
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Mobile Testing Framework Exploiting
Machine Learning and NLP

Supervisors

Prof. Luca ARDITO

Prof. Maurizio MORISIO

Dr. Riccardo COPPOLA

Candidate

AYDA TANIK

JULY 2021

Summary

The aim of this thesis is to create a new automated android testing framework
supported by machine learning and NLP. The android automated framework
provides a user to write simple and adaptive test scripts. The thesis work is
divided into three main phases. The first part includes application classification
using different feature vectors by supporting machine learning and NLP and in
this way proves that the same type of applications uses similar features and code
characteristics. In the second part, activity classification was applied and inferred
that the same type of activities can have the same UI elements and can follow
a similar UI design pattern. Based on these two parts it has been developed
an automated android testing framework that users can write test suites with
human-understandable and simple syntax. Each test suite can have more than
one test case and each one can apply to the specified activity types. Test cases
can re-use similar activity types without needing any change. Also, test suites can
re-use in apps that have similar application types. To summarize, The android
testing framework can reduce the time needed for writing UI testing with simple
commands and the scripts can be easily understandable for all developers.

ii

Acknowledgements

Firstly, I would like to deeply express my gratitude to my supervisor, Prof. Luca
Ardito, Prof. Maurizio Moriso and Dr. Riccardo Coppola, and also I would like to
thanks to Simone Leonardi for giving me valuable ideas and suggestions during my
thesis work.

I am so grateful to my family for supporting me and encouraging me during my
studies. Special thanks to my mother Ayça, my father Hakan, my sister Beliz and
also my uncle Akın.

Finally, I would like to thanks to all my friends and specially thanks to Gözde,
Deniz, Simay, Sevgim and Berfin who always believe in me and supporting me in
the difficulty moments.

iii

Table of Contents

List of Tables viii

List of Figures x

Acronyms xii

1 Introduction 1
1.1 Thesis Aim and Goals . 1
1.2 Thesis Organization . 2
1.3 Implementation Details . 5

2 Data Preparation for APK Classification 6
2.1 Overview . 6
2.2 APK File Structure . 7

2.2.1 Android Manifest File . 8
2.2.2 Dalvik Executable format 9
2.2.3 String XML File . 10

2.3 Creation of APK Data set . 11
2.3.1 Collecting Set of APK Files 11
2.3.2 Obtaining Set of Features 11

2.4 Feature Extraction and NLP . 13
2.4.1 Background . 13
2.4.2 Word Embeddings . 13
2.4.3 Generating GloVe feature vector 14
2.4.4 Generating FastText feature vector 16
2.4.5 Generating BERT feature vector 17

3 APK Classification 19
3.1 Building a Model . 19

3.1.1 Data Pre-processing . 19
3.1.2 Evaluation Metrics . 20

v

3.1.3 Tuning Hyper-parameters and Selecting the Best Results . . 21
3.2 Classification Results . 34

3.2.1 Comparison of Results . 36

4 Data Preparation for Activity Classification 38
4.1 Overview . 38
4.2 Activity Structure and UI Elements 39
4.3 Creation of Activity Data set . 41

4.3.1 Specifying Activity Types 41
4.3.2 Collecting Set of Activity . 42
4.3.3 Determining a Set of Activity Features 43

4.4 Feature Extraction and NLP . 45
4.4.1 Generating feature vector 1 45
4.4.2 Generating feature vector 2 46
4.4.3 Generating feature vector 3 47

5 Activity Classification 49
5.1 Building a Model . 49

5.1.1 Data Pre-processing . 49
5.1.2 Evaluation Metrics . 50
5.1.3 Tuning Hyper-parameters and Selecting the Best Results . . 50
5.1.4 Classification Results . 58

5.2 Comparison of Results . 61

6 Android Testing Framework 63
6.1 Overview . 63
6.2 Appium Architecture . 64
6.3 Specifying Framework Commands 64

6.3.1 Activity Specific Commands 66
6.3.2 Generic Commands . 68

6.4 Implementation . 68
6.4.1 Framework Structure . 68
6.4.2 Lexical Analysis . 69
6.4.3 Syntactic Analysis . 70
6.4.4 Semantic Analysis . 71

7 Evaluation of Testing Framework 73
7.1 Evaluation of Commands Robustness 73
7.2 Evaluation of Scripts with Functional Testing 75

8 Conclusions and Future Work 77

vi

A Automated Test Framework Scripts 78

Bibliography 82

vii

List of Tables

2.1 Number of APK files per category in APK Data set 12

3.1 Results obtained from tuning of number of units with using grid-
SearchCV . 22

3.2 Results obtained from tuning activation functions with using grid-
SearchCV . 25

3.3 Results obtained from tuning batch size and number of epochs with
using gridSearchCV . 26

3.4 Results obtained from tuning weight initialization with using grid-
SearchCV . 27

3.5 Results obtained from tuning optimizer with using gridSearchCV . 28
3.6 Results obtained from tuning learning rate with using gridSearchCV 29
3.7 Results obtained from dropout regularization with using gridSearchCV 30
3.8 Results obtained from tuning number of hidden layers with using

gridSearchCV . 31
3.9 Results obtained from tuning number of hidden layers with using

gridSearchCV . 31
3.10 Results obtained from tuning number of hidden layers with using

gridSearchCV . 32
3.11 Best hyperparameters of model using Bert feature vector 35
3.12 Best hyperparameters of model using GloVe feature vector 35
3.13 Best hyperparameters of model using Fasttext feature vector 36

4.1 Number of Activities per each activity type 43

5.1 Results obtained from tuning number of units with using gridSearchCV 52
5.2 Results obtained from tuning activation function with using grid-

SearchCV . 53
5.3 Results obtained from tuning batch size and number of epochs with

using gridSearchCV . 54

viii

5.4 Results obtained from tuning weight initialization with using grid-
SearchCV . 55

5.5 Results obtained from tuning optimizer with using gridSearchCV . 56
5.6 Results obtained from tuning learning rate with using gridSearchCV 56
5.7 Results obtained from tuning learning rate with using gridSearchCV 57
5.8 Results obtained from tuning learning rate with using gridSearchCV 57

7.1 Evaluation of Commands . 74
7.2 Functional Evaluation of Test Scripts 76

ix

List of Figures

1.1 APK classification steps by using three different feature vectors . . 3
1.2 Activity classification steps by using three different feature vectors . 4

2.1 APK File Structure . 7
2.2 Dex File Structure . 10
2.3 Text pre-processing and representation 15
2.4 Concatenated GloVe Vector . 16
2.5 Concatenated FastText feature Vector 17
2.6 Concatenated Bert Vector . 18

3.1 The graph of ReLU, Leaky ReLU AND ELU functions, taken from
[16] . 24

3.2 Effect of early stopping to the Bert feature vector model loss 33
3.3 Effect of early stopping to the Glove feature vector model loss . . . 33
3.4 Effect of early stopping to the Fasttext feature vector model loss . . 34
3.5 Comparison of three different neural network architecture 37

4.1 Login Activity . 40
4.2 Main Activity(ebay) . 40
4.3 Activity feature extraction steps . 45

5.1 Accuracy and loss plots of model with feature vector 1 58
5.2 Confusion Matrix of model with feature vector 1 59
5.3 Accuracy and loss plots of model with feature vector 2 59
5.4 Confusion Matrix of model with feature vector 2 60
5.5 Accuracy and loss plots of model with feature vector 3 61
5.6 Confusion Matrix of model with feature vector 3 61
5.7 Comparison of classification results of three different models 62

6.1 Android Automated Testing Framework Structure 68
6.2 The Parse Tree after the sample script executed 71

x

Acronyms

AI
Artificial Intelligence

NLP
Natural Language Processing

DEX
Dalvik Executable File

UI
User Interface

XML
Extensible Markup Language

xii

Chapter 1

Introduction

This chapter introduces the thesis main goals and structure, providing implementa-
tion details.

1.1 Thesis Aim and Goals

Android UI testing is an essential task for testing user interaction with the user
interface of the android application while developing an android application. Since
users interact with the user interface for executing the desired tasks when using an
android app, the role of the UI testing is ensuring every function and UI element
are working as expected. UI testing guarantees the usability, accessibility, and
consistency of apps. However, UI testing can be a costly and time-consuming job
with repetitive tasks for developers. The automated android framework can be
implemented for solving these issues. When a developer implements an android
application, generally the developer follows some design and functional patterns.
Based on this information and some features, applications can be categorized and
also similar activity types can be combined together according to some structural
behaviors. The main goal is the thesis to create an Android Testing Framework
that is providing a user to write simple and adaptive test scripts and can be re-used
in apps that have similar characteristics code level without changing test scripts
structure. The Android Testing Framework ensures the reuse of existing test scripts
for the same type of application and activity category. Thanks to machine learning
and NLP, Android application categories and activity were classified by supporting
machine learning algorithms and natural language processing. To sum up, The
framework can execute UI testing and can be reused at a similar code level of apps
by writing simple human-readable test scripts.

1

Introduction

1.2 Thesis Organization

The tasks can be divided into three main sections. We can see the APK classifi-
cation steps explained in detail in Figure 1.1 and also Figure 1.2 shows Activity
classification steps.

• APK Classification

Chapter 2 covers data preparation steps for APK classification. It describes
collecting a set of useful features and an APK data set that will be used for
the classification procedure. It also covers feature extraction with the NLP
step that is generating different feature vectors using collected features.

Chapter 3 describes APK classification steps. There are preliminary operations
that are pre-processing for classification and it describes classification steps
in detail. At the end of the chapter, there is a comparison of results which
compare to results of different feature vectors.

• Activity Classification

Chapter 4 presents data preparation steps for activity classification. It men-
tions activity structure and also describes activity types. It includes the
creation of an activity data set. The other aspect of this chapter is creating
feature vectors which will be used in chapter 5 for classification.

Chapter 5 describes activity classification steps. Similar to the APK classifica-
tion, There are preliminary operations that are pre-processing for classification
and explain classification steps. This chapter ends with a comparison of the
results of different feature vectors.

• Android Testing Framework

Chapter 6 covers Android Testing Framework. It describes the structure of the
framework and how our framework is working. Commands of the framework
are explaining support with examples.

Chapter 7 covers the evaluation of the Testing framework. After the de-
tailed explained framework in the previous chapter, This chapter shows some
evaluation procedure that applied to the framework.

Chapter 8 presents the conclusion of our work and future works.

2

Introduction

Figure 1.1: APK classification steps by using three different feature vectors
3

Introduction

Figure 1.2: Activity classification steps by using three different feature vectors
4

Introduction

1.3 Implementation details
Most of the work on machine learning and NLP was developed using the Python
language and with the support of Scikit-Learn and Keras libraries. Three pre-
processed models were used for generation of feature vectors in the NLP step.
Bert-Base, Multilingual Cased for BERT feature vector, GloVe Common Crawl
300 dimensional model for Glove, and lastly Fasttext 300 dimensional pre-trained
model for Fasttext vector was used.

On the android testing part, The automated testing tool was implemented using
the Python language and ANTLR (Another Tool for Language Recognition)
tool. The work was done with Android 10 running and testing on a real device
which is Huawei nuova 5T.

5

Chapter 2

Data Preparation for APK
Classification

This chapter includes an explanation of APK file structure in detail. Starting from
that point it covers how to collect features and create a data set. After the creation
of the data set, we generate three different feature vectors using NLP techniques
which will be used in the next chapter.

2.1 Overview
Nowadays, Mobile devices have a significant role in our lives. According to statistics
in January 2021, android is the worldwide mobile operating system leader with a
71.93% share [1]. Google Play stores include a large number of apps for android
users. Users are able to download 3.04 million apps [2]. In order to manage these
huge numbers of apps, apps are divided into categories. Separating apps into
categories provides huge convenience for Android users and developers. Categories
help the users to discover, make comparisons and find a suitable app for performing
desirable tasks. As an example, if the user wants to download photo editing tools,
it can be discovered in the Photography category. Users can search easily for the
specific type of app if they don’t know the exact name of the application. On the
other hand, developers can standardize some functionalities, UI designs in their
applications like the same categorical apps. It can be said that the same categorical
apps can have the same functionality behaviours. Our aspect is getting the useful
app’s features that can be used in classification without accessing the source code
of the app(Black box). If the same categorical apps have similar functionality, the
APK file is also affected by the same functionalities. To sum up, our work can
begin with an examination of the APK file.

