
quantitative estimate of decay rates of cell population permanence times in the
repressed and expressed states of the system. All these distributions with repressed
and expressed state defined as xrepressed < µ1 + b1 · σ1 and xexpressed > µ2 + b2 · σ2
have been fit with a single normalized exponential function of the following form:

exp(t) = const · exp(−kt) (3.13)

with the constraint that Ú ∞

0
const · exp(−kt) = 1 (3.14)

implying that const = k. With this expression the results are those shown in Table
3.4. Fit of the distributions are shown in Figures 3.27, 3.28, 3.29 and 3.30. Being
these distribution really flattened on the y axis, we restricted x range from 1s to
100s to see the trend in a clearer way.

Figure 3.27: Permanence times of cell population with transcription rate kR =
0.107s−1 in repressed and expressed states with relative fit. Time range at which
we look at has been restricted to 100s.
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Figure 3.28: Permanence times of cell population with transcription rate kR =
0.1095s−1 in repressed and expressed states with relative fit. Time range at which
we look at has been restricted to 100s.

Figure 3.29: Permanence times of cell population with transcription rate kR =
0.112s−1 in repressed and expressed states with relative fit. Time range at which
we look at has been restricted to 100s.
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Figure 3.30: Permanence times of cell population with transcription rate kR =
0.115s−1 in repressed and expressed states with relative fit. Time range at which
we look at has been restricted to 100s.

The decay rates for repressed and expressed states in Figures 3.27, 3.28, 3.29
and 3.30 are reported in Table 3.4.

kR (s−1) k1 (s−1) k2 (s−1)
0.107 0.191± 0.012 0.307± 0.019
0.1095 0.193± 0.012 0.309± 0.019
0.112 0.32± 0.02 0.48± 0.03
0.115 0.33± 0.02 0.63± 0.04

Table 3.4: Values of decay rates, i.e. the inverse of permanence times of cell
population distribution in the repressed (k1) and expressed (k2) states, for different
target transcription rates.
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g (s−1) k1 (s−1) k2 (s−1)
3.5 · 10−3 0.77± 0.05 0.88± 0.05
7 · 10−3 0.193± 0.012 0.309± 0.019

3.5 · 10−2 0.17± 0.01 0.35± 0.02
7 · 10−2 0.09± 0.01 0.35± 0.02

Table 3.5: Values of decay rates, i.e. the inverse of permanence times of cell
population distribution in the repressed (k1) and expressed (k2) states, for different
values of miRNA-mRNA interaction strength.

Figure 3.31: Permanence times of cell population with transcription rate g =
0.0035s−1 in repressed and expressed states with relative fit. Time range at which
we look at has been restricted to 100s.
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Figure 3.32: Permanence times of cell population with transcription rate g =
0.035s−1 in repressed and expressed states with relative fit. Time range at which
we look at has been restricted to 100s.

Figure 3.33: Permanence times of cell population with transcription rate g =
0.07s−1 in repressed and expressed states with relative fit. Time range at which we
look at has been restricted to 100s.
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All we can say is that increasing target transcription rates lead to an increasing
of decay rates of cell population in both states of the system, meaning that
permanence times of cells in the states will be shorter. When increasing miRNA-
target interaction strength, instead, decay rates of cell population decrease and the
system will pass more time in that states.

Figure 3.34: Model of the system in presence of extrinsic noise. Gene r is
transcribed at constant rate kR into target mRNA R, which can be translated
into protein P at rate kP or be degraded with rate gR or still can interact with a
fraction α of microRNA S. This latter is transcribed by gene s at a fluctuating
transcription rate, extracted from a Gaussian distribution. MiRNA can then be
degraded at rate gS and protein can be degraded as well at rate gP [8]. Figure
adapted from [8].

3.2 Extrinsic noise-induced bimodality
The model which accounts for the extrinsic noise is pretty similar to the model
for intrinsic noise. A gene r codes for target mRNA R, which is translated into
protein and can interact with miRNA S, transcribed by gene s independently, with
an interaction strength g. The difference with respect to the previous model is that
miRNA transcription rate is not constant anymore but it is rather drawn from
a Gaussian distribution peaked around a mean value µ with a certain standard
deviation σ. Then target, protein and miRNA can be degraded at constant rates
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gR, gP and gS.

