
POLITECNICO DI TORINO

Master Degree Course in Mechatronic Engineering

Master Degree Thesis

Software-Based Radiation Effects
Analysis on AP-SoC Embedded

Processor

Supervisors

Prof. Luca Sterpone

Ph.D. Sarah Azimi

Candidate

Daniele Rizzieri

Academic Year 2020/2021

Summary

Fault tolerance analysis is a crucial and fundamental phase in any development
process that has the aim to produce a dependable system and throughout the
decades, each field of science improved its knowledge about all the possible threats
that can affect a system during operation: space exploration field is one of the
most active and focused on these studies. This research has been developed as part
of the mission HERA by ESA, due to launch in 2024, and has the main goal of
investigating what are the outcomes that can occur when SEU and SEMU faults
affect several parts of a well-known system under test.

For this purpose, a well-known System-On-Chip architecture has been considered
to analyze the effects of radiations striking the hardware during the execution
of an application. Furthermore, through the use of two ex novo fault injection
platforms, observations on the criticality level of the various parts of the SoC have
been deduced, along with other key observations coming from the obtained data.
The first developed tool-set addresses fault injections in the main memory of the
computation system (Random Access Memory, RAM), while the second one aims
at the injection of faults in the registers of the CPU. In both cases the goal is to
simulate radiation related faults at runtime, during the execution of an application.
To perform a complete analysis, several detailed fault models have been chosen, each
related to specific scenarios.

To perform the radiation effects analysis a subset of applications from the
MiBench benchmark suite has been chosen as test input. It has been decided
to classify each injection outcome by means of process exit status, crash data (core

2

dump) and by the obtained functional results.
One of the main results is the observation of the segmentation fault as the most

common malfunction, throughout all the fault models and among all the bench-
mark applications. In particular, it has been observed that if the main memory
control logic gets affected and the process fails, the probability that a segmenta-
tion fault occurred are much bigger than the ones related to other malfunctions
(i.e. Floating-Point Unit exception, Illegal Instruction and others). Another key
point is represented by the Silent Data Error (SDE) analysis. In fact, it has been
observed that we have a considerably higher probability to have an SDE when an
alteration of the values in the registers occurs. On the contrary, the probability to
obtain a hang process is much higher when the main memory portion related to it
gets corrupted, while it is nearly null when registers get altered during execution.

General Structure

In chapter 1 an introduction about the topic of dependability is given, along with
the motivations that justify the relevance of this thesis work.

Chapter 2 is dedicated to the state-of-the-art survey: here a comparison with
other available works has been done, to highlight the processes and the choices
persecuted by other authors, underlying why there has been the need to develop
two new fault injection platforms from scratch.

In chapter 3 one can find a brief introduction about all the context around
this thesis work, with particular attention to the radiation effects theory and the
technology that has been involved.

In chapter 4 an in-depth description of the developed fault injection platform
is given. Here, all the choices that have been made throughout the process are
explained and motivated, along with the choices of which output data have been
collected and analyzed.

In chapter 5 the experimental results and their thorough analysis are reported,
discussing graphs and charts explaining the obtained data.

Chapter 6 and 7 are devoted to conclusions coming from this work and the

3

analysis of the possible implications, applications and future work that is planned
or that can be done addressing further research interest.

4

Acknowledgements

Ringraziamenti
Grazie a Renata e Stefano, pilastri portanti che mi hanno retto e supportato con

pazienza e amore in tutti questi anni, come solo due meravigliosi genitori come loro
avrebbero potuto fare.

Grazie a Lucia, che mi ha supportato, sopportato e mi ha accompagnato da
vicino e da distante in questa importante parte della mia vita.

Grazie a Stefano, Guglielmo, Riccardo e Marco per esserci sempre stati, nonos-
tante tutto. Grazie per aver contribuito a rendere questi anni dentro e fuori
dall’università una piacevole e soddisfacente avventura.

Grazie a Silvia per la nostra amicizia, i preziosi consigli e per aver letto e corretto
l’inglese migliorabile di questa tesi.

5

Contents

List of Figures 8

Abbreviations 10

1 Introduction 13
1.1 Motivation . 16

2 State of the art 19

3 Background 23
3.1 Radiation effects . 23

3.1.1 Radiation characteristics . 23
3.1.2 Physical effects . 25
3.1.3 Single Event Effects (SEE) overview 27

3.2 Technology background . 28
3.2.1 Zynq-7000 All Programmable SoC family 29
3.2.2 PYNQ-Z2 Development Board 31
3.2.3 Linux Processes and Signals 32

4 Developed Fault Injection Platforms 37
4.1 Fault models . 38

4.1.1 Single Event Upset (SEU) in Main Memory 38
4.1.2 Multiple Bit Upset (MBU) in Main Memory 39
4.1.3 "Clear Content" Fault in Memory 40

6

4.1.4 Single Event Upset (SEU) in CPU Registers 41
4.1.5 Multiple Bit Upset (MBU) in CPU Registers 44
4.1.6 "Clear Content" and "Preset Content" in CPU Registers . . . 44

4.2 Fault Injection Platforms . 46
4.2.1 MBIP: Memory Bitflip Injection Platform 47
4.2.2 RBIP: Register Bitflip Injection Platform 48

4.3 Classification Criteria . 51
4.3.1 Crash Analysis . 53

5 Experimental Analysis 57
5.1 Benchmark Setup . 57
5.2 Experimental Results . 59

5.2.1 Error Rate Analysis . 60
5.2.2 Exceptions Analysis . 63

6 Conclusions 67
6.1 Future Work . 68

7

List of Figures

1.1 Hera Mission Logo . 17
3.1 Funneling caused by a heavy particle hitting a p-n junction. 26
3.2 Zynq-7000 AP-SoC Block Diagram[25] 29
3.3 PYNQ-Z2 Board Overview [36] . 32
3.4 Main Process States in Linux-Based OS [38] 33
4.1 Possible MBU cluster configurations, as observed in [42] 40
4.2 Memory "Clear Content" main fault locations 42
4.3 ARMv7 Architecture User Registers [27] 43
4.4 Common configurations for asynchronous Flip Flop 46
4.5 Memory Bitflip Injection Platform (MBIP) Workflow 48
4.6 Register Bitflip Injection Platform (RBIP) Workflow 49
4.7 Register Bitflip Injection Platform (RBIP) Pseudo-code 50
4.8 Register Bitflip Injection Platform (RBIP) Pseudo-code 52
4.9 Example of crash report . 55
5.1 MiBench Suite: Selected SW Instructions Distribution 59
5.2 Error Rate Distribution - Memory Fault Models 61
5.3 Error Rate Distribution - Registers Fault Models 62
5.4 Exception Distribution - Memory Fault Models 63
5.5 Exception Distribution - Registers Fault Models 64
5.6 Fault Models Contribution - Comparison 65

8

9

Abbreviations

BRAM Block Ram Memories.

COTS Commercial Off The Shelf.

ECSS European Cooperation for Space Standardization.

ESA European Space Agency.

ESCC European Space Components Coordination.

FPGA Field Programmable Gate Array.

IC Integrated Circuit.

LET Linear Energy Transfer.

LUT Look-Up Tables.

MBU Multiple Bit Upset.

PL Programmable Logic.

PS Processing System.

RHBD Rad-Hard-By-Design.

SEE Single Event Effects.

10

SEFI Single Event Functional Interrupt.

SEGR Single Event Gate Rupture.

SEL Single Event Latch-Up.

SEU Single Event Upset.

SoC System-On-Chip.

11

12

Chapter 1

Introduction

This thesis begins with a story. It is November 8th, 2011 and it’s launch day for
Phobos-Grunt , the first Mars sample return mission by Roscosmos, the Russian
Federation space agency. The mission has the main objective of visiting Phobos,
Mars major natural satellite, and delivering back to Earth samples of its soil, after
analyzing them in situ. The main payload of the mission is the Chinese orbiter
Yinghuo-1, to be delivered in orbit around Mars to observe the external environment
of the planet. Other science goals were to study the Martian radiation, plasma and
dust environments and to search for possible past or present life, by means of
what are called "biosignatures". With a project cost of 1.5 billion rubles (€36.5
million) and a mission funding of 2.4 billion rubles (€59 million), the Russian Mars
exploration journey was expected to last from 2011 to 2014, when the satellite was
planned to return to Earth.

Two hours and a half after launch, the main propulsion unit was expected to in-
sert the spacecraft in an intermediary orbit, prior to departure towards the Martian
system. Contact with Phobos-Grunt was lost right after the engineers discovered
that it never reached its target orbit, remaining instead in its parking orbit, near
Earth. Later, the European Space Agency tried to communicate with the satellite
and after several unsuccessful attempts ESA decided to end the effort to try to make
contact. Without propulsion, Phobos-Grunt has been slowly descending towards

13

Introduction

Earth atmosphere and on the 15th of January 2012 the spacecraft was destroyed
during re-entry, spreading its fragments into the Pacific Ocean.

After several in-depth investigations, on 1st February 2011 the head of Roscos-
mos announced that a burst of cosmic radiation could have hit the satellite, causing
a reboot of several parts of the system, forcing it into a standby mode.

The mission had been later criticized by scientists, engineers and experts all
around the space exploration community, claiming lack of pre-flight testing, lack
of funding and use of parts that were not adequately prepared for the hazardous
space environment.

This story can really help us understand why fault tolerance analysis is a crucial
and fundamental phase in any development process aiming to produce a dependable
system. When talking about dependability it is important to understand what are
the key qualities that a dependable system must have. Availability is one of them:
it refers to the probability that a system will work as expected at a generic time
in future. A different concept is expressed by the term reliability which refers
instead to the probability that the system will work as expected repeatedly and in
a consistent manner over time. Another key quality of a dependable system, finally,
is safety: it indicates the ability of a system to either work correctly or to interrupt
its operations without causing serious damages or failure.

In order to achieve a good level of dependability, one must consider several types
of analysis and testing to be used across the entire development of the project, in
order to completely understand what are its flaws and its most sensitive parts.
Starting from the requirements specification, through all the steps to deployment,
after or during each phase it is necessary to conduct different types of test in order to
assure that the obtained result is the expected one, even under unusual conditions.
This has to be done considering several possible fault modes that can occur during
operation, maximizing the so-called fault coverage, that is the number of faults that
can be identified by the considered test cases, among all the possible faults.

Throughout the decades, each field of science improved its knowledge about all
the possible threats that can affect a system during operation: space exploration

14

Introduction

field is one of the most active and focused on these studies. This is due to the
fact that, most of the times, space missions put together the effort of thousands of
people, with fundings that can go up to several billions of euros. Furthermore, in
case of human spaceflights, astronauts’ lives are on the line and safety concerns are
even more crucial.

In particular, since the first interplanetary missions in the 1960s, there have
been growing concerns about space radiation effects on humans and on the exposed
instruments of spacecrafts and satellites.

With the need for countermeasures against these unwanted effects, many radi-
ation hardening techniques have been developed. These mitigation methods can
be put in action either via specific physical modifications or through the adoption
of ad-hoc logical structures. Regarding hardware mitigation techniques, they can
be applied during the design phase or after the implementation. If the compo-
nent has been designed and implemented with the purpose of being robust against
radiations, then it is called "radiation-hard" - rad-hard for simplicity- or "rad-hard-
by-design" (RHBD). In other cases, the hardening countermeasures are applied on
a Commercial Off The Shelf (COTS) component and most of the times it is easier
to apply a logical mitigation method with respect to an hardware solution.

