
POLITECNICO DI TORINO

Master’s Degree Course in Mechatronic Engineering

Master’s Degree Thesis

UWB Anchors Self-Localization
for Indoor Environments

Supervisors
Prof. Marcello Chiaberge
Dott. Ing. Giovanni Fantin

Candidate
Marco Ambrosio

July 2021



This work is subject to the Creative Commons Licence



Contents

List of Tables 5

List of Figures 6

1 Introduction 9

2 UWB for Localization 10
2.1 Historical overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Definition and Regulations . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 IR-UWB vs. OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Localization with UWB . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Extended Kalman Filter 19
3.1 Theoretical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 SLAM with EKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Robot model . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Measurement model . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Anchors’ positions initialization . . . . . . . . . . . . . . . . 28

3.3 Anchors’ self-localization algorithm . . . . . . . . . . . . . . . . . . 29

4 Experimental Work 31
4.1 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 TurtleBot 3 Burger . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 Decawave DWM1001-Dev modules . . . . . . . . . . . . . . 33
4.1.3 Leica Absolute Tracker AT403 . . . . . . . . . . . . . . . . . 35

4.2 Experimental tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.1 UWB ranging precision . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Four anchors layout . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.3 Five anchors layout . . . . . . . . . . . . . . . . . . . . . . . 44

5 Conclusions 49

3



References 50

A Experimental Data 52

4



List of Tables

3.1 General time update equations of the EKF . . . . . . . . . . . . . . 22
3.2 General measurement update equation of the EKF . . . . . . . . . 22
4.1 Technical specifications of TurtleBot 3 Burger . . . . . . . . . . . . 33
4.2 Technical specifications of DecaWave DWM1001-Dev modules . . . 34
4.3 Leica AT430 technical specifications . . . . . . . . . . . . . . . . . . 36
A.1 UWB ranges measured with and without prism reflector on the robot 52
A.2 UWB ranging error for three different positions of the tag. . . . . . 53
A.3 Four anchors layout. First test. Anchors positioning. . . . . . . . . 53
A.4 Four anchors layout. First test. Odometry. . . . . . . . . . . . . . . 53
A.5 Four anchors layout. Second test. Anchors positioning. . . . . . . . 54
A.6 Four anchors layout. Second test. Odometry. . . . . . . . . . . . . . 54
A.7 Five anchors layout. First test. Anchors positioning. . . . . . . . . 54
A.8 Five anchors layout. First test. Odometry. . . . . . . . . . . . . . . 54
A.9 Five anchors layout. Second test. Anchors positioning. . . . . . . . 55
A.10 Five anchors layout. Second test. Odometry. . . . . . . . . . . . . . 55

5



List of Figures

2.1 Marconi’s device for radio signals transmission. . . . . . . . . . . . 10
2.2 UWB spectral masks as defined in US FCC and ECC regulations.

Numerical data reported in [2] . . . . . . . . . . . . . . . . . . . . . 12
2.3 Illustration of single-and double-sided Two-Way Ranging (TWR)

methods (© 2018 IEEE) Source: [9] . . . . . . . . . . . . . . . . . . 15
2.4 Geometrical interpretation of trilateration, given three distances.

Source: [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Trilateration using TDoA measurements. The position is at the in-

tersection of the hyperbolae. Source: [1] . . . . . . . . . . . . . . . 18
2.6 Positioning based on AoA measurements. Source: [2] . . . . . . . . 18
3.1 Representation of the update part of the map upon robot motion.

The bar on the left represents the mean x̄, while the square represent
the covariance matrix P. The grey part is the only part of the map
updated: the robot’s state mean R̄, its covariance PRR (in dark
grey) and the cross covariances with the landmarks PRM and PMR
(in light grey). The rest of the map is time-invariant and is not
updated upon robot motion. Source: [11] . . . . . . . . . . . . . . . 24

3.2 Left: On each measurement, the whole map is updated because the
Kalman gain K affects the full state. Right: However, the computa-
tion of the innovation involves only the highlighted parts of the map.
The involved terms are the robot state R̄ and the oserved landmark
state Li with their covariance, PRR and PLiLi (dark grey), and their
cross-variances PRR and PRLi (light grey). Source: [11] . . . . . . . 25

3.3 Model of a differential drive robot. . . . . . . . . . . . . . . . . . . 25
3.4 Representation of the different methods of integration. From the

left: Euler, Runge-Kutta, exact. The Euler method approximates
the arc of circumference with a straight line in the starting direc-
tion. Runge-Kutta also uses a straight line, but the direction is
better approximated. As one may notice, the Runge-Kutta method
provides a good approximation of the final point. . . . . . . . . . . 27

3.5 Representation of anchor’s position initialization algorithm . . . . . 29
3.6 Working scheme of the algorithm . . . . . . . . . . . . . . . . . . . 30

6



4.1 TurtleBot 3 Burger dimensional drawing. Source: [13] . . . . . . . . 32
4.2 TurtleBot configuration used for all the experimental measures . . . 32
4.3 (a) Decawave DWM1001-Dev board. External packaging on the left,

electronic board on the right (b) DWM1001-Dev board with on-
board components description . . . . . . . . . . . . . . . . . . . . . 34

4.4 Leica AT430 mounted on a tripod with remote control unit . . . . . 35
4.5 (a) 0.5” prism used for surveying anchors’ positions. (b) Omni-

directional prism used for robot tracking. . . . . . . . . . . . . . . . 36
4.6 UWB ranges distribution with and without prism near the tag. . . . 38
4.7 UWB ranging measurements to five anchors. Three different tag’s

positions are reported. . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.8 Experimental setup with four anchors . . . . . . . . . . . . . . . . . 39
4.9 Four anchors layout, first test. Left: Estimated anchors’ positions

and robots’ trajectory. Right: Estimated anchors’ coordinates over
time. Red line represents the reference value. . . . . . . . . . . . . . 41

4.10 Four anchors layout. First test. Anchors’ positioning error. . . . . . 41
4.11 Four anchors layout, first test. Odometry. Top: x and y coordinates

of the robot. Bottom: On the left absolute error vs. time, on the
right the PDF of the error after the first 150 seconds. . . . . . . . . 42

4.12 Four anchors layout, second test. Left: Estimated anchors’ positions
and robots’ trajectory. Right: Estimated anchors’ coordinates over
time. Red line represents the reference value. . . . . . . . . . . . . . 43

4.13 Four anchors layout. Second test. Anchors’ positioning error. . . . . 43
4.14 Four anchors layout, second test. Odometry. Top: x and y coordi-

nates of the robot. Bottom: On the left absolute error vs. time, on
the right the PDF of the error after the first 150 seconds. . . . . . . 44

4.15 Five anchors layout, first test. Left: Estimated anchors’ positions
and robots’ trajectory. Right: Estimated anchors’ coordinates over
time. Red line represents the reference value. . . . . . . . . . . . . . 45

4.16 Five anchors layout. First test. Anchors’ positioning error. . . . . . 45
4.17 Five anchors layout. First test. Odometry. Top: x and y coordinates

of the robot. Bottom: On the left absolute error vs. time, on the
right the PDF of the error after the first 150 seconds. . . . . . . . . 46

4.18 Five anchors layout, second test. Left: Estimated anchors’ positions
and robots’ trajectory. Right: Estimated anchors’ coordinates over
time. Red line represents the reference value. . . . . . . . . . . . . . 47

4.19 Five anchors layout. Second test. Anchors’ positioning error. . . . . 47
4.20 Five anchors test. Second test. Odometry. Top: x and y coordinates

of the robot. Bottom: On the left absolute error vs. time, on the
right the PDF of the error after the first 150 seconds. . . . . . . . . 48

