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Abstract

Since the start of the COVID-19 pandemic, there has been an increasing awareness about

the geographical heterogeneity of the spread of SARS-CoV-2 and such heterogeneity has

been observed at different spatial scales in many countries across the world. This thesis

investigates the possible relations between the geographic disparities in COVID-19 inci-

dence and the differences in socio-demographic and economic profiles of the New York

City neighborhoods. Moreover, the objective of the work is also to study the effects of

the interventions imposed by the NYC government on the infection spread, in the period

from March to October 2020. To this aim, we use a computational approach to model the

epidemic dynamics in NYC at the zip code level. A network structured meta-population

model is implemented to reproduce the geographical transmission trends observed in NYC.

The advantage of granular spatial modelling of the meta-population model is combined

with the possibility to realistically describe the variations of mobility flows across NYC

neighborhoods in the early phase of the pandemic. Mobility patterns are included in the

model thanks to available mobile phone data at the census tracts level. The effects of

the differential behavioral response to social-distancing policies are summarized in the

model by a local risk factor, which affects the transmissibility of the infection at the spa-

tial level in the simulations. Our results show that the simulated geographical patterns

of the COVID-19 incidence correctly reproduce the actual observed spatial trend of the

epidemic across NYC neighborhoods, confirming the fundamental role of human mobility

and socio-economic factors in the epidemic.
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Chapter 1

Introduction

The novel coronavirus disease 2019 (SARS-CoV-2) emerged globally at the end of 2019

from China and has rapidly evolving into a worldwide pandemic. It has been considered

the most severe public health crisis at global level since the 1918 Spanish flu pandemic,

concerning its transmission and infection characteristics [1].

In recent months, many studies have been carried out in order to better understand

the rapid diffusion of SARS-CoV-2, the health risks associated to it and the reasons of

the differences in its spatial diffusion. Starting from Wuhan, the overall clinical severity

of the infection has been studied [2], [3], [4], using publicly available data and several

data-based analysis and modelling processes have been carried out to introduce estimates

of infections, which are essential for the development and evaluation of public health

strategies. Mathematical modeling has been crucial to understand the early transmission

dynamics [5] and to evaluate the effectiveness of control measures applied in different

countries. The actual observations and proposed models converge to explain how social

and geographic factors are determinant in COVID-19 diffusion both at global [6] or at

lower spatial scale resolution, specially in densely populated areas [6].

This work focuses mainly on New York City, given the availability of updated data from

different sources and the geographical heterogeneity observed in the virus diffusion. New

York City was the first epicenter of the pandemic in the United States, where a statewide

stay-at-home order, the ”New York State on PAUSE” executive order, was introduced on

March 22, 2020 [7]. At the end of the first pandemic wave, the geographical heterogeneity

associated to the infection’s incidence was already documented by different studies [8].
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Chapter 1. Introduction 2

1.1 Thesis organization

The thesis project is organized in two main parts: the first section involves the data

collection, cleaning and analysis concerning the overall COVID-19 incidence after the

first SARS-CoV-2 pandemic wave. Therefore, the data involved in this work refer to the

period from March to October 2020. Furthermore, the socio-economic characteristics of

NYC population at zip code level are investigated, in order to assess the presence of some

relationships with the infection’s trend.

The second main section is dedicated to the description of computational methods

to study the SARS-CoV-2 diffusion dynamics across the NYC neighborhoods. The main

objective of the modeling process will be to reasonably modify a basic meta-population

model to introduce in the simulations aspects such as commuting patterns and risk of

infection at ZCTA level.

1.1.1 Chapters main contents

The five chapters of this paper work can be summarize as follows.

The first chapter consists in the introduction of the research study.

The second chapter is dedicated to the collection of socio-demographic and economic

data per zip code of NYC and the details about health data associated to COVID-19

spread. The analysis of these socio-economic data and health data and the criteria used

for the data cleaning are explained and contextualized in the general research framework.

The analysis is first carried out for the five principal boroughs of NYC, i.e. Manhattan

(New York City County), Bronx (Bronx County), Brooklyn (Kings County), Queens

(Queens County) and Staten Island (Richmond County) and then the analysis proceeds

at greater geographical resolution, that is at zip codes level. Moreover, a regression

analysis is proposed to study the relations between the socio-demographic fabric of NYC

and the impact of the first pandemic wave.

In the third chapter, is proposed a description of the methods used at computational

level to model the spreading dynamics of the SARS-CoV-2 specifically for NYC. In first

place a review on the conventional metapopulation SIR model is presented to highlight

the meaning and the context of the modifications that will be introduced. The proposed

modifications of the model refer to the considerations given on the socio-demographic data

and specific spatial heterogeneity of COVID-19 incidence in NYC. Therefore, the main

objective of the computational section is to introduce factors that affect the simulations of

the disease dynamics, such as commuting patters and specifics concerning the differences

in the social fabric of NYC. In order to do so, commuting patters at an high resolution
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spatial scale, i.e. at ZCTA level are introduced. Therefore, the collection and selection

of mobility data, describing the variations in commuters’ behavior during the first few

months of COVID-19 pandemic will be presented.

In the fourth chapter results of simulations with the meta-population model proposed

are presented and commented. The code used for the simulations is available in GitHub

repository of this work [22].

In the last chapter we made some conclusions to offer to the reader a deeper explanation

of the limits and the strengths of the proposed model and to suggest future improvements

of this work.



Chapter 2

COVID-19 health data and

socio-demographic data

2.1 Data collection at ZCTA level

2.1.1 COVID-19 NYC Health department data

The starting point of our data analysis has been to consider the overall incidence of the

SARS-CoV-2 infection during the first outbreak in New York City from a geographical

point of view. The spatial scale resolution that will be considered in this work is rep-

resented by the 177 ZCTAs of NYC. The ZCTAs are the ZIP Code Tabulation Areas

that represents the generalized ZIP Code service areas, identifying the metropolitan area

associated with mailing addresses [9].

