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Abstract
The design of artificial biomolecules with given biological functions has become one
of the main interests of biotechnology and bio-engineering in recent years. One of
the goals in this field is the to improve natural molecules. Tha aim is to design
artificial molecules that have the functionality of natural ones while being more sta-
ble/efficient/resistant.
The recent advances in sequencing technology have significantly speeded up and
increased the amount of biological data available. Now it is finally possible to apply
data-driven approaches to address this issue.
Generative models are tools in Machine or Statistical Learning used to generate ar-
tificial molecules that mimics the statistical features of natural ones, in the hope to
also reproduce their biological functionality. There are several examples in the liter-
ature where these tools have been already applied successfully to proteins. In this
thesis we apply them to RNA either designing new model architectures or adapting
already existing ones.
The generative models treated are inspired from statistical physics. We use inverse
statistical physics to build Potts models from which we sample artificial data. We
test and compare several models having a special consideration for interpretability,
since by analyzing the parameters of a good model we can deepen our understand-
ing of the biophysics of RNA sequences.
As compared to proteins, the study of RNA has the advantage that the information
on RNA secondary structure is easily accessible and there are efficient and precise
algorithms for its prediction. We used secondary structure tests on our artificial se-
quences as an indicator for correct biological functionality. Furthermore, we used
the information obtained from our models to build/improve structure prediction al-
gorithms.
We conclude that, possibly after refinements based on experimental tests, that gen-
erative sequence models are good candidates for the design of artificial RNA se-
quences.
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Chapter 1

Introduction

1.1 Aim of the Thesis

The aim of this thesis is to find ways to generate artificial RNA molecules that are
able to replicate structure and functionality of natural ones (these techniques are
called "generative models"). This kind of problem is not new: the design and the
generation of bio-molecules with given functions has been one of the main interests
of biotechnology and bio-engineering in the last 20 years. The majority of the work
in this direction has been done on proteins [1]: generative models are used as an
effective tool in the design of antibodies and artificial sequences have been shown to
be able to effectively substitute natural ones in microorganisms [17]. Besides these
clear direct applications there are also several additional benefits: the theoretical
apparatus developed for the construction of effective generative models can be (and
has been) used to study mutations, folding dynamics and native contact prediction
of bio-molecules [11] and there are many more possibilities, for example the work
done on RNA in this thesis serves as a basis for a PhD project that aims to study the
plausibility of the "RNA World" theory that is one of the leading hypothesis for the
origin of life on this planet [16].

1.2 Generative models

Generative models are Machine Learning tools with the aim of generating artificial
data that reproduces the important features of natural data.
A possible definition is the following [8]:

A generative model describes how a data-set is generated, in terms of a probabilistic model.
By sampling from this model, we are able to generate new data

A naif but effective example is the following: suppose we want to generate artificial
images of kittens. The first thing we have to do is to explain to our generative model
how they look like. To do so we feed our models with a large number of kitten
images so that he can learn the general rules of appearance of a kitten. This phase
in Machine Learning is called "training" and the images fed to the model are called
"training set". After this, if the model is well made, it should be able to generate
brand new images of kittens and we should not be able to tell if an image is artificial
or it is an actual photo. This phase is called "sampling" and the generated pictures
are called "artificial data" (as opposed to "natural data" that is data coming from
real-life settings).
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FIGURE 1.1: Representation of the process (with horses) [8]

There are two main issues with generative models:
The first problem is when the artificial data is too different from the natural data of
the same kind. If the generated images do not resemble kittens of course our model
is failing.
The second problem is when the model samples slight variations (or exact copies)
of the training set. In this case it is obvious that we are not able to differentiate
between natural and artificial data but we are also not gaining any new information
nor exploring any new variability (for example if we want to find a protein with
a certain antibody function that is more efficient than the ones present in nature
copying natural data will not bring us very far).

FIGURE 1.2: Data is represented by points, the model is clearly falling
under the second issue. This is called "data copying prolem"

If the generative model operates with probabilities (which will be the case through-
out all the thesis) it is called a "probabilistic generative model". For this kind of
models all the observation done till now can be summarized with the "generative
models framework" [8]:
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FIGURE 1.3: Probabilistic generative models framework

In this thesis we will study several model in the context of RNA, either adapting
already existent protein models or designing new architectures.
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1.3 RNA introduction

Ribonucleic acid (RNA) is a polymeric bio-molecule essential in many biological pro-
cesses. It is most famous because it can carry, code and decode genetic information
(mainly in the protein synthesis process) but it can also have catalytic (Rybozimes)
and structural functions. RNA molecules rivals protein for their versatility.
Each RNA is primarly a one dimensional polymer composed by nucleotides that
folds into convoluted shapes. Along with the nucleotide sequence the correct fold-
ing is necessary for the functionality of the molecule.
The three-dimensional structure of RNA is deeply connected with the functionality
of the sequence [19]. The knowledge of the first is key to understand (and poten-
tially engineer) the latter.

1.3.1 RNA structure

The building monomers of RNA molecules are nucletides. There are four possi-
ble nucleotides (for RNA): Adenine, Guanine (purine bases), Cytosine and Uracil
(pyrimidine bases). As in DNA they can form base pairs (Cytosine-Guanine and
Adenine-Uracil ). The presence of self-complementary segments in the RNA strand
leads to intrachain base-pairing and folding into complex forms consisting of bulges
and helices. The correct folding of RNA is critical to its stability and function. In
addition to the canonical base-pairing it’s also possible to form a wobble base-pair
between (Adenine-Guanine) even though it’s less stable than the others.
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The structure of RNA molecules can be easily understood considering three different
levels:

FIGURE 1.4: Intuitive representation of the hierarchical level of struc-
tural organisation in RNA

• Primary structure: monodimensional sequence of nucleotides

• Secondary structure: 2D structure driven by the intrachain base-pairing, it di-
vides the sequences in several ends/domains

• Tertiary structure: 3D structure driven by the interaction of the various ends/domains
of the molecules

FIGURE 1.5: Illustration of how secondary structure domains can in-
teract and construct the shape of the sequence

In this thesis we highlighted the importance of secondary structure (there is a whole
chapter dedicated to it). Algorithms for RNA secondary structure prediction are
really efficient and accurate. Since we were not able to do experimental tests we
used secondary structure reproduction as a form of "biological functionality test" for
our artificial sequences.

1.3.2 Data: RNA families

The true protagonist of every Machine Learning problem is the data. Looking at the
data we can answer two important questions that justify the approach taken in this
thesis:

Is it necessary to use Machine Learning?

Often Machine Learning models and approaches lack of interpretability. It is true
that our goal is to generate functional artificial RNA sequences but we would also
like to gain insight and knowledge on the underlying science during the process.
This not a point in favour of ML. The motivations behind the choice become clear
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looking at the data. Let’s suppose we are dealing with sequences that are 200 nu-
cleotides long (realistic order of magnitude). Since each nucleotide has four possible
options we see that the sequence space of our problem contains 4200 ∼ 2.6× 10120

to put this number in prospective the estimated number of atoms in the known uni-
verse is 1078. At the moment there exists no better technique to explore these huge
spaces than a computer aided statistical approach.

