
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Detecting Echo Chambers in social media;
a graph-based approach

Supervisors

Prof. Aristides GIONIS

Dr. Stefan NEUMANN

Prof. Aris ANAGNOSTOPOULOS

Prof. Giacomo COMO

Candidate

Francesco ZAPPIA

July 2021

Abstract

Social media are becoming more and more popular and are used to discuss a wide
range of topics. On these platforms we are often experiencing polarization between
the users, producing a clear separation between groups with different opinions.
Echo Chambers are closely related to this phenomenon: an Echo Chamber is a
group of users with the same beliefs that reinforce their ideas.

The growing complexity and quantity of online interactions requires us to find
new techniques for detecting Echo Chambers. In this work we propose the Echo
Chamber Problem (ECP) and the Densest Echo Chamber Problem (D-ECP),
new formulations that take into account the concepts of content (the piece of
information that is discussed) and thread (the "locality" discussing the content) in
finding polarization.

Our idea is that Echo Chambers correspond to groups of users discussing a
content which is controversial, i.e. globally triggers many hostile interactions, with
no controversy, i.e. with mainly friendly interactions inside the Echo Chamber.

We will show that the problems we propose are hard to approximate within
any non-trivial factor and propose Mixed Integer Programming (MIP) models and
heuristics for solving them. Finally, we will focus on one of these methods and show
that it is able to find Echo Chambers in synthetic data but has some limitations
when applied to real-world data.

Keywords
Polarization, Echo Chambers, Social Networks, Signed Graphs, Contents

i

ii

Acknowledgements

I would like to express my deep and sincere gratitude to the people that helped and
guided me through these months of research: my supervisor, Dr. Stefan Neumann,
my examiner, Professor Aristides Gionis, and Professor Aris Anagnostopoulos, who
joined us in this adventure. Their friendship and support during this period have
been invaluable.

I am also grateful to my family and friends for supporting me through all these
years.

The computations were enabled by resources provided by the Swedish National
Infrastructure for Computing (SNIC) at the High Performance Computing Center
North (HPC2N) partially funded by the Swedish Research Council through grant
agreement no. 2018-05973.

This work has been developed as part of the SoBigData++ and REBOUND
projects.

iii

Table of Contents

List of Tables vii

List of Figures ix

Acronyms xi

1 Introduction 1
1.1 Background . 2
1.2 Problem . 3

1.2.1 The Interaction Graph . 3
1.2.2 The Problem Definition . 4
1.2.3 The Densest Echo Chamber Problem 8

1.3 Goals and Results . 8
1.4 Structure of the thesis . 9
1.5 About the Thesis . 9

2 Background 11
2.1 Computational Complexity and

Approximability . 11
2.1.1 Optimization Problems and NPO 11
2.1.2 Approximation Preserving Reductions 12

2.2 Linear and Mixed Integer Programming 14
2.2.1 The Structure of LPs . 14
2.2.2 Solving an LP Problem . 15
2.2.3 Mixed Integer Programming 16
2.2.4 Solving a MIP . 18

2.3 Density in Graphs . 19
2.3.1 The Densest Subgraph Problem 19
2.3.2 The Densest Common Subgraph Problem 20
2.3.3 The O2Bff Problem . 23

v

3 Problem Complexity and Approximability 27
3.1 Hardness of ECP . 27
3.2 Hardness of D-ECP . 30

4 Solving the ECP and the D-ECP 35
4.1 Exact Solutions . 35

4.1.1 A MIP Model for the ECP 35
4.1.2 A MIP Model for the D-ECP 41

4.2 Heuristics . 46
4.2.1 The β-Algorithm . 46
4.2.2 Peeling Algorithm . 48
4.2.3 Rounding Algorithm . 48

4.3 Alternative Formulations . 51
4.3.1 The Pair Aggregated Graph 51
4.3.2 The Thread Pair Aggregated Graph 52

5 Experiments and Discussion 55
5.1 Data Collection and Generation . 55

5.1.1 Synthetic Data . 55
5.1.2 Collection and Preprocessing 57
5.1.3 A Study on r/asktrumpsupporters 60

5.2 Experiments . 62
5.2.1 Initial Real-World Data Analysis 62
5.2.2 Experiments on Synthetic Data 68
5.2.3 Detecting Real-World Echo Chambers 75

5.3 Further Discussion of the Results 76

6 Conclusions and Future Work 79

Bibliography 83

vi

List of Tables

2.1 Examples of inapproximability . 13

5.1 Basic statistics for analyzed datasets 63
5.2 Fraction of negative edges in different subreddits 65
5.3 MIP and rounding algorithm clustering running times on generated

graphs . 70
5.4 Classification scores obtained with the rounding algorithm on two

labeled datasets . 76
5.5 Execution time of the heuristics . 77

vii

List of Figures

1.1 Retweet network during 2010 midterm elections 2
1.2 An example of multiplex graph . 3
1.3 Thread-content distinction example from Twitter 5
1.4 Example of an interaction graph . 6

2.1 Reduction process . 13
2.2 Taxonomy of approximation preserving reductions 14
2.3 Simplex method progress . 17
2.4 Example sequence graph . 21

3.1 Example reduction from MIS to ECP 28
3.2 Example reduction from MIS to D-ECP 31

4.1 Example original Interaction Graph G 49
4.2 Exact solution of the example in Figure 4.1, α = 0.4 50
4.3 Solution of the relaxation of G of Figure 4.1, α = 0.4 50
4.4 Example of rounding algorithm finding the exact solution 51

5.1 Example Wikipedia entry . 58
5.2 The crossposts on one of the most discussed article of the day on

r/politics. 60
5.3 Distribution of accuracy of classification of r/asktrumpsupporters

users for the different contents . 61
5.4 η(C) and η(T) distribution for many datasets. 64
5.5 Sum edges over number of interactions for many datasets 66
5.6 η(C) distribution for 2 of the datasets shown in Figure 5.5. 67
5.7 MIP and rounding algorithm clustering scores on generated graphs . 71
5.8 An interaction graph with a single thread and content and two

possible iterations of the rounding algorithm 73
5.9 Adjusted RAND indices for graphs with different number of threads 74

ix

Acronyms

LP
Linear Programming

MIP
Mixed Integer Programming

MILP
Mixed Integer Linear Programming

DCS
Densest Common Subgraph

Bff
Best Friends Forever

O2Bff
On-Off Bff

INCO

Incremental overlap

ECP
Echo Chamber Problem

D-ECP
Densest Echo Chamber Problem

PA
Pair Aggregated

xi

TPA
Thread Pair Aggregated

xii

Chapter 1

Introduction

Social networks are nowadays widely used by people, allowing users to discuss
the most different topics and interact with each other. At the same time in these
platforms we are observing an increasing polarization between the users. This
inspired several studies which have been conducted about the topic [1, 2, 3, 4], the
most recent ones focusing on COVID-19 [5, 6, 7, 8] and vaccination [9].

Polarization is the social phenomenon according to which people tend do sep-
arate in opposing communities with few people remaining neutral [2]. A close
phenomenon is that of the Echo Chambers, groups in which people that have
the same opinions enforce their respective ideas [1], a concept very similar to
the definition of polarization as given in [10]: “group polarization arises when
members of a deliberating group move toward a more extreme point in whatever
direction is indicated by the members’ predeliberation tendency. ‘[L]ike polarized
molecules, group members become even more aligned in the direction they were
already tending”[11].

In this research we aim at finding a method for detecting Echo Chambers, by
analyzing data retrieved from social medias like Twitter and Reddit: we define the
Echo Chamber Problem (ECP) and the Densest Echo Chamber Problem (D-ECP)
and propose techniques for solving and approximating them.

We introduce these new approaches for finding Echo Chambers due to growing
complexity and quantity of online interactions; the last year of social distancing
forced many people to stay at home and consequently we can expect that the
time they spent on social medias increased from the past, thus producing a denser
network of interactions.

Our two problems are defined on a signed graph which distinguishes between
friendly and hostile interactions between the users. Differently from previous studies
of polarization on signed graph [12], we define and incorporate in our problems the
ideas of contents (the piece of information which is discussed) and threads (the
"locality" discussing a content).

1

Introduction

Figure 1.1: The retweet network of posts regarding US during 2010 midterm
elections. Red and blue nodes are associated with conservative and progressive
users, respectively. The picture was taken from [14].

Our idea is that Echo Chambers correspond to subgraphs discussing one or more
controversial topics (which trigger many negative reactions in the network when
seen as a whole) with few or no negative interactions: users in this bubble agree
with each other, thus reinforcing their initial positions.

1.1 Background
A graph G = (V,E) is a collection of vertices or nodes V and edges or links
E ⊆ V × V between the nodes, representing relationships between entities. Graphs
are very useful in representing many interesting concepts from social sciences,
biology, physics, chemistry and geography (for example, we can see in Figure 1.1
that they can be used to represent the users’ retweets during US 2010 midterm
elections)[13, 14].

Different Types of Graphs In its simplest form graph are undirected and
unweighted. In an undirected graph relationships are bi-directional, while in directed
graph the order of nodes in a link reflects the direction (i.e. an edge eij is different
from an edge eji). A weighted graph associates a weight ωe to each edge e ∈ E [14,
15].

Sometimes edges are allowed to be either positive or negative: these networks are

2

1.2 – Problem

Figure 1.2: An example of multiplex graph with three layers. Picture taken from
[13].

usually called signed graphs. An acquaintance network, for example, can be modeled
through a signed graph, with negative and positive edges denoting animosity and
friendship, respectively [13].

In the rest of the document we will abuse notation and refer to vertices both as
vi ∈ V and i ∈ V ; similarly we will refer to edges both as eij ∈ E and as ij ∈ E.

Representing relationships between entities which span over more than two
dimensions requires the definition of an ever more complex structure, the multiplex
graph. A multiplex graph is a set of graphs (also referred to as layers) G = {Gi =
(V,Ei)}i over the same set of vertices V , each Gi having its own set of edges
Ei ⊆ V × V . An example can be seen in Figure 1.2. Multiplex graphs can be
used, for example, to model temporal networks, where each layer corresponds to a
snapshot of the relationship at a certain point in time [13].

1.2 Problem
In this section, after defining the graph on which the research is carried out, we
give a formal definition of the problems that we study in the thesis.

1.2.1 The Interaction Graph
The interaction graph G is the graph we utilize to encode the information regarding
the interactions between the users.

Definition 1.2.1. A multiplex graph G = {Gk = (V,Ek)}k is called an interaction
graph if each Gk is a directed, weighted and signed multigraph with weights in
[−1,+1]. We will often refer to the layers Gk as threads and therefore also denote
them as Tk, i.e. we set Tk = Gk.

3

Introduction

In this graph each user is associated to a vertex v ∈ V . For this reason we will
sometimes refer to vertices as users in the rest of the document.

Each edge of the graph corresponds to an interaction: edge eij going from vi to vj
represents user i replying to user j. Also, the corresponding weight we encodes the
sentiment of the interaction: negative and positive values are associated with hostile
and friendly interactions, respectively, with smaller values of we being associated
to more hostile interactions.

Let a content C be any kind of resource that triggers a discussion in one or more
threads T , where a thread can be any social media post sharing the content C. The
set of threads associated to C is denoted as TC . A content is usually represented
by a newspaper article and it is identified by its URL, e.g.

https://www.nytimes.com/2021/03/04/us/richard-barnett-pelosi-tantrum.html

A corresponding thread then may be, for example, the one generated by a user
posting and commenting the same URL on its Twitter account (see Figure 1.3),
thus generating a discussion.

In our interaction graph each layer is associated to a thread T whose edges are
the interactions happening in it. Note that since it is a multigraph, each of the
layers can contain more than one edge between two users, as each pair of users can
reply to each other more than one time.

We will also use C for denoting the set of contents.
An example of an interaction graph can be seen in Figure 1.4.

1.2.2 The Problem Definition
The main goal of the research is finding echo chambers in social medias, more
specifically on the interaction graph as defined in Subsection 1.2.1.

Our definition is based on the idea that echo chambers can be identified by
looking at contents which are highly debated (we will call this type of content
controversial) but which are discussed with little or no animosity in some subgraphs.
These subgraphs are the Echo Chambers.

Given an interaction graph G = {Gk = (V,Ek)}k on some contents C and
threads, let E+

k and E−
k be the set of positive and negative edges associated to

thread Tk, respectively. We define η(Tk) to be the ratio between the number of
negative edges and the total number of edges in the layer associated to thread Tk,
i.e.

η(Tk) = |E−
k |

|E−
k |+ |E+

k |
.

4

https://www.nytimes.com/2021/03/04/us/richard-barnett-pelosi-tantrum.html

1.2 – Problem

Figure 1.3: A thread associated to the mentioned New York Times article.

5

Introduction

v3

v2

v4 v5

v1

(a) T1 ∈ TC1

v3

v2

v4 v5

v1

(b) T2 ∈ TC1

v3

v2

v5 v4

v1

(c) T3 ∈ TC2

Figure 1.4: An example of an interaction graph, green and red edges representing
positive and negative interactions with weights −1 and +1, respectively. It contains
three threads (T1, T2 and T3) and two contents (C1 and C2), the first two layers
each being associated to a thread of content C1, the last layer to a thread of content
C2.

6

1.2 – Problem

Now, for a content C, let E+
l = t

Tk∈TC
E+
k and E+

l = t
Tk∈TC

E+
k . Similarly to

η(Tk), η(C) is defined as the fraction of negative edges associated to content C, i.e.

η(Cl) = |E−
l |

|E−
l |+ |E+

l |
.

Definition 1.2.2 (Controversial thread). Let α ∈ [0,1]. A thread (or content)
is controversial if η(T) > α (or, similarly, η(C) > α). Conversely, a thread (or
content) is non-controversial if η(T) ≤ α (η(C) ≤ α).

Intuitively, controversial threads contain many negative interactions. We denote
as Ĉ ⊆ C the set of controversial contents.

Echo Chambers correspond to non-controversial subgraphs (i.e. with few negative
edges) discussing a controversial content.

More formally, for a set of vertices U ⊆ V , let T [U] be the subgraph induced in
the layer associated to thread T ; let |T+[U]| and |T−[U]| be its number of positive
and negative edges, respectively.

We define SC(U) as the set of non-controversial threads induced by U , for
controversial contents C ∈ Ĉ, i.e.

SC(U) = {T [U] s.t. T [U] non-controversial, T ∈ TC , U ⊆ V }. (1.1)

Thus, SC(U) will contain threads which are locally non-controversial but it is
defined only for contents that are globally controversial. In the rest of the document
we will refer to elements of SC(U) both as T ∈ SC(U) and T [U] ∈ SC(U).

We now define the Echo Chamber Score of a set of vertices U .

Definition 1.2.3 (Echo Chamber Score). Let U ⊆ V be a subset of vertices. Its
Echo Chamber Score ξ(U) is

ξ(U) =
Ø
C∈Ĉ

Ø
T [U]∈SC(U)

(|T+[U]| − |T−[U]|). (1.2)

We can now define the Echo Chamber Problem (ECP).

Problem 1.2.1 (Echo Chamber Problem (ECP)). Given an interaction graph G
and α ∈ [0, 1] find a set of vertices U ⊆ V maximizing the Echo Chamber Score
(1.2).

We will denote with Û the set of users maximizing (1.2) and with ξ(G) its
corresponding score, i.e.

Û := arg max
U⊆V

ξ(U), ξ(G) := ξ(Û).

7

Introduction

1.2.3 The Densest Echo Chamber Problem
The ECP does not take into account the number of users producing a certain score;
this means that the set U may involve also very sparse subgraphs, depending on
the structure of the graph G.

For this reason it is interesting also to study another variant of the ECP, the
Densest Echo Chamber Problem (D-ECP), which we now define.

Definition 1.2.4 (Densest Echo Chamber Score). Let U ⊆ V be a subset of
vertices. Its Densest Echo Chamber Score ψ(U) is

ψ(U) =
Ø
C∈Ĉ

Ø
T [U]∈SC(U)

(|T+[U]| − |T−[U]|)
|U |

. (1.3)

Similarly to the ECP we can now define the corresponding problem

Problem 1.2.2 (Densest Echo Chamber Problem (D-ECP)). Given an interaction
graph G and α ∈ [0, 1] find a set of vertices U ⊆ V maximizing the Densest Echo
Chamber Score (1.3).

Note that ψ(U) = ξ(U)/|U |. The solutions to this problem are, in a certain
sense, a stronger concept of Echo Chambers: we look for a group of vertices U
whose score ξ(U) is high when compared to |U |, i.e. a smaller subgraph with a
large ξ(U) will be preferred over a much bigger and sparser subgraph, even if the
latter achieves an higher Echo Chamber Score.