COVID-19 incidence refers to the occurrence of new SARS-CoV-2 positive cases in

NYC population over a specified period of time. Cumulative incidence data of the COVID-

19 disease have been collected from NYC Health department website [10], which released

detailed information since the early days of the pandemic outbreak. The data collected

describe the incidence proportion [11] of the NYC population in terms of antibody test

positivity to SARS-CoV-2 virus. Cumulative incidence, in fact, represents the portion

of individuals residing in each ZCTA that had developed COVID-19 and had resulted

positive to the antibody test in a limited period of reference. In our research work the

period of time considered goes from March to October, 1st, 2020, before the formal start

of the second pandemic wave in NYC. The antibody (serology) test is a specific test that

can find out if a person has ever been infected by a specific virus, since it looks for the

antibodies developed after the infection [12].

The maps in Figure 2.1 shows the cumulative incidence at neighborhood level, in

4



COVID-19 health data and socio-demographic data 5

particular the fraction of positive confirmed cases to the antibody tests, carried out in

the mentioned period, over a population unit. Test positive rate defined at ZCTA level

refers to the number of people in those specific ZIP Code areas that were found positive

to the antibody test per 100,000 residents. Therefore, in our study, this indicator will be

identified as the main variable representing the COVID-19 impact at geographical level

from the epidemiological point of view.

The first observation that flows directly from the map of Figure 2.1 is the particular

spatial heterogeneity in the cumulative incidence of COVID-19 referring to the early

months of the first pandemic wave. One may suspect that this heterogeneous geographical

pattern is directly related to the collection of the data itself, since they may have been

affected by the differences at neighborhood level in the testing ratio. In fact, as concluded

in [28], testing has not been proportional to need in NYC and this is strictly dependent

on the socioeconomic and racial disparities across the ZCTAs, that determine a different

access to healthcare. Therefore, it might have happened that in some neighborhoods

only people with mild symptoms had the possibility to take the test, especially in the

early months of the pandemic. In Figure 2.2 this uneven testing ratio at spatial scale is

visualized.

Despite this, the heterogeneity concerning the number of positive cases per 100,000

inhabitants at borough and also at ZIP Code spatial level is not uniquely dependent on

the testing ratio, and this can be visualized in Figure 2.3.

In fact, in the scatter plot, each point on the grid represents a specific ZCTA and

most of them refer to a fraction of the tested population of about 20%− 40% of the total

population. Although, the same percentage of tested individuals can be associated to

a percentage of people affected by COVID-19 that varies from 4% to 10%. In Queens

borough, for example, given the same fraction of population tested per ZCTA, around

30%, the incidence proportion can vary from less then 4% to more than 12%.

These evidences lead us to investigate the origin of these differences in the COVID-19

spread across the neighborhoods in previews other than health sector and suggest the

existence of some relationships with the social fabric of each ZCTA, characterised by

specific demographic and economic indices. In the recent months, many studies with the

same purpose have been carried especially for NYC: taking inspiration from one of these

research works [27], it has been interesting and enlightening to analyze the demographic

and socio-economic determinants of this heterogeneity in the incidence of the pandemic

across neighborhoods.
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Figure 2.1: COVID-19 positive cases per 100,000 residents at ZCTA level in the limited

period from March to October 2020.
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Figure 2.2: Portion of total population tested in each neighborhood.
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Figure 2.3: Scatter-plot of the fraction of positive tests against the proportion of tested

population by neighborhood.
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2.1.2 Socio-demographic data at ZCTA level

In order to perform a complete data analysis, a single data-frame unifying socio-demographic

and economic data per ZCTA of New York city had been built. The data have been col-

lected from different sources, summarized as:

• NYC Open Data website [25];

• data of New York city Health department [10];

• data sets from the 5 years American Community Survey of Census Bureau [26].

In the GitHub directory of the work [13] an R code was available to collect data

from different sources. Therefore, it has been modified properly and used for our specific

framework of investigation. The documentation is included in the GitHub repository of

reference of this thesis project [22].

This socio-demographic data-frame has been merged with health data mentioned in

the previous section, involving in particular the COVID-19 positive test rate per ZCTA,

the absolute number of total positive to the antibody test and the cumulative number of

tests carried out up to October 1st, 2020 per neighborhood.

2.2 Data analysis and methods

2.2.1 Correlation between socio-demographic variables and

COVID-19 uneven spread across NYC neighborhoods

First, it has been important to clean and analyze the socio-demographic data, in order

to select among the socio-economic determinants in the dataframe which of them can

be considered as socio-economic disadvantage indicators and then investigate how they

actually affect the spatial uneven virus spread across NYC ZCTAs. Therefore, an overall

correlation analysis on the columns variables of the dataframe was performed, using in

particular the Pearson’s Correlation Coefficient method: it is known as the best

method of measuring the statistical association between variables because it is based on

the method of co-variance. In order to correctly apply this method, it’s necessary to verify

some assumptions:
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• There should be independence of cases: observations of the different variables should

be independent;

• Variables should be measured at the interval or ratio level;

• Theoretically, variables should follow a bivariate normal distribution, although in

practice it is frequently accepted that simply having univariate normality in both

variables is sufficient;

• There should be a linear relationship between the variables of which one wants to

study the statistical association;

• There should be no significant outliers;

• Homoscedasticity of variables.

In our case, the most correct and precise indicator of the cumulative incidence of

the SARS-CoV-2 infection at spatial level is represented by the percentage of individuals

positive to the antibody tests per 100,000 inhabitants; so among the whole set of variables

in the dataframe, visualized in the map in Figure 2.4, only socio-economic determinants

that have a medium-high level of correlation with this data (positive per 100,000 ) will be

considered. The Pearson’s Correlation Coefficient method is based on the calculation of

the correlation coefficient, that is a measure of linear correlation between two sets of data

and it is calculated by taking the co-variance of the two variables and dividing it by the

product of their standard deviations, as shown in equation 2.1. The correlation coefficient

is expressed as a positive or negative number between −1 and 1: it gives information about

the magnitude of the association, or correlation, in its value as well as the direction of

the relationship between the variables involved; so values higher then |0.40/0.50| indicate

a level of medium, high correlation.