Is it possible to use Machine Learning?

Machine Learning techniques are very data hungry and just a decade ago it was
impossible to utilize this approaches to RNA sequence data. Thanks to the recent
revolution in sequencing technology a lot of sequences have become available and
are accumulating at exponential speed. Now we have the possibility to use these
methods. Clearly we have to be really careful since the available data is not yet at
the level of the more classical Machine Learning techniques.

RNA sequence data is organized in RNA families [10]. In the course of organisms
evolution RNA evolves as well. Even if function and structure do not change much
during evolution different organisms can accumulate mutations and now present
analogous RNA molecules that are very different from each other.
It is natural to group molecules which have similar structure and function and come
from the same evolutionary branch (homologous sequences) into labelled collections
and consider them as variants of the same sequence. The set of such sequences
makes an RNA family. The Rfam database is a collection of RNA families and to
date it contains data for 3940 families. Each family contains ∼ 103 sequences.

The effect of evolution on RNA sequences is not only to modify the type of nu-
cleotide but also their number, it’s not uncommon that in a a family we have a vari-
ability of more than ±20 nucleotides. Since we want to do a statistical analysis we
would like to know what are the corresponding sites/regions on different molecules
so the variable length is a huge problem. This issue corresponds to a whole field of
bioinformatics called "sequence alignment" [7]. In this thesis we will not deal with
this problem since all the families are taken form Rfam and are already aligned with
the most up to date techniques.
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Chapter 2

RNA Generative Models

2.1 Introduction

As discussed in the introduction, generative models want to generate artificial RNA
sequences that mimics the important statistical features of the natural ones. The
underlying assumption is that the biological information (about structure and func-
tionality) is hidden in the statistical proprieties of the data. From the replication of
the latter should come also the replication of the first.

FIGURE 2.1: outline of an RNA family: a row corresponds to the
primary sequence of a molecule and a column represents the corre-
sponding site across all the family. "-" represents gaps (absence of
nucleotide, necessary for the alignment of different length sequences)

A probabilistic generative models looks at the natural data and tries to infer an ap-
proximation of the probability distribution P(a1, a2, . . . , aL) that generated it. From
this approximation we can sample artificial sequences that replicate the features of
the natural ones.

FIGURE 2.2: Functioning of a generative model
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But what are the statistical features contained in the RNA family that we would like
to replicate?

• One-point frequencies fi(ai) (frequency of nucleotide ai in site i across the fam-
ily)

• Two-points frequnecies fij(ai, aj) (frequency of the pair (ai, aj) in site i and j
respectively)

FIGURE 2.3: biological interpretation of one and two points frequen-
cies

These two quantities have an easy biological interpretation.
One point frequencies fi(ai) effectively represent the evolutionary phenomenon of
conservation. Let’s suppose that a site is directly involved in the functionality of the
molecule (for example it has to bind to a precise substrate or has to posses precise
biochemical proprieties), then a mutation that changes the nucleotide on this site is
very likely to be deleterious. In this case the nucleotide type on this site is conserved
among the family. When a nucleotide is conserved the value of fi(ai) is ∼ 1 for a
nucleotide type and very small for all the others.
Two points frequencies fij(ai, aj) effectively represent the evolutionary phenomenon
of co-evolution. Let’s suppose that a pair of sites is in contact in the folded state of
the molecule. Then, if one of the two changes due to a mutation the other wants
to change too to maintain the ability to form the bond. Across the family these two
sites appear most often as complementary pair. This is the co-evolution and its effect
can be seen on the two point frequencies fij(ai, aj).

In all the proposed models we tried to replicate these two quantities. Of course they
do not correspond to all the statistical information contained in the RNA family
because there are also all the higher order frequencies. We have to consider some
things:

• The fijk(ai, aj, ak) consists of 5× 5× 5 = 125 terms. A database of length ∼
1000 sequences [10] is not adequate to have a fair representation of it. Models
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that try to fit higher order frequencies will most likely be fitting the noise in
the training data (overfitting in Machine Learning terminology)

• There are several examples in the literature that suggest that one and two point
frequencies are sufficient to obtain functional artificial sequences [17] [11]

• Models that try to replicate one and two point frequencies will often have fairly
good representation of higher order frequencies without trying to fit them di-
rectly [18] [17]

For all these reason we will just concentrate on the first two orders of the frequencies.

2.1.1 Sampling Bias

The main assumption of probabilistic generative models is that there exists a proba-
bility distribution P(a1, a2, . . . aL) for each RNA family and that all the sequences in
a given family are i.i.d. variables drawn from it.
The problem is that the sequences in a RNA families often do not respect this as-
sumption. The aim of the scientists is not always to fairly explore the sequence
space so they collect data in a biased way [14]. For example if they are studying a
certain RNA molecule in rodents they will sequence it for several different species
of rodents and so they will add to the RNA family a lot of sequences similar to each
other. Looking at the family one could be misled and think that the P(a1, a2, . . . aL)
has a sharp peak in the region of those sequences.
Also, due to phylogenetic effects, natural sequences can not be considered indepen-
dent from each other. RNA sequences in a family are not obtained from independent
sampling because they descend from each other through evolutionary branches built
from the accumulation of mutations.
This issue is called sampling bias. Addressing it is an important problem in bioin-
formatics. In this thesis we have taken a simple approach. For the computation of
the fi(ai) and fij(ai, aj) we assigned a weight that reduces the relative importance of
too similar sequences:

fi(a) =
∑N

k=1 ωk ∗ δak
i ,a

∑N
k=1 ωk

(2.1)

fij(a, b) =
∑N

k=1 ωk ∗ δak
i ,aδak

j ,b

∑N
k=1 ωk

(2.2)

with N being the number of sequences in the family. ωk is the weight associated
to the kth sequence of the family and it is equal to 1

nk
where nk is the number of se-

quences that share more than 80% common nucleotides with sequence k.
If we set all the weights equal to one we retrieve the usual definition of the frequen-
cies.

The fact that not all sequences have the same importance changes the effective size
of the RNA family.
We define Ne f f as:

Ne f f =
N

∑
i=1

ωi (2.3)

Ne f f = N if all the weights ωi are equal to 1 (when there are no sequences that are
too similar) otherwise it is smaller.
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2.1.2 Model testing

When we generate artificial sequences with a generative model we have to test if
they are valid, in particular we have to check some things:

• Do artificial sequences replicate the statistics of the natural data?

• Are generated sequences just a copy of the training data?

• Do artificial sequences replicate the structure and functionality of the natural
data?

To answer these questions we decided a set of tests.