The faults that can occur in an electronic device under the effects of highly
energetic particles can be summarized in the so-called Single Events Effects (SEE).
They can be further divided into several categories, according to the nature of the
fault:

• Non-destructive faults (soft-errors):

– Single Event Transient (SET): voltage glitches with a duration that
can go up to some nanoseconds, which may possibly lead to permanent
errors.

– Single Event Upset (SEU): error in the operation of the device caused
by a free charge created by heavy particle ionization. In a flip-flop based
circuit (e.g., a memory, a register) this results in a so-called bit-flip: the

15

Introduction

inversion of the value of a stored bit, from 0 to 1 or vice versa. If the inver-
sion affects more than one bit, then we say that a Single Event Multiple
Upset (SEMU) or a Multiple Cell Upset (MCU) occurred.

– Single Event Functional Interrupt (SEFI): abrupt interruption of
normal device functions, requiring a power reset to resume normal opera-
tions.

• Destructive faults (hard-errors):

– Single Event Latch-up (SEL): abrupt short-circuit between the power
supply rails of a MOSFET transistor, compromising the operation of the
whole surrounding circuitry and possibly damaging the device itself.

– Single Event Gate Rupture (SEGR): permanent modification in the
conductive paths of a transistor, leading to non-nominal behavior of the
device itself.

1.1 Motivation

This thesis work places itself in the field of SEE analysis, and has the main goal of
investigating what are the outcomes that can occur when SEU and SEMU faults
affect several parts of a well-known system under test.

This type of analysis can be seen as a preliminary and preparatory phase pre-
ceding the radiation test. This latter has to be conducted in a very specific facility
where the system would be subject to heavy particles beams over a certain period
of time. Through this type of preliminary analysis, the effectiveness and relevance
of the radiation test can be maximized, since one can predict with a good level of
approximation what are the expected outcomes of the test and, if possible, apply
some mitigation techniques prior to the test itself, on both hardware and software.
In this way it is also possible to check whether the hardening technique is enhanc-
ing the system fault tolerance or not, possibly avoiding the need of repeating the
radiation test and thus saving a lot of budget, also in terms of time resources.

16

1.1 – Motivation

Figure 1.1. Hera Mission Logo

This research has been developed as part of
the HERA mission by ESA, which is due to
launch in 2024. This mission has the main
objective of reaching a binary asteroid system,
Didymos, and observe and study the composi-
tion of the secondary body of this system, Di-
morphos, which will be previously impacted by
the DART spacecraft, developed in the homony-
mous mission by NASA. Among the payloads of
the European mission, there will be two Cube-
sat satellites that will orbit around Dimorphos
to study its morphology and composition.

The hardware model that has been taken into account for conducting the de-
scribed analysis is the flight computer of one of the Cubesat satellites, which in-
corporates a System-On-Chip as the main computational unit. By analyzing the
obtained results, it’ll be possible to predict what is the probability that a certain
error will occur during the operation of the system in a real scenario. This is a
crucial information, because it can be used to design (or re-design) the system in
order to tolerate these faults, possibly integrating some error handling hardware or
software.

17

18

Chapter 2

State of the art

When approaching the testing phase of an integrated circuit, there are many dif-
ferent parts that can be addressed. The careful choosing of the logical and physical
parts to be tested is a fundamental step to achieve a fault coverage that is compli-
ant with the specified requirements. According to choice there are several different
testing techniques that can be adopted or, in some cases, must be adopted. For
example, when working in space exploration fields, one must apply the standards
proposed by the related agencies, like the European Cooperation for Space Stan-
dardization (ECSS) and the European Space Components Coordination (ESCC).
Another example of standards to has to be strictly observed is the ISO26262, related
to the automotive field.

To verify that a device complies with the imposed radiation hardness require-
ments, there are several approaches that can be followed. Starting from the most
straightforward, there is the radiation test. It basically consists of putting the DUT
under a radiation beam for a predefined amount of time, under controlled environ-
ment condition (e.g., vacuum, controlled temperature). During this operation, the
DUT undergo several functional tests and the outcomes are collected for further
investigations about how the device worked under radiations influence. An exam-
ple of a radiation test experimental setup is described in [1], where the results of
a radiation test are used to validate and study the effectiveness of a new Single

19

State of the art

Event Transient (SET) sensitiveness analysis method on nanometric flash-based
technology. Other descriptions and studies of radiation test results can be found in
[2], where results are used to validate a software-based Single Event Upset (SEU)
emulation method.

The main drawback of radiation testing is that it is a very expensive operation,
by means of both time and budget resources. It requires a very specific technical
facility to be conducted and several months of preparation to be efficiently per-
formed. For these reasons, there are several alternative approaches that can be
good compromises, avoiding major drawbacks of the radiation test. These tech-
niques can also be used to properly prepare the radiation test and make it even
more effective and valuable.

One of these testing "alternatives" is surely the simulation. When simulating,
we’re recreating the conditions we’d have in an operational environment, with a
good grade of accuracy and with enormously lower costs with respect to radiation-
testing. In [3] we can find an example of a new 3D simulation-based approach that
has been compared with radiation-test results. Another example of a simulation
environment can be found in [4].

Another alternative approach is the one chosen for this work and it is related to
fault emulation. Please note that there is a crucial difference between simulation
and emulation, since this latter pretends to recreate the effects of the operational
environment (e.g. heavy-ions particles). This means emulating the various faults
that can appear because of external circumstances such as radiation threats, ex-
treme thermal conditions and others, specific to the fields of operation. In case
of radiation environment, among all the different faults that can occur (SEE), the
most frequent one is the Single Event Upset (SEU), also called bit-flip: it is the
alteration of a single bit in a memory or in a register, changing from 0 to 1 or vice
versa. The emulation of bitflips can be done in many ways. One could, for example,
simulate the hardware platform under test and access the bitflip target in a com-
pletely software-based manner. This is the case discussed in [5]. Another approach
for bitflip injection can be found in [6] and [2], where upsets are induced by means

20

State of the art

of specific executable code, triggered by interrupts at predetermined instants: this
technique is also referred to as Code Emulated Upsets (CEU). Furthermore, as can
be seen in [7], a hybrid technique can consist of compiling the source code of the
application in an intermediate language and "inject" here the bitflips through the
use of ad-hoc instructions. Previous works about CEU approaches can be found in
[8] and [9].

All of the above-cited works have different application cases which most of the
time strongly depends on the target hardware and in some cases also on the software
to be tested itself. As an example, one can look at the Zero Overhead Fault
Injection Tool (ZOFI)[10], a fault injection platform that is time-based: the bitflips
are injected at a random time during the execution of the application and, as
described in [10], this makes the platform not suitable for programs with a short
execution time.

Another software-based fault injection platform that intervenes at a random
time during the execution has been developed by CAROL Reliability Group in
Universidade Federal do Rio Grande do Sul (UFRGS).[11][12] This fault injection
tool is called carol-fi: it supports several fault models and permits to inject a
bitflip in a randomly chosen variable during the execution of an application under
test. Since it relies on time to decide when to inject the fault, it has the same
limits described for ZOFI[10]: for short running programs the time resolution of
the injector could be not sufficiently small, leading to the failure of the injections.

Continuing the state of the art analysis of software-based fault injection tools,
another example can be found in ESIFT (Efficient System for Error Injection) by
Tian et al.[13] In this latter, basing on the application under test a list of possible
fault injection points is derived. Then, by using GDB (GNU Debugger) features,
the program is run and according to the selected fault model the execution of
the application gets corrupted in different ways, ranging from alteration of data
contained in variables to the corruption of registers and other memory locations.

In [14], the PROPANE injection tool is described and here a different approach
has been pursued. Within PROPANE, the fault injector module aims at stopping

21

State of the art

the execution when a certain trigger is reached. Then, a fault-free portion of the
executable code gets substituted with a faulty one and the execution gets resumed.
Finally, the execution outcomes and the propagation of the error are observed by
means of predefined variables and their contents.

When the scope of the test is the evaluation the robustness of a certain program
against some kind of fault, a key concern are the fault locations. This aspect is
crucial by means of testing time and several fault collapsing techniques can be
applied, based on equivalence classes that can involve several points of view, from
the software level to the hardware implication of each fault model. This can be
particularly useful if a high fault coverage (close to exhaustive testing scenarios) is
needed. In [15], Hari et al. describe a tool to evaluate the resiliency of an application
against transient faults. The tool exploits advanced fault pruning techniques based
on the analysis of the machine code to reduce testing effort and maximize the
efficiency and the detection level of the conducted fault injection campaigns.

Instead of targeting the application under test directly, a different approach has
been followed by Horstmann et al., as described in [16]. The main proposed idea
is to monitor the whole system using the running operating system and then inject
faults in locations that include OS specific resources: these are hardware counters,
sensor values and others.

The work presented in this thesis follows the approach of SEE emulation through
two different software-based injection platforms addressing microprocessor registers
and system main memory. Several different fault models have been considered and
the developed platform permits an in-depth evaluation of the outcomes of the tests,
also allowing the repetition of the exact same injections over time. Furthermore,
the proposed platforms allow us to keep track of which injections generated certain
misbehaviors and to investigate the failure causes in order to study the propagation
of the faults inside the system.

22

Chapter 3

Background

3.1 Radiation effects

When an electronic circuit is operating in the harsh space environment, it is subject
to the presence of highly energetic particles. When an energetic ion strikes a region
of an integrated circuit (IC), its physical composition can be altered temporarily
or in a permanent way, causing effects on its operations. In this section I will
summarize the main concepts of radiation effects on semiconductor circuits.

Back in the 60s, the first paper regarding the occurrence of SEE was not studying
the space environment threats, instead it was foreseeing the future occurrence of
radiation-induced faults due to the terrestrial cosmic rays: as one can imagine, in
fact, hazardous radiation environments can also be found here on Earth (e.g., cosmic
rays not filtered by the atmosphere, artificial and natural radioactive environments)
and not just in outer space. [17]

3.1.1 Radiation characteristics

First of all, what is a radiation? A radiation is a group of energetic particles that
exchange energy with other particles when colliding and interacting with them. A
radiation can have different particle composition, depending on its nature. Cosmic

23

Background

rays, mesons and alpha particles are the main types. The first ones refer to hydro-
gen, helium and other atoms nuclei, traveling at fraction of light speed towards our
solar system from outer space and generated by explosions of stars millions of years
ago. Among the cosmic rays there are also highly energetic electrons and protons:
these latter are the main contribution of the solar wind, which is not constant and
fluctuates in intensity in different periods of the year. Mesons can be produced by
the collision of cosmic rays with the terrestrial atmosphere, therefore they carry
much lower energy. Despite this, they can still produce unwanted effects on irradi-
ated silicon devices. Finally, alpha particles are created in two ways: the first one
is the decay process of radioactive elements and the second one is the interaction of
other particles inside the silicon structure of IC, when an highly energetic particle
travels through it. [18]

Flux and Fluence

The radiation particles flux is defined as the number of particles that pass through
a unitary area section of the target material during a unitary time and it is mea-
sured in [#particles] cm−2 s−1. Starting from the flux, one can compute the fluence,
which is the integral of the flux over a certain amount of time. It is measured in
[#particles] cm−2.

