
POLITECNICO DI TORINO
Master’s Degree in Computer Engineer

Master’s Degree Thesis

Errors in Deep Neural Networks for
Deep Space: Observations, Explorations,

and Remedies

Supervisors

Prof. LUCA STERPONE

Candidate

MIRIAM GRASSO

JULY 2021

Summary

Even more ambitious plans and missions are being conceived by farsighted re-
searchers who dealing about the spce exploration and the consolidation of artificial
intelligence methods in space engineering is certainly an enabling factor. Deep
neural networks are responsible for some of the greatest advances in modern com-
puting. Given that in space, devices are no longer protected from Sun’s radiation
by the Earth’s atmosphere, this can cause spurious errors or stuck transistors in
the device’s circuitry. This thesis discussed the issues of a DNN working in deep
space. My thesis goal is to study and investigate how DNNs work to the accumula-
tion of radioactive dose, discovering their weaknesses and strengths, through the
development of a fault injection (FI) platform that emulates the errors caused by
radiation.
The study explores the weaknesses of the DNN and exploited the effectiveness of
using pruning as a novel defense approach against faults.
Results have shown that pruning not only improves the resource efficiency of neural
networks, but also the resilience against faults. In particular, we found that the
resilience depends on the level of pruning, the model retains higher resilience where
less trainable parameters remained after pruning.

ii

Table of Contents

List of Tables v

List of Figures vi

Acronyms ix

1 Introduction 1
1.1 Radiation effects in devices . 2
1.2 Artificial Intelligence . 3

1.2.1 Artificial Intelligence Methods in Space Engineering 5

2 The Problem 10
2.1 Radiation in deep space . 10

2.1.1 Single-event upset . 12
2.1.2 Physical hardening . 13

2.2 Radiation in AI-based device . 13
2.2.1 Single Event Upset in Neural Networks 15

3 Technologies 16
3.1 OVERVIEW OF DNN-S . 16

3.1.1 Artificial Neuron . 17
3.1.2 Convolutional Neural Networks (CNNs) 18
3.1.3 Convolutional layers . 22
3.1.4 Pooling Layer . 24
3.1.5 Fully Connected Layers . 24
3.1.6 Popular DNN Models . 25

3.2 DNN DEVELOPMENT RESOURCES 28
3.2.1 Frameworks . 28
3.2.2 Models . 32
3.2.3 Datasets for Classification 32
3.2.4 Dataset in my analysis . 33

iii

3.2.5 Traning . 33
3.2.6 Inference . 35
3.2.7 Tensor . 36

3.3 HARDWARE FOR DNN PROCESSING 37
3.3.1 Overview of platforms . 38
3.3.2 Inference on HW . 39

3.4 METRICS . 40
3.4.1 Metrics for DNN Models . 40
3.4.2 Metrics for DNN Hardware 40
3.4.3 Fault tollerance Metric . 41

4 Methodology 43
4.1 Fault injection . 47

4.1.1 My FI technique . 49
4.2 Accumulation of SEU-effects within the DNN 54
4.3 Fault Tolerance . 57

4.3.1 My resilience techniques . 58

5 Results 64
5.1 Single bit flip within the DNN results 64

5.1.1 The most vulnerable bits . 64
5.1.2 Layer Vulnerability . 68

5.2 FI results . 71
5.3 Faults Tolerance results . 73

5.3.1 Prining results . 76

6 Conclusions and future work 79

Bibliography 82

iv

List of Tables

4.1 An example of Alexnet layer probability of being affected by an
SEU/error/failure . 52

5.1 Model comparision: Total parameters in models 73

v

List of Figures

1.1 Earth’s Van Allen Belt . 3
1.2 Deep Learning in the context of Artificial Intelligence. 5
1.3 Applications of AI/neural network accelerators 6
1.4 Radiation cause errors in the device’s circuitry 8

2.1 Charged particle strike an integrated circuit 11
2.2 soft error effect in an integrated circuit 12
2.3 The vulnerable components and parameters of a single neuron to

fault injection . 14

3.1 Artificial Neural networks . 17
3.2 Artificial Neuron . 17
3.3 Convolutional Neural Networks . 18
3.4 Convolutions in CNNs . 19
3.5 Standard convolution . 21
3.6 depth-wise convolution . 22
3.7 Depth-wise separable convolution 23
3.8 ConvNet arranges its neurons in three dimensions 24
3.9 Pooling layer down-samples the volume spatially. The most common

down-sampling operation is max, giving rise to max pooling. 25
3.10 Example of MnasNet Architecture – (a) is a representative model;

(b) - (d) are a few corresponding layer structures. MBConv denotes
mobile inverted bottleneck conv, DWConv denotes depthwise conv,
k3x3/k5x5 denotes kernel size, BN is batch norm, HxWxF denotes
tensor shape (height, width, depth), and ×1/2/3/4 denotes the
number of repeated layers within the block. 27

3.11 (a) Standard convolutional layer with batch normalization and ReLU.
(b) Depth-wise separable convolution with depth-wise layers followed
by batch normalization and ReLU. 28

3.12 Shortcut module from ResNet . 29
3.13 Imagenet dataset . 32

vi

3.14 The confidence scores for a image 35

4.1 Architecture of general DNN accelerators 44
4.2 Hardware Accelerators of Deep Learning Models 44
4.3 Threats to a DNN-based system . 46
4.4 FI simulation - workflow . 50
4.5 Hardware implementation of memory neural network 51
4.6 Golden output example . 51
4.7 (a) Golden DNN (b), random single bit-flip ,(c) random multiple

bit-flip . 56
4.8 Synaptic Pruning in mammals . 60
4.9 DNN pruning . 60

5.1 Impact of bit-flip on models (MC and D) 65
5.2 Experimental setup for illustrating the impact of memory faults in

DNN execution . 66
5.3 Single precision floating point storage format used in DNN design . 67
5.4 Impact of bit flip errors on the accuracy of VGG-f network used for

an image classification application 67
5.5 The results of 0’b to 1’b bit flip error injection in the most vulnerable

bit . 68
5.6 Hierarchical representation learning by a CNN where the initial layer

detects simple patterns like edges and gradients while higher layers
detect more abstract features . 70

5.7 A deep neural network example and the general structure for a neuron. 70
5.8 Fault injection attack on DNN . 71
5.9 Impact of bit-flip on Resnet through the layes 72
5.10 Impact of bit-flip on Alexnet through the layes (Degradation) . . . 72
5.11 Impact of bit-flip on Alexnet through the layes (MissClassification) 73
5.12 Failure rate function AlexNet . 74
5.13 Failure rate function ResNet . 74
5.14 Failure rate function MobileNet . 75
5.15 Failure rate function MnasNet . 76
5.16 Failure rate function ResNet (a) ResNet (original) (b) ResNet (25%)

(c) ResNet (46%) . 77
5.17 ResNet Pruning Results Summary 77
5.18 Failure rate function MobileNet (a) MobileNet (original) (b) Mo-

bileNet (0.72x . 78
5.19 Failure rate function MnasNet (a) MnasNet (original) (b) MnasNet

(0.7x) . 78

vii

Acronyms

AI
artificial intelligence

DNN
deep neural network

CNN
convolutional neural network

DSP
digital signal processor

BRAM
Block Random Access Memory

FF
flip-flop

GPU
graphics processing unit

TPU
Tensor Processing Unit

ASIC
application specific integrated circuit

FPGA
Field Programmable Gate Array

ix

SEU
single-event upset

SEEs
Single Event Effects

MAC
Multiply Accumulator

FI
Fault Injection

MC
Miss-Classification

D
Degradation

x

Chapter 1

Introduction

The appearance of the first intelligent civilizations in the world is also accompanied
by some questions about our existence, the world and its nature. Man has always
tried to understand its nature, its mysteries and the mysteries of the cosmos. Man
is born an explorer, an explorer of lands, territories, borders, frontier, civilizations
and culture.
The evolution of civilization has led to answering some questions, up to the
awareness that our earth is nothing more than a tiny blue dot in the vastness of
the cosmos. And if we have explored, studied, admired, understood our earth but
still reserves many questions, the universe and the cosmos reserve even more. And
this is where science and technology have come to help us, to understand its nature
and preserve our land. And here, driven by the boundless fascination for this vast
cosmos, we study techniques that allow us to expand his vision and knowledge.
There are so many factors that maintain the right balance that allows us to stand
here and ask ourselves how the universe is made and what would happen if things
were not as they are. In some way, we human beings are small pieces of the universe
that reflect on the universe itself. We are the universe that becomes aware of itself
and wonders who it is.
The Earth and the Sun are intimately connected not only by light and gravity.
Our planet is immersed in the solar magnetic field, and on the wings of this field
travels a continuous flow of particles with an electric charge that originates from
the surface of the Sun, a real "wind" that blows in every corner of our planetary
system. : the solar wind. These particles travel at over 400 kilometres per second,

1

Introduction

about 1,500,000 kilometres per hour, and are very harmful to life. However, our
planet is well protected: its magnetic field acts as a shield, deflecting the particles
of the solar wind and thus ensuring a safe environment for terrestrial life in which
to develop.
The Earth is well protected from radiation. But what happens when we cross the
Earth’s atmosphere?
Our curiosity has pushed us beyond the borders of our planet, and technology has
come to meet us. We have developed devices capable of exploring hostile territories,
studying them and feed our curiosity, to know their nature and monitor their
activities. And it is here that we have sent extraordinary electronic devices into
orbit, capable of withstanding hostile environments and able to tolerate the large
charge of radiation they encounter.
New technologies are always studying new methods to make these devices resistant
to the most hostile conditions.
Radiation is energy in the form of tiny, subatomic waves or particles. For space
devices, the primary concern is radiation made by particles. Because we know
spacecraft life is not easy, invisible and energetic particles can alter their electronic
components, degrading their performance and in the worst case making them
unusable.
The effect of radiation also depends on the path intended for a device, in general,
the effect of solar particles is heavier as we get closer to the sun, in any case, galactic
cosmic rays (particles ejected into space from distant stars) can meet anywhere.
And so, as most space agencies undertake missions for deep space exploration, to
the edge of the solar system, radiation testing becomes more and more crucial, the
basic question to ask is: "Will we be able to guarantee that humans, electronics,
spacecraft and instruments, all that we are sending into space, will survive in the
environment in which they will have to operate?”.

1.1 Radiation effects in devices

In space, a charged particle may cause a disruption or permanent damage, it strikes
a sensitive node of an electronic circuit.
Our sun releases many charged and uncharged particles which include protons,

2

Introduction

heavy ions and neutrons. On the other hand, constantly, there is a stream of
charged particles from cosmic rays that strike the Earth. Many of these charged
particles get trapped in the Earth’s magnetic field and constantly circle the planet.
The Earth’s Van Allen Belt, which traps these charged particles, is shown in Fig.
1.1.
Given that in space, devices are no longer protected from Sun’s radiation by the
Earth’s atmosphere, this can cause spurious errors or stuck transistors in the
device’s circuitry.
Radiation damages the hardware either through its cumulative effects/total ionizing
dose (TID) or through its transient effects/single event effects (SEE).
Radiation hardening (rad-hard) allows a compute component to withstand such
errors. Rad-hard components are twice as slow and many times as expensive as
their regular equivalent single part.

Figure 1.1: Earth’s Van Allen Belt

1.2 Artificial Intelligence

The comeback of humans to the Moon and a future manned mission to Mars seem
to be likely achievements we may witness in the next few decades. Meantime, even

3

Introduction

more, ambitious plans and missions are being conceived by farsighted researchers
who dream about the exploration and colonization of even farther planets. In
the framework of these concrete future scenarios, the consolidation of artificial
intelligence methods in space engineering is certainly an enabling factor.
The advances achieved by man in the field of space exploration are sensational and
these also thanks to the use of technology, a technology that in recent decades has
seen improvement in many respects. The last frontier of innovation sees growing
interest in the use of neural networks for many fields of application.
Hardware platforms specialized for AI tasks have been applied in various applica-
tions and services, offered in the whole spectrum from the cloud to edge, close to
the consumer; therefore, such hardware platforms have made commercial, indus-
trial, and defence products feasible. End-user devices, such as autonomous cars,
smartphones, and robots, are a few examples of such products, see Fig 1.2.
Deep neural networks are responsible for some of the greatest advances in modern
computing. They have helped make substantial progress in long-standing problems:
computer vision, speech recognition, and natural language understanding. By
significantly improving the ability of computers to understand the meaning of
the world, deep neural networks are changing not only the field of information
technology but almost every field of science and human commitment.

As shows in Fig. 1.3, DNNs (also referred to as deep learning) are a part of
the broad field of AI, which is the science and engineering of creating intelligent
machines that can achieve goals as humans do.
Within artificial intelligence is a large subfield called machine learning and it
represents the computer ability to learn without being explicitly programmed. So
a single program will be able to learn how to do some activities outside the notion
of programming. This is in contrast to purpose-built programs whose behaviour
is defined by hand-crafted heuristics that explicitly and statically define their
behaviour.
Within the machine learning field, there is an area that is referred to as brain-inspired
computation ("the best ‘machine’ we know for learning and solving problems"). So
a brain-inspired computation is a program or algorithm that takes some aspects of
its basic form or functionality from the way the brain works.

4

Introduction

Figure 1.2: Deep Learning in the context of Artificial Intelligence.

