
POLITECNICO DI TORINO

Master Degree Course in Electronic Engineering

Master Degree Thesis

Approximate Computing for Softmax and
Squash functions in Capsule Networks

Supervisors
prof. Guido Masera
prof. Maurizio Martina

Candidate
Edoardo Salvati

July 2021

This work is subject to the Creative Commons Licence

Summary

This work presents a spectrum of approximations of the softmax and squash functions used
in Capsule Neural Networks, building upon previous related research as well as introducing
new ideas and solutions. The main focus of the work is to explore approximate computing
techniques for softmax and squash at the algorithmic level, in order to demonstrate a
trade-off between complexity of the hardware implementation of the functions and inference
accuracy of the Capsule Network. In particular, area usage and power consumption are
considered as hardware cost metrics and the inference pass is performed with different
Capsule Network models on different benchmark image datasets. Three approximate
softmax and three approximate squash architectures are proposed with the ultimate goal
of making comparisons between multiple instances of the same function type, in terms of
area/energy costs and accuracy of the overall Capsule Network. The motivational idea
behind the application of the approximate computing paradigm to the softmax and squash
functions is to reduce hardware costs at the expense of lower quality classification results, in
the context of error-tolerant applications. As a matter of fact, a wide variety of applications
exists for which a circuit that produces some incorrect outputs may be still acceptable,
provided that the error rate is kept within application-specific thresholds.

The following work is organised in different chapters and sections:

• Chapter 1 provides an introduction to Deep Learning and Capsule networks, by
reviewing the state-of-the-art models and their main applications. It also presents an
overview of the approximate computing design methodology and its application to
the non-linear functions used in deep neural networks.

• Chapter 2 describes the thesis work focus, main purposes, development phase and
results. In particular, a detailed step-by-step description of the design process of the
approximate softmax and squash functions is reported, with critical analysis of the
results.

• Finally, chapter 3 includes the main conclusions of the work, summary of obtained
results and final comments. It also outlines possible future works that can be explored
to further develop the proposed contributions. In the closing appendix, auxiliary
diagrams are included for ease of reference.

iii

Contents

Summary iii

List of Figures vii

1 Introduction and related work 1
1.1 Introduction to Artificial Intelligence and Machine Learning 1
1.2 Fundamentals of Artificial Neural Networks 3

1.2.1 Training and Inference . 4
1.2.2 Training Issues . 6

1.3 Deep Learning and Deep Neural Networks 7
1.3.1 DNN Layers . 9
1.3.2 Convolutional Neural Networks . 10

1.4 An Overview of Capsule Networks . 13
1.4.1 Dynamic Routing Algorithm . 15
1.4.2 Pros and Cons of Capsule Networks 15
1.4.3 CapsNet model for the MNIST dataset 17
1.4.4 DeepCaps: a Deep CapsNet model 20

1.5 Approximate Computing Methodology in Deep Learning 22
1.6 Approximate Computing for non linear functions in DNNs 24

2 Softmax and Squash functions approximation 27
2.1 An Overview of the proposed Softmax and Squash function approximations 27
2.2 Software Implementation of approximate Softmax and Squash functions . . 31

2.2.1 Software Simulation . 32
2.3 How Softmax or Squash approximations affect CapsNet model accuracy . . 34

2.3.1 Q-CapsNets Framework for Inference 36
2.3.2 Inference Accuracy Results . 38

2.4 Quantization of CapsNets models and approximate functions 38
2.4.1 Q-CapsNets Quantization Algorithm 40
2.4.2 Quantized Inference Accuracy Results 41

3 Architecture design and implementation 43
3.1 Design Flow of approximate Softmax and Squash processing units 43
3.2 Approximate Softmax Architectures . 44

v

3.2.1 Softmax-lnu . 44
3.2.2 Softmax-b2 . 48
3.2.3 Softmax-taylor . 49

3.3 Approximate Squash Architectures . 55
3.3.1 Squash-exp . 55
3.3.2 Squash-pow2 . 57
3.3.3 Squash-norm . 60

3.4 RTL implementation and functional simulation 64
3.4.1 VHDL models of approximate Softmax and Squash processing units 64
3.4.2 Logic Simulation Workflow . 65

3.5 Logic Synthesis . 68
3.5.1 Description of Synthesis Reports . 69
3.5.2 Power consumption Experimental Analysis 70
3.5.3 Post-synthesis netlist Validation . 71

3.6 Synthesis results . 71
3.6.1 Area usage . 72
3.6.2 Timing performance . 72
3.6.3 Power consumption . 72

3.7 Comparative Analysis of Softmax Approximations 77
3.7.1 Comparison by Hardware metrics . 77
3.7.2 Comparison by CapsNet accuracy 78
3.7.3 Exploration of cost-accuracy trade-offs 80

3.8 Comparative Analysis of Squash Approximations 83
3.8.1 Comparison by Hardware metrics . 83
3.8.2 Comparison by CapsNet accuracy 84
3.8.3 Exploration of cost-accuracy trade-offs 86

4 Conclusions and future works 89

A Critical path of Softmax and Squash architectures 93
A.1 Softmax architectures . 93
A.2 Squash architectures . 96

Bibliography 99

vi

List of Figures

1.1 Artificial Intelligence field and subfields [1] 1
1.2 Machine Learning overview [2] . 2
1.3 Neurons . 3
1.4 Neural network model . 4
1.5 Training and Inference [1] . 5
1.6 Overfitting problem . 6
1.7 Non linear activation functions [2] . 7
1.8 Deep neural networks . 7
1.9 Image classification task [3] . 8
1.10 ImageNet Challenge [3] . 8
1.11 Fully-connected layer [1] . 9
1.12 Convolutional and Pooling layers . 10
1.13 Convolutional neural network . 11
1.14 CNN hierarchical feature detection . 11
1.15 LeNet-5 architecture [4] . 12
1.16 AlexNet architecture [5] . 12
1.17 CNN limited generalization capabilities . 13
1.18 Capsules . 14
1.19 CapsNet classification test error on MNIST and MultiMNIST [6] 16
1.20 CapsNet computational complexity [7] . 16
1.21 CapsNet architecture proposed by Hinton et al. [8] 17
1.22 Dynamic routing algorithm [6] . 18
1.23 Graphical representation of the dynamic routing algorithm [7] 19
1.24 Benchmarking image datasets . 20
1.25 DeepCaps model architecture [7] . 21
1.26 3D convolution-based dynamic routing [9] 22
1.27 Power efficiency requirement of ASIC devices [2] 23
1.28 Sources of application error resilience [10] 24
1.29 Approximation techniques for computationally-expensive operations: (a)

approximate exponential and division operations, (b) look-up table, (c)
piecewise linear approximation [11] . 25

2.1 Dynamic routing algorithm . 28
2.2 Proposed approximate softmax and squash functions 28
2.3 Softmax-taylor architecture overview [12] 29

vii

2.4 Softmax-lnu architecture overview [13] . 29
2.5 Softmax-b2 architecture overview . 30
2.6 Softmax units hardware resources overview 30
2.7 Squash-exp and Squash-pow2 approximations 30
2.8 Squash units hardware resources overview 31
2.9 Software simulation setup . 32
2.10 Softmax software simulation results . 33
2.11 Softmax-taylor approximation error plots 34
2.12 Squash software simulation results . 34
2.13 Squash-norm approximation error plots . 35
2.14 MNIST and Fashion-MNIST 10-classes datasets 36
2.15 Q-CapsNet framework overview [7] . 36
2.16 Inference pass . 37
2.17 Inference accuracy results . 37
2.18 Frequency plots of softmax and squash inputs 39
2.19 Q-CapsNet framework for model quantization [7] 40
2.20 Quantized CapsNet models . 40
2.21 Inference pass with quantized models and functions 41
2.22 Quantized inference accuracy results . 42
3.1 Softmax-lnu datapath . 47
3.2 Softmax-b2 datapath . 50
3.3 Linear fitting in softmax approximations . 52
3.4 Softmax-taylor datapath . 53
3.5 Softmax control units . 54
3.6 Squash-exp datapath . 58
3.7 Squash-pow2 datapath . 59
3.8 Squash-norm datapath . 62
3.9 Squash control units . 63
3.10 Logic simulation setup . 65
3.11 Errors.txt file sample for Softmax-b2 . 67
3.12 Softmax logic simulation results . 68
3.13 Squash logic simulation results . 68
3.14 Logic synthesis workflow . 69
3.15 Post-synthesis netlist validation . 71
3.16 Softmax Area results (lnu – b2 – taylor) . 72
3.17 Squash Area results (exp – pow2 – norm) . 73
3.18 Softmax Timing results (lnu – b2 – taylor) 73
3.19 Squash Timing results (exp – pow2 – norm) 73
3.20 Softmax Power results (lnu – b2 – taylor) . 75
3.21 Squash Power results (exp – pow2 – norm) 76
3.22 Softmax Hardware metrics comparisons . 77
3.23 Softmax Inference Accuracy comparisons - 1 78
3.24 Softmax Inference Accuracy comparisons - 2 79
3.25 Softmax Inference Accuracy vs Area plots 81

viii

3.26 Softmax Inference Accuracy vs Power plots 82
3.27 Squash Hardware metrics comparisons . 83
3.28 Squash Inference Accuracy comparisons - 1 84
3.29 Squash Inference Accuracy comparisons - 2 85
3.30 Squash Inference Accuracy vs Area plots . 87
3.31 Squash Inference Accuracy vs Power plots 88
A.1 Softmax-lnu datapath . 93
A.2 Softmax-b2 datapath . 94
A.3 Softmax-taylor datapath . 95
A.4 Squash-exp datapath . 96
A.5 Squash-pow2 datapath . 97
A.6 Squash-norm datapath . 98

ix

Chapter 1

Introduction and related work

1.1 Introduction to Artificial Intelligence and Machine
Learning

Artificial intelligence is a critical topic nowadays as AI applications are becoming widely
spread in the modern society. Artificial intelligence refers to computer programs with the
ability to mimic the cognitive function of humans, such as reasoning and learning. In
particular, an effective definition of the AI field is the effort to automate intellectual tasks
normally performed by humans.

The dominant paradigm in AI is machine learning, a revolutionary programming
approach that arises from a simple yet groundbreaking question: could a computer algorithm
automatically learn how to perform a specified task by looking at data without the need of
being explicitly programmed?

In classical programming, programmers develop data-processing rules by hand, so that
input data is processed according to these rules to obtain output results. On the other hand,
a machine learning algorithm is trained rather than explicitly programmed to perform a
specific task, that is the algorithm is presented with data as well as expected results and
extracts the rules for automating the task from the data.

Figure 1.1: Artificial Intelligence field and subfields [1]

1

1 – Introduction and related work

Machine learning technology is increasingly present in many aspects of modern society:
actually machine learning systems are exploited to identify objects in images, transcribe
speech into text as well as select relevant results from web searches, filter contents on social
networks and make recommendations on e-commerce websites based on the users’ interests.

Machine learning algorithms are classified in two main categories based on their
functionality and the approach used to learn from experience: supervised and unsupervised
learning algorithms. Supervised machine learning techniques take as input a known set of
data and responses to the data and learn to generate reasonable predictions as a response
to new data. The supervision to the algorithm is provided in the form of the desired output
for each input example that the algorithm learns from. On the other side, unsupervised
machine learning techniques are used to draw inferences from datasets consisting of data
without labeled responses. The unsupervised nature of the technique is given by the fact
that no known output data is given to the algorithm.

Depending on the type of predictions, the supervised learning algorithms are grouped
into classification and regression techniques. In particular, the classification models
classify input data into discrete categories, while regression techniques predict the value of
continuous variables. As regards the unsupervised learning algorithms, the most common
techniques perform clustering, that is used for data analysis to find patterns or structures
in the input data.

Figure 1.2: Machine Learning overview [2]

Typical applications of supervised learning algorithms include image classification,
speech recognition and energy demand forecasting. On the other side, unsupervised
clustering techniques are exploited to perform tasks like genomic sequence analysis and
market research to segment customers into groups with similar preferences.

The most common classification algorithms are logistic regression, k nearest neighbour,
support vector machine, decision tree and neural network, while the most popular regression
techniques are linear regression, generalised linear model and regression tree. On the other
hand, the clustering algorithms can be distinguished in two groups: hard and soft clustering

2

1.2 – Fundamentals of Artificial Neural Networks

techniques, based on the fact that each data point can belong to only one or more than
one cluster. One of the most common hard clustering algorithms is k means, while among
the most popular soft clustering techniques is gaussian mixture model.

Selecting the right machine learning algorithm to perform a specific task is a trade-off
between the characteristics of the available algorithms, such as accuracy on new data,
training speed, memory usage and algorithm interpretability.

As a matter of fact, regarding the classification algorithms, a decision tree is a good
option when interpretability, fast training and low memory usage are the key requirements,
while high predictive accuracy is less important. If memory usage is a lesser concern, k
nearest neighbour is a well-suited candidate as a simple algorithm to classify objects. When
an easy to interpret and accurate classifier is needed, a support vector machine can be
used for high-dimensional, non-linearly separable data. If the algorithm interpretability
is not a key concern, a neural network is a good solution for modelling highly nonlinear
systems to classify the input data. Finally, logistic regression is typically used as a baseline
for binary classification problems because of the algorithm simplicity.

1.2 Fundamentals of Artificial Neural Networks

A neural network is a computational model that is inspired by the biological network of
neurons found in the human brain. The building block of the model is a computational
unit that receives n input values and returns a scalar output. First of all, each input is
multiplied by a coefficient, called weight and the weighted inputs are summed together
with a bias term. Then, the output of the unit is determined by applying a non linear
function, called activation function, to the computed sum: y = σ(

∑n
i=0 wi xi + b). The

typical activation function used in the current neural networks is a non linear function
called Rectified Linear Unit.

(a) Biological neuron (b) Artificial neuron [1]

Figure 1.3: Neurons

The processing of the basic unit of the neural network model is a brain-inspired
computing paradigm that resembles the behaviour of the biological neuron. Typically, the
biological neuron accepts the signals entering it via elements called dendrites, perform a
computation on those input signals inside its cellular body called soma and generates an
output signal on an element leaving it called axon. The neuron responds differently to each
input signal depending on a connection present on the dendrite called synapse that can

3

1 – Introduction and related work

scale the signal crossing it. Following the scaling performed by the synapses, the weighted
signals are combined inside the neuron cell and the neuron activates if the combination of
the scaled signals cross an activation threshold.

The neural network model is a direct graph consisting of interconnected nodes, called
neurons, that represent the computational units of the model. The neurons are organised
in layers and the neural network is composed of multiple interconnected layers of neurons.
An input layer of neurons receives some input values and propagate them to the neurons
in the first intermediate layer of the network, called hidden layer. The output values from
the last hidden layer are finally received by the output layer of neurons, which computes
the final outputs of the network. To be consistent with brain-inspired terminology, the
outputs of the neurons in the neural network are referred to as activations.

Figure 1.4: Neural network model

If the graph of the neural network is acyclic, the neural network is called feed-forward,
while if the graph is cyclic the network is defined recurrent and the outputs of the network
do not depend only on the current inputs but also on the previous ones.

1.2.1 Training and Inference

As an instance of a supervised machine learning classification algorithm, the neural network
learns to perform its predictions by exploiting pairs of inputs and desired outputs, so that
the model becomes capable of producing the desired output given an input it has never
seen before, i.e. generalising from known examples.

In the case of neural networks, the process by which the network learns to perform
its classification task is called training and it consists of determining the value of the
weights and biases used by the neurons in the neural network. Using the model parameters
determined during the training phase, the neural network can perform the classification of
unlabelled input data in a process called inference.

The outlined training process is inspired to the way the human brain is believed to
learn, that is by adjusting the strength of the synaptic connection between interconnected
biological neurons in response to a learning stimulus. In particular, different weights
associated with the synapses result in different responses of the neuron to the incoming
signals.

4

1.2 – Fundamentals of Artificial Neural Networks

Figure 1.5: Training and Inference [1]

The training process of a neural network consists of three main phases: a forward pass,
a backward pass and a parameters update pass. During the forward pass, an input is
fed into the network that generates an output. At the beginning of the backward pass,
the loss for the current input is computed, by comparing the generated output and the
desired output. At this point, an algorithm called backpropagation is used to compute the
gradient of the loss with respect to each parameter (weights and biases) of the network, by
applying the chain rule of calculus and passing values backwards through the network. As
a last step, the network parameters are updated by using an optimisation method called
stochastic gradient descent, that exploits the computed gradient of the loss with respect to
each weight or bias to adjust the corresponding weight or bias according to the formula
θt+1 = θt − η ∂L

∂θt , where the scaling factor η is referred to as learning rate. The training
process is repeated iteratively until a local minimum of the loss is found or a convergence
criterion is met.

As a matter of fact, the ultimate goal of the training is to determine a set of network
parameters (weights and biases) that minimises the average loss over the training dataset.
In order to improve the speed and robustness of training, the parameters update pass is not
performed for every input data, but for multiple sets of input data, called batches. Thus,
an average gradient over the batch of input data is used in the stochastic gradient descent
algorithm. The algorithm to minimise the average loss of the network is called stochastic
because each batch gives an approximate estimate of the average gradient over all examples,
that would be required to minimize the average loss over the whole training set. Typically,
multiple cycles through the full training dataset are performed, that means the network is
trained for multiple epochs. During one epoch, the training loss and accuracy are available
for each batch of training data, while at the end of each epoch the accuracy of the model
is evaluated on a validation set consisting of unlabelled input data, in order to asses the
generalisation capability of the currently trained neural network.

5

1 – Introduction and related work

1.2.2 Training Issues

While training a neural network, one of the most common problems is overfitting, i.e. the
model overfits the data in the training set by learning to detect noisy data trends that
are not found in the data in the test set. As a consequence, the trained neural network
becomes accurate in classifying the training data, but is not able to generalize well on
the unseen test data. Typically, overfitting is caused by an overly complex model with
many parameters or by a training set that is not well representative of the data from
the problem domain. To combat overfitting, a number of techniques can be used. The
early stopping technique stops the training process after a given number of cycles when
the model begins to overfit, that is the test error starts to increase. By acting on the
training set, the data augmentation technique generates new realistic training examples
from existing ones, increasing the size of the training set and reducing overfitting. To
improve the generalisation capability of a neural network, the complexity of the model can
be decreased by reducing the number of parameters through the removal of layers and
neurons from the network. L1 and L2 regularization techniques can be exploited to reduce
the freedom of the model by adding a penalty on the weights by means of a regularisation
term in the loss function. Finally, the most popular technique to reduce overfitting in
neural networks is probably dropout, which consists in temporarily removing neurons from
the network during the training process in a random way with a given dropout rate, so
that the model will be less likely to fit the noise of the training data.

Figure 1.6: Overfitting problem

As the number of layers in the neural network increases, the training process can suffer
from a difficulty referred to as vanishing gradient problem, that prevents the network from
learning and tuning the parameters of the earlier layers using the gradient descent algorithm.
In the vanishing gradient problem, the gradients of the network loss with respect to the
parameters in the early layers become extremely small because of the peculiar activation
function used in the neurons of the network. Actually, many activation functions map
their input in a very small output range in a non-linear fashion, so that a large change in
the input produces a small change in the output, leading to a small gradient. To avoid
the vanishing gradient problem, activation functions that do not have the property of
squashing their input space into a small output region can be adopted: a popular choice is
the Rectified Linear Unit that maps its input to the highest non-negative value.

6

1.3 – Deep Learning and Deep Neural Networks

(a) Sigmoid (b) Rectified Linear Unit

Figure 1.7: Non linear activation functions [2]

1.3 Deep Learning and Deep Neural Networks
Deep learning is a subfield of Machine learning within the domain of neural networks.
The neural networks used in deep learning have more than one hidden layer and they are
defined in literature as deep neural networks. In particular, the number of network layers
can range from five to more than a thousand.

Traditional machine learning algorithms are limited in their ability to process data
in their raw form. As a matter of fact, feature extraction is required to transform the
input raw data into a suitable representation that the machine learning algorithm can
use to detect or classify patterns in the input. By stacking multiple layers of neurons,
a deep neural network is able to directly process raw data and automatically extract
representations of data with multiple levels of abstraction. The ability of the deep neural
network to extract features from raw data is obtained by learning multiple layers of feature
detectors from labelled data using a supervised learning procedure.