Cross Section

Another very important concept related to radiation effects is the cross section of
a device. A possible definition: it is the area measure of the surface of the device
such that if a particle strikes that area, then there will be a fault. As an areal
quantity, it is usually measured in cm2. Since usually not all the surface area of a
device is sensitive to radiations, more precise definitions are needed, often related
to specific fault models. For example, one could define the SEU cross section of a
sea-of-gates array as an integer number of gates over the total.

24

3.1 – Radiation effects

Linear Energy Transfer (LET)

When a particle strikes a device and make its way through the material, it rapidly
loses energy as it goes in-depth. This is mainly due to the interactions with other
nuclei, that can lead the to the generation of secondary energetic particles. An
important measure that is crucial in the characterization of SEE is the so-called
Linear Energy Transfer (LET): it is a function of the particle energy and the ma-
terial density and it is defined as the amount of energy lost by the particle per
unitary path length (MeV

cm) traveled by the particle itself, normalized by the density
of the material (mg

cm3): therefore, it is measured in MeV cm2

mg [19] [18].

3.1.2 Physical effects

There are several physical effects that can take place at the silicon level of the device
when radiation hits occur and these can lead to observable errors and permanent
damaging of different parts of the IC. In particular, there are three main physical
effects that has to be considered.

Funneling effect

The funneling effect is the most common one and it occurs when a heavy ion break
through the junction and depletion layers of a semiconductor device, creating an
ionization track and distorting the equipotential surfaces of the silicon structure.
This distortion corresponds to the creation of two opposite direction currents that
lead to an abrupt modification of the charge density in the area. This burst is
extinguished after a short amount of time and its length depends on the LET of
the particles and other factors.[20][18] An explanatory figure regarding this phe-
nomenon can be found at 3.1.

Displacement effect

Another relevant physical effect is the so-called displacement effect. It occurs when
a colliding particle displaces atoms in the silicon lattice, creating interstitial spaces

25

Background

Figure 3.1. Funneling caused by a heavy particle hitting a p-n junction.

that can lead to changes in the electrical functionality of the IC. The amount of
energy that the radiation nuclei lose during the lattice displacement is called Non-
Ionizing Energy Loss (NIEL) but also displacement damage equivalent dose. It is
measured in MeV

g .[19]

Charge accumulation effect

By the combination of the previous two effects, a third one can be identified and
it is the charge accumulation. During operation time, several unwanted conditions
can occur and the effects of both funneling and lattice displacement can lead to the
accumulation of charge in certain locations, with the consequent electrical faults
that result in an erroneous operation by the device. The accumulated charge can
be measured in C.[21][19]

26

3.1 – Radiation effects

3.1.3 Single Event Effects (SEE) overview

The fault models that can be identified as a result of one or more of the previously
discussed effects can be summarized in two main categories: destructive and non-
destructive faults. The destructive faults, also called hard errors, are the ones that
permanently damage the device itself while for non-destructive faults, also called
soft errors, the unwanted effects disappear after a certain time or after a power
cycle of the interested parts. Hard and soft errors can then be further divided
into different categories, as explained in the following paragraphs: the soft errors
are divided in SEU, SET and SEFI, while the main hard error types are SEL and
SEGR.[18]

Single Event Upset (SEU)

Also referred to as bit-flip, the SEU are the observable result of a charge modifica-
tion, due to funneling or displacement. In a transistor based memory element (e.g.,
a latch, a register or a memory cell), a particle could modify the stored charge and
force the information node to this new altered state. If the modification affects
more than one bit, then we say that a Multiple Bit Upset (MBU) occurred.

Single Event Transient (SET)

As a result of the funneling effect, abrupt currents can be generated in the silicon
lattice. This flow of charge can create voltage glitches at the output of transistors
which length can go from picoseconds to nanoseconds, depending mainly on the
LET of the particle in the material. These abrupt changes in the voltage levels can
be interpreted as bit transitions of the type 0-1-0 or 1-0-1, thus possibly creating
faults that will be propagated in the system and will affect its functionality.[22]

Single Event Functional Interrupt (SEFI)

It is an interruption of the functionalities of the system, recoverable only after a
power cycle of the whole device or after performing a hard reset.

27

Background

Single Event Latch-up (SEL)

We have a Single Event Latch-Up when there is a modification of the silicon struc-
ture which lead to a modification in the current flows. In particular we could have
an abrupt increase of current passing through some parts of the device, that can
result in a permanent damage of the device itself if the power is not cut off in a
short time.

Single Event Gate Rupture (SEGR)

When a highly energetic particle strikes a transistor, its gate insulator could be
permanently damaged. This event is referred to as Single Event Gate Rupture and
it can bring the interested silicon region to a high temperature condition due to
newly created high conduction paths. If nothing shuts off the device, this condition
could lead to the semiconductor material melting.

3.2 Technology background

In the increasing need for low power consumption and with the continuous evolution
towards miniaturization of computing system, a natural evolution can be found in
the so-called System-On-Chip (SoC). This latter is an integrated circuit which in-
cludes a main Processing System (PS) and several other components such as various
interfaces, clock signal generators, special-purpose controllers and integrated mem-
ory chips.[23] To further reduce the amount of physical chips and space required
by the IC, another main part that may be present in a SoC is the Programmable
Logic (PL) which consists of a Field Programmable Gate Array (FPGA) that can
be specifically programmed to implement a vast variety of sequential and combina-
torial systems, through the use of Look-Up Tables (LUT) and special-purpose chips
such as Block RAM memories (BRAM) and others. The various components of a
SoC are interconnected through data BUS that can be either intellectual propriety
of the company producing the SoC or standardized by protocols like the Advanced
Microcontroller Bus Architecture (AMBA), introduced by ARM in 1995.[24]

28

3.2 – Technology background

3.2.1 Zynq-7000 All Programmable SoC family

Introduced in 2011 by Xilinx, the Zynq-7000 All Programmable System On Chip
(AP-SoC) is a family of embedded system which incorporates both a processing
system and a programmable logic.

Figure 3.2. Zynq-7000 AP-SoC Block Diagram[25]

As can be seen in the general block diagram of this SoC (Fig.3.2), in the PS
we can find a dual core ARM Cortex A9 processor, with a processing speed of up
to 1 GHz. This main component permits the SoC to support the execution of full
operating systems such as Linux and it is based on the ARMv7-A architecture,
which in turn is based on the 32-bit RISC model. A crucial element of this archi-
tecture - which is built around a 8 stage pipeline processing - is the Neon engine.
Neon is a technology by ARM that allows the PS to do a large number of integer

29

Background

or floating point operations at the same time. The key concept behind Neon is
the Single Instruction Multiple Data (SIMD) logic, which consists of applying the
same operator to multiple input data, instead of conducting repeated operations
one at a time: this results in a tremendous cut in the execution time of these com-
putations, giving massive benefits in applications such as media processing, voice
and image recognition, computer vision and deep learning [26]. ARMv7-A archi-
tecture embeds also a Memory Management Unit (MMU) module that permits
virtual memory management, as required by modern operating systems, and sup-
ports two different standard instruction set: the 32-bit based one and the so-called
Thumb-2 set, based on 16-bit instructions. For both sets, most of the instructions
support conditional execution. Furthermore, special-purpose instructions for the
Neon Engine and Vector Floating Point (VFP) are also present.[27]

The available core registers are 17, each containing 32 bits: 13 general-purpose
registers, 3 special-purpose registers - Stack Pointer (SP), Link Register (LR) and
Program Counter (PC) - and the Current Program Status Register (CPSR) con-
taining information about the current state of the core and its operating mode.
Adding to these, among the accessible registers we also find the Neon registers,
used for SIMD operations. [27]

Among the blocks surrounding the processor, on the Zynq-7000 SoCs there is a
512KB level 2 cache and a 256KB On-Chip Memory. This last can be particularly
useful during the translation of logical addresses. Inside the processor we also find
two level 1 32KB cache memories for storing data and instructions.[28]

The interconnection between the PS and the PL consists of AMBA based multi-
ple BUS which are also connecting the processor with the other PS internal blocks.
In particular, PS-PL communication is compliant with the AXI standard. AXI
stands for Advanced eXtensible Interface and it is part of the ARM AMBA stan-
dard: it consists of a high-speed, multiple-master multiple-slave interface for on-chip
communication.[29]

The processing system, in addition to a DRAM controller for DDR memories

30

3.2 – Technology background

interface, also provides other external interfaces to communicate with the surround-
ing embedding system. These are General-Purpose Input-Output (GPIO) ports but
also protocol specific interfaces such as CAN, SPI, I2C and UART.

Inside the Zynq-7000 SoC family we can find different configurations of PL, ac-
cording the purpose and the performance level and the power consumption required
by the SoC. The FPGAs provided by Xilinx for this SoC integrate up to 444K pro-
grammable logic cells, 2020 Digital Signal Processing (DSP) slices and up to 26MB
of BRAM, divided in 36KB blocks.[30]

The use of this SoC is widely spread in industrial and mission-critical scenarios.
Examples can be found in industrial automation, computer vision, medical appli-
cation, high resolution media processing, signal transmission but also robotics and
space applications.[31][32][33]

3.2.2 PYNQ-Z2 Development Board

A very popular development board which embeds a Zynq-7000 AP-SoC is the
PYNQ-Z2 Board by TUL. In fact, this system integrates a Zynq-7020 SoC as the
main processing unit, with a PL composed of 13,300 logic slices, 630KB of BRAM
and 220 DSP slices.[34] Among the main features of this tool we find an integrated
512MB DDR3 RAM memory, a MicroSD slot for operating system installation and
booting, plenty of GPIO pins and several I/O interfaces for both data and video,
like Ethernet, HDMI, USB, UART and JTAG.[35] A more detailed overview of the
PYNQ-Z2 board can be found in Figure 3.3.