ρxy =
covx,y
σxσy

(2.1)

So variables with a correlation coefficients higher then |0.42| have been selected:

• Perc positive, percentage of population positive to antibody tests (+0.83);

• not quarantined jobs, refers to an estimates of workers still moving to go to work-

place (+0.74);

• avg hhold size, average number of individuals per household (+0.64);

• testing ratio, fraction of tested residents (+0.63);
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Figure 2.4: Correlation matrix for the socio-economic and health data dataframe.
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• pubtrans bus commute, commuters using public transports as bus and subway (+0.63);

• essentialworker drove, workers commuting by private car (+0.59);

• Positive cases , absolute number of positive to antibody test (+0.56);

• drove commute, commuters driving (+0.53);

• didnot workhome commute, commuters that cannot work from home (+0.46);

• hisplat raceethnic, people of Hispanic and Latin ethnicity (+0.44);

• one over medincome, the reciprocal of the median income (+0.42);

• pop density, population density (-0.44);

• taxi commute, commuters using taxi (-0.46);

• res vol zctadensity, residents’ density per zip code (-0.50);

• walked commute, residents commuting on foot (-0.53);

• nonhispLat white raceethnic, people of white ethnicity non-Hispanic or Latin (-0.54);

• bicycle commute, commuters by bicycle (-0.55);

• median rent (-0.62);

• workhome commute, commuters that work home(-0.65).

Some considerations on the variables involved in the previous list had to be done. As

economic indicator the one over median income variable has been included [13]. This

choice is reasonable given the a priori hypothesis that increased socio-economic disad-

vantage, such as lower median income, yields to higher infections: between the economic

determinant and the indicator of the infection’s incidence there is a direct positive propor-

tionality relationship. Furthermore, the variables highly correlated with the positive case

rate are represented by the mobility indicators, concerning the different type of commut-

ing and data about workers’ commuting. Relevant variables are also the ones concerning

the ethnicity and this evidence is coherent with the differences in the number of COVID-

19 infections and hospitalizations at the ethnic level, as evident by the data collection

from the Centers for Disease Control and Prevention [29].
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2.2.2 Multiple regression model for COVID-19 prevalence

Given the previous correlation analysis on the socio-demographic determinants, it would

be reasonable to build up a multiple linear regression model, considering as dependent

variable the number of positive cases per 100,000 inhabitants per ZCTA in NYC and

assess which among the socio-economic and demographic variables are most relevant in

determining the heterogeneous trend of the pandemic in NYC.

Multiple regression is in fact a statistical, parametric technique that uses several ex-

planatory variables to predict the outcome of a response variable, so in this sense is the

extension of ordinary least-squares method (OLS). The purpose of multiple linear

regression is to model the linear relationship between the explanatory (independent) vari-

ables and response variable, and so to find an equation that best predicts the Y variable

as a linear function of the X predictors involved, weighted by coefficients, as shown in

equation (2.2).

Yexp = a+ b1X1 + b2X2 + ... (2.2)

In order to perform the multiple linear regression it is necessary to verify certain

assumptions with respect to the data we want to use:

1. There must exist a linear and additive relationship between independent and de-

pendent variables. By linear dependence, it means that the two variables change at

constant rate: so in this case scatter-plots can be used to show whether there is a

linear relationship between our selected predictors and the outcome. By additive,

it refers to the effect of X (independent variable) on Y (outcome of the prediction)

is independent of the effects of the other variables.

2. There must be no correlation among variables involved as predictors. Presence of

correlation in dependent variables lead to multicollinearity.

3. The error terms must possess constant variance. Absence of constant variance leads

to heteroskedestacity.

4. Once done the multivariate regression, errors between observed and predicted values

(i.e., the residuals of the regression) should be normally distributed: the error terms

must be uncorrelated, otherwise presence of correlation in terms of error means auto-

correlation and it would drastically affect the regression coefficients and standard

error values.
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Variables VIF

nonhispLat white raceethnic 2.699410

one over medincome 2.682562

avg hhold size 2.489377

hisplat raceethnic 2.088295

walked commute 2.046059

pubtrans bus commute 1.921152

taxi commute 1.911909

Positive cases 1.637034

bicycle commute 1.623134

didnot workhome commute 1.425634

testing ratio 1.169297

Table 2.1: Socio-economic and demographic variables and the associated VIF

First of all, in order to construct the set of socio-economic and demographic variables

to predict the spatial incidence of COVID-19 at zip code level, it is convenient to verify

the absence of multicollinearity between determinants involved. Multicollinearity occurs

when there are two or more dependent variables in a multiple regression model, which

have a high correlation among themselves. When some features are highly correlated, we

might have difficulty in distinguishing between their individual effects on the response

variable. Multicollinearity can be detected using various techniques, one such technique

being the Variance Inflation Factor (VIF), applied to the standardized data.

In VIF method, we pick each feature and regress it against all of the other variables.

For each regression, the factor is calculated as in 2.3,

V IF =
1

1 −R2
(2.3)

where R2 is the coefficient of determination in linear regression. Its value lies between

0 and 1: greater the value of R2, greater is the VIF. Hence, greater VIF denotes greater

correlation. This is in agreement with the fact that a higher R2 value denotes a stronger

collinearity. Generally, a VIF above 5 indicates a high multicollinearity, so the set of

predictors will be composed by selected variables from the dataframe with a V IF >= 3,

shown in table 2.1.

As it is redundant and trivially proportional to the explanatory variable, the Posi-
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tive cases feature is not included in the set of predictors of the parametric model.

Moreover, it has been necessary to verify, in our specific case, that the output Y,

i.e. the number of positive cases per 100,000 for each ZCTA, was in a linear relationship

with each socio-demographic variable involved as predictors, and this has been done using

scatter-plots, as shown in Figure 2.5.

In conclusion, the predictors verifying the assumption and included in the regression

model will be represented by:

• Non Hispanic/Latin white people;

• the reciprocal of the median income, social disadvantage indicator;

• the average number of individuals per household;

• number of people of Hispanic/Latin ethnicity;

• commuters on foot;

• number of commuters using public transports;

• commuters using taxi;

• commuters by bicycle;

• workers that have to commute to workplace;

• the testing ratio associated at zip code level;

The OLS Regression details are presented in table 2.2 and in table 2.3, which shows

the statistical parameters associated to each predictor. The R2 value is the statistical

measure that explains how close our data are to the fitted regression line in the model.