(a) DNN model (b) Hierarchical
feature learning

Figure 1.8: Deep neural networks

Being capable of learning a feature hierarchy, deep neural networks can achieve superior
performance in a wide range of tasks with respect to shallower neural networks. In
particular, dnns have significantly improved the accuracy of computer vision tasks like

7

1 – Introduction and related work

image classification and object detection, as well as speech recognition and natural language
processing tasks. The superior accuracy of dnns in multimedia applications, however, comes
at the cost of high computational complexity. In particular, dnns require a large amount
of weighted sum computations because of the high number of layers of neurons.

In an image classification task, an input image in the form of an array of pixel values
is fed into the first layer of a dnn, which extracts low-level features, such as lines and
edges, in different locations of the image. The second layer detects higher-level features
like arrangements of edges and shapes. The third layer determines the presence of parts of
predefined objects and finally the subsequent layers detect objects as combinations of the
previously extracted parts. The output layer of the dnn provides a vector of probabilities,
one for each object class and the class with the highest probability represents the most
likely class of object in the image.

Figure 1.9: Image classification task [3]

The success of the deep neural networks is shown by the performance of the best
algorithms in the ImageNet challenge, a competition involving an image classification task
with 1000 object categories. As illustrated by the results from the ImageNet challenge, in
2012 a dnn model named AlexNet reported a dramatic improvement of the Top-5 accuracy
by approximately 10% with respect to the state-of-the-art. The accomplishment of AlexNet
led to an increasing number of deep learning algorithms competing in the challenge and in
2015 the dnn called ResNet overcame human-level accuracy with a Top-5 error rate below
5%. Top-5 accuracy means that a classification algorithm is considered to correctly classify
an image if the correct class of the object in the image is one of the 5 classes with the
highest scores provided by the algorithm.

(a) Top-5 error results (b) ImageNet dataset

Figure 1.10: ImageNet Challenge [3]

8

1.3 – Deep Learning and Deep Neural Networks

1.3.1 DNN Layers

In deep neural networks, neurons are organised in layers with various characteristics and
shapes.

A fully-connected layer is a layer where neurons are organised in a 1-D array shape,
such that each neuron in the layer receives the activations of all the neurons in the previous
layer. The total number of weights of the layer is given by the product of the number of
neurons in the current layer and the number of neurons in the previous layer, that is the
number of inputs of the current layer. If some of the inter-layer connections are removed
by setting the corresponding weight to zero, the layer is referred to as a sparsely-connected
layer.

Figure 1.11: Fully-connected layer [1]

A convolutional layer is a windowed and weight-shared layer of neurons, where each
neuron receives a fixed-size window of input activations from the previous layer and the
same set of weights is shared for every neuron in the current layer. The neurons in a
convolutional layer are organised in a 2-D grid called feature map and a convolutional layer
may consist of multiple feature maps, whose number is referred to as number of output
channels of the conv layer. Each neuron of the same feature map processes a different
group of input activations of dimension Hk × Wk × Ci, where Ci is the number of input
channels of the current conv layer, by using the same kernel of Hk × Wk × Ci weights.
The total number of weights of a conv layer is given by the product of the kernel size of
each feature map and the number of feature maps. Mathematically, the filtering operation
performed by the neurons of a feature map is a discrete high-dimensional convolution of
the weights kernel and the input activations.

In addition to fully-connected and convolutional layers, a number of auxiliary layers
can be found in a dnn, i.e. non-linearity, normalisation and pooling layer.

A non-linear activation function is typically applied after each fully-connected or
convolutional layer in order to introduce non-linearity into a deep neural network model.
Possible non-linear functions are sigmoid or hyperbolic tangent, as well as rectified linear
unit, that is widely adopted in the current dnns for its simplicity and ability to allow fast
training.

A batch normalisation layer is applied after the fully-connected or convolutional layer
in order to obtain a normalised distribution of the layer activations, with zero mean and

9

1 – Introduction and related work

unit standard deviation. By inserting a normalisation layer between the fc or conv layer
and the non-linear function, saturation of the values inside the network due to saturating
non-linear functions is avoided, so that fast training and improved accuracy are obtained.

A pooling layer is applied after a convolutional layer with two primary purposes. Firstly,
the pooling layer allows to reduce the dimensionality of the output feature maps of the
conv layer and secondly, it gives the conv layer invariance to small shifts and distortions
in the input 2-D data. For each output channel of the conv layer, equal-size adjacent
non-overlapping grids are selected and a single value is computed for each selected grid, i.e.
the maximum value or the average value depending on the pooling operation. In order to
select non-overlapping sub-grids of each feature map, the size of the pooling receptive field
is chosen equal to the stride used to scan each feature map of the conv layer.

(a) Conv layer [2] (b) Pooling layers [3]

Figure 1.12: Convolutional and Pooling layers

1.3.2 Convolutional Neural Networks

A Convolutional neural network is a particular type of deep feed-forward neural network
that is widely adopted in computer vision tasks. A cnn is designed to process input data in
the form of multiple arrays of values, such as a colour image represented by three 2-D arrays
including the pixel intensities in the three colour channels RGB. A typical convolutional
neural network consists of a series of stages, that are composed of three main types of
layers: convolutional, non-linearity and pooling layer.

The layers allow to generate a representation of the input data with multiple levels of
abstraction. In particular, the convolutional layer detects local patterns of features and
the pooling layer creates an invariance of the network to small changes in position and
appearance of the elements in the input data. As a matter of fact, in array data such as
images, local group of values forming patterns are correlated and the same pattern can
be detected in different parts of the array. On top of the multiple stacked convolutional,
non-linearity and pooling layers, a small number of fully-connected layers are typically
applied in cnns used for a classification task, in order to obtain the class scores required to
classify the input data. As the convolutional layers, the fully-connected layers apply filters
on their input activations but without the windowing and weight sharing property of the
conv layers. As with regular neural networks, the weights in all the filter kernels used in

10

1.3 – Deep Learning and Deep Neural Networks

Figure 1.13: Convolutional neural network

cnn can be determined through a training process, by exploiting the stochastic gradient
descent method and the back propagation algorithm.

Figure 1.14: CNN hierarchical feature detection

The first popular convolutional neural network has been historically LeNet, that
performs the task of handwritten digits classification. The version LeNet-5 consists
of 5 main layers, i.e. three convolutional layers and two fully-connected layers. Each
convolutional layer applies 3-D filters of size 5 × 5, with 6 filters for the first conv layer,
16 filters for the second conv layer and 120 filters for the last conv layer. After each conv
layer, a sigmoid non-linearity is used and after the first two conv layers, average pooling
is performed with field size 2 × 2 and stride of 2. On top of the previous stages, two
fully-connected layers are inserted for classification purposes, with the first fc layer using a
sigmoid activation function and the second fc layer providing the class probabilities for the
input numerical digit image through a softmax function.

One very successful cnn model is AlexNet, that was the first cnn to win the ImageNet
challenge image classification task in 2012 by outperforming the earlier algorithms. AlexNet
consists of five convolutional layers and three fully-connected layers. The first conv layer
filters the 224 × 224 input colour image with 96 kernels of size 11 × 11 × 3 with a stride

11

1 – Introduction and related work

Figure 1.15: LeNet-5 architecture [4]

of 4 pixels to reduce computation complexity. The second conv layer filters the output of
the first conv layer with 256 kernels of size 5 × 5 × 48. The third conv layer applies 384
kernels of size 3 × 3 × 256, the fourth conv layer uses 384 kernels of size 3 × 3 × 192 and
the last con layer has 256 kernels of size 3 × 3 × 192. A ReLU non-linearity is applied after
each convolutional layer. After the first, second and last conv and non linear layers, a max
pooling is performed with field size 3 × 3 and stride of 2. Before the pooling layer in layers
1 and 2, a local response normalisation layer is used to normalize the distribution of the
activations. To reduce the amount of weights and computation, the input channels of the
conv layers 2, 4 and 5 are split into 2 groups so that each filter in these layers has half
the number of weights. Following the convolutional stages, the first two fully-connected
layers have 4096 neurons each and ReLU activation function, while the third and last fc
layer includes 1000 neurons with a 1000-way softmax function to produce a probability
distribution over the 1000 possible class labels of the input image.

Figure 1.16: AlexNet architecture [5]

ResNet has been the first convolutional neural network to exceed human-level accuracy
in the ImageNet challenge in 2015, with a Top-5 error rate below 5%. The superior
performance of ResNet is achieved by increasing the depth of the convolutional neural
network up to 50 or 152 layers. Increasing the depth of the network, however, leads to the
vanish gradient problem during the training process. To combat the vanishing gradient
issue, the ResNet model introduces residual blocks or shortcut modules that include an

12

1.4 – An Overview of Capsule Networks

identity or skip connection, so that the output of a layer can be added to the output of
a deeper layer in the network. By using a skip connection, it is possible to provide an
alternative path for the gradients of the loss during the backpropagation algorithm and
prevent the vanishing of the gradients in the earlier layers of the network.

1.4 An Overview of Capsule Networks
Convolutional neural networks have a limited viewpoint generalisation capability, that
is cnns are able to detect the presence of features in the input data, but less effective
at extracting spatial relationships among features, such as perspective, relative position,
orientation and size. As a consequence, cnns show scarse ability to generalize to new
viewpoints in the test data, so that the classification results provided by the cnns are not
viewpoint invariant, as it would be desirable in an image classification task. To force the
cnn to generalise to novel viewpoints, a possible solution is to train the network over an
extensive amount of labelled training data, which is extended by using data augmentation
to generate multiple images of the same object from different viewpoints. Using a large
training set, however, implies a slow training process.

(a) Features spatial relationship (b) Novel viewpoints

Figure 1.17: CNN limited generalization capabilities

Another key limitation of a cnn used for image classification is the difficulty in detecting
overlapping features in the input data. Actually, the pooling layer approach used in cnns
allows for the detection of the most dominant feature, while discarding the other overlaid
features.

To correctly classify an input image, a classification system should not only detect
the likelihood of features, but also determine the spatial properties of features to verify
consistence in the orientation and size of the various elements in the image. By taking
into account feature spatial information, for instance, the sketch of a distorted human
face is not misclassified as a regular human face and the image of a house from a different
viewpoint is still classified as a house.

The limited capability of extracting spatial information about features is related to the
scalar output of neurons in cnns. The pooling layer in cnns provides translation invariance,
but does not enable the model to be viewpoint invariant and to detect overlaid features.

To solve the outlined cnn limitations, a novel type of deep neural network called
CapsuleNet is introduced. Two main revolutionary ideas are proposed by a Capsule

13

1 – Introduction and related work

network: multi-dimensional neurons, called capsules, in place of scalar output neurons used
in traditional cnns and the Routing-By-Agreement algorithm that replaces the pooling
operation traditionally adopted in the cnns.

A capsule is a group of neurons that is able to encode not only the likelihood but also
the spatial properties of a specific feature in the input data. In particular, the output of a
capsule is an activity vector, whose magnitude is the probability of detecting the feature
and its components represent specific spatial properties of the extracted feature, such as
position, orientation and size.

The Routing-by-agreement algorithm is an iterative algorithm that is used to connect
capsules belonging to two subsequent capsule layers. The algorithm takes into account the
agreement between lower-level capsules, so that the higher-level capsule that gets activated
is the one with which the child capsules agree the most. As a measure of agreement between
lower-level and higher-level capsules, the algorithm uses the dot product between the parent
capsule output vector and each child capsule prediction vector for the parent capsule. By
using an agreement approach to connect capsules, the child capsules representing lower-level
features (parts) activates the parent capsule extracting a higher-level feature (whole) that
is consistent with the spatial properties of the lower-level features.

(a) Activity and prediction vectors (b) Routing-by-
agreement

Figure 1.18: Capsules

By combining the concept of capsules and the routing-by-agreement algorithm, Capsule
networks show significantly better viewpoint generalisation than traditional cnns, as well as
better accuracy in classifying images of overlaid objects. In particular, a Capsule network
achieves viewpoint invariance by allowing for viewpoint equivariance of the capsules
components, that encode the spatial properties of specific features in the input image,
thus changing as the viewpoint of the objects in the image changes. As we read in [6],
“When the capsule is working properly, the probability of the visual entity being present is
locally invariant — it does not change as the entity moves over the manifold of possible
appearances within the limited domain covered by the capsule. The instantiation parameters,
however, are “equivariant”— as the viewing conditions change and the entity moves over
the appearance manifold, the instantiation parameters change by a corresponding amount
because they are representing the intrinsic coordinates of the entity on the appearance
manifold.” By slightly varying one dimension of a capsule and holding the others constant,

14

1.4 – An Overview of Capsule Networks

it is possible to determine what spatial property of the extracted feature each dimension of
the capsule is capturing.

Capsule networks are more suitable than cnns in detecting overlapping objects because
higher-level features are extracted from a weighted combination of lower-level features by
means of the routing-by-agreement algorithm. On the other hand, the pooling layer in a
cnn computes a general metric of a group of activations, such as the maximum value or
the average value, thus not allowing to detect overlaid features based on their relevancy.

For a CapsuleNet to be used in an image classification task, a training process is
required as in regular dnns to learn the model weight parameters. In particular, in a
capsule layer, the trainable parameters are represented by transformation matrixes that
allow to compute the predictions of lower-level capsules for higher-level capsules and to
form meaningful parts-whole relationships.

1.4.1 Dynamic Routing Algorithm

In the following, an overview of the dynamic routing-by-agreement algorithm is reported.
First of all, each lower-level capsule computes its prediction vectors for the higher-level
capsules by means of multiplications between its activity vector and transformation matrixes.
Secondly, the lower-level capsules send they prediction vectors to the parent capsules without
any routing preference at this point, i.e. the prediction vectors of each child capsule are
multiplied by equal routing coefficients. Then, the weighted prediction vectors for each
parent capsule are summed and the length of the summed vector is large if the orientations
of the prediction vectors agree. A non-linearity, referred to as squash activation function,
is applied to the weighted sum vector to compute the activity vector of the parent capsule.
The squash function ensures that the magnitude of the activity vector is below 1 to represent
the existence probability of the extracted feature and preserves the orientation given by
the weighted sum of prediction vectors, that is an agreed orientation from the lower-level
capsules. At this point, the routing coefficients between child capsules and parent capsules
are re-calculated, so that the child capsules send their predictions preferably to the parent
capsule with which they agree the most. As a measure of agreement between capsules,
the dot product is used between the parent capsule activity vector and the child capsule
prediction vector for that parent. The weighted sum of prediction vectors for each parent
capsule and the non-linear activation are performed again. The routing-by-agreement
algorithm is repeated in practice for three iterations, that are typically enough to assign
all the child capsules to their preferred parents.

1.4.2 Pros and Cons of Capsule Networks

Capsule networks achieve state-of-the-art accuracy in an image classification task on
the MNIST dataset, that consists of grayscale images of handwritten numerical digits.
Moreover, CapsuleNets demonstrate considerably better results than convolutional neural
networks at recognising highly overlapping digits from the MultiMNIST dataset, thanks
to the use of the routing-by-agreement algorithm. By using routed equivariant capsules,
Capsule networks are suitable at performing accurate image segmentation and object
detection, that require to detect the precise location and pose of the objects. On the other

15

1 – Introduction and related work

side, pooling layers in regular convolutional neuronal nets tend to loose spatial information
about the objects throughout the network.

Figure 1.19: CapsNet classification test error on MNIST and MultiMNIST [6]

By encoding the instantiation parameters of the objects in the capsule dimensions,
CapsuleNets require less training data than cnns to reach the same accuracy in an image
classification task and their classification results are invariant to affine transformations,
such as rotations and translations.

Capsule networks are significantly more robust to adversarial attacks than a baseline
convolutional neural network. The basic idea behind an adversarial attack is to feed the
network with adversarial data, i.e. data that has been slightly modified to trick the classifier
into making the wrong classification.

However, Capsule networks have a few drawbacks. First of all, CapsuleNet classification
accuracy on more complex image datasets, like CIFAR-10, is not yet state-of-the-art.

Capsule networks are also quite slow to train, mainly because of the inner loop contained
in the routing-by-agreement algorithm, that is an iterative procedure.

Finally, CapsuleNets suffer from a problem called “crowding”, that means they are not
able to distinguish between two objects of the same type placed close to one another in the
input image, because there is only one capsule of any given type in a given location.

The superior representation capabilities of Capsule networks with respect to cnns come
at the cost of higher computational complexity. As a matter of fact, the ratio between
the number of multiply-and-accumulate operations to perform an inference pass and the
memory footprint is a good indicator of the higher compute-intensive nature of CapsuleNets
compared to traditional cnns, as shown in figure 1.20.

Figure 1.20: CapsNet computational complexity [7]

The high computational cost is due to the larger dimension of the constituent elements
of the CapsNets and the high computational effort required to dynamically route the
capsules between successive layers. Actually, capsules output an activity vector such that
each neuron in a capsule encodes a spatial property of the entity associated with the
capsule and the length of the vector estimates the probability that an instance of the entity

16

1.4 – An Overview of Capsule Networks

is present in the input data. On the contrary, neurons in cnns can only detect features
without extracting valuable information about their spatial properties and relationships.
In addition to the distributed representation of capsules, the dynamic routing algorithm is
an iterative process, that requires multiple iterations to assign parts to their appropriate
wholes. The routing-by-agreement in CapsNets is a superior method than the primitive
routing mechanism of pooling used in cnns, since it allows to selectively assign lower-level
capsule predictions to higher-level capsules based on their agreement and to build a part-
whole hierarchy off the ground in a parse tree-like structure. As a consequence, the routing
algorithm applied in CapsNets is an effective way of achieving viewpoint generalisation and
detective overlapping features, while pooling provides only local translation invariance and
tends to loose information about the precise location and pose of the detected features.

1.4.3 CapsNet model for the MNIST dataset

The Capsule network model proposed in the 2017 paper [6] by Geoffrey Hinton et al.
introduced the novel idea of capsule-based neural networks in the field of Deep learning.
The presented Capsule network consists of three main layers, i.e. a convolutional layer, a
convolutional capsule layer and a fully-connected capsule layer. The model is designed to
perform an image classification task on the MNIST dataset, including 28 × 28 grayscale
images of handwritten digits.

Figure 1.21: CapsNet architecture proposed by Hinton et al. [8]

The first convolutional layer processes the input image with 256 9 × 9 × 1 kernels to
extract features and a ReLU activation function is applied to the output feature maps.
The convolutional capsule layer, also referred to as primary capsule layer, applies a second
convolutional layer with 256 9 × 9 × 256 kernels using a stride of 2 and ReLU activation.
The array of 256 output feature maps is then reshaped in 32 channels of 8 feature maps
each, to obtain 32 8-dimensional capsules for every location. The activity vector of each
primary capsule is determined by applying a squashing function, that preserves the vector
orientation but squashes it to ensure that its length is between 0 and 1, as the vector
length is meant to represent the probability that the entity associated with the capsule is
present in the input image.

The primary capsules are organised in a 6 × 6 grid with 32 8-dimensional capsules in
each cell of the grid. In particular, the spatial capsules in the same channel share the same
8 kernels since they look for the same patterns in different locations, while the capsules
across the channel direction are computed by using different kernels as they represent

17

1 – Introduction and related work

various visual entities in the input image. A key property of the squash activation function
is that it is a capsule-wise function, not an element-wise function as ReLU.

The final fully-connected capsule layer, also called digit capsule layer, consists of 10
output capsules, one for each digit class of the MNIST dataset. The digit capsules output
16-dimensional activity vectors, whose length represents the class probability of the digit
in the input image. The digit capsule layer performs the dynamic routing-by-agreement
algorithm by connecting the primary capsules to the digit capsules.

Figure 1.22: Dynamic routing algorithm [6]

The activity vectors of the primary capsules are transformed into predictions for the
digit capsules output vectors, by means of vector-matrix multiplications, ûj|i = Wij ui.
Specifically, each primary capsule 8-dimensional vector is multiplied by 10 8 × 16 weight
matrixes, to obtain 10 16-dimensional prediction vectors for the digit capsules. The weight
matrixes represent part-whole relationships between each primary capsule and each digit
capsule and allow to compute the pose of a higher-level feature from the pose of a lower-level
feature. Each primary capsule is connected to the digit capsules and its connection strength
is represented by 10 coupling coefficients, that are computed by feeding 10 raw routing
coefficients into a non-linear softmax function, as shown in equation (1.1). At the first
routing algorithm iteration, the raw coefficients are set to 0, so that the coupling coefficients
are set to 0.1. For each digit capsule, the prediction vectors of the primary capsules are
summed by weighting each prediction vector with the corresponding coupling coefficients,
sj =

∑
i cij ûj|i. The squash activation function is then applied to the summed vector to

determine the activity vector of the digit capsule, as shown in equation (1.2).

cij = ebij∑n
k=1 ebik

(1.1)

vj = ∥sj∥2

1 + ∥sj∥2
sj

∥sj∥
(1.2)

At this point, the coupling coefficients of each primary capsule are updated based on the
agreement between the primary capsule predictions and the digit capsules outputs. For each
primary capsule, the dot product between each prediction vector and the corresponding
digit capsule output vector is computed, then the raw routing coefficients are updated by
adding the computed dot product to their previous value and finally the updated coupling

18

1.4 – An Overview of Capsule Networks

coefficients are determined by applying the softmax function to the updated raw coefficients.
After multiple iterations, the digit capsule with the largest activity vector length in the
final capsule layer corresponds to the digit class with the highest probability.