1.2.1 Artificial Intelligence Methods in Space Engineering

The most successful AI implementations based on DL are rarely used in the space
industry today.
ML still has a long way to go before it is widely used for space applications, but
we are already starting to see it implemented in new technologies.
Potential applications of AI are also being thoroughly investigated in satellite
operations. In particular, to support the operation of large satellite constellations,
including relative positioning, communication and end-of-life management.
In addition, it is becoming more common to find ML systems analysing the huge
amount of data that comes from various space missions. The data from some Mars
rovers are being transmitted using AI, and these rovers have even been taught how
to navigate by themselves.
Its development has come a long way over the last couple of decades, but the
complicated models and structures necessary for ML will need to be improved
before they can be greatly useful.
Generally, developing autonomous spacecraft that use artificial intelligence to take

5

Introduction

Figure 1.3: Applications of AI/neural network accelerators

responsibility for themselves would be very useful for exploring new parts of the
Solar System and reducing mission costs.
Numerous studies have been conducted, that identified the necessary technology
to improve automation, including autonomous navigation, automated telemetry
analysis and software upgradability, also investigated using ML in the area of
guidance, navigation and control. In particular, they looked into using big swarms
of small robots that share their information in a network: if one robot learns from
experience that a certain stratagem is beneficial, the entire swarm learns this.
AI also currently lacks the reliability and adaptability required in new software;
these qualities will need to be improved before it takes over the space industry.
And this is where my work comes into play, the studies conducted in the field of
ML and in particular in the study of DNNs refer to infinite uses on earth. These
models may often not be suitable for a more hostile context, such as the one outside
our planet.
My thesis goal is to study existing ML models and techniques and discover their

6

Introduction

weaknesses and strengths, trying to build a robust and resilient model, which is
well suited to this context.
We have established that in space the devices undergo radiations that alter the
behaviour of the circuitry, alterations that can cause the overturning of bits. The
consequences of altering the circuitry impact the operation of the real application.
We have seen how new scientific research is pushing forward and involving the use
of NN in support of space missions, but what happens when the behaviour of the
circuitry is altered by the numerous radiations?
Let’s make a brief introduction, a neural network model will be trained to perform
one of the multiple possible tasks, this means that at the end of the training, I will
have a model able to receive new inputs. Given the new inputs, the model will
be able to measure the correct output, thanks to the parameters that have been
trained to achieve this task. Parameters are therefore a crucial requirement for the
application to operate in a real context.

Goal: our investigation starts by analyzing first what happens to the model
when our charged particles have caused a bit-flip in the memory of our device,
as shown in Fig. 1.4, we will explain in detail how this event happens in the
next chapter. The alteration in the device memory is directly correlated to an
alteration in the DNN parameters. What happens when a parameter of the NN is
changed/modified? Will the model still work fine or will it make it impossible to
work?
Answering this question needs tests, there are many tests carried out by simulating
the possible positions that could impact the device on the hardware, the tests at the
hardware level are hard and expensive. My work focuses on testing and studying
the behaviour of the model by simulating the possible failures that can affect the
NN through the software, in particular through the Monte Carlo technique to
determine the probability that the NN is affected by failures.
Once I have studied the outcomes that a single bit-flip has on our DNN, I want to
find out the outcomes that the accumulation of soft errors has on my DNN.
After a set amount of failures our network could have completely changed its
functioning, it is therefore very important to find out the number of failures that
the NN can tolerate. In particular, we could set a limit threshold of failures in

7

Introduction

Figure 1.4: Radiation cause errors in the device’s circuitry

order to re-program the device or apply refresh mechanisms to restore the initial
weights and guarantee that the application always works accurately.
The first part of my thesis focuses on analyzing and studying some models of NN,
knowing which DNN work best and what are the strengths to create an architecture
that is best suited to an environment teeming with failures. The potential of the
NN is also this, to study and design new models that optimize and improve the
performance of some tasks, we will also study the tolerance limit of the network
after which the model has completely broken its functioning.
The second part of the network will allow the exploration of methods and tech-
nologies that make the model more tolerable and resilient, trying to increase the
tolerability limit, this phase opens the way to a vastness of future work to create
models of NN that could open the way for the use of this new science in a context

8

Introduction

such as space. Opening the way to infinite scenarios can lead devices to be more
autonomous and improve the experience of space exploration by allowing us to
know new boundaries and new discoveries to enrich our knowledge of the universe
around us.

9

Chapter 2

The Problem

2.1 Radiation in deep space

If needed precaution in the form of shielding is not taken for space instruments,
the charged particle striking a sensitive node of the circuit could strike transient or
permanent damage.
These serious effects on electronic circuits can be classified under a phenomenon
called “Single Effect Event (SEE) which can be further divided into subcategories
as follows:

• Single Event Upset (SEU): A transient effect, affecting mainly memories

• Single Event Transient (SET): A temporary pulse traverses the circuit. Noth-
ing can be done about it

• Single Event Latchup (SEL): Can destroy the component , affecting mainly
CMOS

• Single Event Gate Rupture (SEGR): Potentially destructive, affecting sub-
micron structure

• Single Effect Breakdown (SEB): Has destructive impact, affecting mainly
power MOSFET

Some of these effects are only disruptive, such as SEU and SET and some others
can permanently damage a circuit such as SEL, SEGR and SEB.

10

The Problem

Circuit quality control testing is required before the launching of space instruments
to find out where the vulnerable nodes are and also to protect against the charged
particle strike.
A charged particle can strike an electronic circuit and creating electron-hole pairs
along its path, as shown in Fig. 2.1.

Figure 2.1: Charged particle strike an integrated circuit

When the charged particle hits sequential elements such as shift registers can be
disrupted by SEU causing a bit-flip (shown in red) and combinational elements
such as AND/OR gates can be affected by a SET which can upset another sequen-
tial element further ahead, as shown in Fig. 2.2.

11

The Problem

Figure 2.2: soft error effect in an integrated circuit

When it comes to protecting these charged particles, the integrated circuits can
be hard-coated or can be implemented substrates additional such as Silicon on
Sapphire (SOS) or Silicon On Insulator (SOI). However, since some nodes in the
circuit are more sensitive than others, testing needs to be done before the launch
of the space instrument to find out exactly where the vulnerable nodes are or to
verify if the implemented radiation hardening has been strong enough to protect
the integrated circuit against the striking radiation.

2.1.1 Single-event upset

Single-event upset (SEU) or transient radiation effects in electronics are state
changes of memory or register bits caused by a single ion interacting with the chip.
They do not cause permanent damage to the device but may cause lasting problems
to a system that cannot recover from such an error.
In very vulnerable devices, a single ion can cause a multiple-bit upset (MBU) in
adjacent memory cells.
SEUs can become Single-event functional interrupts (SEFI) when they upset control
circuits, such as state machines, placing the device into an undefined state, a test
mode, or a halt, which would then need a reset or a power cycle to recover.

12

The Problem

2.1.2 Physical hardening

This means using different materials, for example, insulating substrates such as
silicon or sapphire. Various approaches suggest shielding the circuit and alternative
doping mechanisms. Circuit based hardening: this involves adding extra circuit-
ry/logic to correct for the effects of SEEs. These include watchdog protection,
over-current circuits, power control and error-correcting circuits (ex. CRC and for-
ward error correction in communication boards). Error correction is implemented
both at the hardware and software-levels, such as in the main memory where
hardware-level ECC and software EDAC are applied in synergy.[1]

2.2 Radiation in AI-based device

The research is complete of studies on the effects of transient errors in devices. But
our investigation goes furthermore, studying how these transient errors affect an
NN application on a device that operates in space.
NNs are generally assumed to be tolerant against faults and imprecision to a
particular degree due to their distributed structures and redundancy. In other
words, NNs can be robust to noisy inputs and prove a low sensitivity to the faults,
and therefore, the outcome of the computation is not drastically affected. However,
a note of attention is needed here. Being fault-tolerant highly depends on not
only the architecture and size of the NN, but also the training that the NN knows.
For instance, small size NNs might not be fault-tolerant. Therefore, it cannot be
claimed that NNs are in general fault-tolerant.
Furthermore, the robustness and the potential fault-tolerant parts of neural models
invite for attention as permanent and transient faults, device variation, thermal
issues, and ageing will force designers to abandon current assumptions that transis-
tors, wires, and other circuit elements will perform perfectly over the entire lifetime
of a computing system.
This work is relevant to investigate how faults/errors will affect the performance
of hardware neural networks and whether the faults/errors can be mitigated by
leveraging the intrinsic features of neural networks with complementary techniques.
This analysis can be conducted on different levels of abstractions, from very specific
low-level physical implementations to the high-level intrinsic fault-masking capacity

13

The Problem

of neural paradigms. My analysis uses a high-level approach.

Figure 2.3: The vulnerable components and parameters of a single neuron to
fault injection

Some papers, such as [2], [3], [4], study the vulnerable components of the network
through low and high level injection mechanisms.
I have summarized in fig.2.3, the possible vulnerable components of a single artificial
neuron. All translate by altering the output of the calculation. The errors can
be different, they can for example have an error in the input of the first level or
an error in an intrinsic computation component of the network. But my analysis
focuses on the errors in the network parameters (weights and biases) which form
the basis for the network to perform the task for which it was designed.
This decision is the result of a lot of reasoning, I want to test the tolerance of the
overall NN and not simply the tolerance of some components. Fault simulation
analysis could then simulate the error behavior of all possible vulnerable compo-
nents.
Furthermore, the scope of my work focuses on the analysis of cumulative errors in
the NN.

14

The Problem

2.2.1 Single Event Upset in Neural Networks

[5] show the probability of at least one bit flip for all the parameters in one Neural
Network, assuming that the flip of each bit is independent. Equation is:

Pflip = 1− ((1− Psingle)NW)T
t

=
n−1∑
n=0

(
n

i

)
(−1)n−i+1P n−i

single, n = NxWx
T

t

' NxWx
T

t
xPsingle

in which N is the number of trained parameters, W is the data width of each
parameter, T is the device lifetime, t is the test time interval, and Psingle is the
probability for one bit-flip within t. The probability of Psingle depends on which
region of space the device will cross.

15

Chapter 3

Technologies

3.1 OVERVIEW OF DNN-S

DNNs come in an ample diversity of shapes and sizes depending on the application.
The popular shapes and sizes are also growing rapidly to increase accuracy and
efficiency. In all cases, the input to a DNN is a set of values representing the
information to be examined by the network. For example, these inputs can be pixels
of an image, sampled amplitudes of an audio wave or the numerical representation
of the state of some system or game.

Neural networks are a set of algorithms based on the functioning of the human
brain. Usually, what you see with your eyes is called data and is processed by the
neurons in our brain, and identifies what is around you (data processing). In a
comparable way, Neural Networks takes a large set of data, process the data (draws
out the patterns from data), and outputs what it is.
Neural networks sometimes called Artificial Neural networks(ANN’s), because
they artificially simulate the nature and functioning of the human brain. ANN’s
are constituted of a large number of highly interconnected processing elements
(neurones) working in cooperation to solve specific problems. An artificial neural
network consists of three groups of units (layers): a layer of “input” units is
connected to a layer of “hidden” units (where the hidden units are free to create
their own representations of the input), which is connected to a layer of “output”
units, as shown in fig 3.1.

16

Technologies

Figure 3.1: Artificial Neural networks

Figure 3.2: Artificial Neuron

3.1.1 Artificial Neuron

Before we examine Deep Neural Network let’s look into a single artificial neuron.
The neuron is the basic unit of computation in a neural network. Each input has a
connected weight (w), which is assigned on the basis of its relative importance to
other inputs. The node applies a function f (defined below) to the weighted sum
of its inputs as in fig. 3.2. It is represented by a mathematical function. It takes
i-inputs x, and each of them usually has its own weight w. The neuron calculates
the sum and it is passed through the activation function to the network further.

17

Technologies

According to this model, the mathematical formula for the output of this neuron is:

z = b+

∑
j

xjwj

output = σ(z)
. (3.1)

3.1.2 Convolutional Neural Networks (CNNs)

A common form of DNNs is Convolutional Neural Nets (CNNs), which are composed
of multiple CONV layers as shown in Fig. 3.3. In such networks, each layer
generates a successively higher-level abstraction of the input data, called a feature
map (fmap), which maintains essential yet unique information. Modern CNNs are
able to achieve excellent performance by operating a very deep hierarchy of layers.
CNNs are widely used in a variety of applications including image recognition,
speech recognition, gameplay, robotics, etc. This activity will focus on its use in
image processing, specifically for the task of image classification. Convolutional
Neural Networks are very similar to ordinary Neural Networks, but with a difference,
CNN architectures make the assumption that the inputs are images, which allows
us to encode some properties into the architecture. These then make the forward
function more efficient to implement and vastly reduce the number of parameters
in the network.

Figure 3.3: Convolutional Neural Networks

Each of the CONV layers in CNN is primarily composed of high-dimensional

18

Technologies

convolutions, as shown in Fig. 3.4. In this convolution, the input activations of
a layer are structured as a set of 2D input feature maps (ifmaps), each of which
is called a channel. Each channel is convolved with a distinct 2D filter from the
stack of filters, one for each channel, this stack of 2D filters is often referred to as a
single 3D filter. The results of the convolution at each point are summed across all
the channels.