For the statistical part we checked the correct reproduction of conservation and co-
evolution. All our models almost perfectly replicate the fi(ai) (conservation statis-
tics). For the co-evolution test we did not use fij(ai, aj) but we preferred to use the
connected two point correlations Cij(ai, aj) = fij(ai, aj) − fi(ai) f j(aj). This because
this quantity isolates the co-evolutionary information contained in the fij(ai, aj) form
the effect of conservation. To be more precise we can write fij(ai, aj) as:

fij(ai, aj) = fi(ai) f j(aj) + εij(ai, aj) (2.4)

where :

• ε = 0 if the two sites are independent (do not co-evolve)

• ε > 0 if the pair (ai,aj) is favoured by co-evolution

• ε < 0 if the pair (ai,aj) is disadvantaged by co-evoluton

We can see that all the co-evolutionary information is contained in ε and if we look
at the definition we have that:

εij(ai, aj) = fij(ai, aj)− fi(ai) f j(aj) (2.5)

εij(ai, aj) = Cij(ai, aj) (2.6)

So it’s natural to use the correlations as a test for the correct reproduction of co-
evolution statistics.
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After we have ensured the correct reproduction of the statistical properties we have
to be sure that our generated data is not falling under the data copying problem.
When we are dealing with low dimensional data it is immediate to say if our gener-
ative model is data copying or not. This is clear looking at the following example:

FIGURE 2.4: Blue dots are natural data (NAT) black dots are artificial
data (ART)

We can immediately say that the model in the middle is data copying whereas the
model on the left is more fairly exploring the sequence space.
The problem of applying this method to RNA is that sequences are very high dimen-
sional and the visualization becomes tricky. If we are dealing with molecules that are
100 nucleotides long (and this is the shorter side of length scales present in nature)
there is no way in which we can visualize two 100 dimensional data-sets and say if
they are too similar. To solve this issue we can use a popular technique in Machine
Learning called PCA (Principal Component Analysis) [12]. PCA is a technique of lin-
ear dimensional reduction. It finds the direction with maximal variance (principal
directions) and uses them as coordinates to have a low dimensional representation
of high dimensional data.

FIGURE 2.5: Example of PCA: the blue line represent the first princi-
pal direction; if we want a one dimensional representation of this 2-D
data we can use its coordinate on the blue line losing the least amount

of information

This techniques are very suited to sequence data and often the first two principal
directions can explain up to the 10% of the total variance of the data-set.
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Giving the projection on the first two principal directions we are able to say if the
generated data is introducing diversity or if it is just copying the training set.

Lastly we have to check if our generative model is able to replicate biological struc-
ture and functionality. Sadly during this thesis we were not able to do experimental
tests. Instead of this we did secondary structure test with prediction algorithms
and saw if they predicted the same secondary structure for natural and artificial se-
quance.

2.1.3 RNAalifold

RNAalifold is a RNA secondary structure prediction algorithm [4]. It integrates a
classical biophysical approach with the statistical information contained in RNA
families. From a sequence alignment it predicts the consensus secondary structure
of a family with more than 90% accuracy. It is one of the algorithms contained in the
Vienna package, a set of tools used to study the RNA.
For more information on secondary structure prediction see section 3.

2.1.4 Potts Model

All the generative models in this thesis (except the Autoregressive) will be based on
a Potts Model Hamiltonian.
The Potts model, a generalization of the Ising model, is a model of interacting spins
on a lattice. Each spin is a discrete degree of freedom and can assume q different
value. In the RNA case q = 5 (four values for the nucleotides and one for the gap).
The lattice consists in a set of vertex V and a set of edges between vertexes E. In our
case V will be the set of sites and E the set of interacting pairs which will change
depending on the model.

FIGURE 2.6: Exemple of vertex and edges for a Potts model on a
graph

In the Potts model we have:

H(a1, a2, . . . , aL) = −∑
i∈V

hi(ai) − ∑
(i,j)∈E

Jij(ai, aj) (2.7)

P(a1, a2, . . . , aL) ∝ e−H (2.8)
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The hi(ai) represents the local field term used to tune the single site frequencies. The
higher is hi(ai) the higher becomes fi(ai). This term models conservation.
The Jij(ai, aj) represents the pair interaction between site i and site j and it is used to
tune fi,j(ai, aj). the The higher is Ji,j(ai, aj) the more often (ai, aj) appear as a pair in
site i and j in our generated sequences. This term models co-evolution.

The complexity of a Potts model architecture depends on how many interaction
edges we have in the set E.
For a RNA family of length L we always have qL parameters for the local fields hi(ai)
(q parameters for each field). Then we have q2|E| parameters for the interactions
Jij(ai, aj) since each one of them is a q × q matrix. |E| can go from 0 (independent

site model with no interactions) to L(L−1)
2 (fully connected model with all possible

interactions).

2.2 Reference models

To see if we should be pleasantly surprised with our generative models we should
have something to compare them with. We will build two really simple reference
models that contain a minimal amount of information. Both models represent a
widely used standard in bioinformatics. If our more complex models do not perform
substantially better than them it means that they are not working properly.

2.2.1 Independent sites model

The independent sites model (also known as "profile model") is the simplest non-
trivial generative model and doing better than it is the bare minimum. It is based on
a Potts model Hamiltonian without pairwise interaction:

H(a1, a2, . . . , aL) = −∑
i∈V

hi(ai) (2.9)

P(a1, a2, . . . , aL) ∝ e−H (2.10)

The probability is factorizable as follows

P(a1, a2, . . . , aL) = P1(a1)P2(a2) . . . PL(aL) (2.11)

Pi(ai) =
ehi(ai)

Zi
(2.12)

where

Zi =
5

∑
ai=1

ehi(ai) (2.13)

The parameters hi(ai) are tuned in order to reproduce the single site frequencies
fi(ai) .
Looking at the sampling method it’s evident that we don’t actually have to learn any
parameter. In order to reproduce single sites frequencies fi(ai) we can just draw the
type of nucleotide on each site from it’s frequency.

Pi(ai) = fi(ai) (2.14)
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setting Zi = 1 (which is always possible) we have

Pi(ai) = fi(ai) = ehi(ai) (2.15)

hi(ai) = log
(

fi(ai)
)

(2.16)

Here are the results of the tests done on the RF00010 RNA family of the Rfam
database (N=6479):

FIGURE 2.7: One point frequencies, two point correlation and PCA
projection (6000 artificial sequences)

One point frequencies are correctly reproduced, two point correlation and PCA pro-
jection are a failure.

FIGURE 2.8: Left: RNAalifold prediction for 300 natural sequences,
Right: RNAalifold prediction for 300 artificial sequences

Artificial sequences do not have the right secondary structure.
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2.2.2 Secondary Structure model

Since the information about the secondary structure of an RNA family is easily
available, [10] [4] it can be implemented to build our reference model. The sec-
ondary structure model (also called "covariance model" in bioinformatics) is ob-
tained adding this information to the local field model discussed before. We impose
the replication of single site frequencies Pi(ai) = fi(ai) for all sites and the replica-
tion of two site frequencies Pij(ai, aj) = fij(ai, aj) for the pairs involved in secondary
structure contacts.
In the Potts model point of view the system consists in a set of independent sites and
a set of interacting pairs, all of which are independent from each other.