1.3 Goals and Results
This work addresses the following research questions:

1. How can we solve the Echo Chamber Problem and the Densest Echo Chamber
Problem?

2. Are they solvable or approximable in polynomial time?

3. Are these definitions capable of finding echo chambers in real world data?

We answer Questions 1 and 2 showing that these problems are not approximable
in polynomial time within some non-trivial factor (see Chapter 3). In Chapter 4,
we present different methods for solving and approximating them. In Chapter 5,
we will validate one of the presented approximation algorithms over synthetic
and real-world data, and see that, while in the first case it is able to reconstruct
subgraphs whose vertices have many positive edges, in the second one it fails to
recognize communities.

8

1.4 – Structure of the thesis

1.4 Structure of the thesis
The thesis is structured as follows:

1. Chapter 2 presents previous works and concepts needed for the development
of the methods presented in the following chapters.

2. Chapter 3 provides proofs regarding the approximability of ECP and D-ECP.

3. Chapter 4 defines methods for solving and approximating the ECP and D-ECP
problems.

4. Chapter 5 focuses on analyzing the data, how it is retrieved and preprocessed,
and discussing the results obtained by applying the introduced methods.

5. Chapter 6 presents the positive effects and the drawbacks of the results, as
well as possible future developments and improvements.

1.5 About the Thesis
The Python code used to obtain the results presented in the rest of the document
is available at the following URL

https://github.com/morpheusthewhite/master-thesis

9

https://github.com/morpheusthewhite/master-thesis

10

Chapter 2

Background

This chapter provides the background knowledge relevant for the thesis work.
It will present concepts of Computational Complexity (Section 2.1) and Linear
Programming (Section 2.2) as well as graph density problems (Section 2.3) which
are significant in the following used methodologies.

2.1 Computational Complexity and
Approximability

Complexity Theory deals with the study of the intrinsic complexity of computational
problems. It also elaborates on the relationships between the complexity of different
problems, for example proving that two problems are computationally equivalent
[16], through a notion called reduction.

2.1.1 Optimization Problems and NPO
Optimization problems are defined from a problem instance x, a set of feasible
solutions S and a cost function that takes as input the problem instance x and a
feasible solution s ∈ S, denoted as costO(x, s). Given a minimization (maximization)
problem the optimal solution is defined as the s minimizing (maximizing) the value
of costO(x, s), and we denote this value by optO(x)[17].

NPO is then the set of optimization problems with the following properties:

• instances x can be recognized in polynomial time;

• costO(x, s) can be computed in polynomial time for s ∈ S;

11

Background

• it takes polynomial time to decide if solution r of the instance x is feasible,
i.e. whether r ∈ S;

• for every instance of the problem x and feasible solution for that problem
s ∈ S there is a polynomial q s.t. |s| ≤ q(|x|) (i.e. the size of every solution is
bounded by a polynomial in x).

If P /= NP for many optimization problems there is no algorithm for finding the
optimal solution in polynomial time [17]. This is again a fundamental limitation
about what we can compute which then requires the definition of some alternative
approaches, like approximation algorithms which in polynomial time compute a
solution which lies in a given factor from the optimal one [18].

Approximation. A is an r-approximation algorithm for an NPO minimization
problem O if, for every instance x of O it holds that

costO(x,A(x)) ≤ r · optO(x)

(or, respectively, costO(x,A(x)) ≤ 1/r·optO(x) for maximization problems), A(x)
being the optimal solution found by the approximation algorithm [17].

2.1.2 Approximation Preserving Reductions
If P /= NP the approximability of problems varies widely: while for some of
them there exist constant factor approximations, for some others even a remotely
approximate solution cannot be found [19] (some examples are listed in Table 2.1).

Approximation preserving reductions are a fundamental notion for proving a
partial order among optimization problems [19]. Given a function f mapping
instances of A to B and a function g mapping solutions of B to solutions of A,
an approximation preserving reduction must have the following properties (when
reducing from a problem A to a problem B) [21]:

• any instance x of A should be mapped to an instance xÍ = f(x) of B in
polynomial time,

• any solution yÍ ∈ sol(f(x)) of B should be associated to a corresponding
solution y = g(x, yÍ) ∈ sol(x) of A in polynomial time.

The process is illustrated in Figure 2.1.
There are at least nine different kinds of approximation preserving reductions

[21](Figure 2.2) but we will focus only on one type.

12

2.1 – Computational Complexity and Approximability

Table 2.1: Examples of known inapproximability results, assuming P /= NP [20]

Problem Description Inapproximability
MaxClique Biggest complete subgraph |V |1−Ô, Ô > 0

MaximumIndipendentSet Biggest set of not connected
nodes

|V |1−Ô, Ô > 0

MaxCut Partition of nodes in two
sets V1 and V2 minimizing
the number of edges between
the 2 sets

1.0624

MaximumSetPacking Given a collection of finite
sets C, finding the biggest
collection C Í ⊆ C of disjoint
sets

|C|1−Ô, Ô > 0

Figure 2.1: The reduction scheme [22].

13

Background

S Reductions

An S reduction from problem A to problem B has the following properties [22]:

• for any instance x of problem A it holds that optA(x) = optB(f(x)),

• for any instance x of A and solution yÍ of B, costA(x, g(x, yÍ)) = costB(f(x), yÍ).

S reductions are the strongest type of approximation preserving reductions and
imply all the others [22].

2.2 Linear and Mixed Integer Programming
Linear Programming (LP) is a widely used optimization technique and one of
the most effective; the term refers to problems in which both the constraints and
objective function are linear [23, 24, 25, 26]. LPs are solvable in polynomial time
[27, 28].

2.2.1 The Structure of LPs
In a LP problem we are given a vector c = (c1, . . . , cn) and we want to maximize (or
minimize) a linear function over the variables x = (x1, . . . , xn) with the coefficients
of the vector c, i.e.

cx =
nØ
i=1

cixi

(known as the objective function) while satisfying some linear constraints over the
variables [29, 24]:

Figure 2.2: Taxonomy of approximation preserving reductions [22].

14

2.2 – Linear and Mixed Integer Programming

a1x1 + · · ·+ anxn


≤
=
≥

 b

In general it is possible to formulate any LP problem as follows (called standard
form) [24]

maximize
nØ
i=1

cixi (2.1)

subject to
nØ
i=1

a1ixi ≤ b1 (2.2)

... (2.3)
nØ
i=1

amixi ≤ bm (2.4)

xi ≥ 0, i = 1, . . . , n (2.5)

The xi are known also as decision variables; a choice of x is called solution
and feasible solution if it satisfies the constraints, optimum if it is feasible and
maximizes the objective function [24].

2.2.2 Solving an LP Problem
An option for solving an LP is called the simplex method which has two different
phases.

Starting from the standard form (2.1) slack variables xn+1, . . . , xn+m are intro-
duced, allowing to express the problem as follows [24, 23]:

maximize
nØ
i=1

cixi (2.6)

subject to xn+1 = b1 −
nØ
i=1

a1ixi (2.7)

... (2.8)

xn+m = bm −
nØ
i=1

amixi (2.9)

xi ≥ 0, i = 1, . . . , n+m (2.10)

The first phase involves finding a feasible solution for the problem. More
specifically, we look for m variables, called basic variables, whose value we choose

15

Background

in order to satisfy the m equality constraints (while the remaining variables, the
nonbasic ones, are set to 0); if no such feasible solution exists then the problem is
unfeasible. Let B be the set of basic variables, N the set of nonbasic variables [24,
29] and ζ̄ the value of the objective function associated to this feasible solution.
Then the problem can be reformulated as follows:

maximize ζ̄ +
nØ

j∈N
cjxj (2.11)

subject to xi = b̄i −
nØ

j∈N
āijxj i ∈ B (2.12)

xi ≥ 0, i = 1, . . . , n+m (2.13)

The second phase of the simplex method aims at improving the current solution:
if cj ≥ 0 for all j ∈ N , then the value of the objective function cannot be increased
and we found an optimum. If, instead, there is at least one cj > 0 then we can
increase the value of ζ by increasing xj; now there are two different cases [24]:

• As xj increases there is at least a variable x̃j whose value needs to decrease to
satisfy equality constraints. The first of these variables x̃j reaching 0 moves
from B to N , while xj moves from N to B. The problem is reformulated again
as in (2.11) and the process is repeated [24].

• If no such x̃j variable exists then the value of xj can be increased indefinitely
and the problem is said to be unbounded, i.e. it can achieve any arbitrarily
large value.

The process is illustrated with an example in Figure 2.3.

2.2.3 Mixed Integer Programming

Many problems involve not only continuous variables but also variables that take
binary or integer values: these are known as Mixed Integer Programming (MIP)
problems. Furthermore, some of these problems are linear in the constraints and
in the objective function and are known as Mixed Integer Linear Programming
(MILP) problems [23, 31].

A generic MILP can be expressed as follows [32]:

16

2.2 – Linear and Mixed Integer Programming

Figure 2.3: An example of the progress of the simplex method: the process moves
along the vertices of the polygon defined by the constraints while improving the
value of the solution. Picture taken from [30].

17

Background

maximize
n1Ø
i=1

cixi +
n2Ø
i=1

hiyi

subject to
n1Ø
i=1

a1ixi +
n2Ø
i=1

g1iyi ≤ b1

...
n1Ø
i=1

amixi +
n2Ø
i=1

g1iyi ≤ bm

xi ≥ 0, i = 1, . . . , n1

yi ≥ 0, i = 1, . . . , n2 integral

(2.14)

For convenience, we will refer to MILP problems as MIP in the rest of the
document.

The relaxation of a MIP problem is defined as the same problem where the
integrality constraints have been removed [23].

Solving a MIP is a difficult task in general, differently from the LP problems. It
has been shown also that MIP is NP-Hard [33, 34, 35]. This is why the relaxation
is often considered for getting an approximation of the exact solution and it can be
solved in polynomial time [32].

2.2.4 Solving a MIP
One approach that has been proven successful for solving MIP is the Branch-and-
Bound, which is guaranteed to find an optimal solution [32, 23].

Given a problem P , the process starts by solving the relaxation of P and finding
its optimal solution (x̃, ỹ). Let S and S̃ be the set of feasible solutions for the
original problem and its relaxation, respectively. By definition, we have that S ⊆ S̃.
Therefore, [23]

• If the relaxation problem is not feasible so will be the original problem.

• If ỹ has only integer values then we found the optimal solution for the original
problem.

• If, instead, ỹ contains some fractional values, we start by initializing the
value of the best solution so far, ζ, with −∞. Then we choose one of the
fractional variables that are required to be integral in the original problem,
say yj with value f , and create two subproblems, respectively adding the
constraint yj ≤ åfæ and yj ≥ çfè. This step is called branching. We now
consider the solution of each subproblem (xj, yj) with value of the objective
function zj [23, 32].

18

2.3 – Density in Graphs

– If either of the subproblems is not feasible or its value zj is lower than
the best one found so far then it does not need to be considered further.
This is called pruning.

– If yj are all integer values then ζ = zj.

– Otherwise, we subdivide again in two subproblems as above.

When there are no remaining subproblems to consider then Branch-and-Bound
terminates [23].

2.3 Density in Graphs

2.3.1 The Densest Subgraph Problem
Finding dense subgraphs is a problem which has received a lot of attention and
different definitions of density have been used [36, 37, 38, 39].

We will refer to the definition in [36] and present some of its results which are
used and important for the development of the methods in the following chapters.

Let G = (V,E) be an undirected graph, let S ⊆ V a subset of the nodes, and
let E(S) denote the edges of G induced by S, i.e.

E(S) = {eij ∈ E s.t. vi ∈ S ∧ vj ∈ S}.

The density f(S) is defined as

f(S) = |E(S)|
|S|

. (2.15)

According to this definition it is easy to see that 2 · f(S) is the average degree
of the subgraph induced by S.

The density of the graph f(G) is then defined as

f(G) = max
S⊆V

f(S). (2.16)

The problem of computing f(G) is known as the Densest Subgraph Problem [36].
There are different techniques for solving it: a solution based on parametric

maximum flow has been proposed in [40]; Charikar in [36] proposed an alternative
solution based on the following Linear Programming model (a more in-depth
discussion about LP can be found in Section 2.2)

19

Background

maximize
Ø
ij∈E

xij (2.17)

subject to xij ≤ yi ∀ij ∈ E (2.18)
xij ≤ yj ∀ij ∈ E (2.19)Ø

i∈V
yi ≤ 1 (2.20)

yi ≥ 0 ∀i ∈ V (2.21)
xij ≥ 0 ∀ij ∈ E (2.22)

(2.23)

Intuitively, the problem associates non-zero yi to vertices in S ⊆ V and non-zero
xij to edges induced by S. The concept of "density" is introduced by (2.20), which
distributes a fixed quantity (one in this case) to the vertices, such that the value yi
of each vertex generally decreases (and consequently also that of the xij) as the
number of non-zero yi increases.

Let S(r) := {vi : yi ≥ r} and E(r) := {eij : xij ≥ r}. It is easy to see that, given
the model as defined above, E(r) is the set of edges induced by the vertices in S(r).

The set of vertices S maximizing the density f(S) can then be reconstructed from
the results of the LP by finding the density of S(r) for all choices of r = yi, i ∈ V
[36].

An approximate algorithm for the Densest Subgraph Problem. In [36],
Charikar also defines a greedy approach for solving the Densest Subgraph problem
which gives a 2-approximation for f(G).

The algorithm starts by defining a set of vertices S which is initialized with V
and, through the iterations, it removes from S the vertex vi which has the lowest
degree in the subgraph induced by S, until S is empty. Then it returns the set S
which, during the process, was associated with the highest density f(S).

2.3.2 The Densest Common Subgraph Problem
The Densest Common Subgraph (DCS) Problem was initially introduced by Jethava
and Beerenwinke in [41] and later studied in [42], [43] and [44] that also introduced
new variants.

Let G = (G1, G2, . . . , GT) be a sequence of graphs on the same set of vertices V
(an example is shown in Figure 2.4), S ⊆ V a subset of the nodes, Gi[S] the subgraph
induced by S in Gi, degGi[S](vj) the degree of vj ∈ S in Gi[S] and min-deg(Gi[S])
the minimum induced degree, i.e. min-deg(Gi[S]) := minvj∈S degGi[S](vj).

20

2.3 – Density in Graphs

v1 v2

v3 v4

(a) G1

v1 v2

v3 v4

(b) G2

v1 v2

v3 v4

(c) G3

Figure 2.4: An example of a graph sequence G = (G1, G2, G3) over four vertices.

21

Background

Solving the Densest Common Subgraph Problem means finding a subset of the
vertices S ⊆ V that maximizes some aggregate density function over the graph
sequence. More formally, let g be a function that calculates the density of a set of
nodes S in a undirected graph G, i.e.

g : S ×G→ R.

Also, let h be a function aggregating the value of the density of each snapshot
of the graph sequence, i.e.

h : g(S,G1)× g(S,G2)× · · · × g(S,GT)→ R.

Then, the DCS problem consists in finding S maximizing the following quantity:

f(S,G) = h({g(S,G1), . . . , g(S,GT)}).

We call f the density aggregation function. According to the definition of f
there are different variants of the problem

• DCS-MM maximizes the Minimum of the Minimum degrees along the graph
sequence, i.e.

g = min-deg(Gi[S]), f = min
i∈[T]

min-deg(Gi[S]). (2.24)

A non-trivial solution means finding a set of nodes which are linked in all the
graphs Gi ∈ G. In [44] it is shown a simple greedy approach for finding the
solution in polynomial time.

• DCS-MA uses the following functions

g =
q
vj∈S degGi[S](vj)

|S|
, f = min

i∈[T]

q
vj∈S degGi[S](vj)

|S|
. (2.25)

This means finding a set of vertices S which are dense in the sense that they
have a non-trivial average degree in all the graphs of the sequence.
Charikar, Naamad and Yu in [43] and Semertzidis, Pitoura, Terzi, Tsaparas
in [44] provide some approximation algorithms with guaranteed bounds; in
[43] also they prove its inapproximability to within a O(2log1−Ô n) factor unless
NP ⊆ DTIME(npoly logn), Ô > 0 1.

1They show this results through a reduction from MinRep, which has been shown to have
the mentioned inapproximability [43, 45].

DTIME(f(n)) refers to the class of problems that have time complexity f(n) [16].

22

2.3 – Density in Graphs

• DCS-AM, whose density aggregation function is

f =
Ø
i∈[T]

min-deg(Gi[S]), (2.26)

while g is the same as in (2.24). This choice will push the algorithms to find a
set of vertices which have degree greater than 0 in some of the subgraphs they
induce in the graph sequence.
Charikar, Naamad and Yu proved in [43] that DCS-AM is inapproximable
within factor n1−Ô unless P = NP, Ô > 0 2. For fixed T , they also provide a
fixed parameter polynomial time algorithm which can be used for solving this
problem exactly, as well as a (1 + Ô)-approximation algorithm.