Figure 3.4: Convolutions in CNNs

A simple ConvNet is a sequence of layers, and every layer of a ConvNet transforms
one volume of activations to another through a differentiable function. We use three
main types of layers to build ConvNet architectures: Convolutional Layer, Pooling
Layer, and Fully-Connected Layer (exactly as seen in regular Neural Networks).
We will stack these layers to form a full ConvNet architecture. Let’s see in more
detail how the level values work.

Depth-wise convolution

The standard convolution layer of a neural network involves input∗output∗width∗
height parameters, where width and height are width and height of filter. For an

19

Technologies

input channel of 10 and output of 20 with 7x7 filter, this will have 2800 parameters.
Having so many parameters increases the chance of over-fitting. To avoid this, have
been devised: Depth-wise convolution and depth-wise separable convolution.
To understand how it differs from the standard convolution, let’s take an example:
Suppose our input tensor is 3x8x8 (input = channelxwidthxheight). Filter is
3x3x3. In a standard convolution, we would directly convolve in-depth dimension
as well, as shown in Fig. 3.5.

Indeed, in depth-wise convolution, we use each filter channel only at one input
channel. In the example, we have 3 channel filter and 3 channel image. Depth-wise
convolution breaks the filter and image into three different channels and then
convolve the corresponding image with the corresponding channel and then stack
them back, as shown in Fig. 3.6.

To produce the same effect with normal convolution, Depth-wise convolution
selects a channel, make all the elements zero in the filter except that channel and
then convolve. We will need three different filters one for each channel. Although
parameters are remaining the same, this convolution gives you three output channels
with only one 3-channel filter while you would require three 3-channel filters if you
would use normal convolution.

Depth-wise Separable Convolution

Depth-wise separable convolution uses depth-wise convolution and after that we
use a 1x1 filter to cover the depth dimension, as show in Fig. 3.7.

One thing to notice is, how many parameters are reduced by this convolution
to output the same numbers of channels. To produce one channel we need 3x3x3
parameters to perform depth-wise convolution and 1x3 parameters to perform
further convolution in-depth dimension. But, If we need 3 output channels, we only
need 3 1x3 depth filters giving us a total of 36 (= 27 + 9) parameters while for the
same numbers of output channels in normal convolution, we need 3 3x3x3 filters
giving us a total of 81 parameters. Having too many parameters forces function to
memorize lather than learn and thus over-fitting. Depth-wise separable convolution
saves us from that.

20

Technologies

Figure 3.5: Standard convolution

21

Technologies

Figure 3.6: depth-wise convolution

3.1.3 Convolutional layers

In particular, the layers of a ConvNet have neurons arranged in 3 dimensions:
width, height, depth, as shown in fig. 3.8. The Conv layer is the core architecture
block of a Convolutional Network that does most of the computational work. The
main idea is to connect each neuron to only a local region of the input volume. (a
hyperparameter called the receptive field of the neuron), this is equivalent at the
filter size. The size of the connectivity along the depth axis is always equal to
the depth of the input volume. Instead, three hyperparameters control the size of
the output volume: depth, stride and zero-padding.

• Depth: of the output volume is a hyperparameter: it corresponds to the
number of filters we would like to use, each learning to look for something

22

Technologies

Figure 3.7: Depth-wise separable convolution

different in the input.

• Stride: with which we slide the filter. When the stride is 1 then we move the
filters one pixel at a time. Result is smaller output volumes. spatially.

23

Technologies

• Zero-padding: it will allow us to control the spatial size of the output
volumes.

We can calculate the spatial size of the output volume as a function of the input
volume size (W), the receptive field size of the Conv Layer neurons (F), the stride
with which they are applied (S), and the number of zero paddings used (P) on the
border. The correct formula for calculating how many neurons “fit” is given by
(WF + 2P)/S + 1.[6]

Figure 3.8: ConvNet arranges its neurons in three dimensions

3.1.4 Pooling Layer

A polling layer is usually inserted between convolutional layers to progressively
reduce the spatial size of the representation to reduce the number of parameters
and computation in the network, and hence to also control overfitting. The Pooling
Layer operates independently on every depth slice of the input and resizes it
spatially, using the MAX operation and the depth dimension remains unchanged.
An example of workflow can be seen in fig 3.9.

3.1.5 Fully Connected Layers

These layers are more possible generic: given S neurons and N inputs, all inputs
are found to all neurons, the result is S output. Each neuron associated with N
weights plus a bias because this is the number of inputs is received.
The weight associated with the inputs of each neuron obtained through learning
techniques such as gradient descend, a cost function is used to minimize the output
values error.

24

Technologies

Figure 3.9: Pooling layer down-samples the volume spatially. The most common
down-sampling operation is max, giving rise to max pooling.

3.1.6 Popular DNN Models

Numerous DNN models have been developed over the past two decades. Each
of these models has a different ‘network architecture’ in terms of the number of
layers, layer types, layer shapes (filter size, number of channels and filters), and
connections between layers. Learning these variations and trends is important for
consolidating the right flexibility in any efficient DNN engine.

• Alexnetwas the first CNN to win the ImageNet Challenge in 2012. It consists
of five CONV layers and three FC layers. Alexnet has a vast number of weights
and the shapes vary from layer to layer. In the first layer, the 3 channels of
the filter correspond to the red, green and blue components of the input image.
A ReLU non-linearity is used in each layer. Max pooling of 3Ö3 is involved in
the outputs of layers 1, 2 and 5. To reduce computation, a stride of 4 is used
at the first layer of the network. Within each CONV layer, there are 96 to 384
filters and the filter size ranges from 3Ö3 to 11Ö11, with 3 to 256 channels
each. In total, AlexNet requires 61M weights and 724M MACs to process one
227Ö227 input image. [7]

• Resnet (also known as Residual Net) utilises residual connections to go even
deeper (34 layers or more). It was the first entry DNN in ImageNet Challenge

25

Technologies

that exceeded human-level accuracy with a top-5 error rate below 5%. One of
the challenges with deep networks is the vanishing gradient during training:
as the error backpropagates through the network the gradient shrinks, which
affects the ability to update the weights in the earlier layers for very deep
networks. Residual net proposes a "shortcut" module that includes an identity
a connection such that the weight layers (ex. CONV layers) can be skipped,
as shown in Fig. 3.12. Rather than learning the function for the weight layers
F (x), the shortcut module discovers the residual mapping (F (x) = H(x)x).
Initially, F (x) is zero and the identity connection is taken, but then gradually
during training, the actual forward connection through the weight layer is
used. ResNet also uses the "bottleneck" approach of using 1×1 filters to reduce
the number of weight parameters. As a consequence, the two layers in the
shortcut module are replaced by three layers (1Ö1, 3Ö3, 1Ö1) where the 1Ö1
reduces and then restores the number of weights. ResNet-50 consists of one
CONV layer, followed by 16 shortcut layers (each of which are three CONV
layers deep), and one FC layer. It requires 25.5M weights and 3.9G MACs
per image. [8]

• Mobilenet: is based on exploring an automated neural architecture search
approach for designing mobile models using reinforcement learning. To deal
with mobile speed constraints, this approach explicitly combines the speed
information into the main reward function of the search algorithm, so that the
search can identify a model that performs a good trade-off between accuracy
and speed (Pareto optimal solutions1).
To strike the right balance between search flexibility and search space size,
mnasnet is proposed as a novel factorized hierarchical search space, which
factorizes a convolutional neural network into a sequence of blocks and then
uses a hierarchical search space to determine the layered architecture for
each block. In this way, this approach allows different layers to use different
operations and connections. Meanwhile, this approach forces all layers in each
block to share the same structure, thus significantly reducing the search space

1This is a situation where no individual or preference criterion can be better off without
making at least one individual or preference criterion worse off or without any loss thereof

26

Technologies

size by orders of magnitude compared to flat per-layer search space. The
network architecture is shown in Fig. 3.10.[9]

Figure 3.10: Example of MnasNet Architecture – (a) is a representative model;
(b) - (d) are a few corresponding layer structures. MBConv denotes mobile inverted
bottleneck conv, DWConv denotes depthwise conv, k3x3/k5x5 denotes kernel size,
BN is batch norm, HxWxF denotes tensor shape (height, width, depth), and
×1/2/3/4 denotes the number of repeated layers within the block.

27

Technologies

Figure 3.11: (a) Standard convolutional layer with batch normalization and
ReLU. (b) Depth-wise separable convolution with depth-wise layers followed by
batch normalization and ReLU.

3.2 DNN DEVELOPMENT RESOURCES

One of the key factors that have allowed the rapid expansion of DNNs is the set of
development resources that have been made available by the research community
and industry. These resources are also key to the development of DNN accelerators
by providing characterizations of the workloads and promoting the exploration
of trade-offs in model complexity and accuracy. This section will explain these
resources such that those who are involved in this field can quickly get started.

3.2.1 Frameworks

For the prosperity of DNN development and to permit sharing of trained networks,
some deep learning frameworks are developed from various sources. These open-
source libraries include software libraries for DNNs. Caffe was made possible in

28

Technologies

Figure 3.12: Shortcut module from ResNet

2014 from UC Berkeley. It supports C, C++, Python and MATLAB. Tensorflow
was released by Google in 2015, and supports C++ and Python; it also carries
multiple CPUs and GPUs and has more flexibility than Caffe, with the computation
expressed as dataflow graphs to attain the tensors (multidimensional arrays).
Another popular framework is Torch, which was released by Facebook and NYU
and supports C, C++ and Lua. There are higher-level libraries that may run on
top of the aforementioned frameworks to supply a more universal experience and
faster development. One example of such libraries is Keras, which is written in
Python and supports Tensorflow, CNTK and Theano.
The presence of such frameworks don’t seem to be only a useful aid for DNN
researchers and application designers, but they’re also precious for engineering
high performance or more efficient DNN computation engines. specifically, because

29

Technologies

the frameworks make heavy use of set primitive operations, like processing of a
CONV layer, they’ll incorporate the employment of optimized software or hardware
accelerators. This acceleration is transparent to the user of the framework. Thus, as
an example, most frameworks can use Nvidia’s cuDNN library for rapid execution
on Nvidia GPUs.

Pytorch

PyTorch could be a library for Python programs that facilitates building deep
learning projects. It emphasizes flexibility and allows deep learning models to be
expressed in idiomatic Python. This approachability and easy use found early
adopters within the research community, and within the years since its first release,
it’s grown into one in every of the most prominent deep learning tools across a
broad range of applications.
As Python does for programming, PyTorch provides a wonderful introduction to
deep learning. At the identical time, PyTorch has been proven to be fully qualified
to be used in professional contexts for real-world, high-profile work. We believe
that PyTorch’s clear syntax, streamlined API, and simple debugging make it a
wonderful choice for introducing deep learning.
At its core, the deep learning machine may be a rather complex function mapping
inputs to an output. To facilitate expressing this function, PyTorch provides a
core system, the tensor, which could be a multidimensional array that shares many
similarities with NumPy arrays. Around that foundation, PyTorch comes with
features to perform accelerated mathematical operations on dedicated hardware,
which makes it convenient to style neural network architectures and train them on
individual machines or parallel computing resources.

Why Pytorch?

Output Rephrased/Re-written Text More concretely, programming the deep learn-
ing machine is extremely natural in PyTorch. PyTorch gives us an information type,
the Tensor , to carry numbers, vectors, matrices, or arrays normally. additionally, it
provides functions for operating on them. We can program with them incrementally
and, if we want, interactively, similar to we are accustomed from Python.

30

Technologies

PyTorch offers two things that make it particularly relevant for deep learning: first,
it provides accelerated computation using graphical processing units (GPUs), often
yielding speedups within the range of 50x over doing the identical calculation on a
CPU. Second, PyTorch provides facilities that support numerical optimization on
generic mathematical expressions, which deep learning uses for training. Note that
both features are useful for scientific computing generally, not exclusively for deep
learning. In fact, we are able to safely characterize PyTorch as a high-performance
library with optimization support for scientific computing in Python.

Jupyter Notebook

The Jupyter Notebook is an open source web application that you simply can use
to make and share documents that contain live code, equations, visualizations, and
text.
A Jupyter Notebook shows itself as a page within the browser through which we are
able to run code interactively. The code is evaluated by a kernel, a process running
on a server that’s able to receive code to execute and remand the results, which are
then rendered inline on the page. A notebook maintains the state of the kernel, like
variables defined during the evaluation of code, in memory until it’s terminated or
restarted. The elemental unit with which we interact with a notebook may be a cell:
a box on the page where we will type code and have the kernel evaluate it (through
the menu item or by pressing Shift-Enter). We are able to add multiple cells in an
exceedingly notebook, and therefore the new cells will see the variables we created
within the earlier cells. The worth returned by the last line of a cell are going to
be printed right below the cell after execution, and also the same goes for plots.
By mixing ASCII text file, results of evaluations, and Markdown-formatted text
cells, we are able to generate beautiful interactive documents. Colaboratory is a
free Jupyter notebook environment that needs no setup and runs entirely within
the cloud. With Colaboratory you’ll write and execute code, save and share your
analyses, and access powerful computing resources, all free from your browser.
Google Colab comes with collaboration backed within the product. In fact, it’s a
Jupyter notebook that leverages Google Docs collaboration features. It also runs
on Google servers and you don’t have to install anything. Moreover, the notebooks
are saved to your Google Drive account.

31

Technologies

3.2.2 Models

Pre-trained DNN models can be downloaded from various websites for the various
different frameworks. It should be noted that even for the same DNN the accuracy
of these models can vary by around 1% to 2% depending on how the model was
trained.