6

Data Preparation for APK Classification

2.2 APK File Structure
The android package kit(APK) file is a package file format that includes all
application information, source code to install and distribute an application on
the android system. To release and share android applications, developers have
to create an apk file. After the implementation application, an APK file can be
created in Android Studio. When the user of the android system wants to download
the android application from the google play store, basically the android system
downloads the APK file in the background. There are a lot of websites to download
APK files directly. ApkPure [3] and APKMirror [4] are examples of these websites.
For obtaining features of APK, we need to decompile the APK file. ApkTool [5]
was used for decompiling the APK file.

Figure 2.1: APK File Structure

1. Resources(res) : The folder contains app’s resources(strings, values, draw-
able, layout folders) in XML format.

2. Native Libraries(lib) : The folder is optional and contains platform depen-
dent compiled code. There are folders for different CPU architectures.

3. Assests(assets) : The folder contains application information and assets.
Images, music, backgrounds, forecast colours can be replaced inside of this
folder.

7

Data Preparation for APK Classification

4. Manifest(AndroidManifest.xml) : It is a mandatory XML file which is
each application must include this file.
Manifest file includes basic information about the app such as package name
app components, permissions, device compatibility, file conventions.

5. Signatures(META-INF) : This folder contains CERT.RSA and CERT.SF
files that include information about the digital signature of the app and also
contain MANIFEST.MF file. It stores metadata information about the app.

6. Dalvik bytecode(classes.dex) : The file is a Dalvik Executable file con-
taining source code and all java libraries that app uses.

7. Compiled Resources(resources.arsc) : It contains compiled resources of
the app.

2.2.1 Android Manifest File
After the de-complication of the APK file, our first aim is to examine the app
manifest file[6] which is one of the essential files in the APK file. It is a mandatory
file and must be present in every apk file. If the AndroidManifest.xml file does not
set up correctly, it can lead to different problems. When the developer initiates a
project in the android studio platform, the AndroidManifest.xml file is automatically
created by the platform. The file includes the app’s package name, hardware and
software features of the app, permissions, components of the app which are activities,
services, broadcast receivers, and content providers. As we need to mention about
manifest file structure in detail, there is <manifest> element which is the root
of the XML file. Manifest element includes some attributes that describe general
information about the app. For instance, the package attribute describes the
package name of the app. Since manifest file is a root element, there are other
elements that are the sub element of the manifest. The sub-elements of the manifest
are in the following list.

• Application: One of the sub elements of manifest element is <application>.
Each manifest file can have only one application element. Activity, Intent-filter,
Action and Category can present in the application element as a sub element
of application.

• Uses-features: It is provided to specify hardware and software requirements
for the app. When an app requires specific hardware or software components,
it can add uses-features for requesting to use specific components. As an
example if an application needs to support multi-touch then the following line
should be added to the manifest file.
<uses-features android:name=”android.hardware.touchscreen.multitouch”/>

8

Data Preparation for APK Classification

• Uses-sdk: For specifying which platform the app will be available, it is needed
to use <uses-sdk> and indicate minSdkVersion of the app.

• Permissions: Permissions support to protect the user’s privacy. Every
android application must request permission for accessing and using the sig-
nificant device features. The requisitions can be made by using and adding an
<uses-permission> element to the manifest file. For instance, the application
needs to reach the camera the following line can be added.
<uses-permission android:name="android.permission.CAMERA"/>
There are many types of permission that developers can use when they are
implementing their apps. If applications need to reach calendar features,
READ_CALENDAR and WRITE_CALENDAR permissions can be used.

In AndroClass[7], Authors have used permissions as a feature of classification. They
have extracted permissions from the manifest file to use their classification, and
we also examined the permissions on different applications. As the need to give
an example, Applications in the maps navigation apps category, generally have
ACCESS_COARSE _LOCATION and ACCESS_FINE_LOCATION. In addition
to this example, Applications in the music and audio category, the Manifest file can
contain RECORD_AUDIO and MODIFY_AUDIO_SETTINGS. It is observed
that developers who develop the same type of application can use the same type of
permissions in their applications and these can help to categorize apps. To sum
up, permissions can have an impact on the classification step and decide to utilize
permissions from the manifest file.

2.2.2 Dalvik Executable format
In order to run apps on the device, the android device uses a different file format
than Java-byte code which is a Dalvik byte-code. For obtaining the Dalvik byte-
code several steps can apply. To begin with, the source of the program can be
converted into the .class files after that the class files and jar libraries have to be
translated to the dex file which includes Dalvik byte-codes. Finally, For executing
the app, the Dex file can be translated to the machine-understandable code by
Android Runtime(ART). The Dalvik Executable File (.dex) contains the source
code of android applications that must be included in each apk file and provide
the application to run on the device. However, the .dex file size is limited and
the maximum size is 64k. For this reason apk files can have a multiple dex file if
methods greater than 65,536. Dex classes are divided into several parts. The figure
2.2 shows parts of the dex file. The header contains general information about the
file, strings_ids include a string identifier for every string that is used. Type_ids
contains identifiers for all parts, for example classes and arrays. Proto_ids contains
all method prototypes. Method_ids contains all specific user methods and all API.

9

Data Preparation for APK Classification

Class_defs contains all classes that used in apps. When a developer implements
apps, either uses specified methods or importing Apps in the same category can
use the same API classes. For this, it needs to apply reverse engineering to the dex
file and methods can be extracted from the dex file. The second feature that needs
to be extracted is API class.

Figure 2.2: Dex File Structure

2.2.3 String XML File
Another important file that we need to examine deeper is the strings XML file
that is procuring text data from the app. A string’s XML file must be in every
apk file and resides in project/res/values. The <resources> element is the root
of the XML file and the <string> element is the sub-element of the resources
element which contains textual information. Every <string> element has a name
and this name associates as a resource-id. The following example shows an example
of string XML file syntax and structure. When the developers need to update the
content of some strings, they may simply modify strings from XML files without
needing to reach the source code. Since it is providing text data of the app, it
includes semantic information about the app.

10

Data Preparation for APK Classification

1 <?xml ve r s i on ="1.0" encoding="utf −8"?>
2 <resource s >
3 <s t r i n g name="name_of_string">Str ing_text </s t r i ng >
4 </resource s >

2.3 Creation of APK Data set
2.3.1 Collecting Set of APK Files
Since our approach is having application information with black-box techniques,
apk files can be found simply by reaching the websites that include android apps. As
mentioned before, There are many websites for downloading apk files. In our work,
It has been selected on the apk Pure website. We have created a simple crawler
using the Python programming language for collecting apk files automatically. In
apk Pure store mainly there are two sections which are apps and games. In our case,
we’ll only consider the apps section because generally downloading a game requires
more time than apps since their size is larger. In the apps section, categories are
divided into 32 types. Since downloading apps is a time-consuming task, we have
to specify some restrictions. It has been defined as the upper boundary download
size which is 100 MB and in the meantime, some categories are discarded from our
experiment. We have collected 15 category types with app names, the category
that apps belong to and an apk file of the app. To summarize, it was collected
3958 apk files from apk Pure store in total. Figure 2.1 shows the number of apps
per category.

2.3.2 Obtaining Set of Features
Using the apk tool, A python script has been developed that takes and de-
compiling every application that we collected. We can apply ’"apktool d -m
"+apk_file_name’ command to every apk file. If the apk file correctly decom-
piled, new folder will be created for this apk. Apk file can be deleted and it can be
started to work with decompiled folder.

• Extraction of the apk files

• Deletion of the old apk files

After obtaining decompiled apk files, we can extract useful features by simply writing
with another python script. A second python script was written for obtaining the
features from decompiled apk folders.

11

Data Preparation for APK Classification

Category Number of Apps

Free,Business APP 303
Free,Maps and Navigation APP 287

Free,Food and Drink APP 282
Free,House and Home APP 277
Free,Communication APP 275
Free,Art and Design APP 274

Free,Health and Fitness APP 273
Free,Medical APP 269
Free,Shopping APP 259

Free,Photography APP 257
Free,Entertainment APP 253

Free,Music and Audio APP 246
Free,Social APP 242

Free,Books and Reference APP 231
Free,Education APP 225

Table 2.1: Number of APK files per category in APK Data set

The string XML file can be parsed for getting the value of the string element and
also the manifest XML file can be parsed to get the app’s permissions by using
xml.etree.ElementTree module. When we are parsing the strings and manifest file,
the first step is reaching the root element of the XML file. After the reaching of
the root element, we can iterate sub elements which is uses-permission-sdk and
uses-permission-sdk-23 for manifest XML file and string for the string XML
file. It can apply reverse engineering for taking the API class calls.

• Get the permissions from manifest xml file

• Get the strings from string.xml file

• Extract the API class calls

To summarize, Permissions, API class calls, and strings have been extracted with
the python script that is implemented and features are ready for the conversion of
machine-understandable format.

12

Data Preparation for APK Classification

2.4 Feature Extraction and NLP

This part covers the generation of three different feature vectors with NLP methods.
The feature vectors include useful app features and these are permissions retrieved
from the manifest file, API class calls, and strings obtained from strings XML file.

2.4.1 Background

One of the essential problems in machine learning algorithms, it cannot be provided
raw text directly to algorithms as an input. In order to apply machine learning
algorithms, it is needed to convert textual files into a numerical feature vector.
This problem can be solved by using Feature extraction with NLP techniques.
Feature extraction techniques in NLP have an important role that deals with
transforming textual data to a numerical feature vector that will be used as features
for the classification step. Bag of words is one of the simple methods for
feature extraction that counts the words appearing in the sentence. In BoW the
first step is taking the input text breaking this text into words. This step is
also called tokenization. After the tokenization step, the next step is building a
vocabulary. Each sentence that can be called a document can transform into the
vectorized format according to counting how many times words are appearing. Each
vectorized format length is equal to vocabulary size length. The main drawback
of this model is that it can not gain semantic information. Another drawback
needs to be considered, when the number of documents increases, at the same time
the vocabulary size will increase so this makes a more complex model.There are
many feature extraction methods that exist as mentioned before like Bag of words.
However, these methods do not take into consideration semantic meanings with
the other words. Word embeddings give a solution to this problem.

2.4.2 Word Embeddings

Word embeddings are feature extraction methods for understanding both syntactic
and semantic meanings of the words. It is basically transforming the text into n-
dimensional space. Each word has a vectorial representation. In vector space, words
that have a similar meaning reside closer. Instead of creating word embeddings from
scratch, it will use pre-trained word embeddings. Pre-trained word embeddings have
created and trained vectors. Some methods of word embeddings are Word2Vec ,
GloVe , Fasttext , Flair embeddings.

13

Data Preparation for APK Classification

2.4.3 Creating GloVe feature vector

GloVe vector is one of the word embedding methods that use unsupervised learning
methods [8]. For using unsupervised methods and learning word representation they
take into consideration word co-occurrence statistics in a corpus. Pennington
gave an example of aspects of how to extract the meaning of words from
the co-occurrence probabilities. Let’s take two words which are k = ice and m
= steam. The relationship between these words specifies finding the ratio between
co-occurrence probabilities by using several words and let’s specify as and n is
equal to solid. n has a relationship between ice but has no relationship with steam.
According to that ratio, Pkn/Pmn will be large. Also when k is equal to gas, this
time Word gas relates with stem but not with ice. To sum up, GloVe vectors are
using ratios of co-occurrence probabilities instead of the probability of themselves.