R2 value ranges between 0% and 100% or between 0 and 1. A R2 value of 0% reveals

that the model explains no variation of the response data around its mean; however a R2

value of 1 or 100% illustrates that the model explains all the variability of the response

data around its mean. The latter R2 value, close to 1, is mostly preferred. Generally,

the higher the R2, the better the model fits your data. Nevertheless, there are factors

to consider in evaluating the validity and reliability of fit such as the sample size, the

variables selection and unknown factors influencing the response.

In our case, a R2 = 0.848 is sufficiently large to rely on this model and make some

considerations on the P values of the variables involved, shown in table 2.3: predictors

with a low P -value (< 0.05) is likely to be a meaningful addition to your model because

it will indicates that the changes in this predictor’s value are related to the changes in the
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Figure 2.5: Verifying the linear relation between each predictor and explanatory variable.
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Dep. Variable: pos per 100000

R-squared: 0.848

Model: OLS

Adj. R-squared: 0.839

Method: Least Squares

Log-Likelihood: -84.155

Table 2.2: Specifications of the regression model

coef std err P> |t|

const -1.11e-16 0.030 1.000

Non-Hispanic/Latin white people -0.1906 0.050 0.000

1/median income -0.0325 0.048 0.502

Average size of households 0.2024 0.046 0.000

People of Hispanic/Latin ethnicity 0.1308 0.043 0.003

Commuters walking -0.0554 0.043 0.201

Commuters using public transports 0.2081 0.042 0.000

Commuters using taxi -0.0388 0.042 0.354

Commuters using bicycle -0.0606 0.038 0.117

Commuters that did not work home 0.1055 0.036 0.004

Testing ratio 0.4935 0.032 0.000

Table 2.3: Multiple variate linear regression details
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response variable; conversely, a larger, and so insignificant P -value suggests that changes

in the predictor are not necessarily associated with changes in the response.

The variable associated to the testing ratio at ZCTA level is relevant and involved in

the regression model with the highest positive coefficient than the ones associated to the

other predictors and this is coherent with the reasoning done in chapter one: the counts

of confirmed cases depend on how much a borough actually tests. However, this is not

the only determinant in the heterogeneity audited of incidence of COVID-19 at spatial

level in NYC.

In our case, almost all possible ways of commuting are involved as predictors, but

the most relevant are related to the number of commuters using public transports, such

as buses and subway. It has also been confirmed by studies prior to the outbreak of

COVID-19 pandemic, as in paper [30], that the transmission of infectious diseases, as

influenza-like illness, depends on the amount and nature of contacts between infectious

and healthy individuals and this means that confined and crowded environments, such as

transport hubs, can act as hot-spots for spreading disease. This is why at the declaration

of the State of emergency in NYC state on March 7, 2020, government’s interventions

consisted in the application of voluntary precautionary measures such as avoiding public

transport, following by the ”stay-at-home” mandate starting the week of March 22, 2020

[31].

Therefore, in our model the average household size is a relevant parameter with a

positive coefficient of linear proportionality with the output of the regression model, and

this is coherent with the discussion in [13] about the effective possibility for residents

of social-distancing. As moreover investigated in [32], household size and characteristics

like the number of generations living together will affect the transmission of the infec-

tious disease, household vulnerability: high population density increases the risk of rapid

transmission.

The percentage of population in a specific ZCTA belonging to the Hispanic Latin

ethnic group is also a representative determinant in the model. The higher is the num-

ber of Hispanic/Latin inhabitants, the larger will be the percentage of positive cases to

COVID-19 infection. This result is coherent with many studies done on Hispanic/Latin

communities: for example, according to the U.S. Department of Health and Human Ser-

vices, Hispanic have the highest uninsured rates of any racial or ethnic group within the

United States [34], and this could be determinant in control and track the disease’s spread,

as a larger number of residents in some neighborhoods were more likely to put off being

tested for the virus, expecting it will be expensive to do so.

The significant disparities in health outcomes and COVID-19 prevalence at spatial level

in NYC are then strictly correlated with the geographical pattern of economic differences

and social disadvantage: in the neighborhoods where a larger number of workers has

to use public transport to reach the workplace or in ZCTA where the average number of
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people per household is higher, the capacity of maintaining the measures of social distance

was more difficult; in the wealthiest and less densely populated districts the possibility of

working from home and having more direct and simple access, from an economic point of

view, to health care has determined the possibility to better track the epidemic and keep

it under control in these areas.

Further research has been carried out during these months of the State of emergency

to quantify this relation between the disparate impact of the epidemic and the socio-

demographic differences between ZCTAs, as the social ethnicity and socioeconomic in-

equality, using also different regression models, as in the work by D. Carrión et al. [13].



Chapter 3

Methods and modeling

As discussed in the previous chapter, differences at geographic level in the use of public

transports and, in general, the dissimilarities at ZCTA level of the commuting patterns

across neighborhoods are factors that have affected the spread and the overall incidence of

the SARS-CoV-2 pandemic. The evidence that the epidemic patterns in different regions

are correlated with human movement and short-scale commuting patters (as workflows)

has been confirmed by different studies [14], [15], [16].

Moreover, in our analysis, the differences in the socio-economic characteristics and

ethnicity have been identified as determinants in the uneven spread of the virus across

different zip codes.

During the year 2020, many studies have proposed a model-based analysis in order to

estimate the incidence of the virus in NYC, with a particular focus on the representative

factors that drove the spread of the disease, such as mobility and markers of socioeconomic

status at spatial level.

In the work by Yang et al. [19], for example, the infection-fatality risk is estimated

using a meta-population network model-inference system, simulating the intra and inter-

neighbourhood transmission of SARS-CoV-2.

Similarly, in our study we propose a computational approach to reproduce the NYC

spatial heterogeneous pattern of cumulative incidence of the SARS-CoV-2 disease.

The methodology consists in building a metapopulation model which simulates the

dynamics of the virus diffusion on a network. This is done by integrating in a basic model

the effect of the mobility variations during the early months of the COVID-19 pandemic

in order to assess how the differences at zip code level affect the simulations of such

dynamics.