Figure 1.23: Graphical representation of the dynamic routing algorithm [7]

As in regular classification neural networks, the Capsule network model can be trained
by adopting a supervised learning procedure and minimising the loss of the network over a
training set. During the training process, the CapsNet learns the kernel weights used in
the convolutional layer and the convolutional capsule layer, as well as the weights included
in the transformation matrixes that are involved in the routing algorithm used in the final
fully-connected capsule layer.

The peculiar loss for the CapsNet is the sum of multiple loss contributions, with one
separate loss term for each digit capsule, called margin loss. The particular choice of loss
function makes it possible to detect multiple digit classes in the same input image. The
margin loss is computed by using a different expression for the correct digit class and the
absent digit classes. In particular, for a given training example, the margin loss for the
correct class is null if the network predicts the correct class with a probability higher than
0.9, while the margin loss for the wrong classes gets assigned a null value if the network
estimates a probability lower than 0.1 for those classes.

Lk = Tk max(0, m+ − ∥vk∥)2 + λ (1 − Tk) max(0, ∥vk∥ − m−)2

Total Margin Loss =
n∑

k=1
Lk

On top of the digit capsule layer, a decoder network is inserted during training as a
regularisation technique, to reduce the risk of overfitting and improve generalisation to new
examples. The decoder is composed of three fully-connected layers: the first two layers
have a ReLU activation function, while the last layer is sigmoid activated.

The last fully-connected sigmoid layer consists of 784 neurons, whose scalar outputs
represent the pixel intensities of the reconstructed input image. The squared difference
between this reconstructed image and the input image gives the reconstruction loss. By
including the reconstruction loss in the loss of the Capsule network during training, the
decoder learns to reconstruct the input image from the digit capsule corresponding to
the correct digit class and the Capsule network is forced to preserve all the information

19

1 – Introduction and related work

required to reconstruct the image up to the top digit capsule layer. When the inference is
performed for classification purposes, the reconstruction network can be removed.

Reconstruction Loss = MSE(reconstructed image, input image)
Total Loss = Total Margin Loss + 0.0005 · Reconstruction Loss

One useful property of the Capsule network is that the capsule activation vectors are
often interpretable, i.e. it is possible to determine what property of the detected entity
each dimension of the capsule is encoding. To find out what physical parameters the
individual capsule dimensions represent, one of the 16 dimensions of the digit capsule
activity vector can be gradually modified and the decoder network can be used to obtain
the reconstructed image from the digit capsule. In particular, the dimensions of the output
capsules represent variations in the way the digit of the corresponding class is instantiated,
such as scale, stroke thickness, width, localised skew and digit-specific variations like the
length of the tail of a 2, the length of the ascender of a 6 or the size of the higher circle
in a 8. By demonstrating that the dimension perturbation of digit capsules leads to a
global transformation of the reconstructed image, Capsule networks show transformation
equivariance.

1.4.4 DeepCaps: a Deep CapsNet model

The Capsule network model proposed by Hinton et al. in [6] shows limited classification
ability on datasets more complex than MNIST, such as CIFAR-10. In particular, the
CapsNet model in [6] achieves 10.6% error on CIFAR-10, which is higher than state-of-
the-art but it is a similar result to what was obtained by the first cnns. Therefore, the
performance of CapsNet on complex benchmark datasets, such as CIFAR-10, is not at the
same level as traditional cnns.

Actually, the CIFAR-10 dataset shows images with more complex data and backgrounds
with respect to the MNIST dataset as it contains 32 × 32 colour images in 10 different
classes, that represent animals and types of vehicles.

(a) MNIST (b) CIFAR-10

Figure 1.24: Benchmarking image datasets

20

1.4 – An Overview of Capsule Networks

To improve the classification accuracy of images with complicated data and background,
two possible techniques for capsule networks are ensemble averaging and increasing the
number of convolutional layers. In ensemble averaging, multiple networks are trained
together and their prediction accuracy results are averaged at test time. On the other
hand, increasing the number of convolutional layers before the final capsule layer allows
to create a more complex image representation to deal with the higher dimensionality of
CIFAR-10-like data.

In order to increase the performance of capsule networks on more challenging image
datasets, a novel deep capsule network model, called DeepCaps, is introduced in [9]. The
two key characteristics of the new capsule network architecture are skip connections and a
novel dynamic routing algorithm based on 3-D convolution. In particular, skip connections
are required to allow for good gradient flow during backpropagation, while 3-D convolution
based routing is needed to stack multiple convolutional capsule layers in a computationally
efficient manner. Inspired by the architecture of ResNet, the layers in DeepCaps are
organised in a structure with skip connections, in order to combat the vanishing gradient
problem arising from the increased depth and the layers non-linear activation functions.
The idea behind the routing based on 3-D convolution is to route a localised group of
capsules to a higher-level capsule, in order to achieve parameter reduction by sharing. The
stride along the depth is equal to the capsule dimension.

In particular, each capsule tensor in a layer predicts all the capsule tensors in the layer
above. The localised routing allows to route groups of neighbouring capsules and helps to
handle richer datasets than MNIST.

On the contrary, the dynamic routing implemented in fully-connected capsule layers
represents a computational bottleneck when it is necessary to stack multiple fully-connected
capsule layers to develop deeper networks.

The DeepCaps model consists of an initial convolutional layer, four main middle stages,
referred to as CapsCells and a final fully-connected capsule layer.

In an image classification task on the CIFAR-10 dataset, the 32 × 32 colour images are
first rescaled to 64 × 64 images and then fed into the initial convolutional layer, that uses
128 3 × 3 × 3 kernels to extract features from the input image. The ReLU activated output
feature maps of the convolutional layer are then passed to the CapsCells.

Figure 1.25: DeepCaps model architecture [7]

The first three CapsCells are composed of 4 convolutional capsule layers, with one layer

21

1 – Introduction and related work

operating in parallel to the other three layers, so that the first layer output is convolved
and skip connected to the last layer output in the cell. The convolutional capsule layers,
also called ConvCaps, are squash activated. The fourth CapsCell is organised as the
previous three cells, with three sequential and a parallel convolutional capsule layers, but
here the parallel layer, called ConvCaps3D, performs the novel 3-D convolution based
dynamic routing algorithm, where the number of routing iterations is set to 3. The capsules
dimensionality used in the first CapsCell is 4, while the other three CapsCells involve layers
of 8-dimensional capsules. The output of the fourth cell is flattened and concatenated to
the output of the third cell. As a last step, the concatenated capsules are routed to the 10
class capsules by means of a fully-connected capsule layer where regular dynamic routing
is performed. The class capsules output a 16-dimensional activity vector, whose length is
the probability that the corresponding dataset class is present in the input image.

Compared to Hinton’s CapsNet model, DeepCaps provides a combination of 2- and
3-dimensional convolutional capsule layers. By using 2-D convolutions, all the capsules
along depth are filtered together by a 3-D weight kernel. On the other hand, in the 3-D
convolutional capsule layer, the capsules along the depth dimension are voted separately
by using a stride of the 3-D kernel along the depth equal to the capsule dimension.

Figure 1.26: 3D convolution-based dynamic routing [9]

As with the CapsNet proposed in [6], the margin loss is used as the loss function for
DeepCaps and a decoder network is inserted during training as a regularisation method
to reduce model overfitting over the training set. Because of the increased model depth
and complexity, a class-specific deconvolutional decoder is used which acts as a better
regulariser for the deep capsule network.

1.5 Approximate Computing Methodology in Deep
Learning

Deep learning algorithms stand out for their high workload and for being computation-
hungry. In particular, DNNs are characterised by large memory footprint and high energy
cost of memory accesses and computations. Among the most compute intensive operations
that are performed in the inference pass are the multiplications.

Today’s trend is to move towards mobile and embedded devices, which have tighter

22

1.5 – Approximate Computing Methodology in Deep Learning

power constraints, considering that many of them are battery-powered or rely on low-power
systems. Actually, for the devices that are part of the so called Internet of Things, or IoT,
energy consumption is a critical design criterion.

Figure 1.27: Power efficiency requirement of ASIC devices [2]

As a consequence, during the last few years, there has been a rising desire to deploy NNs
on low-power mobile devices. On the other side, the trend to achieve higher accuracy has
been the development of deeper networks, with a larger number of layers and parameters
and this evolution hardly fits with the idea of employing neural networks for edge computing.
In particular, CNNs have seen enormous advances in recent years, achieving close or even
better accuracy than human level in several tasks, such as image classification. However,
the significant amount of computational power used by CNNs prevents their widespread
use in IoT and wearable devices.

Some optimisation methods exist to compress the models of NNs without affecting the
achieved accuracy, such as network pruning. In particular, the pruning method exploits
the redundancy of the parameters in NNs by setting to zero the parameters that do not
affect the network accuracy.

One possible solution to deploy DNNs on edge devices is to apply a paradigm known
as approximate computing, whose foundational idea is to trade quality for efficiency, at
different abstraction levels.

In order to develop efficient implementations of DNNs, hardware metrics, such as area
and energy, are included in the design as additional constraints beside application accuracy.
The main goal is to minimise the cost in terms of area and energy, without incurring
in considerable loss of accuracy, by realising a trade-off between area/energy costs and
application accuracy.

Approximate computing is an attractive design technique that can be used to achieve
low power, high performance and reduced circuit complexity by relaxing the accuracy
requirement. Actually, the requirement of accurate results is not particularly strict for many
error-tolerant applications that presents inherent error resilience, such as multimedia image
processing. By relaxing the constraint of accuracy, performance and power consumption
can be significantly improved using inexact computing. In many applications, such as
computer vision, human perceptual limitations mitigate the effect of computational errors,
so that approximate computing can be employed to improve hardware efficiency.

23

1 – Introduction and related work

Approximate computing techniques can be applied at multiple levels including algo-
rithms, software, architectures and circuits.

A consistent number of approximate designs have been proposed for addition and
multiplication. Approximate division can save power and area by performing the transfor-
mation of the operands into the logarithmic domain, so that a trade-off between accuracy
and hardware performance is achieved. To evaluate the accuracy of approximate designs,
several error metrics are used, such as the error rate (ER), error distance (ED), mean
error distance (MED) and maximum error distance (EDmax).

Approximate computing exploits a property of various applications referred to as error
tolerance, that is the ability to accept erroneous outputs, provided the errors are within
a certain application-specific threshold. Approximate techniques can take advantage of
the application flexibility to reduce circuit area, delay and power consumption for a given
quality constraint. The target in approximate computing is to obtain the highest computing
efficiency for a given accuracy constraint or, viceversa, to achieve the highest quality for a
specified efficiency requirement.

Among the applications that feature an intrinsic error-resilience property, there is a
large number of applications, referred to as RMS, i.e. recognition, mining and synthesis.

Figure 1.28: Sources of application error resilience [10]

In the big data and Internet of Things era, algorithms are meant to deliver good enough
answers, quickly, at scale and with energy efficiency and approximate computing turns out
to be a suitable approach to meet these competing goals.

1.6 Approximate Computing for non linear functions in
DNNs

The neural network models require the use of a non-linear activation function at the output
of each neuron. Without a non-linear activation function, a neural network is simply
a cascade of linear algebra operations and it is unable to solve complicated non-linear
problems. Therefore, several non-linear functions can be applied to the weighted sum of the
inputs of a neuron, such as sigmoid, hyperbolic tangent or rectified linear unit functions.

24

1.6 – Approximate Computing for non linear functions in DNNs

Actually, the aforementioned functions make each neuron a non-linear unit, by mapping a
large input domain to a narrow output domain. As a consequence, the network is capable
of representing non-linear decision surfaces and can be profitably employed for classification
tasks.

In the hardware implementation of NNs, the non-linearity is a critical factor that puts
a constraint on either the occupied area or the inference time of the network.

In particular, a good indicator of the computational cost of non-linear operations is
represented by the compute ratio per unit area, that is significantly lower for non-linear
units than for linear operations blocks, thus revealing an inefficient area usage. As a matter
of fact, non-linear operations in DNNs typically account for less than 1% of total operations,
but they occupy 20% of the total area allocated to computational blocks.

An area and energy aware implementation of non-linear operations is key to improve
the inference time in DNNs, especially for resource-constrained edge devices.

A variety of strategies are used to approximate the non-linear functions in neural
networks, in order to obtain an efficient implementation. The main approaches to implement
a non-linear function like sigmoid are Taylor series expansion, table look-up or piecewise
linear approximation.

In particular, the sigmoid function can be evaluated by summing a truncated series
expansion and this approach is likely to be expensive in terms of computation time and
area. The function can be stored in a RAM or ROM and a table look-up scheme can be
used to read the function values directly from the stored values. This technique requires
large area for the implementation of the required memory. As an alternative method,
piecewise linear approximation is exploited to approximate the non-linear function by using
table look-up combined with linear interpolation, resulting in an efficient implementation
that saves area and shows short latency time.

Figure 1.29: Approximation techniques for computationally-expensive operations: (a)
approximate exponential and division operations, (b) look-up table, (c)
piecewise linear approximation [11]

The sigmoid is a scalar-output activation function. An important non-linear vector-
valued function is softmax, that is widely used in machine learning systems for multi-
category classification tasks. The softmax function can be considered a generalisation of the
sigmoid function that transforms a n-dimensional vector of real values into a n-dimensional
vector, where each output vector entry is in the range (0, 1) and the entries add up to 1.

The exponent and division operations in softmax function are computationally expensive,

25

1 – Introduction and related work

so an efficient hardware implementation of the function is required especially for edge
devices. In particular, cost-efficient techniques to approximate the exponent and division
calculations are needed, such as Taylor expansion, table look-up or piecewise approximation
for the exponentiation and logarithmic domain transformation for the division operation.

The softmax layer is typically applied in the DNNs for multi-classification tasks. In
particular, the softmax layer is placed after the last fully-connected layer in the network
architecture in order to assign probabilities to multiple classes of objects.

26

Chapter 2

Softmax and Squash functions
approximation

2.1 An Overview of the proposed Softmax and Squash
function approximations

The approximations of softmax and squash are performed at the algorithmic level, by
exploiting pre-existing research work and introducing innovative solutions for the computa-
tion of the two functions used in Capsule Networks, such as mathematical reformulation
with powers of 2 for softmax or approximation of the Euclidean norm for squash.

The starting point of the work is to identify the softmax and squash functions in the
context of the iterative routing-by-agreement algorithm, that is used to compute the activity
vectors of the output capsules in the simple CapsNet architecture as it was presented in the
2017 paper “Dynamic Routing Between Capsules” [6]. First of all, the softmax function
is used to determine the coupling coefficients between each primary capsule and all the
capsules in the layer above, i.e. digit capsules. At the end of the algorithm, the squash
function is applied to compute the activity vectors of the output capsules, whose length
represents the probability that an instance of the associated class is present in the current
input image fed to the CapsNet.

Mathematically, the softmax and squash functions are vector functions of several real
variables, so they take as input n real numbers and return as output a vector of n real
values. Each component of the input vector is processed according to the formulas (2.1)
and (2.2). In particular, the number of components of the softmax and squash functions
used in the Capsule Network architecture in [6] is 10 and 16 respectively. The softmax
function has 10 components because the number of distinct classes is 10 in the benchmark
dataset used for the image classification task, so each primary capsule is associated with 10
prediction vectors and 10 routing coefficients. On the other hand, the components of the
squash function amount to 16 because the final layer (DigitCaps) has one 16-dimensional
capsule per digit class, where each dimension out of 16 represents a particular feature of

27

2 – Softmax and Squash functions approximation

the digits of that class, like stroke thickness, localized skew and width.

cij = ebij∑n
k=1 ebik

(2.1)

vj = ∥sj∥2

1 + ∥sj∥2
sj

∥sj∥
(2.2)

Figure 2.1: Dynamic routing algorithm

Building upon extent research work and innovative ideas, three softmax and three
squash approximations are derived by analyzing the algorithmic structure of the two
functions. The key feature of each approximation is enclosed in its distinctive name.

Figure 2.2: Proposed approximate softmax and squash functions

28

2.1 – An Overview of the proposed Softmax and Squash function approximations

As far as softmax approximations are concerned:

• Softmax_app_taylor exploits look-up tables and Taylor series expansion for the
exponential computation and performs division in the logarithmic domain;

• Softmax_app_lnu makes use of mathematical domain transformation, a natural
logarithmic unit and a natural exponential unit;

• Softmax_app_b2 builds on the previously mentioned approximation; the proposed
approximation introduces the idea of modifying the mathematical expression of the
softmax function by replacing natural exponentials with powers of 2 and that allows
for hardware cost reduction thanks to the saving of two constant multipliers.

(a) Exponent Unit (b) Division Unit

Figure 2.3: Softmax-taylor architecture overview [12]

(a) Exponent Unit (b) Natural Logarithm Unit

Figure 2.4: Softmax-lnu architecture overview [13]

As regards the squash approximations:

• Squash_app_exp exploits a piecewise approximation of the squashing function with
a natural exponential unit and a look-up table on two different ranges of Euclidean
norm;

• Squash_app_pow2 is a variant of the aforementioned approximation, where for
values of norm in a given range the natural exponential unit is replaced with a less

29

2 – Softmax and Squash functions approximation

(a) Power-2 Unit (b) Log-2 Unit

Figure 2.5: Softmax-b2 architecture overview

Figure 2.6: Softmax units hardware resources overview

complex base-2 exponential unit, thus resulting in reduced cost of the final hardware
implementation;

• Squash_app_norm builds on one of the several Euclidean norm approximations
presented in the paper [14], i.e. the “Chaudhuri et al.’s” approximation, shown
in (2.3); the proposed approximation removes the need of a square root operator for
the norm computation and limits the number of multiplications to 1, regardless of
the number of components, at the expense of comparisons among the component
absolute values to determine the maximum.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.2

0

0.2

0.4

0.6

0.8

x

y

x/(1 + x2)

1− e−x

err(x)

(a) Squash-exp fitting

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.2

0

0.2

0.4

0.6

0.8

x

y

x/(1 + x2)

1− 2−x

err(x)

(b) Squash-pow2 fitting

Figure 2.7: Squash-exp and Squash-pow2 approximations

30

2.2 – Software Implementation of approximate Softmax and Squash functions

Dλ(x) = |ximax | + λ
n∑

i=1
i /=imax

|xi| (2.3)

Figure 2.8: Squash units hardware resources overview

2.2 Software Implementation of approximate Softmax and
Squash functions

The next step of the process is to describe the approximate softmax and squash algorithms
mentioned in the previous section in a software programming language. The software
implementation of the approximations is based on Python, an interpreted high-level
programming language that allows for high productivity thanks to its user-friendly syntax
and data structures. In addition to that, Python is a widely adopted programming language
in the Machine Learning and Deep Learning fields of study. The main reasons behind
the software description of the approximations are listed below. First of all, writing a
software model allows to understand and examine in detail the algorithmic steps of each
approximation. Secondly, the goal is to verify the quality of the approximate softmax and
squash outputs with respect to the corresponding ideal function outputs, by performing
software simulations on input values in a realistic range; the input range is derived in the
case study of an image classification task performed by the CapsNet model presented in [6]
on the benchmark MNIST dataset.