As we mentioned before, permissions can have an impact on the classification and
have been extracted using python script. Permissions have to be converted to the
machine-understandable format. For converting the binary feature array, we need
to obtain all possible permissions. Permissions were taken from android developer
official websites[9] and in total there are 165 permissions so the length of permissions
binary feature vector is 165. If the permission exists in the current application,
it assigns 1 for this permission otherwise assign 0. Similar to permissions, API
class calls can be converted into binary feature arrays. API class call feature
array includes 4859 class calls which were taken from android developer official
websites[10]. If the application uses the API class call, this API class call assigns
to the 1, otherwise 0.

When we are converting strings into GloVe vectors, the first task to apply is text
pre-processing and representation. Before the conversion of the strings to the Glove
feature vector, we have to apply text pre-processing and representation in order to
have a more accurate result in the classification section. Text pre-processing and
representation is one of the significant and initial tasks of an NLP pipeline for having
more useful and meaningful inputs. It can be applied to different text pre-processing
according to the data set that has. [2]In the role of text pre-processing paper,
the authors mention the importance of applying to the right text-pre-processing
task according to the data set that has it, and authors have used lower-cased,
lemmatized, and multi-word. There are many text pre-processing NLP techniques,
for instance, tokenization, Lemmatization, Stemming, and removal of stop words.
To begin with, lemmatization and stemming helps to convert inflected words to the
root forms. Inflected words are words which are derived from another word. The
main difference between lemmatization and stemming is that lemmatization uses
morphological analysis of the words and it converts inflected words to the base
form which is called a lemma.

14

Data Preparation for APK Classification

For example, the word "better" can convert to "good" or the word "kept" con-
verts to "keep". On the other hand, stemming converts to the root word by using
prefixes and suffixes. As an example, words “playing”, “played”, “plays” can be
reduced to “play”. Figure 2.4 shows text prepossessing and representation tasks
that we have done.

Figure 2.3: Text pre-processing and representation

Our first step is lower-casing. We are avoiding two different dimensions for the
same word in vectorized format by converting upper case characters to lowercase
characters so We will obtain one vector per word. The next step is removing all
irrelevant characters from the strings list by using regular expressions. It has been
cleaned with special characters, HTML tags, numbers, and also emojis. After
removing special characters, it can be removed extra white spaces. Two examples
present that show a pre-processing procedure in the bellow list.

• ’3.Minimum withdrawal amount is 10 points’ -> ’minimum with-
drawal amount is points”

• ’Please tap OK to set up your email first!’ -> ’please tap ok to set
up your email first’

Tokenization is splitting a text into smaller chunks. Firstly, each sentence can
be divided into words which are called tokens. After tokenization, sentence words
have been encoded into the sequences which map each word to the index of the
corresponding word. The examples of conversion of sequences are in the following
list.

• ’allow access to camera and device storage to start scanning docu-
ments’ -> [62, 163, 1, 37, 104, 88, 60, 1, 26, 170, 93]

• ’start scanning docs’ -> [26, 170, 319]

Since all input’s length must be equal for applying the next steps, another
approach that must be applied is padding. We needed to find the maximum
sequence length for padding. According to the maximum sequence length, it can
be added 0 to the end of the sequence in each sequence until it becomes equal
to the maximum sequence length. The padding examples of sequences are in the
following list.

15

Data Preparation for APK Classification

• [62, 163, 1, 37, 104, 88, 60, 1, 26, 170, 93] -> [62 163 1 37 104 88
60 1 26 170 93 0 0 0 0 0 0]

• [26, 170, 319] -> [26 170 319 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

As mentioned before, it was used pre-trained word embeddings model and for GloVe
vector pre-trained word embeddings 300 dimensional embeddings was downloading
from official GloVe websites 1. Each word is converted to the float numbers. After
the conversion, we have obtained a 300 dimensional array. It can be converted to a
one dimension array using max concatenation. For obtaining a one single vector,
we have concatenated permissions binary feature array, API class calls feature array
and word embeddings.

To sum up, We have ended up with 5324 cells which are the concatenation of
the three features. The binary feature vector with 165 elements represents the
apps permissions, similarly the binary feature vector with 4859 elements represents
the apps API class calls and lastly, 300 float values represent max of the word
embeddings which is the conversion of the strings.

Figure 2.4: Concatenated GloVe Vector

2.4.4 Creating FastText feature vector
FastText[11] is a library for implementing the word embedding technique published
by Facebook which each word represents with a bag of character n-gram. The
FastText supports both CBOW and skip-gram model usage. Most word embedding
models assign a distinct vector for each word without considering the morphology
of words but the fastText model takes into account the morphology of words with
character-level knowledge. In Enriching Word Vectors with Subword Information
paper[12] explains how word vectors can be obtained using subword information.
Basically, Fasttext breaks words into n-grams of characters.

1https://nlp.stanford.edu/projects/glove/

16

https://nlp.stanford.edu/projects/glove/

Data Preparation for APK Classification

It can be added special symbols < and > to the beginning and end of each
word. Let’s examine the word where while n= 3. The representation of a word
where can be <wh, he, her, ere, re>. Each n-gram can have a vector representation
and each word has the sum of n-grams vector representation. In this way, fastText
is supporting character-level knowledge.

We have used 300 dimensional pre-trained fastText model that was downloaded
from official fastText website 2. Permissions and API class calls converted to the
binary feature array. The same procedures were applied for permissions and API
class calls as we did in the GloVe feature vector. Also for strings, we have followed
the same path. The only difference is we have used a pre-trained fastText model.
To sum up, we ended up with 5324 cells which are the concatenation of the three
arrays.

Figure 2.5: Concatenated FastText feature Vector

2.4.5 Creating BERT feature vector
Pre-trained models can be two types which are context-free and contextual rep-
resentations[13]. GloVe and word2Vec are context-free. As an example, “bank”
has the same representation and has created the same word embeddings in “bank
account” and “bank of the river”. Unlike the other embeddings, BERT is based
on a contextual model that creates a representation of a word according to other
words in the sentence. BERT is a NLP technique called Bidirectional Encoder
Representations from Transformers published by Google[14]. To begin with, Ope-
nAI applies just left-right transformers and ELMO applies the concatenation of
left-to-right and right-to-left LSTM but BERT applies bidirectional transformers
which means that it uses both left and right content of words. This feature allows
you to learn the context of words from both right and left words.

2https://fasttext.cc/docs/en/english-vectors.html

17

https://fasttext.cc/docs/en/english-vectors.html

Data Preparation for APK Classification

The main steps in BERT architecture that uses two unsupervised training tasks are
the Masked language model(MLM) which randomly masks some tokens and the
next sentence prediction is used. In Masked LM 15% of input randomly is chosen
as mask tokens in each sentence and after that tries to predict [MASK] tokens
instead of the entire sentence. The next task is Next Sentence Prediction that is
taken as a pair of sentences A and B and predict that sentence B can follow B or
not. It has been used in three different embeddings which are token embeddings,
segment embeddings and position embeddings.

• Token embeddings : [SEP] tokens are added to at the end of the sentence
for separation of sentence and [CLS] tokens can be added to the beginning of
the first sentence.

• Segments embeddings : It is for distinguishing the different sentences.

• Segments embeddings : It is for specifying the position of each token in
the sentence.

In implementation it will be used bert-as-service 3 which helps to sentence
encoding. Bert-as-service uses BERT for encoding sentences and representing
sentences into fixed length representations. Similarly to GloVe and Fasttext
embeddings, BERT has pre-trained models. As a first step, a pre-trained BERT
model must be downloaded and loaded into memory. It will be used BERT-Base
Multilingual cased. After the download of the pre-trained model it has to install
Bert server and client. When bert-as service starts to run, we can get encoding
sentences by writing a couple of lines of codes. Bert-as-services converts each
sentence to the 768 dimension using BERT. In order to reduce dimension, we can
apply max,sum and average concatenation to the word embeddings. In our case,
max concatenation is applied to the word embeddings. Permissions and API class
calls are converted the same as Glove and FastText vectors. To summarize,the bert
feature vector includes 5792 cells.

Figure 2.6: Concatenated Bert Vector

3https://github.com/hanxiao/bert-as-service

18

https://github.com/hanxiao/bert-as-service

Chapter 3

APK Classification

In the previous chapter, we have created three different feature vectors by using NLP
techniques. This chapter covers the classification step with three different separate
feature vectors and also compares their performance. The deep neural network was
chosen as a classifier. Firstly, our first step is pre-processing which is preparing
our feature vectors and categories for classification. After the pre-processing, we’ll
focus on tuning the hyper-parameters and select the best parameters and the model
architecture. Finally, we’ll conclude this part with a comparison of the classification
of models using different feature vectors.

3.1 Building a Model
3.1.1 Data Pre-processing
The first step is the preparation of feature vectors and categories for classification.
Since we have more than 2 categories we’ll implement multi-class classification.
Each application is one sample and is labelled as one of the 15 possible categories.
The feature vector that we have obtained in the previous section can have higher
and lower absolute values. Having an absolute value of a feature can dominate other
features and have a higher impact on the model. To avoid this we will transform the
feature vector. Transformation can be done by implementing different techniques.
Standardization makes re-scaling the distribution of values that transform standard
deviation to 1 and have a mean of zero. Each value is standardized by using the
equation 3.1.

z = score−mean

standarddeviation
(3.1)

The other issue we need to consider is converting a categorical variable into
a numerical form. A label encoder will be used for the transformation of the
categorical variables.

19

APK Classification

Basically, It assigns to each string a numerical variable starting from 0 and our
range will be between 0 to 14. In order to make more reliable predictions, model
evaluation should be done with data not used in the training set. We are taking
our data set and dividing it into two subsets. One subset is training data which
will be used to fit our model. The other subset is test data which will be used
to evaluate our model. In this way, we can also specify if our model suffers from
underfitting or overfitting. In our data set %80 of data will be used for the training
phase and %20 of data will be used for the testing phase.

• Training set includes 80% of the data set and has 3162 samples.

• Testing set includes 20% of the data set and has 791 samples.

However dividing our data set into two subset which is called the holdout method
is not enough for tuning hyper-parameters and obtaining precise results. We can
also use a more reliable cross-validation technique. Stratified k-Fold Cross
Validation has been used in our case. Stratified k-Fold Cross Validation makes
sure that data is splitting equally in each fold. We have picked k as 10 and it is
splitting the data set into 10 folds. For each iteration k-1 fold is used for training
and the remaining fold is for test. Model will be trained and tested 10 times.

3.1.2 Evaluation Metrics
For evaluation of hyper-parameters and models, Accuracy, precision, and recall
have been used. Accuracy is one of the most commonly used evaluation metrics
which divide the number of correctly predicted samples by the number of total
samples. The accuracy formula is in the following.

accuracy = TP + TN

TP + TN + FP + FN
(3.2)

If needed to examine deeper and for having more information, precision and recall
can be used. Precision indicates how many positive predictions are correct. The
number of positive true predictions divided by total positive predictions gives the
precision result.

precision = TP

TP + FP
(3.3)

Recall is the number of positive predictions divided by the number of total
samples that need to actually belong to the positive predictions.

recall = TP

TP + FN
(3.4)

20

APK Classification

3.1.3 Tuning Hyper-parameters and Selecting the Best
Results

For obtaining the best result, we need to tune hyper-parameters and a naive ap-
proach is to try every possible combination of different features. Grid Search is a
hyper-parameter tuning method and provides a model for each possible combination
of hyper-parameters. We can compare the results of each possible combination and
select the best result.

The list of hyper-parameters for neural networks:

• Number of Units : It is a model hyper-parameter that must be specified.
50,100, 200 units have been tried in our case.

• Activation Function : It transforms the given input value to the output
value in each node. Some activation functions are ReLU, Sigmoid, Softsign,
Leaky ReLU.

• Number of Epochs : It is a hyper-parameter that specifies how many times
the algorithm needs to run to cover all training data sets. Higher epochs might
indicate overfitting.