Another important aspect of the board is the capability to run complete oper-
ating systems like Linux: in particular, Xilinx provides a default operating system
installation running Ubuntu 18.04, based on version 5.4 of Linux Kernel. Regard-
ing the PL, through software instruments like Vivado Design Suite by Xilinx it is
possible to implement FPGA systems and accelerators to be loaded onto the PYNQ
board, using the concept of Overlay object. In this way it is possible to access these
hardware IP blocks using the operating system, in particular, through Python and
PYNQ specific libraries.[37]

31

Background

Figure 3.3. PYNQ-Z2 Board Overview [36]

3.2.3 Linux Processes and Signals

A key construct that is at the base of every operating system is the concept of
process. When an application gets executed by a PS, it is referred to as a process
and has various information and resources associated with it: virtual memory por-
tions, files, timers and communication sockets are some examples. Each process is
identified by a Process ID (PID) which is univocal within the OS session.[38] In
Linux-based operating systems, all the processes are created starting from a parent
process called init, which has PID equal to 1 and gets started as first process by
the OS. During its execution a process can enter several states, each of them char-
acterized by some characteristics. The main states in which an application process
can be are depicted in Fig.3.4

As can be seen in the above figure, after a process gets created and a PID is
assigned to the execution, it enters the running state. From here a process could
be stopped by an interrupt, causing it to go in ready state. In this latter there are
all the processes that have all the resources they need for their execution and are
waiting to be executed. Depending on the scheduling policies, the process will be

32

3.2 – Technology background

Figure 3.4. Main Process States in Linux-Based OS [38]

subsequently put back in the running state to continue its work. Another condition
that is reachable for a running process is the waiting state: here the execution
instance waits for any resource or event that is needed for continuing its flow and
when it obtains them, it is then put back in ready queue.[39]

From the running state, there are two main ways for a process to terminate its
execution. Firstly, it can simply finish its operations without the occurrence of
any error or exception, so that the program simply returns from its main function.
Alternatively, an application could go through a premature termination and this
can happen either if an exception - hardware or software - is raised by the OS or
if the process receives a specific indication to do so by another process. In both
cases, the instruments used to force the abrupt termination of processes are the
so-called signals. In Linux-based operating systems, there are 31 signals used for
Inter-Process Communication (IPC), each of them identified with a different signal
number.[40] According to the specific meaning of a signal, there are certain compul-
sory operations that a process must go through when receiving it. In Fig.3.1 there
are some of the possible signals with the relative numbers and the operations to be
conducted by the receiving process. These latter are: terminate, ignore, coredump,

33

Background

stop and continue. With stop and continue indications, the process execution is
stopped and resumed, respectively. When the default action is coredump, the exe-
cution terminates and the present core situation - by means of registers and other
data - is saved to a specific format file called core dump: this file can be used
later by the user to investigate the cause of the termination. If a signal is instead
associated with the default action terminate the receiving process terminates its
operations and, finally, with the ignore action the signal is ignored by the process,
which continue its execution flow.[40] Other than these default actions, a process
can be instructed by the application developer to handle the different signals with
specific functions, called signal handlers, and act following predefined directives.
If a process is terminated by a default action, then its exit status returned to the
parent process is equal to the number of signal that caused its termination. [41]

34

3.2 – Technology background

Num. Name Default
Action Description

-11 SIGSEGV coredump

Segmentation fault: the process tried to ac-
cess a memory address which is out of is mem-
ory mapping: i.e., a bad address is present as
an instruction operand or as content of spe-
cial registers such as PC, SP and others.

-4 SIGILL coredump

Illegal Instruction: the process tried to ex-
ecute an illegal, malformed or privileged in-
struction. This can happen if an OPCODE of
an instruction gets corrupted.

-7 SIGBUS terminate

Bus Error: it occurs when the process tries to
access a memory location that the CPU can-
not physically address, e.g. non-existent ad-
dress, unaligned access, paging errors. This
signal can be also generated due to an hard-
ware fault.

-6 SIGABRT coredump

Abort: the process handled internally some
bad behavior and raised itself this exception
using some specific instruction (e.g.svc in-
struction), which tells the process to termi-
nate.

-5 SIGTRAP coredump
Trace/breakpoint trap: it occurs when the ex-
ecuted instruction causes the processor to en-
ter Debug state, e.g. bkpt instruction.

-8 SIGFPE coredump

Arithmetic operation error: it occurs when
the process tries to execute an erroneous
arithmetic operation (e.g. division-by-zero).
This can happen if one of the operand is cor-
rupted.

-9 SIGKILL terminate
Kill signal: it can be sent from a process to
another to tell the receiving process to termi-
nate the execution.

-15 SIGTERM terminate Termination signal: the receiving process im-
mediately terminates its execution.

Table 3.1. Common Linux OS Signals

35

36

Chapter 4

Developed Fault Injection
Platforms

In this chapter I’m going to discuss the followed methodology and the developed
tools. The main objective has been to create a SEE analysis environment mon-
itoring and controlling the behaviour of a well-known system, namely an ARM
Cortex-A9 microprocessor. This latter has been chosen as hardware of interest for
reasons related to the HERA mission, to which this research is a small contribu-
tion. The analysis has been conducted by emulating the effects of SEU on the Static
RAM of the Processing System (PS) and on the core internal registers during the
execution of an application SW. For this purpose, two different software platforms
have been developed and several fault models have been considered. Both of the de-
veloped environments are implemented using python3 and run on the target ARM
microprocessor through a Linux-based Operating System (OS), including a set of
automatic tools to study the outcomes of the tests and investigate the possible
causes of failure.

37

Developed Fault Injection Platforms

4.1 Fault models

One of the fundamental steps that has been faced is the selection of the fault
models to be considered. According to the fault model of interest, a different
testing approach has been developed. The addressed fault models are listed here
below:

• SEU in Main Memory

• MBU in Main Memory

• "Clear Content" Fault in Main Memory

• SEU in CPU Registers

• MBU in CPU Registers

• "Clear Content" Fault in CPU Registers

• "Preset Content" Fault in CPU Registers

4.1.1 Single Event Upset (SEU) in Main Memory

When a computing system is exposed to heavy particles hazardous environment,
each of its components is potentially vulnerable to unwanted malfunctionings.
Among the different parts of the system that could go through upsets there is
surely the system main memory. The considered system hardware model - namely
PYNQ-Z2 Development Board - integrates a 512MB DDR3 RAM as main memory
and that is the location where all the executable binaries are loaded right before
their execution by the PS.

In a real case scenario, it could happen that a certain cell of the random ac-
cess memory gets hit by a heavy particle, leading to the upset of an information bit
through a Single Event Upset (SEU). Possible effects coming from this fault involve
mainly the execution of the application that contains the corrupted bit, resulting in
abrupt terminations and non-nominal behaviours in general. A further discussion
could be done regarding the presence in the system of an Error Correction Code

38

4.1 – Fault models

(ECC): this refers to a whole class of techniques that permits the detection and
correction of certain kinds of errors in memory, such as single bit or multiple bits
alteration. The integration of these techniques obviously implies a certain amount
of computational effort and, most of the times, a non-negligible physical space oc-
cupation overhead in the silicon implementation. These aspects make the adoption
of these error correction instruments a key variable and not an obvious choice when
designing a computing system, depending also on budget and power consumption
project limits.

Nevertheless, depending on the implementation and integration of an ECC con-
troller, a non-negligible amount of upsets could still escape the detection/correction,
and this is an additional reason supporting the decision to consider this fault model.

4.1.2 Multiple Bit Upset (MBU) in Main Memory

During a heavy ions strike, the hitting particle traveling through the silicon struc-
ture is able to generate secondary energetic particles, as a result from the impacts
with other nuclei. These secondary ions could still be highly energetic and this
can lead to further unwanted effects in the nearby of the interested silicon region.
From a practical point of view, when talking about memory devices this can results
in alterations that involve more than one memory element, leading to the upset
of multiple bits of information. As presented in [42][43], several multi-bit upset
configurations can be observed depending on the energy and type of particles and
also on the hitting bodies angle of incidence. Some examples of MBU clusters can
be found in Fig.4.1.

Also in this case, a further discussion can be made about the implications deriv-
ing from the presence or absence of an ECC system. In fact, depending on the type
and on the implementation of an error detection system, several multi-bit upsets
configuration could be either detected or not. This is also due to the fact that,
when using ECC techniques, multiple errors in memory are more difficult to be
detected and corrected with respect to single errors.

It has been decided to consider clusters of two consecutive bits being upset. This

39

Developed Fault Injection Platforms

Figure 4.1. Possible MBU cluster configurations, as observed in [42]

specific fault configuration has been chosen among several possible ones, as shown
in Fig.4.1 also thinking about the higher occurrence probability with respect to
other configurations.[42]

4.1.3 "Clear Content" Fault in Memory

Among the elements that compose a memory device, one of the most critical part is
the control logic. This circuitry has the fundamental role of managing the memory
device ad all the other parts surrounding it, controlling several signals and decoding
the instructions coming from the PS and other components of a computing system.
When this part of the memory system gets corrupted either by a SEU or a MBU,
the possible outcomes can be very different and can lead to very differentiated
scenarios. Among these latter we could find the situation where instead of reading
the correct value of a memory element (e.g., a memory word), a value equal to zero
is read.

40

4.1 – Fault models

Other possible elements which failure can lead to this type of fault are the Mem-
ory Management Unit (MMU) and the clock signal of the system itself. Regarding
the first of the two, it is a dedicated logic system, external to the memory, which
role is to manage the translation between virtual addresses - computed and pro-
cessed by the PS - and physical addresses. It could happen that, if a SEU or MBU
occurs in the MMU, a certain virtual address gets translated into a wrong physical
address, possibly leading to the fault model described in this section.

Another possible cause for this type of fault can be found in a fundamental
element of the overall computing system: the clock signal. In particular, during
the strike of Single Event Transients (SET) an unwanted voltage burst - also called
clock glitch - could appear in this very signal and the MMU or the control logic
of the SRAM could misinterpret a rising or a falling edge of the synchronization
signal, leading to the transmission of an erroneous data value. [44][45] Concerning
this fault model, the most vulnerable parts are the MMU, the clock signal and
the control logic of the different memory units. An explanatory drawing about the
considered fault locations can be found in Fig.4.2.

4.1.4 Single Event Upset (SEU) in CPU Registers

Crucial elements of a processing system are the ones that permit fast calculations
and efficient data manipulation: these are the CPU registers. In modern micro-
architecture, the registers are usually implemented as fast Static RAM (SRAM)
blocks, having dedicated input and output ports in order to achieve minimum
reading and writing latency. Another possible way to implement CPU registers
resides in the use of Flip Flops composing logical structures suitable for this type
of data storing and manipulation.

In a processing unit there could be different types of registers, according to the
specific functions they carry out. The PS registers can be divided into two main
domains: user-space and processor or architecture-space. The first category contains
all the registers that are accessible by the user through the operating system, using
specific software like debuggers, architecture-specific applications or by developing

41

Developed Fault Injection Platforms

Figure 4.2. Memory "Clear Content" main fault locations

software using low level programming languages, such as Assembly.[46]

The user-accessible registers are often divided into two main categories, accord-
ing to the function they carry out: there can be general-purpose and special-purpose
registers. The first ones are used for manipulating data, storing operands, results
of instructions but also memory addresses and other types of data. The special-
purpose registers are instead used to store more specific information, such as in-
structions, memory instruction addresses, control flags and others. Among the
most common special-purpose registers we find the Program Counter (PC), the
Stack Pointer (SP), the Link Register (LR) but also state registers for keeping
track of the operating modes of the CPU and for specific modules like the Floating
Point Unit (FPU).[46]

42

4.1 – Fault models

An example of user-space registers can be found in Fig.4.3 referring to the
ARMv7 micro-architecture, which has been the target of the conducted tests.[27]

The registers that lies in the architecture-space are instead visible and accessible
only by the CPU itself during certain operating modes and, sometimes, by the OS
kernel: these are control registers, state registers and hardware-specific registers,
manipulated and accessed to conduct operations that most of the times are invisible
to the user.

Figure 4.3. ARMv7 Architecture User Registers [27]

When an SEU occurs in these memory locations, the effects can be widely spread
across multiple scenarios. For example, if a single bit of the PC gets corrupted,
this could lead to the execution of an erroneous instruction. If the Stack Pointer
register get modified, the resulting condition could induce a wrong return point for
a function being executed. These two unwanted behaviours are obviously correlated
with subsequent problems in terms of security and system stability.