Following the above observations, describing the approximate softmax and squash
algorithms in Python is fundamental to integrate the approximate functions in a Capsule
Neural Network model described in Python itself, as it is provided by the open-source
framework Q-CapsNets [7]. It will be possible to see how each approximation of the softmax
or squash function impacts on the inference accuracy of the overall CapsNet on some
benchmark datasets, in order to asses the quality of the proposed approximations in a

31

2 – Softmax and Squash functions approximation

realistic environment. The idea is to measure the degradation in accuracy of the Capsule
Network including the approximate softmax or squash function in an image classification
task. In particular, the performances of the softmax and squash approximations are
evaluated in 4 case studies, by exploiting two Capsule Neural Network models and two
benchmark image datasets. The two used CapsNet models are Shallow CapsNet as presented
in [6] and DeepCaps as proposed in [9]. Building on the preexisting Shallow CapsNet
model, DeepCaps is a deep capsule network architecture that exploits the concepts of skip
connections and 3D convolutions in the Capsule Network domain. As regards the datasets,
the two benchmark image databases are the MNIST dataset and the Fashion-MNIST
dataset, where the acronym MNIST stands for Modified National Institute of Standards
and Technology. The former consists of grayscale images of handwritten digits from 0 to 9
naturally belonging to 10 classes, while the latter includes grayscale images of commercial
fashion articles associated with a label from 10 classes among which T-shirt, coat and bag.

2.2.1 Software Simulation

In order to compare each approximate function to its ideal counterpart, a software simulation
environment is set up. It consists of 5 Python modules, i.e. a data maker and a testbench
which includes the approximate function as unit under test, an error checker and an error
plotter.

Figure 2.9: Software simulation setup

The software experiments are performed according to the procedure explained below.
First of all, the data maker module creates a file in json format containing 1,000 input
vectors of a given number of components with uniform distribution in a given range;
specifically, the input vectors fed to the approximate softmax functions have 10 components
in the range [1e − 4, 1e − 2), while the approximate squash functions take as input vectors
with 16 components in the range [1e − 2, 1e − 1). The component number and range of
the softmax and squash functions are selected to be compliant with a specific case study
represented by Shallow CapsNet inference on the MNIST dataset. Secondly, the input
file generated by the data maker is read by the testbench module, so that for each input
vector the approximate function computes its outputs and the error checker produces 4
error metrics, by comparing the approximate results with the exact outputs of the ideal
function. The 4 error metrics computed for each input vector are maximum and average
component absolute errors and maximum and average component relative errors. At the

32

2.2 – Software Implementation of approximate Softmax and Squash functions

end of the input file, the testbench averages the 1,000 values of each error metric associated
with the input vectors and produces 4 global error statistics in the form (mean ± stddev),
identified by the acronym MED that stands for Mean Error Distance. In addition to the
aforementioned error statistics, two plots are generated by the error plotter module, i.e the
absolute errors plot that shows the maximum and average component absolute errors for
each multidimensional input vector and the relative errors plot that reports the maximum
and average component relative errors. A variant of the 2 previously mentioned error plots
is produced where the component absolute and relative errors are represented as a function
of the input vector Euclidean norm, in order to highlight a possible error trend depending
on the vector norm.

As far as the approximate squash functions are concerned, 6 additional error metrics are
analysed for each input vector, besides the maximum and average component absolute and
relative errors, i.e. the absolute and relative errors in the computation of 3 squash-specific
parameters: input vector norm, squashing coefficient and output vector norm. The reason
behind the additional squash error metrics is to identify the main source of the component
errors (input vector norm or squashing coefficient computations), as well as to evaluate the
impact of the component errors on the final class probability values, that is represented by
the squash output vector norm.

As reported in table 2.10, the Mean Error Distance of the maximum and average
component relative errors on the 1,000 input vectors in the given range is about 9% for all
of the softmax approximations, thus demonstrating similar accuracy degradation of the
approximate softmax functions with respect to the ideal softmax. The softmax absolute and
relative errors have an increasing trend with respect to the input vector norm, suggesting
a dependency of the softmax approximation errors on the Euclidean norm of the input
vector.

Figure 2.10: Softmax software simulation results

On the other hand, the MED of the maximum and average component relative errors
on the 1,000 input vectors in the given range is approximately 23% for the approximate
squash_exp and squash_pow2 and only 2% for the approximate squash_norm, show-
ing a distinct behaviour in accuracy of the approximate squash functions, due to the
approximation of a different main computation, i.e. squashing coefficient for squash_exp
and squash_pow2, while input vector Euclidean norm for squash_norm. As regards the
dependency of the squash approximation errors on the input vector norm, it is interesting
to note that squash_norm presents a slightly decreasing trend for both component absolute
and relative errors, while the other two approximate squash functions show a marked

33

2 – Softmax and Squash functions approximation

decreasing trend of component relative errors but an increasing dependency of absolute
errors.

(a) Errors vs i-th input vector (b) Errors vs input vector norm

Figure 2.11: Softmax-taylor approximation error plots

Figure 2.12: Squash software simulation results

2.3 How Softmax or Squash approximations affect
CapsNet model accuracy

After having evaluated the quality of the softmax and squash approximations with respect
to the ideal functions, it is crucial to assess how the approximations affect the Capsule
network inference accuracy on some benchmark datasets. As previously mentioned, the
approximations will be tested in 4 case studies, with 2 CapsNet models and 2 image datasets,
in order to evaluate their behaviour in a spectrum of possible applications. The next step
is to include each softmax or squash approximation in the network layers that make use
of those functions, by importing the Python module containing the coded algorithm of
the approximation. Before integrating them in the whole CapsNet model, the software
descriptions must be adapted to work with the PyTorch library and tensors, because
the Q-CapsNets framework, that provides the CapsNet models and image datasets, is
implemented by using the PyTorch library. For a previous design choice, the approximations

34

2.3 – How Softmax or Squash approximations affect CapsNet model accuracy

(a) Errors vs i-th input vector (b) Errors vs input vector norm

Figure 2.13: Squash-norm approximation error plots

were described in Python using the NumPy library and its main class ndarray. The reason
behind the need of describing the approximations using software libraries that manage
multidimensional tensors is that the CapsNet model processes data in the form of tensors,
through each of its constituting layers.

In particular, PyTorch is an open source machine learning library used for applications
such as computer vision and natural language processing. PyTorch provides two high-level
features: tensor computing with acceleration via graphics processing units (GPU) and
Deep neural networks with automatic differentiation system. PyTorch declares a class
called Tensor (torch.Tensor) to store and perform computations on multidimensional arrays
of numerical data. PyTorch Tensors are similar to NumPy arrays, but can also be operated
on a CUDA-capable Nvidia GPU.

The approximate softmax or squash function replaces its exact counterpart in different
layers depending on the CapsNet architecture. Specifically, in Shallow CapsNet, the
approximations are inserted in the PrimaryCaps and DigitCaps layers, where the dynamic
routing algorithm is performed for one and three iterations respectively. On the other hand,
DeepCaps uses the squash function in the convolutional layers of capsules (Conv2DCaps)
and includes both softmax and squash functions in the layers operating the dynamic routing
algorithm, i.e. the deepest parallel ConvCaps layer (Conv3DCaps) and the fully-connected
capsule layer at the output of the architecture.

After having included the PyTorch-based approximate softmax or squash function in
the Capsule network model provided by the framework, the next step is to execute the
inference pass on different datasets. To this purpose, a dedicated experimental setup is
prepared, that is composed of both software and hardware components. In particular, the
setup consists of the following parts: a software environment, created using the Python
distribution Anaconda that allows for software package management and includes the
PyTorch library; the Nvidia CUDA Toolkit, used to execute computation on a GPU; a
local CUDA-capable Nvidia GPU to increase the execution speed of the inference passes.

35

2 – Softmax and Squash functions approximation

Figure 2.14: MNIST and Fashion-MNIST 10-classes datasets

Figure 2.15: Q-CapsNet framework overview [7]

2.3.1 Q-CapsNets Framework for Inference

In the following, a description of the Q-CapsNets framework files is presented for the sake
of clarity. First of all, the main Python module instantiates the CapsNet model selected by
the user among the two currently supported ShallowCapsNet and DeepCaps. Each CapsNet
model consists of a number of layers according to its peculiar architecture. Specifically,
ShallowCapsNet is composed of three layers, i.e. Conv2d_ReLU, ConvPixelToCapsules and
Capsules; on the other hand, DeepCaps includes six main layers, i.e. Conv2d_BN_ReLU,
four DeepCapsBlocks and Capsules. Secondly, the framework main file loads the dataset
chosen by the user on which the inference pass will be performed, by using the load_data
function defined in the utils module, that in turn exploits the data_loaders module
containing a specific function to load each of the available datasets. In particular, the
datasets currently available are MNIST, Fashion-MNIST, CIFAR-10 and SVHN, each
containing images of 10 classes. Then, the pre-trained weights are loaded for the specific
model-dataset pair. At this point, the model is moved to the available GPU set by the user
and the inference process starts to execute. The test function in the test_train_functions
module is in charge of performing the inference pass according to the procedure reported
below. First of all, the testing dataset is split into a number of batches, whose size, or
number of images per batch, is defined by the user with the test-batch-size argument of
the framework. Each image in a batch is labelled with its correct class and these target
classes are needed to determine if the predictions made by the model for the corresponding
images are correct. For a number of iterations equal to the number of batches, each batch
is fed into the CapsNet model that makes a prediction for the class of each image in the
batch. For a given image, the model outputs a number of probability values equal to the
number of classes in the dataset and the class prediction for the current image is the class

36

2.3 – How Softmax or Squash approximations affect CapsNet model accuracy

corresponding to the highest probability value. The number of correct predictions per
batch is counted and after the processing of all the dataset batches, the fraction of correct
class predictions over the total number of images in the dataset is computed, in the form
of a percentage accuracy. At the same time, the total loss for an input image is computed
as the sum of the margin losses of the output capsules, as explained in [6]. Moreover, an
average total loss is produced for each batch and a final average total loss is computed
over all the batches at the end of the inference pass.

Figure 2.16: Inference pass

The Q-CapsNets framework can be run by command line, setting all the necessary
arguments. The framework parameters allow to select CapsNet model, dataset, pre-trained
weights path, model parameters including pixel size and number of channels of the input
images, number of classes in the dataset and dimension of the output capsules, as well as
GPU number and batch size to be used for the inference pass. By tweaking the framework
arguments, 4 inference passes are performed to analyse the performance of the softmax
or squash approximations in 4 case studies, i.e. ShallowCapsNet on MNIST and Fashion-
MNIST and DeepCaps on the same two datasets. The results of the software experiments
in the Capsule network domain are reported in table 2.17.

Figure 2.17: Inference accuracy results

37

2 – Softmax and Squash functions approximation

2.3.2 Inference Accuracy Results

In the presence of the approximate softmax functions, the degradation in inference accuracy
is negligible in all the case studies. Looking at the data in table 2.17, the highest loss in
accuracy with respect to the full-precision value is shown by the approximate softmax_b2
in ShallowCapsNet for Fashion-MNIST dataset, where the use of the approximate softmax
function causes the CapsNet to misclassify 6 extra images with respect to the full-precision
case.

As regards the squash approximations, the accuracy loss is negligible in the case of
inference on the MNIST dataset with both CapsNet models ShallowCapsNet and DeepCaps.
Actually, the worst-case loss is reported by the approximate squash_pow2 in the case
study ShallowCapsNet for MNIST with 8 extra wrong predictions with respect to the same
model and dataset with exact squash function. On the other hand, the inference accuracy
degradation becomes significant with Fashion-MNIST dataset, which includes images with
a richer information content than MNIST dataset. In particular, in the case of DeepCaps
for Fashion-MNIST the three squash approximations have similar performances, causing
the CapsNet inference accuracy to decrease by about 0.5% with respect to the full-precision
case. On the other side, in ShallowCapsNet for Fashion-MNIST the approximate squash
functions impact differently on the inference accuracy, in the sense that there is one squash
approximation, squash_pow2, that performs much worse than the others, causing an
accuracy loss of about 2%, i.e. 200 extra misclassified images with respect to the model
with exact squash function.

In the following paragraph, the arithmetic error of the approximate softmax or squash
functions, as reported in tables 2.10 and 2.12, is compared to the accuracy loss in the
CapsNet inference, as shown in table 2.17, in order to find out possible trends and
dependencies.

As regards the softmax approximations, the similarity of behaviour in arithmetic errors
with respect to the exact softmax function corresponds to comparable CapsNet inference
accuracy values. In the case of the squash approximations, squash_exp and squash_pow2
have a larger arithmetic error than squash_norm and this trend is found also in the
CapsNet inference accuracy losses of the three squash approximations in the case study of
ShallowCapsNet for Fashion-MNIST, where the accuracy degradation is more relevant.

2.4 Quantization of CapsNets models and approximate
functions

The next step is to quantise the approximate softmax and squash functions and test them
in quantised CapsNet models. Quantising means lowering the numerical precision of data
involved in a computation, in order to be compliant with a specific number representation.
In particular, in this work a signed fixed-point number representation is selected, so that
each floating point number is associated to a number in a given range and with a given
precision.

The main reasons behind the quantisation of data involved in the softmax and squash
approximations are explained below. Up to this stage of the work, the approximate functions

38

2.4 – Quantization of CapsNets models and approximate functions

are described in the Python programming language and simulated in order to evaluate
the quality of each approximation, both locally with respect to the corresponding ideal
function and in the context of a CapsNet model, to assess the effect of the approximations
on the number of correct predictions made by the network in an image classification task
on a given dataset.

One of the next objectives of this work is to implement the approximate functions in
hardware, so that it will be possible to make a comparison between the softmax or squash
approximations in terms of relevant metrics in the hardware domain, i.e. area, power
and delay. In view of the hardware implementation, it is convenient to make the current
software description of the functions as close as possible to the hardware description.

First of all, experimentation at the software level in the CapsNet domain allows to
determine the range of the input and output data involved in the softmax and squash
functions and useful hints about the datapath bitwidth are obtained from the derived
ranges. Secondly, by using the derived input ranges, quantisation is applied at the software
level in the relevant algorithmic steps of the approximate functions, in order to emulate
the internal dataflow of the future hardware implementations. The first step is performed
by making inference simulations in the 4 case studies and plotting tensor values in order to
find the numerical range of the input and output data of the softmax and squash functions,
used in the CapsNet models operating on the image datasets. Additional information

Figure 2.18: Frequency plots of softmax and squash inputs

about the bitwidth of the signed fixed-point numbers at the input of the softmax and
squash functions are given by the quantisation of the whole CapsNet model as explained
in the next section. The second step is performed by propagating the data through the
arithmetic operations all the way through the approximate function algorithm and lowering
the data numerical precision depending on the expected numerical range at the output of
the various computations.

To sum up, the quantisation of the software functions allows to infer the datapath
bitwidths and to write a software model that mimics the future hardware implementation
of the functions, so that the accuracy results obtained with the quantised software model
can be considered representative of those that would be produced by the corresponding
hardware implementation. To get even more realistic hardware-aware results, the CapsNet

39

2 – Softmax and Squash functions approximation

model is quantised by exploiting the peculiar feature of the Q-CapsNets framework, in
order to emulate the context of a hardware accelerator for Capsule networks.

Figure 2.19: Q-CapsNet framework for model quantization [7]

Figure 2.20: Quantized CapsNet models

2.4.1 Q-CapsNets Quantization Algorithm

The quantisation of a CapsNet model is performed by means of a multi-step quantisation
algorithm defined by the Q-CapsNets framework. The quantisation algorithm must be
provided with the CapsNet architecture to be quantised for a given test dataset, a rounding

40

2.4 – Quantization of CapsNets models and approximate functions

method to be used to quantise the data, a tolerance on the accuracy loss of the quantised
network with respect to the full-precision model and a memory budget that can be used for
the storage of the quantised weights. Quantising weights and activations allows to find an
efficient trade-off between the classification accuracy of the model and the cost of the model
in terms of memory usage and energy consumption during inference computations. The
procedure followed to quantise a given CapsNet is described in the following paragraph.

At the first stage, weights and activations are quantised in a layer-uniform way, i.e.
the number of bits of their fractional part is progressively reduced, consuming part of the
accuracy tolerance. Secondly, an additional reduction in the numerical precision of weights
is performed in a layer-wise manner, that is weights in the final layers of the network are
quantised more than those in the first layers, as it can be observed from the decreasing
trend in the number of fractional bits of weights in figure 2.20. At the next and last step,
data involved in the dynamic routing algorithm are quantised more aggressively than other
activations, with a lower wordlength, as it can be seen in figure 2.20. Specifically, the
more aggressive quantisation is performed on the input data of the softmax and squash
functions, in order to reduce the energy consumption of the computationally-expensive
dynamic routing functions, due to their inherent complexity and iterative operations. It
is interesting to note that softmax or squash functions input data can tolerate a more
aggressive quantisation because they are updated iteratively and can adapt to quantisation
more easily than other activations. To sum up, weights, activations and dynamic routing
data are converted to a fixed-point arithmetic and the corresponding bitwidhs are reported
in figure 2.20, where values are shown for each layer of two CapsNet models on two datasets,
with accuracy tolerance 0.4% and truncation rounding scheme.

2.4.2 Quantized Inference Accuracy Results

At the software level, inference accuracy values are obtained by testing the quantised
CapsNet model including the quantised approximate softmax or squash function.

Figure 2.21: Inference pass with quantized models and functions

The results collected from multiple simulations in 4 case studies with softmax or squash
approximation are reported in table 2.22.

The first row of table 2.22 shows the inference accuracy values of the two quantised
CapsNet models for two datasets with exact softmax and squash functions, as a reference

41

2 – Softmax and Squash functions approximation

Figure 2.22: Quantized inference accuracy results

to highlight the possible accuracy loss caused by the softmax or squash approximations. In
particular, the bitwidth of the model weights, activations and dynamic routing functions
inputs are those reported in figure 2.20, for each case study.

As regards the quantised softmax approximations, the inference accuracy degradation
of the quantised CapsNet is negligible in all the cases, with respect to the accuracy values
with exact softmax function reported in the first row. The highest accuracy loss is given
by the approximate softmax_b2 in ShallowCapsNet for Fashion-MNIST, with 9 extra
misclassified images with respect to the quantised CapsNet model with exact softmax
function.

In the presence of squash approximations, the accuracy loss is negligible only in the
case of inference of DeepCaps on Fashion-MNIST, where the worst-case loss is reported
by the model when using squash_pow2 approximation and corresponds to 7 extra wrong
predictions with respect to the same model with exact squash function. On the other
hand, the inference accuracy degradation becomes relevant in the other three case studies.
In particular, squash_norm performs better than the other two approximations, with a
limited worst-case accuracy loss of about 0.2% in ShallowCapsNet for MNIST. On the other
side, squash_pow2 records the worst inference accuracy results in all the cases, by causing
a worst-case accuracy loss of approximately 3.5% in ShallowCapsNet for Fashion-MNIST,
i.e. 350 extra misclassified images with respect to the same quantised model with exact
squash function.

It is interesting to note that the similarity in arithmetic error of the approximate
softmax functions shown in table 2.10 persists in the quantised capsule network domain,
where the inference accuracy values of CapsNet models using the softmax approximations
are comparable in the various case studies. In the same way, the trend of the arithmetic
error of approximate squash functions is found also in the CapsNet inference accuracy with
squash approximations, where squash_exp and squash_pow2 have higher accuracy losses
than squash_norm.

42

Chapter 3

Architecture design and
implementation

3.1 Design Flow of approximate Softmax and Squash
processing units

At this stage, the approximate softmax and squash functions have been evaluated, in order
to assess the quality of the approximations in terms of two metrics: arithmetic accuracy
with respect to the exact functions and CapsNet inference accuracy loss with respect to
the same CapsNet model with the exact function. In the capsule network domain, the
evaluation has been performed in 4 case studies with two CapsNet models and two datasets,
both with full-precision and quantised approximate functions and CapsNet models. The
inference accuracy results obtained with the quantised approximations and CapsNet models
can be regarded as representative of the performance of the future hardware implementation
of the approximate functions in the context of a hardware accelerator for CapsNet inference.

The next step is to implement in hardware the approximate softmax and squash
functions, in order to compare the softmax or squash approximations in terms of relevant
hardware metrics, such as occupied chip area, power consumption and maximum path
delay. Aiming at the hardware-aware comparisons between the proposed softmax or squash
approximations, a digital design procedure is followed that is summarised in the following
paragraph and explained in detail in the following sections.

First of all, the datapath and control unit of the approximate softmax and squash
processing units are described by using a data flow block diagram for the datapath and
an algorithmic state machine chart for the control unit. Secondly, each architecture is
implemented in Register Transfer Level with a VHDL-based description of both datapath
and control unit. Then, the VHDL model of each processing unit is simulated by means of
a VHDL testbench structure with input and output files, in order to verify the functionality
of the RTL architecture and check the VHDL model outputs against the corresponding
Python model results. The next step is to synthesise the complete architecture of each
processing unit in a 45 nm open-source technology library, by using the typical ASIC design
flow, in order to get the precise area, power and timing performance of each design. As

43

3 – Architecture design and implementation

a last step, functional and timing post-synthesis validation are performed to assess the
functionality of the gate-level netlist generated by the logic synthesis process.