7



Abstract

Ultra-WideBand (UWB) is a well-known technology in the field of position local-
ization since positioning with an error lower than 10 cm can usually be achieved.
UWB is considered a valuable technology for service robotics since it allows the
precise tracking of moving objects, e.g. UGVs and UAVs, in GPS denied zones and
indoor environments. However, the setup for a UWB localization system is time-
consuming and inefficient as each anchor’s position must be accurately measured to
obtain good performance from the system. This process may be tricky or impossible
in harsh environments. Also, it is prone to artificial errors that may compromise
the performance of the whole system. In this work, an algorithm for the self-
localization of UWB anchors is proposed wherein the positions of the anchors are
estimated by freely moving a ground vehicle (GV) equipped with a UWB tag. The
proposed method is inspired by a Simultaneous Localization and Mapping (SLAM)
technique used by the robotics community. An Extended Kalman Filter (EKF)
estimates the anchors’ position and improves the GV’s odometry. Experimental
tests demonstrate that anchors’ positions are estimated with an error smaller than
20 cm, also in the presence of noisy distance measurements. Furthermore, EKF
hugely improves GV’s odometry since the error in the position does not increase
with time, allowing precise and reliable localization of the tag.
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Chapter 1

Introduction

UWB is a growing technology in the field of position localization. Indeed, it allows
the localization of UWB tags with a relatively low expense and a high precision in
harsh environments, also where GPS is not available.

The general setup for a UWB localization system is composed of four or more
antennas placed in known positions, called anchors, and one or more moving tags
which position must be identified. Surveying the position of each anchor is usually
done by hand and requires additional equipment, such as laser distance meters. In
addition to being a time-consuming and inefficient process, it is also impossible to
be performed in places that are dangerous or can not be reached by humans.

This thesis faces the problem of anchors’ positioning with the aim of finding a
fast and reliable method to assign them coordinates and to set up a localization
system. A method inspired by SLAM robotics community is proposed, in which a
tag is placed on a moving robot and it is used to estimate the position of the fixed
anchors. An EKF is used to estimate the positions of the anchors, the pose of the
robot and their uncertainty. The proposed algorithm is implemented in ROS1 and
tested in different situations in order to evaluate its performance.

In Chapter 2 an overview of UWB technology can be found. A brief history of
the technology is provided alongside with a description of the current regulations.
Also, details on its use for localization are provided.

In Chapter 3 an introduction to the EKF is provided. Moreover, its use for solv-
ing SLAM problems is analyzed. Finally, the algorithm for anchors’ self-localization
is proposed and described.

In Chapter 4 the experimental tests conducted for validating the algorithm are
described. Instrumentation used during the tests is described. Obtained results are
presented and critically analyzed.

9



Chapter 2

UWB for Localization

2.1 Historical overview
Despite what may be thought, UWB for radio communication is a relatively old
technology. The first radio communication in history, realized by Guglielmo Mar-
coni in the late XIX century, exploited the electromagnetic waves produced by a
spark gap. Since it is very limited in time, this kind of event creates a wave spread
over the frequency spectrum; thus, it can be categorized as UWB.

Figure 2.1: Marconi’s device for radio signals transmission.

In the following decades, Marconi improved his radio devices, and they become
to be quite common. However, the extensive use of these devices arouses the first
problems. Spark gap transmitters were very energy-consuming. Moreover, the
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UWB for Localization

radio spectrum was largely occupied by spark gap transmissions. Without means
of synchronization, two transmitters could not be used in the same geographical
area without significant interference.

The development of vacuum tubes and transistors technologies quickly improved,
making the continuous wave (CW) radio transmission more convenient. As a result,
the spark gap transmitter was abandoned, and UWB technology was not of interest
until the late ‘60s.

Between 1969 and 1984, H. F. Harmuth published papers and books exposing
the basic theory behind UWB receivers and transmitters.

Almost in the same period, from 1972 to 1987, Ross and Robbins patented a
series of devices capable of exploiting UWB, not only for communications but also
for radar and sensing applications.

In 1989, this technology was referred to as “ultra wide-band” by the U.S. De-
partment of Defense for the first time.

In 1994, the first low power application was developed by T. E. McEwan, who
built the “Micropower Impulse Radar”. A simple 9V battery operated this.

In parallel to the technical development, there was a rush for regulation and
standardization of the technology. The first approvals for commercial use came in
2002 by the Federal Communication Commission (FCC). They approved the use
of UWB signals in the spectrum between 3.1 and 10.6 GHz, with a power spectral
density lower than -41.3 dBm/MHz.

In 2006, a commission from IEEE produced a regulation and a standard for
UWB communication. They could not define the “de facto” standard for UWB
physical layer since two major groups were opposed (UWB Forum proposes the
direct-sequence UWB while WiMedia Alliance proposes MC-UWB). Nonetheless,
the effort produced the following document, still used nowadays: “IEEE 802.15.4a
UWB – Low-Rate Wireless Personal Area Networks (WPANs), Standard ECMA-
368 High Rate Ultra Wideband PHY and MAC Standard, Standard ECMA-369
MAC-PHY Interface for ECMA-368, Standard ISO/IEC 26907:2007, Standard
ISO/IEC 26908:2007”. [1]

In 2019 Apple announced the first consumer electronic products embedding
UWB technology.

2.2 Definition and Regulations
As defined in the IEEE 802.15.4a mentioned above, a UWB signal is either a signal
with simultaneous bandwidth B greater or equal to 500 MHz or a signal with
fractional (relative) bandwidth Br larger than 20

B > 500 MHz, or Br = 2 (fu − fl)
fu + fl

> 20% (2.1)
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where fu and fl are the upper and lower frequency at which the signal has a
power spectral density 10 dB lower than its maximum.

Regulations for using UWB devices have been released in different countries and
regulate several aspects, such as applications, maximum emissions level, allocated
frequency ranges, and techniques to mitigate interferences.

As mentioned above, the U.S. FCC was the first authority worldwide that re-
leased regulations for UWB in February 2002. The allocated frequency range for
indoor application is between 3.1 and 10.6 GHz, with emission levels shown in
Figure 2.2.

Europe regulations came later, only in March 2006, and it allocates two different
frequency range for indoor applications: 4.2-4.8 and 6-8.5 GHz. Also, in this case,
emission levels are fixed and are shown in Figure 2.2.

Figure 2.2: UWB spectral masks as defined in US FCC and ECC regulations.
Numerical data reported in [2]

.

Other countries like Japan and China released rules regarding the use of UWB
with two frequency ranges, similar to what happens in Europe.

In any case, for all the countries, the allowed transmitted power for UWB is
minimal. For example, the FCC mask can be taken that allows a power spectral
density of -41.3 dB/MHz for the whole mask, resulting in total transmitted power
of 0.56 mW. The European regulations are even more strict in these terms. So it is
clear that UWB applications can be considered only for short-range applications.
[2]
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2.3 Advantages
UWB technology offers a series of advantages that offers many possibilities for
various applications. The large spectrum that can be used offers excellent flexibility
in system design, allowing to adapt the system to specific needs. In fact, a variety
of parameters can be changed to adapt data rate, range, power, and quality of
service.

UWB is capable of high data rate transmission (> 1Gbps) over short ranges
(less than 1 m). Nevertheless, a data rate can be traded-off for an increase in
transmission distance. In the same way, data rate and range can be tuned to have
a good compromise with power consumption.

Another advantage of UWB is the fine temporal resolution that allows robustness
against multipath propagation and an excellent feature for ranging applications.

Since UWB signals span a vast frequency range, they show relatively low ma-
terial penetration losses, allowing better linking a more comprehensive selection
of situations. Moreover, multipath propagation can be distinguished and resolved
since also minimal differences in time can be identified.

The other significant implication of good time resolution is the capability for
ranging applications. Due to the extreme shot duration of pulses, ranging precision
under 10 cm can be easily achieved. Moreover, IR-UWB technology requires small-
sized and economical hardware, allowing its use in a wide variety of applications.