• Batch Size : It is a hyper-parameter that specifies how many numbers of
samples should be passed through to the network at a time. A larger batch size
requires more computational power. The batch size can be one of the three
modes. Batch Gradient Descent(Batch mode) where the batch size equals the
number of the training data set. Stochastic Gradient Descent(Stochastic mode)
where the batch size is equal to one and mini-batch gradient descent(Mini
batch mode) where batch size between more than one and less than the number
of the training data set. It can be 32,64,128 and 256. A smaller batch size
updates weights more frequently.

• Optimizer : It updates the weight of neurons for minimizing the loss between
expected and predicted results. Some available optimizer functions: Adam,
Adagrad, SGD, AdaDelta.

• Learning rate : When the learning rate is set to a low number, the training
process could be extremely slow since it makes small updates to the weights.
The learning rate range can be between 0 and 1.

• Weight initialization : It is assigning initial random weights for the neu-
ral network. Some of the weight initializers are uniform, normal, and glo-
rot_normal.

21

APK Classification

• Number of hidden layer : The hidden layer takes the input from the
previous layer and uses the activation function to produce output then passes
this output to the next layer.

The first parameter we need to tune is the Number of units for the input layer.
Since our machine computational power is very low we have provided a small
number of units. We have tried 3 different numbers of units starting from 50 units
up to 200 units. We obtained the highest (44.562 %) accuracy with 200 units in
the model with Bert feature vector and also in the model with GloVe and FastText
feature vectors with 200 units gave the best result.

Metrics Accuracy Precision Recall

Units Bert Vector
50 30.270%+/-6.446% 29.337%+/-8.208% 30.120%+/-6.653%
100 42.602%+/-2.048% 44.690%+/-2.268% 42.574%+/-2.104%
200 44.562%+/-2.19% 45.972%+/-2.106% 44.577%+/-2.08%
Units GloVe Vector
50 36.433%+/-3.628% 36.949%+/-3.135% 36.298%+/-3.52%
100 40.229%+/-1.849% 40.931%+/-1.969% 40.120%+/-1.824%
200 41.524%+/-1.600% 42.687%+/-1.585% 41.484%+/-1.817%
Units FastText Vector
50 37.826%+/-2.634% 38.998%+/-2.694% 37.630%+/-2.662%
100 40.544%+/-2.055% 41.562%+/-2.034% 40.396%+/-2.187%
200 41.968%+/-1.996% 42.225%+/-1.752% 41.836%+/-1.898%
Parameters One dense layer Batch size is 32 Epoch is 100
Optimizer Adagrad(lr=0.01) Activation function relu

Table 3.1: Results obtained from tuning of number of units with using grid-
SearchCV

After specifying the number of units, our next and essential step is tuning the
activation functions. We mainly focused on non-linear activation functions be-
cause linear activation functions have a low power of compute complex parameters.
The main reason we do not use linear functions is it is not possible to use back-
propagation since the derivation of the linear function is constant.

22

APK Classification

If we use linear functions, our neural network behaves like a single layer percep-
tron and this is not a desirable aspect that we would like to perform. Firstly, we
can take a look at basic activation functions like sigmoid, ReLU. Sigmoid function
is the one of the widely used non-linear functions. It gives output between the
range 0 and 1. However sigmoid function during the back-propagation can cause
the vanishing gradient problem. The derivative of sigmoid activation function
can take a maximum 0.25 [15]. Equation 3.5 shows sigmoid function derivation
formulation.

f Í(x) = sigmoid(x) × (1 − sigmoid(x)) (3.5)

We can try to use another commonly used activation function which is ReLU for
avoiding vanishing gradient problems. The expression and derivation of ReLU
functions are in the equation 3.6 and 3.7.

f(x) = x, x > 0 f(x) = 0, x <= 0 (3.6)
f Í(x) = 1, x >= 0 f Í(x) = 0, x < 0, (3.7)

If the input value is negative or equal to zero , it assigns zero as output value. If
output of neuron is equal to zero, we can’t calculate the derivation of neuron so
it can’t update the weight during the back-propagation and it is creating a dead
neurons which means it can’t have a contribution of network training phase. This
is called as a dying ReLU issue. As an improvement of ReLU function we have
been using Leaky ReLU and ELU activation function. The main different between
ReLU and Leaky ReLU, it will return small number rather than returning zero
when the input value less than zero which is 0.01 times x. Similar to Leaky ReLU
ELU function produces negative values when the input less than zero. [3] ELU
has alpha positive integer constant. The equation 3.8 belongs to Leaky ReLU
activation function and the equation 3.9 is belongs to ELU functions.

f(x) = x, x > 0 f(x) = 0.01x, x <= 0 (3.8)
f(x) = x, x > 0 f(x) = α.(ex − 1), x <= 0, (3.9)

Furthermore, Figure 3.1 shows a graph of the ReLU, Leaky ReLU, and ELU
functions. As we mentioned before and the following figure below shows us when
the input value is negative or equal to zero, the output of the ReLU function always
assign to zero. However, when we use leaky ReLU we can see that the line slopes
to the left.

23

APK Classification

Figure 3.1: The graph of ReLU, Leaky ReLU AND ELU functions, taken from
[16]

In addition to these functions, softsign and softplus activation functions are involved
in our experiment. They don’t cause vanishing gradient problems however they are
much slower than ReLU. In our case we have observed that the best performance
function is softsign in model with Bert and GloVe feature vectors. In models with
Fasttext feature vector sigmoid function gives better accuracy(44.119 %) according
to the other activation functions. In sum up, we’ll use softsign as an activation
function of the input layer in a model with Bert and GloVe feature vector and
sigmoid function in Fasttext feature vector.

24

APK Classification

Metrics Accuracy Precision Recall

Bert Vector
Sigmoid 40.069%+/-3.831% 42.133%+/-4.021% 39.875%+/-3.860%
Softplus 44.309%+/-2.389% 46.209%+/-1.916% 44.251% +/- 2.384%
Softsign 45.668%+/-1.523% 47.104%+/-1.395% 45.632%+/-1.504%
ReLU 44.277%+/-1.810% 46.031%+/-2.331% 44.209%+/-1.705%
ELU 45.163%+/-1.890% 47.034%+/-1.58% 44.993%+/-1.934%
Leaky
ReLU

43.549%+/-1.808% 46.292%+/-1.766% 43.552 %+/-1.749%

GloVe Vector
Sigmoid 39.913%+/-3.421% 40.522%+/-3.109% 39.513%+/-3.449%
Softplus 42.348%+/-1.519% 43.092%+/-1.789% 42.286%+/-1.541%
Softsign 44.182%+/-1.772% 44.893%+/-

1.802%
44.144%+/- 1.850%

ReLU 40.988%+/-2.232% 42.141%+/-1.853% 41.014%+/-2.341%
ELU 42.221%+/-2.206% 43.312%+/-2.359% 42.113%+/-2.325%
Leaky
ReLU

41.241%+/-1.994% 42.644%+/-1.950% 41.114%+/- 1.860%

FastText Vector
Sigmoid 44.119%+/-2.334% 44.658%+/-2.016% 44.095% +/-

2.276%
Softplus 40.450%+/-2.491% 41.087%+/- 2.200% 40.325%+/-2.511%
Softsign 43.898%+/-2.386% 44.480%+/-2.300% 43.712% +/-2.244%
ReLU 41.429%+/-2.077% 41.860%+/-1.763% 41.361%+/-2.190%
ELU 41.557%+/-1.918% 41.779%+/-1.998% 41.466%+/- 1.984%
Leaky
ReLU

40.829%+/-2.954% 42.101%+/-2.721% 40.675 %+/-2.98%

Parameters One dense layer Batch size is 32 Epoch is 100
Optimizer
is

Adagrad(lr=0.01) Number of units 200

Table 3.2: Results obtained from tuning activation functions with using grid-
SearchCV

The next parameters are batch size and number of epochs. We’ll use mini-
batch Gradient Descent as mentioned before. It divides into a data set less than a
total number of samples. If the bath size is large, it may consume a lot of memory
and needs more computational power. To sum up, We’ll try 32,64,128 batch sizes.
Each epoch includes one forward and backward pass of the entire training data set.

25

APK Classification

In order to learn the pattern of the training data set, the training data set has to
cycle more than one time in the neural network so we need more than one epoch.
We’ll try 100 and 200 epochs in our experimentation.

Metrics Accuracy Precision Recall

BS -
Epochs

Bert Vector

32 - 100 45.890%+/-2.035% 47.178%+/-1.626% 45.795%+/-2.078%
32 - 200 46.807%+/-2.196% 47.392%+/-1.974% 46.735%+/-2.218%
64 - 100 45.479%+/-2.979% 48.357%+/-2.968% 45.434%+/-3.051%
64 - 200 46.775%+/-2.004% 47.722%+/-2.067% 46.732%+/-1.945%
128 -100 41.209%+/-2.158% 49.441%+/-2.351% 40.972%+/-2.113%
128 -200 46.174%+/-2.252% 48.535%+/-2.144% 46.193%+/-2.138%
BS -
Epochs

GloVe Vector

32 - 100 44.087%+/-2.044% 44.500%+/-1.739% 43.973%+/-1.984%
32 - 200 43.802%+/-1.898% 44.061%+/-1.427% 43.663%+/-1.844%
64 - 100 43.201%+/-1.862% 44.413%+/-1.289% 43.091%+/-1.851%
64 - 200 44.056%+/-2.531% 44.855%+/-2.246% 44.000%+/- 2.539%
128 -100 42.665%+/-2.610% 45.101%+/-2.051% 42.375%+/-2.521%
128 -200 43.707%+/-2.161% 44.421%+/-2.025% 43.601%+/-2.250%
BS -
Epochs

FastText Vector

32 - 100 44.466%+/-1.817% 44.977%+/-1.430% 44.345% +/-1.742%
32 - 200 43.771%+/-2.109% 44.019%+/-1.756% 43.661% +/-2.051%
64 - 100 44.404%+/-2.695% 45.195%+/-2.042% 44.288%+/-2.551%
64 - 200 44.023%+/-1.966% 44.773%+/-1.763% 43.884%+/-1.917%
128 -100 42.316%+/-2.417% 44.078%+/-2.311% 42.315%+/- 2.447%
128 -200 43.960%+/-1.916% 44.713%+/-1.611% 43.881%+/-1.985%
Parameters One dense layer Activation function softsign
Optimizer Adagrad(lr=0.01) Number of units 200

Table 3.3: Results obtained from tuning batch size and number of epochs with
using gridSearchCV

In model with Bert Vector Batch size 32 and 200 epochs gives 46.807 % accuracy
which is the best result according to the other parameters. For both models with
Glove and Fasttext vectors we’ll use 100 epochs and set the batch size to 32.

26

APK Classification

After the batch size and number of epochs we’ll continue with weight initial-
ization. To prevent our network from exploding and the problem of vanishing
gradient we have involved different weight initialization methods in our experiments
which are uniform, normal and Glorot_normal. In weight initialization, a common
important point is selecting a value which is closest to the zero. Uniform weight
method is to randomly initialize weight from uniform distribution and every value
has the same probability. Uniform weight initialization methods will be used in
models with Bert and Fasttext vectors. In model with GloVe vector Glorot_normal
gave best result with 44.499% accuracy.