3.2 Approximate Softmax Architectures

3.2.1 Softmax-lnu

The fundamental idea behind the approximate softmax_lnu architecture is derived from the
paper [13], where a hardware implementation of the softmax function is presented for deep
neural networks. To get to the proposed architecture, a mathematical transformation of the
softmax function is performed by using natural logarithm and exponent operations, which is
reported in the formula f(xi) = exp (ln (exi/

∑n
j=1 exj)) = exp (xi − ln (

∑n
j=1 exj)). Firstly,

the logarithmic operation allows to eliminate the need of a complex division operator and
perform division by using a simpler operation, i.e. subtraction. Secondly, the exponentiation
involved in the mathematical transformation is needed to convert the softmax results back
from the logarithmic domain. The idea is to exploit the proposed domain transformation
to obtain an efficient hardware implementation of the softmax function. The complete
architecture of the softmax function consists of three main computational units: a natural
exponential unit, an accumulator and a natural logarithmic unit. In particular, the
exponential unit performs the exponentiation of the softmax inputs, the accumulator sums
up the computed exponentials and the natural logarithmic unit computes the natural
logarithm of the sum, that is needed to perform the division involved in the softmax in the
logarithmic domain. Other simple units are included in the proposed softmax architecture.
First of all, a maximum finder unit determines the maximum softmax input needed for later
computations. Secondly, a subtractor is used to perform two operations at two different
steps of the algorithm: (1) scaling of the softmax inputs to non-positive values, in order to
limit the numerical range of the exponentiation results in (0, 1] and (2) division between
each exponential and the exponentials sum in the logarithmic domain. Finally, a generic
modulo counter and an encoding unit are exploited to allow the softmax function to work
with a variable number of inputs. In particular, the architecture is able to process 10, 32
and 128 inputs, in order to be compliant with two capsule network models, ShallowCapsNet
and DeepCaps for two datasets, MNIST and Fashion-MNIST. Specifically, the softmax
function used by ShallowCapsNet and DeepCaps in their final capsule layer takes as input
arrays of 10 components, corresponding to the 10 classes in the testing datasets. In the
ShallowCapsNet model, PrimaryCaps layer, the softmax function uses 32 inputs, related to
the 32 channels of 8-dimensional capsules in the layer, while in the DeepCaps architecture,
Conv3DCaps layer, the number of softmax input components is equal to 128, related to
32 output channels and 2 × 2 output feature maps in the layer. To sum up, the softmax
architecture is designed to work properly in the capsule network domain, in 4 case studies,
with two CapsNet models and two datasets.

At the algorithmic level, the exponential calculation is performed by exploiting a
local mathematical transformation of the exponential function, which is shown in eyi =
2yi·log2 e = 2ui+vi = 2ui · 2vi . In particular, the input of the exponent function is multiplied
by the constant log2 e and the result of the multiplication is split into its integer and

44

3.2 – Approximate Softmax Architectures

fractional part, ui and vi. At this point, the calculation is simplified in the following
way: (1) 2vi , with vi limited in the range [0, 1), is computed by using the linear fitting
function 1 + vi; (2) the multiplication by 2ui is implemented as a simple shift operation of
a fixed-point number in the hardware implementation. Due to the fact that the softmax
inputs are scaled to non-positive values, the arithmetic shift operation is performed to the
right direction by a number of positions equal to the absolute value of the integer part,
ui. At the architectural level, the exponential unit is composed of a constant multiplier to
perform the multiplication by log2 e, a bus expander to implement the 1 + vi operation
and a shift unit to shift 1 + vi to the right direction by a number of positions equal to the
magnitude of ui and compute the exponential result.

As regards the natural logarithm calculation, a mathematical transformation is per-
formed as reported in ln F = ln 2 · log2 F = ln 2 ·(w+log2 k). First of all, the change-of-base
formula is applied to the natural logarithm and the operation is written as base-2 logarithm
multiplied by a constant ln 2. Secondly, the input of the natural logarithm is expressed
as 2w · k, where w in an integer number and k is in the range [1, 2), so that the base-2
logarithm can be computed as w + log2 k. Finally, the calculation of the natural logarithm
is simplified as in ln F = ln 2 · (w + k − 1) by exploiting the linear fitting function k − 1 to
compute log2 k, with k in [1, 2).

In the hardware implementation, the natural logarithm unit consists of 4 main compo-
nents: 1) a leading one detector, to compute w by determining the highest bit ’1’ position
in the fixed-point input number of the logarithm; 2) a right shift unit, to calculate k by
shifting the logarithm input to the right direction by w positions; 3) a bus interconnection,
to generate the base-2 logarithm of the input by aligning the LOD output w and the
fractional part of the shift unit output k; 4) a constant multiplier to compute the natural
logarithm from the calculated base-2 logarithm. Due to the fact that the scaled softmax
inputs are non-positive, the natural logarithm input, i.e. the sum of the exponentials of the
scaled softmax inputs, is greater or equal than 1, implying that w is a non-negative value.

In the overall architecture, the use of registers is optimised, i.e. the same group of
input registers is used in two different algorithmic steps, as suggested by the multiplexer
placed at the beginning of the registers chain. At the first stage, the registers load the
softmax inputs, while the maximum input is being searched and the number of inputs is
being counted. After the scaling of the inputs by their maximum value, the same registers
store the scaled inputs, that will be needed in a later subtraction operation to compute
the softmax division in the logarithmic domain.

In the following section, a step-by-step description of the dataflow in the proposed
softmax architecture is reported, by highlighting the states transitioned by the processing
unit. Initially, the registers and counter in the datapath are set to zero by a synchronous
reset signal in the reset state, after the input reset signal activation. State transitions are
triggered by the rising edge of the clock signal. At the next active clock edge after the
input reset signal deactivation, the processing unit moves to an idle state, where it waits for
available data at its input ports. Valuable data is placed on the input data bus DIN and
signalled by the input signal VIN. At the next clock tick, the processing unit begins to load
the available data in the internal registers, thanks to the Mealy control signals triggered
by the VIN signal activation. At each clock tick following the VIN active transition, three

45

3 – Architecture design and implementation

main operations are performed by the processing unit. Besides loading the input data
in the internal registers, a maximum finder unit looks for the maximum input value, by
loading the first available input into a register and then replacing the content of the register
only when signalled to do so by a comparator, that determines if each of the next input
data is larger than the current maximum value stored in the register. Moreover, a 7-bit
counter counts the number of input values loaded by the architecture, as it is required to
be able to process a different number of input components.

The VIN deactivation signals the end of available data on the input data bus and
triggers the stop of the data loading, maximum search and count of number of inputs. As
regards the counting operation, at the next active clock edge after the VIN low transition,
the counter output value representing the number of loaded inputs is stored in a register,
as it is needed as a counter terminal count for later computations and the counter is then
reset. The processing unit transitions to a state referred to as acc, where the inputs are
scaled by subtracting the maximum value from them, the exponentials of the scaled inputs
are computed by the exponential unit and the sum of the exponentials is accumulated
in a sum register. Depending on the number of inputs previously counted, an encoding
unit selects the correct group of registers where the inputs are stored. As each input is
processed, the inputs move along the chain of registers to reach the head of the chain and
the scaled inputs are inserted in the tail of the chain for later computations. Hence, in the
acc state, at each active clock edge, an input is processed and each input register loads the
content of the one preceding it, with the register in the tail of the chain that loads the
scaled version of the current processed input. As soon as the sum of the exponentials is
calculated, the processing unit moves to a state where the natural logarithm of the sum
is computed by the logarithmic unit and stored in a dedicated register. In the last state,
the computed natural logarithm of the exponentials sum is subtracted from each scaled
input to perform the softmax division in the logarithmic domain. The logarithmic result is
then converted to the correct softmax output result by the exponential unit and stored
in an output register. When all the softmax outputs have been produced, the processing
unit resets the sum register and performs a transition to the idle state, ready to load and
process new input data.

As regards the bitwidth of input and output data of the softmax architecture, the
softmax inputs representation is <3; 8> and the softmax outputs are represented with
<1; 12>. The number of integer and fractional bits of the input and output data are
determined by exploiting the quantisation information in figure 2.20, focusing on the last
two layers and on the rows labelled as int, frac a and frac dr, in each case study. Frac
dr corresponds to the fractional part of the softmax or squash inputs in a given layer of
a given case study, while frac a represents the fractional part of the softmax or squash
functions outputs, among other types of activations.

The worst-case number of fractional bits of the softmax inputs is equal to 8, in
ShallowCapsNet for Fashion-MNIST, DigitCaps layer, where the softmax is performed for
a number of iterations equal to three. The number of integer bits, 3, is derived from the
worst-case range of the softmax inputs, that is [-4, 4), as reported in figure 2.18.

As regards the output data bitwidth, the fractional bits number, 12, is derived from
the case study ShallowCapsNet for Fashion-MNIST, in DigitCaps layer, while the number

46

3.2 – Approximate Softmax Architectures

of integer bits, 1, is related to the numerical range of a generic softmax function output,
that is by definition in (0, 1) for a number of components larger than 1.

Figure 3.1: Softmax-lnu datapath

47

3 – Architecture design and implementation

3.2.2 Softmax-b2

The approximate softmax_b2 function builds on the approximate softmax-lnu algorithm
that is presented in the previous section. The softmax_b2 approximation introduces
the concept of modifying the mathematical expression of the softmax function, from
exi/

∑n
k=1 exk to 2xi/

∑n
k=1 2xk , where powers of 2 are used in place of natural exponentials.

The new formula allows for a reduction of the algorithmic strength because 2x is easier
to compute than ex, that is it requires a lower number of components in the hardware
implementation.

The arithmetic error of the softmax_b2 approximation is comparable to that of the
approximate softmax_lnu, as it is demonstrated by the results reported in table 2.10,
obtained with software simulations in a specific case study. The same similarity in behaviour
is found in the capsule network domain, as shown by the inference accuracy values in
table 2.22. Therefore, the proposed approximation allows for a complexity reduction of the
hardware implementation, while causing a limited inference accuracy loss with respect to
the softmax_lnu approximation, with worst-case accuracy difference equal to 0.09% in the
case study DeepCaps for MNIST. It is interesting to note that the modified mathematical
expression can be used as a softmax-like function, i.e. a probabilistic version of the argmax
function, which returns 1 for the highest input value and 0 for all the other values.

At the architectural level, the implementation of the softmax_lnu described in the
previous section is modified, in order to compute the softmax-like function 2xi/

∑n
k=1 2xk .

Actually, the mathematical transformation performed to calculate 2xi/
∑n

k=1 2xk involves
power of 2 and base-2 logarithm operations, as in pow2 (log2 (2xi/

∑n
j=1 2xj)) = pow2 (xi −

log2 (
∑n

j=1 2xj)). The modification of the hardware implementation consists of the removal
of two constant multipliers used in the natural exponential unit and natural logarithmic unit,
so that the two units compute the power of 2 and base-2 logarithm operations needed by
the new approximation. Specifically, in the exponential unit, the preliminary multiplication
by the constant log2 e is eliminated to calculate 2xi and in the logarithmic unit, the final
multiplier by the constant ln 2 is removed to compute log2

∑n
i=1 2xi , where xi is the i-th

scaled input of the softmax architecture. Overall, the complete architecture is composed
of three main units: a power of 2 unit, an accumulator and a base-2 logarithm unit. A
detailed description of the architecture topology is reported in the previous section. Here,
it is convenient to note that the processing unit still computes the scaling of the inputs by
subtracting the maximum value from each input, in order to keep the numerical range of
the power of 2 operation limited to (0, 1]. Moreover, as mentioned for the softmax_lnu
approximation, the softmax_b2 architecture is able to process a variable number of inputs
to be used in the capsule network domain, with two CapsNet models, ShallowCapsNet and
DeepCaps, for two datasets, MNIST and Fashion-MNIST.

As regards the state machine diagram, the states transitioned by the processing unit
during its execution are generally equivalent to those used for the approximation in the
previous section. It is important to note that the calculations performed by the softmax_b2
architecture in the state acc are scaling of the inputs, power of 2 of the scaled inputs
and accumulation of the base-2 powers. Then, in the state log2_acc, the processing unit
computes the base-2 logarithm of the sum of base-2 powers, that is required to perform

48

3.2 – Approximate Softmax Architectures

the division between powers of 2 of the scaled inputs and sum of powers in the logarithmic
domain.

Due to the fact that the softmax scaled inputs are non-positive and that 2xi is larger
than exi per non-positive inputs, the exponential unit output bitwidth can be reduced
from <2; 12> in the softmax_lnu architecture to <2; 8> in the current softmax_b2
implementation. The number of integer bits, 2, is required to represent the maximum
exponential output, 1, for a null scaled input, in a signed fixed-point representation. On
the other hand, the number of fractional bits, 12 and 8, allows to represent the smallest
exponential output for the smallest scaled input, −8, that is e−8 and 2−8, respectively.

3.2.3 Softmax-taylor

The basic concept of the approximate softmax_taylor function is obtained from the paper
in [12], where an approximate softmax design is proposed for deep neural networks. The
goal is to approximate the hardware-expensive exponent and division operations in the
softmax function algorithm, in order to get an efficient hardware architecture.

The exponent calculation is simplified by using the mathematical transformation
exi = ea+b+c = ea · eb · (1 + c), that exploits the basic property of the exponent function and
the first-order polynomial approximation of the exponent based on the Taylor expansion
method. Specifically, the input number of the exponent function is divided into three
parts: the exponent of the first two parts is computed by using an exponential function
corresponding to each part domain, while the exponent of the third smaller part is
approximated by using the Taylor expansion formula truncated at the first order. The
final exponent value of the input is obtained by multiplying the three computed exponent
contributions.

As regards the softmax division operation, a mathematical manipulation involving power
of 2 and base-2 logarithm is performed, which is shown in pow2 (log2 (exi/

∑n
j=1 exj)) =

pow2 (log2 (exi) − log2 (
∑n

j=1 exj)). The input of each base-2 logarithm can be expressed
as 2S · F , where F is in [1, 2) and S is an integer number, so that the previous expression
is simplified in pow2 (S1 + log2 F1 − (S2 + log2 F2)). The computation can be further
simplified, by using the linear fitting function F − 1 to compute the base-2 logarithm,
so that the formula becomes pow2 (S1 + F1 − (S2 + F2)). To compute the final softmax
output, the input of the power-2 operation is split into its integer and fractional part, ui

and vi, such that 2ui+vi = 2ui · 2vi and the computation is performed in two steps: (1) 2vi is
computed by using the linear fitting function 1 + vi, with vi in [0, 1); (2) the multiplication
by 2ui is implemented by a shift operation of the fixed-point number in the hardware
implementation.

At the architecture level, the proposed approximate softmax design is composed of three
main units: an exponent unit to compute the exponential of the inputs, an accumulator
to sum up the exponentials and a division unit to calculate the division between each
exponential and the exponentials sum in the logarithmic domain.

The exponent unit consists of two look-up tables, a specific bus interconnection and
a multiplier. The fixed-point input of the exponent unit is divided into three parts, i.e.
integer, most significant fractional and least significant fractional part. The exponents of

49

3 – Architecture design and implementation

Figure 3.2: Softmax-b2 datapath

50

3.2 – Approximate Softmax Architectures

the integer and most significant fractional part are computed by using two LUTs, that
implement the exponent function over a precise input domain with a given output resolution.
On the other hand, the exponent of the least significant fractional part is calculated by
performing the 1 + x operation by means of a bus alignment. The final exponent value
can be computed by iteratively multiplying the three exponent contributions with a single
multiplier. In order to keep limited the numerical range of the exponent result, the input
of the exponent unit is scaled by subtracting the maximum input value from it.

As regards the division operation, the division unit is composed of two base-2 logarithmic
units, a subtraction unit and a base-2 exponential unit. The two logarithm units are
used to compute the base-2 logarithm of the dividend and divisor involved in the softmax
division. Specifically, each logarithmic unit consists of a leading one detector and a shift
unit, so that the base-2 logarithm integer and fractional part are given by the LOD output
and the fractional part of the shift unit output, respectively. The shift unit for the dividend
performs a shift in the left direction by a number of positions equal to the corresponding
LOD output, because the dividend is an exponential of a non-positive scaled input, so it is
in the range (0, 1]. On the other hand, the divisor is shifted in the right direction by a
number of positions given by the related LOD output, since the divisor is the sum of the
exponents of the non-positive scaled inputs, so it is greater or equal than 1. As regards the
subtraction unit, the logarithms of the dividend and divisor are subtracted to perform the
softmax division in the logarithmic domain. In particular, the integer and fractional parts
of the logarithms are subtracted by using two different subtractors to get the integer and
fractional part of the resulting logarithm. An additional subtractor is needed to obtain
the correct integer part of the resulting logarithm in the case that the fractional parts
subtractor produces a negative result in the range (-1, 0). Finally, the base-2 exponent
unit is exploited to implement the logarithmic conversion to get the final softmax output.
It consists of a bus interconnection and a shift unit. The former performs 2vi as 1 + vi,
where vi is the fractional part of the computed resulting logarithm, while the latter is used
to multiply 1 + vi by 2ui , where ui is the integer part of the resulting logarithm. The shift
unit operates a shift of its input to the right direction by a number of positions equal to the
absolute value of the integer part of the resulting logarithm, ui. Actually, the computed
logarithm corresponds to the logarithm of the softmax division result exi/

∑n
k=1 exk , so the

logarithm integer part is a non-positive number, since exi/
∑n

k=1 exk is in the range (0, 1].
In the proposed architecture, other simple units are included to execute the softmax

computation. Firstly, a maximum finder unit composed of a register and a comparator,
and a subtractor are used to perform the scaling of the softmax inputs. Secondly, a generic
modulo counter counts the number of inputs and allows the architecture to process a
variable number of input softmax components, in order to be compliant with the capsule
network domain, as explained in the previous section. In addition to that, a modulo-2
counter is used in the exponent unit to manage the multiplication of the three exponent
contributions, by using a single multiplier in an iterative way. Actually, the modulo-2
counter value allows to route the correct data to the inputs of the multiplier in two
iterations, by selecting the inputs of two multiplexers.

In the proposed design, the input registers are used in two algorithmic steps, for
the loading of the softmax inputs and the exponentials of the scaled inputs. The input

51

3 – Architecture design and implementation

registers usage optimisation determines the datawidth of the registers as <3; 12> in a
signed fixed-point representation. In particular, 3 integer bits are required to represent
the softmax input values in the range [-4, 4) and 12 fractional bits are derived from the
numerical resolution of the exponentials of the scaled inputs.

In the following section, a description of the state machine diagram of the proposed
approximate softmax processing unit is reported. After the input reset signal activation,
the registers and counters are set to zero and at the next active clock edge, the processing
unit transitions to the idle state, ready to accept valuable input data. As soon as input data
is placed on the input data bus, the architecture starts loading input values into the input
registers, computing the maximum value and counting the number of loaded inputs. After
the deactivation of the VIN signal, at the next clock tick, the current number of inputs is
stored in a register for later computations and the processing unit performs a transition to
the mpy_state. At this stage, each input is scaled by subtracting the maximum input value
from it and the exponent of the scaled input is computed, by iteratively multiplying three
exponent contributions with a single multiplier in two clock ticks. Specifically, at the first
clock tick, a partial exponent result is stored in the multiplier register and at the second
clock tick, the exponent computation is completed. Hence, the processing unit moves to
the acc_state, where the computed exponent is accumulated in a sum register and stored
in the tail of the input registers chain. The iterative process of input scaling, exponent
computation and exponent accumulation and storage is repeated for each softmax input
value, so that all the exponentials and their sum are calculated. Finally, in the output state,
the processing unit performs the division between each computed exponential and the sum
of exponentials in the logarithmic domain, thus producing the final softmax outputs. At
the end of the processing, the sum register is reset and the processing unit goes back to
the idle state, ready to begin a new softmax computation.