Finally, UWB is valuable for its small power usage and robustness to eavesdrop-
ping since UWB signals look like noise. [3]

2.4 IR-UWB vs. OFDM
The UWB spectrum mask can be exploited with two principal techniques. One
is with very short pulses in the time domain, of the duration of hundreds of pi-
coseconds to some nanoseconds. The pulse is radiated directly from the antenna,
and a carrier is not required. This method is known as impulse radio (IR). The
second method requires dividing the allocated bandwidth into multiple broadband
channels, each one transmitted through a sub-carrier frequency. Each signal is
modulated simultaneously to be orthogonal one to the other. In such a way, guard
bands between channels are not required because the orthogonality avoids the cross-
talk, and the bandwidth can be fully exploited. This second method is known as
OFDM transmission. [4]

One significant advantage of the OFDM is that orthogonality between sub-
carriers avoids cross-talk; thus, large guard bands can be avoided. This results
in high spectral efficiency and optimal exploitation of the mask. Moreover, if some
interferences occur, not all data may be lost because only some frequencies could
be affected. On the contrary, if some interferences occur with IR, the whole pulse
is disrupted.
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OFDM could also be affected by the Doppler shift since a very accurate frequency
synchronization is required between transmitter and receiver.

FFT and IFFT algorithms should be implemented on the receiver and the trans-
mitter to achieve orthogonality in OFDM, requiring an additional energy cost. This
also increases the complexity of the hardware and its cost. [2]

On the other side, IR technology offers good efficiency with simple architectures
and analog components. The bandwidth is not exploited with the maximum ef-
ficiency, but it may be increased employing pulse shaping circuits. Moreover, it
should be considered that the transmitted power allowed for UWB communication
is really low, below 0.5 mW. Thus a low-power transmitter can be compatible with
the expected applications of UWB. [5]

To summarize, IR-UWB advantages are simple architecture and pulses generated
by simple analog components. A disadvantage is the limited bandwidth efficiency.
On the other end, OFDM offers excellent bandwidth exploitation but with complex
hardware and high power consumption.

2.5 Localization with UWB
Precise localization in indoor environments is quite a mandatory requirement for
mobile robots. UWB, with its time resolution below the nanosecond, is capable of
reaching ranging precisions up to 10 cm, allowing an accurate localization. [2], [6]–
[8] Different techniques can be used to estimate the distance of two UWB antennas
and, consequently, a mobile unit’s position. Some of the most relevant are reported
below.

Received Signal Strength (RSS) is one basic approach for range estimation.
As one may imagine, a signal becomes weaker and weaker, going further from the
signal’s origin. This phenomenon can be exploited to have a rough estimate of
the distance between a transmitter and a receiver, knowing the emitted power.
Although it is straightforward to implement, this method suffers from poor accu-
racy, especially in indoor environments, where free space propagation can not be
assumed. [1], [2], [7] One method to avoid such problems is to create a map of the
environment, called fingerprint. Then the mobile object’s position is retrieved by
matching the RSS of several antennas to the previously constructed map. However,
it is to highlight that this method is highly time-consuming and must be repeated
in every new configuration of the localization system. [2]

Time of Arrival (TOA) is one of the most used techniques for UWB ranging
applications. [8] A signal’s arrival time is measured at the receiver. Then, the
Time of Flight (TOF) can be computed since the received message contains the
starting time. This method requires almost perfect clock synchronization between
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the sender and the receiver: even a microsecond misalignment can cause an error
up to 300 m.

TOF measurement protocols have been introduced to avoid the problem of clock
synchronization, such as Single-Sided Two Way Ranging (SS-TWR) or Double-
Sided TWR (DS-TWR). In these protocols, only time measurement taken on the
same device is compared, avoiding the necessity of clock synchronization. For the
SS-TWR, the TOF is computed as:

Ttof = 1
2 (troundA

− treplyB
) (2.2)

where troundA
= τARx − τAT x is the actual round-trip time of a signal measured

at Device A and treplyB
= τBT x− τBRx is the actual reply time of a signal measured

at Device B. In the DS-TWR, the same measurements are performed on both
sides, requiring a further reply message from the device which started the TWR.
Two round-trip durations and two reply times are registered, and the TOF can be
computed as:

Ttof = 1
4 [(troundA

− treplyB
) + (troundB

− treplyA
)] (2.3)

Figure 2.3: Illustration of single-and double-sided Two-Way Ranging (TWR) meth-
ods (© 2018 IEEE) Source: [9]

Even if the clock synchronization error is avoided, TWR is prone to errors such
as Propagation-Time Delay, Transmission-Time Delay, Receiving-Time Delay, and
Preamble Accumulation-Time Delay, which are all analyzed in deep in [9].
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A widely used algorithm to retrieve a position given some distances to known
points is trilateration. Ranges to at least three fixed anchors are required to
uniquely determine the position of a mobile unit in 2D space. Also, the position of
the fixed anchors must be known with precision to obtain good results. [1], [2] In
Figure 2.4, it is represented a geometrical interpretation of trilateration. Ideally, it
consists of finding the intersection of three circles. Actually, due to errors in dis-
tance measurements, the applied algorithms search for a point with the minimum
error with respect to all the available ranges. [7]

Figure 2.4: Geometrical interpretation of trilateration, given three distances.
Source: [2]

Time Difference of Arrival (TDoA) is a variation of ToA that can be used
to find the position of a transmitter when the synchronization between the mobile
unit and the anchors can not be guaranteed. In this case, ranges are not directly
measured, but the ToA of an emitted pulse is measured at different receivers, which
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position is known. [1], [2], [7] We have that

ti = τi + tM

= di

c
+ tM

=

√︂
(xi − x)2 + (yi − y)2

c
+ tM (2.4)

where ti is the TOA at anchor i, tM is the transmission time, andτi is the TOF
of the signal.

Now, considering a second anchor, the transmission time of the signal can be
excluded from the equation by taking the difference:

ti − tj = τi + tM − (τj + tM)
= τi − τj

=

√︂
(xi − x)2 + (yi − y)2 −

√︂
(xj − x)2 + (yj − y)2

c
(2.5)

By introducing a third equation, using the TOA at a third anchor, the transmit-
ter’s position can be identified by making the intersection of the two hyperbolae.

ti − tk =

√︂
(xi − x)2 + (yi − y)2 −

√︂
(xk − x)2 + (yk − y)2

c
(2.6)

The intersection can give one or two solutions; thus, a fourth equation is usually
required to avoid ambiguities. Notice that the equation involving tj − tk can not
be used because it is linear dependent on the others.

Angle of Arrival (AoA) is a localization method that does not require distance
measurements but only the angle of arrival of a signal. Usually, this kind of measure
is more difficult to obtain and requires more complex hardware, such as an antenna
array. The advantage of this method is that only two measurements are required to
identify a position in a 2D configuration. In Figure 6, a geometrical representation
of this method is provided. [1], [2],
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Figure 2.5: Trilateration using TDoA measurements. The position is at the inter-
section of the hyperbolae. Source: [1]

Figure 2.6: Positioning based on AoA measurements. Source: [2]
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Chapter 3

Extended Kalman Filter

The Kalman Filter is one of the most well-known and often-used mathematical
tools for stochastic estimation from noisy sensor measurements. The Kalman filter
is essentially a set of mathematical equations that implement a predictor-corrector
type estimator optimal in the sense that it minimizes the estimated error covariance
when some presumed conditions are met. It is designed to manage discrete-time
controlled processes that are governed by linear stochastic difference equations.

As one may imagine, most real-world phenomena are described by non-linear
equations that the original Kalman filter can not manage. In order to adapt this
mathematical tool to all these cases, linearization about the current mean and
covariance can be performed. This kind of filter is referred to as Extended Kalman
Filter (EKF).