FIGURE 2.9: Interacting pairs are represented with blue edges

V contains all the sites while E now corresponds to the secondary structure pairs.
The probability distribution can be written as follows:

P(a1, a2, . . . , aL) = ∏
i∈V

fi(ai) ∏
i,j∈E

fij(ai, aj)

fi(ai) f j(aj)
(2.17)

This expression is valid in general when the pairs of which we want to fit the fij(ai, aj)
do not form a cycle (of course secondary structure interacting pairs can not form a
cycle since each site interacts at most only with another one).
We can also find the value of the local fields and interactions:

H(a1, a2, . . . , aL) = −∑
i∈V

hi(ai)− ∑
i,j∈E

Jij(ai, aj) (2.18)

hi(ai) = log
(

fi(ai
)
) (2.19)

Jij(ai, aj) = log

(
fij(ai, aj)

fi(ai) f j(aj)

)
(2.20)

Doing e−H with these choices we retrieve expression 2.17.
This is not the only possible choice, there are several gauges for the choice of local
field hi and interaction terms Jij. This particular choice is aimed to assign all the
conservation representation to the local fields and all co-evolution representation to
the interactions.
As in the previous case we do not really have to do any learning since the sam-
pling is straightforward: we chose the nucleotide type on all sites not involved in
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the secondary structure drawing from the frequencies fi(ai) and the nucleotide pair
on interacting couples drawing from the respective fij(ai, aj).
Here are the results of the tests done on the RF00010 RNA family of the Rfam
database (N=6479):

FIGURE 2.10: One point frequencies, two point correlation and PCA
projection (6000 artificial sequences)

The model fits perfectly all the fi(ai) for all sites and the Cij(ai, aj) for all 45 secondary
structure pairs. It fails for all the others. PCA projection evidences that the model
fails to capture essential statistical features of the distribution.

FIGURE 2.11: Correct reproduction of secondary structure

RNAalifold predicts the same secondary structure for natural and artificial database.
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Both natural and artificial database need ∼ 5 sequences to let the structure appear
from the prediction algorithm.

2.3 Best Tree Model (Bayesian Network)

If the set of edges E does not contain cycles using the formula 2.17 as P(a1, a2, . . . , aL)
imposes that the marginals Pi(ai) are equal to fi(ai) for all sites and the Pij(ai, aj) are
equal to the fij(ai, aj) for all pairs contained in E. When this is the case it is possible
to show that there is a really convenient method for sampling [5] that will be briefly
described in the following.
Since there are no cycles, from a graph theory point of view, our systems consists
either in a tree (connected acyclic graph) or in forest (set of disconnected trees).

FIGURE 2.12: Examples of a tree a forest and a graph with cycles

We will explain the sampling procedure on a tree using an example (in the forest case
all the disconnected trees are independent from each other and they can be sampled
independently following the procedure)

FIGURE 2.13: Example tree for the explanation

For the sampling of an artificial sequence we start deciding arbitrarily a root for the
interaction graph (in this case site 1). We draw the type of the nucleotide on this site
from f1(ai). Supposing we got nucleotide U our artificial chain has Uracil on site 1.
Then we move to the neighbours of the root (so sites 2 and 3 in the example). We
draw the nucleotide on these from the two point frequencies conditioned to the nu-
cleotide drawn on site 1 f1,3(a1,a3)

f1(a1)
. We draw the nucleotide on site 2 from f1,2(U,a2)

f1(U)
and
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the one on site 3 from f1,3(U,a3)
f1(U)

. We repeat this procedure descending all the branches
of the tree till we complete the artificial sequence.
This procedure is really efficient since the generation of an artificial sequence be-
comes as hard as the generation of L random numbers.
If we could generate good artificial sequences using an interaction tree model we
would have also several other benefits in addition to the already discussed simplic-
ity of sampling. A model of this type has L− 1 edges so it falls on the lower range of
complexity for Potts models (for instance a fully connected model has L(L−1)

2 edges).
A relatively simple model has the advantage of being more interpretable from a
physical point of view and it also reduce the the risk of overfitting [18].

To test how good a Potts model can get without interaction loops we have to answer
this question:

What is the best interaction tree that can describe our natural data?

Essentially we are trying to find the interaction tree for which the formula 2.17 max-
imizes the likelihood of the natural database

E∗ = argmax
E

{
L
(

DATA
∣∣P = ∏

i∈V
fi(ai) ∏

E∈trees

fij(ai, aj)

fi(ai) f j(aj)

)}
(2.21)

This kind of problem is called "inverse problem". This particular case is widely
treated in literature and the solution is finding the maximal spanning tree that maxi-
mizes the sum of the mutual information of the sites connected by the edges [5]. The
model obtained is called "tree model" and it is the first original model treated in this
thesis.

For the values of the hi(ai) and the Jij(ai, aj) equations 2.19 and 2.20 still holds.
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Here are the results of the tests done on the RF00010 RNA family of the Rfam
database:

FIGURE 2.14: One point frequencies, two point correlation and PCA
projection

One point frequencies are correctly reproduced, two point correlation and PCA pro-
jection are a failure.

FIGURE 2.15: Right: RNAalifold prediction for natural sequences,
Left: RNAalifold prediction for artificial sequences

Artificial sequences do not have the right secondary structure although it is similar.
RNAalifold need ∼ 5 natural sequences to consistently predict the consensus struc-
ture for NAT database. For the generated sequences it needs ∼ 7.
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The failure of this models means that interaction cycles are necessary in E in order
to have a valid generative model.
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2.4 Boltzmann Machine Direct Coupling Analysis

2.4.1 Introduction

The bmDCA (Boltzmann Machine Direct Coupling Analysis) [18] algorithm is one
of the generative models successfully applied to proteins. It is capable of generating
functional artificial sequences [17] and the theoretical apparatus built around it has
been implemented to improve folding algorithm and to predict the effects of muta-
tions [11].
In this thesis we did not test bmDCA on RNA but we will mention it anyway be-
cause it is the "father" of the application of Potts generative models to bio-molecules.
It is based on the Maximum Entropy Principle.

2.4.2 Maximum Entropy Principle

A classical problem in information theory is to try to acquire information on an un-
known probability distribution P(~x) by looking at a set of data-points sampled from
it (observation data-set or observations). Depending on how large is the number of
observation compared to the phase space there are different techniques to address
this issue. When the amount of observation is limited a possible strategy is to apply
the Maximum Entropy Principle. This principle consists in deciding some features
of the observation data-set and finding the "least constrained" probability distribu-
tion PMEP(~x) that reproduce the selected features. Usually those features are mean
value of observables. The idea is that we do not want PMEP(~x) to fit the noise in
the observations so we impose our approximation to be minimally constrained (that
means gaining the least amount of information possible from the observations).

The procedure is the following:

Suppose we have N observations:

~x1, ~x2, . . . , ~xN ∈ X observed data-points (2.22)

We select M observables Oα(~x) and compute their average on the observations:

Õα =
∑N

k=1 Oα(~xk)

N
(2.23)

α = 1, 2, . . . , M

A possible observable could be Oα(~xk) = xi
k in this case Õα = ∑N

k=1 xi
k

N corresponds to
the mean value of the ith component of the observations.
We have to find the probability distribution PMEP(~X) with maximal entropy that
respects:

< Oα(~x) >PMEP= Õα for α = 1, 2, . . . , M (2.24)

This means we are matching average on observations and ensemble mean value of
the selected observables.