• DCS-AA maximizing

f =
Ø
i∈[T]

q
vj∈S degGi[S](vj)

|S|
(2.27)

which puts fewer restrictions than the previous variants on the solutions,
requiring only a high average degree on the union of the graphs. Note that g
is the same as in (2.25).
This problem can be solved optimally in polynomial time as it can be reduced
to the classical Densest Subgraph problem (Subsection 2.3.1) [44]; similarly
the approximation algorithm in Subsection 2.3.1 provides a 2-approximation
for the optimal solution.
More specifically, solving DCS-AA is the equivalent of solving the Densest
Common Subgraph (DCS) on the average graph ĤG, which is defined as a
weighted graph whose weight of each edge is the fraction of graphs in the
sequence G where the edge is present [44].

2.3.3 The O2Bff Problem
The DCS is also known as the Best Friends Forever (Bff) Problem as defined by
Semertzidis, Pitoura, Terzi, Tsaparas [44]; in the same paper also another class of
similar problem is defined, the On-Off Bff Problem.

Let G = (G1, G2, . . . , GT) be a sequence of graphs on the same vertex set V .
The On-Off Bff (O2Bff) is defined as the set of vertices S ⊆ V and the set of k
graphs Lk ⊆ G that maximize some density aggregation function f(S,Lk).

2By reducing from the MaximumIndipendentSet problem.

23

Background

As this problem relies again on a function f which aggregates the density across
the graphs Gi, similarly to the DCS Problem four variants can be defined, using
the same functions mentioned in Subsection 2.3.2.

We will focus and present only an algorithm for approximating O2Bff-AM; the
other algorithms can be found in [44].

Let us first define Scorea, a procedure that removes the node with the lowest
degree in a graph while properly updating the degree of the other nodes. When
called for the first time, this function initializes ĤG, Ê and F [d], as described in
Algorithm 2.1, that are updated during the subsequent calls to the function.

Note that we refer to the degree d of a vertex vi in a weighted graph as the sum
of the weights of the edges of the node, i.e. dvi

= q
(vi,vj)∈E wij.

Algorithm 2.1: The Scorea algorithm
Result: The vertex with the lowest degree is removed and returned
ĤG ← average graph of G ;
Ê ← set of edges of ĤG ;
F [d]← set of nodes with degree d in ĤG;

function ScoreAndUpdate(G) {
scorea ← smallest d s.t. F [d] /= ∅;
u← a node with degree d ;
remove u from F [d] ;

foreach (u, v) ∈ Ê do
remove v from F [dv] ;
remove (u, v) from Ê and update dv ;
add v to F [dv] ;

end
V = V \ {u} ;
return u ;

}

Let us also define FindBffa, a greedy approach for finding the subgraph with
the highest density f (which corresponds to (2.26) in our case, but it can be replaced
by any of the other density aggregation functions). This function repeatedly calls
ScoreAndUpdate to remove the node with the lowest degree and efficiently
update the graph. When the graph is empty it returns the subset of nodes that
obtained the highest density score f (Algorithm 2.2).

Semertzidis, Pitoura, Terzi, Tsaparas in [44] present two different approaches
for approximating O2Bff-AM: an iterative one which starts with a set Lk ∈ G of

24

2.3 – Density in Graphs

Algorithm 2.2: The FindBffa algorithm
Result: A subset of nodes S ⊆ V
S0 = V ;
for i ∈ {1, . . . , |V |} do

vi = ScoreAndUpdate(G[Si]) ;
Si = Si−1 \ {vi} ;

end
return argmaxi∈{1,...,|V |} f(Si,G)

25

Background

k graphs and improves it to increase the score, and an incremental one in which
the set of k graphs Lk is selected along the k iterations, starting with a pair and
adding snapshots G ∈ G one by one.

Furthermore, they identify two possible approaches for each of them. We will
focus on the Incremental overlap (INCO).

The algorithm starts by solving the DCS problem on each of the graphs Gi in G
and finding the corresponding set of vertices Si of the solution. Then L2 is chosen
as the pair of graphs which have the most similar set of vertices in the respective
solutions, where the similarity is measured through the Jaccard coefficient.

The Jaccard coefficient is measure of similarity between two sets. More specifi-
cally, given two sets C1 and C2, the Jaccard coefficient is equal to [46]

Jaccard(C1, C2) = |C1 ∩ C2|
|C1 ∪ C2|

.

The DCS problem is now solved on L2 to obtain a set of vertices SC which is
compared against the other Si previously computed solutions to find the most similar
one, as before, and the process continues until Lk is constructed (Algorithm 2.3).
Finally, the FindBffa is called on Lk and the resulting set of vertices is returned
along with Lk.

Algorithm 2.3: The INCO algorithm for approximating O2Bff-AM
Result: A subset of nodes S ⊆ V and of graphs Lk ⊆ G
for i ∈ {1, . . . , |G|} do

Si = FindBffa({Gi}) ;
end
L2 = argmaxGi,Gj∈G Jaccard(Si, Sj) ;
for i ∈ {3, . . . , k} do

SC = FindBffa(Li−1) ;
Gm = argmaxGj∈G, Gj /∈Li−1 Jaccard(SC , Sj) ;
Li = Li−1 ∪ {Gm} ;

end
S = FindBffa(Lk) ;
return S, Lk ;

26

Chapter 3

Problem Complexity and
Approximability

We will now prove the inapproximability of the ECP and D-ECP within some
nontrivial factor.

3.1 Hardness of ECP
Theorem 3.1.1. The Echo Chamber Problem (ECP) has no n1−Ô-approximation
algorithm for any Ô > 0 unless P = NP.

Proof. We show this by presenting a direct reduction from Maximum Indepen-
dent Set (MIS), which is known having the mentioned hardness factor (Table 2.1).

Let G1 = (V1, E1) be an undirected and unweighted graph for which we want to
solve MIS.

We show how to construct an interaction graph G2 as instance for ECP with
parameter α. Let λ > α

1−α , λ ∈ N and n1 := |V1|. G2 is constructed as follows:

• for each vertex vi ∈ V1 we add a vertex in G2,

• for each edge eij ∈ E1 we add λn1 negative edges between vi and vj,

• we add a vertex vr and a positive edge between vr and any other vertex vi ∈ V2
that we already inserted in G2,

• we add a vertex vx and λn1 negative edges between vx and vr.

Furthermore, all the edges in G2 are associated to the same content C and the
same thread T ∈ TC . Thus, our ECP instance only contains a single thread and a
single content. An illustration of the reduction can be found in Figure 3.1.

27

Problem Complexity and Approximability

v2

v1

v3

(a) G1, undirected graph

v2

v1

v3

vx

vr

(b) G2, directed signed graph, for
λ = 1

Figure 3.1: Example construction of the interaction graph G2 from G1, for α = 1
3 .

28

3.1 – Hardness of ECP

Claim 3.1.2. Content C is controversial, i.e. η(C) > α.

Proof. Let m−
2 and m+

2 be the number of negative and positive edges in G2,
respectively.

By construction in G2 there is exactly one positive edge between vr and each
vertex vi from G1, i.e. m+

2 = n1. Also, m−
2 ≥ λn1, since G2 contains at least the

λn1 negative edges between vr and vx. Consequently, given that for any a, b, c ∈ R+

it holds that a+b
a+b+c ≥

a
a+c , we have

η(C) = m−
2

m−
2 +m+

2
≥ λn1

λn1 + n1
= λ

λ+ 1 > α. (3.1)

Thus, the content C is controversial. Since our instance only contains a single
content, this reduces the ECP on G2 to the maximization of

ξ(U) =
Ø

T∈SC(U)
(|T [U]+| − |T [U]−|). (3.2)

Claim 3.1.3. Let OPT(ECP) and OPT(MIS) be the maximum Echo Chamber
score on G2 and the size of the MIS on G1, respectively. We have that

OPT(ECP) = OPT(MIS) (3.3)

Proof. Let I ⊆ V1 be an independent set of G1 of size |I| > 1. Consider the
associated solution in G2 in which U = I ∪ {vr}. By construction, T [U] only
contains |I| positive edges, so T [U] ∈ SC(U) and also

OPT(ECP) ≥ ξ(U) = |T+[U]| = |I| =⇒ OPT(ECP) ≥ OPT(MIS). (3.4)

Now let S ⊆ V2 be a solution of the ECP on G2, and suppose ξ(S) > 0. We will
have that vr ∈ S and that vx /∈ S. Let J := S \ {vr}.

Next, we argue that J is an independent set for G1. We prove this by contradic-
tion. Suppose that two vertices vi, vj ∈ J are linked in G1. By construction there
are at least λn1 negative edges in T [S], thus

η(T [S]) ≥ λn1

λn1 + |S − 1| ≥
λn1

λn1 + n1
= λ

λ+ 1 > α. (3.5)

This means that T [S] is controversial and T /∈ SC(S); therefore, the sum in (3.2)
resolves to zero, which is a contradiction.

29

Problem Complexity and Approximability

Consequently, J contains vertices which are independent in G1. Therefore, T [S]
contains only positive edges; more specifically,

ξ(S) = |T+[S]| = |S| − 1 = |S \ {vr}| = |J |. (3.6)

Thus

OPT(MIS) ≥ |J | =⇒ OPT(MIS) ≥ OPT(ECP). (3.7)

So the optimal value of the constructed instance of ECP exactly equals that of
the Maximum Independent Set instance.

So, if we were able to approximate ECP within n1−Ô, Ô > 0 we would be also able
to approximate MIS within the same factor, which is not possible unless P = NP ,
given also that our reduction takes polynomial time.

This means ECP has a hardness factor at least as large as that of MIS.
This concludes the proof of Theorem 3.1.1.

3.2 Hardness of D-ECP
Theorem 3.2.1. The Densest Echo Chamber Problem (D-ECP) has no n1−Ô-
approximation algorithm for any Ô > 0 unless P = NP.

Proof. We again show this result by presenting a direct reduction from Maximum
Independent Set. Differently from before, we will need to create an instance of
the D-ECP with a positive clique over independent vertices of the original graph.

Let G1 = (V1, E1) be an undirected and unweighted graph for which we want to
solve MIS.

We show how to construct an interaction graph G2 as instance for D-ECP with
parameter α. Let λ > α

1−α , λ ∈ N and n1 := |V1|. G2 is constructed as follows:

• for each vertex vi ∈ V1 we add a vertex in G2,

• for each edge eij ∈ E1 we add λ(n1 + 1)2 negative edges between vi and vj,

• for each edge eij ∈ V1 × V1 \ E1 we add 2 positive edges between vi and vj,

• we add a vertex vr and 2 positive edges between vr and any other vertex
vi ∈ V2 that we already inserted in G2,

• we add a vertex vx and λn2
1 negative edges between vx and vr.

30

3.2 – Hardness of D-ECP

v2

v1

v3

(a) G1, undirected graph

v2

v1

v3

vx

vr
...

...

(b) G2, directed signed graph

Figure 3.2: Example construction of the interaction graph G2 from G1.

31

Problem Complexity and Approximability

Furthermore, all the edges in G2 are associated to the same content C and the
same thread T ∈ TC . Thus, our D-ECP instance only contains a single thread and
a single content. An illustration of the reduction can be found in Figure 3.2.
Claim 3.2.2. The content C is controversial, i.e. η(C) > α.

Proof. By construction G2 will contain at most two positive edges between each pair
of vertices from G1 and vr, i.e. m+

2 ≤ n1(n1 +1) < (n1 +1)2. Also, m−
2 ≥ λ(n1 +1)2

since G2 contains at least the λn2
1 negative edges we added between vr and vx.

Thus, given that for any a, b, c ∈ R+ it holds that a+b
a+b+c ≥

a
a+c , we have that

η(C) = m−
2

m−
2 +m+

2
≥ λ(n1 + 1)2

λ(n1 + 1)2 + (n1 + 1)2 = λ

λ+ 1 > α. (3.8)

Thus, the content C is controversial. Since our instance contains a single content,
this reduces the D-ECP on G2 to the maximization of

ψ(U) =
Ø

T∈SC(U)

|T+[U]| − |T−[U]|
|U |

. (3.9)

Claim 3.2.3. Let OPT(ECP) and OPT(MIS) be the maximum Echo Chamber
score on G2 and the size of the MIS on G1, respectively. We have that

OPT(D-ECP) = OPT(MIS). (3.10)

Proof. Let I ⊆ V1 be an independent set of G1 of size nI := |I| > 1 (unless G1 is a
clique we can always trivially find an independent set of size two by choosing two
vertices that are not connected by an edge). Consider the associated solution in
G2 in which U = I ∪ {vr}.

By construction, T [U] only contains positive edges, more specifically:

• 2 · nI positive edges between vr and vi ∈ I,

• nI(nI − 1) edges between vertices vi ∈ I.

Thus T [U] ∈ SC(U) and also

ψ(U) = |T
+[U]| − |T−[U]|

|U |
= 2nI + nI(nI − 1)

nI + 1 = n2
I + nI
nI + 1 = nI . (3.11)

Consequently,

OPT(D-ECP) ≥ ψ(U) = |I| =⇒ OPT(D-ECP) ≥ OPT(MIS). (3.12)

32

3.2 – Hardness of D-ECP

Now let S ⊆ V2 be a solution of the D-ECP on G2, and suppose ψ(S) > 0 (we
can always choose S = {vr} ∪ {vi} with vi vertex from G1, which will produce
ψ(S) = 1). We will have that vr ∈ S and that vx /∈ S. Let J := S \ {vr} be the
corresponding solution for MIS.

Next, we argue that S is an independent set for G1. We prove this by contradic-
tion. Suppose that two vertices vi, vj ∈ J are linked in G1. By construction there
are at least λ(n1 + 1)2 negative edges in T [S], thus

η(T [S]) = |T−[S]|
|T−[S]|+ |T+[S]|

≥ λ(n1 + 1)2

λ(n1 + 1)2 + nj(nj + 1)

≥ λ(n1 + 1)2

λ(n1 + 1)2 + (n1 + 1)2

= λ

λ+ 1
> α

where nj := |J |.
This means that T [S] is controversial and T /∈ SC(S); therefore, the sum in

(3.9) resolves to zero, which is a contradiction.
Consequently, J contains vertices which are independent in G1. Therefore, T [S]

contains only positive edges. Similarly to (3.11),

ψ(S) = |T
+[S]|
|S|

= |J |. (3.13)

Thus,
OPT(MIS) ≥ |J | =⇒ OPT(MIS) ≥ OPT(D-ECP) (3.14)

So the optimal value of the constructed instance of D-ECP exactly equals that
of the Maximum Independent Set instance. As motivated before (Section 3.1),
it will have a hardness factor at least as large as that of MIS.

This concludes the proof of Theorem 3.2.1.

33

34

Chapter 4

Solving the ECP and the
D-ECP

We now present some techniques for calculating exactly and approximating both
the ECP and the D-ECP (Subsection 1.2.2).

4.1 Exact Solutions

We start with our exact algorithms that are based on MIPs.

4.1.1 A MIP Model for the ECP

Let G be an interaction graph for contents C and threads T ∈ TC , C ∈ C for which
we want to solve the ECP. Fix α ∈ [0, 1]. Let Ĉ ⊆ C be the set of controversial
contents and Ek the set of all edges of thread Tk associated to a controversial
content, i.e. Tk ∈ TC , C ∈ Ĉ; let also E+

k and E−
k be the set of positive and negative

edges in Tk, respectively.

The following MIP model is able to solve the ECP on G for values of α ≤ 0.5.

35

Solving the ECP and the D-ECP

maximize
Ø

Tk∈TC , C∈Ĉ

1 Ø
ij∈E+

k

xkij −
Ø
ij∈E−

k

xkij
2

(4.1)

subject to xkij ≤ yi ∀ij ∈ Ek (4.2)
xkij ≤ yj ∀ij ∈ Ek (4.3)
xkij ≤ zk ∀ij ∈ Ek (4.4)

xkij ≥ −2 + yi + yj + zk ∀ij ∈ Ek (4.5)Ø
ij∈E−

k

xkij − α
Ø
ij∈Ek

xkij ≤ 0 ∀Tk ∈ TC , C ∈ Ĉ (4.6)

yi ∈ {0, 1} ∀i ∈ V (4.7)
0 ≤ xkij ≤ 1 ∀ij ∈ Ek (4.8)
0 ≤ zk ≤ 1 ∀Tk ∈ TC , C ∈ Ĉ (4.9)

The MIP model introduces variables x, y and z.

• y variables are associated to vertices (Equation 4.7). Intuitively yi = 1 means
that the vertex vi is part of the set U ⊆ V considered for the score.