3.1 Theoretical Overview

The KF addresses the general problem of trying to estimate the state x ∈ Rn of
a discrete-time controlled process that is governed by linear stochastic difference
equations.

The KF consists basically of two operations performed in sequence: the time
update step, in which the next state is predicted, and the measurement update
step, where the predicted state is corrected based on some measurements.[10]

The general idea of KF can also be applied to problems governed by non-linear
equations applying some modifications to the filter equations. The resulting filter
is called EKF.

Let us assume that the process of interest is described by the state x ∈ Rn, and
that it is governed by the non-linear stochastic difference equation

xk = f (xk−1, uk, wk−1) , (3.1)
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with a measurement z ∈ Rm that is

zk = h (xk, vk) , (3.2)

where the random variables wk and vk represent respectively the process and
measurement noise.

The process and measurement noises are assumed to be independent of each
other, white, and with normal probability distribution.

p (w) ∼ N (0, Q) (3.3)
p (v) ∼ N (0, R) (3.4)

Q and R represent the process noise covariance matrix and the measurement
noise covariance matrix. The non-linear function f relates the state at the previous
time step k − 1 to the state at the current time step k. The function includes
as parameters any driving function uk and the zero-mean process noise wk. The
non-linear function h relates the current state xk to the measurement zk. Because
one does not know individual values of noise wk and vk at each time step, the state
and measurement vectors are approximated without them

˜︁xk = f (x̂k−1, uk, 0) (3.5)˜︁zk = h (˜︁xk, 0) (3.6)

where ˜︁xk is an a posteriori estimate of the state from a previous time step.
The actual state and measurement vector can now be approximated using the

following linearized equations:

xk ≈ ˜︁xk + G (xk−1 − x̂k−1) + Wwk−1 (3.7)
zk ≈ ˜︁zk + H (xk − ˜︁xk) + Vvk (3.8)

Where

• xk and zk are the actual state and measurement vectors,

• ˜︁xkand˜︁zk are the approximate state and measurement vectors from the equa-
tions above,

• x̂k is the a posteriori estimate of the state at time k

• G is the Jacobian matrix of f with respect to the state vector x

Gi,j = ∂fi (x̂k−1, uk, 0)
∂xj

(3.9)

• W is the Jacobian matrix of f with respect to the input noise w

Wi,j = ∂fi (x̂k−1, uk, 0)
∂wj

(3.10)
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• H is the Jacobian matrix of h with respect to the state vector x

Hi,j = ∂hi (˜︁xk, 0)
∂xj

(3.11)

• V is the Jacobian matrix of h with respect to the measurement noise v

Vi,j = ∂hi (˜︁xk, 0)
∂vj

(3.12)

The equations of the EKF are reported in Tables 3.1 and 3.2. For demonstrations
on how they are obtained, further details can be found on [10].

3.2 SLAM with EKF
Simultaneous localization and mapping (SLAM) is the problem of concurrently
estimating in real-time the structure of the surrounding world (the map), perceived
by moving exteroceptive sensors, while simultaneously localizing the agent in it.
While it may seem like a chicken-and-egg problem, several solutions have been
found, at least in an approximated and probabilistic way. Indeed, EKF is one of
the possible approaches that can be used to estimate the map and its uncertainty.
[11], [12]

SLAM always involves a moving agent capable of taking measurements of the
surrounding environment with exteroceptive sensors (for example, distance mea-
surements to the UWB anchors). Optionally, the moving agent may be equipped
with proprioceptive sensors that provide information on its own movement (e.g.,
wheel encoders, accelerometers, gyroscopes).

A SLAM algorithm’s operations are essentially three: moving in the environ-
ment, discovering new landmarks, and observing known landmarks.

While the robot moves, its uncertainty in localization increases due to noise
and errors. The mathematical model needed to describe the phenomenon is called
the motion model. The robot, moving around, can measure both a known or an
unknown landmark. The direct observation model is applied in the first case, and
the overall uncertainty will be reduced. Otherwise, a new landmark will be added
to the map with its initial uncertainty through the inverse observation model if it
has not been observed before. [12]

The map is represented through the state vector x of the problem, and it is
composed of the robot’s states and the position of the landmarks.

x =
⎡⎣R
M

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
R
L1
...
L\

⎤⎥⎥⎥⎥⎥⎥⎦ (3.19)
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Time Update

1) Project the state ahead in time

x̄k = f (x̂k−1, uk, 0) (3.13)

2) Project the error covariance ahead in time

P̄k = GkPk−1GT
k + WkQk−1WT

k (3.14)

Table 3.1: General time update equations of the EKF

Measurement Update

1) Compute Kalman Gain

Zk = HkP̄kHT
k + VkRkVT

k (3.15)
Kk = P̄kHT

k Z−1
k (3.16)

2) Update estimate with measurement zk

x̂k = x̄k+ K (zk − h (x̄k,0)) (3.17)

3) Update the error covariance

Pk = (I−KkHk) P̄k (3.18)

Table 3.2: General measurement update equation of the EKF

In the EKF, the map is represented by a Gaussian variable through the state
vector’s mean and the covariance matrix, identified respectively as x̄ and P.

x̄ =
⎡⎣ R̄
M̄

⎤⎦ , P =
⎡⎣PRR PRM

PMR PMM

⎤⎦ (3.20)

The initial state vector is composed only of the robot’s state since any landmark
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is unknown from the start. Moreover, the initial position of the robot is known
with absolutely no uncertainty owing to the fact that it is considered the origin of
the map. Therefore,

x̄0 =

⎡⎢⎢⎣
x

y

θ

⎤⎥⎥⎦ , P0 =

⎡⎢⎢⎣
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎦ (3.21)

Robot Motion. When the robot performs a movement, the EKF is updated
following the time update equations reported in Table 3.1. In a regular EKF, the
whole state is updated every time, but in an EKF for SLAM, the only part of the
state that changes in time is the robot state R. Hence, the time update operation
can be split as follow:

R ← f (x, u, w)
M←M (3.22)

where f (x, u, w) is the motion model of the robot. A large part of the state is
time-invariant, so as a consequence also the Jacobian matrices G and W will be
sparse.

G =
⎡⎣ ∂f

∂R 0
0 I

⎤⎦ =
⎡⎣GR 0

0 I

⎤⎦ , W =
⎡⎣ ∂f

∂w

0

⎤⎦ =
⎡⎣WR

0

⎤⎦ (3.23)

To optimize the computational effort required to run the EKF, all trivial opera-
tions, such as multiplication by 1 or 0, are avoided. [11] The resulting time update
equations are reported below:

R̄ ← f
(︂
R̄, u,0

)︂
(3.24)

PRR ← GRPRRG⊤
R + WRQW⊤

R (3.25)
PRM ← GRPRM (3.26)
PMR ← P⊤

RM (3.27)

Landmark observation. Whenever measurements from sensors are available,
the measurement update step is performed as reported in Table 3.2. However,
some changes can be applied to reduce the computational complexity. In partic-
ular, the computation of the innovation Z is sparse because it only involves the
observed landmark and the robot state. The general observation function model is
represented as:

yi = hi

(︂
R̄,S,Lī

)︂
+ v (3.28)

where S is the sensor’s state and v is the measurement noise.
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Figure 3.1: Representation of the update part of the map upon robot motion. The
bar on the left represents the mean x̄, while the square represent the covariance
matrix P. The grey part is the only part of the map updated: the robot’s state
mean R̄, its covariance PRR (in dark grey) and the cross covariances with the
landmarks PRM and PMR (in light grey). The rest of the map is time-invariant
and is not updated upon robot motion. Source: [11]

Therefore, the Jacobian H is structured sparsely:

H =
[︂

∂hi

∂R 0 · · · 0 ∂hi

∂Li
· · · 0

]︂
=

[︂
HR 0 · · · 0 HLi · · · 0

]︂
(3.29)