22 Chapter 2. RNA Generative Models

To do so we can use Lagrange multiplier technique:

PMEP(~x) ∝ argmax

{
−∑

~x
P(~x)log

(
P(~X)

)
−

M

∑
α=1

λα

(
∑
~x

P(~x)Oα(~x)− Õα

)}
(2.25)

The first term represents the entropy we are trying to maximize (the less constrained
is a probability distribution the higher is its entropy). The second term represent the
Lagrange multiplier constrains for the M chosen observables. The solution is:

PMEP(~x) ∝ exp
{ M

∑
α=1

λαOα(~x)
}

(2.26)

The values of the λα have to be tuned according to equation 2.24.
How good PMEP(~x) approximate the real P(~x) depends on the number/quality of
the observations and on the choice of observables.
Once we get PMEP(~x) we can use it to sample artificial sequences. This kind of gen-
erative models are called "maximum entropy generative models".

2.4.3 bmDCA generative model

The bmDCA generative model is a maximum entropy generative model used to
generate artificial biomolecules [18]. We want to replicate the conservation and the
co-evolution statistics. We want our model to replicate the single site frequencies
fi(a) and the two sites frequencies fij(a, b) of the training natural data (observations).
We can write:

fi(a) =
∑N

k=1 δ(ak
i , a)

N
(2.27)

Where δ(ak
i , a) is 1 if the nucleotide on the ith site of the kth sequence in the training

set is of type a. It is 0 otherwise. Similarly we can write:

fij(a, b) =
∑N

k=1 δ(ak
i , a)δ(ak

j , b)

N
(2.28)

From 2.23 and 2.24 the observables of which we want to match average on training
data and mean value on PMEP are δ(ai, a) and δ(ai, a)δ(aj, b).

Explicitating the mean values we obtain:

< δ(ai, a) >PMEP= ∑
a1,a2,...,aL

PMEP(a1, a2, . . . , aL)δ(ai, a) = Pi
MEP(a) (2.29)

< δ(ai, a)δ(aj, b) >PMEP= ∑
a1,a2,...,aL

PMEP(a1, a2, . . . , aL)δ(ai, a)δ(aj, b) = Pij
MEP(a, b)

So the aim is to find the probability distribution with maximal entropy for which the
one and two point marginals respect

Pi
MEP(ai) = fi(ai) (2.30)

Pij
MEP(ai, aj) = fij(ai, aj)
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Using equation 2.26 we can infer the form of PMEP that is:

PMEP(a1, a2, . . . , al) ∝ exp
{ L

∑
i

q

∑
a=1

hi(a)δ(ai, a) + ∑
i<j

q

∑
a=1

q

∑
b=1

Jij(a, b)δ(ai, a)δ(aj, b)
}

(2.31)
Where q = 1, . . . , 21 in the case of proteins (20 aminoacids and one gap) and q =
1, . . . , 5 in the case of RNA.
We can rewrite 2.31 in the more compact form (summing over a and b):

PMEP(a1, a2, . . . , al) =
1
Z

exp
{ L

∑
i=1

hi(ai) + ∑
i<j

Jij(ai, aj)
}

(2.32)

Z = ∑
a1,a2,...,aL

exp
{ L

∑
i=1

hi(ai) + ∑
i<j

Jij(ai, aj)
}

It becomes evident that bmDCA is equivalent to a Potts model. Specifically a fully
connected Potts model with Hamiltonian:

H(a1, a2, . . . , aL) = −
L

∑
i=1

hi(ai)−∑
i<j

Jij(ai, aj) (2.33)

PMEP(a1, a2, . . . , aL) = e−H

FIGURE 2.16: In a fully connected Potts model all possible pairs of
sites are connected by and edge

Now that we know what is the functional form of the probability distribution we
have to tune all the hi(ai) and Jij(ai, aj) according to equation 2.30. The exact compu-
tation of these quantities implies a sum over all the sequence space. The number of
configurations is qL and the summation becomes rapidly intractable at the increas-
ing of L.
We can take an approximated approach:

We initialize all the parameters to random values J0
ij(ai, aj) h0

i (ai) and do the fol-
lowing procedure:

Jt+1
ij (ai, aj) = Jt

ij(ai, aj) + ν
{

fij(ai, aj)− Pt
ij(ai, aj)

}
(2.34)

ht+1
i (ai) = ht

i(ai) + ν
{

fi(ai)− Pt
i (ai)

}
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Where Pt(a1, a2, . . . , aL) is 2.32 with parameters Jt
ij(ai, aj) ht

i(ai) and Pt
ij Pt

i (ai) are
its one and two point marginals. This procedure comes from likelihood maximiza-
tion [18] but has an intuitive explanation: the idea is that the higher is a parameter
the higher is its associated marginal. At each step we increase the parameter asso-
ciated with marginals that are smaller than empirical frequencies and decrease the
one which are higher. The steady state of the algorithm is reached when condition
2.30 is satisfied.
This approach still does not solve the scaling problem since the marginals in 2.34
require the summation on all the sequence space. The solution is to to sample se-
quences from the Pt(a1, a2, . . . , aL) and use the one and two point frequencies on the
sampled data-set as an approximation of Pt

ij and Pt
i (ai). The set of interaction pairs E

now contains loop (fully connected) and we can not use the fast sampling technique
described before. In any case is still possible to sample using Monte Carlo [2] tech-
niques .Since we have to do a Monte Carlo sampling for each step of the 2.34, the
algorithm becomes slow (compared to previous model).

Once we are satisfied with the model obtained we can take the Monte Carlo sampled
sequences as our artificially generated data.

2.5 Edge addition algorithm

All the models that we studied are based on the Potts model (except the Autoregres-
sive model). The only difference between them is the set E of the interacting pairs.
We go from the E = ∅ in the local field model (least complex Potts model possi-
ble) to the bmDCA which contains all the possible edges (most complex Potts model
possible).
The main goal of our original work in this thesis is to find the least complex Potts
model able to generate valid artificial sequences.
The motivation of our research lies on the answer of this question:

If we have two generative models that perform comparably, which one should we chose?

FIGURE 2.17: If those two models are statistically indistinguishable,
which one should we chose?
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The answer is the less complex one. [18]
There are several reasons for this:

• A less complex model has the advantage of being more interpretable. Inter-
pretable parameters can be used to improve or build folding/mutation algo-
rithm and deepen our knowledge on RNA biophysics.

• In ML, when two model perform comparably, the less complex one is always
preferred to prevent overfitting. This is done to make the model less data hun-
gry.

In generative models overfitting usually happens in the form of data-copying. We
have to specify that in the case of Potts models applied to bio-molecules even the
most complex one (that is the fully connected bmDCA) seems to not fall under this
issue. Nevertheless it is better to have relatively simpler generative model especially
in the case of smaller data-sets.

An approach present in literature is the "interaction decimation" of the bmDCA [18].
Simplifying, this technique starts from a fully connected model and starts to remove
edges with the weakest interactions (and re-learning the remaining ones) gradually
decreasing the number of interaction pairs contained in E.
The Edge Addition Algorithm is the inverse approach to the issue. We start from
a local field model (E = ∅) and gradually add edges till we reach a model that we
deem as valid.