−0.5 0 0.5 1 1.5
0.5

1

1.5

2

2.5

x

y

2x

x+ 1

(a) Power-2 fitting in [0, 1]

0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

x

y

log2 x
x− 1

(b) Log-2 fitting in [1, 2]

Figure 3.3: Linear fitting in softmax approximations

52

3.2 – Approximate Softmax Architectures

Figure 3.4: Softmax-taylor datapath

53

3 – Architecture design and implementation

(a) Softmax-lnu (b) Softmax-b2 (c) Softmax-taylor

Figure 3.5: Softmax control units

54

3.3 – Approximate Squash Architectures

3.3 Approximate Squash Architectures

The squash function involves two main operations: the computation of the norm of the
squash input vector and the calculation of the squashing coefficient, that multiplies each
input component to produce the squashed output component. In the following section, three
approximate squash functions are proposed. One of the presented squash approximations
focuses on the norm computation, by approximating the Euclidean norm. On the other
hand, the remaining two approximations introduce innovative solutions to approximate
the squashing coefficient involved in the squash function.

3.3.1 Squash-exp

At the algorithmic level, the approximate squash_exp function exploits an original piecewise
approximation of the squashing function, x/(1 + x2), in two ranges of input vector norm,
x. In particular, the squashing function is approximated by the function 1 − e−x in the
range [0, 0.75) and by a direct-value look-up method in the range [0.75, max), as it is
shown in figure 2.7 a. For the intermediate norm value, 0.75, the approximation error
of 1 − e−x is about 10% of the exact squashing function value. In order to produce
the squashed outputs, the input vector components are multiplied by the approximate
squashing function previously described. In the proposed squash_exp approximation, the
Euclidean norm is computed as the square root of the sum of the squared input vector
components. Specifically, the square root operation is implemented by a direct input-output
mapping, over two different ranges of squared norm values.

At the architecture level, the proposed design consists of two main units, i.e. the
norm unit and the squashing unit. The norm unit computes the Euclidean norm of the
input vector and it is composed of a multiplier to compute the square of the inputs, an
accumulator to sum up the squared inputs and a square root unit to perform the square
root of the sum of the squared inputs. In order to compute the sum of squares in the
Euclidean norm of the input vector, each input is squared by a multiplier with equal inputs
and then accumulated in a sum register. At this point, the square root of the sum of
squared inputs is computed by the square root unit, that is composed of two look-up
tables, a comparator and a multiplexer. The two look-up tables implement the square root
function in two different ranges and the comparator selects one of the two LUT outputs
with the aid of a multiplexer, depending on the range of the value on which the square
root operation is performed. Specifically, one look-up table implements the square root
function in the range [3e − 5, 4) with 2−7 step and the other one covers the range [4, 5776)
with 24 step. Keeping in mind that the approximate squash function should be used in a
capsule network domain, the aforementioned numerical range of the square root unit input
is derived from the range of possible norm values, that is experimentally obtained in the
various case studies with two CapsNet models and two datasets, i.e. (5.5e − 3, 76).

The squashing unit computes the squash function outputs and is composed of a
squashing coefficient approximation unit, that implements the piecewise approximation
of the squashing function and a multiplier, that multiplies the approximate squashing
coefficient by the input components to get the final outputs. The squashing coefficient

55

3 – Architecture design and implementation

unit consists of two hardware computational branches. The first branch computes the
approximate squashing function value in the range [0, 0.75), by exploiting a specific
component to compute the negative norm value, −x, a natural exponential unit to calculate
e−x and a subtractor to obtain the approximate 1 − e−x squashing function value. The
second branch evaluates the squashing function in the norm range [0.75, 76), by using a
LUT with step 2−1. The correct squashing coefficient value is selected by a multiplexer
and a comparator, depending on the input norm value. Finally, the input components are
squashed by multiplying them to the computed squashing coefficient.

The proposed approximate squash architecture is able to process a variable number of
input components, in order to be compliant with the capsule network domain, in the case
studies with two CapsNet models and two datasets. In particular, the supported numbers
of squash inputs are 4, 8, 16 and 32. The squash function in the ShallowCapsNet model
takes as input 8 and 16 components in the PrimaryCaps and DigitCaps layer respectively,
due to the capsule dimension in each layer. In the DeepCaps model, the squash function
requires 4, 8 and 32 input components. Specifically, 32 components are required in the final
capsule layer, where 32-dimensional output capsules are used, 4 components are processed
in the convolutional layers of cell 1 and 8 components in the convolutional layers of cells 2,
3 and 4.

In order to allow the architecture to process a variable number of squash input compo-
nents, a 7-bit generic modulo counter is employed to count the number of loaded inputs.
Then the right group of input registers is selected by a multiplexer and an encoding unit,
depending on the number of squash components to process.

In the proposed architecture, the input data bitwidth is <7; 9> in a signed fixed-point
representation. The number of integer bits, 7, is required to represent the range of squash
inputs in the case study DeepCaps for MNIST, in the convolutional layers of cell 2, as it is
reported in figures 2.18 and 2.20. On the other hand, the number of fractional bits is 9, in
order to provide the numerical resolution of squash inputs in the convolutional layers of all
the cells in DeepCaps for MNIST.

As regards the output data bitwidth, the outputs of the squash function are represented
by <1; 12>. Actually, the squash outputs require 1 integer bit because the numerical range
of the squash function is (-1, 1), while the number of fractional bits used to represent the
squash outputs is 12, as it is derived from the case study ShallowCapsNet for Fashion-
MNIST in the PrimaryCaps and DigitCaps layers.

In the proposed architecture, the address saturation block at the input of a look-up
table is used to map a given range of input addresses to the same LUT value, in order
to saturate the look-up table output when the input is larger than a given threshold. In
particular, in the second LUT of the square root unit, the table output is saturated for
inputs larger than 5776 = 361 · 24 and in the LUT of the squashing unit, the saturation of
the output is performed for inputs larger than 76 = 152 · 2−1.

In the following paragraph, a description of the state machine diagram of the squash_exp
processing unit is reported. After the activation of the input reset signal, the processing
unit registers and counter are set to zero. At the next active clock edge, the processing unit
transitions to the idle state, where it waits for input data. Available data on the input data
bus is signalled by the input signal VIN. At the clock tick following the VIN activation, the

56

3.3 – Approximate Squash Architectures

processing unit performs a transitions to the load_acc state, where it executes three main
operations: (1) loading the inputs in the internal registers; (2) counting the number of
loaded inputs; (3) square and accumulate operation of each input value for the Euclidean
norm computation. The end of the input data is signalled by the VIN deactivation and the
processing unit stops loading inputs, counting inputs and accumulating squared inputs. At
the next clock tick after the VIN deactivation, the counter value is stored in a register for
later computations, the counter is reset and the processing unit moves to the output state.
In the output state, the processing unit performs the square root operation to compute
the norm of the input vector, then calculates the approximate squashing coefficient and
finally, multiplies each input component by the computed squashing coefficient to get the
final squash results. After the generation of all the squash output vector components, the
sum register of the norm unit is reset and the processing unit goes back to the idle state,
ready to begin a new squash computation.

3.3.2 Squash-pow2

From the algorithmic point of view, the approximate squash_pow2 function focuses on the
approximate computing of the squashing coefficient, by exploiting a piecewise approximation
in two ranges of norm values. In particular, the squashing function is approximated by the
function 1 − 2−x in the range [0, 1) and by a direct-value look-up method in the range
[1, max), as it is shown in figure 2.7 b. In the norm value 0.5, the non linear function
1 − 2−x introduces a worst-case approximation error equal to 25% the exact squashing
function value. The proposed squash_pow2 approximation can be considered as a variant
of the squash_exp approximation, described in the previous section. In particular, the
natural exponential computation, used in the squash_exp approximation, is replaced by a
base-2 exponential operation in the current approximate squash function, in order to allow
for a reduction of the complexity of the future hardware implementation. The hardware
cost reduction is obtained at the expense of a higher worst-case approximation error of
the squashing coefficient in the lower range of the piecewise approximation. As in the
squash_exp algorithm, in the current squash_pow2 approximation, the norm is computed
as an Euclidean norm, by implementing the square root operation with an input-output
mapping method. At the last step of the algorithm, the squash outputs are computed by
multiplying each squash input by the approximate squashing coefficient.

The architecture of the proposed squash_pow2 approximation is based on the imple-
mentation presented in the previous section. Two main modifications are introduced in
the squashing unit. First of all, the constant multiplier by log2 e is removed from the left
branch of the squashing unit, in order to implement a base-2 exponential unit. Secondly,
the selection between the two hardware branches of the squashing unit is performed by a
comparator that takes as input the norm value and the new intermediate value 1, separating
the two approximation ranges of the squashing coefficient. It is important to note that the
architecture is still able to process a variable number of input components, that is 4, 8, 16
or 32 input values, so that to be used in the capsule network domain.

The state machine diagram of the squash_pow2 processing unit has the same topology
of that of the squash_exp approximation, described in detail in the previous section. It is

57

3 – Architecture design and implementation

Figure 3.6: Squash-exp datapath

58

3.3 – Approximate Squash Architectures

important to observe that, in the output state, the processing unit performs the square
root operation, the squashing coefficient computation and the multiplication of the squash
inputs by the computed squashing coefficient. In particular, in the squashing function
left branch, a base-2 exponential operation is performed to approximate the squashing
coefficient with 1 − 2−x in the norm range [0, 1).

Figure 3.7: Squash-pow2 datapath

59

3 – Architecture design and implementation

3.3.3 Squash-norm

The main focus of the squash_norm approximation is to approximate the Euclidean
norm involved in the squash function. The Euclidean norm of the squash input vector is
approximated by using the Chaudhuri et al.’s approximation, presented in the research
paper [14] and shown in (3.1).

Dλ(x) = |ximax | + λ
n∑

i=1
i /=imax

|xi| (3.1)

In an equivalent way, the approximation can be expressed as a linear combination
of D∞ and D1, Dλ(x) = (1 − λ) D∞(x) + λ D1(x), where D∞ is the chessboard metric,
D∞(x) = |ximax |, and D1 is the city-block norm, D1(x) =

∑n
i=1|xi|. By comparing

the selected approximation and the Euclidean norm formula, ∥x∥2 =
√

(
∑n

i=1 xi
2), it is

clear that the goal of the approximation is to reduce the high computational cost of the
Euclidean norm computation, due to the multiple multiplications required to square each
input component and the square root operation. In place of the repeated multiplications
and the square root calculation, the Chaudhuri’s norm approximation introduces two
main operations: (1) the computation of the absolute values of the vector components; (2)
the comparisons among absolute values to determine the maximum absolute component.
Beside avoiding the square root and the square of the input components, an additional
advantage of the norm approximation is to limit the number of required multiplications to
a fixed number, 1, i.e. the multiplication of the sum of absolute values by the parameter
λ, regardless of the number of vector components, n. Moreover, the number of additions
involved in the approximation is still equal to n − 1, as in the exact Euclidean norm
computation. The parameter λ used in the approximation depends on the number of input
vector components and the λ optimal values are derived from the research paper [15]. It
is interesting to note that error introduced by the norm approximation increases with
the number of input components, as reported in [14], while the λ parameter decreases
with n. The squashing coefficient is computed by using a direct-value look-up method
in two different ranges of norm values, as explained in the following section. Finally, the
squash output results are obtained by multiplying each input by the calculated squashing
coefficient.

At the architecture level, the proposed design is composed of two main units, i.e. the
norm unit to compute the approximate Euclidean norm of the squash input vector and
the squashing unit to calculate the squashing coefficient and the squash output vector
components.

The norm unit computes the Chaudhuri et al.’s approximate norm according to the
formula (3.1). A specific hardware component is used to compute the absolute values of
the input components. Then, the absolute components are accumulated in a sum register
and a maximum finder unit, consisting of a register and a comparator, determines the
largest absolute component. To get the second sum term of the Chaudhuri’s approximation,
the maximum absolute component is subtracted from the sum of n absolute values and
the result of the subtractor is scaled by the parameter λ by using a multiplier. The final
approximate norm value is obtained by adding the maximum absolute value to the output

60

3.3 – Approximate Squash Architectures

of the λ multiplier. The right value of λ is selected by using a multiplexer, depending on
the number of components of the squash input vector.

The squashing unit consists of two look-up tables, a comparator and a multiplier. The
two look-up tables are used to compute the squashing coefficient in two different ranges of
norm values. In particular, the first LUT implements the squashing function in the range
[5.5e − 3, 0.5) with step 2−6, while the second LUT covers the range [0.5, 76) with step 2−1.
The correct look-up table output is selected by using a multiplexer and a comparator, that
compares the norm value to the intermediate value, 0.5. Finally, a multiplier is employed
to scale each squash input by the computed squashing coefficient and obtain the squash
output vector components. The proposed architecture is able to process a variable number
of input components, to be compliant with the capsule network domain in 4 case studies,
with two CapsNet models and two datasets. Specifically, a modulo generic counter is
included to count the number of squash inputs. Depending on the number of components
of the squash input vector, an encoding unit selects the right group of registers where the
inputs are stored and the specific λ value to be used in the norm computation for the
current number of inputs.

In the following section, the state machine diagram of the squash_norm processing unit
is described. After the activation of the input reset signal, the registers and counter are set
to zero. At the next active clock edge, the processing unit moves to the idle state, waiting
for input data. As soon as data is available and signalled by the VIN signal activation,
the processing unit transitions to the load_acc_max state, where it performs 5 main
operations: (1) load the inputs for the following squash outputs computation; (2) compute
the absolute value of each input data; (3) accumulate the absolute values; (4) search the
maximum absolute component; (5) count the number of loaded inputs. At the end of the
input data, the VIN signal is deactivated and the processing unit stops loading inputs,
accumulating absolute values, looking for the maximum value and counting the number of
loaded inputs. At the clock tick after the VIN deactivation, the counter value is stored in
a register and the counter is reset. The processing unit moves to the output state, where
the Chaudhuri’s norm computation is completed, the squashing coefficient is calculated
and the squash output vector components are obtained, by multiplying each input by the
squashing coefficient and stored in an output register. Finally, after the generation of all
the squash outputs, the sum register in the norm unit is reset and the processing unit goes
back to the idle state, ready to perform a new squash function computation.

61

3 – Architecture design and implementation

Figure 3.8: Squash-norm datapath

62

3.3 – Approximate Squash Architectures

(a) Squash-exp et Squash-pow2 (b) Squash-norm

Figure 3.9: Squash control units

63

3 – Architecture design and implementation

3.4 RTL implementation and functional simulation

The next step is to describe in VHDL the proposed approximate softmax and squash
processing units. The VHDL model of each processing unit is composed of a datapath and
a control unit.

3.4.1 VHDL models of approximate Softmax and Squash processing
units

The top-level entity of each processing unit is identified by the name of the softmax
or squash approximation and includes the datapath and control unit as interconnected
components in a structural architecture. The interface of the top-level module consists
of four input signals and two output signals. The input signals are the reset signal, clock
signal, valid input data vin signal and input data bus din. As output signals, the processing
unit uses the output data bus dout and valid output data vout signal.

As regards the interconnection between datapath and control unit, the datapath sends
status signals to the control unit and the control unit provides control signals to the
datapath. In the proposed designs, the status signals are terminal count signals of the
counters used in the datapath, while the control signals are represented by enable and
synchronous reset signals of registers and counters or selection signals of multiplexers.

The datapath VHDL module takes as input the clock signal, input data bus din and
control signals and produces as output the status signals, output data bus dout and valid
output data vout signal. As regards the architecture, the datapath is described in a
structural way, by instantiating the components that represent the various hardware units
composing the datapath itself. The VHDL description of each component is behavioural
and is included in separate source files. The components instantiated in the datapath can
be classified into a number of groups: registers and counters, computational units (adder,
subtractor, multiplier, comparator), look-up tables, multiplexers and specific units, like
leading one detector and encoding unit. Moreover, the unary minus, absolute value and
shift operations are performed by exploiting the corresponding functions in the numeric_std
package of the ieee library, that are -, abs and srl or sll.

As regards the data type used in the VHDL description of the processing units, the
numeric type signed is exploited, as defined in the package numeric_std. The chosen
data type is suitable for use with logic synthesis tools. In the design, a signed fixed-point
number representation is adopted to represent both positive and negative numbers, in a
given range and with a specific numerical resolution. In order to ease the VHDL modelling
phase in the early stages, a signed fixed-point numeric type, called sfixed, is used as defined
in the special package fixed_pkg, that allows for an easy and immediate identification of
the integer and fractional part of the represented signed fixed-point numbers.

In the proposed designs, the control unit VHDL module takes as input the reset signal,
clock signal, valid input data vin signal and datapath status signals. As output signals,
the control unit produces the control signals connected to the datapath components. The
VHDL description of the control unit is based on three process statements, i.e. the state
transitions process, next sate network process and output network process. In particular,

64

3.4 – RTL implementation and functional simulation

the state transitions process is sensitive to the reset and clock signals and allows the
processing unit to perform transitions between states. The next state process is in charge of
computing the next state from the current state and the control unit input signals. Finally,
the output process generates the control signals in each state, possibly depending on some
control unit inputs. In the proposed processing units, a Mealy finite state machine is used,
where the output signals depend not only on the current state, but also on some input
signals of the FSM. The motivation behind the choice of a Mealy finite state machine is
that the use of mealy outputs allows for a reduction of the overall number of states of the
FSM. As a drawback, a Mealy finite state machine is not glitch-free, so glitches on the
inputs may lead to unwanted outputs signals transitions.

3.4.2 Logic Simulation Workflow

The next step in the process is to perform the functional simulation of the VHDL model of
each processing unit. The goal is to verify that the RTL architecture described in VHDL
implements correctly the approximate softmax or squash algorithm described in Python.
In order to asses the functionality of each proposed design, the VHDL model outputs are
compared to the expected results given by the Python model. Specifically, the quantised
Python description of the approximation algorithm is used as a term of comparison for
the VHDL model. The VHDL model outputs are obtained by exploiting a VHDL-based
testbench, which allows to perform the functional testing of each processing unit. On the
other hand, the expected results are determined by executing a simulation of the Python
program describing the approximate softmax or squash algorithm, implemented by the
VHDL architecture under test. Both the VHDL and Python model outputs are stored into
a dedicated text file for later processing and comparison of the results. To perform the
VHDL and Python simulations, input test vectors are generated by a Python program and
applied to both the VHDL and Python model of the proposed designs. In order to compare
the values in the aforementioned two output files, a Python script is used, that allows
to compute the error distance between each VHDL model output and the corresponding
expected result. The computed error statistics are stored in a log file for visual comparison.

Figure 3.10: Logic simulation setup

65

3 – Architecture design and implementation

In the following section, a detailed description of the simulation flow is reported.
The simulation is performed by means of four main modules. A Python program, in-
puts_maker.py, generates the input test vectors to be applied to the approximate softmax
and squash designs and saves them to a text file, inputs.txt. For the simulation of the
approximate softmax designs, 500 input test vectors are generated with a number of
components equal to 10, 32 or 128. The components of the test vectors are generated with
an uniform distribution in the numerical range [-4, 4). On the other hand, in the case of
the approximate squash designs, the number of input test vectors is 500 with 4, 8, 16 or 32
components having a uniform distribution in the range [-64, 64).

The Python quantised model of the approximate softmax or squash processing units
is simulated by executing the corresponding .py file. In particular, the Python model
reads the inputs test vectors from the inputs.txt file, performs the specific approximation
algorithm of the softmax or squash function and writes the output vectors results to a
text file, outputs_py.txt. Before using the input vector components, the Python model
performs a quantisation of the floating-point component values read from the inputs.txt file
into fixed-point numbers, by using a truncation rounding scheme. The specific numerical
resolution used for the approximate softmax designs is 2−8, while the approximate squash
designs input vector components are quantised with a resolution equal to 2−9.

The simulation of the VHDL model is performed by means of a VHDL testbench
structure. The testbench module includes four components, that are properly interconnected
to allow for the testing of the RTL design. The four components involved in the VHDL
testbench are the unit under test, the clock and reset signals generator, the data maker
and the data sink module. The unit under test component is the VHDL model of the
processing unit, as it is described in the previous section. The clock and reset generator
generates the clock and reset signals, that are needed by the processing unit. The clock
signal is required also by the data maker and data sink modules, in order to synchronise
their specific operations to the timing behaviour of the processing unit. The clock and
reset generation block has an input signal, end_sim, that is used to deactivate the clock
signal at the end of the simulation, that is at the end of the input data. The data maker is
in charge of applying the input data to the unit under test. In order to properly generate
the input data to the UUT, the values in the inputs.txt file are pre-processed, so that
each floating-point value is converted to the integer value corresponding to a fixed-point
representation with a given numerical resolution, according to the formula ⌊x · 2NF ⌋. The
data maker module reads the pre-processed input values and converts each integer value to
a signed vector of the specified size, as required by the UUT data bus din. At each active
clock edge, the data maker places an input value on the input data bus din of the UUT
and asserts the valid input vin signal. After having applied n components to the UUT, the
data maker deactivates the vin signal of the unit under test and waits the processing unit
to finish the computation of the first output vector. As soon as the processing unit ends
the computation of the first vector, it deactivates its vout signal and after the deactivation
of the vout signal, the data maker starts applying new input data to the UUT. This process
is repeated until the end of the input file. After the last input vector is processed by
the processing unit, the data maker asserts the end_sim signal to deactivate the clock
signal and stop the processing. Actually, the processing unit computes each output vector

66

3.4 – RTL implementation and functional simulation

component and asserts the vout signal for each valid output component. At each clock
tick following an output component computation, the data sink module performs a file
writing operation. In particular, the data sink module reads the output signed vector from
the output data bus dout of the UUT, converts it to a fixed-point number with a given
numerical resolution, 12, and stores the output value in a text file, outputs_vhdl.txt.