Metrics Accuracy Precision Recall

Bert Vector
Uniform 46.806%+/-1.843% 48.289%+/-1.613% 46.741%+/-1.715%
Normal 45.826%+/-2.097% 47.034%+/-1.381% 45.758%+/-2.090%
Glorot
Normal 46.016%+/-2.428% 48.152%+/-2.428% 46.004% +/-2.375%

GloVe Vector
Uniform 43.992%+/-2.131% 44.813%+/-2.070% 43.956%+/-2.131%
Normal 44.372%+/-2.530% 45.148%+/-1.856% 44.312%+/-2.558%
Glorot
Normal 44.499%+/-2.001% 45.339%+/-1.686% 44.411%+/- 1.975%

FastText Vector
Uniform 44.054%+/-1.464% 44.537%+/-0.866% 43.951%+/-1.571%
Normal 43.803%+/-2.020% 43.992%+/-1.787% 43.781%+/-2.109%
Glorot
Normal 43.549%+/-1.896% 44.227%+/-1.377% 43.442%+/-1.824%
Parameters One dense layer Batch size is 32 Epoch is 100
Optimizer Adagrad(lr=0.01) Number of units 200
Activation softsign

Table 3.4: Results obtained from tuning weight initialization with using grid-
SearchCV

The next step is deciding the optimizer. There are many optimization algorithms
for reducing the loss in network and obtaining the more accurate results. Four dif-
ferent optimizers were involved in our experiment which are SGD, Adam, Adagrad
and Adamax. In all feature vectors, the Adagrad optimizer gave the best score
in our experiment. The adagrad[17] is a stochastic optimization algorithm which
weights a different learning rate by using past observations.

27

APK Classification

For parameters with frequently used features it is applying smaller updates and
for parameters with infrequently used features it is applying larger updates. The
main advantage of the adagrad optimizer is no need to manually tune the learning
rate. To summarize,we got the best score with adagrad 46.617% in model with
Bert feature vector, 44.782% in model with GloVe feature vector and 44.560% in
model with Fasttext feature vector.

Metrics Accuracy Precision Recall

Bert Vector
SGD 42.886%+/-2.712% 50.613%+/-3.681% 42.990%+/-2.421%
Adam 40.735%+/-1.946% 42.840%+/-3.469% 40.869%+/-2.066%
Adagrad 46.617%+/-2.330% 48.200%+/-1.900% 46.601%+/-2.418%
Adamax 44.593%+/-2.286% 46.550%+/-2.691% 44.620%+/-2.330%

GloVe Vector
SGD 43.202%+/-2.480% 44.526%+/-2.410% 43.068%+/-2.532%
Adam 40.101%+/-2.080% 43.030%+/-2.328% 39.931%+/-2.037%
Adagrad 44.782%+/-1.518% 45.583%+/-1.310% 44.733%+/-1.546%
Adamax 42.473%+/-2.056% 44.523%+/-2.324% 42.194%+/-2.066%

FastText Vector
SGD 42.095%+/-2.814% 43.118%+/-2.547% 42.081%+/-2.911%
Adam 39.596%+/-2.485% 42.104% +/- 2.247% 39.451%+/-2.497%
Adagrad 44.560%+/-1.265% 45.119%+/-1.240% 44.488%+/-1.300%
Adamax 42.348%+/-2.131% 43.700%+/-2.275% 42.293%+/-2.063%
Parameters One dense layer Batch size is 32 Epoch is 100
Activation softsign Number of units 200

Table 3.5: Results obtained from tuning optimizer with using gridSearchCV

After the optimizer was selected, one of the most significant hyper-parameters
which is learning rate has been tried to our neural network. If the lower value
is assigned to the learning rate, the training process can be slow. However, if the
learning rate is too high, it can cause divergent behaviors. We have tried 0.001%
, 0.01% and 0.1% parameters. As it shows in table 3.6, we can obtain 45.542%
accuracy with 0.01% of learning rate in a model with the Bert feature vector. For
the model with the GloVe vector at most we have reached 44.150% accuracy with
0.01% of learning rate. Like the other two models, we have obtained the best result
with 0.01% learning rate in a model with Fasttext vector. To conclude, it will use
the same learning rate which is 0.01% in three neural networks.

28

APK Classification

Metrics Accuracy Precision Recall

LR Bert Vector
0.001% 42.759%+/-2.497% 43.661%+/-2.236% 42.638%+/-2.500%
0.01% 45.542%+/-1.698% 47.739%+/-1.733% 45.474%+/-1.703%
0.1% 13.949%+/-2.429% 8.825%+/-2.945% 13.529/- 2.459%
LR GloVe Vector
0.001% 41.715%+/-2.106% 42.309%+/-1.747% 41.587%+/-2.178%
0.01% 44.150%+/-2.519% 45.111%+/-2.368% 44.104%+/-2.543%
0.1% 16.351%+/-1.322% 12.397%+/-3.060% 15.877%+/-%1.287
LR FastText Vector
0.001% 40.450%+/-1.981% 41.107%+/-1.968% 40.369%+/-2.070%
0.01% 44.339%+/-2.763% 44.515%+/-2.118% 44.286%+/-2.786%
0.1% 24.226%+/-2.190% 24.478%+/-5.293% 24.069%+/-2.221%
Parameters One dense layer Batch size is 32 Epoch is 100
Activation softsign Number of units 200
Optimizer Adagrad

Table 3.6: Results obtained from tuning learning rate with using gridSearchCV

Another essential point that we need to consider when building a neural network
is about avoiding overfitting. To be able to produce better results in our test set,
we have capitalized on regularization techniques. There are several regularization
techniques such as L1& L2 regularization, Data Augmentation, Dropout, and Early
stopping. Data augmentation is a technique that increases the size of the training
data set. In our case, we’ll not use that regularization technique. Early stopping
techniques will be tried after all parameters have been specified. Dropout technique
randomly selects and removes the units during the training in every iteration. When
removing the units, in and out connections of the units are cut off. Dropout can
be applied to the input layer and also the hidden layer. In our case, 0.1 ,0.3 and
0.5 dropout rates have been used. Table 3.7 shows us the results of three different
models when we applied dropout to the network.

29

APK Classification

We have specified basic hyper-parameters for three different neural networks.

Metrics Accuracy Precision Recall

Dropout
Rate

Bert Vector

0.1 46.205%+/-2.503% 47.655%+/-1.907% 46.124%+/-2.487%
0.3 46.934%+/-2.796% 48.291%+/-2.396% 46.853%+/-2.728%
0.5 46.301%+/-2.319% 48.289%+/-2.111% 46.337%+/-2.433%
Dropout
Rate

GloVe Vector

0.1 43.992%+/-2.316% 44.485%+/-2.067% 44.008%+/-2.389%
0.3 43.896%+/-1.383% 44.884%+/-1.147% 43.866%+/-1.391%
0.5 43.991%+/-1.363% 44.793%+/-0.976% 43.973%+/-1.462%
Dropout
Rate

FastText Vector

0.1 42.947%+/-2.112% 44.752%+/-2.091% 42.910%+/-2.070%
0.3 43.518%+/-2.006% 44.870%+/-1.446% 43.490%+/-1.967%
0.5 44.435%+/-2.118% 45.673%+/-1.755% 44.273%+/-2.171%
Parameters One dense layer Batch size is 32 Epoch is 100
Optimizer Adagrad(lr=0.01) Number of units 200
Activation softsign

Table 3.7: Results obtained from dropout regularization with using gridSearchCV

After we have set some basic hyper-parameters, we need to specify the number of
hidden layers. We can define our final network structure by defining the hidden
layers. To obtain better results we can add hidden layers between the input and
output layer. Table 3.8 shows the tuning of the number of hidden layer results
of the model using the Bert feature vector. In Bert feature vector model dense
layer with 200 units plus dense layer with 100 units gives the best result which
is 46.806% of accuracy and also in GloVe feature vector model with 44.277%
accuracy dense layer with 200 units plus dense layer with 100 units the best result.
The results of the model with the GloVe vector are in table 3.9. Finally, a model
with the Fasttext feature vector, like the other feature vectors, has two dense layers
and we have obtained 42.980% accuracy by using a dense layer with 200 units
plus a dense layer with 100 units. Table 3.10 shows the tuning of the number of
hidden layer results of the model with the Fasttext feature vector.

30

APK Classification

Metrics Accuracy Precision Recall

Bert Vector
Dense(200) 45.668%+/-1.754% 46.395%+/-1.741% 45.630%+/-1.693%
Dense(200)
Dense(100)46.806%+/-2.012% 47.660%+/-1.569% 46.721%+/-1.995%
Dense(200)
dense(100)
dense(20) 42.379%+/-2.807% 43.709%+/-3.119% 42.408%+/-2.882%
Dense(200)
dropout(0.3)
dense(20) 32.323%+/-3.366% 33.735%+/-2.721% 32.321%+/-3.450%
Parameters Weight uniform Batch size is 32 Epoch is 200
Activation softsign Number of units 200
Optimizer Adagrad Learning rate 0.01

Table 3.8: Results obtained from tuning number of hidden layers with using
gridSearchCV

Metrics Accuracy Precision Recall

GloVe Vector
Dense(200) 42.410%+/-1.779% 44.038%+/-1.536% 42.310%+/-1.810%
Dense(200)
Dense(100)44.277%+/-1.960% 44.724%+/-1.604% 44.137%+/-1.952%
Dense(200)
dense(100)
dense(20) 43.043%+/-1.999% 43.602%+/-2.111% 42.930%+/-2.089%
Dense(200)
dropout(0.1)
dense(20) 32.035%+/-3.380% 32.446%+/-3.077% 32.057%+/-3.476%
Parameters glorot_normal Batch size is 32 Epoch is 100
Activation softsign Number of units 200
Optimizer Adagrad Learning rate 0.01

Table 3.9: Results obtained from tuning number of hidden layers with using
gridSearchCV

31

APK Classification

Metrics Accuracy Precision Recall

Fasttext Vector
Dense(200) 41.872%+/-%2.163 43.224%+/-1.89% 41.840%+/-2.072%
Dense(200)
Dense(100)42.980%+/-1.762% 43.579%+/-1.848% 42.663%+/-1.951%
Dense(200)
Dense(100)
Dense(20) 29.509%+/-3.223% 29.248%+/-3.386% 29.215%+/-3.145%
Dense(200)
Dropout(0.5)
Dense(20) 15.814%+/-1.869% 9.525%+/-3.636% 15.164%+/-1.894%
Parameters Weight uniform Batch size is 32 Epoch is 100
Activation sigmoid Number of units 200
Optimizer Adagrad Learning rate 0.01

Table 3.10: Results obtained from tuning number of hidden layers with using
gridSearchCV

32

APK Classification

The last point that we need to take into consideration is applying an early stopping
to avoid overfitting, which is mentioned before. Having a high number of epochs can
lead to over-fitting in the neural network and during the training phase, overfitting
can occur when the gap between validation loss and training loss starts increasing.
Early stopping provides stop training when the validation error increases. Figure
3.2 shows the Bert feature vector model loss chart without using early stopping and
with using early stopping. As seen in the left chart in figure 3.2, the model tends to
over-fit after the 80 epochs therefore for avoiding over-fitting in our model training
phase must be stopped after the 80 epochs, and the validation loss decreased by
using the early stopping.

Figure 3.2: Effect of early stopping to the Bert feature vector model loss

The model using the GloVe feature vector has used 100 epochs. If we look
at figure 3.3, we can observe that over-fitting starts at epoch 60 so when early
stopping is used, the model training stops at epoch 60. In addition to this, the
validation loss of the model decreases.

Figure 3.3: Effect of early stopping to the Glove feature vector model loss

33

APK Classification

Lastly, in the model using the Fasttext feature vector like the Glove feature
vector we have used 100 epochs. We have observed that 100 epochs is the optimal
number of epochs and does not lead to overfitting. If early stopping applies to the
model, we can say that the model does not stop before the 100 epochs.

Figure 3.4: Effect of early stopping to the Fasttext feature vector model loss

3.2 Classification Results

To summarize, Three different neural networks were created by using different fea-
ture vectors. We have tried to find the best results by tuning the hyper-parameters
for three different models. Since implementing the multi-class classification and hav-
ing more than two label classes, the Softmax activation function was used for the
output layer and sparse_categorical_crossentropy was used as a loss function
in three neural networks. The main advantage of sparse_categorical_crossentropy
is saving time. In order to use sparse_categorical_crossentropy categorical labels
must be converted to the integer value. In our case conversions are done in the
pre-processing step. In the model that used the Bert feature vector, the following
architecture has been implemented: As an input layer 5792 nodes have been used
and go towards the dense layer of 200 units using the softsign activation function
and the uniform is assigned as a kernel initializer. After that, the dense layer of
200 units goes into a dense layer with 100 units with the elu activation function
and uniform kernel initializer. As an optimizer we have used Adagrad with a
0.01 learning rate. Lastly, the Neural network ends up with an output layer using
softmax activation function with 15 nodes. With this architecture we have reached
46.806% accuracy with a 2.012% standard deviation. The recall is 46.721% with
a 1.569% standard deviation and precision is 47.660% with a 1.995%. Table 3.11
shows a summary of all hyper-parameters for model with the Bert feature vector.