Just like the special-purpose registers, also the general-purpose registers are
vulnerable to this type of fault. In fact, if an operand stored in a register gets
abruptly altered this can result in an illegal instruction exception or maybe a wrong

43

Developed Fault Injection Platforms

addressing offset can be produced, leading to a paging exception or a segmentation
fault.

With this fault model I addressed all the above described situations and, with
a specific fault injection tool, all the ARMv7 architecture user registers will be
randomly injected with single event upsets, evaluating and characterizing all the
possible outcomes.

4.1.5 Multiple Bit Upset (MBU) in CPU Registers

Just like it happens for system main memory, due to the implementation nature of
the registers it could happen that as a result of a single highly energetic ion strike
multiple memory cells get altered simultaneously. This could depend on different
factors like the incidence angle of the particle and its energetic level. In fact,
based on these (and other) characteristics, the particle traveling through the silicon
structure could generate secondary particles that will collide with the surrounding
molecules, interacting with them and possibly alterating other memory elements
(i.e., other information bits).

With this fault model, I considered the situation where two in-line adjacent bits
gets corrupted and inverted at the same time. This specific situation has been
chosen also thinking about the occurrence probability of this type of MBU cluster
with respect to other configurations, as shown in Fig.4.1.[42]

4.1.6 "Clear Content" and "Preset Content" in CPU Reg-
isters

Depending on the implementation choice for the registers, one could have several
different types of control logic. When an SRAM implementation type is involved,
the control logic circuitry - similarly to what happens with system main memory
elements - is responsible for monitoring and driving the control and data signals of
the registers. If instead the CPU registers are implemented through the use of Flip
Flops (FF), also in this case some kind of control system is required to properly

44

4.1 – Fault models

interact with the registers. In both cases, there are several situations that could
occur in the case of a Single Event Transient (SET) involving some part of the
control logic. In particular, the here-defined "Clear Content" and "Preset Content"
refer to malfunctionings that could occur as a result of this eventuality.

The Clear Content fault model addresses the situation where, during the ex-
ecution of an application, the whole content of a register gets corrupted and all
the information bits get forced to 0. On the contrary, the Preset Content fault
model considers the unwanted situation where all the bits contained in a register
get forcefully put to 1.

There are several possible fault conditions that can result in these described
malfunctionings. Starting from the SRAM register implementation, we could have a
Clear Content or a Preset Content fault if some part of the related control logic gets
involved in a SET: this can cause misinterpreting of several control signals that can
result in the described faulty situations. If instead the registers are implemented
through the use of FF, there could be specific signals directly manipulating the
whole content of the register, namely the CLEAR and the PRESET control signals.
Depending on the implementation at silicon level, if a SET affects one of these two
signals or some other part of the surrounding control logic then it could happen
that one of the two situations described above (all-0s and all-1s)occur.

A typical configuration for three common types of asynchronous FF - namely
Set/Reset, D and J/K - is reported in Fig.4.4.

45

Developed Fault Injection Platforms

S

R

CLK

Q

Q

PRE

CLR

Set/Reset
Flip Flop

J

K

CLK

Q

Q

PRE

CLR

J/K
Flip Flop

D

CLK

Q

Q

PRE

CLR

D
Flip Flop

Figure 4.4. Common configurations for asynchronous Flip Flop

4.2 Fault Injection Platforms

To achieve a complete characterization of all the described fault models, two rad-
ically different injection approaches have been studied and developed to address
separately memory and registers injections. Both require an executable application
SW as minimal input data. An optimal input data is represented by the source
code of the SW under test: starting from this, the executable file is then compiled
integrating debug symbols from the source code and therefore providing extra infor-
mation to the platform, which will exploit this data to provide even more in-depth
report data.

Without loss of generality, without compromising the test outcomes and for sake
of simplicity and test speed, both the platforms are developed using python3 and
they have been directly run on the target PS. This is possible using an OS, namely
Ubuntu 18.04, based on version 5.4 of Linux kernel.

Before describing the two approaches, it is important to highlight that basing on
the addressed fault model, the injection procedures can slightly differ: for example,
in the case of CLEAR - line or register - fault model there is no need of choosing a
specific bit to be flipped, since the entire value stored in the register or the memory

46

4.2 – Fault Injection Platforms

word will be altered by the platform. Nevertheless, the general approach of each
developed injection tool remains the same as it is described in the following sections.

4.2.1 MBIP: Memory Bitflip Injection Platform

This first approach is based on the emulation of SEU in memory through the
alteration of the executable file prior its execution. In this way, the binary code
to be loaded in system SRAM by the PS is a corrupted version of the original
fault-free compiled application SW. As a result, the final situation is the same as
if a SEU occurred in system memory during execution.

As can be seen in Fig.4.5 the platform operational flow can be divided in these
main phases:

1. Execution of golden application file

2. Creation of faulty executable files

3. Execution of faulty executable files

4. Exit code/return status collection and classification

5. Application results collection and classification

In the first phase, the platform runs the original executable file - possibly com-
piling it first from source code - and the fault-free application result is stored as
golden reference. Secondly, the developed tool takes the original executable file,
chooses a random bit from its binary content and inverts its value. To permit the
repetition of the same injections over different test sessions, the tester is also al-
lowed to provide a specific randomization seed in the platform input parameters.
The obtained altered file is saved, and this injection process is repeated as many
times as the tester requested, through a dedicated input parameter. The next phase
consists of the execution of all the corrupted SW binary files and this is done by
exploiting multiprocessing features provided by python3. The exit code and the
return status of these sub-processes are then collected and classified by the main
process and, finally, the faulty applications results are compared with the golden

47

Developed Fault Injection Platforms

reference produced by the fault-free SW file. More in-depth information about
output classification can be found in Section 4.3.

Figure 4.5. Memory Bitflip Injection Platform (MBIP) Workflow

4.2.2 RBIP: Register Bitflip Injection Platform

This second approach is closer to a real scenario and resorts to the alteration of
CPU register values during the very phase of SW execution, as it’d happen in an
operational condition.

The PS under test is based on the ARMv-7 architecture and since this is a totally
software-based approach the addressed registers are all the "software accessible"
ones.[27] More precisely, they are: the Floating Point Status and Control Register
(FPCR), the 64 NEON technology registers [26], the general-purpose registers (R1
to R13) and three special-purpose registers, namely Program Counter (PC), Link
Register (LR) and Stack Pointer (SP).

The operating principle of RBIP is described in Fig.4.6 and can be summarized
in the pseudo-code reported in Fig.4.7.

As a first stage of the algorithm, as done in MBIP, the fault-free application is
run, and the obtained golden result is saved for future functional analysis.

48

4.2 – Fault Injection Platforms

Figure 4.6. Register Bitflip Injection Platform (RBIP) Workflow

The randomization of the injection parameters - which are breakpoint, target
register and bit to be flipped - is carried out as an "atomic" operation before all the
injections. This is done for sake of repeatability: in fact, like in MBIP, the tester
can provide a specific randomization seed to repeat the same injections over time.
The breakpoint parameter is composed of two parts: firstly, a random number of
source code line is selected, from zero to the total Lines Of Code (LOC) count
of the application. Then, a random number between 0 and 1000 is chosen: this
is the number of machine instructions (i.e., Assembly code) that will be executed
starting from the line of code selected as first parameter. In this way, it is possible
to achieve a good level of randomization in the breakpoint selection, comparable
with a time-based approach which is instead not suitable for applications with a
short execution time.[10] Once the chosen breakpoint is reached the injection takes
place.

The bitflip injection phase is carried out through the use of GDB, an open-
source debugger that uses low level system calls like ptrace to inspect and alter the

49

Developed Fault Injection Platforms

golden_SW_execution
SAVE(golden_SW_result)
LOOP(num_of_injections){

random_register ← random_select (register_list)
random_breakpoint ← breakpoint_selection ()
random_bit ← random_int (1..32)

}
LOOP(num_of_injections){

GDB{
SW_start
SW_stop (random_breakpoint)
BITFLIP (random_register , random_bit)
SW_continue
SAVE(exit_code)

}
SAVE(SW_result)

}
execution_analysis (exit_codes)
functional_analysis (SW_results , golden_SW_result)

Figure 4.7. Register Bitflip Injection Platform (RBIP) Pseudo-code

value of core resources and to control the flow of the monitored application.[47] In
particular, it is responsible for starting the program, stopping it at the randomly
chosen breakpoint, inject the bitflip in the target location and then let the pro-
gram continue the execution. All these operations are done automatically without
user interaction and this is possible using a python extension API, which can be
integrated in GDB during its installation.

The platform terminates its operations with the execution analysis and the func-
tional analysis: these processes are analogous to the ones carried out in MBIP and
have the main purposes of analyzing the exit-code and compare the obtained results
with the golden one, respectively.

50

4.3 – Classification Criteria

4.3 Classification Criteria

In this section we’ll describe what are the different data that have been collected,
classified and analyzed by the platforms in order to produce a human readable
report at the end of test operations.

First, it is useful to underline that the selected classification criteria are shared
by both platforms and also among all the considered fault models: this permits a
rapid and clear comparison of the obtained results, as described in the subsection
devoted to Experimental Analysis. An example of a test report - which format is
in common with both tools and the different fault models - is reported later in this
section, in Fig.4.8.

The most important collected data are the exit codes of the injected executions.
In fact, in Linux based OS, each process can terminate its execution in basically
two ways. Without any error, the exit code of the process is 0 and this indicates
that the program executed normally, and no fatal exception occurred. If instead
the exit code is different from 0, this indicates that the SW produced some kind of
exception that couldn’t be masked or safely handled by the OS. When the OS re-
ceives an exception signal from the microprocessor, an exception handling function
is called. Then, after further investigations conducted by the OS about the nature
of the malfunction, a process signal is sent to the process being run. This latter is
instructed to either handle the signal and continue the execution or avoid handling
the signal and perform the signal default action, which can be the termination of
the process itself. These different behaviours are based on the specific meanings of
the signals but also on the application that is being run.[40]

In Linux systems, if not otherwise instructed by the SW developer, the exit-code
of a process that prematurely finishes its execution is equal to the signal number
received by the process itself. By collecting and classifying these exit codes, at the
end of each test session we achieve to have a clear picture of how many processes
crashed and, most importantly, what are the most common causes of these abrupt
terminations.

51

Developed Fault Injection Platforms

The other main element that has been collected for each process is the appli-
cation functional result. Regardless of the nature of the SW output - it could be
a string or a number - all the results are stored into different binary files. After
the exit-code classification, a functional analysis is conducted and the result files
coming from the faulty executions are compared with the golden data, obtained
from the fault-free application run. Also in this case, useful information can be ex-
tracted: in particular, it is possible to deduce how many of the processes produced
a faulty output data among all the obtained ones. Furthermore, by combining this
deduction with the results of the exit code analysis, the platform is able to compute
how many times the SW terminated without errors and still produced an incorrect
functional result: this situation is also referred to as Silent Data Error (SDE) and
it is usually a big concern in functional testing.