Pytorch Model Zoo

This lists model archives that are pre-trained and pre-packaged, ready to be served
for inference with TorchServe.
The models subpackage contains definitions of models for addressing different tasks,
including: image classification, pixelwise semantic segmentation, object detection,
instance segmentation, person keypoint detection and video classification.

3.2.3 Datasets for Classification

Imagenet : is a very large dataset of over 14 million images managed by Stanford
University. All of the images are labeled with a hierarchy of nouns that come
from the WordNet dataset (http://wordnet.princeton.edu), which is in turn a large
lexical database of the English language. A subset of images is shown in Fig. 3.13.

Figure 3.13: Imagenet dataset

The accuracy of the ImageNet Challenge are described using two metrics: Top-5
and Top-1 error. Top-5 error means that if any of the top five scoring categories

32

Technologies

are the correct category, it is counted as a correct classification. The Top-1 wants
that the top-scoring category is correct.

3.2.4 Dataset in my analysis

I mainly used a test set, called Imagenette, because, I wanted a small vision dataset,
I could use to quickly see if my ideas might have a chance of working. They normally
don’t, but testing them on Imagenet takes a long time for me to find that out,
especially because I’m interested in algorithms that perform particularly
well at the end of training.

• Imagenette is a subset of 10 easily classified classes from Imagenet (tench,
English springer, cassette player, chain saw, church, French horn, garbage
truck, gas pump, golf ball, parachute).

• Imagewoof is a subset of 10 classes from Imagenet that aren’t so easy to
classify, since they’re all dog breeds. The breeds are: Australian terrier, Border
terrier, Samoyed, Beagle, Shih-Tzu, English foxhound, Rhodesian ridgeback,
Dingo, Golden retriever, Old English sheepdog.

3.2.5 Traning

Since DNNs are an instance of a machine learning algorithm, the essential applica-
tion doesn’t change because it learns to perform its given tasks. Within the specific
case of DNNs, this learning requires learning the worth of the weights (and bias)
within the NN and is spoken as training the network. Once trained, the program
can perform its task by computing the output of the network using the weights
determined during the training process. Running the program with these weights
is noted as inference.
In this section, we are going to use image classification, as shown in Fig. 3.14, as a
driving example for training and employing a DNN. When we perform inference
employing a DNN, we give an input image and therefore the output of the DNN
could be a vector of scores, one for each object class; the category with the best
score shows the most likely class of object within the image.
The overarching goal for training a DNN is to work out the weights that maximize

33

Technologies

the score of the right class and reduce the score of the wrong classes. Generally,
when training the network the right class is usually known because it’s given for
the pictures used for the training set.
Furthermore, the gap between the perfect correct scores and also the scores com-
puted by the DNN supported its current weights id said because of the loss(L).
The goal of coaching DNNs is to search out a group of weights to attenuate the
typical loss over an outsized training set.
The process to update weights is named gradient descent. A multiple of the gradient
of the loss relative weight, which is that the derivative of the loss with relevance to
the load, is employed to update the burden. This process indicates how the burden
should change to cut back the loss. The process is repeated iteratively to scale
back the loss.
An efficient thanks to computing partial derivates of the gradient is through a
process called backpropagation, that operates by passing values backwards through
the network to the computer how the loss is suffering from each weight.
Backpropagation requires intermediate outputs of the network to be preserved
for the backwards computation, thus training has increased storage requirements.
Second, thanks to the gradients use for hill-climbing, the precision requirement for
training is generally over inference.
A variety of techniques are accustomed to improve the efficiency and robustness of
coaching. for instance, often the loss from multiple sets of input files, a batch, are
collected before a a single pass of weight update is performed; this helps to hurry
up and stabilize the training process.
There are multiple ways to coach the weights. The most common approach, as
described above, is termed supervised learning, where all the training samples are
labelled (with the true class).
Unsupervised learning is another approach where all the training samples don’t seem
to be labelled and essentially the goal is to seek out the structure of clusters within
the data. Semi-supervised learning falls in between the 2 approaches where only a
tiny low subset of the training data is labelled (use unlabeled data to define the
cluster boundaries and use the small volume of labelled data to label the clusters).
Finally, reinforcement learning will be accustomed to the train weights such that
given the state of this environment, the DNN can output what action the agent

34

Technologies

should take next to maximise expected rewards; however, the rewards may not be
available immediately after an action, but instead only after a series of actions.
Another usually used approach to work out weights is fine-tuning, where previously-
trained weights are available and are used as a start line so those weights are
adjusted for a replacement dataset (ex. transfer learning) or a replacement con-
straint (ex. reduced precision). This leads to faster training than starting from a
random place to begin, and might sometimes result in better accuracy.

Figure 3.14: The confidence scores for a image

3.2.6 Inference

Inference applies knowledge from a trained neural network model and uses it
to compute a result. So, given a replacement unknown data set as input through a
trained neural network, it outputs a prediction supported predictive accuracy of
the neural network.
In practice, the utilization of CNNs consists of two main tasks: training and
inference. Training is that the process of “learning” the optimal set of weights
that maximize the accuracy of the wanted task (ex. image classification, object
detection, semantic segmentation).
Training may be a highly compute-intensive process often accelerated by GPUs.
The inference is the process of employing a trained model (where parameters aren’t
any longer modified) to create decisions on novel data. The inference could be a
less compute-intensive process than training and has been performed on CPUs,

35

Technologies

GPUs, and FPGAs.
Deep learning inference networks became a standard part of terrestrial systems
today, large continuously trained models generally reside inside server clusters.
Increasingly however frozen inference models are being deployed onto mobile and
embedded devices.
DNN models created for image classification, tongue processing, and other AI jobs
are large and sophisticated, with dozens or many layers of artificial neurons and
millions or billions of weights connecting them. The larger the DNN, the more
compute, memory and energy are consumed to run it, and also the length is going
to be the response time (or “latency”) from after you computer file to the DNN
until you receive a result. But sometimes the utilization case requires that inference
run in no time or at very low power.
For example, a self-driving car must be able to detect and react within milliseconds
in order to avoid an accident. And a battery-operated drone designed to follow
a target or land in your hand needs to be power-efficient to maximise flight time.
In such cases, there is a request to simplify the DNN after training so as to cut
back power and latency, even if this simplification leads to a small reduction in
prediction accuracy.

3.2.7 Tensor

Floating-point numbers are the way a network deals with information,so we need
a way to encode real-world data of the kind we want to process into something
digestible by a network and then decode the output back to something we can
understand and use for our purpose.
To this end, PyTorch introduces a fundamental data structure: the tensor. In the
context of deep learning, tensors refer to the generalization of vectors and matrices
to an arbitrary number of dimensions (or multidimensional array). PyTorch tensors
have the ability to perform very fast operations on graphical processing units
(GPUs) and also distribute operations on multiple devices or machines.
The dtype argument to tensor constructors specifies the numerical data (d) type
that will be contained in the tensor. Possible values for the dtype argument:

• torch.float32 or torch.float : 32-bit floating-point

36

Technologies

• torch.float64 or torch.double : 64-bit, double-precision floating-point

• torch.float16 or torch.half : 16-bit, half-precision floating-point

• torch.int8 : signed 8-bit integers

• torch.uint8 : unsigned 8-bit integers

• torch.int16 or torch.short : signed 16-bit integers

• torch.int32 or torch.int : signed 32-bit integers

• torch.int64 or torch.long : signed 64-bit integers

• torch.bool : Boolean

Computations occurring in neural networks are typically executed with 32-bit
floating-point precision. Higher precision, like 64-bit, will not buy improvements in
the accuracy of a model and will require more memory and computing time.
The 16-bit floating-point, the half-precision data type is not present natively in
standard CPUs, but it is offered on modern GPUs. It is possible to switch to
half-precision to decrease the footprint of a neural network model if needed, with a
lesser impact on accuracy.
Neural networks take tensors as input and produce tensors as outputs. All operations
within a neural network and during optimization are operations between tensors,
and all parameters (for example, weights and biases) in a neural network are
tensors.

3.3 HARDWARE FOR DNN PROCESSING

DNN training and inference are computation-intensive processes but in very different
ways. Training needs high throughput, thus is most often carried out by GPUs, given
their massive parallelism, simple control flow, and energy efficiency. It is common
to batch hundreds of training inputs (for example images in a computer vision
task, sentence sequences in an NLP task or spectrograms in a speech recognition
task) and perform forward or backward propagation on them as one unit of data
simultaneously to amortize the cost of loading the network weights from GPU

37

Technologies

memory across many inputs.
For inference, however, the paramount performance goal is latency. To minimize
the network’s end-to-end response time, inference typically batches a much smaller
number of inputs than training, as automated services relying on inference are
required to respond in near real-time.
While training is mostly dominated by GPUs, there are several players in the
inference hardware market.

3.3.1 Overview of platforms

We can give a brief overview of each architecture:
CPU: Most current Multi-core CPUs operate in the same way as single-processor
CPUs, using the shared memory paradigm for communication, with synchronisation
achieved via a shared cache (or core-to-core cache coherency protocol). Each core
hosts one thread at a time, with a set of registers containing thread state, an ALU
dedicated to the current thread (containing a number of functional units), and a
large unit devoted to management and scheduling tasks, such as branch prediction,
instruction ordering, speculative execution, and so-on.
GPU: The idea behind GPUs is to dedicate the maximum amount of silicon area
as possible to ALUs, by removing all the scheduling logic and caches required to
take advantage of instruction-level parallelism and reduce memory latency in CPUs.
Instead, thread-level parallelism is employed to cover latency, with each CPU
executing up to 1024 threads without delay. The threads execute in batches of 32
threads called warps, providing SIMD style parallelism, but with the flexibility to
independently enable and disable each thread within a warp, allowing each thread
to execute different parts of the program. However, this batching comes at a cost:
the fewer threads within a warp that is active, the fewer parallel operations are
executed per cycle. It’s critical to minimise thread divergence, by making sure that
every one thread take the identical branch of conditional statements, and execute
loops an identical number of times.
FPGA: FPGAs don’t have any fixed instruction-set architecture. Instead, they
provide a fine-grain grid of bit-wise functional units, which can be composed to
make any desired circuit or processor. Much of the FPGA area is truly dedicated

38

Technologies

to the routing infrastructure, which allows functional units to be connected at run-
time. Modern FPGAs also contain a variety of dedicated functional units, like DSP
blocks containing multipliers, and RAM blocks. These chips are manufactured for
general use with configurable logic blocks (CLBs) and programmable interconnects.
This implies you’ll program and reprogram FPGAs to perform numerous functions
after they need to leave the manufacturer and are getting used within the field.
ASIC: for application-specific microcircuit. This computer circuit is aptly named
since an ASIC microchip is intended and made for one particular application and
doesn’t allow you to re-program or modify it after it’s produced. This suggests
ASICs aren’t intended for general use, you need to have ASICs created to your
specifications for your product. ASICs are available in some differing kinds, includ-
ing gate array, primary cell and custom designs. These types are differentiated
from one another by the amount of customization they provide during the planning
process.

3.3.2 Inference on HW

GPU: GPU accelerators have a peak higher throughput than a single-socket CPU
server.
To help developers better support its hardware, Nvidia’s cuDNN library provides
a series of inference optimizations for GPUs. In small-batch scenarios, cuDNN
improves on the matter of convolution algorithms not having the ability to parallelize
enough threads to fill the GPU. The standard algorithm like pre-computed implicit
GEMM (generalized matrix-matrix product) is optimized for giant output matrices,
and it’s default parallelization strategy suffers from the matter of not having the
ability to launch enough thread blocks as long as batch size could be a multiplicative
consider one in every of the output matrix dimensions.
The latest versions of cuDNN updated this algorithm by splitting in a further
dimension, which reduces the number of computations per thread block and
enables the launching of significantly more blocks, increasing GPU occupancy and
performance.
FPGA: FPGAs often produce better performance per watt of power consumption
than GPUs, especially for sliding-window computations like convolution and pooling.
This makes them particularly attractive to industry users who ultimately care more

39

Technologies

about reducing costs for big-scale applications and also the ability to customize
the inference architecture for a specific application.
Traditionally not competitive against GPUs on peak floating-point performance,
the sphere of FPGA for DNN inference is improving fast.
ASIC: researchers and industrialists is investing heavily in ASICs (Application
Specific Integrated Circuits) further, believing that an infatuated chip design
would yield ultimately superior performance for one single variety of computational
workload.
Google’s TPU is one such example. TPU often delivers 15x to 30x faster inference
than CPU or GPU, and even more per watt at a comparable cost level. Its
outstanding inference performance originates from four, among others, major
design optimizations: Int8 quantization, DNN-inference-specific CISC instruction
set, massively parallel matrix processor, and minimal deterministic design. [10]

3.4 METRICS

3.4.1 Metrics for DNN Models

To evaluate the properties of a given DNN model, we should consider the following
metrics:

• The accuracy of the model in terms of the top-5 error on dataset. (In case,
typeof data augmentation used)

• The network architecture of the model, including number of layers, filter size,
number of filters and number of channels.

• The number of weights impact the storage requirement of the model.

• The number of MACs that need to be performed. It id somewhat indicative f
the number of operations and potential throughput of the DNN.