• x variables are associated to edges (Equation 4.8). A value of xkij = 1 should
be interpreted as the fact that the edge eij ∈ Ek is contributing to the score,
i.e. Tk ∈ SC(U).

• z variables are associated to threads (Equation 4.9). A value greater than 0 is
generally associated to non-controversial threads and controversial threads
have value zk = 0.

We will now show that the ECP can be solved through MIP (4.1)-(4.9).

Theorem 4.1.1. Let G = {Gk = (V,Ek)}k be an Interaction Graph and α ∈ [0, 0.5].
Then

max
U⊆V

ξ(U) = OPT(MIP), (4.10)

where OPT(MIP) denotes the optimal solution to MIP (4.1)-(4.9).

Proof. We will show the equality by first proving that RHS ≥ LHS and then that
LHS ≥ RHS.

Claim 4.1.2. For any U ⊆ V , the MIP (4.1)-(4.9) achieves value at least ξ(U).

36

4.1 – Exact Solutions

Proof. Let Ek[U] the set of edges induced by U in thread Tk. We construct a MIP
solution as follows:

yi =
1, if vi ∈ U,

0, otherwise,
∀vi ∈ V (4.11)

zk =
1, if Tk ∈ SC(U), C ∈ Ĉ,

0, otherwise,
∀Tk ∈ TC , C ∈ C (4.12)

xkij =
1, if eij ∈ Ek[U], Tk ∈ SC(U), C ∈ Ĉ,

0, otherwise.
∀ekij ∈ Ek (4.13)

To satisfy (4.2)-(4.5) we need that

xkij = 1 ⇐⇒ yi = 1 ∧ yj = 1 ∧ zk = 1. (4.14)

This is always true since we defined xkij to be 1 only and if it is associated to an
edge induced in a Tk ∈ SC(U), C ∈ Ĉ.

Let us now consider a thread Tk ∈ SC(U). Then

η(Tk[U]) ≤ α =⇒ |E−
k [U]|
|Ek[U]| ≤ α =⇒ |E−

k [U]| − α|Ek[U]| ≤ 0. (4.15)

so (4.6) is satisfied. It is easy to see that if Tk /∈ SC(U) then xkij = 0 for all ij ∈ Ek
and the constraint is also satisfied.

Finally, any edge contributing to ξ(U) will also equally contribute to the objective
function.

Claim 4.1.3. Given a feasible solution of MIP (4.1)-(4.9) with value v we can
construct U s.t. ξ(U) ≥ v.

Proof. We define U := {vi s.t. yi = 1}. Again, by (4.2)-(4.5) we have (4.14), so

xkij = 1 =⇒ zk = 1, (4.16)
zk = 1 =⇒ xkiÍjÍ = 1 ∀iÍjÍ ∈ Ek[U], (4.17)

meaning that if zk = 1 then for all the edges eij ∈ Ek induced by U we will
have xkij = 1 (i.e. they will contribute to the objective). Let us now consider
Tk s.t. zk = 1. Because of (4.6) and (4.17) we have

|E−
k [U]| − α|Ek[U]| ≤ 0 =⇒ |E−

k [U]|
|Ek[U]| ≤ α. (4.18)

37

Solving the ECP and the D-ECP

i.e. η(Tk[U]) ≤ α. So Tk ∈ SC(U), C ∈ Ĉ, i.e. zk = 1 =⇒ Tk ∈ SC(U), C ∈ Ĉ,
thus Tk[U] contributes to ξ(U); more specifically any edge contributing to the
objective function equally contributes to ξ(U).

Now suppose there exists Tk ∈ SC(U) s.t. zk = 0. Then xkij = 0 by (4.4). Since
α ≤ 0.5,

η(Tk[U]) ≤ α =⇒ |E−
k [U]|
|Ek[U]| ≤ 0.5 (4.19)

=⇒ |E−
k [U]| ≤ 0.5 · (|E+

k [U]|+ |E−
k [U]|) (4.20)

=⇒ 0.5 · |E+
k [U]| − 0.5 · |E−

k [U]| ≥ 0 (4.21)
=⇒ |E+

k [U]| − |E−
k [U]| ≥ 0. (4.22)

Consequently Tk will contribute positively to ξ(U), i.e. in the subgraph induced
on Tk by U the number of positive edges is greater or equal than the number of
negative edges.

More generally, due to (4.2)-(4.5) we have

zk = c > 0 =⇒ xkiÍjÍ = c ∀iÍjÍ ∈ Ek[U],

meaning that if zk = c all and only the variables xkij associated to edges eij ∈ Ek
induced by U will get value c (any other xkij will get value 0 for (4.2)-(4.3)).

Combining this result with (4.6) we get again (4.18) and, consequently, (4.22).
Therefore, the contribution of Tk associated to zk > 0 will be

Ø
ij∈E+

k

xkij −
Ø
ij∈E−

k

xkij = zk(|E+
k [U]| − |E−

k [U]|) ≥ 0. (4.23)

Since zk ∈ [0, 1] the contribution of the same thread in ξ(U) will be greater (if
zk ∈ [0, 1)) or equal (if zk = 1) to the contribution of thread Tk in the objective
function.

This concludes the proof for Theorem 4.1.1.

A MIP Model for α > 0.5

Previously, we solved the ECP for α ∈ [0, 0.5]. Solving the problem for α ∈ [0, 1]
requires the definition of additional variables and constraints.

maximize
Ø

Tk∈TC , C∈Ĉ

1 Ø
ij∈E+

k

xkij −
Ø
ij∈E−

k

xkij
2

(4.24)

38

4.1 – Exact Solutions

subject to

xkij ≤ yi ∀ij ∈ Ek (4.25)
xkij ≤ yj ∀ij ∈ Ek (4.26)
xkij ≤ zk ∀ij ∈ Ek (4.27)

xkij ≥ −2 + yi + yj + zk ∀ij ∈ Ek (4.28)

−Nkzk <
Ø
ij∈E−

k

akij − α
Ø
ij∈Ek

akij ≤Mk(1− zk) ∀Tk ∈ TC , C ∈ Ĉ (4.29)

akij ≥ −1 + yi + yj ∀ij ∈ Ek (4.30)
akij ≤ yi ∀ij ∈ Ek (4.31)
akij ≤ yj ∀ij ∈ Ek (4.32)

0 ≤ akij ≤ 1 ∀ij ∈ Ek (4.33)
yi ∈ {0, 1} ∀i ∈ V (4.34)

0 ≤ xkij ≤ 1 ∀ij ∈ Ek (4.35)
zk ∈ {0, 1} ∀Tk ∈ TC , C ∈ Ĉ (4.36)

Where are Nk and Mk are constants of value α(|E+
k |+ 1) and (1− α)(|E−

k |+ 1),
respectively.

Note also that (4.29) involves a strict inequality, which is not allowed by the
definition of MIP or LP. However, this constraint can easily be transformed into a
valid and equivalent formulation by the means of a small Ô > 0 (generally we can
choose Ô < α · 10−10), so that it becomes

−Nkzk ≤
Ø
ij∈E−

k

akij − α
Ø
ij∈Ek

akij − Ô ≤Mk(1− zk) ∀Tk ∈ TC , C ∈ Ĉ.

We will however use (4.29) for simplifying notation.
This problem requires the introduction of variables akij, associated to edges

(4.33), which generally take value one if they are associated to an edge induced
by the set of vertices considered as solution (i.e. yi with value one). Note that,
in order to contribute to the score, xkij also require that the corresponding thread
Tk ∈ SC(U). The other variables have the same meaning as in MIP (4.1)-(4.9).

Theorem 4.1.4. Let G = {Gk = (V,Ek)}k be an Interaction Graph and α ∈ [0, 1].
Then

max
U⊆V

ξ(U) = OPT(MIP) (4.37)

where OPT (MIP) denotes the optimal solution to MIP (4.24)-(4.36).

39

Solving the ECP and the D-ECP

Proof. We will prove the theorem by showing that LHS ≥ RHS and that LHS ≤
RHS.
Claim 4.1.5. For any U ⊆ V , the MIP (4.24)-(4.36) gets value ≥ ξ(U).

It is easy to see that by choosing xkij, yi, zk as in Claim 4.1.2 and

akij =
1 if eij ∈ Ek[U]

0 otherwise

all the constraints of the new formulation are satisfied and Claim 4.1.5 is conse-
quently proved for MIP (4.24)-(4.36).

We will instead focus on proving the analogous of Claim 4.1.3.
Claim 4.1.6. Given a feasible solution of MIP (4.24)-(4.36) with value v we can
construct U s.t. ξ(U) ≥ v for any α.

Proof. Let U := {vi s.t. yi = 1}. We will not prove some results in Claim 4.1.3
which still hold.

Due to (4.30)-(4.32) we have that

akij = 1 ⇐⇒ yi = 1 ∧ yj = 1 (4.38)

i.e. all and only the edges induced by U will have the corresponding akij = 1.
Therefore,

|E−
k [U]| =

Ø
ij∈E−

k

akij, |Ek[U]| =
Ø
ij∈Ek

akij. (4.39)

Consider now a thread Tk ∈ SC(U). By definition, we have that

η(Tk) ≤ α =⇒ |E−
k [U]|
|Ek[U]| ≤ α (4.40)

=⇒ |E−
k [U]| − α · |Ek[U]| ≤ 0. (4.41)

Now suppose zk = 0. This means that (4.29) resolves to

0 <
Ø
ij∈E−

k

akij − α
Ø
ij∈Ek

akij ≤Mk

Which is not satisfied due to (4.41) and (4.39), since they imply that q
ij∈E−

k
akij −

α
q
ij∈Ek

akij ≤ 0. This justifies (4.29).
Thus, zk = 1. This means that the constraint resolves to

−Nk = −α(|E+
k [U]|+ 1) <

Ø
ij∈E−

k

akij − α
Ø
ij∈Ek

akij

40

4.1 – Exact Solutions

which is satisfied sinceØ
ij∈E−

k

akij − α
Ø
ij∈Ek

akij =|E−
k [U]| − α · |Ek[U]| (4.42)

=(1− α)|E−
k [U]| − α · |E+

k [U]| (4.43)
≥− α · |E+

k [U]| (4.44)
>−Nk. (4.45)

Consequently, because of (4.17), we have that
Tk ∈ SC(U) ⇐⇒ xkij = 1 ∀ i, j ∈ U (4.46)

meaning that each non-controversial Tk will contribute to ξ and v with the same
score, i.e. Ø

ij∈E+
k

xkij −
Ø
ij∈E−

k

xkij = |E−
k [U]| − |Ek[U]|.

Now consider Tk controversial and suppose zk = 1. This means that (4.29)
resolves to

−Nk <
Ø
ij∈E−

k

akij − α
Ø
ij∈Ek

akij ≤ 0,

where the second inequality is not satisfied due to (4.39) and by definition of
controversial. So zk must be 0. Then, we haveØ

ij∈E−
k

akij − α
Ø
ij∈Ek

akij =|E−
k [U]| − α · |Ek[U]|

=(1− α)|E−
k [U]| − α · |E+

k [U]|
≤(1− α) · |E−

k [U]|
≤Mk,

thus satisfying (4.29). Therefore, xkij = 0 ∀ i, j,∈ V (because of (4.27)). This
means that the contribution of a controversial Tk is the same in ξ and v and, in
general, ξ(U) = v, proving the claim.

Due to Claims 4.1.5 and 4.1.6 the theorem is proved.

4.1.2 A MIP Model for the D-ECP
Similarly to the ECP, here we propose a MIP model for finding a solution for the
D-ECP, α ∈ [0, 1].

For simplifying notation we define Ek := E(Tk), Tk ∈ TC , C ∈ Ĉ.

maximize
Ø

Tk∈TC , C∈Ĉ

1 Ø
ij∈E+

k

xkij −
Ø
ij∈E−

k

xkij
2

(4.47)

41

Solving the ECP and the D-ECP

subject to

akij ≤ bi ∀ij ∈ Ek (4.48)
akij ≤ bj ∀ij ∈ Ek (4.49)

akij ≥ −1 + bi + bj ∀ij ∈ Ek (4.50)

−Nkzk <
Ø
ij∈E−

k

akij − α
Ø
ij∈Ek

akij ≤Mk(1− zk) ∀Tk ∈ TC , C ∈ Ĉ (4.51)

xkij ≤ yi ∀ij ∈ Ek (4.52)
xkij ≤ yj ∀ij ∈ Ek (4.53)Ø

i∈V
yi = 1 (4.54)

yi ≤ bi ∀i ∈ V (4.55)
yi ≥ −1 + bi + yj ∀i, j ∈ V (4.56)

xkij ≥ −2 + akij + zk + yi ∀ij ∈ Ek (4.57)
xkij ≥ −2 + akij + zk + yj ∀ij ∈ Ek (4.58)

xkij ≤ akij ∀ij ∈ Ek (4.59)
xkij ≤ zk ∀Tk ∈ TC , C ∈ Ĉ (4.60)

akij ∈ {0, 1} ∀ij ∈ Ek (4.61)
bi ∈ {0, 1} ∀i ∈ V (4.62)

yi ≥ 0 ∀i ∈ V (4.63)
xkij ≥ 0 ∀ij ∈ Ek (4.64)

zk ∈ {0, 1} ∀Tk ∈ TC , C ∈ Ĉ (4.65)

Where are Nk and Mk are constants of value α(|E+
k |+ 1) and (1− α)(|E−

k |+ 1),
respectively. Again the strict inequality of (4.51) can be transformed into a valid
constraint as explained in Subsection 4.1.1.

Theorem 4.1.7. Let G = {Gk = (V,Ek)}k be an Interaction Graph and α ∈ [0, 1].

max
U⊆V

ψ(U) = OPT(MIP) (4.66)

where OPT (MIP) denotes the optimal solution to MIP (4.47)-(4.65).

Proof. Similarly to Theorem 4.1.1 we will prove this equality by 2 inequalities:
RHS ≥ LHS and LHS ≥ RHS

Claim 4.1.8. For any U ⊆ V , the MIP (4.47)-(4.65) gets value at least ψ(U).

42

4.1 – Exact Solutions

Proof. Let c = 1/|U |. We construct a feasible solution for MIP (4.47)-(4.65) as
follows:

yi =
c, if vi ∈ U,

0, otherwise,
∀vi ∈ U

(4.67)

bi =
1, if vi ∈ U,

0, otherwise,
∀vi ∈ U

(4.68)

zk =
1, if Tk ∈ SC(U), C ∈ Ĉ,

0, otherwise,
∀Tk ∈ TC , C ∈ Ĉ

(4.69)

akij =
1, if eij ∈ Ek[U], Tk ∈ TC , C ∈ Ĉ,

0, otherwise,
∀eij ∈ Ek, Tk ∈ TC , C ∈ Ĉ

(4.70)

xkij =
c, if eij ∈ Ek[U], Tk ∈ SC(U), C ∈ Ĉ,

0, otherwise.
∀eij ∈ Ek, Tk ∈ TC , C ∈ Ĉ

(4.71)

(4.48)-(4.50) are easily satisfied since akij = 1 ⇐⇒ bi = 1 ∧ bj = 1, meaning
that an edge is induced (thus akij = 1) if and only if vi, vj ∈ U . The same idea
applies to (4.52)-(4.53). (4.55) is trivial and (4.59)-(4.60) hold since SC(U) ⊆ TC .
It is also easy to see that (4.56) is satisfied since we defined yi and bi s.t. bi = 1 if
and only if yi = c. Furthermore, since yi = c if and only if yi ∈ U then

Ø
i∈V

yi =
Ø
i∈U

c = 1

and (4.54) is also satisfied.
Let us know consider Tk ∈ SC(U) which by definition implies zk = 1. Then,

η(Tk[U]) ≤ α =⇒ |E−
k [U]|
|Ek[U]| ≤ α (4.72)

=⇒ |E−
k [U]| − α(|Ek[U]|) ≤ 0. (4.73)

Thus, due to the definition of akij, the second inequality of (4.51) is true; the

43

Solving the ECP and the D-ECP

first one is also satisfied sinceØ
ij∈E−

k

akij − α
Ø
ij∈Ek

akij = |E−
k [U]| − α · |Ek[U]| (4.74)

= (1− α)|E−
k [U]| − α · |E+

k [U]| (4.75)
≥ −α · |E+

k [U]| (4.76)
> Nk. (4.77)

(4.57)-(4.58) are true since in this case (for zk = 1) by definition akij = 1 implies
xkij = c. If instead Tk /∈ Sc and zk = 0 we have that

η(Tk[U]) > α =⇒ |E−
k [U]|
|Ek[U]| > α (4.78)

=⇒ |E−
k [U]| − α(|Ek[U]|) > 0 (4.79)

and consequently the first inequality of (4.51) is satisfied. AlsoØ
ij∈E−

k

akij − α
Ø
ij∈Ek

akij = |E−
k [U]| − α · |Ek[U]| (4.80)

= (1− α)|E−
k [U]| − α · |E+

k [U]| (4.81)
≤ (1− α) · |E−

k [U]| (4.82)
< Mk. (4.83)

Thus, also the second inequality is true. Also, (4.57)-(4.58) are trivially satisfied.