TEST_PARAMETERS
prog_name = basicmath
injection_num = 1000
rand_seed = 1618995355
EXECUTION_ANALYSIS
distinct_exit_codes = 4
|0| SUCCESS | 988
| -11| SIGSEGV | 10
|-4| SIGILL| 1
|-6| SIGABRT | 1
terminated_deadlock = 0
FUNCTIONAL_ANALYSIS
no_file = 0
correct_results = 978
faulty_results = 22
sde= 10

Figure 4.8. Register Bitflip Injection Platform (RBIP) Pseudo-code

52

4.3 – Classification Criteria

4.3.1 Crash Analysis

When investigating the effectiveness of a mitigation method or studying more in-
depth what are the causes of a specific crash, it is often useful to analyze the
core-dump files. These latter are produced by any process that is terminated by
a signal having coredump as default action.[40] A process core-dump file contains
all the information that are available related to the state of the processor at the
time of the process abrupt termination, i.e. the crash. Contains data such as the
memory mapping of the process, the registers state, the file mapping of the process
and others: these data are all useful to comprehend the cause of the crash and,
possibly, what are other subsequent implications due to a specific registers state,
reached because of the crash.

To exploit this precious information, both the developed tools look for the core-
dump file in the file system, for each of the crashed processes. The location of
the core-dump files is not fixed and depends on the operating system and on the
installed software packages. In this case, a specific command has been exploited to
retrieve the core-dump file, i.e. coredumpctl[48].

Once this process-specific file is obtained, the developed tool uses GDB to ana-
lyze it and report some pre-selected data. These are:

• Memory Mapping. It is crucial to see which portions of memory were
associated to the process and which not, permitting to understand whether an
application tried to access a memory area that wasn’t designated to it or not

• Crash Instruction. This is the instruction that caused the crash and it is
another key point to be studied, because through this data it is possible to
analyze, for example, which instructions are more likely to produce a crash
and why;

• Registers State. To better understand the state of the system at the time of
the crash, here is another fundamental information to be studied. In fact, it
allows a more in-depth analysis of the processor, permitting to see the values
in every register and to detect possible corrupted or illegal values for the

53

Developed Fault Injection Platforms

instruction that would have been executed.

An example of crash analysis report can be seen here below in Fig.4.9.

54

4.3 – Classification Criteria

----------INJ_NUM =48---- EXITCODE = -11(SIGSEGV)----------
Memory mapping at runtime :
Address Kbytes Mode Offset Device Mapping
00010000 316 r-x-- 00000000 0b3 :00002 bitcnts_inj48
0006 e000 12 rw --- 0004 e000 0b3 :00002 bitcnts_inj48
00071000 136 rw --- 00000000 000:00000 [anon]
b6fff000 4 r-x-- 00000000 000:00000 [anon]
befdf000 132 rw --- 00000000 000:00000 [stack]
ffff0000 4 r-x-- 00000000 000:00000 [anon]
mapped: 604K writeable / private : 280K shared: 0K

Crash Instruction : 0 x0001c316 <+182 >: str r1 , [r3 , #8]

Registers state:
r0 0xe 14
r1 0x0 0
r2 0 x40000000 1073741824
r3 0x493e0 300000
r4 0x0 0
r5 0x0 0
r6 0 xbefff3d8 3204445144
r7 0 xbefff370 3204445040
r8 0x6f010 454672
r9 0x0 0
r10 0x0 0
r11 0x0 0
r12 0x107 263
sp 0 xbefff370 0 xbefff370
lr 0x1c62f 116271
pc 0x1c316 0x1c316 <sysmalloc +182 >
cpsr0x800f0030 -2146500560
fpscr0x0 0
d0{u8 ={0x6e ,0x63 ,0x68 ,... f32 ={0 xffffffff ,0x0},f64 =0x0}
d1{u8 ={0x0 ,0x0 ,0x0 ,0x0 ,... f32 ={0x0 ,0x0},f64 =0x0}
d2{u8 ={0x0 ,0x0 ,0x0 ,0x0 ,... f32 ={0x0 ,0x0},f64 =0x0}
d3{u8 ={0x0 ,0x0 ,0x0 ,0x0 ,... f32 ={0x0 ,0x0},f64 =0x0}
...
d29{u8 ={0x0 ,0x0 ,0x0 ,... f32 ={0x0 ,0x0},f64 =0x0}
d30{u8 ={0x0 ,0x0 ,0x0 ,... f32 ={0x0 ,0x0},f64 =0x0}
d31{u8 ={0x0 ,0x0 ,0x0 ,... f32 ={0x0 ,0x0},f64 =0x0}

Figure 4.9. Example of crash report

55

56

Chapter 5

Experimental Analysis

In the first part of this chapter I’m going to describe the environment that has
been set up for the tests, by means of chosen benchmark applications and the
reasons behind the related choices. The second part of this chapter will instead
illustrate in detail the obtained experimental results, highlighting some interesting
considerations.

5.1 Benchmark Setup

The chosen SW under test has been taken from the MiBench benchmark suite,
developed by the University of Michigan.[49] This collection contains several types
of application and has the main purpose of testing the performances of the hosting
computer. It is divided into different main categories, each one related to the fields
of use of the contained programs. The chosen benchmark programs are basicmath,
bitcount and FFT. This choice was made for sake of execution easiness and more
importantly, for the close correlation with a space mission case scenario, where most
of the computation effort is more likely devoted to mathematical calculations and
signal processing operations. Nevertheless, the dynamic instruction distribution of
the three SW varies significantly, as can be seen in FIg.5.1.

57

Experimental Analysis

basicmath

This program carries out basic mathematical operations that usually do not have
a dedicated part of hardware: these are cubic functions solving, angles conversion
and other tasks. All these calculations can be useful, for example, to compute
kinematic and dynamic equations of terrestrial or space systems, as well as for their
autonomous and automatic control. The output of this program is a set of messages
related to the results of all the different mathematical operations performed during
the execution.

bitcount

Bit manipulation capabilities are a key part of a computing system and this bench-
mark tests this very kind of tasks. In this application several counting algorithms
are used to check the number of bits in an array of integer, whose length can be
imposed by input parameters. The produced countings are then returned as textual
output of the application.

FFT

As can be deduced from the name of the algorithm, this benchmark program com-
pute the Fast Fourier Transform (FFT) of an input signal composed of pseudo-
random sinusoidal components, having variable amplitudes and frequencies. Al-
most certainly, in every system that must transmit and receive signals an FFT
utility is present and used and that is the reason why this application has been
selected for testing. The output of this program is composed of real and imaginary
part of the frequency components of the input signal.

58

5.2 – Experimental Results

Figure 5.1. MiBench Suite: Selected SW Instructions Distribution

5.2 Experimental Results

In this section the main obtained results will be presented and discussed, putting
emphasis on what has been reasonable and predictable and what has been unex-
pected and more interesting. First of all, it is important to understand how the
fault-injection campaigns have been conducted, in order to better comprehend the
results and their importance. An important question that I faced while starting
these campaigns was: how many injections are enough? To take this decision, sev-
eral campaigns with increasing number of injections have been conducted and the
results were varying until around 10’000 injections. Above this limit, the obtained
results were stable around certain values. Trying also with different fault models,
the behaviour was pretty much the same, so it has been decided to choose 10’000
as minimum number of injections for each of the campaign.

Each fault-injection campaign has been characterized by two factors: the bench-
mark program under test and the considered fault model. Making some calculation:
having 3 benchmark programs and 7 fault models to be addressed, during the ex-
perimental phase a total of 210’000 injections have been carried out. Using the
developed platforms the test time could vary a lot. The two main reasons for this

59

Experimental Analysis

are the execution time of the benchmark programs under test - which subsequently
depends on the input dataset - and the nature of the two fault-injection methods
itself. In fact, when using the memory injection platform, 10’000 injections took
roughly 10 minutes on average, but this time goes up to 3 hours in the case of
injections in registers resources.

5.2.1 Error Rate Analysis

To tackle the analysis of the massive amount of obtained data it has been decided
to first detect the total error rate. This value has been computed as the percentage
of processes that unsuccessfully terminated their execution. In this category fall the
processes that correctly terminated the execution but failed to produce a correct
result but also the ones that have been interrupted by an OS signal and prematurely
terminated their execution. This last situation is also usually referred to as crash.
The total error rates related to the memory injection platform are reported in Table
5.1.

Application
Total Error Rate [%]

SEU MBU Clear
Content

basicmath 6.08 6.59 6.89

bitcount 1.65 1.68 1.38

FFT 3.94 4.01 4.32

Table 5.1. Total Error Rate - Memory Fault Models

Looking at the values in the table above, the total error rates appear reason-
able, increasing as the intrusiveness of the fault type increases. Going more in
detail about this analysis, in Fig.5.2 are reported the distributions of the unsuc-
cessful processes for the different memory fault models. Here we can see that,
when considering the main memory, these distributions vary a lot, depending on

60

5.2 – Experimental Results

the related benchmark application.

Figure 5.2. Error Rate Distribution - Memory Fault Models

The same considerations has been made also for the register fault models. In
particular, in Table 5.2 and Fig.5.3 one can find the total error rate and the failure
distribution between SDE and crashes, respectively, for the register resources fault
injection campaigns that have been conducted.

Starting to analyze Table 5.2, there are several points that are worth to be
highlighted. As a first observation, here the average total error rate is bigger with
respect to the injections in main memory. This denotes that the misbehaviors due
to a fault affecting a register are in general more severe and less tolerable: the
probability that this will result in an unsuccessful execution is higher. Another
key observation is related to the Clear Content and Preset Content fault models:
it is clear that for these two types of fault the total error rates depend a lot on
the application that is being run. As a result, one can observe the massive error
rate (61.55%) related to the Clear Content fault model when executing bitcount,
denoting the predictable vulnerability of the counting algorithms against this type

61

Experimental Analysis

of fault. A further point of interest can be seen in Fig.5.3, where it is clear that the
highest probability of having an SDE is related to the Clear Content fault model.

Application
Total Error Rate [%]

SEU MBU Clear
Content

Preset
Content

basicmath 7.76 8.1 8.43 9.53

bitcount 4.16 4.5 61.55 1.33

FFT 6.11 11.01 6.49 8.2

Table 5.2. Total Error Rate - Registers Fault Models

Figure 5.3. Error Rate Distribution - Registers Fault Models

62

5.2 – Experimental Results

5.2.2 Exceptions Analysis

The main goal of this subsection is to analyze in-depth the distribution of the excep-
tions that occurred for the processes that prematurely terminated their execution.
This analysis is important for many reasons. Firstly, if we understand which is the
most common exception for a certain fault model, then we can better assess the
criticality of the malfunction and possibly focus the mitigation effort towards cer-
tain components of the application with respect to others. This permits to increase
the fault tolerance together with the comprehension of which could be the recovery
options in case of failure.

Figure 5.4. Exception Distribution - Memory Fault Models

In this section three important charts are reported: these are Fig.5.4, Fig.5.5
and Fig.5.6. The first two charts are presenting basically the same information that
is presented in the third one but this latter proposes a different and interesting
"point of view". In Fig.5.4 and Fig.5.5, in fact, the exception distribution has been
reported for each considered fault model, so that it is possible to comprehend which
are the most common exception for each of fault type. One of the most interesting
aspects about these charts is the clear predominance of the segmentation fault as

63

Experimental Analysis

Figure 5.5. Exception Distribution - Registers Fault Models

the most common error with respect to the others. In particular, when considering
the "Clear Content" fault affecting a register resource, this error appears almost
every time a process terminates due to this malfunction.