3.4.2 Metrics for DNN Hardware

To measure the efficiency of the DNN hardware, we should consider the following
additional metrics:

40

Technologies

• The power and energy consumption of the design should be reported for
various DNN models. The DNN model specifications should be provided
including which layers and bit precision are supported by the hardware during
measurement. In addition, the amount of off-chip accesses (ex DRAM accesses)
should be included since it accounts for a significant portion of the system
power. It can be reported in terms of the total amount of data that is read
and written off-chip per inference.

• The latency and throughput should be reported in terms of the batch size and
the actual run time for various DNN models, which accounts for mapping
and memory bandwidth effects. This provides a more useful and informative
metric than peak throughput.

• The cost of the chip depends on the area efficiency, which accounts for the
size and type of memory (e.g., registers or SRAM) and the amount of control
logic. It should be reported in terms of the core area in squared millimeters
per multiplier along with process technology.

In terms of cost, different platforms will have different implementation-specific
metrics. For instance, for an FPGA, the specific device should be reported, along
with the utilization of resources such as DSP, BRAM, LUT and FF, performance
density such as GOPs/slice can also be reported.

3.4.3 Fault tollerance Metric

A neural network N performing a computation HN is said to be fault tolerant if
the computation HN fault , performed by a faulty network Nfault obtained from
N , is close to HN . Formally, for ε>0, N is called ε -fault-tolerant, if it tolerates
faulty components (for instance neurons/ synapses) for any subset of size at most
nfails: ∥∥∥HN (X)−HNfault

(X)
∥∥∥ ≤ ε, ∀X ∈ T (3.2)

where X is any stimuli, applied to the networks N and Nfault , that belongs to
the training set T or is part of the input data to be processed by the networks. Given
a problem, he goal for fault tolerance is to determine the network N that performs

41

Technologies

the required computation and has the additional property that is ε -fault-tolerant
with respect to T .

Moreover, in a strict sense, a neural network is absolutely or complete fault-
tolerant to a class and number of faults if their effects measured by the chosen figure
of merit is null. The complete fault tolerance requirement can be minimised toward
easy degradation if we allow that the increase in the error is below a predefined
threshold as stated in equation 1. Thus, recall that, when a statement about fault
tolerance is made, it should be implicitly assumed a failure condition or criterion
of the network functionality, which is the threshold below which it can no longer
perform its function according to the specification. As such, fault tolerance in
neural networks depends on the definition of the acceptable degree of performance
and its intended application [11].

42

Chapter 4

Methodology

Deep neural networks have promising applications for data analytics in industrial
applications, but they must consider the safety and reliability standards of the
industries where they are applied.
This challenges us to measure and learn the error resilience aspects of these DNN
systems.
My thesis focuses on two steps: (1) doing a software-level fault injection to discover
network vulnerabilities and tolerance limits and (2) looking for a fault tolerance
technique that makes the system more resilient.
Previous work for both phases is based on simulation and mitigation techniques at
the hardware level.
Usually, to measure the robustness of a circuit there are radiation tests, which
however are very expensive, fault injection techniques based on analysis tools or
software programs describe a valid option to evaluate the reliability of a project,
safety and fault coverage. And usually, traditional methods to protect computer
systems from soft errors typically replicate the hardware components (Triple Modu-
lar Redundancy/TMR). While these methods are useful, they often influence large
overheads in energy, performance and hardware cost.
Before starting the discussion, let’s make some assumptions. As we saw in the
previous chapter, many specialized accelerators have been proposed for DNN infer-
encing. Generalizing, a DNN accelerator consists of a global buffer and an array of
parallel processing engines, as shown in Fig. 4.1.

43

Methodology

Figure 4.1: Architecture of general DNN accelerators

Figure 4.2: Hardware Accelerators of Deep Learning Models

Although DNNs can be performed on different hardware solutions, as can be
seen in Fig 4.2. My discussion does not assume that our system runs on a particular
device. We take it for granted that regardless of the hardware used, a charged
particle that impacts the device also impacts the software application.

44

Methodology

The consequences of soft errors that occur in DNN systems can be catastrophic as
many of them are safety-critical, and error mitigation is required to meet certain
reliability objectives. For example, in autonomous devices, a soft error can lead
to miss-classification of objects, resulting in a wrong action taken by the device.
In our fault injection experiments, we found many cases where an object can be
miss-classified under a soft error.

Related Work

Laser beam and row hammer attacks are two common techniques used for injecting
faults into memory. Both of them can alter the logic values in memory with high
precision (single bit flip).
Laser beam can inject fault into SRAM. By exposing the silicon under laser beam,
a temporary conductive channel is formed in the dielectric, which in turn causes
the transistor to switch state in a precise and controlled manner.[12]
Row hammer can inject fault into DRAM. It exploits the electrical interactions
between neighboring memory cells. By rapidly and repeatedly accessing a given
physical memory location, a bit in its adjacent location may flip. By profiling the
bit flip patterns in DRAM module and abusing the memory manage features, row
hammer can reliably flip a single bit at any address in the software stack. [13]
Several studies have been conducted towards modifying the network parameters
to attack DNNs. Liu et al. in [4] proposed two fault injection attacks, i.e., Single
Bias Attack (SBA) and Gradient Descent Attack (GDA). Studies have also been
conducted for injecting faults in the computations during the execution of the
DNNs. Towards this, Breier et al. in performed an analysis of using a laser to
inject faults during the execution of activation functions in a DNN to achieve
misclassification. The attack proposed by Breier et al. can be employed even when
the DNN is unknown. [2] The literature goes to investigate the attachment points
of a DNN, so DNNs have several inherent vulnerabilities.[14] In fig 4.3 are shown
fault can affect a DNN system, as data stored in the memory, the control path of a
DNN-based system, or the computational blocks. These faults can be injected using
well-known techniques (variations in voltage, Electromagnetic (EM) interference,
and heavy-ion radiation).

45

Methodology

Damage can occur in the pre-processing phase of the image, an SEU introduces an
noise at the input of the trained DNN during the inference. This imperceptible
noise can either perform targeted misclassification or maximize the prediction error.
Since these attacks cause vulnerabilities only at one image, therefore, this problem
is not addressed in my discussion. Network parameters or computations can also
be affected by SEUs. The core of DNN operation lies in the parameters, the
parameters that have been trained to perform one of the many possible real-world
tasks. For this reason, our discussion will focus on the impact of soft errors in
parameters.

Figure 4.3: Threats to a DNN-based system

As shown in the chapter "The Problem", the points of sensitivity of a neural
network are many. Given DNN threats, as shown in Fig. 4.3, these correspond to
an alteration of the value that enters the artificial neuron. My analysis generalizes
the problem, we estimate the robustness of the network to the alteration of its
parameters through fault injection mechanisms that simulate its behavior in a real
situation.

46

Methodology

4.1 Fault injection

Failure injection aims to understand and verify if the response of a system conforms
with its specifications under normal stress conditions. It’s a technique that was first
used to induce faults at the hardware level, specifically, at pin-level by changing
the electrical signals on hardware devices.
In software engineering, failure injection helps improve the resiliency of a software
system and enables the correction of potential failure tolerance deficiencies in that
system. This is called fault removal. It also helps evaluate the potential impact
of failure before it occurs in production. This is called failure forecasting. Failure
injection has several key benefits:

• Understand and practice contingency and incident response.

• Understand the effects of real-world failures.

• Understand the effectiveness and limits of fault tolerance mechanisms.

• Remove design faults and identify single points of failure.

• Understand and improve the observability of the system.

• Understand the blast-radius of failures and help reduce it.

• Understand failure propagation between system components.

Fault injection attacks are also a popular attacks against cryptographic circuits
and can be applied to bypass security, one example is the related works we have
explored. Many different fault-injection techniques have been exploited that can be
categorized as: software-based, hardware-based, simulation-based, emulation-based
or hybrids [15].

Software Fault Injection

Hardware errors have become more conspicuous with reducing feature sizes. How-
ever, tolerating them exclusively in hardware is pricey. Researchers have explored
software-based techniques for building error-resilient applications for hardware

47

Methodology

faults. However, software-based error resilience techniques need configurable and
accurate fault injection techniques to judge their effectiveness.
My analysis is predicated on a simulation of injections of faults like how it’s ex-
hausted related works but simulating the injection already at a high level.
For the feasibility study of my software simulation platform, I found recent articles
to be explored. Particularly, PyTorchFI may be a run-time perturbation tool for
deep neural networks (DNNs), implemented for the popular PyTorch deep learning
platform. PyTorchFI allows users to perform perturbations on weights or neurons of
DNNs at runtime. It also implements an extensible interface, enabling researchers
to choose from multiple perturbation models (or design their own custom models),
which allows for the study of error (or general perturbation) propagation to the
software layer of the DNN output.
Additionally, PyTorchFI is very versatile: it demonstrates how the platform is
applied to 5 different use cases for dependability and reliability research, including
resiliency analysis of classification networks, resiliency analysis of object detection
networks, analysis of models robust to adversarial attacks, training resilient models
and DNN interpretability.[16]
This type of approach has some limitation: PyTorchFI operates at the application
level of DNNs, which is useful for modeling high level perturbations and under-
standing their effect at the system level. Lower level perturbation models, such
as register-level faults, cannot be captured at this level. However, we can still use
PyTorchFI to model lower level faults by mapping them to either single or multiple
bit-flips (in single or multiple neurons). Recent studies have shown that high level
models can be used to study the effect of errors at the system level [17], [18]. At
the same time, higher level models can run 4-6 orders of magnitude faster and are
less expensive compared to low-level implementation.
Even if it is impossible to simulate some hardware failures at the software level,
what we want to analyze is the impact of perturbations that occur on the network
as a whole. They study the fault tolerance in the various networks and in the
various levels of the network.

48

Methodology

4.1.1 My FI technique

I present my FI technique, an open-source perturbation tool for DNNs implemented
for the PyTorch deep learning framework. My FI tetechnique is an easy-to-use,
extensible, fast, and versatile tool for compute resiliency analysis performing
perturbations in parameters of DNNs before inference/test following the Monte
Carlo approach.

Monte Carlo approach

Monte Carlo Simulation, also called the Monte Carlo Method or a multiple proba-
bility simulation, could be a mathematical technique, which is employed to estimate
the possible outcomes of an uncertain event. The Monte Carlo Method was invented
by John John von Neumann and Stanislaw Ulam during war II to boost deciding
under uncertain conditions. It was named after a well known casino town, called
Monaco, since the element of chance is core to the modeling approach, the same as
a game of roulette.
Since its introduction, Monte Carlo Simulations have assessed the impact of risk
in many real-life scenarios, like in artificial intelligence. They also provide variety
of benefits over predictive models with fixed inputs, like the power to conduct
sensitivity analysis. Sensitivity analysis allows decision-makers to work out the
impact of individual inputs on a given outcome.
Unlike a traditional forecasting model, Monte Carlo Simulation predicts a collection
of outcomes supported an estimated range of values versus a group of fixed input
values. In other words, a town Simulation builds a model of possible results by
leveraging a probability distribution, like a regular or distribution, for any variable
that has inherent uncertainty. It, then, recalculates the results over and over, on
every occasion employing a different set of random numbers between the minimum
and maximum values. during a typical Monte Carlo experiment, this exercise may
be repeated thousands of times to supply an oversized number of likely outcomes.
Monte Carlo Simulations are utilized for long-term predictions because of their
accuracy. because the number of inputs increase, the quantity of forecasts also
grows, allowing you to project outcomes farther call at time with more accuracy.
When a Monte Carlo Simulation is complete, it yields a spread of possible outcomes

49

Methodology

with the probability of every result occurring.
One simple example of a town Simulation is to contemplate calculating the probabil-
ity of rolling two standard dice. There are 36 combinations of dice rolls. supported
this, you’ll manually compute the probability of a selected outcome. employing a
town Simulation, you’ll simulate rolling the dice 10,000 times (or more) to realize
more accurate predictions.

Single bit flip within the DNN

The first analysis is important to the understanding of the impact within the DNN
of SEU-induced perturbation.
It is crucial to select an appropriate fault model to measure the impact of SEU-
induced failures to DNNs. On overview of my FI simulation is shown in Fig. 4.4.

Figure 4.4: FI simulation - workflow

My simulation is divided into the following steps:

• Calculate layer probabilities: Regardless of the device on which they will
be implemented, the weights will be stored on the device. Generally, our
weights can look like in fig. 4.5. Network levels have a different number of
parameters (weights + bias). Typically, fully connected levels are made up of
a greater number of parameters.
In my discussion, I have assumed that if a level has a greater number of
weights, this means that it also has a greater air to memorize. This implies
that if I have a larger air, SEU’s probability of hitting that air is greater.