Figure 3.35: Extrinsic noise-induced bimodal population distribution generated
with the same parameter of Table 3.1. Extrinsic noise has been taken into account
by allowing miRNA transcription rate kS fluctuations from cell to cell. The value
of kS has been drawn by a Gaussian distribution with mean µ = 0.085s−1 and
standard deviation σ = 5 · 10−3s−1.

At this point, to investigate the effect of extrinsic noise on the system, let’s take
into account the bimodal population distribution of Figure 3.3: the transcription
rate for microRNA will be drawn from a Gaussian distribution with mean µ =
0.085s−1, which is the same used in Fig. 3.3, and a standard deviation σ =
5 ∗ 10−3s−1. The resulting distribution is displayed in Figure 3.35. As we can see
from the Figure 3.35, the effect of extrinsic noise on distribution 3.3 is to slowly
flatten the expressed state and to raise the first peak. This effect is due to the
fact that we are sampling values both under and over threshold. However, the
two distributions do not differ too much because the standard deviation σ of the
Gaussian distribution from which miRNA transcription rates are sampled is not
high. Then, we can try to increase it to σ = 1 ∗ 10−2s−1 to clearly see the effect
(see Figure 3.36).

Although in this case the distribution does not undergo radical changes, there
might be cases in which extrinsic noise leads to a completely different distribution.
Let’s take into account the distribution which has an interaction strength g =
7 ∗ 10−4s−1, see Figure 3.20 - it is not bimodal - and try to add an extrinsic noise
to it. The Gaussian distribution from which miRNA transcription rate is extracted
will be peaked on the same value of kS used for intrinsic case and the standard
deviation will be σ = 1 ∗ 10−2s−1. The shape of the distribution has passed from
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Figure 3.36: Comparison between two extrinsic noise-induced bimodal population
distributions. They have been generated with the parameters in Table 3.1 but the
standard deviations σi (i=1,2) of the distribution from which miRNA transcription
rate has been drawn are different. Increasing σ corresponds to increasing the
extrinsic noise.

(a) Comparison between Gaussian population
for intrinsic noise with g = 7 · 10−4s−1 and
corresponding extrinsic noise counterpart, which
generates a bimodal distribution.

(b) Comparison between Gaussian population
for intrinsic noise with kR = 0.124s−1 and cor-
responding extrinsic noise counterpart, which
generates a bimodal distribution.

Figure 3.37: Extrinsic noise can induce bimodality even when intrinsic noise
cannot.
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Gaussian to exponential. Another insightful example can be that of considering
Fig. 3.5c, which is a Gaussian distribution with target transcription rate heavily
over the threshold. Let’s add extrinsic noise to this distribution. We will draw
miRNA transcription rate from a Gaussian distribution peaked around the mean
values µ = 0.085s−1 with a standard deviation σ = 1.2 ∗ 10−2s−1.

In order to have a physical insight of what is happening, we could think of
simulating the system (see Figure 3.1) represented by ODEs 3.1 with the lowest
and the highest miRNA transcription rates of the above mentioned Gaussian
distribution. As we can see from Figure 3.43, when miRNA transcription rate is
lower than the reference one, kS = 0.085s−1, the system moves to the expressed
state because there will be more free targets than miRNAs, that are almost all
bound in complexes with their target mRNAs. On the contrary, when miRNA
transcription rate is higher we are moving toward the threshold with an equimolarity
situation between miRNAs and targets.

(a) Threshold for kS = 0.073s−1 (b) Threshold for kS = 0.097s−1

Figure 3.38: Moving miRNA transcription rate kS allows to draw values in a large
interval. On the left, threshold’s location is represented for the highest possible kS
extracted, that is mean value plus a standard deviation. On the right, threshold’s
location is represented for the lowest possible kS extracted, that is mean value
minus a standard deviation.