Consequently an edge contributing to ψ(U) will also count in the objective
function by c. So, for a given thread Tk ∈ SC , C ∈ Ĉ

Ø
ij∈E+

k

xkij −
Ø

ij∈E−(Tk)
xkij =

Ø
ij∈E+

k
[U]

c−
Ø

ij∈E−
k

[U]

c

= c(|E+
k [U]| − |E−

k [U]|)

= |E
+
k [U]| − |E−

k [U]|
|U |

.

Thus, for each thread we have the same contribution to both ψ(U) and the
objective function of MIP (4.47)-(4.65). Therefore, the sum through all the threads
will correspond as well.

Claim 4.1.9. Given a feasible solution of MIP (4.47)-(4.65) with value v we can
construct U s.t. ψ(U) ≥ v.

44

4.1 – Exact Solutions

Proof. Let us define U := {vi s.t. yi /= 0}; consider vi s.t. yi /= 0 (if no such vertex
exists then the proof is trivial) and let c := yi. By (4.56) and (4.55) we have that

∀vj ∈ V, yj ∈ {0, c}, (4.84)
∀i, j ∈ V, bi = 1 ∧ bj = 1 =⇒ yi = yj = c. (4.85)

Furthermore, due to (4.48)-(4.50) we have that

akij = 1 ⇐⇒ bi = 1 ∧ bj = 1. (4.86)

Now consider some xkij > 0. By (4.59) xkij > 0 implies akij = 1 and, thanks to
(4.60), xkij > 0 implies zk = 1. Thus, combining this to the results in (4.84) and
(4.86)

xkij > 0 =⇒ akij = 1 ∧ zk = 1, (4.87)
zk = 1 =⇒ xkiÍjÍ = c, ∀iÍ, jÍ ∈ U, (4.88)
zk = 1 ∧ akij = 1 =⇒ xkij = c. (4.89)

This means that if exists xkij > 0 then all the variables xkiÍjÍ associated to edges
induced by U have value c. Also, since we have that zk = 1, (4.51) will correspond
to

Ø
ij∈E−

k

akij − α
Ø
ij∈Ek

akij ≤ 0. (4.90)

We showed in (4.87) and (4.89) that akij = 1 ∧ zk = 1 if and only if xkij > 0. In
other other words, the edges contributing to the objective function are part of a
non-controversial subgraph, i.e. the corresponding thread Tk ∈ SC(U) and it will
contribute to ψ(U).

Now suppose exists Tk ∈ SC(U), C ∈ Ĉ, s.t. zk = 0. By definition of SC(U) we
have that

η(Tk[U]) ≤ α =⇒ |E−
k [U]| − α|Ek[U]| (4.91)

=⇒
Ø
ij∈E−

k

akij − α
Ø
ij∈Ek

akij ≤ 0, (4.92)

because akij = 1 for all edges induced by U . But, if zk = 0 then constraint
(4.51) is violated, and this would be a contradiction. So no such Tk exists and
Tk ∈ SC(U) ⇐⇒ zk = 1.

This means that a thread contributing to the objective function of MIP (4.47)-
(4.65) also counts towards ψ(U). Due to (4.88) we can then write, for Tk ∈ SC(U)

45

Solving the ECP and the D-ECP

Ø
ij∈E+

k

xkij −
Ø

ij∈E−(Tk)
xkij =

Ø
ij∈E+

k
[U]

c−
Ø

ij∈E−
k

[U]

c

= c(|E+
k [U]| − |E−

k [U]|)

= |E
+
k [U]| − |E−

k [U]|
|U |

.

Thus, each threads equally contributes to ψ(U) and the objective function of
MIP (4.47)-(4.65). Therefore, ψ(U) ≥ v.

This concludes the proof of the theorem.

4.2 Heuristics
We now present some heuristic algorithms for solving the ECP and D-ECP. We
start by describing how ξ(U) and ψ(U) can be computed in practice.

Let Scoreξ(U) and Scoreψ(U) be the functions computing the Echo Chamber
Score and Densest-Echo Chamber Score of U , respectively. These subroutines
iterate over the edges of the vertices in U , ignoring those that are not induced by U ,
and counting for each thread T ∈ TC , C ∈ Ĉ the number of edges and negative edges
to see which are controversial, then calculating their contributions (Algorithm 4.1
shows in detail Scoreξ; Scoreψ can simply be computed as Scoreξ(U)/|U |).
Note that this algorithm operates also on the weights wkij of the edges. This is
something that is "implicitely" done in the MIPs, as the sums iterate over positive
and negative edges.

We present our algorithms focusing on ECP in detail. They can generally be
adapted for solving the D-ECP by replacing calls to Scoreξ with Scoreψ.

4.2.1 The β-Algorithm
The β-algorithm is an heuristic for the ECP. The β-algorithm (Algorithm 4.2)
constructs a set of users U by iteratively adding the node which increases the most
the score or removing from U the one which contributes the least, stopping when
the score cannot be increased by adding a node. The frequencies of addition and
removal are regulated through a parameter β ∈ [0, 1] (for smaller values a higher
density is to be expected, generally).
U is initialized by sampling one node from the graph. There are two possi-

ble approaches in doing that: one is uniformly; the other is using probabilities
proportional to the number of positive edges each node has.

46

4.2 – Heuristics

Algorithm 4.1: The Scoreξ subroutine
Input: Interaction graph G = {Gk = (V,Ek)}k, a set of users U ⊆ V ,

α ∈ [0, 1]
Result: ξ(U)
N+(T)← 0, N−(T)← 0 for all threads T ∈ TC , C ∈ Ĉ ;
foreach vi ∈ U do

Si ← edges starting from vi ;
foreach eij ∈ Si if vj ∈ U do

Tij ← thread of eij ;
wij ← weight of eij ;
if wij ≥ 0 then

N+(Tij)← N+(Tij) + 1 ;
else

N−(Tij)← N−(Tij) + 1 ;
end

end
end
ξ(U)← 0 ;
η(T)← N−(T)

(N−(T)+N+(T)) for all threads T ∈ TC , C ∈ Ĉ ;
foreach T ∈ TC , C ∈ Ĉ if η(T) ≤ α do

ξ(U)← ξ(U) +N+(T)−N−(T)
end
return ξ(U) ;

Algorithm 4.2: β-algorithm
U = { a single random node };
ξ(U) = 0 ;
while ∃ vj s.t. Scoreξ(U ∪ {vj}) > ξ(U) do

N(U)← neighbours of vertices in U in the graph G ;
Flip a coin which gives head with probability β ;
If head U ← U ∪ {arg maxvj∈N(U) Scoreξ(U ∪ {vj})} ;
else U ← U \ {arg maxvj∈U Scoreξ(U \ {vj})} ;

end
return Scoreξ(U) ;

47

Solving the ECP and the D-ECP

In addition, one may also want to ignore a node when it is removed for the next
iterations, in order to prevent the algorithm from repeatedly adding and taking
out from U the same vertex.

The result is clearly dependent on the choice of the initial node. For this reason
the process should be repeated for different initial nodes.

One of the limitations of this approach is that the algorithm will only find sets
of users that are connected in the original graph. This is due to the fact that it will
never add a node which is not connected to any of the vertices in U , as it produces
an increase of the score equal to 0.

4.2.2 Peeling Algorithm
Inspired to the greedy algorithm proposed in [36], the peeling algorithm starts by
considering a set U = V , iteratively removing the worst nodes (Algorithm 4.3).

Algorithm 4.3: Peeling algorithm
U = V ;
S = Scoreξ(U) ;
while U /= ∅ do

v = arg maxvj∈U Scoreξ(U \ {vj}) ;
U ← U \ {v} ;
Si = Scoreξ(U) ;

end
return arg maxi Si ;

If many nodes produce the same score, then one of them is randomly selected
(or, alternatively, the one which has the highest fraction of negative edges).

4.2.3 Rounding Algorithm
This algorithm reconstructs a solution starting from the results of the relaxation
of the exact models and is again inspired by the algorithm for reconstructing the
exact solution from the LP model in [36].

More specifically, our relaxation of MIP (4.24)-(4.36) replaces constraints (4.34)
and (4.36) with

0 ≤ yi ≤ 1, (4.93)
0 ≤ zi ≤ 1. (4.94)

We now have to solve an LP problem.

48

4.2 – Heuristics

v2 v3

v5
v4

v1

v6

v7

(a) T1

v2 v3

v5
v4

v1

v6

v7

(b) T2

Figure 4.1: Example original Interaction Graph G

Let Ẽ be the sequence of edges ordered in descending order by xkij . The algorithm
(Algorithm 4.4) iterates over the edges in Ẽ, adding them to a dummy graph Ĝ,
also eventually adding incident nodes if not already present. At each iteration it
computes the score of the vertices in the graph Ĝ and the score of the vertices of
each component in the graph, keeping track of the best result.

Algorithm 4.4: Rounding algorithm
Solve the relaxation of MIP (4.24)-(4.36) ;
Ĝ← empty graph ;
V̂ ← vertices of Ĝ ;
S = 0
foreach ekij ∈ Ẽ in descending order of xkij do

V̂ ← V̂
t{vi} if vi /∈ V̂ ;

V̂ ← V̂
t{vj} if vj /∈ V̂ ;

S ← max(S, Scoreξ(V̂))
foreach component C in Ĝ do

S ← max(S, Scoreξ(C))
end

end
return S ;

The motivation for the algorithm can be seen in Figures 4.1-4.3: the problem
relaxation involves a solution whose value assigned to the edges can be used to find
subgraphs with many positive edges by using each separate component as set of
users U .

49

Solving the ECP and the D-ECP

v3

v5
v6

v7

(a) T1

v3

v5
v6

v7

(b) T2

Figure 4.2: Exact solution of the example in Figure 4.1, α = 0.4

0.66 0.66

0.660.66

0.66

1.0
1.0

0.66
0.66

0.66 0

0

0

(a) T1, where z1 = 0.66

0.66 0.66

0.660.66

0.66

1.0
1.0 1.0

(b) T2, where z2 = 1.0

Figure 4.3: Solution of the relaxation of G of Figure 4.1, α = 0.4

50

4.3 – Alternative Formulations

v1 v2

v3 v4

Figure 4.4: Another Interaction graph example, with only one thread. In this
case the rounding algorithm is able to find the exact solution by selecting all the
nodes except for v4. In the result of the relaxation all the edges except for e42 get
the value of 1.

While one may think from these examples that the relaxation trivially assigns
non-zero values only to positive edges, Figure 4.4 shows a case in which a negative
edge, e31, gets the value of 1. Furthermore, in this example the algorithm is able
to reconstruct the exact solution of the problem.

4.3 Alternative Formulations
Due to the intrinsic complexity of the problems (Chapter 3) we define variants of
the ECP and D-ECP problems, for some of which we are also able to find an exact
solution.

For these new problems we need to define new graphs, obtained by preprocessing
the interaction graph.

4.3.1 The Pair Aggregated Graph
Let G = {Gk = (V,Ek)}k be the interaction graph, let Ek and E−

k denote the edges
and negative edges in thread Tk, respectively. We define δ(vi, vj) and δ−(vi, vj) to
be the sum of the edges and negative edges, respectively, associated to controversial
contents between vertices vi and vj, i.e.

δ(vi, vj) =
Ø

Tk∈TC ,C∈Ĉ

(
Ø

eij∈Ek

wij +
Ø

eji∈Ek

wji), (4.95)

δ−(vi, vj) =
Ø

Tk∈TC ,C∈Ĉ

(
Ø

eij∈E−
k

wij +
Ø

eji∈E−
k

wji). (4.96)

The Pair Aggregated (PA) graph GP = (VP , EP) is constructed as follows from
G:

• For any vertex vi ∈ V add a corresponding vertex in VP .

51

Solving the ECP and the D-ECP

• For any pair of vertices vi, vj in G let η(vi, vj) := δ−(vi,vj)
δ(vi,vj) . If η(vi, vj) ≤ α,

add a positive edge between vi and vj in GP . If, instead, η(vi, vj) > α or
δ(vi, vj) = 0 then don’t add any edge between the two vertices.

The problem then is finding the Densest Subgraph of GP , i.e., if EP [U] is the
set of edges induced on GP by U ⊆ V , finding U maximizing

ξ(U) = |EP [U]|
|U |

. (4.97)

4.3.2 The Thread Pair Aggregated Graph
Differently from the previous method, in this case edges are aggregated separately
for each thread.

More specifically, given an interaction graph G = {Gk = (V,Ek)}k, let E(T) and
E−(T) denote the edges and negative edges in thread T , respectively. We define
δT (vi, vj) and δ−

T (vi, vj) to be the sum of the edges and negative edges, respectively,
associated to thread T between vertices vi and vj, being T ∈ TC , C ∈ Ĉ, i.e.

δT (vi, vj) =
Ø

eij∈E(T)
wij +

Ø
eji∈E(T)

wji, (4.98)

δ−
T (vi, vj) =

Ø
eij∈E−(T)

wij +
Ø

eji∈E−(T)
wji. (4.99)

We will produce a graph, the Thread Pair Aggregated (TPA) Graph

GTP = (VTP , ETP),

that, differently from the PA Graph, is a multiplex graph (each layer representing
a thread). The construction of the TPA Graph is as follows:

• For any vertex vi ∈ V add a corresponding vertex in VP .

• For any thread T ∈ TC , C ∈ Ĉ we add a layer T to GTP .

• For any thread T ∈ TC , C ∈ Ĉ and pair of vertices vi, vj in G, let ηT (vi, vj) :=
δ−

T (vi,vj)
δT (vi,vj) . If ηT (vi, vj) ≤ α add a positive edge between vi and vj in GTP , in
the layer associated to thread T .

We can then solve on GTP :

52

4.3 – Alternative Formulations

1. The Densest Subgraph Problem (or, equivalently, the DCS-MM), which we
will refer to as the Densest Thread Pair Aggregated (D-TPA) Problem (Sub-
section 2.3.1).

2. The O2Bff Problem, more specifically O2Bff-AM, which we will denote as
O2Bff Thread Pair Aggregated (O2Bff-TPA) Problem (Subsection 2.3.3).

53

54

Chapter 5

Experiments and Discussion

In this chapter we present how data is retrieved from social media, what are the
models we use for generating synthetic data and discuss the results we obtain by
running the methods presented in Chapter 4.

5.1 Data Collection and Generation
We now define techniques for generating synthetic data and present how real-world
data is retrieved and preprocessed.

5.1.1 Synthetic Data
Here we propose two possible methods for generating data, the Signed SBM and
the Information spread model. Given τ ∈ N, both of these methods randomly
generate interaction graphs with τ threads/layers. Depending on the method, they
will require more parameters.

Signed SBM

This model is very similar to the Stochastic Block Model (SBM), a model commonly
used for generating random graphs having some community structures [13].

The Signed SBM is based on the following parameters:

• k ∈ N, the number of communities.

• bi ∈ [k], the group assignment of each vertex i.

• ω+
rs ∈ [0, 1] and ω−

rs ∈ [0, 1], the probabilities of positive and negative edges,
respectively, between users in group r and s. Vertices have also a probability

55

Experiments and Discussion

of not having an edge, which is equal to 1− ω−
rs − ω+

rs. For this reason it is
needed that ω+

rs + ω−
rs ≤ 1.

• θ ∈ [0, 1], controlling the reduction of the probability of interacting between
inactive communities: for the generation of each thread we will distinguish
between active and inactive communities, having different probabilities of
interacting.

• k̂ ∈ N, the number of communities active in a thread.

During the generation process, we will sample the edges from a categorical
distribution with three parameters which we will denote as

Ω = (Ω+,Ω−,Ω0).

Here, Ω+ and Ω− are the probabilities of adding a positive and negative edges,
respectively, while Ω0 is the probability of not adding any edge. Note that since this
is a probability distribution, we will have Ω+,Ω−,Ω0 ≥ 0 and Ω+ + Ω− + Ω0 = 1.

Therefore, generating a thread layer T1 for an interaction graph involves the
following steps:

1. Sample uniformly k̂ of the k communities. These are the active communities
in the thread. The remaining communities are inactive.

2. For each node pair i, j consider their corresponding groups r and s and, if
both communities are active, draw from

Ω = (ω+
rs, ω

−
rs, 1− ω+

rs − ω−
rs).

Otherwise, if at least one of the two communities is not active, the distribution
becomes

Ω = (θω+
rs, θω

−
rs, 1− θ(ω+

rs + ω−
rs)).