50

Methodology

Figure 4.5: Hardware implementation of memory neural network

Figure 4.6: Golden output example

Hence, I have assumed that each level has a different probability of being
affected by SEU. Given:

X = {layeri}, i = 1, .., L (4.1)

where L is the number of layers in DNN. The probability is calculated according

51

Methodology

to the following equation:

PSEU(layeri) = Nlayer

NDNN

(4.2)

where Plevel is the layer probability of being affected by an SEU/error/failure,
Nlevel is the number of layer parameters and NDNN is the total number of
DNN parameters. In probabilities, the connection between each outcome
for a random variable and their corresponding probabilities is explained as a
probability distribution.
Each probability P (layeri) must be between 0 and 1:

0 ≤ PSEU(layeri) ≤ 1 (4.3)

The sum of all the possible probabilities is 1 :

L∑
i=1

PSEU(layeri) = 1 (4.4)

Layers Weights Biases Upset Probability[%]
First Convolutional Layer 23,232 64 0.038%
Second Convolutional Layer 307,200 192 0.5%
Third Convolutional Layer 663,552 384 1%
Fourth Convolutional Layer 884,736 256 1.44%
Fifth Convolutional Layer 589,824 256 0.96%
First Fully Connected Layer 37,748,736 4096 61.79%
Second Fully Connected Layer 16,777,216 4096 27.46%
Third Fully Connected Layer 4,096,000 1000 7.7%

Table 4.1: An example of Alexnet layer probability of being affected by an
SEU/error/failure

• Calculate the golden output: Some images from the ImageNet dataset or
a set of images from Imagenette has been used as the test vector . As a first
validation experiment, I compute the results obtained from the DNN models
in a normal condition, without injection. These outputs have been taken as

52

Methodology

golden results in order to compere this with next results. The output is
calculated on the basis of the top-5 accuracy, as shown in Fig. 4.6.

• Generate a fit flip: A simulation is the imitation of the operation of a
real-world process or system over time. In my analysis, I don’t want to hit
a weight, a particular level, or a particular bit. I want to simulate a real
context. In a real context, it has a network and its data is completely exposed
to vulnerabilities. After calculating the probability that a failure occurs in
the various sections of the DNN, I randomly generate a bit flip on one of
the 32 bits of the parameters in one of the network levels, according to the
probability calculated in the previous point.A layer is selected randomly using
a probability distribution.
The result of this operation is a degraded network in one of its parameters.

• Compare wrong output and golden output: A single change in the
network makes the network different from the original and gold model.The
new injection model will have a new output (wrong). Which compared with
the previous one produces the following outcomes:

– Best case: No degradation, in this case, my model does not suffer any
degradation caused by the injection. The wrong output and the golden
output are identical.

|Ygolden − Ywrong| = 0

Tgolden = Twrong

(4.5)

– Average case: Degradation, in this case, the injection caused a small
degradation in the accuracy of the output, but the prediction of the class
is always the correct one.

|Ygolden − Ywrong| > ε

Tgolden = Twrong

(4.6)

– Worst case: Miss Classification, in this case, even a single injection is
enough to cause our application to malfunction. Which produces a very

53

Methodology

different output from the golden one and causes miss-classification
|Ygolden − Ywrong| � ε

Tgolden /= Twrong

(4.7)

where Ygolden and Ywrong are the output following the top-5 metric, Tgolden and
Twrong are the predicted repetitive classes of the golden model and the model
with FI.

• Make consideration: The purpose of my discussion is to measure the
resilience and fault tolerance of the network. Through the Monte Carlo
method, I am able to measure the resilience of a network to the injection
of a single bit-flip. Through the Monte Carlo method, I can define what
will be the probability of having one of the 3 outcomes described above:
X = {ND,D,MC}. Where ND is probability not to have degradation,
D is probability to have degradation and MC is probability to have miss-
classification with a single bit-flip. About this method, other investigations
have been carried out to discover the vulnerability points of the NNs and bits.

4.2 Accumulation of SEU-effects within the DNN

After having explored the methodologies used and the problem to be addressed,
we are going to create a software simulation platform that simulates the soft errors
and the behavior of the NN to them.
The simulation platform will be useful for two reasons:

• Study the architect’s vulnerabilities and strengths. This point is critical to
creating a new network model that is inherently resilient to failure

• Find out the tolerance limit of the network. This point is fundamental to
always guarantee the functioning of the network, through parameter refresh
mechanisms

The goal of the developed Monte Carlo analysis algorithm is to measure the average
number of SEs affecting the DNN parameters that can be tolerated by the DNN,

54

Methodology

before an SEFI is reported on the application system. The approach is particularly
suitable for being applied before inference phase.
The methodology is based on a Monte Carlo algorithm that generates distributions
of SE’s within all the possible parameters bits controlling their effects within DNN
and the new output produced with that of the golden network (original).

Algorithm 1 Accumulated SEUs simulation algorithm. K=100000 is a good
number for iterations in Monte Carlo method β is the max bit in data representation,
ω is the parameter injected
1: procedure FIsimulation
2: . Ygold is the golden DNN output
3: Ygold ← calculategoldenoutput() . P is the vector layers probability
4:5: . N is max number of accumulated SEUs
6: N ← 100 . start FI
7:8: for n<N,n++ do
9: . start K simulation
10: for K do
11: . generate n injections based on P
12: genereteFIs()
13: Ywrong ← calculatewrongoutput() end for

14:15: . Calculate Miss classification/Degradation Probability for each n
16: PnmissClassification ←

∑K

i=1 MC

K

17: PnDegradation ←
∑K

i=1 D

K

18: end for
19: end procedure

55

Methodology

Figure 4.7: (a) Golden DNN (b), random single bit-flip ,(c) random multiple
bit-flip

56

Methodology

The Fig. shows the difference between the three scenarios.

1. The first where I have the original DNN, designed and trained to perform a
task.

2. In the second scenario, a bit flip is generated randomly. The probability of
failure and the sensitivity to levels and bits are studied.

3. Third scenario goal is to find the tolerance limit of the DNN.

Through this last simulation it is possible to construct a function that represents
the error rate when the SEUs accumulate.
In our discussion we construct two functions. The first function represents the
probability of being affected by degradation, the second function represents the
probability of being affected by miss-classification.
These functions are metrics for analyzing the DNNs resilience. The functions also
establish the limit of SEU that a DNN can tolerate before the system becomes
unusable.

4.3 Fault Tolerance

This phase of the discussion is an exploratory phase, as many techniques can be
experimented and combined with each other to obtain better performance.
Fault Tolerance is a crucial property for Neural Networks to ensure reliable com-
putation for a long duration with graceful degradation over time. Typically, well
generalized models have the parameters with low variance ensuring equal computa-
tional weight to all nodes in the network. Hence, the loss of some of the nodes can
be compensated by other nodes without a significant loss in performance.
The state-of-the-art neural networks are vulnerable to perturbation [19]. That is,
small perturbation on input forces neural network to provide adversary output. To
defeat degradation example problem, recent countermeasures aim at improving
the generalization capability of neural network by manipulating DNN’s training
procedure. For instance, Papernot et al. [20] proposed to train the same neural
network twice and the soft labels used in the second train process are able to
improve the generalization capability. Gu and Rigazion, and Goodfellow et al. [21]

57

Methodology

proposed to regularize the objective function in training procedure to manually
restrict the predicted class for data points around training samples.
Though no previous works have studied fault injection attack on DNN, there are
many works improving DNN’s fault-tolerance capability against random faults on
the weights.
Though no previous works have studied fault injection attack on DNN, there are
many works improving DNN’s fault-tolerance capability against random faults on
the weights. These works can be mainly divided into three groups:

• training with artificial fault [22]

• neuron duplication [23]

• and weight restriction [24], [25]

Training with artificial fault intentionally injects faults into DNN during training
process, so that obtained DNN can perform correctly even in faulty case.
However, the cost of enumerating all faulty cases is prohibitive when the number
of faulty cases is exponentially larger, like enumerating multi-bit faults, where the
number of exploitable faulty cases is large.
Neuron duplication improves the redundancy of DNN by duplicating internal
neurons and scaling down corresponding weights.
At last, weight restriction determines a range to which weights should belong during
training, and any weight being outside the range is forced to be its upper limit or
lower limit. In this way, weight restriction can mitigate the interference from fault
imposing large perturbation on a weight.

4.3.1 My resilience techniques

The papers cited above lay the foundations for some food for thought. Scrolling
through the literature numerous techniques are applied to reduce the energy and
memory to run the network. The results of these experiments show how techniques
to improve resource models make the network inherently more resilient. In general,
we show that generalization is a strong ally of robustness. Some papers seem to
support these results [26], [27]. Neural networks are both computationally intensive
and memory intensive, making them difficult to deploy on embedded systems

58

Methodology

with limited hardware resources. To address this limitation, [28] introduce "deep
compression", a three stage pipeline: pruning, trained quantization and Huffman
coding, that work together to reduce the storage requirement of neural networks
by 35x to 49x without affecting their accuracy. This method reduced the storage
required by AlexNet by 35x, from 240MB to 6.9MB, without loss of accuracy. This
allows fitting the model into on-chip SRAM cache rather than off-chip DRAM
memory.

Pruning

Deep Learning models nowadays need a major amount of computing, memory,
and power which becomes a bottleneck within the conditions where we’d like
real-time inference or to run models edgy devices and browsers with limited
computational resources. Energy efficiency may be a major concern for current
deep learning models, one of the methods for tackling this efficiency is enabling
inference efficiency.
Pruning is one in all the methods for inference to efficiently produce models
smaller in size, more memory-efficient, more power-efficient and faster at inference
with minimal loss in accuracy, other such techniques being weight sharing and
quantization. Out of several aspects that deep learning takes as an idea from the
realm of Neuroscience.
Pruning in artificial neural networks has been taken as an idea from Synaptic
Pruning in the human brain where axon and dendrite completely decay and die off
resulting in synapse elimination that occurs between early childhood and the onset
of puberty in many mammals. Pruning starts near the time of birth and continues
into the mid-20s, as shown in Fig. 4.8.

DNN pruning is shown in Fig. 4.9. Networks generally look like the one on the
left: every neuron in the layer below has a connection to the layer above, but this
means that we have to multiply a lot of floats together.
Ideally, we’d only connect each neuron to a few others and save on doing some of
the multiplications; this is called a “sparse” network. Sparse models are easier to
compress, and we can skip the zeroes during inference for latency improvements.
If you could rank the neurons in the network according to how much they contribute,
you could then remove the low ranking neurons from the network, resulting in a

59

Methodology

Figure 4.8: Synaptic Pruning in mammals

Figure 4.9: DNN pruning

smaller and faster network.
Getting faster/smaller networks is important for running these deep learning
networks on mobile devices.

• Weight pruning: Set individual weights in the weight matrix to zero. This

60

Methodology

corresponds to deleting connections as in the figure above. Here, to achieve
sparsity of k% we rank the individual weights in weight matrix W according
to their magnitude, and then set to zero the smallest k%.

• Unit/Neuron pruning: Set entire columns to zero in the weight matrix
to zero, in effect deleting the corresponding output neuron. Here to achieve
sparsity of k% we rank the columns of a weight matrix according to their
L2-norm and delete the smallest k%.

Naturally, as you increase the sparsity and delete more of the network, the task
performance will progressively degrade.

• Iterative Pruning: The ranking, for example, can be done according to the
L1/L2 norm of neuron weights. After the pruning, the accuracy will drop
(hopefully not too much if the ranking is clever), and the network is usually
trained-pruned-trained-pruned iteratively to recover. If we prune too much at
once, the network might be damaged so much it won’t be able to recover. So
in practice, this is an iterative process often called ‘Iterative Pruning’: Prune
/ Train / Repeat.

Pruning in Pytorch

Some methods implement pruning in PyTorch, but they are doing not result in
faster inference time or memory savings. The rationale for that’s that sparse
operations aren’t currently supported in PyTorch (version 1.7), and then just
assigning weights, neurons or channels to zero doesn’t result in real neural network
compression. Thus, experiments of this method give theoretical improvements and
not real ones.
The idea of pruning is to scale back the scale of an outsized neural network
without sacrificing much of predictive power. It might be done by either removing
(=pruning) weights, neurons or perhaps entire channels in a very neural network.
There are multiple possibilities of a way to have it away starting from randomly
pruning all weights to pruning weights/neurons/channels supported some metrics.

61

Methodology

1. Unstructured pruning of random weights: will prune the random percentage
of the connections in the parameter named weight and/or bias in a layer.
The module is passed as the first argument to the function; name identifies the
parameter within that module using its string identifier; and amount indicates
either the percentage of connections to prune (if it is a float between 0. and
1.), or the absolute number of connections to prune (if it is a non-negative
integer). Pruning acts by removing weight or bias from the parameters and
replacing it with a new parameter called weight_orig and/or bias_orig.
weight_orig and/or bias_orig stores the unpruned version of the tensor.

2. Unstructured pruning of the smallest weight: will prune the smallest per-
centage of the connections in the parameter named weight and/or bias in
a layer. The module is passed as the first argument to the function; name
identifies the parameter within that module using its string identifier; and
amount indicates either the percentage of connections to prune (if it is a float
between 0. and 1.), or the absolute number of connections to prune (if it is
a non-negative integer). Pruning acts by removing weight or bias from the
parameters and replacing it with a new parameter called weight_orig and/or
bias_orig. weight_orig and/or bias_orig stores the unpruned version of
the tensor.

3. Structured pruning: It is possible to pass a dimension (dim) to specify which
channel should be dropped. For fully-connected layers dim=0 corresponds to
“switching off” output neurons. Therefore, it does not really make sense to
switch off neurons in the last classification layer. For Convolutional layers like
dim=0 corresponds to removing the output channels of the layers.