20
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3.1 Modeling the spatial spread of infectious diseases

The mathematical and computational modeling of infectious diseases is key to study

the mechanisms by which infectious diseases spread, to predict the future course of an

outbreak and can be determinant in the evaluation of strategies to control an epidemic.

In particular, in the case of the COVID-19 pandemic, one of the distinctive aspects of

the spread of the disease is its spatial diffusion and the concurrent role of human daily

commuting and mobility patterns, as proved by the previous data analysis.

As pointed out in previous studies, such as [35], network structures have emerged as a

powerful framework to incorporate mobility patterns within the mathematical modeling

of epidemics. Networks have been extensively used in predicting the spread of infectious

diseases where individuals interact with a limited set of others, defining the graph through

which the ILI can spread [17], [18].

Meta-population models are largely used in computational epidemiology [20], [21],

[19], [35]. They are a type of spatial model which investigate interactions and movements

among different sub-populations of the same species, across time and space. It is an ex-

tension of more conventional population-level compartment models that typically assume

homogeneous mixing and implicit interactions within a population.

The objective is to simulate the dynamics of the transmission of an ILI infection in each

sub-population, i.e. in each node of the network under study, whose dimensions depend

on the spatial resolution required. In our case, the considered network is formed by the

177 nodes, i.e. the 177 ZCTAs of NYC. The commuting patterns between neighborhoods

will be introduced as flows on the edges of the graph. The mobility variations within each

ZCTA will not be taken into account.

3.2 Epidemic meta-population model

The basic epidemic meta-population model is represented by a reaction–diffusion (RD)

meta-population model [36], where the whole population is divided in sub-populations and

each of them is classified with respect to their role in the epidemiological process. Each

sub-population is in connection with the others by the commuting flows of individuals

moving across the spatial structured network, as shown in figure 3.1.

The transmission mechanism of the virus takes place in each node, simulating the

infection spread between individuals in the same ZCTA and it is described by a SIR

compartmental model, in which each individual can be either susceptible, healthy (S),

infectious (I) or recovered/removed (R).
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Figure 3.1: Spatial scheme of the meta-population model with commuting flows

Figure 3.2: SIR model: state transitions

Form a theoretical point of view, the classical SIR model is a compartmental model

without vital dynamics, i.e. without considering the birth and death of individuals, since

the timescale for modeling is much smaller than the average population turnover. The

recovered individuals on the network are assumed immune to the disease once they have

recovered and no more contagious. In scheme 3.2 all possible individuals’ state transitions

in the SIR model are summarized.

In its continuous version, this model can be described by the ODE system 3.1:

dS

dt
= −βIS

N
;

dI

dt
=
βIS

N
− µI;

dR

dt
= µI

(3.1)

and the normalization condition 3.2, where N represents the total population on the
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network, must be verified.

S(t) + I(t) +R(t) = N (3.2)

The fundamental parameters involved in model are:

• β, the transmissibility of the infection, corresponding to the reciprocal of the typical

mutual contact time between individuals;

• µ, rate of healing, or the reciprocal of the average number of days after which the

subject is no longer contagious and is removed.

The dynamics of the infectious class depends on the ratio 3.3, defined as the basic

reproduction number:

R0 =
β

µ
(3.3)

The RD process involved in the simulation model is the time-discrete version of the

SIR model. The dynamics of the process is separated into two distinguished moments:

the work time, when commuters move towards their working districts, and the home

time, when they are assumed to be back home. Therefore, the compartmental matrices,

representing the possible states of the individuals on the network, are updated during the

simulation. The single elements of these matrices will indicate the number of susceptible,

infected and recovered who live in neighborhood i and work in district j for every pair of

i, j as Sij, Iij and Rij, respectively.

The individuals on the network can be infected in their workplace during work time

and then spread the disease once they travel back home during home time or vice versa.

Infectious commuters are allowed to move on the network. In the basic model, for the

sake of simplicity, the behavioral changes associated to the possible severity of clinical

symptoms are not considered. Each day of a simulation is considered as a typical working

day, no weekends or holidays are introduced.

The basic simulation algorithm works as described in support information section in

the study of Tizzoni et al. [38].

At the starting point of the simulation, each node of the network is initialized with

its resident population Ni =
P

iNij, where Nij is the matrix element that refers to the

number of individuals who live in ZCTA i and work in ZCTA j.

Individuals are labeled according to their health status and divided into the three com-

partments: Sij, Iij and Rij. The entries of the compartmental matrices S, I and R are

initialized by setting Sij = Nij for every combination ij except for the initial seeds.

Therefore, at the beginning of the simulation the only non-zero entry of the matrix I
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will be Iss = 10. This means that in a specific neighborhood, defined seed, there are 10

individuals already affected by the disease.

Each simulation time step represents a workday, divided in two moments, work time

and home time, assumed to have equal length, 12 hours each. During work time, the force

of infection in node i is calculated as 3.4:

f work
i =

β

2

Iii +
P

j Iji

Nii +
P

j Nji
(3.4)

where β is the daily transmissibility and the factor 1/2 takes into account that we are

considering half a day. The number of new infected individuals among those who work

in i is extracted using a random binomial sampling 3.5:

∆(Sij− > Iij) = Binomial(Sij, f
work

i ) (3.5)

Analogously, during home time, the force of infection in node iis calculated as 3.6:

f home
i =

β

2

Iii +
P

j Iij

Nii +
P

j Nij
(3.6)

New infected individuals among those who live in i ZCTA are extracted using a random

binomial sampling, but now using the force of infection at home 3.7:

∆(Sij− > Iij) = Binomial(Sij, f
home

i ) (3.7)

Recovery transitions happen both during home and work time, as spontaneous process,

with constant probability µ/2, depending on the defined recovery rate.
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3.3 Meta-population model including effects of non-

pharmaceutical interventions

Given the basic meta-population model, the purpose of this work is to propose some

modifications of the simulation algorithm, in order to include the real impact of non-

pharmaceutical interventions that had been implemented in NYC during the year 2020.