Then, we possibly add the edge to thread T .

Information Spread Model

Here we describe the Information spread model, which aims at simulating the
process of information flowing between different users of a social network.

Like in the Signed SBM, each node has a group assignment bi ∈ [k] and each pair
of groups has probabilities of positive and negative edges (ω+

rs and ω−
rs, respectively,

with ω−
rs + ω+

rs ≤ 1). Additionally, we have the following new parameters:

1In this model we will generate contents uniquely associated to threads.

56

5.1 – Data Collection and Generation

• {φrs}, the edge probabilities of a standard SBM. A standard SBM is a model for
generating undirected and unweighted graphs with community-like structures.
It takes as parameters the number of community k, a group assignment for
each node (we will use bi) and the probability of edge between each pair of
communities (exactly {φrs}). Then, for each pair of nodes vi and vj belonging
to communities r and s, respectively, it adds an edge between vi and vj with
probability φrs.
This model is used for generating a graph Gf , which we will call the friend
graph, representing the friendship relationships between the users. We will
refer to neighbors in this graph as friends.

• βa, the probability that a node is initially activated: we will distinguish
between active and inactive nodes, that will have different probabilities of
interacting.

• βn, the probability that an inactive node is activated from an active friend.

After generating Gf from an SBM with parameters {φrs}, the generation of
each thread of an interaction graph goes as follows:

1. Initialize all nodes as inactive.

2. Activate each vertex with probability βa.

3. Active nodes activate their inactive friends with probability βn. This step is
repeated each time a new user is activated, until the network becomes stable.

4. Similarly to the Signed SBM, if two nodes are both active, draw from

Ω = (ω+
rs, ω

−
rs, 1− ω+

rs − ω−
rs)

for adding a positive, negative or no edge. If, instead, at least one of them is
not active, draw from

Ω = (θω+
rs, θω

−
rs, 1− θ(ω+

rs + ω−
rs)).

5.1.2 Collection and Preprocessing
Datasets are built over two social medias: Twitter2 and Reddit3; the data collection
process, consequently, slightly differs between them.

2twitter.com
3www.reddit.com

57

twitter.com
www.reddit.com

Experiments and Discussion

Figure 5.1: Wikipedia entry associated to Alexandria Ocasio-Cortez, a member
of the U.S. House of Representatives.

Twitter. Interaction graphs from Twitter are mainly built starting from the
tweets of profiles associated to well-known news sources, like The New York Times
or Fox News, that typically post links to their articles: the set of shared URLs are
the contents C of the corresponding interaction graph.

Each content C ∈ C will be represented just by its URL, e.g.

https://www.nytimes.com/2021/03/04/us/richard-barnett-pelosi-tantrum.html.

Then, in order to find all threads related to C, we search Twitter for the content
URL to obtain the tweets containing it. Each of these tweets will correspond to a
different thread.

For each thread we then construct the tree of replies through a DFS, recursevily
fetching users replying to a comment.

In order to validate our methods, we also construct datasets in which users are
labeled either as democrat or republican 4. This is done by looking at the people
a certain user vi follows: for each account vj followed by vi, if vj is a political
representative, then we can retrieve from Wikipedia the party to which vj belongs
to (see, for example, Figure 5.1). Then, user vi is assigned a label according to the
party of the majority of the users vj this follows.

Twitter data is retrieved with the help of Tweepy [47], a Python library for
accessing the Twitter API, which has been patched for using some features available
only in the beta of the new v2 Twitter API.

4We choose these two labels since the news sources we analyze for this purpose are based in
U.S. Also, we think political discussion are a main source of controversial content and so it is an
interesting criterion according to which users can be differentiated.

58

https://www.nytimes.com/2021/03/04/us/richard-barnett-pelosi-tantrum.html

5.1 – Data Collection and Generation

Reddit. Differently from Twitter, Reddit focuses on subreddits, which are pages
collecting posts of users about a specific topic (e.g. r/politics, r/economics, . . .).
This means that in the datasets built from this social media the contents C is the
set of URLs posted on these pages, which, differently from how we fetch data from
Twitter, most likely come from different sources.

These posts are in turn crossposted, i.e. reposted on other subreddits. Each of
these crossposts will correspond to another thread.

We also analyzed a very specific case, that of r/asktrumpsupporters. This
subreddit is a "Q&A subreddit to understand Trump supporters, their views, and
the reasons behind those views. Debates are discouraged" (from its description).
We found it interesting as it provides an explicit labeling of the users who, before
commenting in any of these posts, must "declare" their side by choosing a flair,
which is shown next to the username of the person commenting. Three flairs are
available: Trump Supporter, Non supporter and Undecided.

The PRAW library is used for retrieving Reddit data [48].

Edge weights assignment. Once the threads interactions are retrieved, they are
passed to a state-of-the-art sentiment analyzer which labels them. More specifically,
the model used is RoBERTa, adapted and retrained for dealing with Twitter data
[49]. The model is made available by the Transformers python library [50].

The model, given a string of text, returns a probability distribution

(pneg, pneu, ppos)

whose parameters represent the probabilities of negative, neutral and positive senti-
ment. Note that since this is a probability distribution, we will have pneg, pneu, ppos ≥
0 and pneg + pneu + ppos = 1. Let

pn := pneg, pp := ppos + pneu. (5.1)

If pp > pn we assign the edge weight pp, otherwise −pn.

Initial observations on the datasets. Reddit and Twitter are intrinsically
different social medias. As mentioned before, Reddit focuses on subreddits, where
all the discussions related to a certain topic find their place and most of the users
interested in the theme gather. We think that this contributes to create community
of users which are more active and more likely to discuss among each other, as
they end up looking at the same posts and discussions.

Twitter, instead, is a much less "centralized" social media with a lot of hubs (users
with many followers) that discuss similar topics but have disjoint communities.
Think, as an example, of the Twitter accounts of Joe Biden and Donald Trump.
We expect that most of the followers of the first one are not followers of the latter,

59

Experiments and Discussion

Figure 5.2: The crossposts on one of the most discussed article of the day on
r/politics.

and vice versa, even if both of them discuss U.S. politics. This means that many
users, even if they are interested in the same theme (U.S. politics in our example),
will rarely interact with each other.

The "centralization" of Reddit produces, in our data model, contents that are
associated with few threads. We observed that even the most discussed articles on
r/politics (a subreddit focusing on U.S. politics discussions) are crossposted only
one to five times (see, for example, Figure 5.2), while on Twitter articles of the
New York Times are often shared even 100 times.

5.1.3 A Study on r/asktrumpsupporters
During the research we studied the r/asktrumpsupporters subreddit to understand
if it is possible to infer the community5of the users by looking at how they react
to contents. More specifically, in a highly polarized environment we expect that
members in the same community of the author have a positive stance towards the
content; conversely, members of the other communities have a negative one.

5In this case, we refer to community as the set of users with the same flair

60

5.1 – Data Collection and Generation

0.50 0.55 0.60 0.65 0.70 0.75 0.80
Accuracy

0

5

10

15

20

Nu
m

be
r o

f c
on

te
nt

s

Figure 5.3: This plot shows how the accuracy of the classification process explained
in Subsection 5.1.3 is distributed for the different contents C ∈ C. The graph used
for the analysis (built on r/asktrumpsupporters) contains 1850 user vertices and
16470 edges between them. Furthermore, we introduce 71 content nodes and 5773
edges between content and user vertices.

For this analysis we add to our interaction graph another type of vertices, the
content nodes which we uniquely associate to a content. More formally, for each
content C ∈ C, we add a vertex vC . In order to add links between users and
contents, we consider the sequence of comments leading to a specific user comment
and multiply the sign of the associated edges to calculate the sign of the content-user
edge.

For example, consider a user vi replying positively to a post related to content
C and user vj replying negatively to vi. We will add a positive edge between vi
and vC and a negative edge between vj and vC .

We then assign to the users linked to a content the same label of the author of
the post if the user is connected to the content by a positive edge and the opposite
one6otherwise. Then, we measure the accuracy of this classification.

We show in Figure 5.3 the histogram of the accuracy of classification of the
contents in the dataset. We see that in very few cases it is possible to discriminate
users better than by just using the majority label (79%), while a big part of the
contents achieve an accuracy between 0.5 and 0.6.

We explain this with the following reasons:

• The majority of the posts in the subreddit are open questions, e.g. “What do

6We ignore the Undecided label

61

Experiments and Discussion

you think of ...’ and, similarly, “What’s your idea on...”. This means that our
initial hypothesis that positive and negative stances can be used for inferring
the positions of the users is not correct: for this type of posts most of the users
will just answer with their opinion, without being either friendly or hostile.

• This community of users is not a representative sample: people attending the
subreddit are open to discuss with people of different opinion and for this
reason we generally expect less hostility in the comments.

5.2 Experiments
The following presented results have been obtained from a Python implementation
of the methods described in the previous chapters. The library used for handling
and manipulating graphs is graph-tool, which has been chosen because of its
efficiency [51].

5.2.1 Initial Real-World Data Analysis
We did an initial analysis of the data to understand basic properties of the real-world
datasets we fetched.

We can gain some insights about the existence of echo chambers by comparing
the distribution of η(C) and η(T) for different interaction graphs. Intuitively,
echo chambers may correspond to threads with a high fraction of positive edges.
Consequently, given a certain η(C) distribution for the interaction graph, in presence
of Echo Chambers we expect an increase for low values of η(T), when compared to
the distribution of η(C).

We report these results for three datasets, a first built over @nytimes, a second
over @foxnews and a third one over @bbcnews Twitter accounts7. The basic statis-
tics of these graphs are listed in Table 5.1. Histograms, obtained by distributing
values in 10 equal-sized buckets, are shown in Figure 5.4.

By looking at these plots it is evident, as we were expecting, that when moving
from contents to threads there is a significant increase in the percentage of threads
with a very small η, meaning that it is possible that contents which globally have
a non-negligible amount of negative edges produce also threads that have very
few or no negative edges. These are the subgraphs in which we expect to find the
echo chambers. This is especially evident in the @nytimes and @bbcnews datasets,
while in @foxnews this effect is less visible.

7As explained above (Subsection 5.1.2), we are referring to the accounts that are used to
retrieve the contents of the graph.

62

5.2 – Experiments

Table 5.1: Basic statistics for analyzed datasets. Threads with no replies are
excluded from the counts. @nytimes dataset is built from contents between the
13th and 21th of May, @foxnews between the 22nd and 29th of April and @bbcnews
between the 26th and 31st of May.

Dataset |V | |E| |C| Threads Fraction of neg. edges
@foxnews 45509 82494 311 1922 0.588
@nytimes 81318 118876 492 6246 0.462
@bbcnews 16875 26636 380 1566 0.438

63

Experiments and Discussion

0.0 0.2 0.4 0.6 0.8 1.0
Negative edge fraction

0

20

40

60

80

100

120

Nu
m

be
r o

f c
on

te
nt

s

Content edge negativeness histogram

(a) η(C) of @nytimes

0.0 0.2 0.4 0.6 0.8 1.0
Negative edge fraction

0

250

500

750

1000

1250

1500

1750

2000

Nu
m

be
r o

f t
hr

ea
ds

Thread edge negativeness histogram

(b) η(T) for @nytimes

0.0 0.2 0.4 0.6 0.8 1.0
Negative edge fraction

0

20

40

60

80

Nu
m

be
r o

f c
on

te
nt

s

Content edge negativeness histogram

(c) η(C) of @foxnews

0.0 0.2 0.4 0.6 0.8 1.0
Negative edge fraction

0

100

200

300

400

500

Nu
m

be
r o

f t
hr

ea
ds

Thread edge negativeness histogram

(d) η(T) for @foxnews

0.0 0.2 0.4 0.6 0.8
Negative edge fraction

0

10

20

30

40

50

60

70

Nu
m

be
r o

f c
on

te
nt

s

Content edge negativeness histogram

(e) η(C) of @bbcnews

0.0 0.2 0.4 0.6 0.8 1.0
Negative edge fraction

0

100

200

300

400

500

600

Nu
m

be
r o

f t
hr

ea
ds

Thread edge negativeness histogram

(f) η(T) for @bbcnews

Figure 5.4: η(C) and η(T) distribution for many datasets.

64

5.2 – Experiments

Table 5.2: Fraction of negative edges for datasets built on different subreddits,
each for 200 contents between December 14, 2020 and March 11, 2021.

Dataset Description Fraction of
neg. edges

r/cats Pictures and videos about cats 0.169
r/Covid19 Scientific discussion of the pandemic 0.298

r/programming Computer Programming discussions 0.303
r/climate News about climate and related pol-

itics
0.392

r/Football News, Rumors, Analysis of football 0.411
r/Economics News and discussion about eco-

nomics
0.417

r/Politics News and discussion about U.S. pol-
itics

0.511

r/AskTrumpSupporters Q&A between Trump supporters
and non supporters

0.533

For verifying the reliability of the definition of controversial content, we also
looked at the fraction of negative edges for different datasets, each associated to
contents of the same topic, which we report in Table 5.2.

These results show an intuitive association between the fraction of negative edges
in the graph and the topic discussed: graphs dealing with well-known controversial
contents, like r/politics and r/asktrumpsupporters, are the one producing a higher
fraction of negative edges. Also, as expected, they are followed by related topics
(r/economics and r/climate) and football, while subreddits in which discussions
over technologies and sciences predominate generally have less negative interactions
between the users.

Furthermore, for each content C in an interaction graph, we plotted in Figure 5.5
the relationship between its number of interactions and the sum of the weights of
its edges.

This relationship is closely related to the η(C) of a content: let E(C) be the set
of edges associated to content C ∈ C. We have that

Ø
eij∈E(C)

wij =
Ø

eij∈E+(C)
|wij| −

Ø
eij∈E−(C)

|wij|

=
Ø

eij∈E(C)
|wij| − 2

Ø
eij∈E−(C)

|wij|.

Thus, if we take the ratio with the number of interactions and suppose |wij| ≈ 1

65

Experiments and Discussion

0 50 100 150 200 250
Number of interactions

200

100

0

100

200
To

ta
l e

dg
e

su
m

Content edge sum

(a) r/cats

0 100 200 300 400 500 600 700 800
Number of interactions

750

500

250

0

250

500

750

To
ta

l e
dg

e
su

m

Content edge sum

(b) r/covid19

0 1000 2000 3000 4000 5000
Number of interactions

6000

4000

2000

0

2000

4000

6000

To
ta

l e
dg

e
su

m

Content edge sum

(c) r/politics

0 500 1000 1500 2000 2500
Number of interactions

3000

2000

1000

0

1000

2000

3000

To
ta

l e
dg

e
su

m

Content edge sum

(d) r/asktrumpsupporters

Figure 5.5: Plots of sum of the edge weights over the number of interactions for
contents from different datasets/subreddits.

we obtain q
eij∈E(C) |wij| − 2 q

eij∈E−(C) |wij|
|E(C)| ≈ 1− 2η(C). (5.2)

We can see in the plots that content distributes in a pattern which is very similar
to that of a line with rare or no outliers. Due to (5.2) this means that η(C) is
very similar for different contents C, thus the points create a line whose angular
coefficient is exactly (5.2).

Consequently, as we would intuitively say, contents related to politics are
generally controversial, and most of them, as we can see in Figure 5.5c, have a high
η(C).

This is even more clearly visible when plotting the histogram of η(C) for the
contents in the dataset (Figure 5.6), with most of the contents having a η(C) which
is very close to the fraction of negative edges in the graph reported in Table 5.2.

66

5.2 – Experiments

0.0 0.2 0.4 0.6 0.8 1.0
Negative edge fraction

0

20

40

60

80

100

Nu
m

be
r o

f c
on

te
nt

s

Content edge negativeness histogram

(a) r/cats

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Negative edge fraction

0

10

20

30

40

50

Nu
m

be
r o

f c
on

te
nt

s
Content edge negativeness histogram

(b) r/asktrumpsupporters

Figure 5.6: η(C) distribution for 2 of the datasets shown in Figure 5.5.

67

Experiments and Discussion

5.2.2 Experiments on Synthetic Data
For studying how the model behaves in controlled situations we define a parametrized
model based on the Information Spread model (Subsection 5.1.1).

We will generate graphs with four communities, i.e. k = 4. Also, We choose
βa = 1, meaning that all nodes will be active in each thread. This a simplifying
assumption which allows us to have a better grasp of the results. Because of this
choice the values βn = 1, θ = 1 and

φrs =
1, if r = s,

0, otherwise
for all r, s groups (5.3)

do not influence the structure of the resulting graph.
We also choose ω−

rs and ω+
rs to be dependent on a noise variable x. More

specifically, we choose

ω+
rs =

1− x, if r = s,
x
4 , otherwise,

for all r, s groups (5.4)

and

ω−
rs =

x, if r = s,
1−x

4 , otherwise,
for all r, s groups. (5.5)

In absence of noise (x = 0) we will generate threads whose communities are
positive cliques and all the edges between vertices in different communities (which
will be present with probability 1/4) are negative.