3.2.1 Permanence times
It has been shown that adding extrinsic noise to the system can lead to substantial
changes in the population distribution under study: we expect that also permanence
times of the system in its two states will change. In fact, while previously the
population distribution was made of cells jumping in and out of the two states, now
there are some cells that never change state. We want to study how the presence
of these cells impacts on permanence times.
As before, the first thing to do is to fit the bimodal distribution and to extract the
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two means and standard deviations. These parameters will be used to compute
permanence times with the definitions µ1±b1 ·σ1 for the repressed state and µ2±σ2
for the expressed one. The resulting cells permanence times are displayed in Figure
3.39 and Figure 3.40.
Let’s take into account the first cells permanence times, remembering that they
have been introduced to make a comparison with all permanence times. The
distribution of first cells permanence times in the expressed state is heavily non
exponential. As we expect, it shows a high peak on large times due to those cells
that are stucked in one of the two states. The distribution of times for the repressed
state is still exponential due to the effect of fluctuations: being the repressed state
really narrow, fluctuations may lead cells to jump in and out of the state, distorting
permanence times.
Now, looking at the distributions of all cells permanence times, one can see that
they reproduce the same behavior of Figures 3.39 and 3.40: the repressed state still
has an exponential cells permanence times distribution due to the reduced width
we are considering as "repressed state". For the expressed state, there is still a
peak on long times. This fact marks a distinction between cells permanence times
computed on intrinsic vs. extrinsic noise-induced bimodal distributions.
Another definition for repressed and expressed states could be that of considering
as repressed all the values on the left of µ1 + b1 · σ1 and as expressed the values on
the right of µ2 − b2 · σ2. With this definition, the distributions for the repressed
state are still exponential both for the first and for all permanence times: as we
said before, the form of bimodal distribution from which extracted means and
standard deviations, forces us to consider a narrow range for the "repressed state".
For the expressed state’s cells permanence times, instead, a peak on long times
appears both for the distribution of all and first cells permanence times.

42



Models and methods

Figure 3.39: First permanence times of the system in the repressed and the
expressed state computed using the definition xrepress ≤ µ1 + b1 · σ1 and xexpress ≥
µ2 − b2 · σ2.
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Figure 3.40: All permanence times of the system in the repressed and the
expressed state computed using the definition xrepress ≤ µ1 + b1 · σ1 and xexpress ≥
µ2 − b2 · σ2.
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Figure 3.41: First permanence times of the system in the repressed and the
expressed state computed using the definition xrepress ≤ µ1 + b1 · σ1 and xexpress ≥
µ2 − b2 · σ2.
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Figure 3.42: All permanence times of the system in the repressed and the
expressed state computed using the definition xrepress ≤ µ1 + b1 · σ1 and xexpress ≥
µ2 − b2 · σ2.

3.3 Experimental data

3.3.1 Bimodal distributions
Let’s recall what has been found theoretically: intrinsic noise-induced bimodal
distributions are found only near the threshold and the coupling between miRNA
and target must be sufficiently high [8]. Furthermore, increasing miRNA-mRNA
interaction strength g the threshold becomes sharper and the range in which
the bimodal distribution is allowed becomes wider. The opposite happens when
decreasing g. Upon increasing target transcription rate kr the population distri-
bution concentrates in the expressed state becoming Gaussian while lowering it
the distribution is exponentially decreasing due to the low concentration of free
targets. Adding an extrinsic noise contributes to widen the region in which bimodal
distribution can be found [8]. Now, we want to investigate experimental data
with the idea to distinguish what is the principal source of noise by looking at
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permanence times of cells in both repressed and expressed states of the system.
As a first thing, we should identify bimodal distributions. We recall from previous
sections that we are monitoring the system with a two-color fluorescent reporter
system which gives us information about protein levels in presence and in absence
of regulation. The constitutive gene is represented by eYFP, helpful to monitor
transcriptional activity in single cells, while mCherry is the target protein. In per-
forming time-lapse microscopy, screenshots have been taken every twenty minutes
both on the eYFP channel and on mCherry one. We will work with data going from
frame 1, corresponding to ≈ 24h after transfection, to frame 170, corresponding
to ≈ 57h: after frame n ◦ 170 a net increase in the level of fluorescence has been
detected both on eYFP and on mCherry. This effect might be related to the stresses
cells have been exposed to, among which we can mention transfection and light
excitation [25]. In addition, we should consider that after having been transfected
cells live in the same culture medium for all the duration of the experiment. It is
very likely that at a certain time cells have no longer nutrients. Extracted data
have been arranged in two matrices, one for eYFP values and one for mCherry
ones, where each row represents a specific cell and each column refers to a certain
frame, thus to a particular time. As the system should be investigated at the
"stationary state", i.e. after it has stabilized, let’s take frame n◦ 100 as a reference,
which corresponds to a time t = 206400s ≈ 57h. At this time, we look at the
scatter plots of mCherry as a function of eYFP to locate the expected threshold
[15]. Data have been binned according to their eYFP values and corresponding
mCherry values for varying number of miRNA binding sites have been plot to spot
the different trends. Scatter plots are shown in Figure 3.43. In order to see clearly
the non linearity appearance when increasing miRNA binding sites, fit of scatter
plots have been plot on the same graph 3.44. It is clear that only in absence of
miRNA binding site mCherry is in a linear relation with eYFP. Now we consider
three regions for eYFP values, which are respectively:

• range1: under threshold with (0 < eY FP < 1200) a.u.;

• range2: at the threshold with (1200 < eY FP < 2500) a.u.;

• range3: over threshold with (eY FP > 2500) a.u.