The computation of the innovation (Equation (3.15)) thus can be reduced only
to the non-zero elements, resulting in a reduced number of operations. [11] The
updated set of equations for SLAM-EKF is the following

Z =
[︂
HR HLi

]︂ ⎡⎣PRR PRLi

PLiR PLiLi

⎤⎦ ⎡⎣H⊤
R

H⊤
Li

⎤⎦ + V (3.30)

K =
⎡⎣PRR PRLi

PMR PMLi

⎤⎦ ⎡⎣H⊤
R

H⊤
Li

⎤⎦ Z−1 (3.31)

x̄← x̄ + K (yi − hi) (3.32)
P← P−KZK⊤ (3.33)

3.2.1 Robot model
The robot model proposed in this section is based on a differential drive robot. It
has been chosen to represent the TurtleBot, presented in Section 4.1.1, which has
been used during experimental tests. The states that describe the robot’s pose in
2D space are its cartesian coordinates,x and y, and its rotation angle about vertical
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Figure 3.2: Left: On each measurement, the whole map is updated because the
Kalman gain K affects the full state. Right: However, the computation of the
innovation involves only the highlighted parts of the map. The involved terms are
the robot state R̄ and the oserved landmark state Li with their covariance, PRR
and PLiLi (dark grey), and their cross-variances PRR and PRLi (light grey). Source:
[11]

axis θ.

Rk =

⎡⎢⎢⎣
xk

yk

θk

⎤⎥⎥⎦ (3.34)

Figure 3.3: Model of a differential drive robot.

The robot motion is modeled as a unicycle with constant velocity inputs vk

and ωk during the sampling interval [tk, tk+1]. In this interval, the robot follows a
circular trajectory of radius vk

ωk
. A differential drive robot is equivalent to a unicycle

as long as the wheels speeds are converted to linear and angular displacements:

∆s = r (∆ΦR + ∆ΦL)
2 (3.35)

∆θ = r (∆ΦR + ∆ΦL)
d

(3.36)
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where r is the radius of the wheel and d is the wheelbase.
Given as known the previous state of the robot Rk and the velocities vk and ωk,

the next state Rk+1 can be computed by integration over the time interval [tk, tk+1].
Different techniques can be used for the discrete integration, considering that the
trade-off should be made between precision and computational complexity.

The first possibility is Euler integration. Using this method, the angle during
the sampling time is considered constant and equal to the angle at the previous
step θk.xk+1 and yk+1 are computed only in an approximate, while θk+1 is computed
in an exact way.

f (xk, uk,0) =

⎧⎪⎪⎨⎪⎪⎩
xk+1 = xk + vkTs cos θk

yk+1 = yk + vkTs sin θk

θk+1 = θk + ωkTs

(3.37)

where Ts = tk+1 − tk.
The second way of integrating is the Runge-Kutta method, which approximates

the angle between the initial and final point with its mean. Thus, the integration
is still not exact but more accurate, introducing just a small overhead in computa-
tional complexity.

f (xk, uk,0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xk+1 = xk + vkTs cos

(︂
θk + ωkTs

2

)︂
yk+1 = yk + vkTs sin

(︂
θk + ωkTs

2

)︂
θk+1 = θk + ωkTs

(3.38)

Finally, it is possible to integrate in an exact way the kinematic model of the
unicycle. Unfortunately, this leads to a set of equations that are not always defined,
in particular for ωk = 0, which requires some attention in a digital implementation.

f (xk, uk,0) =

⎧⎪⎪⎨⎪⎪⎩
xk+1 = xk + vk

ωk
(sin θk+1 − sin θk)

yk+1 = yk + vk

ωk
(cos θk+1 − cos θk)

θk+1 = θk + ωkTs

(3.39)

The most suitable choice to implement an EKF is the Runge-Kutta integration
because it is precise enough and does not suffer the presence of singularity points.
The model is reported in Equation (3.38).

Model Linearization. In order to implement the model in an EKF, it should
be linearized. The Jacobian matrices are computed according to Equations (3.9)
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Figure 3.4: Representation of the different methods of integration. From the left:
Euler, Runge-Kutta, exact. The Euler method approximates the arc of circumfer-
ence with a straight line in the starting direction. Runge-Kutta also uses a straight
line, but the direction is better approximated. As one may notice, the Runge-Kutta
method provides a good approximation of the final point.

and (3.10). Here are reported the Jacobians used for the EKF.

G =

⎡⎢⎢⎢⎣
∂xk+1

∂xk

∂xk+1
∂yk

∂xk+1
∂θk

∂yk+1
∂xk

∂yk+1
∂yk

∂yk+1
∂θk

∂θk+1
∂xk

∂θk+1
∂yk

∂θk+1
∂θk

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
1 0 −vkTs sin

(︂
θk + ωkTs

2

)︂
0 1 vkTs cos

(︂
θk + ωkTs

2

)︂
0 0 1

⎤⎥⎥⎥⎦ (3.40)

W =

⎡⎢⎢⎣
∂xk+1

∂vk

∂xk+1
∂ωk

∂yk+1
∂vk

∂yk+1
∂ωk

∂θk+1
∂vk

∂θk+1
∂ωk

⎤⎥⎥⎦

=

⎡⎢⎢⎢⎣
cos

(︂
θk + ωkTs

2

)︂
−1

2vkTs sin
(︂
θk + ωkTs

2

)︂
sin

(︂
θk + ωkTs

2

)︂
1
2vkTs cos

(︂
θk + ωkTs

2

)︂
0 1

⎤⎥⎥⎥⎦ Ts (3.41)

3.2.2 Measurement model

In the EKF implementation, two kinds of measures are used: distances from UWB
sensors and odometry from wheel encoders.
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UWB Sensors. The model used for UWB data is a simple distance model that
depends on the estimated robot’s pose R and the estimated anchor’s position Li.

h (R,Li) =
√︂

(xR − xLi
)2 + (yR − yLi

)2 + (zR − zLi
)2 (3.42)

Then, the Jacobian must be computed, according to Equation (3.11), in order to
include the measure in the EKF. Here is shown the derivation with respect to xR
and xLi

.

∂h (R,Li)
∂xR

= xLi
− xR√︂

(xR − xLi
)2 + (yR − yLi

)2 + (zR − zLi
)2

(3.43)

∂h (R,Li)
∂xLi

= xR − xLi√︂
(xR − xLi

)2 + (yR − yLi
)2 + (zR − zLi

)2
(3.44)

It may be noticed that the derivatives for the other coordinates are analogous to
the one shown in Equations (3.43) and (3.44). Therefore, the Jacobian matrix can
be written as follow

H =
[︂

xLi
−xR

∥h(R,Li)∥
yLi

−yR
∥h(R,Li)∥ 0 · · · 0 xR−xLi

∥h(R,Li)∥
yR−yLi

∥h(R,Li)∥ 0 · · · 0
]︂

(3.45)

Odometry. The odometry model is very straightforward because it provides an
observation of the robot’s pose directly. So, the observation function is

h (R) =

⎧⎪⎪⎨⎪⎪⎩
xR

yR

θR

(3.46)

Also the Jacobian matrix can be deduced without effort, and it is

H =

⎡⎢⎢⎣
1 0 0 0 0
0 1 0 0 · · · 0
0 0 1 0 0

⎤⎥⎥⎦ (3.47)

3.2.3 Anchors’ positions initialization
Since the EKF is based on the hypothesis of linearity about the current mean, a
reliable initial guess for anchors’ positions should be provided. In fact, breaking
the linearity hypothesis leads to a distortion of the ideal Gaussian distribution and
poor results from the filter. An algorithm relying on the robot’s odometry and
UWB distances has been employed to provide a good initial guess.
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For each anchor, a number of points N is collected while the robot is moving
freely inside the environment. For each point, the UWB distance and the odometry
reading are collected. Then, the following equation can be written:

pan = arg min
pan∈R2

N∑︂
k=0

wk (dk − ∥pan − ptag,k∥)2 (3.48)

where

• dk is the UWB range at time k,

• ptag,k is the position of the robot at time k,

• pan is the position of the anchor, which is the output of the minimization

• wk is a heuristic weight to take into account the growing inaccuracy of odom-
etry.