We will compare different techniques for finding echo chambers (which, in this
case, we will consider as corresponding to a community).

The approach, described in detail in Algorithm 5.1, involves calling an algorithm
(generally any of the methods presented in Chapter 4) returning a set of users
U ⊆ V which will be labeled according to the majority of its members (by looking
at the ground-truth assignment). Let Ek be the edges of thread Tk. We then
remove the edges contributing to ξ(U), i.e

{eij ∈ Ek[U], Tk ∈ SC(U), C ∈ Ĉ}.

After repeating k times this process, where k is the number of communities in
the model, we compare the ground-truth labels and the predictions through the
Jaccard coefficient and the Adjusted RAND index. We already introduced the
Jaccard coefficient in Subsection 2.3.3.

The Adjusted RAND index is a measure of similarity between different clusterings.
It is based on the RAND index, which compares the number of agreeing pairs in

68

5.2 – Experiments

Algorithm 5.1: Clustering process
Input: G = {Gk = (V,Ek)}k ← interaction graph, α ∈ [0, 1], L ground

truth labels of V , I possible labels
Output: Jaccard and Adjusted RAND index
// Initialize predicted labels P with −1 (no label);
P [v]← −1 for all v ∈ V ;
foreach i ∈ I do

U ← solve ECP on G ;
// Remove edges contributing to ξ(U) ;
E ← E \ {eij ∈ Ek, Tk ∈ SC(U), C ∈ Ĉ} ;
l← majority label of users U in L ;
// Do not re-label previously labeled nodes ;
U Í ← U \ {v ∈ U s.t. P [v] /= −1} ;
P [v] = l for all v ∈ U Í ;

end
// Compute Jaccard for each label and take the average ;
J [l]← Jaccard({v ∈ V s.t. P [v] = l}, {v ∈ V s.t. L[v] = l}) for each l ∈ I
;

Jaccard score ← q
l∈I J [l]/|I| ;

Adjusted RAND index ← Adjusted RAND(P , L) ;
return Jaccard score, Adjusted RAND index;

69

Experiments and Discussion

Table 5.3: Running times on generated graphs with 12 threads and four commu-
nities, each of six nodes, for different values of the noise variable x. The times are
expressed in seconds.

x
0 0.1 0.2 0.3 0.4 0.5

MIP 1762 2441 7247 24543 38992 41345
Rounding Algorithm 26 30 40 39 41 40

the two solutions; the Adjusted RAND index corrects the RAND Index "by chance",
i.e. compares it to the expected index (i.e. of a random assignment). For more
details we refer to [46].

What we expect is that, as the value of x increases, the produced threads will
have generally more negative edges inside a community and more positive edges
between different communities, making it more difficult for our algorithms to find
the set of vertices corresponding to one of the Echo Chambers.

We report the scores obtained with the MIP for the ECP (Subsection 4.1.1)
and the Rounding algorithm (Section 4.2). Due to the use of the MIP model these
experiments have been carried out on small graphs with four communities, each of
six nodes. The interaction graph contains 12 threads and we choose α = 0.2. We
experimentally saw that this choice of parameters produces controversial contents,
thus allowing our methods to be applied.

Note that since we choose α = 0.2, our analysis is partially limited for x > 0.2
since we may produce graphs that have a fraction of negative intra-community
edges higher than α, although it is smaller than the fraction of negative inter-
community edges. Nonetheless, we may be able to reconstruct the communities at
least partially.

The performances of the two approaches are shown in Figure 5.7. We can see
that the MIP model:

• Reconstructs the communities perfectly for values of x ∈ {0, 0.1}.

• Predicts the labels almost perfectly for x = 0.2.

• Reconstructs the communities partially for x = 0.3, achieving both a Jaccard
coefficient and an Adjusted RAND Index around 0.7.

• Fails to find the original groups of users for x ≥ 0.4.

The MIP formulation is generally better at finding the communities since, if the
noise x is not too large, the best score is still achieved by selecting mostly nodes in

70

5.2 – Experiments

0.0 0.1 0.2 0.3 0.4 0.5
noise

0.0

0.2

0.4

0.6

0.8

1.0
Ad

ju
st

ed
 R

AN
D

MIP
Rounding algorithm

(a) Adjusted RAND index

0.0 0.1 0.2 0.3 0.4 0.5
noise

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ja
cc

ar
d

MIP
Rounding algorithm

(b) Jaccard Score

Figure 5.7: Clustering scores on generated graphs with 12 threads and four
communities, each of six nodes, for different values of the noise variable x. Running
times are reported in Table 5.3.

71

Experiments and Discussion

the same community (choosing nodes from other communities will generally add
many more negative edges to the subgraph).

Conversely, the rounding algorithm is more affected by noise than MIP. More
specifically, the rounding algorithm:

• Reconstructs the communities perfectly for x = 0.

• Partially recognizes the communities for x = 0.1, obtaining a Jaccard coefficient
and Adjusted RAND Index around 0.8.

• Finds few users belonging to the same community for x = 0.2, with scores
around 0.6.

• Fails to find the original groups of users for x ≥ 0.3.

We illustrate its limitations with one example. Consider the graph in Figure 5.8a
for α = 0.1: the MIP model will find one of the two communities as optimal
solution. Now consider the rounding algorithm (Section 4.2): the relaxation of
the MIP will assign to all positive edges value 0.66, while the negative edges get
value 0. This means that the algorithm will initially iterate over the positive edges,
choosing randomly among them (since they have the same value). We illustrate in
Figure 5.8b one possible iteration: in this case the algorithm will not be able to
reconstruct one of the communities exactly since the considered edge will not allow
the heuristic to have a single component of Ĝ associated to one of the communities.
Conversely, in Figure 5.8c we can see a "luckier" iteration in which it is able to find
one of the communities.

More generally, we can say that the rounding algorithm is less robust to noise
than the MIP, especially if the noise produces an increase in the number of positive
inter-community edges, as we saw in the example of Figure 5.8.

This is due to the fact that it may need to pick among positive edges with the
same value (in the solution of the relaxation) during its execution: if the picked edge
connects different communities, this will most likely prevent the algorithm from
having communities as separate component in the dummy graph Ĝ (Section 4.2).

Consequently, we could improve the performances of the algorithm by decreasing
the probability of picking inter-community edges, or, equivalently, increasing the
probability of picking intra-community edges. For example, we could increase the
latter probability by rising the number of threads in an interaction graph.

We repeated this experiment with a different number of threads while maintaining
the same set of parameters as before. We show the results obtained by the rounding
algorithm in Figure 5.9: we obtain better clustering performances as the number
of threads increases, especially for values of x ∈ {0.0, 0.1}.

72

5.2 – Experiments

v1

v3

v2

v6

v4

v5

(a) An example of interac-
tion graph G

v1

v3

v2

v6

v4

v5

(b) A possible state of Ĝ
when running the rounding
algorithm

v1

v3

v2

v6

v4

v5

(c) Another possible state
of Ĝ when running the
rounding algorithm

Figure 5.8: Possible rounding algorithm executions on an interaction graph with
a one thread and one content. The two communities are represented by {v1, v2, v3}
and {v4, v5, v6}, respectively. Negative and positive edges are coloured in red and
green, respectively. For α = 0.1 we will have that its content is controversial
and the exact solution returns either one of the two communities. The rounding
algorithm may fail to reconstruct communities if the edge between the communities
(e35) is added early in the iterations (Figure 5.8b).

73

Experiments and Discussion

0.0 0.1 0.2 0.3 0.4 0.5
noise

0.2

0.4

0.6

0.8

1.0

Ad
ju

st
ed

 R
AN

D

8 threads
12 threads
20 threads

Figure 5.9: Adjusted RAND indices for graphs with four communities, each of
six nodes, and different number of threads, obtained with the rounding algorithm.

74

5.2 – Experiments

5.2.3 Detecting Real-World Echo Chambers
We measured the performances of the rounding algorithm on real-world data by
classifying the nodes of labeled datasets, similarly to what has been done with
synthetic data. Recall from Section 5.1, that for these datasets we have retrieved a
label for each user.

We will refer to a group of users with the same label as community.
We ran the experiments on the r/asktrumpsupporters and @nytimes datasets.

In the first case users label themselves either as Trump Supporters (19%), Non
Supporters (79%) or Undecided (2%). This last group of users was ignored in the
analysis, i.e. these vertices were removed from the graph.

In the @nytimes dataset users are labeled either as democrats (80%) or republican
(20%). In this case, in order to decrease the sparsity, we selected the 4-core.

We cluster the nodes as shown in Algorithm 5.1 and choose α as the median
of the η(C), C ∈ C. We run the rounding algorithm to find the Echo Chambers.
By looking at the poor results, which we show in Table 5.4, it is clear that the
algorithm is not able to correctly separate the communities. We motivate this with
the following reasons:

• Non-validity of the data model. In trying to classify the nodes with our
ECP solver, we are assuming that the data contains a clear separation of the
users, in which one chamber corresponds to a single community. Furthermore,
we are assuming that there are only two communities in the datasets we chose,
which may also be a limiting assumption, since:

– @nytimes may contain echo chambers related to different topics, as the
set of contents does not only take into account U.S. political discussions.

– r/asktrumpsupporters may be a non-representative dataset of discussion of
polarized communities (we discuss this more in details in Subsection 5.1.3).

• Complexity of sentiment analysis of social media language. Social
medias often involve messages which are not easily classifiable as either friendly
and hostile, both because users often use jargon and because sometimes
messages are aided by pictures and GIFs which are not taken into account by
the sentiment analyzer.

• Limitations of the rounding algorithm. Since we are using an approx-
imation algorithm we are not solving exactly the ECP: this may introduce
limitations to the solutions which is used to cluster the nodes. More specifically,
since at each iteration it uses a set of users connected by positive edges as
possible solution (see Subsection 4.2.3), it is likely to return a set U with just
one connected component.

75

Experiments and Discussion

Table 5.4: Classification scores obtained with the rounding algorithm on two
labeled datasets. α is chosen as the median η(C), C ∈ C. For the @nytimes dataset
we report the statistics related to its 4-core. |{T}| indicates the number of threads.
The contents of @nytimes belong to the period between the 2nd and 8th of May,
while the contents of r/asktrumpsupporters are between December 27, 2020 and
May 7, 2021.

Dataset |V | |E| |C| |{T}| Adjusted
RAND

Jaccard

r/asktrumpsupporters 11640 83038 357 357 0.095 0.016
@nytimes 1074 4921 139 254 0.022 0.420

• Sparsity of the data. We can see from Table 5.4 that the two datasets
are sparse. This, as we discussed in Subsection 5.2.2, is important factor in
achieving good performances, especially for the rounding algorithm. More
generally, this is a limitation of real-world data: we observed, especially on
Twitter, that even increasing the number of contents does not produce denser
graphs, as the average degree remains between one and two. Furthermore,
analyzing the k-core, a denser part of the graph, may affect the results since we
expect that the echo chamber effect is especially visible in small and isolated
components, maybe a small "bubble" of users sharing the same opinion, which
may get excluded by the k-core selection.

5.3 Further Discussion of the Results
We focused our experiments on the rounding algorithm. We did this since we
observed that, when running the other heuristic algorithms on smaller datasets
(with less than 3000 nodes), its time performances were generally better than those
of the peeling algorithm (Section 4.2). Also, when compared to the β-approach,
the rounding algorithm is more expressive: we already discussed in Section 4.2 that
the β-approach is able to find only group of nodes that are connected.

We report in Table 5.5 the execution times on some datasets. While execution
times of the peeling approach explode with @BBCTech and r/cats, the round-
ing algorithm and the β-approach show a more stable trend, with most of the
experiments of both of them being completed in less than 6 seconds.

We summarize our results for the rounding algorithm as follows. It achieves
good performances on data with polarized communities, showing also to be more
robust as the available data increases: a larger number of threads, as we discussed

76

5.3 – Further Discussion of the Results

Table 5.5: Execution time in seconds of the heuristics. Here, α is chosen to be
the median of the η(C) for each dataset. The contents of the datasets belong to
the period between the 26th of May and the 1st of June.

Dataset |V | |E| Rounding Peeling β
@EMA_News 1226 1842 0.933 24.050 36.058

@bbcsciencenews 447 388 4.917 175.360 0.796
@BBCNewsEnts 220 183 4.618 138.259 0.438

@BBCTech 793 719 86.203 2798.377 0.982
r/cats 2493 4028 5.440 140 844.752 0.733

77

Experiments and Discussion

in Subsection 5.2.2, helps the algorithm selecting intra-community edges, which
allows it to correctly classify the nodes. Conversely, the rounding algorithm was
not able to produce a good clustering of the nodes in real-world data.

78

Chapter 6

Conclusions and Future
Work

In this research we proposed new methods for detecting polarization and echo
chambers in social media, the ECP and D-ECP. We initially showed that these
problems cannot be approximated even within a non-trivial factor n1−Ô and proposed
methods for solving and approximating them, focusing on the rounding algorithm.
We observed that it is able to find echo chambers in synthetically generated datasets
but has limitations on real-world data. We motivate the poor performances on
social media datasets with noise introduced by edge classification, sparsity of the
data and possible limitations of the specific analyzed datasets. Nonetheless, our
formulation paves the way for a richer and more expressive analysis of social media
interactions, with more focus on the concepts of contents and threads.

Future works on the field should take into account these limitations which may
require enhancing the graph through additional information like the use of a follow
graph or changing the problem formulation to take into account the structure of
real-world data and overcome the intrinsic complexity of the problem.

Moreover, we proposed alternative formulations and approximation algorithms
whose performances and results could be analyzed in future research to get a better
grasp of the problem. Also, we leave open the matter regarding the choice of α
and how it affects the results. Finally, we leave as future challenge the study of
methods for approximating the D-ECP, as well as a comparison with the results
obtained with the ECP.

The further development and improvement of these methods will allow imple-
menting techniques for reducing Echo Chambers, which are nowadays radicate into
social media. However, we should note that the these methods could be also used
for the opposite purpose, i.e. amplifying the Echo Chambers.

79

80

Conclusions and Future Work

81

82

Bibliography

[1] Kiran Garimella, Gianmarco De Francisci Morales, Aristides Gionis, and
Michael Mathioudakis. «Quantifying Controversy on Social Media». In: ACM
Trans. Soc. Comput. 1.1 (2018), 3:1–3:27. doi: 10.1145/3140565 (cit. on
p. 1).

[2] Pedro Henrique Calais Guerra, Wagner Meira Jr., Claire Cardie, and Robert
Kleinberg. «A Measure of Polarization on Social Media Networks Based
on Community Boundaries». In: Proceedings of the Seventh International
Conference on Weblogs and Social Media, ICWSM 2013, Cambridge, Mas-
sachusetts, USA, July 8-11, 2013. Ed. by Emre Kiciman, Nicole B. Ellison,
Bernie Hogan, Paul Resnick, and Ian Soboroff. The AAAI Press, 2013. url:
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM13/paper/view/6104
(cit. on p. 1).

[3] Michael Conover, Jacob Ratkiewicz, Matthew Francisco, Bruno Gonçalves,
Filippo Menczer, and Alessandro Flammini. «Political polarization on twitter».
In: Proceedings of the International AAAI Conference on Web and Social
Media. Vol. 5. 1. 2011 (cit. on p. 1).

[4] Anatoliy Gruzd and Jeffrey Roy. «Investigating political polarization on
Twitter: A Canadian perspective». In: Policy & internet 6.1 (2014), pp. 28–45
(cit. on p. 1).

[5] Julie Jiang, Xiang Ren, and Emilio Ferrara. «Social media polarization and
echo chambers: A case study of COVID-19». In: CoRR abs/2103.10979 (2021).
arXiv: 2103.10979. url: https://arxiv.org/abs/2103.10979 (cit. on
p. 1).

[6] Jon Green, Jared Edgerton, Daniel Naftel, Kelsey Shoub, and Skyler J
Cranmer. «Elusive consensus: Polarization in elite communication on the
COVID-19 pandemic». In: Science Advances 6.28 (2020), eabc2717 (cit. on
p. 1).

83

https://doi.org/10.1145/3140565
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM13/paper/view/6104
https://arxiv.org/abs/2103.10979
https://arxiv.org/abs/2103.10979

BIBLIOGRAPHY

[7] Julie Jiang, Emily Chen, Shen Yan, Kristina Lerman, and Emilio Ferrara.
«Political polarization drives online conversations about COVID-19 in the
United States». In: Human Behavior and Emerging Technologies 2.3 (2020),
pp. 200–211 (cit. on p. 1).