3.3.1 Commuting patterns

First, we would like to introduce the behavioral changes in the mobility patterns due to

the ”stay-at-home” order and the declaration of the state of emergency on March 22,

2020. The commuting in NYC has been affected also in different ways at geographical

level, due to the socio-demographic determinants discussed in previous chapters, such as

the effective access to testing, the possibility of use private means of transport instead of

public ones, the ability to work remotely and the number of persons per household. At

the outbreak of the pandemic, for example, as described in article [33], people living in

Manhattan borough and in the NYC richest neighborhoods had the possibility to leave

their houses to vacation places or to work from home. These determinants have affected

the trends of commuting patterns in NYC in the following months, with the effect of the

increased possibility of social distancing only for some communities.

In general, an high spatial and temporal resolution of mobility flows at different geo-

graphic scales over time may help to monitor the epidemic spreading dynamics and deepen

our understanding of the actual human responses under the public health crisis.

In order to introduce these data in the modeling, it has been crucial to better under-

stand from a quantitative point of view the variations in commuting flows in NYC during

the first months of SARS-CoV-2 pandemic, i.e. the period of reference of this work, March

- May 2020.

Mobility data at borough level and then at ZCTA level have been collected from the

GitHub repository available from the research work [39].

Mobility data description

The above mentioned data set have been built up by analyzing anonymous mobile phone

users’ visit trajectories to various places provided by SafeGraph. Mobile phone data have

been used in different studies [40], [41], [42] to predict the spatial spread of an epidemics
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and represent faithfully the commuting links between highly connected locations [36]. In

order to give data a structure, the daily and weekly dynamics origin-to-destination (O-D)

population flows are computed at the different geographic scales: at county and census

tracts level.

The place visitor patterns are retrieved from the SafeGraph COVID-19 Data Consor-

tium, by gathering millions of anonymous GPS pings for United States, collected from

numerous mobile applications tracked and cleaned to remove noise. Users’ home places

are estimated and aggregated at the level of census block group (CBG). Then, those users’

visits from home places to points of interest (POIs) are tracked. POIs are the primary

venue for tracking place foot-traffic by SafeGraph. The home place of a user refers to

the place where he/she has spent most of his/her night time during the last six weeks.

For each day, GPS pings of each device are clustered and only those clusters during night

time hours (6pm - 7am local time) are kept. Therefore, the most frequent CBG over the

last six weeks that reflects the primary night time location is used as the “home location”

for each user. By aggregating home places to CBGs, user privacy can be protected, and

no individual records can be traced.

Active users’ visits to POIs are produced with a similar strategy. By using several

clustering methods, such as density-based spatial clustering for applications with noise,

GPS pings are grouped together, so that each cluster contains a set of potential POIs

and associates with CBGs. The best place for a given cluster is classified by performing

machine learning methods involving several entangled features. Thereby, each user’s visits

from home place to various POIs and CBGs are identified.

From these data, visitor flows are calculated at different scales. The two major human

mobility flow metrics are denoted as daily CBG to CBG visitor flows and weekly CBG

to POI visitor flows. In the daily CBG to CBG visitor flows metric, each row contains

an origin CBG and a destination CBG, as well as the number of mobile phone-based

visitor flows from the origin CBG to the destination CBG. Every day, the number of

unique mobile phone users who live in the origin CBG and visits to the destination CBG

are recorded, clustering GPS pings and involving only those clusters (i.e., not a single

trajectory) with a duration of at least one minute. In this way, the daily mobile phone-

based visitor flows between CBG and CBG are grouped and summed up. For the weekly

CBG to POI visitor flows metric, a mapping of CBGs to POIs is provided. In other words,

the number of unique visitors who live inside the origin CBG and visit the destination

POI in one week are counted.

The two mobile phone-based visitor flows metrics are both processed at the CBG

scale. Then, all data are further aggregated into three different spatial scales: census

tract, county, and state. Providing a multi-scale flow data set allows to have a more

comprehensive view of human mobility and spatial interaction patterns. Furthermore,

the O-D (origin - destination) flow data set is generated at the three geographical scales,
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respectively, by assign to census tract, county, and state’s geographically unique identifier

to each origin CBG and destination CBG to which they belong.

The calculation of visitor flows at the three spatial scales is based on mobile phone

users detected by SafeGraph, not on the entire population. As discussed in work [39],

these users account approximately for 10% of the entire population in the U.S. However,

studies as [43] have shown that a good representative sample of the entire population

can reflect general human mobility patterns. Therefore, to infer the short-term dynamic

mobility flows during the COVID-19 pandemic, the official American Community Survey

[26] population data with mobile phone visitor patterns has been used. The inference has

been realized using the following equation 3.8:

pop flows(O,D) = visitor flows ∗ population(O)

num devices(O)
(3.8)

where pop flows is the estimated dynamic population flows from geographic unit O to

geographic unit D, visitor flows is the computed mobile phone-based visitor flow from O

to D, population (O) indicates the population at the geographic unit O extracted from

the ACS, and num devices(O) refers to the number of mobile devices residing in O.

Analysis of mobility data

Therefore, given this framework, the data set considered in our work provides the weekly

variations of mobility flows at county to county level. In the figure 3.3 a temporal analysis

on commuting flows between NYC’s counties from February 24, 2020 to May 3, 2020

is shown: in particular, data presented are normalized with respect to the first week’s

number of commuters of each borough, in order to better visualize the differences in

decreasing or increasing of the number of trips to and from the NYC’s boroughs and the

variation of the internal commuting in each district.

From the graphics, it is evident that journeys towards Manhattan district have sig-

nificantly decreased compared to those to other boroughs: this could probably be linked

to the possibility of citizens to respect the government measures imposed and to oper-

ate smart-working according to the employment sector. In addition, as explained above,

many Manhattan’s residents could effectively leave their houses given the availability of

vacation places outside the district. The neighborhoods where internal commuting has

decreased the fewer are Bronx and Brooklyn: around the 30/40%, while in Manhattan

the average number of daily internal journeys has dropped by up to 55%.
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Since our geographical resolution of interest is at ZCTAs level, some further manag-

ing of the data collected from the GitHub repository of [39] study has to be done. As

described before, the mobility flows’ data were presented at three different geographical

scale. Therefore, in order to use the data at ZCTAs level, population flows at census tracts

level have been considered and summed up properly. The methodology used is properly

described in the R script ”geoidtozcta nyc script”, uploaded in the GitHub repository of

this work [22].