The last step of the simulation flow is to compare the VHDL model outputs to the
Python model expected results, i.e. to make a comparison between the values stored in the
two output text files, outputs_vhdl.txt and outputs_py.txt. A Python program is used to
compute the error distance between the VHDL simulation and Python simulation results.
The program, called error_checker.py, reads the two files and writes the error distances
in a text file, errors.txt, for visual analysis. The computed error metrics are described
in the following paragraph. For each output vector, 8 error metrics are computed. The
error metrics can be classified in component-wise and vector-wise. The component-wise
metrics are 4: absolute component error and its magnitude, relative component error and its
magnitude. As regards the metrics related to the whole vector, other 4 metrics are calculated,
i.e. average absolute component error magnitude, maximum absolute component error
magnitude and average and maximum relative component error magnitude. By visually
analysing the content of the errors file produced by the simulation flow, it is possible
to verify the functionality of the VHDL model of each approximate softmax or squash
processing unit.

Figure 3.11: Errors.txt file sample for Softmax-b2

By analysing the log file associated to each processing unit, it is clear that the designed
RTL architectures implement properly the approximate softmax or squash algorithms. For
each approximate design, the mean error distances of the VHDL outputs with respect to
the Python quantised model outputs are reported in tables 3.12 and 3.13. The 4 mean
error distances are computed by calculating the average value of each of the 4 vector-wise
error metrics over the total number of output vectors.

After the functional verification of the VHDL models, the logic synthesis of the approx-
imate softmax and squash units is performed, by using the Synopsys Design Compiler.

67

3 – Architecture design and implementation

Figure 3.12: Softmax logic simulation results

Figure 3.13: Squash logic simulation results

3.5 Logic Synthesis

The goal of the logic synthesis process is to obtain a netlist that implements the proposed
design by using standard logic gates of a selected technology library. Based on the logic
synthesis results, detailed information about the hardware implementation of each design
is derived. In particular, each design is characterised by three main hardware metrics,
i.e. area usage, power consumption and maximum path delay. By analysing the obtained
hardware information, the approximate softmax or squash designs are compared in terms
of their hardware complexity and performance. The goal of the comparative analysis of
the approximate softmax or squash designs in terms of hardware metrics is to explore
the possible trade-offs between the hardware cost of each design and the capsule network
inference accuracy loss caused by the softmax or squash function approximation. In the
following section, a step-by-step description of the logic synthesis process is reported. The
target technology library used to synthesise the RTL architectures is the 45 nm Nangate
Open Cell Library, one of the most used libraries for academic research.

The logic synthesis process takes as input the source files containing the VHDL
description of the design and generates as output the gate-level netlist for the design,
described in Verilog and the text reports file. The netlist is an implementation made of
library cells and the report files are used to characterise the synthesised architecture in
terms of area, power and delay. The logic synthesis is performed by executing a Tcl script,
start_syn.tcl, based on the Tool command language supported by the Design Compiler.
Before starting the synthesis by means of the compile command, the design constraints
are set to direct the optimisation of the design. In particular, the specified constraints
are mainly timing specifications, i.e. the clock signal period and uncertainty, the delay on
input and output ports relative to the clock signal and the capacitive load on the output

68

3.5 – Logic Synthesis

ports of the design, that is set equal to the capacitance of the input pin of a library buffer
cell with drive strength 4. Finally, the compile command implements a combination of
library cells that best meets the requirements specified for the design.

Figure 3.14: Logic synthesis workflow

3.5.1 Description of Synthesis Reports

In the following section, a description of the area, power and timing report files generated
by the synthesis process is provided.

The area report provides the design size and cell counts. As regards the design size, the
report file shows the total cell area of the design and the area breakdown in combinational
and non combinational area contributions. In terms of cell counts, the total number of
cells and the number of combinational and sequential cells are reported. The measurement
units of the area values are square micron. Hence, the area report provides the area usage
of the design and enables area breakdown analysis.

As regards the power report, it provides detailed information about the power consumed
by the design. In particular, the power report shows the total power dissipated by the
design and the three different type power contributions of the total power value. Actually,
the total power is composed of the cell leakage power and the total dynamic power, that

69

3 – Architecture design and implementation

is in turn split into cell internal power and net switching power. In addition to the
aforementioned power values, a power breakdown of each contribution is provided. In
particular, for each power type and the total power, the amount of power consumed by
registers and combinational cells is reported. The measurement units of the leakage power
are nW, while the dynamic power units are uW. It is important to note that the power
analysis provided by the power report previously described is an initial estimate, because
it is based purely on a statistical estimation of the nets switching activity.

As regards the timing analysis of the design, a timing report is generated that provides
information about the maximum delay path in the design, i.e. the critical path for the
design timing performance. In particular, based on the clock period, clock uncertainty
and library setup time, the data required time is computed. Then, the data arrival time
is estimated as the total delay of the critical path, by computing the incremental delay
through each logic gate. Finally, the data arrival time is compared to the data required
time, by calculating the difference between the two values, called slack. A positive slack
means that the timing requirements are met by the design. The time units are nanoseconds.
In addition to the aforementioned time values, the timing reports shows the starting point
and end point, or net, of the critical path through the design, as well as the nets of the
components that lie on the path itself. Since the goal of the synthesis process is to allow
for a comparison of the multiple approximate softmax or squash designs, the alternative
designs have equal clock period, i.e. 10 ns. The equal clock period choice enables a fair
comparison since all the designs are running at the same cycle time.

3.5.2 Power consumption Experimental Analysis

In order to get a more accurate power report of the design, a power simulation is performed
by using the Design Compiler. The goal of the power simulation is to obtain a power
report of the design based on the experimental estimation of the nets switching activity,
other than the statistical estimation previously adopted. At this step, the power analysis
is realised by using the SAIF back-annotation process, that consists of two main parts.

First of all, the logic simulation of the Verilog netlist generated by the synthesiser is
performed, by applying realistic input test vectors in a text file to obtain the experimental
nets switching activity. A VHDL testbench is used as explained in the previous chapter
and the compiled Verilog codes of the library cells in the netlist are linked. In particular,
the simulation computes the nets switching activity by exploiting the information about
the delays of the netlist, that are read from a .sdf file previously generated by the synthesis
process. The HDL simulator writes the switching activities of the nodes of the unit under
test in a .vcd file, for later use by the power analyser. Then, the vcd file is converted into
a standard .saif file by the synthesiser, in order to enable the automatic annotation of the
design nodes.

The second part of the process is performed by the Design Compiler: the experimental
switching activities of the netlist nodes are set by reading the saif file and the power
analysis based on the annotated switching activities is performed, to generate a reasonably
accurate power report of the design. The clock period specified to the design compiler, to
perform the power analysis properly, is equal to the cycle time used in the HDL simulation.

70

3.6 – Synthesis results

3.5.3 Post-synthesis netlist Validation

The last step in the design flow is to validate the gate-level netlist produced by the logic
synthesis process. To perform the validation, the VHDL testbench is used to apply the
input test vectors and record the gate-level model outputs, as described in the previous
chapter for the VHDL model logic simulation. In particular, the timing validation of
the gate-level netlist is performed, by linking the sdf delay file of the netlist and the
pre-compiled Verilog codes of the library cells used in the netlist.

The gate-level model outputs are compared to the pre-synthesis VHDL model results,
by automatic comparison of the corresponding text output files. To complete the validation
process, the gate-level model outputs are checked against the Python quantised model
results, as it is shown in figure 3.15. By observing that the Verilog gate-level model outputs
coincide with the pre-synthesis VHDL model outputs, the log text file errors.txt can be
derived as explained in the previous chapter. By analysing the validation results, it is
possible to conclude that the synthesised gate-level netlist of each approximate softmax or
squash design implements properly the corresponding approximation algorithm.

Figure 3.15: Post-synthesis netlist validation

3.6 Synthesis results

The logic synthesis of the approximate softmax and squash designs allows to characterise
each architecture in terms of the three hardware metrics, area usage, power consumption
and maximum path delay. In particular, the synthesis results for each softmax or squash
processing unit are reported in this section.

71

3 – Architecture design and implementation

3.6.1 Area usage

As regards the area characterisation of the designs, two main charts are reported. The
bar chart shows the total chip area occupied by the design in square micron, with two
area contributions given by combinational and sequential cells. The fractions of total area
occupied by combinational and sequential cells are shown in a pie chart with percent values.
For the softmax designs, the fraction of total area occupied by sequential cells is larger
than the fraction corresponding to combinational cells. On the contrary, in the squash
designs, combinational logic uses more area than sequential logic. The two different area
breakdowns reflect the fact that in the softmax architectures a larger number of registers
is used, while in the squash designs the higher combinational area contribution is due to
limited number of registers and use of area-expensive look-up tables.

Figure 3.16: Softmax Area results (lnu – b2 – taylor)

3.6.2 Timing performance

As regards the timing characterisation, the bar chart reports the delay of the design critical
path in nanoseconds. Specifically, for the longest path, the data arrival time and the slack
with respect to the cycle time are shown. Actually, the effective slack is lower due to the
library setup time and clock uncertainty constraint. The critical path of each softmax or
squash design is highlighted in appendix A.

3.6.3 Power consumption

The power analysis results of the back-annotation process are reported by using three main
charts. The first bar chart shows the total power consumed by the design, that is broken

72

3.6 – Synthesis results

Figure 3.17: Squash Area results (exp – pow2 – norm)

Figure 3.18: Softmax Timing results (lnu – b2 – taylor)

Figure 3.19: Squash Timing results (exp – pow2 – norm)

73

3 – Architecture design and implementation

into internal, switching and leakage power. In the second bar chart, the power is also
broken down into power consumed by registers and combinational logic. In particular, the
total power breakdown in sequential and combinational cells is reported in a pie chart with
percent values. For the softmax or squash designs, it is interesting to note that the power
breakdown trend reflects the area breakdown. Specifically, in the softmax designs, registers
consume more power and more area than combinational logic (60% to 40% of total area or
power). On the other hand, in the squash designs, combinational cells use more power and
occupy more area than sequential cells (70% to 30% of total area or power).

Concerning the power contributions, internal and switching power are forms of dynamic
power, while leakage power is a form of static power. Cell internal power is the short-circuit
power, related to the fact that CMOS transistors are arranged in pull-up and pull-down
networks that can be both in conduction. It depends on transistor size, input transition
time and output load capacitance of the cell. Net switching power is the power dissipated
by the charging and discharging of the load capacitance at the output of each cell. Finally,
cell leakage power is the power due to the transistor sub-threshold leakage. It si interesting
to note that in the softmax and squash designs, the dynamic power is more significant
than the static power (90% to 10% of total power).

In the following section, the comparative analysis of the softmax or squash processing
units is reported. First of all, the softmax or squash designs are compared in terms of the
three hardware metrics, area, power and delay, computed by the logic synthesis process.
Secondly, a detailed comparison of the softmax or squash units is performed in terms of
capsule network inference accuracy loss in 4 case studies, that is caused by the proposed
softmax or squash function approximations. Finally, both the hardware characterisation
and inference accuracy results are analysed in order to explore possible trade-offs between
hardware complexity and classification accuracy of the proposed approximate softmax or
squash designs.

74

3.6 – Synthesis results

Fi
gu

re
3.

20
:

So
ft

m
ax

Po
w

er
re

su
lts

(ln
u

–b
2–

ta
yl

or
)

75

3 – Architecture design and implementation

Figure
3.21:

Squash
Pow

er
results

(exp
–pow

2–norm
)

76

3.7 – Comparative Analysis of Softmax Approximations

3.7 Comparative Analysis of Softmax Approximations

3.7.1 Comparison by Hardware metrics

As regards the softmax units, the comparative analysis in terms of hardware metrics is
shown in the three bar charts reported in figure 3.22. The first bar chart reports the total
area occupied by each softmax design; the second bar chart shows the total power consumed
by the softmax units and the third chart reports the data arrival time in the critical path
of each softmax design. By analysing the three bar charts, the three approximate softmax
processing units, Softmax_lnu, Softmax_b2 and Softmax_taylor, are compared to find
out how the softmax designs differ in terms of area, power and critical path delay.

Figure 3.22: Softmax Hardware metrics comparisons

As regards the area and power comparisons, the following observations can be made.

• Softmax_b2 occupies less area (-11%) and dissipates less power (-13%) than Soft-
max_lnu thanks to the removal of 2 constant multipliers, i.e. log2 e and ln 2 mul-
tipliers in the exponential and logarithmic units, and reduced data bitwidth in the
accumulator.

• Softmax_taylor uses more area (+20%) than Softmax_lnu because of the usage of
two look-up tables for the exponent computation, additional arithmetic resources
(subtractors, shifter) and wider input registers.

77

3 – Architecture design and implementation

• Softmax_lnu consumes more power (+6%) than Softmax_taylor because of higher
internal power (+10%) in both combinational and sequential cells and higher switching
power (+3%) in registers.

• Softmax_taylor uses more power (+8%) than Softmax-b2 due to larger switching
power (+28%) in combinational units and leakage power (+30%) in both combina-
tional and sequential cells.

By looking at the maximum path delay comparison, it is possible to note that Soft-
max_b2 and Softmax_taylor have a smaller maximum path delay than Softmax_lnu (-35%
and -20%), thanks to the absence of a constant multiplier by log2 e and the use of fast
table look-ups, respectively. Actually, in Softmax_b2 critical path the log2 e multiplier is
removed with respect to Softmax_lnu, while in Softmax_taylor longest path the look-up
table access is faster than the shift and addition operations used in Softmax_lnu critical
path.

3.7.2 Comparison by CapsNet accuracy

The three approximate softmax units are compared in terms of the CapsNet inference
accuracy in 4 case studies. The image classification task is performed for two image datasets
by using two CapsNet models. In particular, the accuracy results are reported in two bar
charts. The first chart refers to the MNIST dataset and the second chart corresponds
to the Fashion-MNIST dataset. In each chart, the inference accuracy reached by the
CapsNet model using the three approximate softmax functions is reported for two CapsNet
models, i.e. ShallowCapsNet and DeepCaps. The reported accuracy results are obtained
by performing inference steps with the quantised CapsNet models including the quantised
approximate softmax functions.

Figure 3.23: Softmax Inference Accuracy comparisons - 1

In figure 3.24, the 4 case studies are analysed in detail by showing the inference accuracy
and accuracy loss for the three approximate softmax units. The accuracy loss is evaluated

78

3.7 – Comparative Analysis of Softmax Approximations

with respect to the full-precision inference accuracy, that is obtained with full-precision
CapsNet model and exact softmax functions.

Figure 3.24: Softmax Inference Accuracy comparisons - 2

By analysing the accuracy results, the following observations can be made.

• CapsNet inference accuracy Loss is kept within a 0.5% margin relative to the full-
precision accuracy in all the case studies, i.e. the CapsNet misclassifies at most 50
extra images with respect to the full-precision case.

• Accuracy losses across the approximate softmax units are quite similar in each of the
case studies, with a maximum accuracy difference in the range 0.07%-0.14%.

• Softmax_lnu performs slightly better than Softmax_taylor (with accuracy difference
in the range 0.01%-0.04%) in all cases except for Shallow Fashion-MNIST, where
Softmax_taylor outperforms Softmax_lnu by 0.1% accuracy difference.

• Softmax_b2 has the highest accuracy Loss in all cases except for Shallow MNIST,
with worst-case accuracy Loss equal to 0.46% in Shallow Fashion-MNIST (46 extra
misclassified images).

79

3 – Architecture design and implementation

3.7.3 Exploration of cost-accuracy trade-offs

For each of the 4 case studies, the CapsNet inference accuracy values with the three
softmax approximations are reported as a function of two alternative hardware metrics,
i.e. area and power of the approximate softmax architecture. The approximate softmax
processing units are identified by circular icons in the accuracy vs. area plots in figure 3.25
and by triangular icons in the accuracy vs. power plots in figure 3.26. A specific point
in the accuracy-area and accuracy-power plots is associated to each of the approximate
softmax designs. By exploiting the aforementioned plots, it is possible to analyse the
relationship between the classification accuracy of a CapsNet model using the softmax
approximation and the hardware cost of the architecture that implements the approximate
softmax function. The following observations are inferred from the 4 accuracy-area and 4
accuracy-power plots.

• Softmax_b2 consumes less area (-11% and -25%) and power (-13% and -8%) than
Softmax_lnu and Softmax_taylor, but as a drawback it has the highest accuracy
Loss in all cases except for Shallow MNIST, with worst-case accuracy Loss (0.46%)
and worst-case accuracy difference with respect to the best unit (0.14%) in Shallow
Fashion-MNIST.

• Softmax_lnu and Softmax_taylor have similar accuracy Losses (accuracy difference
in range 0.01%-0.04%) in all cases except for Shallow Fashion-MNIST, where Soft-
max_taylor has a better accuracy by 0.1% at the expense of more area occupied
(+20%) and with the benefit of less power consumed (-6%) than Softmax_lnu.

• Overall, a trade-off between area/power cost of the approximate softmax unit and
CapsNet inference accuracy is better demonstrated in the case study Shallow Fashion-
MNIST, where the accuracy values are farther apart (highest maximum accuracy
difference 0.14%) than in other cases: Softmax_taylor has a higher accuracy (+0.14%)
than Softmax_b2 at the expense of an additional cost in area (+35%) and power
(+8%).

80

3.7 – Comparative Analysis of Softmax Approximations

Figure 3.25: Softmax Inference Accuracy vs Area plots

81

3 – Architecture design and implementation

Figure 3.26: Softmax Inference Accuracy vs Power plots

82

3.8 – Comparative Analysis of Squash Approximations

3.8 Comparative Analysis of Squash Approximations

3.8.1 Comparison by Hardware metrics

As regards the squash units, the comparative analysis in terms of hardware metrics is
shown in the three bar charts reported in figures 3.27. The first bar chart reports the total
area occupied by each squash design; the second bar chart shows the total power consumed
by the squash units and the third chart reports the data arrival time in the critical path
of each squash design. By analysing the three bar charts, the three approximate squash
processing units, Squash_exp, Squash_pow2 and Squash_norm, are compared to find out
how the squash designs differ in terms of area, power and critical path delay.

Figure 3.27: Squash Hardware metrics comparisons

As regards the area and power comparisons, the following observations can be made.

• Squash_norm uses less area (-13% and -8%) than both Squash_exp and Squash-
pow2, thanks mainly to the usage of fewer and smaller look-up tables. Actually,
Squash_norm employs two look-up tables, with 32 and 152 entries, for the computa-
tion of the squashing coefficient, but any LUT is used to calculate the norm.

• Squash_norm consumes slightly more power (+1% and +7%) than both Squash_exp
and Squash_pow2 because of higher switching power (+6% and +15%) and internal
power (+2% and +7%) in combinational cells.

83

3 – Architecture design and implementation

• Squash_pow2 consumes less area (-5%) and power (-5%) than Squash-exp thanks to
the removal of a constant multiplier by log2 e.

By looking at the maximum path delay comparison, it is possible to note that
Squash_pow2 has a lower maximum path delay (-25%) than Squash-exp thanks to the ab-
sence of a constant multiplier log2 e, while Squash_norm has a higher maximum path delay
(+15%) than Squash_exp because of wider arithmetic units. Actually, in Squash_pow2 the
critical path starts at the clocked input port din and ends at the input of the accumulator
register, while in Squash_exp the longest combinational path lies between the accumulator
register and the output register. In Squash_norm, the critical path still goes from the
accumulator register to the output register, but the arithmetic units along the path have
wider bitwidths than those in the critical path of Squash_exp.