34

APK Classification

Hyperparameters Values

Number of units 200
Activation Function softsign

Batch size 32
Number of epochs 200

Weight Initialization uniform
Dropout Regularization 0.3
Optimization Algorithm Adagrad

Learning rate 0.01
Loss Function sparse_categorical_crossentropy

Table 3.11: Best hyperparameters of model using Bert feature vector

In the model that used the GloVe feature vector, the following architecture has
been implemented: As an input layer 5324 nodes have been used and go towards the
dense layer of 200 units using the softsign activation function and glorot_normal is
assigned as a kernel initializer. The dense layer of 200 units goes into a dense layer
with 100 units with a softsign activation function and a uniform glorot_normal
initializer. Adagrad is used with a 0.01 learning rate. Lastly, Neural network ends
up with an output layer using softmax activation function with 15 nodes(15 possible
categories). We have reached 44.277% accuracy with a 1.952% standard deviation
with this architecture. The recall is 44.137% with a 1.569% standard deviation
and precision is 44.724% with a 1.604%. We can see that all hyper-parameters of
model with GloVe feature vectors in table 3.12.

Hyperparameters Values

Number of units 200
Activation Function softsign

Batch size 32
Number of epochs 100

Weight Initialization glorot_normal
Dropout Regularization 0.1
Optimization Algorithm Adagrad

Learning rate 0.01
Loss Function sparse_categorical_crossentropy

Table 3.12: Best hyperparameters of model using GloVe feature vector

35

APK Classification

Last neural network that we have implemented uses Fasttext feature vector. The
architecture of our last neural network is in the following : As an input layer, 5324
nodes have been used to go towards the dense layer of 200 units with a sigmoid
activation function and the uniform is assigned as a kernel initializer. The dense
layer of 200 units goes into a dense layer of 100 units with a sigmoid activation
function and a uniform glorot_normal initializer. In addition to this, Adagrad
optimizer was used with a 0.01 learning rate. Lastly, Neural network ends up
with an output layer using softmax activation function with 15 nodes(15 possible
categories). We have reached 42.980% accuracy with a 1.762% standard deviation
with this architecture. The recall is 42.663% with a 1.951% standard deviation
and precision is 43.579% with a 1.848%. We can see that all hyper-parameters of
model with Fasttext feature vectors in table 3.13.

Hyperparameters Values

Number of units 200
Activation Function softsign

Batch size 32
Number of epochs 100

Weight Initialization uniform
Dropout Regularization 0.5
Optimization Algorithm Adagrad

Learning rate 0.01
Loss Function sparse_categorical_crossentropy

Table 3.13: Best hyperparameters of model using Fasttext feature vector

3.2.1 Comparison of Results

As needed to compare three different neural networks that we have implemented,
the model with Bert feature vector gave the best result with the 46.806% accuracy
according to the word embeddings vectors model as seen in figure 3.5. The reason
is that Bert learns the context of words from both right and left words. In this way,
a model with a bert feature vector can collect more accurate information about the
text semantic. To conclude this chapter, We can say that models with sentence
embedding vectors give a better result than models with word embedding vectors.

36

APK Classification

Figure 3.5: Comparison of three different neural network architecture

37

Chapter 4

Data Preparation for
Activity Classification

4.1 Overview
Android applications can have four different components 1 and these components
are activities, services, broadcast receivers, and content providers. Services handle
background operations, hence not providing a user interface. Broadcast receivers
provide interactions with other applications or from the system. Content provider
servers application data to the other applications and manages to store them in the
file system. If the content provider gives permission to the other applications, apps
may modify or query the data. Android activities2 one of the essential components
of the Android applications which represent a single screen for handling the user
interaction. Each android application may consist of more than one screen which
means it has more than one activity. For instance, In a food ordering application,
one of the activities may contain a list of restaurants that users can select the
restaurant for ordering food and another activity of the same application can
contain a login screen.

When a developer creates activities for their android app, A java file and an
XML layout file must be created for every activity. To make these activities visible,
the developer has to register activities information to the application manifest file.
Various UI elements are linked to activity in a hierarchical way such as check boxes,
buttons, slider, text fields and these UI elements are statically designated in the
XML layout file; however we can create or destroy some UI elements on runtime.

1https://developer.android.com/guide/components/fundamentals
2https://developer.android.com/reference/android/app/Activity

38

https://developer.android.com/guide/components/fundamentals
https://developer.android.com/reference/android/app/Activity

Data Preparation for Activity Classification

Android developers may conduct UI design patterns and UI design guide-
lines 3 to overcome common problems in the design interface. The design pattern
and guidelines are not only significant from the side of the developer but also
contribute to conditions of providing a better experience to the user and increasing
usability.

In Google I/0 2010 conference4 Richard Fulcher, Chris Nesladek, Jim Palmer and
Christan Robertson presented Android UI design patterns and later on In Google
I/0 2019 conference5 Roman Guy has introduced Declarative UI patterns. Using
design patterns provides a common user interface in most applications, ensures user
retention and the user does not need to learn new gestures. As an example, if we
examine the login activity of the application, from a user point of view it is expected
to have input fields for entering login credentials and one login button or in the
search page users expect to come with input fields where users can enter keywords
of searched items. Our point of view, we may consider that having similar types of
activity can have similar design patterns and this can help us in our experiment.

4.2 Activity Structure and UI Elements
In Android applications, each activity possesses multiple UI elements such as
Button, Checkbox, Linear Layout. These UI elements have structural and hierarchy
behaviours and are divided into groups as different members of the classes.

• The Android View is an essential class for UI elements. Android provides
buttons, spinner as view objects.

• The Android View Groups is a subclass of the View which includes invisible
containers for helping the structural design.

When the developer starts to create an XML file for a desirable activity, the
Root element which has to be a view or view group object must be chosen as
a first step. After specifying the root element, the developer can add essential
child elements. These child elements can belong to the view or view group. For
instance, Buttons can be added to perform the desired action. An application can
take different information from users as an input, in this case the developer can
use Edit Text which allows the user to enter text into an application. List View
contains a list of elements and provides a display of these elements as a list and
also developers can use RecyclerView as an improvement of the list view.

3https://developer.android.com/design
4https://www.youtube.com/watch?v=M1ZBjlCRfz0
5https://www.youtube.com/watch?v=VsStyq4Lzxo

39

https://developer.android.com/design
https://www.youtube.com/watch?v=M1ZBjlCRfz0
https://www.youtube.com/watch?v=VsStyq4Lzxo

Data Preparation for Activity Classification

Figure 4.1: Login Activity Figure 4.2: Main Activity(ebay)

In figure 4.1 It can see that there are two text fields that the user can give his
information for reaching application features and also in these activities it must
include at least one button to execute the login action. On the other hand, it can
be observed that figure 4.2 is more representative and congested activity is the
main activity. The main activity can include the bottom bar or navigation bar. To
summarize, developers can use the same UI elements in the same type of activity
and follow a specific path for each activity so the next step is to specify the activity
types.

40

Data Preparation for Activity Classification

4.3 Creation of Activity Data set
4.3.1 Specifying Activity Types
When we create our activity data set the first step is determining the activity types.
To begin with, we have examined the Automation of Android Applications Testing
Using Machine Learning Activities Classification paper proposed by Rosenfeld,
Kardashov and Zang[18] and they have specified 7 types of activities. Our desirable
aspect is finding common activity types for all possible categories. To sum up, we
have ended up with 8 activity types. In the following list, we can see the activity
types in detail.

1. Splash Activity : Splash activity is the welcome page of the activity in
which the user first interacts with the application while the application is
launched. This type of activity is in every application. Splash activity has a
simple structure and generally, it just includes the application logo and it can
be one image View or just a simple text View. Also, observed that in some
cases developers may add a progressive bar to their implementation.

2. Login Activity : Login activity allows a user to reach his application profile
by entering his credential information. Mostly it includes two edit Text
which can take username or email and password and also at least one sign in
button. Application can offer users different login types as an example login
with Facebook. There may be forgotten passwords and create account options.
These options can be a button or clickable text view which can navigate to
another activity.

3. Main Activity : After the application has launched, the main activity is
the first activity that the user actually can generally have an idea about the
application and can also perform some tasks. The structure of this activity
can include DrawerLayout and the bottom navigation bar . These types
of widgets aim to navigate different sections of the application. Usually, a
drawer Layout is used when a developer needs to navigate a lot of different
sections. The bottom navigation bar contains fewer destination sections. Each
destination layout can have an icon and text. The main activity includes a lot
of imageView and TextView that can be the advertising of different sections
and supported by scroll view and horizontal Scroll View.

4. Search Activity : Edit Text can present a search activity that the user can
enter search terms for. After pressing the search button, the list can occur,
which is a possible result. The list can be listView or ScrollView.

41

Data Preparation for Activity Classification

5. Settings Activity : Settings activity appears in almost every application
for changing application properties. As an example, users can regulate custom
notifications, changing country, and language app themes. Each line can
include a switch or toggle button that helps to operate desired features.

6. Camera Activity : Camera activity mostly used in photography, shopping,
productivity, and tools category of applications.
Besides the photography category, It’s used to scan and find the desired
product with the captured image or uploaded image from the gallery. The
structure of the camera activity consists of a camera layout and an image
button that can be below the screen to capture the image. Other image
buttons can be implemented such as an open gallery. Also, some camera
activity consists of switching to activate or deactivate some camera properties.

7. Map Activity : Map activity consists of map layout and is supported by
icons and image buttons. In some cases, it includes edit Text where the user
can enter the location wants to find.

8. Advertisement Activity : Advertisement activity has a simple structure
activity type. Usually it includes a full screen advertisement as a web-view
and also it can include one or two buttons for opening or closing the associated
advertisement.

4.3.2 Collecting Set of Activity
After we have specified the activity categories, the next step is the collection of a
set of activities. Since we have created our data set from scratch, we have to collect
activities for our data set. To do that we can use the Appium Desktop. Appium
Desktop is an interface that can scan and inspect UI elements of activity and is
supported by the Appium server. Basically, it includes the Appium server and
Appium inspector. In the next session, Appium architecture will be explained in
detail. To launch a new session and view UI elements we need to configure Desired
capabilities. The device Name that will be used for testing, platform version, and
other information should be added as desired capabilities. The reason that we
prefer Appium desktop instead of Uiautomator is that we can obtain all XML
sources of currently displayed activity. We have collected a total of 180 activities
and these activities categories were selected from the 11 most popular categories in
the Google Play Store[19], according to 2020 statistics. After collecting the set of
XML sources of activity categories, we have decided to write a python script for
extracting the vital and needed features for the activity classification step. Table
4.1 shows the number of the activities per activity type in the activity data set.

42

Data Preparation for Activity Classification

Category Number of Activity

Splash Activity 25
Login Activity 25
Camera Activity 25
Settings Activity 24
Search Activity 23
Main Activity 22

Advertisement Activity 19
Map Activity 17

Table 4.1: Number of Activities per each activity type

4.3.3 Determining a Set of Activity Features
Rosenfeld, Kardashov, and Zang[18] in their work they have split the device screen
into three areas as top 20%, middle 60%, and bottom 20%. However, we will try to
follow a different approach. Instead of finding the elements specific to the activity
category by dividing the screen into some areas, we will be getting the all elements
features without dividing the screens and their resource ids and involving these
resource ids into the feature vectors by using NLP. As we mentioned before, we
need to write a python script to extract all needed features and for this first step is
specifying features for extraction. In total we have found 18 useful features for UI
elements. These features are listed in the following in detail.