A general-purpose least-square solver is used to solve the equation.

Figure 3.5: Representation of anchor’s position initialization algorithm

It is to highlight that the path must be chosen carefully to avoid ambiguity
of reflection. In particular, straight lines should be avoided because admissible
solutions for the equation are two points symmetric with respect to the line.

3.3 Anchors’ self-localization algorithm
In this Section, it is provided a description of the algorithm proposed and tested in
this work. The overall structure of the filter is inspired by the works [6], [13].

The system’s input is composed of the velocity command provided to the robot,
the pose of the robot estimated by odometry, and the UWB distances between
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the robot’s tag and the fixed anchors. The output of the whole process is the 2D
position of all the UWB anchors and a corrected position estimate of the robot.
The z-coordinate of each anchor is provided as a parameter as it can be easily
measured while installing the anchors in place. Instead, the z-coordinate of the
robot is assumed to be 0 and constant since the surface of motion is assumed to be
flat.

Initially, the EKF only propagates the uncertainty of the robot’s pose. While,
after the initialization, it propagates the uncertainty both in the robot’s pose and
in anchors’ positions. Initialization of anchors’ positions is performed in parallel to
the EKF process. In fact, it runs for several seconds until a reliable first guess is
obtained and provided to the filter.

Figure 3.6: Working scheme of the algorithm
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Experimental Work

4.1 Instrumentation
In this Section, instrumentation used during the experimental tests is introduced.
They are briefly described, and details on technical specifications are provided.

4.1.1 TurtleBot 3 Burger
TurtleBot is a ROS standard platform robot. TurtleBot3 is a small, affordable,
programmable, ROS-based mobile robot for education, research, hobby, and prod-
uct prototyping. The goal of TurtleBot3 is to dramatically reduce the size of the
platform and lower the price without having to sacrifice its functionality and qual-
ity while at the same time offering expandability. Furthermore, the TurtleBot3 can
be customized in various ways depending on how one reconstructs the mechanical
parts and use optional components such as the computer and sensor.

The TurtleBot can run SLAM algorithms to build a map and drive around your
room. Also, it can be controlled remotely from a laptop, joypad, or Android-based
smartphone. [13]
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Figure 4.1: TurtleBot 3 Burger dimensional drawing. Source: [13]

Figure 4.2: TurtleBot configuration used for all the experimental measures
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Max Translational Velocity 0.22 m/s
Max Rotational Velocity 2.84 rad/s (162.72 deg/s)
Max Payload 15 kg
Size (LxWxH) 138 mm x 178 mm x 192 mm
Weight (Total) 1 kg
Expected Operating Time 2h 30m
SBC (Single Board
Computer)

Rasperry Pi 3 Model B

MCU 32-bit ARM Cortex®-M7 with
FPU (216 MHz, 462 DMIPS)

Actuator XL430-W250
IMU Gyroscope 3 Axis

Accelerometer 3 Axis
Magnetometer 3 Axis

Battery Lithium polymer 11.1V
1800mAh / 19.98Wh 5C

Table 4.1: Technical specifications of TurtleBot 3 Burger

4.1.2 Decawave DWM1001-Dev modules

Decawave DWM1001-Dev module is an evaluation board produced by Decawave
equipped out-of-the-box with firmware capable of providing localization features.

Modules incorporate a Decawave DW1000 UWB transceiver capable of send-
ing and receiving UWB signals. The board also includes a Nordic Semiconductor
NRF52832 IC. This provides a microcontroller for running the firmware that drives
the UWB transceiver and a module for Bluetooth connectivity. [14]

For the application presented here, a different firmware has been used. Firmware
is provided by Dynamic Distributed Decentralized Systems Group (D3S), a cross-
institutional research group based in Trento, Italy. The FW is based on Contiki-
OS, an open-source operating system that runs on constrained embedded systems
and provides standardized low-power wireless communication. In particular, the
application used is the multi-ranging one, which provides capabilities for multiple
tags and anchors ranging in a round-robin, also multiple times per second. [15]
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(a) (b)

Figure 4.3: (a) Decawave DWM1001-Dev board. External packaging on the left,
electronic board on the right (b) DWM1001-Dev board with on-board components
description

Size (LxWxH) 20 mm x 45 mm x 94 mm
Weight 58 g
Operating Band UWB Channel 5: 6.5 GHz
Data Rate 6.8 Mbps (IEEE 802.15.4-2011

UWB compliant)
Max Power Spectral Density -41.3 dBm/MHz
Antenna DecaWave DW1000 transceiver

IC
Firmware D3S Contiki Multi-Ranging [14]
Maximum Range up to 60 m in LOS
Ranging Technique SS-TWR or DS-TWR
Ranging Precision 10 cm (maximum)
Max Ranging Frequency 10 Hz (depend on the number of

anchors)
Connections - On board J-Link debugger

- Serial communication via SPI,
UART and BLE
- 26-pin Raspberry Pi
compatible header
- On board access to DWM1001
pins

Table 4.2: Technical specifications of DecaWave DWM1001-Dev modules
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4.1.3 Leica Absolute Tracker AT403

Leica Absolute Tracker AT403 is a portable laser tracker capable of continuous
measurements and reflector tracking features. It is used to obtain a precise and
reliable ground truth for anchors’ position and the robot’s trajectory. Measurements
are acquired and saved thanks to SpatialAnalyzer® software, which allows the fast
and easy generation of reports and ASCII files to be employed for data analysis.
Technical specifications of the laser tracker are reported in Table 4.3.

Figure 4.4: Leica AT430 mounted on a tripod with remote control unit
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(a) (b)

Figure 4.5: (a) 0.5” prism used for surveying anchors’ positions. (b) Omni-
directional prism used for robot tracking.

Size (LxWxH) 290 mm x 221 mm x 188 mm
Weight 7.3 kg
Measurement Angle Hor. ±360°, Vert ±145°
Accuracy ±15 µm + 6 µm/m
Laser Class 2
Laser Type 635 nm, < 1 mW
Operating Temperature -15°C to +45°C
Op. Relative Humidity < 95%

Table 4.3: Leica AT430 technical specifications
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4.2 Experimental tests
Several tests have been performed changing anchors placement and robot’s tra-
jectory to evaluate the performances of the proposed algorithm. In particular,
two different layouts are evaluated for anchors positioning: one with four anchors
placed in an even distribution at the vertices of a quadrilateral, the other with a
fifth anchor added approximately in the middle of the localization area.

Performances are evaluated on parameters such as error in anchors’ positioning,
error in odometry and time of convergence. Moreover, a brief analysis is conducted
on the UWB ranging precision and on the possible interferences with the reflecting
prism.

4.2.1 UWB ranging precision
A first analysis, to obtain a general idea of the precision of the system, is conducted
on the UWB ranging error. Also, it is investigated the influence of the reflecting
prism, used to measure positions with the laser tracker, near the UWB antenna.
Both measurements are performed by placing the robot in a static position, sur-
veying its exact position with the help of the absolute tracker, then registering
measurements for at least 30 seconds to have statistical relevance.

Firstly, UWB ranging accuracy has been investigated by acquiring UWB ranges
to five anchors in three different tag positions. The position of the tag is measured
each time using the laser tracker while the anchors’ positions remain fixed. Mea-
sured data are reported in Table A.2. As it may be observed, the error from the true
measure never overcome 23 cm, with a mean error of 13 cm, which is compatible
with the expected precision of the system. Furthermore, it can be noticed that the
error on the same UWB anchor is not constant but change with the distance. In
conclusion, the overall precision of the ranging method is acceptable for the purpose
of the work.