Quantization

Deep learning features a growing history of successes, but heavy algorithms running
on large graphical processing units are faraway from ideal. A comparatively new
family of deep learning methods called quantized neural networks have emerged in
answer to the current discrepancy.
Neural networks are composed of multiple layers of parameters, each layer trans-
forms the input image, separating and contracting the feature space, leading to the

62

Methodology

separation of input images to their distinct classes. Perhaps the foremost notable of
deep learning problems are image classification, object detection and segmentation.
Deep learning for classification tasks means training the parameters of a neural
network specified the algorithm learns to discern between object classes. This is
often performed by feeding many images of labelled data to the neural network,
while updating the parameters to extend performance on a smooth objective func-
tion. A drawback is that an outsized number of parameters are used, compared to
more traditional algorithms. Thus enters quantization as a way to bring the neural
network to an affordable size, while also achieving high performance accuracy. This
is often especially important for on-device applications, where the memory size and
number of computations are necessarily limited.
Quantization for deep learning is that the process of approximating a neural network
that uses floating-point numbers by a neural network of low bit width numbers.
This dramatically reduces both the memory requirement and computational cost
of using neural networks.
The neural network can be quantized after training is finished. However, by far the
most effective method for retaining high accuracy is to quantize during training
[29], who describe the main idea of neural network parameter quantization during
training.
We don’t need to stop with just the parameters of the quantized network quantizing
the inputs to each convolutional layer of the neural network results in massive
reduction of necessary computation. To be able to use quantized inputs for each
convolution layer, the activation function is replaced by a quantization function
[30].

63

Chapter 5

Results

5.1 Single bit flip within the DNN results

The first analysis is important to the understanding of the impact within the DNN
of SEU-induced perturbation. This analysis shows two important results:

• Typically, the first layers are most vulnerable than the last layers

• The most significant bit of the exponent has a big impact on the miss classifi-
cation

The results and observations about these are shown below.

5.1.1 The most vulnerable bits

64

Results

Figure 5.1: Impact of bit-flip on models (MC and D)

65

Results

The Fig. 5.1 shows the great impact of flipping the most significant bit on e7
(the most significant bit of the exponent). Almost 100% of the miss classification
is caused by an FI on e7, only in a few cases does it cause degradation, probably
because it is located in the last levels of the DNN.
These results can be checked by some papers. Rakin et al. in [31] proposed
a methodology, Bit-Flip Attack (BFA), for attacking DNNs by flipping a small
number of bits in the weights of the DNN.
BFA focuses on identifying the most vulnerable bits in a given DNN that can
maximize the accuracy degradation while requiring a very small number of bit-flips
in the binary representation of the parameters of the DNN. It is designed for
quantized neural networks, i.e., where the weight magnitude is constrained based
on the fixed-point representation.
For floating-point representation, even a single bit-flip at the most significant
location of the exponent of one of the weights of the DNN can result in the network
generating completely random output.[32] present a case study where they simulate
a neural network in the presence of memory faults (only in the region where the
parameters, weights, of a network are stored).
The case-study is based on image classification on the ImageNet dataset using the
VGG-f network. For the evaluation, they assumed 32-bit floating point precision
for both weights and inputs. An illustration of the scenario is shown in Fig. 5.2.

Figure 5.2: Experimental setup for illustrating the impact of memory faults in
DNN execution

66

Results

The structure of the floating point number system used for this analysis is shown
in Fig. 5.3.

Figure 5.3: Single precision floating point storage format used in DNN design

They divided the analysis into two parts: (1) Bit flips from 0’b to 1’b; and (2)
Bit flips from 1’b to 0’b. Also, to analyze the impact of the bit flips at particular
locations in the words, they injected bit-flip errors individually at different bit
location of a fraction of weights of a network layer. The results of 0’b to 1’b bit
flip error injection in the first layer of the network is presented in Fig. 5.4.

Figure 5.4: Impact of bit flip errors on the accuracy of VGG-f network used for
an image classification application

Accuracy is relatively less affected by 1’b to 0’b bit flips because of the decrease
in weight magnitude rather than increase in case of 0’b to 1’b bit flips.
In DNN, parameters are stored on 32 bit floating-point, there aren’t value very
large, but there are value very small. A change in a small parameters generate a

67

Results

greater distortion, as shown in Fig. 5.5.

Figure 5.5: The results of 0’b to 1’b bit flip error injection in the most vulnerable
bit

The aforementioned case-study highlights the need studying the impact of
different types of bit-flip faults in different components of a DNN systems, and
leveraging this knowledge for designing and optimizing fault-tolerant methods that
can help avoiding errors which lead to catastrophic results in case of safety-critical
applications.
As we will show in next section, fault-tolerant method to mitigate the impact of
0’b to 1’b bit flip error injection in the most vulnerable bit can be removing the
smallest values (vulnerable parameters) in DNN parameters to decrease probability
to have bit flip in vulnerable parameters.

In [33]

5.1.2 Layer Vulnerability

The analyzes conducted show a greater sensitivity when SEU afflict the first levels
of the network.
They are shown in Fig. 5.9 and Fig. 5.10, the results on AlexNet and ResNet to
show how the error curve tends to smooth over the levels. Demonstrating how fully
connected levels are more tolerant than convolutional levels and demonstrating
how the first levels are very sensitive to errors. Typically, this problem could be
due to several causes:

1. The first levels learn stronger characteristics

2. The error in the first levels propagates in the network

68

Results

In the literature, we can find possible explanations:

1. The human brain processes a huge amount of information the second we see
an image. Each neuron works in its own receptive field and is connected to
other neurons in a way that they cover the entire visual field. Just as each
neuron responds to stimuli only in the restricted region of the visual field
called the receptive field in the biological vision system, each neuron in a CNN
processes data only in its receptive field as well. The layers are arranged in
such a way so that they detect simpler patterns first (lines, curves, etc.) and
more complex patterns (faces, objects, etc.) further along.
CNNs learn a hierarchical representation of the input in which the initial layers
detect very basic patterns like edges and gradients, while layers located on top
of the hierarchy learn complex patterns which are useful for the classification
task at hand. The concept of hierarchical feature learning is illustrated in Fig.
5.6 where the network was not specifically trained for fish images therefore,
patterns found by the network are generic.
A mistake in learning simpler patterns can have a greater impact in the long
run.

2. Given a general deep neural network as in Fig. num, we treat the input
layer and final predicted probability distribution on candidate classes as two
multidimensional vectors X and Y respectively, then the whole DNN is a
parameterized function F , and Y = F (, X), where represents all the weights
and biases in DNN. Neurons are connected by links with different weights and
biases, characterizing the strength between neurons. A neuron receives inputs
from many neurons in the previous layer, applies its activation function on
these inputs, and transmits the result to neurons in next layer. Formally, a
neuron’s output y is given by:

y = g(u)

u =
n∑

i=1
wixi + w0

where x1, x2, ..., xn are neuron outputs in the previous layer, w1, w2, ..., wn are
weights on respective links, w0 represents the bias, and g is the activation

69

Results

function.
Considering this condition, this means that the degradation propagates in the
DNN, as shown in Fig. 5.8.

Figure 5.6: Hierarchical representation learning by a CNN where the initial layer
detects simple patterns like edges and gradients while higher layers detect more
abstract features

Figure 5.7: A deep neural network example and the general structure for a
neuron.

70

Results

Figure 5.8: Fault injection attack on DNN

5.2 FI results

Finally we come to the final results. The final results are aimed at the study of
CNN to provide for the implementation of a solution on radiation resilient devices in
order to limit the degradation of the network due to the accumulation of radioactive
dose.
Analyzes on different networks were performed. The analyzes investigate network
degradation through different models.
The models differ in technology and size. The size factor is very important because
the size of the injection air also depends on it.
The table below is an example:

The results will then be normalized according to the size of the injection air.

71

Results

Figure 5.9: Impact of bit-flip on Resnet through the layes

Figure 5.10: Impact of bit-flip on Alexnet through the layes (Degradation)

The results show in Fig. 5.12-5.15 a higher degree of tolerance inherent in some
more compact DNN models designed for mobile environments such as MobileNet
and MnasNet. These networks are leaner and more compact than AlexNet.

72

Results

Figure 5.11: Impact of bit-flip on Alexnet through the layes (MissClassification)

Model Parameters Memory injectable
Alexnet 61.100.840 2G cells
ResNet 11.689.512 370M cells

MobileNet 3.504.872 110M cells
MnasNet 2.218.512 70M cells

Table 5.1: Model comparision: Total parameters in models

Models designed to be more functional in mobile environments are also inherently
fault tolerant. The error rate in these models grows slowly compared to models
such as AlexNet and ResNet, which have a much higher initial degree of accuracy.

5.3 Faults Tolerance results

The idea of pruning as a resilience technique is taken up by some paper that use
pruning as a defense technique for very specific attacks. In [27], pruning techniques
are used to mitigate the success of DNN backdoor attacks. In DNN backdoor
attacks, the DNN learns to misbehave on backdoored inputs while still behaving on
clean inputs because backdoored inputs trigger neurons that are otherwise dormant
in the presence of clean inputs.

73

Results

Figure 5.12: Failure rate function AlexNet

Figure 5.13: Failure rate function ResNet

74

Results

Figure 5.14: Failure rate function MobileNet

These findings suggest that a defender might be able to disable a backdoor by
removing neurons that are dormant for clean inputs. They refer to this strategy as
the pruning defense. They then evaluate fine-pruning, a combination of pruning and
fine-tuning, and show that it successfully weakens or even eliminates the backdoors,
in some cases reducing the attack success rate to 0% with only a small drop in
accuracy for clean (original) inputs.
IN [34] shown that pruning not only improves the resource efficiency of neural
networks, but also the resilience against poisoning attack. In particular, they found
that the resilience depends on the level of pruning, a result similar to that obtained
by me, the model retains higher accuracy where less trainable parameters remained
after pruning.
The fields of application are obviously many, in my analysis I do not have a targeted
attack. My analysis scenario is not deterministic, but having analyzed the critical
problems I can implement mitigation strategies. As in [27], I apply a pruning
strategy to mitigate the problems caused by e7. In particular, the alteration of e7
causes a large alteration in weight that goes from an extremely small weight to an

75

Results

Figure 5.15: Failure rate function MnasNet

extremely large weight. Going to eliminate extremely small weights then helps my
model perform better.

5.3.1 Prining results

The results obtained through pruning show remarkable achievements. Contrary
to replication techniques, such as fault mitigation techniques, it turns out that
pruning the network not only brings benefits such as reduced resources, but also
proves to be a very good fault tolerance technique.

76

Results

Figure 5.16: Failure rate function ResNet (a) ResNet (original) (b) ResNet (25%)
(c) ResNet (46%)

Figure 5.17: ResNet Pruning Results Summary

77

Results

Figure 5.18: Failure rate function MobileNet (a) MobileNet (original) (b) Mo-
bileNet (0.72x

Figure 5.19: Failure rate function MnasNet (a) MnasNet (original) (b) MnasNet
(0.7x)

78

Chapter 6

Conclusions and future
work

Given the ever-increasing development of AI and in particular of deep learning
in various contexts, we liked to explore its field of application even in a context
such as that of the space industry. Space is a hostile environment for humans
and devices. Knowing the obstacles met is the first step in implementing defence
techniques and methods.
This thesis discussed the issues of a DNN operating in the space industry, caused
by the accumulation of radiation on a device over time. In my thesis work, I will
focus on the impact of SEUs on the device. Single event upset (SEU) or transient
radiation effects in electronics are state changes of memory or register bits caused
by a single ion interacting with the chip. In sensitive devices, a single ion can cause
a multiple-bit upset (MBU) in several adjacent memory cells. SEUs can became
Single-event functional interrupts (SEFI) when they upset control circuits.
In space, the SEUs can cause bit flips, which can affect the parameters of the
trained model, causing performance degradation. Goal of this activity is to analyse
the SEU effects on neural networks models. Analysis was carried out by simulating
fault injections in the configuration memory, causing bit flips. Analisysis attention
is focused on the inference phase. The analysis was conducted at a high level,
based on some tools, such as Pytorch that makes available model archives that are
pre-trained and pre-packaged, ready to be served for inference. In particular, for

79

Conclusions and future work

the analysis we referred to models that satisfy the image classification tasks. Data
are represented using 32-bits floating-point representations, accordingly with the
PyTorch model of the network.
The first part of my thesis focuses on analyzing and studying some neural network
models (NN), knowing which DNN work best and what are the strengths to create
an architecture that is best suited to an environment teeming with failures. The
potential of the NN is also this, to study and design new models that optimize and
improve the performance of some tasks, we will also study the tolerance limit of
the network after which the model has completely broken its functioning. Usually
to measure the robustness of a circuit there are radiation tests, which however
are very expensive, fault injection techniques based on analysis tools or software
programs represent a valid alternative to evaluate the reliability of a project, safety
and fault coverage.
This activity is based on the design and development of the fault injection platform.
The methodology is based on a Monte Carlo algorithm that generates distributions
of SE-s within all neural network parameters and verifies if the analysed circuit is
able to cope with the accumulation of their effects within the DNN. This method-
ology can used as a measure to estimate resiliency of neural networks.
Thanks to this analysis, we could set a limit threshold of failures in order to
re-program the device or apply refresh mechanisms to restore the initial weights
and guarantee that the application always works accurately.
The second part of my thesis explores some fault tolerance techniques. Fault
Tolerance is a crucial property for neural networks to ensure reliable computation
for a long duration with graceful degradation over time. My method proposed
to reduce the number of parameters in DNN to restrict the probability of small
parameters being altered.
Results have shown that pruning not only improves the resource efficiency of neural
networks, but also the resilience against faults. In particular, we found that the
resilience depends on the level of pruning, the model retains higher resilience where
less trainable parameters remained after pruning.
The choice to investigate the image classification task is due to the limitations of
computational resources since the analysis has a very high computational cost. In
a future scenario, we would like to explore how object detection models perform

80

Conclusions and future work

with the accumulation of radioactive doses. Other future scenarios suggest other
fault-tolerance techniques, we could explore different approaches to the problem.
One scenario would be to train the model simultaneously with random faults. An-
other approach involves the study of a new architecture by applying more classical
resilience techniques such as the replication of the most important neurons. An
aspect that must certainly be taken into account concerns the generalization of the
model to make the network more robust and intrinsically more resilient to errors.
The second part of the network will allow the exploration of methods and tech-
nologies that make the model more tolerable and resilient, trying to increase the
tolerability limit, this phase opens the way to a vastness of future work to create
models of NN that could open the way for the use of this new science in a context
such as space. Opening the way to infinite scenarios can lead devices to be more
autonomous and improve the experience of space exploration by allowing us to
know new boundaries and new discoveries to enrich our knowledge of the universe
around us.