• Number of checked elements : Generally, The checked feature is used in
checkboxes and switches UI elements. If the option of the element is enabled,
isChecked is determined as true. In settings activity can have switches and
checkboxes.

• Number of checkable elements : Checkable features are similar to checked
features. The difference from the checked feature is that no checking option is
enabled or disable.

• Number of clickable elements : The elements can perform a click action
considering a clickable element. As an example, buttons, edit Text, menus
can have clickable attributes. In splash and advertisement activity includes
less clickable elements compared to other activities.

• Number of edit Text elements : Number of edit Text is an important
determiner. Usually login, search and map activity comprise edit text elements.
One edit Text for searching the desired element in the search activity and

43

Data Preparation for Activity Classification

one edit Text for searching the location in the map Activity. If one activity
contains two or more than two edit texts we can say that this activity is a
login activity.

• Number of focusable elements :

• Number of web View elements : Web view elements included in adver-
tisement activity.

• Present of drawer Layout : Another essential feature is drawer layout.
Drawer layout used to implement a navigation drawer. When we implement
a navigation drawer, the first step is to add the navigation drawer as the
root element. Navigation drawer is used in the main activity for navigating
different sections of the application. Checking the present of the drawer layout
will distinguish the determiner for our classification.

• Number of recycler view : The recycler view that is evaluating the list
view allows loading a large list of data into an activity. The search, settings
and main activity uses a recycler view.

After specifying numerical values for classification steps, as we mentioned before,
we have decided to add textual information in our experiment which can help us get
more accurate results in classification. When the developer implements an activity
and writes codes, he leaves some clues and information about the type of activity. In
android application implementation, developers define resource id when they write
a code. As an example, when developer implements image button for the camera
activity, as a resource id he may write packagename:id/takePhotoButton or
packagename:id/captureButton. In map activity, for map layout developers
may write resource id as packagename:id/map_view. Some essential keywords
for activity classification:

• Splash Activity : Welcome, welcome msg, loading, onboarding

• Advertisement Activity : Ad, advertisement, content

• Login Activity : Auth, login, email, password ,forgot ,username, input,
edit, auto complete, account, user, Facebook

• Camera Activity : flash, button, gallery, camera, preview, capture, on,
light, take, picture, scan, area, zoom, view, image, snapshot, scanner

• Search Activity : search, title, item, text, auto complete, list, recyclerview,
show, all

• Main Activity : Home, Main, DrawerLayout, mainactivity layout

44

Data Preparation for Activity Classification

• Settings Activity : Settings, summary, title, switch

• Map Activity : Map, Location ,full map, position, address, pin

4.4 Feature Extraction and NLP
In the previous steps, we have specified the useful features for our activity classifi-
cation. 18 numerical UI elements features have been extracted and also resource
ids of each UI element in the activity have been extracted by using the python
script. Having these features, we have created different types of feature vectors. In
figure 4.3 we can see the creation steps of the different feature vectors.

Figure 4.3: Activity feature extraction steps

4.4.1 Generating Feature vector 1
As we did APK feature extraction, The first step is text pre-processing and
representation. The steps of text pre-processing and representation are in the
following list :

• Separation of elements : Developer writes resource id without using blank
space like map_view. To obtain a more accurate result we need to consider
map and view as two different words.

• Lower-casing : Upper case elements have been converted to the lower case
elements in order to have the same vectorized format.

• Removing special character and numbers : If the resource id includes any
special character or number it has been removed from the string.

45

Data Preparation for Activity Classification

• Removing irrelevant words : We have created our own stop words list and
irrelevant words are removed from the list of resource ids.

• Tokenization and Padding : Same steps have applied like in the apk classifica-
tion.

After the tokenization and padding we have converted the words to the GloVe word
embeddings. We have used pre-trained word embeddings which are 300 dimensional
GloVe vectors and each word converted to the float numbers. After the conversion,
we have obtained a 300 dimensional array. It can be converted to a one-dimensional
array using average concatenation. After the conversion of the resource ids, 18
numerical UI features are converted to the numerical feature array. As a last step,
For obtaining a one single vector,we have concatenated 18 elements in the feature
array and resource ids array. To sum up, we have ended up with 318 cells of feature
vectors.

4.4.2 Generating Feature vector 2
In feature vector 2, Less relevant 2 features are eliminated from the features which
are number of recyclerView elements and number of UI elements. The following
list shows the list of features that is used in generation of feature vector.

• Number of checked elements

• Number of checkable elements

• Number of clickable elements

• Number of focusable elements

• Number of focused elements

• Number of long clickable elements

• Number of password elements

• Number of scrollable elements

• Number of selected elements

• Number of image view elements

• Number of button elements

• Number of textView elements

• Number of EditText elements

46

Data Preparation for Activity Classification

• Number of DraweLayout elements

• Number of WebView elements

• Number of switch elements

Same steps were followed for the text pre-processing and representation. For
word embeddings instead of using GloVe we have decided to use Fasttext pre-
trained word embeddings and a 300 dimensional array was obtained. This array
was converted to the one dimensional array using the average concatenation. Lastly,
the 316 cells of a single feature vector was obtained by concatenation of the two
arrays.

4.4.3 Generating Feature vector 3
In feature vector 3, textual information of UI elements was discarded. Only
numerical arrays were used in the feature vector 3, to see the impact of using
NLP in our classification. To sum up, 18 cells feature vectors were created. These
features are listed in the following list.

• Number of checked elements

• Number of checkable elements

• Number of clickable elements

• Number of focusable elements

• Number of focused elements

• Number of long clickable elements

• Number of password elements

• Number of scrollable elements

• Number of selected elements

• Number of image view elements

• Number of button elements

• Number of textView elements

• Number of EditText elements

• Number of DraweLayout elements

47

Data Preparation for Activity Classification

• Number of WebView elements

• Number of switch elements

• Number of recyclerView elements

• Number of UI elements

48

Chapter 5

Activity Classification

In the previous chapter, we have created three different feature vectors by using NLP
techniques with different activity features. In this chapter, we’ll apply classification
steps for three different feature vectors and at the end of the chapter we will
compare their results. As in the apk classification, we will use a deep neural
network as a classifier.

5.1 Building a Model
5.1.1 Data Pre-processing
As a first step, a pre-processing step can be applied with having feature vectors
and categories. One activity is considered as one sample and is labeled one of
the 8 possible activity types. Transformation of feature vectors is done by using
standardization. After the transformation, for our output variables which are
activity types can be converted to the numerical values by using a label encoder.
It assigns to each string a numerical variable starting from 0 and our range will be
between 0 to 7. We are dividing our activity data set into two subsets. One subset
is training data which will be used to fit our model. The other subset is test data
which will be used to evaluate our model. In our data set %80 of data will be used
for the training phase and %20 of data will be used for the testing phase.

• Training set includes 80% of the data set and has 144 samples.

• Testing set includes 20% of the data set and has 36 samples.

49

Activity Classification

We can also use a more reliable cross-validation technique. Stratified k-Fold
Cross Validation has been used in our case. We have been picking k as 10 and it
is splitting the data set into 10 folds. For each iteration the k-1 fold is used for
training and the remaining fold is for testing. Model will be trained and tested 10
times.

5.1.2 Evaluation Metrics
The evaluation metrics we mentioned in chapter 3.1.2 will be used which are
accuracy, precision and recall. In addition to this, confusion matrix is going
to be used. Confusion matrix provides more detailed information about the
performance of the classifier. Confusion matrix shows the correct and incorrect
predictions with counting the values in per class and It is a table where actual
values are represented in the rows and columns for the predicted values.

5.1.3 Tuning Hyper-parameters and Selecting the Best Re-
sults

As in the APK file classification, we can tune hyper-parameters for having the
best results by grid search. To begin with, we have tried 4 different number of
units starting from 100 units up to 400. In a model with feature vector 1, we have
reached 74.333% accuracy with 400 units. In a model with feature vector 2, we
have reached the highest accuracy(73.571%) with 200 units and in a model with
feature vector 3 at most we have reached 60.429% accuracy. In table 5.1 we can
see the results of tuning the number of units in detail. After the number of units,
the next parameter we need to tune is activation functions. We have decided
to involve 5 different activation functions to our experiment which are sigmoid,
softsign, relu, elu and leaky relu. For models with feature vector 1 and 2 we have
reached the highest accuracy with the relu activation function. Feature vector 1
highest result is 73.534% and at the same time feature vector 2 highest result is
74.190%. Different from the model with feature vector 1 and model with feature
vector 2, in feature vector 3 we have decided to use leakyRelu whose accuracy is
60.625%. Table 5.2 shows results of the tuning activation function of three models
in detail.

The next parameters are batch size and number of epochs. We’ll use mini-batch
Gradient Descent and 32,64,128 batch sizes will be used. 100 and 200 epochs are
going to be used in our experimentation. With bath size 62 and epochs 200 it has
reached the highest accuracy in models with feature vector 1 and 2 so it has been
decided to use bath size 62 and epoch 200 for models with feature vector 1 and
feature vector 2.

50

Activity Classification

Model with the feature vector 1 the highest accuracy is 75.619% and the model
with feature vector 2 the highest accuracy is 72.953%. Batch size 32 and epochs 200
gave the highest score(59.000%) with a clear difference in the model with feature
vector 3. We can see the results of tuning batch size and number of epochs in table
5.3. In addition to these parameters, we need to consider weight initialization.
In the model with feature vector 1, Both Uniform and glorot_normal weight ini-
tializers gave the same accuracy results. It has been picked glorot_normal since it
gave better recall results and also for models with feature vector 2 and 3 we have
picked glorot_normal weight initializer. If needed to see results in detail, it can be
examined in table 5.4 which indicates the tuning weight initialization in detail.

Our next parameter and one of the essential hyper-parameters is optimizer.
It has been tuned to 4 different optimizers which are SGD, Adam, Adagrad and
Adamax. As seen in table 5.5, for models with feature vector 1 and 2, Adamax
gave the best results in accuracy, precision and recall. In a model with feature
vector 3, we have reached the best accuracy result(55.476%) with Adam optimizer.

Lastly, Learning rate parameter has been tuned. In a model with feature vector
1, we have obtained a best result of 74.905% accuracy with 0.01 learning rate.
For feature vector 2, we have reached a best result 72.095% accuracy with 0.001
learning rate and in feature vector 3, it has been decided to use 0.01 learning rate
since it gave the best accuracy result(63.190%). In table 5.6 we can see the results
of tuning learning rate for model with feature vector 1 using Adamax optimizer,
Table 5.7 represents results of tuning learning rate for model with feature vector 2
using Adamax optimizer and lastly in table 5.8 we can see the results of tuning
learning rate of the model with feature vector 3 using Adam optimizer.