Secondly, it is investigated the influence of the prism near the UWB tag placed
on the robot. The robot is fixed in place, and the tag’s position is accurately
measured using the laser tracker. Anchors’ positions were already acquired when
placing the localization system. Then, two series of measurements are collected, one
with the prism in position and one without, each set containing about 150 range
measurements. Measurements are compared according to their mean and standard
deviation reported in Table A.1. Both means, with and without prism, are close
to each other. Also, the standard deviation is similar in the two cases meaning the
measures are distributed in the same way. Thus, it is evident that the prism does
not affect in a relevant manner the UWB ranging precision.
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Figure 4.6: UWB ranges distribution with and without prism near the tag.

Figure 4.7: UWB ranging measurements to five anchors. Three different tag’s
positions are reported.
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4.2.2 Four anchors layout
The first proposed layout for anchors positioning is one of the most widespread
configurations for UWB localization system. It consists of four anchors placed
at the edges of the room, as this number is the minimum requirement for a 3D
localization system.

Initially, each anchor is placed and its absolute position is measured accurately
using the laser tracker. Then, the height of each anchor is manually inserted in a
parameter file along with its short address. Finally, the robot is positioned and its
location is accurately marked on the ground to create a repeatable starting point.
Furthermore, the initial robot placement is used to create the RF transformation
in the measuring software to align all the measures to the robot’s RF.

Figure 4.8: Experimental setup with four anchors

First, a circular and regular path is performed by the robot, imposing a constant
linear and angular velocity. (see Figure 4.9a) The actual trajectory is measured once
a second through the laser tracker, which can follow the omni-directional prism
mounted on the TurtleBot. Some points are missing due to the shadowing of the
prism by the UWB sensor mounted on the robot. (see Figure 4.2)

As a second and more general test, the robot is conducted manually through
a dedicated ROS node. The produced trajectory is not regular and aims at re-
producing a random path, as shown in Figure 4.12a. However, some limits must
be imposed on the robot trajectory, such as a maximum speed, to allow the laser
tracker to follow the reflecting prism, and a simple dynamic, which does not imply
significant accelerations and decelerations.

Performances of the system are evaluated according to the following parameters:

• Absolute error in the estimated positions of the anchors, computed as the
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distance between the ground truth and the estimated position:

εabs =
√︂

(xGT − xEKF )2 + (yGT − yEKF )2 (4.1)

where xGT and yGT are the ground truth coordinates and xEKF and yEKF are
the estimated coordinates

• Pose estimation error: absolute error in time and PDF of the error after the
first 150 seconds. It is compared with the standard odometry of the TurtleBot.

• Time of convergence of the EKF. It is given as a time after which the output
of the filter can be considered qualitatively constant.

Results show that after a first transition period, during around 200 seconds, the
estimated coordinates of the anchors converge to a constant value. During the
initial phase, the filter is oscillating and the odometry provided by the EKF is not
reliable. When the filter converges to a constant value for the anchors’ position
also the odometry becomes reliable.

In both runs, the positions of the anchors are estimated with a precision of over
20 cm, except for “Anchor 1” in the second test, as it can be seen in Figures 4.10
and 4.13 and Tables A.3 and A.5. The mean time of convergence of the estima-
tion algorithm is about three minutes. The result is acceptable and within the
expectation, considering the mean ranging precision of UWB.

Furthermore, it can be noticed from Figures 4.11 and 4.14 that, after the first
transient period of the EKF, the odometry is substantially improved even if the
anchors’ positions are not exact. This result is highly relevant because it allows
the localization of a tag with a precision comparable or greater than the ranging
precision, even in the absence of a precise localization of the anchors.

Focusing on the test with the circular path, it can be noticed from Figure 4.11
that the error of the robot’s odometry clearly follows an increasing path, as ex-
pected. On the contrary, after an initial transient, the robot’s estimated pose error
tends to remain constant and below the former one. Despite the fact that some
spikes can be noticed, they are present at regular intervals and are due to the laser
tracker losing focus on the prism while it is shadowed. Plotting the PDF of the
error of both the pose estimates after 200 s from the start, it is evident that the
proposed algorithm has an improving effect.

Furthermore, the observed result is also more evident in the second test. In fact,
the robot’s odometry deteriorates faster in the presence of irregular moving paths.
Thus the improving effect is also more evident.
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(a) (b)

Figure 4.9: Four anchors layout, first test. Left: Estimated anchors’ positions
and robots’ trajectory. Right: Estimated anchors’ coordinates over time. Red line
represents the reference value.

Figure 4.10: Four anchors layout. First test. Anchors’ positioning error.
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Figure 4.11: Four anchors layout, first test. Odometry. Top: x and y coordinates
of the robot. Bottom: On the left absolute error vs. time, on the right the PDF of
the error after the first 150 seconds.
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(a) (b)

Figure 4.12: Four anchors layout, second test. Left: Estimated anchors’ positions
and robots’ trajectory. Right: Estimated anchors’ coordinates over time. Red line
represents the reference value.

Figure 4.13: Four anchors layout. Second test. Anchors’ positioning error.
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Figure 4.14: Four anchors layout, second test. Odometry. Top: x and y coordinates
of the robot. Bottom: On the left absolute error vs. time, on the right the PDF of
the error after the first 150 seconds.

4.2.3 Five anchors layout

A different anchors layout, with an additional anchor, is analyzed for two main rea-
sons. First, it is known from literature that increasing the number of anchors leads
to increased precision in localization. Second, the localization area is broader and
the distances are greater to try out the system’s reliability in different conditions.

The anchors are disposed at the edges of a rectangular room and the fifth anchor
is placed almost in the center of it. Also, the robot is placed and the setup process
is performed exactly as in Section 4.2.2.

First, a test is performed using a circular pattern to have a control reference
comparable with the previous test. (Figure 4.15a) From the obtained data (Fig-
ure 4.17), it can be observed that four anchors are placed with an error comparable
to the previous test. However, “Anchor 4” is localized with an error greater than
one meter. The error is caused by a poor initialization of the position of the anchor,
as it can be seen in Figure 4.15b. The path followed by the robot is probably too
confined and does not allow a reliable initialization of the landmark. Nevertheless,
the estimated pose of the robot, over a long period, is still more reliable than the
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robot’s odometry, even if the absolute error is greater than the one in the previous
tests.

(a) (b)

Figure 4.15: Five anchors layout, first test. Left: Estimated anchors’ positions
and robots’ trajectory. Right: Estimated anchors’ coordinates over time. Red line
represents the reference value.

Figure 4.16: Five anchors layout. First test. Anchors’ positioning error.
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Figure 4.17: Five anchors layout. First test. Odometry. Top: x and y coordinates
of the robot. Bottom: On the left absolute error vs. time, on the right the PDF of
the error after the first 150 seconds.

Finally, a more general test is conducted by freely moving the robot to cover
almost all the available space, as it is shown in Figure 4.18a. The estimated posi-
tion of the anchors is close to the actual position since the initialization. Also, in
Figure 4.19 it can be observer a small undershoot and then a stabilization around
a constant error. The final error is small for all the anchors, with the best anchor
within 5 cm of the ground truth and the worse within 25 cm. (see Table A.9) More-
over, the pose estimation is reliable since the initial phase thanks to the excellent
initialization of the EKF. As it can be seen in Figure 4.20, the TurtleBot’s odom-
etry after a couple of minutes becomes completely wrong and the improvement in
the pose estimation can be clearly seen in the PDF graph.
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(a) (b)

Figure 4.18: Five anchors layout, second test. Left: Estimated anchors’ positions
and robots’ trajectory. Right: Estimated anchors’ coordinates over time. Red line
represents the reference value.