3.8.2 Comparison by CapsNet accuracy

The three approximate squash units are compared in terms of the CapsNet inference
accuracy in 4 case studies. The image classification task is performed for two image
datasets by using two CapsNet models. In particular, the accuracy results are reported
in two bar charts. The first chart refers to the MNIST dataset and the the second chart
corresponds to the Fashion-MNIST dataset. In each chart, the inference accuracy reached
by the CapsNet model using the three approximate squash functions is reported for two
CapsNet models, i.e. ShallowCapsNet and DeepCaps. The reported accuracy results are
obtained by performing inference steps with the quantised CapsNet models including the
quantised approximate squash functions.

Figure 3.28: Squash Inference Accuracy comparisons - 1

In figure 3.29, the 4 case studies are analysed in detail by showing the inference accuracy
and accuracy loss for the three approximate squash units. The accuracy loss is evaluated
with respect to the full-precision inference accuracy, that is obtained with full-precision
CapsNet model and exact squash functions.

By analysing the accuracy results, the following observations can be made.

84

3.8 – Comparative Analysis of Squash Approximations

Figure 3.29: Squash Inference Accuracy comparisons - 2

• CapsNet inference accuracy Loss is kept within the 0.5% margin in the Deep Fashion-
MNIST case study, while the margin is violated by accuracy Loss with Squash_pow2
in Shallow MNIST (0.67%) and accuracy Loss with Squash_exp and Squash_pow2
in Deep MNIST (0.96% and 1.17%) and Shallow Fashion-MNIST (1.47% and 3.74%).

• Accuracy losses across the approximate squash units are quite similar in Shallow
MNIST and Deep Fashion-MNIST (maximum accuracy difference equal to 0.26% and
0.14%), while quite different in Deep MNIST and Shallow Fashion-MNIST (maximum
accuracy difference equal to 0.65% and 3.46%).

• Squash_norm performs better than Squash_exp (accuracy difference in range 0.08%-
1.19%) in all cases except for Deep Fashion-MNIST, where Squash_exp slightly
outperforms Squash_norm by a tiny 0.06% accuracy difference.

• Squash_pow2 has the highest accuracy Loss in all cases, with worst-case accuracy
Loss equal to 3.74% in Shallow Fashion-MNIST (374 extra misclassified images with
respect to the full-precision case).

85

3 – Architecture design and implementation

3.8.3 Exploration of cost-accuracy trade-offs

For each of the 4 case studies, the CapsNet inference accuracy values with the three squash
approximations are reported as a function of two alternative hardware metrics, i.e. area
and power of the approximate squash architecture. The approximate squash processing
units are identified by circular icons in the accuracy vs. area plots in figure 3.30 and by
triangular icons in the accuracy vs. power plots in figure 3.31. A specific point in the
accuracy-area and accuracy-power plots is associated to each of the approximate squash
designs. By exploiting the aforementioned plots, it is possible to analyse the relationship
between the classification accuracy of a CapsNet model using the squash approximation
and the hardware cost of the architecture that implements the approximate squash function.
The following observations are inferred from the 4 accuracy-area and 4 accuracy-power
plots.

• In spite of consuming less area (-13% and -8%) and only slightly more power (+1%
and +7%) than the other squash units, Squash_norm has the lowest accuracy Loss
in all cases except for Deep Fashion-MNIST, with worst-case accuracy Loss equal to
0.52% in Deep MNIST and accuracy difference with respect to the second-best unit
in the range 0.08%-1.19%.

• Squash_pow2 consumes less area (-5%) and power (-5%) than Squash-exp at the
expense of higher accuracy Loss in all cases (accuracy difference in the range 0.14%-
2.27%), with worst-case accuracy Loss equal to 3.74% in Shallow Fashion-MNIST
and accuracy difference with respect to the case best unit in the range 0.14%-3.46%.

• A trade-off between area/power cost of the approximate squash unit and CapsNet
inference accuracy is demonstrated with Squash_exp and Squash-pow2 in all the
case studies: Squash_pow2 achieves lower cost in area usage and power consumption
than Squash_exp, in exchange for higher accuracy Loss.

86

3.8 – Comparative Analysis of Squash Approximations

Figure 3.30: Squash Inference Accuracy vs Area plots

87

3 – Architecture design and implementation

Figure 3.31: Squash Inference Accuracy vs Power plots

88

Chapter 4

Conclusions and future works

This is one of the first works where multiple approximate softmax and squash techniques
are proposed and compared, with the primary goal of exploring trade-offs between the
hardware complexity of the approximate architectures and the capsule network inference
accuracy loss due to the dynamic routing function approximations.

As regards the approximate softmax units, the following final comments are made.
Softmax-b2 turns out to be the best option in terms of hardware implementation

metrics, area, power and critical path delay, in spite of being the worst approximate
softmax technique in loss of CapsNet inference accuracy, in all cases except for Shallow
MNIST, where the three softmax approximations produce similar inference accuracy results.

Overall, Softmax-taylor is considered the best solution in terms of accuracy loss.
Actually, the Softmax-taylor technique outperforms the other softmax methods in Shallow
Fashion-MNIST, in spite of producing similar accuracy results in Shallow MNIST and
DeepCaps case studies. The performance in accuracy is obtained at the expense of the
worst area metric and intermediate power and delay data.

Finally, Softmax-lnu is characterised by the worst power and delay metrics and inter-
mediate area usage. It performs similar to Softmax-taylor in all cases except for Shallow
Fashion-MNIST, where it incurs in a higher accuracy loss than the Softmax-taylor technique.

Regarding the approximate squash units, the following final observations are reported.
Squash-norm is the best solution in terms of CapsNet inference accuracy loss in all

cases, except for DeepCaps Fashion-MNIST, where it performs similar to Squash-exp. The
good performance in accuracy is obtained at the expense of the worst power and delay
metrics, but with the benefit of the best area metric.

Squash-pow2 turns out to be the worst technique in terms of accuracy loss in all
the considered cases. On the other side, it is the best option in terms of hardware
implementation metrics, power and delay and it has intermediate area usage.

Finally, Squash-exp is characterised by accuracy values similar to Squash-norm in
two cases Shallow MNIST and DeepCaps Fashion-MNIST, but significantly worse than
Squash-norm in the other two cases. In exchange for reduced accuracy performance with
respect to Squash-norm, Squash-exp has the benefit of intermediate power and critical
path delay metrics. As a major drawback, it is the worst technique in terms of area usage.

89

4 – Conclusions and future works

As regards the possible future works, three main innovative paths are outlined at
different stages of the design work.

In the description of the approximate softmax and squash architectures, the pipelining
optimisation method may be applied by adding pipeline stages on the critical path of
the designs, in order to explore a more aggressive clock period constraint and improve
the timing performance of the designs. Currently, the approximate softmax and squash
processing units have been evaluated for a cycle time equal to 10 ns, i.e. a clock frequency
equal to 100 MHz.

At the logic synthesis stage, the approximate softmax and squash designs may be
synthesised by using a commercial technology library. The reason behind the use of a
commercial technology library for the design synthesis is to obtain a gate-level netlist
consisting of standard-cells that correspond to a real technological process and can be
potentially fabricated. UMC 65 nm and TSMC 90 nm are two of the possible commercial
digital standard-cells libraries that can be exploited for the design synthesis in place of the
currently used academic library, i.e. the Nangate 45 nm Open Cell Library. Moreover, by
using different technology libraries the design synthesis can be experimented in multiple
technology nodes. Focusing on the synthesis process, the quality of the synthesis results
with respect to the hardware metrics area, power and delay may be improved by using
the compile_ultra command in the synthesiser Synopsys Design Compiler. As a matter
of fact, the currently used compile command does not perform many optimizations. The
synthesiser also includes the compile_ultra command which does many more optimizations
and will likely produce higher quality of synthesis results. The use of the compile_ultra
command may require a more robust design of the approximate softmax and squash
architectures since the beginning, by keeping in mind that multiple optimisation steps will
be executed by the synthesiser to generate the gate-level netlist for the design.

After the logic synthesis phase, a place and route software may be used to perform
the area, power and timing analysis of the designs similar to what was done by using
the synthesiser. During the place-and-route process, the standard-cells used in the post-
synthesis netlist will be placed in the cell area on the silicon die and the connections among
the cells will be performed using the available metal layers in the routing phase. The
post-place-and-route results will be more accurate than the preliminary post-synthesis
results and will allow a fairer comparison of the approximate softmax and squash designs
in terms of the three hardware metrics. In particular, the area metric may change due to
an optimisation in the cells positioning during the layout phase. Secondly, in the timing
analysis the interconnection delay will be considered in the data arrival time and slack
computation for timing violation check, due to the parasitic resistance and capacitance
values of each routed metal wire. Finally, the power analysis after the place and route
phase will take into account the parasitic capacitance of the interconnections to estimate
the dynamic power contribution.

In addition to the three possible paths described above, future works may include the
use of a different quantisation method for quantising both the CapsNet models and the
approximate softmax and squash functions data. Moreover, the designed approximate
softmax and squash architectures will have to implement in hardware the selected rounding
scheme. The motivation behind the use of a different quantisation method is to explore the

90

4 – Conclusions and future works

sensitivity of both CapsNet inference accuracy and hardware metrics of the approximate
softmax and squash designs to the quantisation scheme. Round-to-nearest half-up and
stochastic rounding are two possible rounding schemes that can be selected in place of the
currently used truncation method.

91

92

Appendix A

Critical path of Softmax and
Squash architectures

A.1 Softmax architectures

Figure A.1: Softmax-lnu datapath

93

A – Critical path of Softmax and Squash architectures

Figure A.2: Softmax-b2 datapath

94

A.1 – Softmax architectures

Figure A.3: Softmax-taylor datapath

95

A – Critical path of Softmax and Squash architectures

A.2 Squash architectures

Figure A.4: Squash-exp datapath

96

A.2 – Squash architectures

Figure A.5: Squash-pow2 datapath

97

A – Critical path of Softmax and Squash architectures

Figure A.6: Squash-norm datapath

98

Bibliography

[1] Maurizio Capra et al. “An Updated Survey of Efficient Hardware Architectures for
Accelerating Deep Convolutional Neural Networks”. In: Future Internet (2020).

[2] Maurizio Capra et al. “Hardware and Software Optimizations for Accelerating Deep
Neural Networks: Survey of Current Trends, Challenges, and the Road Ahead”. In:
IEEE Access 8 (2020), pp. 225134–225180.

[3] Vivienne Sze et al. “Efficient Processing of Deep Neural Networks: A Tutorial and
Survey”. In: Proceedings of the IEEE 105.12 (2017), pp. 2295–2329.

[4] Yann LeCun et al. “Gradient-Based Learning Applied to Document Recognition”.
In: Proceedings of the IEEE. 1998.

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Communications of the ACM. Vol. 60.
6. 2017, pp. 84–90.

[6] Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. “Dynamic Routing Between
Capsules”. In: 31st Conference on Neural Information Processing Systems. 2017.

[7] Alberto Marchisio et al. “Q-CapsNets: A Specialized Framework for Quantizing
Capsule Networks”. In: 2020 57th ACM/IEEE Design Automation Conference (DAC).
2020, pp. 1–6.

[8] Alberto Marchisio et al. “FasTrCaps: An Integrated Framework for Fast yet Accurate
Training of Capsule Networks”. In: 2020 International Joint Conference on Neural
Networks (IJCNN). 2020, pp. 1–8.

[9] Jathushan Rajasegaran et al. “DeepCaps: Going Deeper With Capsule Networks”. In:
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2019, pp. 10717–10725.

[10] Vinay K. Chippa et al. “Analysis and characterization of inherent application resilience
for approximate computing”. In: 2013 50th ACM/EDAC/IEEE Design Automation
Conference (DAC). 2013, pp. 1–9.

[11] Xue Geng et al. “Hardware-aware Softmax Approximation for Deep Neural Networks”.
In: 2018 Asian Conference on Computer Vision (ACCV). 2018, pp. 107–122.

[12] Yue Gao, Weiqiang Liu, and Fabrizio Lombardi. “Design and Implementation of an
Approximate Softmax Layer for Deep Neural Networks”. In: 2020 IEEE International
Symposium on Circuits and Systems (ISCAS). 2020, pp. 1–5.

99

BIBLIOGRAPHY

[13] Meiqi Wang et al. “A High-Speed and Low-Complexity Architecture for Softmax
Function in Deep Learning”. In: 2018 IEEE Asia Pacific Conference on Circuits and
Systems (APCCAS). 2018, pp. 223–226.

[14] M. Emre Celebi, Fatih Celiker, and Hassan A. Kingravi. “On Euclidean norm
approximations”. In: Elsevier (2010).

[15] Frank Rhodes. “On the metrics of Chaudhuri, Murthy and Chaudhuri”. In: Elsevier
(1994).

[16] François Chollet. Deep Learning with Python. Manning, 2018.
[17] Andreas C. Müller and Sarah Guido. Introduction to Machine Learning with Python.

O’Reilly, 2017.
[18] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
[19] AI Index Steering Committee. The AI Index 2019 Annual Report. Human-Centered

AI Institute, 2019.
[20] Janardan Misra and Indranil Saha. “Artificial neural networks in hardware: A survey

of two decades of progress”. In: Elsevier (2010).
[21] Alexander Amini. Introduction to Deep Learning. Lecture 6.S191. MIT, 2020.
[22] Alexander Amini. Deep Computer Vision. Lecture 6.S191. MIT, 2020.
[23] Srihari Sargur. Convolutional Networks: Overview. Lecture CSE676. University at

Buffalo, 2020.
[24] Sargur Srihari. Capsule Networks. Lecture CSE676. University at Buffalo, 2020.
[25] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
[26] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep Learning”. In: Nature.

Vol. 521. 2015, pp. 436–444.
[27] P. Murtagh and A. C. Tsoi. “Implementation issues of sigmoid function and its

derivative for VLSI digital neural networks”. In: IEE Proceedings. Vol. 139. 3. 1992.
[28] Ge Liangwei, Chen Song, and Yoshimura Takeshi. “High-speed, pipelined implemen-

tation of squashing functions in neural networks”. In: 9th International Conference
on Solid-State and Integrated-Circuit Technology. 2008, pp. 2204–2207.

[29] Vladimir Havel and Karel Vlcek. “Computation of a nonlinear squashing function in
digital neural networks”. In: 2008 11th IEEE Workshop on Design and Diagnostics
of Electronic Circuits and Systems. 2008, pp. 1–4.

[30] Alberto Marchisio, Muhammad A. Hanif, and Muhammad Shafique. “CapsAcc: An
Efficient Hardware Accelerator for CapsuleNets with Data Reuse”. In: 2019 Design,
Automation and Test in Europe Conference Exhibition (DATE). 2019, pp. 964–967.

[31] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. “Eyeriss: A Spatial Architecture for
Energy-Efficient Dataflow for Convolutional Neural Networks”. In: 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA). 2016,
pp. 367–379.

100

BIBLIOGRAPHY

[32] Song Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Net-
work”. In: 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA). 2016, pp. 243–254.

[33] Yu-Hsin Chen et al. “Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural
Networks on Mobile Devices”. In: IEEE Journal on Emerging and Selected Topics in
Circuits and Systems 9.2 (2019), pp. 292–308.

[34] Geoffrey E. Hinton, Alex Krizhevsky, and Sida D. Wang. “Transforming auto-
encoders”. In: International Conference on Artificial Neural Networks. 2011, pp. 44–
51.

[35] Geoffrey Hinton, Sara Sabour, and Nicholas Frosst. “Matrix Capsules with EM
Routing”. In: ICLR. 2018.

[36] Bo Yuan. “Efficient hardware architecture of softmax layer in deep neural network”.
In: 2016 29th IEEE International System-on-Chip Conference (SOCC). 2016, pp. 323–
326.

[37] Qiwei Sun et al. “A High Speed SoftMax VLSI Architecture Based on Basic-Split”.
In: 2018 14th IEEE International Conference on Solid-State and Integrated Circuit
Technology (ICSICT). 2018, pp. 1–3.

[38] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”. In: Journal of Machine Learning Research. 2014.

[39] Edgar Xi, Selina Bing, and Yang Jin. Capsule Network Performance on Complex
Data. 2017. arXiv: 1712.03480 [stat.ML].

[40] Eric Matthes. Python Crash Course. No Starch Press, 2016.
[41] Mark Lutz. Learning Python. O’Reilly, 2009.
[42] John N. Mitchell. “Computer Multiplication and Division Using Binary Logarithms”.

In: IRE Transactions on electronic computers. 1962.
[43] Jie Han and Michael Orshansky. “Approximate computing: An emerging paradigm

for energy-efficient design”. In: 2013 18th IEEE European Test Symposium (ETS).
2013, pp. 1–6.

[44] Jinghang Liang, Jie Han, and Fabrizio Lombardi. “New Metrics for the Reliability of
Approximate and Probabilistic Adders”. In: IEEE Transactions on Computers 62.9
(2013), pp. 1760–1771.

[45] Vinay K. Chippa et al. “Scalable effort hardware design: Exploiting algorithmic
resilience for energy efficiency”. In: Design Automation Conference. 2010, pp. 555–
560.

[46] Yi Wu et al. “An Efficient Method for Calculating the Error Statistics of Block-Based
Approximate Adders”. In: IEEE Transactions on Computers 68.1 (2019), pp. 21–38.

[47] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv:
1512.03385 [cs.CV].

[48] Eli Stevens, Luca Antiga, and Thomas Viehmann. Deep Learning with PyTorch.
Manning, 2020.

101

http://arxiv.org/abs/1712.03480
http://arxiv.org/abs/1512.03385

BIBLIOGRAPHY

[49] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. 2015. arXiv: 1502.03167 [cs.LG].

[50] Alberto Marchisio et al. “NASCaps: A Framework for Neural Architecture Search to
Optimize the Accuracy and Hardware Efficiency of Convolutional Capsule Networks”.
In: 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD).
2020, pp. 1–9.

[51] H. Amin, K. M. Curtis, and B. R. Hayes-Gill. “Piecewise linear approximation applied
to nonlinear function of a neural network”. In: IEE Proceedings. Vol. 144. 6. 1997.

[52] Peter Nilsson et al. “Hardware implementation of the exponential function using
Taylor series”. In: 2014 NORCHIP. 2014, pp. 1–4.

[53] Qiang Xu, Todd Mytkowicz, and Nam Sung Kim. “Approximate Computing: A
Survey”. In: IEEE Design Test 33.1 (2016), pp. 8–22.

102

http://arxiv.org/abs/1502.03167

	Summary
	List of Figures
	Introduction and related work
	Introduction to Artificial Intelligence and Machine Learning
	Fundamentals of Artificial Neural Networks
	Training and Inference
	Training Issues

	Deep Learning and Deep Neural Networks
	DNN Layers
	Convolutional Neural Networks

	An Overview of Capsule Networks
	Dynamic Routing Algorithm
	Pros and Cons of Capsule Networks
	CapsNet model for the MNIST dataset
	DeepCaps: a Deep CapsNet model

	Approximate Computing Methodology in Deep Learning
	Approximate Computing for non linear functions in DNNs

	Softmax and Squash functions approximation
	An Overview of the proposed Softmax and Squash function approximations
	Software Implementation of approximate Softmax and Squash functions
	Software Simulation

	How Softmax or Squash approximations affect CapsNet model accuracy
	Q-CapsNets Framework for Inference
	Inference Accuracy Results

	Quantization of CapsNets models and approximate functions
	Q-CapsNets Quantization Algorithm
	Quantized Inference Accuracy Results

	Architecture design and implementation
	Design Flow of approximate Softmax and Squash processing units
	Approximate Softmax Architectures
	Softmax-lnu
	Softmax-b2
	Softmax-taylor

	Approximate Squash Architectures
	Squash-exp
	Squash-pow2
	Squash-norm

	RTL implementation and functional simulation
	VHDL models of approximate Softmax and Squash processing units
	Logic Simulation Workflow

	Logic Synthesis
	Description of Synthesis Reports
	Power consumption Experimental Analysis
	Post-synthesis netlist Validation

	Synthesis results
	Area usage
	Timing performance
	Power consumption

	Comparative Analysis of Softmax Approximations
	Comparison by Hardware metrics
	Comparison by CapsNet accuracy
	Exploration of cost-accuracy trade-offs

	Comparative Analysis of Squash Approximations
	Comparison by Hardware metrics
	Comparison by CapsNet accuracy
	Exploration of cost-accuracy trade-offs

	Conclusions and future works
	Critical path of Softmax and Squash architectures
	Softmax architectures
	Squash architectures

	Bibliography