FIGURE 2.18: At each iteration of the edge addition algorithm we
get a more complex model, eventually we arrive to a fully connected

model that we will show to be equivalent to bm-DCA

This algorithm has the advantage that is analytically possible to find, at each itera-
tion, which edge is better to activate/update in order to maximize the likelihood of
the natural data-set.
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Suppose we start from an Hamiltonian

Ht(a1, a2, . . . , aL) = − ∑
(m,n)∈E

Jmn(am, an) (2.35)

Pt(~a) =
e−Ht(~a)

Zt

We do not consider local fields since they are never updated by the algorithm, this
corresponds to a possible Gauge choice.
We want to find another Hamiltonian in the form

Ht+1(~a) = Ht(~a)− Jij(ai, aj) (2.36)

It is important to notice that Jij(ai, aj) is not necessarily a new interaction but it can
also be an interaction-update if edge (i, j) is already in E.

The quantity Jij(a, b) is a q× q matrix that has to be optimized over i,j and all its 25
values in order to maximize the gain in likelihood of Pt+1(~a) respect to Pt(~a). It is
important to notice that Jij is not necessarily a new interaction but it can also be an
interaction-update

lt =
1
N

log

{
∏

~ak in Data

e−Ht(~ak)

Zt

}
(2.37)

lt =
1
N ∑

ak in Data
∑

(m,n)∈E
Jmn(ak

m, ak
n)− log(Zt) (2.38)

Exploiting the summation on the natural data we have

lt = ∑
(m,n)∈E

q

∑
a=1

q

∑
b=1

Jmn(a, b) fmn(a, b)− log(Zt) (2.39)

From 2.37 we get that:

lt+1 = ∑
(m,n)∈E

q

∑
a=1

q

∑
b=1

Jmn(a, b) fmn(a, b) +
q

∑
a=1

q

∑
b=1

Jij(a, b) fij(a, b)− log(Zt+1) (2.40)

So ∆l is:
∆l = ∑

a,b
Jij(a, b) fij(a, b)− log

(Zt+1

Zt

)
(2.41)

For the term Zt+1
Zt

can be written as:

Zt+1

Zt
=

∑
a1,a2,...,aL

e−Ht(a1,a2,...,aL) × eJij(ai ,aj)

∑
a1,a2,...,aL

e−Ht(a1,a2,...,aL)
(2.42)

Zt+1

Zt
=< eJij(ai ,aj) >Pt(~a) (2.43)

Zt+1

Zt
= ∑

a,b
eJij(a,b)Pt

ij(a, b) (2.44)
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Equation 2.41 can be witten as:

∆l = ∑
a,b

Jij(a, b) fij(a, b)− log
(

∑
a,b

eJij(a,b)Pt
ij(a, b)

)
(2.45)

When optimizing ∆l over Jij(a, b) we get:

0 = fij(a, b)−
eJij(a,b)Pt

ij(a, b)

∑a′,b′ e
Jij(a′,b′)Pt

ij(a′, b′)
(2.46)

This equation is solved by:

Jij(a, b) = log
(

fij(a, b)
Pt

ij(a, b)

)
(2.47)

∆l = ∑
a,b

fij(a, b)log
(

fij(a, b)
Pt

ij(a, b)

)
= Dkl( fij|Pt

ij)

So to have the maximum likelihood gain possible with a single edge addition/update
(the selected (i, j) could also already be in E) we have to see for what edge we have
the highest Kullback Leibler divergence Dkl( fij|Pt

ij) and add interaction 2.47 to our
Hamitlonian Ht.

We can finally describe the iterative procedure of the Edge Addition Algorithm:

• Start with a model Ht(a1, a2, . . . , aL)

• Find all the marginals Pt
ij(a, b)

• Find (i, j) = argmax Dkl( fij|Pt
ij)

• Obtain a new model Ht+1(~a) = Ht(~a)− Jij(ai, aj) where Jij(a, b) are obtained
from 2.47

• Iterate

Iteration after iteration we add (or update) new edges and obtain generative models
at increasing order of complexity. Looking at 2.47 it is evident that the steady state
model of the algorithm is equivalent to bmDCA.The procedure stops only when
Pt

ij(a, b) = fij(a, b) for all (i, j), exactly the condition that we impose for bmDCA.

Now that we have the algorithm we should answer two main questions:

1. How do we find marginals Pt
ij?

2. When do we stop adding edges?

Addressing the first question: we cannot hope to have a good generative model
without interaction loops in E. We have already tried the best possible tree model
and it failed. Because of this we are sure that the Edge Addition algorithm can not
reach a good generative model without creating loops in E. This rules out the pos-
sibility to use the fast sampling described before. To estimate Pt

ij(a, b) we have to
use Monte Carlo techniques (Metropolis, Gibbs) to sample artificial sequences and
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use their one and two point frequencies as approximation for Pt
i and Pt

ij. This slows
significantly the algorithm because you have to wait thermalization at each MCMC
step. Ht and Ht+1 differs only by an interaction edge so we can use sequences sam-
pled from Pt as a starting point for the Mont Ccarlo run to estimate the marginals
of Pt+1. We will see that this significantly reduces thermalization time ad accelerate
the algorithm.

Addressing the second question: after a bunch of iteration we end with a set of
generative models from which we have to choose the "best" one.

FIGURE 2.19: For each step of the EAA we have a new model. How
we can select the right model to generate artificial sequences? [18]

We investigated two criterion for the selection: the first is a Machine Learning like
train/test score. As score we used the Pearson correlation between the Cij(ai, aj) be-
tween the natural and artificial data-set. This choice is motivated by the fact that the
algorithm steady state is equivalent to the bmDCA which aims to a perfect repro-
duction of this statistics. The second method is the Bayesian Information Criterion.
The BIC consists in assigning a score Y to each of our model with a positive term for
the likelihood of the training data-set and a penalty for the complexity [3].

Y = 2log(L)− log(Ne f f )K (2.48)

Where L is the likelihood of the training data-set and K is the number of parame-
ters of the model. This quantity can be estimated at each step using eq. 2.47 but
the estimation results too noisy. To solve this issue we used the pseudo-likelihood
approximation [15].

We tested the algorithm on the RF00010 RNA family of the Rfam database. For
the model selection we implemented the two criterion described before:
We see that both training and test scores have saturating behaviours. Since we are
not gaining anything in performance we should select the model at the beginning of
the saturation at around iteration 300. This is done to not add unnecessary complex-
ity to our generative model. BIC score has a peak around the same iteration. The
two selection criterion are in good agreement. The selected model has around 5% of
the complexity of bmDCA.
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FIGURE 2.20: BIC score (left), ML train/test score (right)

Here are the test of the selected model:

FIGURE 2.21: Conservation and coevolution statistics are well repre-
sented. Looking at PCA projection we see that the model is not data

copying

For the secondary structure we see that RNAalifold predicts the same structure for
natural and artificial sequences.
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FIGURE 2.22: RNAalifold predicted structure for: natural sequences
(left) artificial sequences (right)

The only difference is that RNAalifold needs only ∼ 5 natural sequences on average
to come up with the consensus secondary structure while it needs ∼ 7 for artificial
ones. This could be caused by the the failing of the algorithm to generate valid se-
quences in certain regions of the sequence space.