Figure 4.19: Five anchors layout. Second test. Anchors’ positioning error.
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Figure 4.20: Five anchors test. Second test. Odometry. Top: x and y coordinates
of the robot. Bottom: On the left absolute error vs. time, on the right the PDF of
the error after the first 150 seconds.
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Chapter 5

Conclusions

The work presented in this thesis aims at finding an efficient and reliable way to
set up a UWB localization system. The proposed solution makes use of a wheeled
ground vehicle equipped with a UWB tag, which is capable of providing informa-
tion on its position through odometry and distances measurements to fixed UWB
anchors. These data are then fused together through an EKF which estimates the
positions of the fixed anchors and the pose of the robot.

The tests performed in indoor environments show promising results for the al-
gorithm. In all the proposed layouts the algorithm is able to estimate with high
precision the 2D positions of at least three anchors while the remaining, one or two,
are estimated with an increased but acceptable error. Moreover, a further result
is obtained which was not in the initial intent of the project. Indeed, the pose
estimation of the moving tag is strongly improved with respect to the odometry
provided by the rover itself. The combination of the two results can lead to inter-
esting considerations. In fact, the proposed algorithm not only provides a system
for a fast deployment of a localization system but also guarantees that the error in
the positioning of the tag is improved.

Some improvements can still be made to the algorithm, leaving space for future
works. For example, the extension of the method to a 3D environment could lead to
consistent use of the system in outdoor environments, where the terrain is often not
even and there are significant differences in height. Furthermore, for remote zones,
where human beings can not be present, a self-deploying localization system could
be developed using UGVs or UAVs, enabling localization almost in every place.
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Appendix A

Experimental Data

Prism No Prism
Ref Mean Std Dev Error Mean Std Dev Error
[m] [m] [cm] [cm] [m] [cm] [cm]

An. 1 2.100 2.355 28.7 +25.5 2.359 25.5 +25.9
An. 2 6.674 6.670 13.8 -0.40 6.667 13.3 -0.70
An. 3 6.095 6.400 14.1 +30.5 6.390 14.9 +21.4
An. 4 8.960 9.110 23.7 +15.0 9.062 19.1 +10.2
An. 5 8.238 8.454 16.7 +21.6 8.436 15.7 +20.4

Table A.1: UWB ranges measured with and without prism reflector on the robot
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Experimental Data

Ref UWB Range Error
[m] [m] [cm]

1

An. 1 8.900 8.960 +6.00
An. 2 8.800 8.911 +11.1
An. 3 9.620 9.783 +16.3
An. 4 7.664 7.753 +8.90
An. 5 2.111 2.341 +23.0

2

An. 1 13.149 13.366 +21.7
An. 2 4.252 4.444 +19.2
An. 3 11.948 12.105 +15.7
An. 4 6.176 6.230 +5.40
An. 5 3.980 4.126 +14.6

3

An. 1 5.248 5.408 +16.0
An. 2 12.281 12.285 +0.40
An. 3 5.294 5.513 +21.9
An. 4 12.160 12.280 +12.0
An. 5 4.605 4.682 +7.70

Table A.2: UWB ranging error for three different positions of the tag.

Ref 0 s 100 s 300 s 500 s
x[m] y[m] x[m] y[m] ε[cm] x[m] y[m] ε[cm] x[m] y[m] ε[cm] x[m] y[m] ε[cm]

An. 1 -1.69 1.14 -1.74 1.14 6.2 -1.64 1.34 19.9 -1.67 1.32 17.7 -1.68 1.33 18.2
An. 2 -1.78 -3.42 -2.07 -3.17 39.5 -1.84 -3.43 6.4 -1.79 -3.46 4.0 -1.79 -3.46 4.3
An. 3 1.66 0.81 1.72 0.90 10.8 1.76 0.86 11.3 1.73 0.88 10.3 1.74 0.89 10.6
An. 4 1.42 -2.51 1.51 -2.69 20.4 1.43 -2.69 18.2 1.44 -2.67 16.6 1.45 -2.68 16.9

Table A.3: Four anchors layout. First test. Anchors positioning.

Error [cm]
Mean Std Dev

Odometry 38.0 13.08
Filtered 16.07 8.69

Table A.4: Four anchors layout. First test. Odometry.
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Experimental Data

Ref 0 s 100 s 300 s 500 s
x[m] y[m] x[m] y[m] ε[cm] x[m] y[m] ε[cm] x[m] y[m] ε[cm] x[m] y[m] ε[cm]

An. 1 -0.72 -0.31 -0.72 -0.56 25.1 -0.63 -0.84 53.5 -0.71 -0.69 38.3 -0.71 -0.69 37.8
An. 2 3.82 0.18 2.88 2.38 238 3.61 0.25 21.8 3.73 0.17 8.5 3.76 0.15 5.8
An. 3 -0.82 3.06 -0.65 3.15 19.0 -0.62 3.07 19.4 -0.68 3.08 13.7 -0.71 3.09 11.1
An. 4 2.52 3.24 2.83 3.24 31.0 2.55 3.20 5.09 2.55 3.27 5.00 2.55 3.28 5.26

Table A.5: Four anchors layout. Second test. Anchors positioning.

Error [cm]
Mean Std Dev

Odometry 53.01 36.28
Filtered 20.92 10.46

Table A.6: Four anchors layout. Second test. Odometry.

Ref 0 s 100 s 300 s 500 s
x[m] y[m] x[m] y[m] ε[cm] x[m] y[m] ε[cm] x[m] y[m] ε[cm] x[m] y[m] ε[cm]

An. 1 -8.56 -1.84 -8.49 -1.81 7.0 -8.54 -2.00 16.6 -8.61 -2.06 22.7 -8.61 -2.08 24.4
An. 2 6.86 5.17 6.81 5.46 29.6 6.92 5.08 10.7 6.82 5.14 5.3 6.80 5.16 6.3
An. 3 -8.77 3.82 -8.77 3.74 7.6 -8.19 3.51 64.5 -8.56 3.59 30.7 -8.67 3.59 24.2
An. 4 7.45 -0.19 -2.66 6.49 1212 6.48 1.93 234 7.19 1.32 153 7.37 1.25 145
An. 5 -0.16 1.84 -0.15 2.03 18.9 -0.03 1.2 65.7 -0.10 1.45 39.7 -0.13 1.52 32.3

Table A.7: Five anchors layout. First test. Anchors positioning.

Error [cm]
Mean Std Dev

Odometry 74.58 13.16
Filtered 42.80 8.00

Table A.8: Five anchors layout. First test. Odometry.
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Ref 0 s 100 s 300 s 500 s
x[m] y[m] x[m] y[m] ε[cm] x[m] y[m] ε[cm] x[m] y[m] ε[cm] x[m] y[m] ε[cm]

An. 1 -8.68 -1.17 -8.60 -1.71 54.1 -8.67 -1.24 7.37 -8.62 -1.40 23.2 -8.63 -1.41 24.6
An. 2 7.24 4.62 6.99 5.13 56.8 7.30 4.74 13.2 7.25 4.83 20.6 7.25 4.83 20.6
An. 3 -8.45 4.48 -8.73 3.81 72.9 -8.49 4.41 9.0 -8.50 4.32 17.3 -8.50 4.33 16.6
An. 4 7.41 -0.77 7.50 -0.65 14.2 7.48 -0.94 18.1 7.54 -0.83 13.7 7.52 -0.82 12.0
An. 5 -0.01 1.85 -0.04 2.02 17.4 -0.09 1.93 11.1 -0.05 1.91 6.4 -0.00 1.91 5.5

Table A.9: Five anchors layout. Second test. Anchors positioning.

Error [cm]
Mean Std Dev

Odometry 117.1 70.51
Filtered 11.49 5.37

Table A.10: Five anchors layout. Second test. Odometry.
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