Moreover, since data were given as weekly flows, it has been necessary to take into ac-

count the temporal scale of simulation. Each step of the simulation algorithm corresponds

to a single work day, then the number of weekly population flows at ZCTA level has been

averaged on a week, in order to have approximately the number of daily journeys of type

origin-destination.

In the basic version of the model, the number of commuters on the network, from each

node to the others, was fixed and given as input.

In our case, the variations of the commuting patterns are introduced at each week of

the simulation, instead of modifying the absolute number of commuters. The variations

introduced represent the relative decrease or increase of the number of the O-D journeys

between ZCTAs compared to the value of the first week of the simulation. The equation

3.9 shows how these relative variations, i.e. the weight wij associated to each edge of

the graph, are calculated for each week. These data concerning the relative variations of

commuting patterns will be given as input files of the code. Therefore, the number of

commuters effectively moving on the network is updated at each week of the simulation.

The number of susceptible commuters varies according to the relative weight wij, as

shown in equation 3.10, and the same operation is performed for the other compartmental

matrices (infected and recovered individuals).

wt+1
ij =

pop flowst+1
ij

pop flowstij
(3.9)

St+1
ij = St

ij ∗ wt+1
ij ∀i 6= j (3.10)

3.3.2 Parameters evaluation: Risk Index at ZCTA level

The Rt parameter has been updated at each week of the simulation to better reproduce

the progress of the pandemic in NYC. This has been done according to the overall trend

recorded for NYC during the early months of the pandemic. When the whole population

is susceptible and no interventions are in place, the Rt coincide to the basic reproductive

number R0 and it reflects the transmissibility of an infection in that population. In case
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Period R0/Rt

24/02/2020 - 01/03/2020 3

02/03/2020 - 08/03/2020 2.99

09/03/2020 - 22/03/2020 2.22

23/03/2020 - 29/03/2020 1.37

30/03/2020 - 12/04/2020 0.93

13/04/2020 till the end of simulation 0.56

Table 3.1: Estimates of R0 and Rt parameters introduced in the simulation algorithm

some interventions are introduced, it could be fundamental to evaluate the effectiveness

of the measures on the transmissibility of the disease. However, it may be very difficult

to distinguish the impact of a single intervention. In the work [44] some estimates on the

Rt value of NYC have been done and we introduced them in the model to simulate the

framework of the first ten weeks of the pandemic. We could summarize the associated

value of the reproductive number R0 and then the Rt values in the simulations, as shown

in table 3.1:

In the first days following the declaration of the first confirmed case of COVID-19

in NYC, the R0 was very high. It decreased during the next two weeks, when NY State

declared a state of emergency and public awareness and voluntary precautionary measures

(e.g. avoiding public transit) increased. Following the stay-at-home mandate starting the

week of March 22, Rt dropped substantially, until dropping below zero during April, 2020,

when face covering in public places was implemented as control measure. Therefore, in

out model we try to reproduce this trend manually updating the value of the reproduction

number.

Moreover, in the model, an indicator of the socio-economic disadvantage at geograph-

ical level has been introduced, given the analysis done in Chapter 2. The inability to

socially isolate could refer to the usage of the public transports and contribute to greater

the exposure risks among communities. In the study [13] MTA transit data have been

used to define a risk index at United Hospital Fund (UHF) neighborhoods level for NYC.

UHF neighborhoods are composed of adjacent ZCTAs approximating community districts.
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Therefore, in order to introduce this risk factor in our model, it has been defined at ZCTA

level according to the geographical correspondences.

This factor will be multiplied by the β parameter during the simulation and will be

equal to 1 for neighborhoods at high risk of infection and 0.5 in case of ZCTAs at low risk

of infection with respect to the socio-demographic framework. Moreover, the µ parameter

in the code is fixed and equal to 1/3, since we are assuming that the average number of

days to recover, after which the individuals are no more contagious is approximately three

days. This assumption will not affect significantly the results of simulations given by such

a simple model. The map of NYC’s ZCTAs and the associated risk index is shown in

Figure 3.4.

3.3.3 Pseudo algorithm

Here is presented the pseudo-algorithm of the model, introducing the commuting varia-

tions and the update of the Rt and β factor. In each simulation, the city seed, i.e. the

node in which first infected subjects are placed, is randomly selected.
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Algorithm 1: Simulation algorithm

read database of total population per ZCTA

setting initial commuting patterns

initialize the risk index associated to each node of the network

set R0 with its initial value

for all run r do

for all timesteps t do

if week changes then
update the R0 value

calculate the new β factor
end

Work time:

for all nodes i do
evaluate the force of infection at work

extract infectious using random binomials with probability fwork
i

extract recoveries using random binomials with probability µ/2

update compartmental matrices
end

Home time:

for all nodes i do
evaluate the force of infection at home extract transitions using

random binomials with probability fhome
i

extract recoveries using random binomials with probability µ/2

update compartmental matrices
end

end

end
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Figure 3.3: Variations in commuting patterns from March to May 2020
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Figure 3.4: NYC’s risk index at ZCTA level.



Chapter 4

Results of simulations

4.1 Geographical patterns and numerical analysis

The meta-population model described in the previous chapter has been used to simulate

the dynamics of the COVID-19 spreading in the early months of the pandemic’s outbreak.

The results of each simulation of an epidemic spread are collected and manipulate, using

a R script, given the GitHub repository of this work [22]. In Figure 4.1 we can see the

median proportion of recovered individuals over total population for each ZCTA resulting

from a set of one hundred simulations. Whereas, in Figure 4.2 the actual cumulative

incidence of COVID-19 is displayed at ZCTA level.

The similarity between the spatial infection patterns of the two maps is evident: ge-

ographical differences in infection incidence in simulations reproduce the observed dis-

homogeneous trend of infection in NYC, across the different neighborhoods. However,

from a numerical point of view, the results inferred from the simulations differ from the

actual data for all ZCTAs by an order of magnitude. This conclusion will be explained

further in the following sections, where a detailed analysis of all the factors involved in

this modeling process is presented.