Let’s investigate the aspect of mCherry abundance distributions corresponding to
those eYFP regions. Distributions for all binding sites can be seen in Figure 3.45,
where in each plot three distributions corresponding to the three regions have been
shown. By looking at mCherry distributions for range1 one can notice that they are
all exponential. For range3, instead, all mCherry values are Gaussian distributed.
The most insightful case is obtain in range2, at the threshold, where mCherry
distributions for different binding sites behave differently. mCherry distributions
with 0 binding sites (see Figure 3.45a) and 1 binding site (see Figure 3.45b) are
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distributed according to a Gaussian distribution. In presence of 4 miRNA binding
sites (see Figure 3.45c), mCherry distribution presents a peak in correspondence
of the expressed state and a flat region in correspondence of the repressed state.
The case of 7 binding sites (see Figure 3.45d) is the most interesting one in that a
bimodal distribution is clearly visible: the expressed state has a larger value than
the repressed one, namely there are much more free targets than free miRNAs.

(a) Scatter plot of mean mCherry values
versus mean eYFP value in absence of
miRNA binding sites.

(b) Scatter plot of mean mCherry values
versus mean eYFP value in presence of
one miRNA binding site.

(c) Scatter plot of mean mCherry values
versus mean eYFP value in presence of
four miRNA binding sites.

(d) Scatter plot of mean mCherry values
versus mean eYFP value in presence of
seven miRNA binding sites.

Figure 3.43: Scatter plots of mean mCherry values versus mean eYFP values for
varying number of binding sites. In going from 0 to 7 binding sites, miRNA-mRNA
interaction strength is increasing resulting in a non-linearity.
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Figure 3.44: Figure showing the non linear behavior of mCherry as a function of
eYFP for increasing number of binding sites.

3.3.2 Permanence times
In the previous section, a bimodal distribution for mCherry has been found in
range2 of eYFP for 7 binding sites while an emerging mCherry bimodal distributions
is appearing in the case of 4 binding sites. We would like to estimate permanence
times of the cells in the two states. In order to compute permanence times, we
have to fit 7-binding sites bimodal distribution to extract the information about
the means and the standard deviations. The choice to fit 7 binding sites bimodal
distribution is a choice of convenience: bimodal distribution is much more well
defined with respect to the 4 binding sites case. Means and standard deviation
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(a) [mCherry distribution in absence of
miRNA binding sites.

(b) mCherry distribution in presence of one
miRNA binding sites.

(c) mCherry distribution in presence of four
miRNA binding sites.

(d) mCherry distribution in presence of seven
miRNA binding sites

Figure 3.45: mCherry distributions under, over and at the threshold for the cases
of 0,1,4 and 7 binding sites. The higher the number of binding sites, the stronger
the interaction strength between miRNA and target. A bimodal distribution can
be seen in 7 binding sites picture.

values will be useful to define which is the repressed state and which is the expressed
one. Having determined parameters characterizing the repressed and the expressed
states we can proceed to compute permanence times.
Let’s begin to consider mCherry probability distribution function for 7 binding sites
in range2. By looking at the form of the distribution, it seems reasonable to fit it
with a mixture of two Gaussian distributions. The result of the fitting is shown in
Figure 3.46. As for theoretical simulations, the fit has the only scope of finding the
values of means and standard deviations. It has been found that µ1 = (941± 130)
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a.u., σ1 = (435±129) a.u., µ2 = (2017±82) a.u. and σ2 = (328±71) a.u.. With the
results of this fit, we define as repressed the state formed by all values x1 < µ1 + σ1
and as expressed the state formed by all values x2 > µ2−1.5 ·σ2. This definition for
the two states will be applied both to 4-binding sites distribution and to 7-binding
sites one. We want the states to be as large as possible in order to consider the
highest number of cells but we do not want fluctuations to falsify our results (there
must be a certain separation between the two state).