[8] Jun Lang, Wesley W Erickson, and Zhuo Jing-Schmidt. «# MaskOn!#
MaskOff! Digital polarization of mask-wearing in the United States during
COVID-19». In: PloS one 16.4 (2021), e0250817 (cit. on p. 1).

[9] Alessandro Cossard, Gianmarco De Francisci Morales, Kyriaki Kalimeri,
Yelena Mejova, Daniela Paolotti, and Michele Starnini. «Falling into the Echo
Chamber: The Italian Vaccination Debate on Twitter». In: Proceedings of
the Fourteenth International AAAI Conference on Web and Social Media,
ICWSM 2020, Held Virtually, Original Venue: Atlanta, Georgia, USA, June
8-11, 2020. Ed. by Munmun De Choudhury, Rumi Chunara, Aron Culotta,
and Brooke Foucault Welles. AAAI Press, 2020, pp. 130–140. url: https:
//aaai.org/ojs/index.php/ICWSM/article/view/7285 (cit. on p. 1).

[10] Cass R Sunstein. «The law of group polarization». In: University of Chicago
Law School, John M. Olin Law & Economics Working Paper 91 (1999) (cit. on
p. 1).

[11] John C Turner, Michael A Hogg, Penelope J Oakes, Stephen D Reicher, and
Margaret S Wetherell. Rediscovering the social group: A self-categorization
theory. Basil Blackwell, 1987 (cit. on p. 1).

[12] Han Xiao, Bruno Ordozgoiti, and Aristides Gionis. «Searching for polarization
in signed graphs: a local spectral approach». In: Proceedings of The Web
Conference 2020. 2020, pp. 362–372 (cit. on p. 1).

[13] Mark Newman. Networks. Oxford University Press, July 2018. 800 pp. isbn:
0198805098. url: https://www.ebook.de/de/product/32966014/mark_
newman_networks.html (cit. on pp. 2, 3, 55).

[14] Filippo Menczer, Santo Fortunato, and Clayton A. Davis. A First Course in
Network Science. CAMBRIDGE, Jan. 2020. 300 pp. isbn: 1108471137. url:
https://www.ebook.de/de/product/37322811/filippo_menczer_santo_
fortunato_clayton_a_davis_a_first_course_in_network_science.
html (cit. on p. 2).

[15] Boston) Barabasi Albert-Laszlo (Northeastern University. Network Science.
Cambridge University Press, July 2016. 475 pp. isbn: 1107076269. url: https:
//www.ebook.de/de/product/24312547/albert_laszlo_northeastern_
university_boston_barabasi_network_science.html (cit. on p. 2).

84

https://aaai.org/ojs/index.php/ICWSM/article/view/7285
https://aaai.org/ojs/index.php/ICWSM/article/view/7285
https://www.ebook.de/de/product/32966014/mark_newman_networks.html
https://www.ebook.de/de/product/32966014/mark_newman_networks.html
https://www.ebook.de/de/product/37322811/filippo_menczer_santo_fortunato_clayton_a_davis_a_first_course_in_network_science.html
https://www.ebook.de/de/product/37322811/filippo_menczer_santo_fortunato_clayton_a_davis_a_first_course_in_network_science.html
https://www.ebook.de/de/product/37322811/filippo_menczer_santo_fortunato_clayton_a_davis_a_first_course_in_network_science.html
https://www.ebook.de/de/product/24312547/albert_laszlo_northeastern_university_boston_barabasi_network_science.html
https://www.ebook.de/de/product/24312547/albert_laszlo_northeastern_university_boston_barabasi_network_science.html
https://www.ebook.de/de/product/24312547/albert_laszlo_northeastern_university_boston_barabasi_network_science.html

BIBLIOGRAPHY

[16] Oded Goldreich. Computational Complexity. Cambridge University Press,
Jan. 2015. 632 pp. isbn: 052188473X. url: https://www.ebook.de/de/
product/7102195/oded_goldreich_computational_complexity.html
(cit. on pp. 11, 22).

[17] Luca Trevisan. «Inapproximability of Combinatorial Optimization Problems».
In: (Sept. 2004). arXiv: cs/0409043 [cs.CC] (cit. on pp. 11, 12).

[18] Vijay Vazirani. Approximation Algorithms. Springer-Verlag GmbH, Dec. 2002.
isbn: 3540653678. url: https://www.ebook.de/de/product/2147383/
vijay_vazirani_approximation_algorithms.html (cit. on p. 12).

[19] Giorgio Ausiello. «Approximability preserving reduction». In: (Sept. 2005)
(cit. on p. 12).

[20] P. Crescenzi and V. Kann. «Approximation on the web: A compendium of NP
optimization problems». In: Randomization and Approximation Techniques
in Computer Science. Ed. by José Rolim. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1997, pp. 111–118. isbn: 978-3-540-69247-8 (cit. on p. 13).

[21] Erik Demaine. 6.890 Algorithmic Lower Bounds: Fun with Hardness Proofs.
Fall 2014. url: https://ocw.mit.edu (cit. on p. 12).

[22] P. Crescenzi. «A short guide to approximation preserving reductions». In:
Proceedings of Computational Complexity. Twelfth Annual IEEE Conference
(1997), pp. 262–273 (cit. on pp. 13, 14).

[23] Thomas Edgar. Optimization of chemical processes. New York: McGraw-Hill,
2001. isbn: 0070393591 (cit. on pp. 14–16, 18, 19).

[24] Robert Vanderbei. Linear programming : foundations and extensions. New
York: Springer, 2008. isbn: 0387743871 (cit. on pp. 14–16).

[25] George Dantzig. Linear Programming and Extensions. Princeton University
Press, Aug. 1998. 650 pp. isbn: 0691059136. url: https://www.ebook.
de/de/product/3326434/george_dantzig_linear_programming_and_
extensions.html (cit. on p. 14).

[26] Richard Kipp Martin. Large Scale Linear and Integer Optimization: A Unified
Approach. Springer US, Nov. 1998. 762 pp. isbn: 0792382021. url: https:
//www.ebook.de/de/product/2670475/richard_kipp_martin_large_
scale_linear_and_integer_optimization_a_unified_approach.html
(cit. on p. 14).

[27] L.G. Khachiyan. «Polynomial algorithms in linear programming». In: USSR
Computational Mathematics and Mathematical Physics 20.1 (1980), pp. 53–
72. issn: 0041-5553. doi: https://doi.org/10.1016/0041- 5553(80)
90061-0. url: https://www.sciencedirect.com/science/article/pii/
0041555380900610 (cit. on p. 14).

85

https://www.ebook.de/de/product/7102195/oded_goldreich_computational_complexity.html
https://www.ebook.de/de/product/7102195/oded_goldreich_computational_complexity.html
https://arxiv.org/abs/cs/0409043
https://www.ebook.de/de/product/2147383/vijay_vazirani_approximation_algorithms.html
https://www.ebook.de/de/product/2147383/vijay_vazirani_approximation_algorithms.html
https://ocw.mit.edu
https://www.ebook.de/de/product/3326434/george_dantzig_linear_programming_and_extensions.html
https://www.ebook.de/de/product/3326434/george_dantzig_linear_programming_and_extensions.html
https://www.ebook.de/de/product/3326434/george_dantzig_linear_programming_and_extensions.html
https://www.ebook.de/de/product/2670475/richard_kipp_martin_large_scale_linear_and_integer_optimization_a_unified_approach.html
https://www.ebook.de/de/product/2670475/richard_kipp_martin_large_scale_linear_and_integer_optimization_a_unified_approach.html
https://www.ebook.de/de/product/2670475/richard_kipp_martin_large_scale_linear_and_integer_optimization_a_unified_approach.html
https://doi.org/https://doi.org/10.1016/0041-5553(80)90061-0
https://doi.org/https://doi.org/10.1016/0041-5553(80)90061-0
https://www.sciencedirect.com/science/article/pii/0041555380900610
https://www.sciencedirect.com/science/article/pii/0041555380900610

BIBLIOGRAPHY

[28] N. Karmarkar. «A new polynomial-time algorithm for linear programming».
In: Combinatorica 4.4 (Dec. 1984), pp. 373–395. doi: 10.1007/bf02579150
(cit. on p. 14).

[29] Dimitris Bertsimas. Introduction to linear optimization. Belmont, Mass:
Athena Scientific, 1997. isbn: 1886529191 (cit. on pp. 14, 16).

[30] Jiri Matousek Bernd Gärtner. Understanding and Using Linear Programming.
Springer-Verlag GmbH, Sept. 2006. isbn: 3540306978. url: https://www.
ebook.de/de/product/5832404/bernd_gaertner_jiri_matousek_unders
tanding_and_using_linear_programming.html (cit. on p. 17).

[31] Laurence A. Wolsey Wolsey. Integer Programming. John Wiley & Sons, Sept.
1998. 288 pp. isbn: 0471283665. url: https://www.ebook.de/de/product/
3599835/wolsey_laurence_a_wolsey_integer_programming.html (cit.
on p. 16).

[32] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer Program-
ming. Springer International Publishing, Sept. 2016. 468 pp. isbn: 3319384325.
url: https://www.ebook.de/de/product/26764375/michele_conforti_
gerard_cornuejols_giacomo_zambelli_integer_programming.html (cit.
on pp. 16, 18).

[33] Ravindran Kannan and Clyde L. Monma. «On the Computational Complexity
of Integer Programming Problems». In: Lecture Notes in Economics and
Mathematical Systems. Springer Berlin Heidelberg, 1978, pp. 161–172. doi:
10.1007/978-3-642-95322-4_17 (cit. on p. 18).

[34] Leo Liberti. «Undecidability and hardness in mixed-integer nonlinear pro-
gramming». In: RAIRO - Operations Research 53.1 (Jan. 2019), pp. 81–109.
doi: 10.1051/ro/2018036 (cit. on p. 18).

[35] Alexander Schrijver. Theory of Linear Integer Programming. John Wiley &
Sons, June 1998. 484 pp. isbn: 0471982326. url: https://www.ebook.de/de/
product/3055966/alexander_schrijver_theory_of_linear_integer_
programming.html (cit. on p. 18).

[36] Moses Charikar. «Greedy approximation algorithms for finding dense compo-
nents in a graph». In: International Workshop on Approximation Algorithms
for Combinatorial Optimization. Springer. 2000, pp. 84–95 (cit. on pp. 19, 20,
48).

[37] Yuichi Asahiro and Kazuo Iwama. «Finding dense subgraphs». In: Interna-
tional Symposium on Algorithms and Computation. Springer. 1995, pp. 102–
111 (cit. on p. 19).

86

https://doi.org/10.1007/bf02579150
https://www.ebook.de/de/product/5832404/bernd_gaertner_jiri_matousek_understanding_and_using_linear_programming.html
https://www.ebook.de/de/product/5832404/bernd_gaertner_jiri_matousek_understanding_and_using_linear_programming.html
https://www.ebook.de/de/product/5832404/bernd_gaertner_jiri_matousek_understanding_and_using_linear_programming.html
https://www.ebook.de/de/product/3599835/wolsey_laurence_a_wolsey_integer_programming.html
https://www.ebook.de/de/product/3599835/wolsey_laurence_a_wolsey_integer_programming.html
https://www.ebook.de/de/product/26764375/michele_conforti_gerard_cornuejols_giacomo_zambelli_integer_programming.html
https://www.ebook.de/de/product/26764375/michele_conforti_gerard_cornuejols_giacomo_zambelli_integer_programming.html
https://doi.org/10.1007/978-3-642-95322-4_17
https://doi.org/10.1051/ro/2018036
https://www.ebook.de/de/product/3055966/alexander_schrijver_theory_of_linear_integer_programming.html
https://www.ebook.de/de/product/3055966/alexander_schrijver_theory_of_linear_integer_programming.html
https://www.ebook.de/de/product/3055966/alexander_schrijver_theory_of_linear_integer_programming.html

BIBLIOGRAPHY

[38] Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. «Greed-
ily finding a dense subgraph». In: Journal of Algorithms 34.2 (2000), pp. 203–
221 (cit. on p. 19).

[39] Uriel Feige and Michael Seltser. «On the Densest K-Subgraph Problem». In:
Algorithmica 29 (1997), p. 2001 (cit. on p. 19).

[40] Giorgio Gallo, Michael D. Grigoriadis, and Robert E. Tarjan. «A Fast Para-
metric Maximum Flow Algorithm and Applications». In: SIAM Journal on
Computing 18.1 (Feb. 1989), pp. 30–55. doi: 10.1137/0218003 (cit. on p. 19).

[41] Vinay Jethava and Niko Beerenwinkel. «Finding dense subgraphs in relational
graphs». In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer. 2015, pp. 641–654 (cit. on p. 20).

[42] Alexander Reinthal Anton Törnqvist Arvid Andersson and Erik Norlander
Philip Stalhammar Sebastian Norlin. «Finding the densest common subgraph
with linear programming». In: Unpublished manuscript (2016) (cit. on p. 20).

[43] Moses Charikar, Yonatan Naamad, and Jimmy Wu. «On finding dense com-
mon subgraphs». In: arXiv preprint arXiv:1802.06361 (2018) (cit. on pp. 20,
22, 23).

[44] Konstantinos Semertzidis, Evaggelia Pitoura, Evimaria Terzi, and Panayiotis
Tsaparas. «Finding lasting dense subgraphs». In: Data Mining and Knowledge
Discovery 33.5 (2019), pp. 1417–1445 (cit. on pp. 20, 22–24).

[45] Guy Kortsarz. «On the hardness of approximating spanners». In: Algorithmica
30.3 (2001), pp. 432–450 (cit. on p. 22).

[46] Chandan K. Reddy Charu C. Aggarwal. Data Clustering: Algorithms and
Applications. 0th ed. Chapman & Hall/CRC Data Mining and Knowledge
Discovery Series. Chapman and Hall/CRC, 2013. isbn: 978-1-4665-5822-9,978-
1-4665-5821-2 (cit. on pp. 26, 70).

[47] Tweepy. An easy-to-use Python library for accessing the Twitter API. url:
https://www.tweepy.org/ (cit. on p. 58).

[48] PRAW: The Python Reddit API Wrapper. url: https://praw.readthedocs.
io/en/latest/ (cit. on p. 59).

[49] Francesco Barbieri, Jose Camacho-Collados, Leonardo Neves, and Luis Espinosa-
Anke. «TweetEval: Unified Benchmark and Comparative Evaluation for Tweet
Classification». In: (Oct. 2020). arXiv: 2010.12421 [cs.CL] (cit. on p. 59).

[50] Thomas Wolf et al. «Transformers: State-of-the-Art Natural Language Pro-
cessing». In: Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations. Online: Association for
Computational Linguistics, Oct. 2020, pp. 38–45. url: https://www.aclweb.
org/anthology/2020.emnlp-demos.6 (cit. on p. 59).

87

https://doi.org/10.1137/0218003
https://www.tweepy.org/
https://praw.readthedocs.io/en/latest/
https://praw.readthedocs.io/en/latest/
https://arxiv.org/abs/2010.12421
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

BIBLIOGRAPHY

[51] Tiago P. Peixoto. «The graph-tool python library». In: figshare (2014). doi:
10.6084/m9.figshare.1164194. url: http://figshare.com/articles/
graph_tool/1164194 (visited on 09/10/2014) (cit. on p. 62).

88

https://doi.org/10.6084/m9.figshare.1164194
http://figshare.com/articles/graph_tool/1164194
http://figshare.com/articles/graph_tool/1164194

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background
	Problem
	The Interaction Graph
	The Problem Definition
	The Densest Echo Chamber Problem

	Goals and Results
	Structure of the thesis
	About the Thesis

	Background
	Computational Complexity and Approximability
	Optimization Problems and NPO
	Approximation Preserving Reductions

	Linear and Mixed Integer Programming
	The Structure of LPs
	Solving an LP Problem
	Mixed Integer Programming
	Solving a MIP

	Density in Graphs
	The Densest Subgraph Problem
	The Densest Common Subgraph Problem
	The O2 Bff Problem

	Problem Complexity and Approximability
	Hardness of ECP
	Hardness of D-ECP

	Solving the ECP and the D-ECP
	Exact Solutions
	A MIP Model for the ECP
	A MIP Model for the D-ECP

	Heuristics
	The -Algorithm
	Peeling Algorithm
	Rounding Algorithm

	Alternative Formulations
	The PA Graph
	The TPA Graph

	Experiments and Discussion
	Data Collection and Generation
	Synthetic Data
	Collection and Preprocessing
	A Study on r/asktrumpsupporters

	Experiments
	Initial Real-World Data Analysis
	Experiments on Synthetic Data
	Detecting Real-World Echo Chambers

	Further Discussion of the Results

	Conclusions and Future Work
	Bibliography