The results are promising. We were able to reduce the complexity to 5% of bmDCA
while obtaining comparable results. (comparing with bmDCA performance on pro-
teins).

2.6 Autoregressive DCA

Autoregressive DCA is the last generative model studied in this thesis. Unlike the
previous models this is not based on a Potts model architecture. This model has
already been applied to proteins and during the thesis work we adapted and tested
the algorithm with RNA.
This model is based on the following exact decomposition of the probability of a
sequence (Bayes theorem):

P(a1, a2, . . . , aL) = P(a1)P(a2|a1)P(a3|a2, a1) . . . P(aL|aL−1, . . . , a2, a1) (2.49)

This decomposes the probability on a product of L single sites conditional probabil-
ities. The main idea of the model is to give an approximate form for each of those
factors P(ai|ai−1, ai−2, . . . , a1) and then sample artificial sequences site by site from
them.
This approach is very interesting since it transforms the generation of an artifi-
cial sequence from an unsupervised learning task in a self-supervised learning one.
Deciding the nucleotide on site i of the chain knowing all the other in positions
i− 1, i− 2, . . . , 2, 1 is equivalent to assign a label (with values 1, 2, . . . , q) to the vector
(a1, a2, . . . , ai−1). This is a great advantage since the supervised learning branch of
machine learning is much more developed than the unsupervised one.
The chosen parametrization is a popular tool of supervised learning: the softmax
regression [6]. It is a generalization to multi-class labels of the logistic regression.
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P(ai|ai−1, ai−2, . . . , a2, a1) =
ehi(ai)+∑j<i Jij(ai ,aj)

zi(a1, a2, . . . , ai−1)
(2.50)

zi(a1, a2, . . . , ai−1) = ∑
ai

ehi(ai)+∑j<i Jij(ai ,aj) (2.51)

Where zi is the normalization factor for each of the conditional probabilities.
The model parameters are hi(ai) and Jij(ai, aj).

Equation 2.50 has several similarities with bmDCA. The number of parameters is
the same and they are also in the same form (local field and pairwise interactions) .
The difference is that while in the Potts generative models Jij is a symmetric inter-
action in the Autoregressive it is directed and represent the influence on site i of all
previous sites j. In fact in bmDCA Jij = Jji instead in this case Jji = 0 if i > j.

A great advantage of this model is that each of the eq. 2.50 marginals is normal-
ized. This means that the whole probability distribution P(a1, a2, . . . , aL) is normal-
ized too. In Potts models instead we can only have weights for the sequences since
the calculation of the normalization factor Z requires a summation on all the se-
quence space and is prohibitive. When we are working within an RNA family hav-
ing normalized probabilities has not many advantages over having not-normalized
weights. The situation is different when we want to do infra-families studies. A
common issue is the family assignment problem that is when we want to decide
whether a certain RNA or Protein molecules belongs to a family or another. Com-
paring the weights of the molecule for two different families is not possible since the
weights could have different scales. If we have normalized probabilities a compar-
ison is possible and we can assign the molecule to the family for which it has the
highest probability.

In eq. 2.49 we did the decomposition following the site order of the molecule chain.
However this is not necessary and the decomposition can be done with any of the
possible L! ordered permutation of the the sites. Each order leads to a different per-
formance for the generative model so we not only have to do an optimization over
the parameters hi(ai) and Jij(ai, aj) but also on the order of the factorization in 2.49.

The optimization of the parameters does not pose a great problem and is based
on likelihood maximization of the natural data-set, a classical problem in Machine
Learning [6].
The optimization over all the orders is more complicated. It’s not possible to com-
pare the performance of the model for all the L! ordering. For instance the number
of permutation for a family with ∼ 150 nucleotides is ∼ 10263, way more than the
extimated number of atoms in the known universe (∼ 1081).
The entropic ordering (from the least variable to the most variable site) is alluring
for its interpretability: we start from the most conserved sites because if we draw a
low probability nucleotide type on them this has a great impact on the chain and the
model has to be able to compensate adjusting the nucleotide on the less conserved
sites. In addition to being easily interpretable this approach also has a good perfor-
mance, the quality of the generated sequences is comparable with the bmDCA.
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The last issue we have to address before testing is the sampling. It can be easily
done with the following procedure:

• Sample the nucleotide on the first site from P(a1)

• Sample the nucleotide on the second site from P(a2|a1) where a1 assumes the
value sampled in the previous step

• ....Sample the last nucleotide from P(aL|aL−1, . . . , a1) where a1, . . . , aL assume
the value sampled in the previous steps

It is important to notice that now the index i in ai does not indicate the position of
the site on the chain but indicate its position in the entropic ordering.
Each step is very fast because there are only 5 possible values for each probability.
On the contrary, sampling from the bmDCA model is slower because it requires sev-
eral MCMC runs and we have to wait thermalization for all of them.

Here are the results of the tests done on the RF00010 RNA family of the Rfam-
database:

FIGURE 2.23: Conservation and coevolution statistics are well repre-
sented. Looking at PCA projection we see that the model is not data

copying
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For the secondary structure we see that RNAalifold predicts the same structure
for natural and artificial sequences.

FIGURE 2.24: RNAalifold predicted structure for: natural sequences
(left) artificial sequences (right)

We have the same issue as before. RNAalifold needs only ∼ 5 natural sequences on
average to come up with the consensus secondary structure while it needs ∼ 7 for
artificial ones.

We are very happy with the results of the model. The performance is compara-
ble with bmDCA (performance on proteins) but the sampling is much faster and we
have normalized probabilities.
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Chapter 3

Secondary Structure prediction

3.1 Introduction

Secondary structure prediction algorithms vary widely. The most sophisticated ones
are based on Free Energy minimization. The major limit of these models is that they
need precise experimental estimate of the magnitude of interaction between base
pairs and between sequence domains with the environment. Often this data is not
precise enough to get a realistic secondary structure.
There is much that can be gleaned from a statistical approach. sequences in the same
family can be very different from each other but since they have the same biological
function they also have very similar structures (as discussed before there is a deep
connection between the two) [19]. Simply speaking if two sites are very correlated
(coevolution) they are more likely to form a bond in the secondary structure than
two sites with low correlation.

3.2 RNAalifold

The RNAalifold secondary structure prediction algorithm combines the Free Energy
minimization approach with the statistical one [4]. It is part of the Vienna Package
that is a set of programs to study RNA. It predicts consensus structure for RNA
families and it is one of the most reliable algorithm currently available. Throughout
the following paragraphs the predictions done with RNAalifold will be taken as a
benchmark to judge the effectiveness of other algorithms.