81

Bibliography

[1] Vivek Kothari, Edgar Liberis, and Nicholas D. Lane. The Final Frontier:
Deep Learning in Space. 2020. arXiv: 2001.10362 [eess.SP] (cit. on p. 13).

[2] Jakub Breier, Xiaolu Hou, Dirmanto Jap, Lei Ma, Shivam Bhasin, and Yang
Liu. DeepLaser: Practical Fault Attack on Deep Neural Networks. 2018. arXiv:
1806.05859 [cs.CR] (cit. on pp. 14, 45).

[3] Jakub Breier, Dirmanto Jap, Xiaolu Hou, Shivam Bhasin, and Yang Liu.
SNIFF: Reverse Engineering of Neural Networks with Fault Attacks. 2020.
arXiv: 2002.11021 [cs.CR] (cit. on p. 14).

[4] Yannan Liu, Lingxiao Wei, Bo Luo, and Qiang Xu. «Fault injection attack
on deep neural network». In: 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). 2017, pp. 131–138. doi: 10.1109/ICCAD.
2017.8203770 (cit. on pp. 14, 45).

[5] Zheyu Yan, Yiyu Shi, Wang Liao, Masanori Hashimoto, Xichuan Zhou, and
Cheng Zhuo. When Single Event Upset Meets Deep Neural Networks: Ob-
servations, Explorations, and Remedies. 2019. arXiv: 1909.04697 [cs.LG]
(cit. on p. 15).

[6] Fei-Fei Li, Andrej Karpathy, and Justin Johnson. «CS231n: Convolutional
Neural Networks for Visual Recognition». In: (). url: http : / / cs231n .
stanford.edu/ (cit. on p. 24).

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. «ImageNet Clas-
sification with Deep Convolutional Neural Networks». In: Commun. ACM
60.6 (May 2017), pp. 84–90. issn: 0001-0782. doi: 10.1145/3065386. url:
https://doi.org/10.1145/3065386 (cit. on p. 25).

82

https://arxiv.org/abs/2001.10362
https://arxiv.org/abs/1806.05859
https://arxiv.org/abs/2002.11021
https://doi.org/10.1109/ICCAD.2017.8203770
https://doi.org/10.1109/ICCAD.2017.8203770
https://arxiv.org/abs/1909.04697
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386

BIBLIOGRAPHY

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. 2015. arXiv: 1512.03385 [cs.CV] (cit. on
p. 26).

[9] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, An-
drew Howard, and Quoc V. Le. MnasNet: Platform-Aware Neural Architecture
Search for Mobile. 2019. arXiv: 1807.11626 [cs.CV] (cit. on p. 27).

[10] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. «Efficient
Processing of Deep Neural Networks: A Tutorial and Survey». In: Proceedings
of the IEEE 105.12 (2017), pp. 2295–2329. doi: 10.1109/JPROC.2017.
2761740 (cit. on p. 40).

[11] P.W. Protzel, D.L. Palumbo, and M.K. Arras. «Performance and fault-
tolerance of neural networks for optimization». In: IEEE Transactions on
Neural Networks 4.4 (1993), pp. 600–614. doi: 10.1109/72.238315 (cit. on
p. 42).

[12] Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Naccache.
«Fault Injection Attacks on Cryptographic Devices: Theory, Practice, and
Countermeasures». In: Proceedings of the IEEE 100.11 (2012), pp. 3056–3076.
doi: 10.1109/JPROC.2012.2188769 (cit. on p. 45).

[13] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. «Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors».
In: 2014 ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA). 2014, pp. 361–372. doi: 10.1109/ISCA.2014.6853210 (cit. on p. 45).

[14] Muhammad Shafique, Theocharis Theocharides, Christos-Savvas Bouganis,
Muhammad Abdullah Hanif, Faiq Khalid, Rehan Hafız, and Semeen Rehman.
«An overview of next-generation architectures for machine learning: Roadmap,
opportunities and challenges in the IoT era». In: 2018 Design, Automation
Test in Europe Conference Exhibition (DATE). 2018, pp. 827–832. doi: 10.
23919/DATE.2018.8342120 (cit. on p. 45).

[15] Haissam Ziade, Rafic Ayoubi, and R. Velazco. «A Survey on Fault Injection
Techniques». In: Int. Arab J. Inf. Technol. 1 (Jan. 2004), pp. 171–186 (cit. on
p. 47).

83

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1807.11626
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/72.238315
https://doi.org/10.1109/JPROC.2012.2188769
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.23919/DATE.2018.8342120
https://doi.org/10.23919/DATE.2018.8342120

BIBLIOGRAPHY

[16] Abdulrahman Mahmoud, Neeraj Aggarwal, Alex Nobbe, Jose Rodrigo Sanchez
Vicarte, S. Adve, Christopher W. Fletcher, I. Frosio, and S. Hari. «PyTorchFI:
A Runtime Perturbation Tool for DNNs». In: 2020 50th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks Workshops
(DSN-W) (2020), pp. 25–31 (cit. on p. 48).

[17] Qining Lu, Mostafa Farahani, Jiesheng Wei, Anna Thomas, and Karthik
Pattabiraman. «LLFI: An Intermediate Code-Level Fault Injection Tool
for Hardware Faults». In: 2015 IEEE International Conference on Software
Quality, Reliability and Security. 2015, pp. 11–16. doi: 10.1109/QRS.2015.13
(cit. on p. 48).

[18] Chun-Kai Chang, Guanpeng Li, and Mattan Erez. «Evaluating Compiler
IR-Level Selective Instruction Duplication with Realistic Hardware Errors».
In: 2019 IEEE/ACM 9th Workshop on Fault Tolerance for HPC at eXtreme
Scale (FTXS). 2019, pp. 41–49. doi: 10.1109/FTXS49593.2019.00010 (cit.
on p. 48).

[19] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural
networks. 2014. arXiv: 1312.6199 [cs.CV] (cit. on p. 57).

[20] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram
Swami. Distillation as a Defense to Adversarial Perturbations against Deep
Neural Networks. 2016. arXiv: 1511.04508 [cs.CR] (cit. on p. 57).

[21] Shixiang Gu and Luca Rigazio. Towards Deep Neural Network Architectures
Robust to Adversarial Examples. 2015. arXiv: 1412.5068 [cs.LG] (cit. on
p. 57).

[22] T. Ito and I. Takanami. «On fault injection approaches for fault tolerance of
feedforward neural networks». In: Proceedings Sixth Asian Test Symposium
(ATS’97). 1997, pp. 88–93. doi: 10.1109/ATS.1997.643927 (cit. on p. 58).

[23] I. Takanami, M. Sato, and Yun Ping Yang. «A fault-value injection approach
for multiple-weight-fault tolerance of MNNs». In: Proceedings of the IEEE-
INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000.
Neural Computing: New Challenges and Perspectives for the New Millennium.
Vol. 3. 2000, 515–520 vol.3. doi: 10.1109/IJCNN.2000.861360 (cit. on p. 58).

84

https://doi.org/10.1109/QRS.2015.13
https://doi.org/10.1109/FTXS49593.2019.00010
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1511.04508
https://arxiv.org/abs/1412.5068
https://doi.org/10.1109/ATS.1997.643927
https://doi.org/10.1109/IJCNN.2000.861360

BIBLIOGRAPHY

[24] Naotake Kamiura, Teijiro Isokawa, and Nobuyuki Matsui. «Learning Based
on Fault Injection and Weight Restriction for Fault-Tolerant Hopfield Neural
Networks». In: Proceedings of the Defect and Fault Tolerance in VLSI Systems,
19th IEEE International Symposium. DFT ’04. USA: IEEE Computer Society,
2004, pp. 339–346. isbn: 0769522416 (cit. on p. 58).

[25] N. Kamiura, Y. Taniguchi, T. Isokawa, and N. Matsui. «An improvement in
weight-fault tolerance of feedforward neural networks». In: Proceedings 10th
Asian Test Symposium. 2001, pp. 359–364. doi: 10.1109/ATS.2001.990309
(cit. on p. 58).

[26] B.E. Segee and M.J. Carter. «Fault tolerance of pruned multilayer networks».
In: IJCNN-91-Seattle International Joint Conference on Neural Networks.
Vol. ii. 1991, 447–452 vol.2. doi: 10.1109/IJCNN.1991.155374 (cit. on
p. 58).

[27] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-Pruning: De-
fending Against Backdooring Attacks on Deep Neural Networks. 2018. arXiv:
1805.12185 [cs.CR] (cit. on pp. 58, 73, 75).

[28] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding. 2016. arXiv: 1510.00149 [cs.CV] (cit. on p. 59).

[29] Stéphane Mallat. «Understanding deep convolutional networks». In: Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 374.2065 (Apr. 2016), p. 20150203. issn: 1471-2962. doi:
10.1098/rsta.2015.0203. url: http://dx.doi.org/10.1098/rsta.2015.
0203 (cit. on p. 63).

[30] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized Neural Networks: Training Deep Neural Networks
with Weights and Activations Constrained to +1 or -1. 2016. arXiv: 1602.
02830 [cs.LG] (cit. on p. 63).

[31] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-Flip Attack: Crushing
Neural Network with Progressive Bit Search. 2019. arXiv: 1903.12269 [cs.CV]
(cit. on p. 66).

85

https://doi.org/10.1109/ATS.2001.990309
https://doi.org/10.1109/IJCNN.1991.155374
https://arxiv.org/abs/1805.12185
https://arxiv.org/abs/1510.00149
https://doi.org/10.1098/rsta.2015.0203
http://dx.doi.org/10.1098/rsta.2015.0203
http://dx.doi.org/10.1098/rsta.2015.0203
https://arxiv.org/abs/1602.02830
https://arxiv.org/abs/1602.02830
https://arxiv.org/abs/1903.12269

BIBLIOGRAPHY

[32] Muhammad Abdullah Hanif, Faiq Khalid, Rachmad Vidya Wicaksana Putra,
Semeen Rehman, and Muhammad Shafique. «Robust Machine Learning
Systems: Reliability and Security for Deep Neural Networks». In: 2018 IEEE
24th International Symposium on On-Line Testing And Robust System Design
(IOLTS). 2018, pp. 257–260. doi: 10.1109/IOLTS.2018.8474192 (cit. on
p. 66).

[33] Faiq Khalid, Muhammad Abdullah Hanif, and Muhammad Shafique. Exploit-
ing Vulnerabilities in Deep Neural Networks: Adversarial and Fault-Injection
Attacks. 2021. arXiv: 2105.03251 [cs.CR] (cit. on p. 68).

[34] Bingyin Zhao and Yingjie Lao. «Resilience of Pruned Neural Network Against
Poisoning Attack». In: 2018 13th International Conference on Malicious and
Unwanted Software (MALWARE). 2018, pp. 78–83. doi: 10.1109/MALWARE.
2018.8659362 (cit. on p. 75).

86

https://doi.org/10.1109/IOLTS.2018.8474192
https://arxiv.org/abs/2105.03251
https://doi.org/10.1109/MALWARE.2018.8659362
https://doi.org/10.1109/MALWARE.2018.8659362

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Radiation effects in devices
	Artificial Intelligence
	Artificial Intelligence Methods in Space Engineering

	The Problem
	Radiation in deep space
	Single-event upset
	Physical hardening

	Radiation in AI-based device
	Single Event Upset in Neural Networks

	Technologies
	OVERVIEW OF DNN-S
	Artificial Neuron
	Convolutional Neural Networks (CNNs)
	Convolutional layers
	Pooling Layer
	Fully Connected Layers
	Popular DNN Models

	DNN DEVELOPMENT RESOURCES
	Frameworks
	Models
	Datasets for Classification
	Dataset in my analysis
	Traning
	Inference
	Tensor

	HARDWARE FOR DNN PROCESSING
	Overview of platforms
	Inference on HW

	METRICS
	Metrics for DNN Models
	Metrics for DNN Hardware
	Fault tollerance Metric

	Methodology
	Fault injection
	My FI technique

	Accumulation of SEU-effects within the DNN
	Fault Tolerance
	My resilience techniques

	Results
	Single bit flip within the DNN results
	The most vulnerable bits
	Layer Vulnerability

	FI results
	Faults Tolerance results
	Prining results

	Conclusions and future work
	Bibliography