Figure 3.46: Fit of 7 binding sites bimodal distribution using the combination of
two Gaussian distributions.

In Figure 3.47 we can see mCherry probability distribution functions for the
cases of 4 and 7 binding sites, where the leftmost vertical lines are the right limit of
the repressed state while the rightmost one are the left limit of the expressed state.
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(a) ... (b) ...

Figure 3.47: mCherry probability distribution functions for the cases of 4 (green
distribution) and 7 (orange distribution) binding sites. Vertical lines represent the
end and the beginning of repressed and expressed states respectively.

Now that we have both distributions and definitions of repressed and expressed
states, we have to look at mCherry values (over time) of all those cells having
eYFP in range2 (see Figure 3.48). On these entire trajectories, from frame n◦1 to
frame n◦170, the same function used in Section 3.1.3 will be applied. Again, the
choice to consider the entire trajectory is a convenience choice: we need as much
cells permanence times as possible to have a distribution. One may argue that the
system we are looking at should be at the "steady state". We can’t say for sure
that the system is at the "steady state" but by looking at cells trajectories after 24h
from transfection, we can see that they are quite stable. In the future experiments
will be repeated and it might be interesting to start filming cells at earlier times
and look for a "transient". The resulting permanence times are shown in Figure
3.49 and Figure 3.50.
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Figure 3.48: Cells trajectories in presence of 7 miRNA binding sites. The dotted
lines represent the two means extracted from the fit of the bimodal distribution in
Figure 3.46

Figure 3.49: Cells permanence times in case of 4 miRNA binding sites. Both
repressed and expressed states show peaks on long times.
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Figure 3.50: Cells permanence times in case of 7 miRNA binding sites. Both
repressed and expressed states show peaks on long times.

These distributions show peak on long times, suggesting that extrinsic noise
prevails with respect to the intrinsic one. In fact, we are looking at a system
with a consistent number of cells and we said that intrinsic noise decreases with
increasing system size [3]. Moreover, from a comparison with theoretical results,
we can appreciate the same behavior of theoretical and experimental population
distribution.
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Chapter 4

Discussion and conclusions

MicroRNAs exert important regulatory functions on their target genes [13] and their
aberrant expression may lead to several diseases [26]. In previous chapters, we have
studied two models for miRNA-driven inhibition [8] taking into account the presence
of intrinsic and extrinsic noise in the system. We have seen that intrinsic noise,
related to fluctuation of biochemical reactions [19], is able to induce a bimodality
in cell population expression only if interaction between miRNA and target is
strong enough [8]. Extrinsic noise, instead, is related to environmental fluctuations
[19]: here, it has been introduced as a noise on miRNA transcription rate. On
the contrary of intrinsic noise, extrinsic noise is capable of inducing a bimodal
population distribution for a wider range of parameters. The kind of bimodality
induced by these two different noises is extremely different: intrinsic noise-induced
bimodality is a single cell effect while extrinsic noise-induced bimodality is a
population effect [8]. In this work we have seen that a single-cell trajectory is able
to recapitulate the behavior of the entire population thanks to the ergodicity of
the system under study. The key idea of this work was to distinguish intrinsic
noise-induced bimodality from extrinsic noise-induced bimodality by looking at cells
permanence times in the repressed and expressed states of the system. We have
found out that cells belonging to a bimodal population induced by intrinsic noise
have permanence times in the two systems distributed according to a decreasing
exponential. This is due to the analogy of this bimodal with a double potential
well. Cells belonging to an extrinsic noise-induced bimodal population distribution
are characterized by the appearance of peaks on long cells permanence times in
the two states of the system. In fact, in bimodal population distributions given
by extrinsic noise we are looking at cells with heterogeneous values of miRNA
transcription rate kS. MiRNA transcription rate kS is involved in the location of
the threshold: in fact, protein expression values depends on the concentration of
miRNAs and targets. Having different values of kS in our cell population may
imply the existence of some cells that never exit the repressed or the expressed
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state. Thus, when computing cells permanence times in the two states, these cells
will have a permanence time related to the state they are in which is equal to the
observation time.
Starting from this thesis work, we could ask ourselves other interesting questions:
what does it happen suddenly after transfection? Do our cells show a transient?
Which are the cell cycle phases for miRNA in the repressed and expressed state?
These questions could be a starting point for new research works on this fascinating
and complex class that is microRNAs.
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