3.3 Nussinov

The Nussinov algorithms uses dynamic programming principles to find the sec-
ondary structure of an RNA molecule [13]. Originally it was a single-sequence al-
gorithm but it can be easily improved with statistical information contained in the
multi-sequence alignment of a RNA family [9].
The algorithm starts with the assignment of a score Sij for all site pairs, here are two
examples:



36 Chapter 3. Secondary Structure prediction


Sij = 1 if (i, j) complementary

Sij = 0 otherwise



Sij = 3 if (i, j) =G-C

Sij = 3 if (i, j) =A-U

Sij = 1 if (i, j) =G-U

Sij = 0 otherwise

The first one takes only in account the possibility for the pair to bond, the second
also takes in account the strength of the contact (G-C forms three hydrogen bonds,
A-U forms two, G-U forms wobble bond).
The next step is to find the nested configuration of contacts that maximizes the total
score

FIGURE 3.1: Nested configuration are like the one on the left, we do
not want configurations like the one on the right because they lead to

the formation of pseudoknots, highly unstable structures

We indicate with γ(i, j) (for j > i) the score associated to the optimal configuration
of an hypothetical chain that starts with site i and ends with site j. This quantity can
be easily found iteratively as follows:

FIGURE 3.2: γ(i, j) is the max out of the four possible cases of the
picture
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with initialization γ(i, i) = 0. At this point we have not only calculated the score
of the optimal configuration for the whole chain γ(1, N) but also the one for all the
possible "sub-chains" γ(i, j). Once we have all the γ(i, j) Nussinov algorithm makes
use of a traceback procedure to get all the contacts present in the score maximizing
configuration.
The Nussinov algorithm works with single sequences so it does not take advantage
of the huge amount of statistical information contained in RNA families. In addition
it maximizes contact number/energy but does not take in account the energy contri-
bution of the various molecule domains and their interaction with the environment.
As we can see if we try to predict the secondary structure of several RNA molecules
belonging to the same family we get very diverse results instead of getting similar
structures:

FIGURE 3.3: Nussinov prediction on 4 sequences of the RF00010 RNA
family of the Rfm database ( 3-2-1 scoring system)

Even tough the predictions are pretty inconsistent the "architecture" of the algorithm
is very good and can be improved adding statistical information to the mix [9]. This
is done changing the scoring system.
We can compute the Mutual Information MIij between all site pairs in the multiple
sequence alignment and use this as contact score

Sij = MIij = ∑
Ai ,Aj

fij(Ai, Aj)log
fij(Ai, Aj)

fi(Ai) f j(Aj)
(3.1)

MI between two sites corresponds on the amount of information that I gain on site
j (or i) once i know the nucleotide on site i (or j).
If two sites are in contact in the secondary structure they will surely have a big Mu-
tual information since, due to co-evolution, if one of the two changes the other has
to change too because they want to conserve the ability to form a bond.
We have to be careful about a couple of things: MI can only be positive so there is
the risk that the score maximizing configuration will try to maximize the number of
contacts since each one of them gives a positive contribution to the final score, in ad-
dition two sites can have a relatively high mutual information even if they are not in
contact. For example if they are spatially close in the folded structure of the molecule
and their contact would compromise the biological functionality, in this case know-
ing the nucleotide on one of them we gain a bit of information on the other because
we know it can not be the complementary Watson-Crick pair. Usually in this situa-
tion the MI is not as high as when they form a contact simply because the options
for not being complementary are more than the ones for being complementary.
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Both issues can be solved using a threshold scoring:

Sij = MIij if MIij > T

Many contacts will now have zero score preventing fake contacts. Setting the T suf-
ficiently high will also solve the not want to be in contact problem. Looking at the
MIij of the sites in contact for different RNA families with known secondary struc-
ture we decided T = 0.4. In addition we set an ∞ penalty for neighbouring sites
contacts (separated by less than 4 sites). That is because neighbouring sites will of-
ten have high mutual information but they rarely form a bond in secondary stucture.

FIGURE 3.4: MI-Nussinov (right) RNAalifold (left) predicted struc-
ture are almost identical (RF0010)

3.4 Edge addition algorithm and secondary structure

As we discussed before at each iteration of the Edge Addition Algorithm we add
(or update) an edge interaction. After several iterations we not only end up with
many possible generative models to choose form but also with an ordered list of
edges. Since the starting point of our algorithm is a local filed model the conserva-
tion statistics (single site frequencies) is already well represented so each one of the
added edge is trying to fix the co-evolution statistics.
It’s natural to ask if there is a link between the obtained list of edges and the con-
sensus secondary structure of the RNA family since we know that co-evolutionary
effects are strongest between sites that for a contact
Here we analyzed the first 300 added edge for the RF00010 family dividing them in
the following categories: contacts (links two sites that are in contact in the RNAali-
fold predicted structure), neighbours (if they are less than 4 nucleotides distant) and
false contacts:
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contacts neighbours false contacts

FIGURE 3.5: 43/45 predicted contacts are taken in the first 100 itera-
tions

We can clearly see the hypothesized relationship between contact and added edges.
The first iterations take either neighbouring sites or predicted contacts (except for
a few false contacts). After around ∼ 90 iterations the number of contact taken
saturates and the algorithm starts to take more and more neighbouring sites and
false contacts.

3.4.1 Toy algorithm for secondary structure

We can think of using this information to build prediction algorithms for secondary
structure. A first naive approach is the following algorithm: we start form the Edge
Addition Algorithm obtained ordered list of edges and we do as follows:
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Where checking the compatibility of a contact with the secondary structure means
to check if it causes the appearence of any pseudoknots.
Of course we have also to specify a termination condition for the algorithm, taking
inspiration from the previous models we set the termination condition when the
MIij of the two sites connected by the added edge is < 0.4
This algorithm is only a starting point (hence the toy model name) but the results
are already satisfactory:

FIGURE 3.6: RNAalifold (right) Toy model (left)
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Chapter 4

Conclusion and future research

In this last chapter we will make some comments and give some hints on possible
future improvements and applications of the topics covered in this thesis.
First of all, we should address the main question of the thesis:

What generative model should we use to generate artificial sequences?

Of all the generative models treated the one obtained with the Edge Addition Al-
gorithm seems (at least in theory) to be the best compromise: it has an excellent
reproduction of natural statistics while having very few parameters.

The next step is to further improve the algorithm.
We could try to improve its efficiency by adding/updating more than an interaction
at a time. Instead of modifying only the interaction of the pair with the worst repre-
sented fij(ai, aj) we could modify the fist two/three for example.
Another possible improvement is trying to better estimate the Pt

ij(ai, aj) at each step
of the algorithm. The saturating behaviour in the the two-point statistics (evident
from Fig. 2.20 ) descends from the fact that errors in the estimation of the Pt

ij(ai, aj)

start to be comparable to their differences and the algorithm begins to be dominated
by noise.

Regarding the secondary structure: the toy model proposed seems to be a promising
starting point to develop more complex and precise prediction algorithms. It con-
firms that the edge list obtained from the EDA contains a lot of information on the
secondary structure. A possible improvement could be using it to develop a Nussi-
nov score.

Another important things to do is to extend these studies to a large number of RNA
families in order to test the robustness of the generative models and of the tech-
niques developed.

Lastly we will experimentally test the generated sequences to have the final confir-
mation of the good functioning of the models. In case of affirmative results we can
use the information obtained from the experiments to further improve the genera-
tive models and to finally generate artificial sequences for practical purposes (that is
the true aim of this work).
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