In Fig.5.6 instead, a different point of view is presented. Here we can see, for
each error type, which fault type is the most probable cause. In this way we’re able,
for example, to maximize the efficiency of studies which objective would be to find
the cause of certain errors. As an operational example, let’s imagine a computing
system operating in an harsh radiation environment. Our application, running on
that system, suffered several critical failures due to illegal instruction (SIGILL)
exceptions: in this case, looking at a chart like Fig.5.6 we can immediately see that
the most common cause for this exception is related to the Clear Content fault
affecting the main memory. As a result, it is likely that one of the part of the
system that has to be tested - and possibly radiation hardened - will be the main
memory control logic.

64

5.2 – Experimental Results

Figure 5.6. Fault Models Contribution - Comparison

Another key point that is worth to be highlighted is related to the Register
Preset Content fault model: this type of malfunction is the one with the highest
rate of Floating Point Unit (FPU) exceptions with 11.2% out of the total number
of interruptions, while the other fault models follow with significantly lower rates,
equal or below 2%.

Finally, a third interesting result concerns the number of hang processes. The
fault model that most often is responsible for this condition is the one related to
SEU in system memory, leading to a hang process roughly once every ten crashed
executions. Other fault models follow with rates around 6% and lower.

65

66

Chapter 6

Conclusions

In this thesis, a radiation effects analysis environment have been developed, able
to emulate different SEE faults on both the memory and register resources of a
well-known AP-SoC, namely Zynq-7020, while an application SW is executing on
the embedded ARM Cortex-A9 microprocessor. To achieve this, two ex novo fault
injection platforms have been developed and tested. These tools exploit standard
Linux Operating System features - like multi-processing management - and archi-
tecture specific characteristics together with the GNU Debugger (GDB).

Each of the presented tools have been designed around the system under test.
Nevertheless, these platforms have been developed in a portable fashion: with few
modifications the two injection environments are easily adaptable also to other
systems and architectures. For this reason the development of the tools is still
ongoing and will continue with the related work that is already planned for the fu-
ture, when the environment will be used to investigate other systems using different
architectures and related benchmark programs.

After the development, the fault injection campaigns took place. A secondary
objective of these campaign was to verify each of the platform features and correct
them in case of errors or inconsistencies. Several corrections have been applied to
make the output data more readable and useful for further analysis. Moreover, as a
main objective, an in-deep evaluation of the fault injection campaign data has been

67

Conclusions

performed, in order to investigate the effects of the injected faults on the system
and to study the causes that provoked the applications abrupt terminations. To
do so, one key feature that has been developed is the crash analyzer : this sub-
tool permits to analyze the coredump data collected by the Linux OS for each of
the processes that prematurely terminated the execution. In this way, a complete
characterization of each terminated process is possible, with in-detail information
about the microprocessor core condition at the time of the crash: this capability
could be (and will be) exploited for future works.

6.1 Future Work

These new platforms appeared to be useful also for testing and validating new
innovative mitigation techniques, permitting to comprehend which types of faults
can be mitigated and which not, without the need of a radiation test conducted
in a dedicated facility. Regarding this type of test, another main application of
the developed tools is the preparation that has to be done prior the radiation test
itself. In fact, one of the objectives for the future is to use an improved version
of these software platforms to investigate the behavior of a system before testing
it under the effect of a real highly energetic particles beam. This will permit to
predict which parts of the system are likely to be more vulnerable than others and
which instead are probably going to appear as more robust.

Some part of this thesis can be integrated with further research work. For
example, to better characterize the vulnerability of a system through the developed
instruments, it’d be recommended to consider more benchmark programs. More
importantly, it’d be useful to choose the benchmark applications among the ones
that would be used in an operational scenario, according to the system under test
and its uses. As said, this research has been conducted as minor contribution
to the ongoing mission HERA, by ESA: in this context many applications could
be eligible for this type of analysis and the obtained results could be useful to
estimate the fault tolerance of several key modules of an aerospace system such as,

68

6.1 – Future Work

for example, the flight computer of a Cubesat. By combining the obtained data
with other simulation results, like mission specific prediction and simulations about
Total Ionization Dose (TID), fluence and LET, one could comprehend and assess
the failure risks and tackle the questions about how to deal with them.

The possible applications of this research work go beyond the aerospace field.
In fact, in these recent years an ever-growing interest is being devoted to the High
Performance Computing (HPC) and many studies have been made to investigate
the possibility to exploit clusters of computing nodes to create highly efficient and
fault tolerant systems, to be used in critical applications where dependability is
a key requirement. As a future work it is planned to use the developed fault
injection environment in order to study and validate efficient mitigation strategies
for embedded computing nodes in HPC applications.

69

Bibliography

[1] L. Sterpone, Boyang Du, and Sarah Azimi. «Radiation-induced single event
transients modeling and testing on nanometric flash-based technologies». In:
Microelectronics Reliability 55 (Aug. 2015). doi: 10.1016/j.microrel.2015.

07.035.

[2] G.C. Cardarilli et al. «Bit flip injection in processor-based architectures: a case
study». In: Proceedings of the Eighth IEEE International On-Line Testing
Workshop (IOLTW 2002). 2002, pp. 117–127. doi: 10 . 1109 / OLT . 2002 .

1030194.

[3] L. Sterpone et al. «A 3-D Simulation-Based Approach to Analyze Heavy Ions-
Induced SET on Digital Circuits». In: IEEE Transactions on Nuclear Science
67.9 (2020), pp. 2034–2041. doi: 10.1109/TNS.2020.3006997.

[4] Robert A. Reed et al. «Physical Processes and Applications of the Monte
Carlo Radiative Energy Deposition (MRED) Code». In: IEEE Transactions
on Nuclear Science 62.4 (2015), pp. 1441–1461. doi: 10.1109/TNS.2015.

2454446.

[5] Felipe Rosa et al. «A fast and scalable fault injection framework to evaluate
multi/many-core soft error reliability». In: 2015 IEEE International Sympo-
sium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFTS). 2015, pp. 211–214. doi: 10.1109/DFT.2015.7315164.

71

https://doi.org/10.1016/j.microrel.2015.07.035
https://doi.org/10.1016/j.microrel.2015.07.035
https://doi.org/10.1109/OLT.2002.1030194
https://doi.org/10.1109/OLT.2002.1030194
https://doi.org/10.1109/TNS.2020.3006997
https://doi.org/10.1109/TNS.2015.2454446
https://doi.org/10.1109/TNS.2015.2454446
https://doi.org/10.1109/DFT.2015.7315164

BIBLIOGRAPHY

[6] R. Velazco, S. Rezgui, and R. Ecoffet. «Predicting error rate for microprocessor-
based digital architectures through C.E.U. (Code Emulating Upsets) injec-
tion». In: IEEE Transactions on Nuclear Science 47.6 (2000), pp. 2405–2411.
doi: 10.1109/23.903784.

[7] Qining Lu et al. «LLFI: An Intermediate Code-Level Fault Injection Tool
for Hardware Faults». In: 2015 IEEE International Conference on Software
Quality, Reliability and Security. 2015, pp. 11–16. doi: 10.1109/QRS.2015.

13.

[8] Z. Segall et al. «FIAT - Fault injection based automated testing environ-
ment». In: Twenty-Fifth International Symposium on Fault-Tolerant Com-
puting, 1995, ’ Highlights from Twenty-Five Years’. 1995, pp. 394–. doi: 10.

1109/FTCSH.1995.532663.

[9] G.A. Kanawati, N.A. Kanawati, and J.A. Abraham. «FERRARI: a flexible
software-based fault and error injection system». In: IEEE Transactions on
Computers 44.2 (1995), pp. 248–260. doi: 10.1109/12.364536.

[10] Vasileios Porpodas. ZOFI: Zero-Overhead Fault Injection Tool for Fast Tran-
sient Fault Coverage Analysis. 2019. arXiv: 1906.09390 [cs.DC].

[11] Daniel Oliveira et al. «CAROL-FI: An Efficient Fault-Injection Tool for Vul-
nerability Evaluation of Modern HPC Parallel Accelerators». In: Proceed-
ings of the Computing Frontiers Conference. CF’17. Siena, Italy: Associa-
tion for Computing Machinery, 2017, pp. 295–298. isbn: 9781450344876. doi:
10.1145/3075564.3075598. url: https://doi.org/10.1145/3075564.

3075598.

[12] CAROL-FI GitHub Repository. https://github.com/UFRGS-CAROL/carol-

fi. Accessed: 2021-05-17.

[13] Ninghan Tian, Daniel Saab, and Jacob A. Abraham. «ESIFT: Efficient System
for Error Injection». In: 2018 IEEE 24th International Symposium on On-
Line Testing And Robust System Design (IOLTS). 2018, pp. 201–206. doi:
10.1109/IOLTS.2018.8474160.

72

https://doi.org/10.1109/23.903784
https://doi.org/10.1109/QRS.2015.13
https://doi.org/10.1109/QRS.2015.13
https://doi.org/10.1109/FTCSH.1995.532663
https://doi.org/10.1109/FTCSH.1995.532663
https://doi.org/10.1109/12.364536
https://arxiv.org/abs/1906.09390
https://doi.org/10.1145/3075564.3075598
https://doi.org/10.1145/3075564.3075598
https://doi.org/10.1145/3075564.3075598
https://github.com/UFRGS-CAROL/carol-fi
https://github.com/UFRGS-CAROL/carol-fi
https://doi.org/10.1109/IOLTS.2018.8474160

BIBLIOGRAPHY

[14] Martin Hiller, Arshad Jhumka, and Neeraj Suri. «PROPANE: An Environ-
ment for Examining the Propagation of Errors in Software». In: Proceedings
of the 2002 ACM SIGSOFT International Symposium on Software Testing
and Analysis. ISSTA ’02. Roma, Italy: Association for Computing Machin-
ery, 2002, pp. 81–85. isbn: 1581135629. doi: 10.1145/566172.566184. url:
https://doi.org/10.1145/566172.566184.

[15] Siva Kumar Sastry Hari et al. «Relyzer: Application Resiliency Analyzer for
Transient Faults». In: IEEE Micro 33.3 (2013), pp. 58–66. doi: 10.1109/MM.

2013.30.

[16] Leonardo Passig Horstmann and Antônio Augusto Fröhlich. «A Fault In-
jection Framework for Real-time Multicore Embedded Systems». In: 2020
X Brazilian Symposium on Computing Systems Engineering (SBESC). 2020,
pp. 1–8. doi: 10.1109/SBESC51047.2020.9277864.

[17] J. T. Wallmark and S. M. Marcus. «Minimum Size and Maximum Packing
Density of Nonredundant Semiconductor Devices». In: Proceedings of the IRE
50.3 (1962), pp. 286–298. doi: 10.1109/JRPROC.1962.288321.

[18] Niccolò Battezzati, Luca Sterpone, and Massimo Violante. Reconfigurable
Field Programmable Gate Arrays for Mission-Critical Applications. Springer
New York, 2011. doi: 10.1007/978-1-4419-7595-9.

[19] ECSS Secretariat. Space Engineering - Methods for the calculation of radiation
received and its effects, and a policy for design margins. Standard ECSS-E-
ST-10-12C. Noordwijk, NL: ESA-ESTEC, 2008. url: https://ecss.nl/

standard / ecss - e - st - 10 - 12c - methods - for - the - calculation - of -

radiation- received- and- its- effects- and- a- policy- for- design-

margins/.