4.2 Statistical analysis of the results

We present the statistical analysis of the simulations results. The distribution of the nu-

merical data concerning the fraction of population recovered after one hundred simulations

with our meta-population model is shown in Figure 4.3. Data have been aggregated from

ZCTA level to borough to visualize the statistical distributions of simulated data across

34
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Figure 4.1: Results of simulations using meta-population model, including commuting

patterns and risk index.
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Figure 4.2: Actual cumulative incidence of COVID-19.
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the five borough of NYC. As displayed in figure, the distributions of the median value

representing the portion of recovered population associated to Manhattan and Staten Is-

land are compact around the median value. Conversely, the distributions associated to

Bronx, Brooklyn and Queens borough are asymmetric and long-tailed distributions. This

evidence can indicate a greater heterogeneity in the attack rate of simulations across the

ZCTAs of these NYC counties.

In Figure 4.4, we plot simulated over actual data indicating the portion of individuals

infected over the total population in logarithmic scale. The logarithmic transformation

is performed to overcome the visualization limits due to the differences in order of mag-

nitude of the numerical results. From the Figure 4.4 we notice that except for some

Manhattan and Staten Island ZCTAs the predicted fractions of recovered individuals are

overestimated. In particular, Bronx, Queens and Brooklyn are the boroughs for which we

visualize the largest prediction errors.

4.3 Discussion

Although the simulations correctly reproduce the geographical trends of the infection

spread, the median number of recovered individuals is in general higher compared to the

actual data. The simulated fraction of recovered individuals over the total population

ranges between 0% and 60%, while the actual data for the same variable ranges between

0$ and 5%. This discrepancy can be explained by several factors, related to the data used

in the modeling process and the limits of the model itself.

First, mobility data are inferred from a sample of individuals. Safe Graph provides mobile

data tracking millions of anonymous mobile phone users’ in the US and the data used in

the model are the result of a data manipulation process, explained in details in chapter

3. As explained in the study [39], visitors duplication is certainly present in the mobility

data set. This may have been determined by the aggregation of the commuting flows

at different spatial scale resolutions, determining the overestimation of population flows

between ZCTAs. Data bias is a common issue for large-scale mobile phone data and may

influence the representativeness of the data set. In fact, the dynamic mobility flows are

inferred from mobile phone applications by users, knowing that smartphone applications

usage is not the same across the different age groups. In addition, an other limit that

can be recall concern the identification of home and work locations as the only two POIs

in the manipulation of the mobile phone data [38]. Furthermore, one single source of

mobility data cannot provide a comprehensive description of human movements across

all spatio-temporal scales [38] that can be relevant for a specific disease transmission.

Although, focusing uniquely on one-type human movement, that is daily commuting, has
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Figure 4.3: Statistical analysis of the simulation results in terms of fraction of recovered

over the total population at borough level.
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Figure 4.4: Scatter plot in logarithmic scale of predicted versus actual data of the portion

of infected from COVID-19 over the total population per ZCTA.
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been shown to be relevant for the spread of influenza at the national level [37] and accu-

rate in the ILI epidemic dynamics modeling.

Secondly, the geographical association of a binary risk index (high or low) may have af-

fected the results. In fact, by using a simple binary index, we are losing in granularity

when comparing different ZCTAs. For example, almost all neighborhoods of Staten Island

are classified as ”low risk” areas. As result, the geographical differences in the infection

incidence in this borough are less evident in map associated to the simulated data com-

pared to the actual data.

Moreover, non - pharmaceutical interventions to prevent infection’s spread cannot be

summarized only by the variations over time of the commuting patterns. In fact, as un-

derlined in the work [44], the increased awareness of the dangerous health consequences

of COVID-19 may have contributed to further reductions in the effective transmission. In

addition, the Public health safety guidelines implemented, such as the face-mask covering,

have certainly contributed in preventing the possibility of direct transmission between in-

dividuals [45].

The transmissibility of a virus can be driven by environmental conditions, that depends

on its characteristics. Currently a large number of studies are being carried out to deepen

the specific environmental characteristics that have influenced the spread of the SARS-

CoV-2, as the work [46].

Finally, the reaction diffusion process involved in the modeling, the discrete version of

SIR model, is a very simple model and in general for COVID-19 dynamics it would be

preferable to use more complex models, with an higher number of compartments, such as

SEIR (susceptible, exposed, infected, recovered) models [47], [48].
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Summary and conclusions

In this study, we have proposed a mathematical model to predict the differences in

COVID-19 incidence at spatial level for NYC neighborhoods between March and May

2020. First, we evaluated the correlations in the socio-economic differences at ZCTA level

and the actual incidence of COVID-19. The multiple linear regression lead us to realise

that commuting flows, median income and the possibility of social distancing associated

to the different ethnic groups are determinant factors of the epidemic spread. This result

is coherent with previous studies, [13], [23], [27] and supported the computational meth-

ods proposed in the second part of this work.

This study extends the existing literature on epidemiological modelling. A network

structured meta-population model has been adapted to simulate the COVID-19 spread

dynamics by adding the following features. First, the commuting flows between NYC

ZCTAs are included in the model dynamics and updated at each week of simulation ac-

cording to actual variations in mobility patterns. Secondly, we included in the model a

binary risk index at ZCTA level to summarize the overall effects of the socio-economic

disadvantage on the reaction-diffusion process. To sum up, the meta-population model

qualitatively reproduce the actual geographical pattern of the COVID-19 spread across

NYC neighborhoods.

The main limit of this study is represented by the overestimation in terms of numer-

ical predictions of the cumulative incidence. This inaccuracy in predictions at spatial

level could be overcome by introducing more than one source of data for the commut-

ing patterns in the model. A pool of mobility variables could help in quantifying more

accurately the actual commuting flows. Moreover, it could be useful to introduce a risk

index with higher variability across ZCTAs, based on socio-economic characteristics. This

might influence the reaction diffusion parameters and consequently the movements across

the network. From an epidemiological point of view, this can surely help in forecasting

41
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and controlling the future spread of high risk Influenza like-illness as COVID-19.
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