[20] R.C. Baumann. «Radiation-induced soft errors in advanced semiconductor
technologies». In: IEEE Transactions on Device and Materials Reliability 5.3
(2005), pp. 305–316. doi: 10.1109/TDMR.2005.853449.

73

https://doi.org/10.1145/566172.566184
https://doi.org/10.1145/566172.566184
https://doi.org/10.1109/MM.2013.30
https://doi.org/10.1109/MM.2013.30
https://doi.org/10.1109/SBESC51047.2020.9277864
https://doi.org/10.1109/JRPROC.1962.288321
https://doi.org/10.1007/978-1-4419-7595-9
https://ecss.nl/standard/ecss-e-st-10-12c-methods-for-the-calculation-of-radiation-received-and-its-effects-and-a-policy-for-design-margins/
https://ecss.nl/standard/ecss-e-st-10-12c-methods-for-the-calculation-of-radiation-received-and-its-effects-and-a-policy-for-design-margins/
https://ecss.nl/standard/ecss-e-st-10-12c-methods-for-the-calculation-of-radiation-received-and-its-effects-and-a-policy-for-design-margins/
https://ecss.nl/standard/ecss-e-st-10-12c-methods-for-the-calculation-of-radiation-received-and-its-effects-and-a-policy-for-design-margins/
https://doi.org/10.1109/TDMR.2005.853449

BIBLIOGRAPHY

[21] Matthew J. Gadlage et al. «Digital Device Error Rate Trends in Advanced
CMOS Technologies». In: IEEE Transactions on Nuclear Science 53.6 (2006),
pp. 3466–3471. doi: 10.1109/TNS.2006.886212.

[22] Nadia Rezzak et al. «SET and SEFI Characterization of the 65 nm Smart-
Fusion2 Flash-Based FPGA under Heavy Ion Irradiation». In: 2015 IEEE
Radiation Effects Data Workshop (REDW). 2015, pp. 1–4. doi: 10.1109/

REDW.2015.7336733.

[23] K. Mori, H. Yamada, and S. Takizawa. «System on Chip Age». In: 1993 Inter-
national Symposium on VLSI Technology, Systems, and Applications Proceed-
ings of Technical Papers. 1993, K15–K20. doi: 10.1109/VTSA.1993.263614.

[24] D. Flynn. «AMBA: enabling reusable on-chip designs». In: IEEE Micro 17.4
(1997), pp. 20–27. doi: 10.1109/40.612211.

[25] ZYNQ-7000 SoC Block Diagram. https://www.xilinx.com/content/dam/

xilinx/imgs/block-diagrams/zynq-mp-core-dual.png. Accessed: 2021-
04-30.

[26] NEON Programmer’s Guide. https://developer.arm.com/documentation/

den0018/latest/. Accessed: 2021-04-30. 2013.

[27] ARMv7-A Architecture Reference Manual. https://developer.arm.com/

documentation/ddi0406/latest/. Accessed: 2021-04-30.

[28] Zynq-7000 SoC Technical Reference Manual. https://www.xilinx.com/

support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf. Ac-
cessed: 2021-04-30.

[29] AXI Documentation Webpage. https://developer.arm.com/documentation/

ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Introduction/

About-the-AXI-protocol?lang=en. Accessed: 2021-04-30.

[30] Zynq-7000 SoC Datasheet. https://www.xilinx.com/support/documentation/

data_sheets/ds190-Zynq-7000-Overview.pdf. Accessed: 2021-04-30.

74

https://doi.org/10.1109/TNS.2006.886212
https://doi.org/10.1109/REDW.2015.7336733
https://doi.org/10.1109/REDW.2015.7336733
https://doi.org/10.1109/VTSA.1993.263614
https://doi.org/10.1109/40.612211
https://www.xilinx.com/content/dam/xilinx/imgs/block-diagrams/zynq-mp-core-dual.png
https://www.xilinx.com/content/dam/xilinx/imgs/block-diagrams/zynq-mp-core-dual.png
https://developer.arm.com/documentation/den0018/latest/
https://developer.arm.com/documentation/den0018/latest/
https://developer.arm.com/documentation/ddi0406/latest/
https://developer.arm.com/documentation/ddi0406/latest/
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Introduction/About-the-AXI-protocol?lang=en
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Introduction/About-the-AXI-protocol?lang=en
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification/Introduction/About-the-AXI-protocol?lang=en
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf

BIBLIOGRAPHY

[31] Erwin Setiawan et al. «Implementation of baseband transmitter design based
on QPSK modulation on Zynq-7000 all-programmable System-on-Chip». In:
2017 International Symposium on Electronics and Smart Devices (ISESD).
2017, pp. 138–143. doi: 10.1109/ISESD.2017.8253320.

[32] Adi Candra Swastika and Trio Adiono. «Design and Implementation of Smart
Card Interface Device on Zynq-7000 System-on-Chip». In: 2018 10th Inter-
national Conference on Information Technology and Electrical Engineering
(ICITEE). 2018, pp. 220–225. doi: 10.1109/ICITEED.2018.8534777.

[33] Alfredo Jesus Perez-Castillo et al. «Real Time Monitoring of 3 Axis Ac-
celerometer using an FPGA Zynq®-7000 and Embedded Linux through Ether-
net». In: 2018 15th International Conference on Electrical Engineering, Com-
puting Science and Automatic Control (CCE). 2018, pp. 1–6. doi: 10.1109/

ICEEE.2018.8533999.

[34] PYNQ-Z2 Board User Manual. https://dpoauwgwqsy2x.cloudfront.net/

Download/PYNQ_Z2_User_Manual_v1.1.pdf. Accessed: 2021-04-30.

[35] PYNQ-Z2 Product Specification. https://www.tul.com.tw/images/PYNQ-

Z2_PA_v2_pp_20201209_STD.pdf. Accessed: 2021-05-05.

[36] PYNQ-Z2 Board Overview. http://web.archive.org/web/20080207010024/

http://www.808multimedia.com/winnt/kernel.htm. Accessed: 2021-04-30.

[37] PYNQ-Z2 Overlays - Documentation. https://pynq.readthedocs.io/en/

v2.3/pynq_overlays.html. Accessed: 2021-05-03.

[38] Andrew S Tanenbaum and Todd Austin. Structured Computer Organization.
6th ed. Upper Saddle River, NJ: Pearson, 2012.

[39] Abraham Silberschatz, Greg Gagne, and Peter B Galvin. Operating System
Concepts. 10th ed. Wiley, 2018.

[40] Michael Kerrisk. signal - Linux Programmer’s Manual. https://man7.org/

linux/man-pages/man7/signal.7.html. Accessed: 2021-05-12. 2020.

75

https://doi.org/10.1109/ISESD.2017.8253320
https://doi.org/10.1109/ICITEED.2018.8534777
https://doi.org/10.1109/ICEEE.2018.8533999
https://doi.org/10.1109/ICEEE.2018.8533999
https://dpoauwgwqsy2x.cloudfront.net/Download/PYNQ_Z2_User_Manual_v1.1.pdf
https://dpoauwgwqsy2x.cloudfront.net/Download/PYNQ_Z2_User_Manual_v1.1.pdf
https://www.tul.com.tw/images/PYNQ-Z2_PA_v2_pp_20201209_STD.pdf
https://www.tul.com.tw/images/PYNQ-Z2_PA_v2_pp_20201209_STD.pdf
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm
https://pynq.readthedocs.io/en/v2.3/pynq_overlays.html
https://pynq.readthedocs.io/en/v2.3/pynq_overlays.html
https://man7.org/linux/man-pages/man7/signal.7.html
https://man7.org/linux/man-pages/man7/signal.7.html

BIBLIOGRAPHY

[41] W Richard Stevens and Stephen A Rago. Advanced programming in the UNIX
environment: Paperback edition. en. 2nd ed. Boston, MA: Addison Wesley,
2005.

[42] Boyang Du et al. «Ultrahigh Energy Heavy Ion Test Beam on Xilinx Kintex-7
SRAM-Based FPGA». In: IEEE Transactions on Nuclear Science 66.7 (2019),
pp. 1813–1819. doi: 10.1109/TNS.2019.2915207.

[43] A. Makihara et al. «Analysis of single-ion multiple-bit upset in high-density
DRAMs». In: IEEE Transactions on Nuclear Science 47.6 (2000), pp. 2400–
2404. doi: 10.1109/23.903783.

[44] Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. «An In-depth
and Black-box Characterization of the Effects of Clock Glitches on 8-bit
MCUs». In: 2011 Workshop on Fault Diagnosis and Tolerance in Cryptog-
raphy. 2011, pp. 105–114. doi: 10.1109/FDTC.2011.9.

[45] Raul Dario Chipana Quispe. «Single Event Transient Effects in Clock Dis-
tribution Networks». PhD thesis. Porto Alegre: Universidade Federal Do Rio
Grande Do Sul, Dec. 2014.

[46] William Stallings. Computer organization and architecture: designing for per-
formance. Boston: Pearson-Prentice Hall, 2016. isbn: 0134101618.

[47] GNU GDB Debugger User Manual. https://sourceware.org/gdb/current/

onlinedocs/gdb/. Accessed: 2021-05-07. 2021.

[48] Michael Kerrisk. coredumpctl - Linux Programmer’s Manual. https://man7.

org/linux/man-pages/man1/coredumpctl.1.html. Accessed: 2021-06-25.
2020.

[49] M.R. Guthaus et al. «MiBench: A free, commercially representative embedded
benchmark suite». In: Proceedings of the Fourth Annual IEEE International
Workshop on Workload Characterization. WWC-4 (Cat. No.01EX538). 2001,
pp. 3–14. doi: 10.1109/WWC.2001.990739.

76

https://doi.org/10.1109/TNS.2019.2915207
https://doi.org/10.1109/23.903783
https://doi.org/10.1109/FDTC.2011.9
https://sourceware.org/gdb/current/onlinedocs/gdb/
https://sourceware.org/gdb/current/onlinedocs/gdb/
https://man7.org/linux/man-pages/man1/coredumpctl.1.html
https://man7.org/linux/man-pages/man1/coredumpctl.1.html
https://doi.org/10.1109/WWC.2001.990739

	List of Figures
	Abbreviations
	Introduction
	Motivation

	State of the art
	Background
	Radiation effects
	Radiation characteristics
	Physical effects
	Single Event Effects (SEE) overview

	Technology background
	Zynq-7000 All Programmable SoC family
	PYNQ-Z2 Development Board
	Linux Processes and Signals

	Developed Fault Injection Platforms
	Fault models
	Single Event Upset (SEU) in Main Memory
	Multiple Bit Upset (MBU) in Main Memory
	"Clear Content" Fault in Memory
	Single Event Upset (SEU) in CPU Registers
	Multiple Bit Upset (MBU) in CPU Registers
	"Clear Content" and "Preset Content" in CPU Registers

	Fault Injection Platforms
	MBIP: Memory Bitflip Injection Platform
	RBIP: Register Bitflip Injection Platform

	Classification Criteria
	Crash Analysis

	Experimental Analysis
	Benchmark Setup
	Experimental Results
	Error Rate Analysis
	Exceptions Analysis

	Conclusions
	Future Work