51

Activity Classification

Metrics Accuracy Precision Recall

Units Feature Vector 1
100 73.429%+/-10.643% 71.979%+/-11.585% 73.750%+/-10.000%
200 72.048%+/-8.765% 70.625%+/-11.765% 71.875%+/-8.501%
300 71.524%+/-13.335% 69.208%+/-15.853% 71.250%+/-13.463%
400 74.333%+/-

11.706%
72.792%+/-
13.365%

73.750%+/-
11.456%

Units Feature Vector 2
100 71.476%+/-11.065% 70.312%+/-15.346% 70.625%+/-10.843%
200 73.571%+/-

12.105%
71.979%+/-
13.932%

73.125%+/-
11.198%

300 72.143%+/-8.899% 69.792%+/-10.217% 71.875%+/-8.028%
400 72.238%+/-12.461% 71.065%+/-15.125% 71.875%+/-12.885%
Units Feature Vector 3
100 54.143%+/-4.513% 45.146%+/-6.553% 53.750%+/-4.146%
200 59.667%+/-6.960% 52.333%+/-11.125% 59.375%+/-7.526%
300 60.429%+/-7.406% 54.500%+/-

12.903%
59.375%+/-7.526%

400 58.381%+/-8.474% 50.396%+/-9.879% 46.337%+/-7.806%
One dense layer Batch size is 32 Epoch is 100
Adagrad(lr=0.01) Kernel initializer normal
Activation relu

Table 5.1: Results obtained from tuning number of units with using gridSearchCV

52

Activity Classification

Metrics Accuracy Precision Recall

Feature Vector 1
sigmoid 68.667%+/-8.645% 64.354%+/-9.211% 68.750%+/-8.385%
softsign 72.905%+/-10.187% 71.542%+/-10.087% 73.125%+/-9.703%
relu 73.524%+/-8.935% 71.875%+/-

11.112%
73.125%+/-8.861%

elu 72.095%+/-10.271% 70.604%+/-9.412% 71.875%+/-8.949%
Leaky
Relu 70.857%+/-11.272% 66.542%+/-13.974% 71.250%+/-12.247%

Feature Vector 2
sigmoid 70.667%+/-11.433% 67.896%+/-12.228% 70.625%+/-10.843%
softsign 71.524%+/-11.761% 71.458%+/-10.907% 71.875%+/-11.609%
relu 74.190%+/-

11.488%
72.292%+/-
13.503%

73.750%+/-
10.383%

elu 70.190%+/-12.440% 70.208%+/-14.458% 71.250%+/-11.592%
Leaky
Relu 72.810%+/-14.566% 70.000%+/-15.456% 69.375%+/-15.922%

Feature Vector 3
sigmoid 47.810%+/-9.426% 35.680%+/-11.466% 45.625%+/-9.708%
softsign 58.333%+/-6.668% 47.812%+/-9.634% 57.500%+/-6.731%
relu 57.619%+/-5.742% 49.854%+/-7.208% 56.875%+/-5.896%
elu 59.714%+/-9.123% 53.583%+/-13.059% 60.000%+/-9.354%
Leaky
Relu 60.625%+/-7.550% 53.521%+/-

12.431%
60.625%+/-8.409%

One dense layer Batch size is 32 Epoch is 100
Adagrad(lr=0.01) Kernel initializer normal

Table 5.2: Results obtained from tuning activation function with using grid-
SearchCV

53

Activity Classification

Metrics Accuracy Precision Recall

BS -
Epochs

Feature Vector 1

32 - 100 74.905%+/-8.526% 72.917%+/-10.333% 74.375%+/-9.036%
32 - 200 72.857%+/-12.311% 68.208%+/-13.919% 73.125%+/-11.875%
64 - 100 69.476%+/-8.789% 66.875%+/-12.550% 70.000%+/-9.601%
64 - 200 75.619%+/-

12.248%
72.083%+/-

10.383%
75.625%+/-
11.336%

128 -100 68.048%+/-9.678% 64.271%+/-11.220% 68.125%+/-9.862%
128 -200 72.762%+/-8.826% 68.917%+/-10.016% 71.875%+/-8.028%
BS -
Epochs

Feature Vector 2

32 - 100 71.429%+/-11.920% 68.438%+/-13.077% 71.875%+/-11.267%
32 - 200 71.476%+/-8.604% 71.042%+/-11.838% 71.875%+/-8.501%
64 - 100 72.952%+/-9.306% 71.146%+/-

14.161%
72.500%+/-9.763%

64 - 200 72.143%+/-11.295% 71.083%+/-13.374% 71.875%+/-10.551%
128 -100 68.667%+/-11.870% 64.625%+/-15.619% 68.750%+/-11.524%
128 -200 70.714%+/-13.499% 70.208%+/-12.185% 71.250%+/-12.562%
BS -
Epochs

Feature Vector 3

32 - 100 54.905%+/-8.031% 47.437%+/-9.898% 54.375% +/-7.421%
32 - 200 59.000%+/-9.016% 54.417%+/-

14.547%
59.375% +/-9.375%

64 - 100 50.048%+/-5.351% 40.021%+/-7.873% 48.750%+/-6.731%
64 - 200 52.048%+/-9.113% 42.729%+/-9.918% 52.500%+/-9.354%
128 -100 50.619%+/-10.468% 40.899%+/-2.311% 51.875%+/-11.198%
128 -200 52.048%+/-10.041% 41.274%+/-10.101% 50.625%+/-9.036%
Parameters One dense layer Activation function ReLu
Optimizer
is

Adagrad(lr=0.01) Number of units 100

Table 5.3: Results obtained from tuning batch size and number of epochs with
using gridSearchCV

54

Activity Classification

Metrics Accuracy Precision Recall

Feature Vector 1
Uniform 75.667%+/-8.447% 74.167%+/-9.601% 75.625%+/-8.592%
Normal 69.952%+/-9.405% 68.646%+/-9.345% 70.000%+/-8.292%
Glorot
Normal 75.667%+/-8.884% 72.500%+/-

11.016%
76.250% +/-8.292%

Feature Vector 2
Uniform 73.476%+/-12.114% 71.458%+/-12.432% 73.750%+/-11.110%
Normal 73.524%+/-13.001% 71.042%+/-13.158% 73.350%+/-12.119%
Glorot
Normal 73.524%+/-

11.653%
73.625%+/-
14.156%

73.350.411%+/-
11.110%

Feature Vector 3
Uniform 52.125%+/-10.354% 42.604%+/-11.388% 53.125%+/-10.551%
Normal 53.429%+/-7.161% 44.292%+/-10.244% 53.125%+/-5.039%
Glorot
Normal 59.095%+/-6.634% 51.917%+/-7.627% 58.750%+/-6.960%
Parameters One dense layer Batch size is 32 Epoch is 100
Optimizer Adagrad(lr=0.01) Number of units 200
Activation softsign

Table 5.4: Results obtained from tuning weight initialization with using grid-
SearchCV

55

Activity Classification

Metrics Accuracy Precision Recall

Feature Vector 1
SGD 50.619%+/-10.959% 43.180%+/-11.623% 49.375%+/-9.458%
Adam 70.048%+/-10.006% 67.688%+/-13.333% 70.000%+/-10.383%
Adagrad 68.667%+/-12.399% 66.542%+/-14.172% 68.125%+/-12.006%
Adamax 70.667%+/-

10.200%
69.042%+/-

14.332%
70.625%+/-9.703%

Feature Vector 2
SGD 68.048%+/-9.880% 68.625%+/-14.867% 68.125%+/-10.635%
Adam 71.476%+/-11.841% 68.854%+/-16.194% 70.625%+/-11.875%
Adagrad 70.857%+/-13.443% 69.479%+/-15.894% 70.635%+/-13.707%
Adamax 73.534%+/-

13.190%
70.208%+/-

16.353%
72.500%+/-
13.463%

Feature Vector 3
SGD 34.143%+/-8.278% 22.603%+/-8.208% 33.125%+/-7.930%
Adam 55.475%+/-6.762% 48.896%+/-

13.078%
56.250%+/-6.847%

Adagrad 54.190%+/-6.049% 45.917%+/-8.327% 53.750%+/-5.728%
Adamax 49.381%+/-6.976% 37.729%+/-9.730% 49.375%+/-9.036%

One dense layer Batch size is 32 Epoch is 100
100 units Kernel initializer normal
Activation ReLu

Table 5.5: Results obtained from tuning optimizer with using gridSearchCV

Metrics Accuracy Precision Recall

Feature Vector 1
0.001 68.714%+/-9.128% 63.396%+/-6.268% 67.500%+/-8.292%
0.01 74.905%+/-

11.123%
73.937%+/-
10.917%

74.375%+/-9.862%

0.1 65.810%+/-12.039% 66.354%+/-13.332% 64.375%+/-12.200%
One dense layer Batch size is 62 Epoch is 200
Optimizer Adamax Kernel initializer Glorot_normal
Activation Relu

Table 5.6: Results obtained from tuning learning rate with using gridSearchCV

56

Activity Classification

Metrics Accuracy Precision Recall

Feature Vector 2
0.001 72.095%+/-

10.984%
67.396%+/-
11.122%

71.875%+/-9.375%

0.01 69.429%+/-13.720% 67.167%+/-18.052% 68.750%+/-13.975%
0.1 69.381%+/-9.600% 64.875%+/-10.940% 67.500%+/-10.00%

One dense layer Batch size is 62 Epoch is 200
Optimizer Adamax Kernel initializer Glorot_normal
Activation Relu

Table 5.7: Results obtained from tuning learning rate with using gridSearchCV

Metrics Accuracy Precision Recall

Feature Vector 3
0.001 55.542%+/-7.863% 48.312%+/-7.559% 55.000%+/-6.124%
0.01 63.190%+/-

11.553%
60.170%+/-
14.228%

45.699%+/-
13.305%

0.1 52.762%+/-12.390% 45.699%+/-13.305% 51.875%+/-10.477%
One dense layer Batch size is 32 Epoch is 200
Optimizer Adam Kernel initializer Glorot_normal
Activation leakyRelu

Table 5.8: Results obtained from tuning learning rate with using gridSearchCV

After we have set some basic hyper-parameters, we have decided to add one
more hidden layer to our models for obtaining better results. In a model with
the feature vector1, we have specified 150 units of dense layer with elu activation
function as a second hidden layer. Secondly, in a model with feature vector 2, 15
units of dense layer with elu activation function was added as a second hidden layer.
Lastly, in the model feature vector 3, 15 units with softsign activation function
were added as a second hidden layer.

57

Activity Classification

5.1.4 Classification Results
In conclusion, Hyper-parameters were specified for each different three neural
networks for finding their best performance. In the model that used feature vector
1, the following architecture has been implemented : As an input layer 318 nodes
have been used and go towards the dense layer of 400 units using the ReLu activation
function and glorot_normal is assigned as a kernel initializer. After the dense layer
of 400 units goes into a dense layer with 150 units with elu activation function and
glorot_normal kernel initializer. Adamax optimizer with 0.01 learning rate has
been used. Lastly, the Neural network ends up with an output layer using softmax
activation function with 8 nodes. Using accuracy and loss plots, the results of
accuracy and loss can be visualized. As we can see in figure 5.1 in the left plot, we
have reached 78% accuracy in the test data set with this architecture and also the
right plot shows the model loss result. The model with feature vector 1 test loss is
1.33.

Figure 5.1: Accuracy and loss plots of model with feature vector 1

As the evaluation of activities scores, The highest scores were obtained by search,
settings, splash, and login activities. The inference of these results is that activities
of the highest results tend to contain similar UI elements and tend to have common
resource id UI information. The worst scores were obtained for main with 33%
recall and map activities with 33% recall. Since the main activities have a
lot of UI components and are more complex than the other activities the model
has difficulty learning. As seen by the following figure which contains the confusion
matrix of the model, We have 6 predicted samples for the main activity but only 2
samples are predicted correctly. On the other hand, We have 2 errors out of 3 in
the map activity. The model has trouble prediction of map activity.

58

Activity Classification

Figure 5.2: Confusion Matrix of model with feature vector 1

In our second model which uses feature vector 2, the following architecture has
been implemented : As an input layer 316 nodes has been used and goes towards
the dense layer of 200 units using the ReLu activation function and glorot_normal
is assigned as a kernel initializer. After the dense layer of 200 units goes into a
dense layer with 15 units with elu activation function and glorot_normal kernel
initializer. Adamax optimizer with 0.001 learning rate has been used. Lastly, the
Neural network ends up with an output layer using softmax activation function
with 8 nodes. We are able to reach 83% accuracy using this model. Figure 5.2
shows a model of training and test data set accuracy and loss.

Figure 5.3: Accuracy and loss plots of model with feature vector 2

59

Activity Classification

In the model with feature vector 2, The highest activity scores were obtained
by search, settings, splash, and login activities similar to the model with feature
vector 1. In addition to this, Map results are quite good compare to feature vector
1. However, model 2 has still problem of learning main activity but we have less
errors (3 errors) then model with feature vector 1 and we have 3 errors out of 5 in
the camera activity.

Figure 5.4: Confusion Matrix of model with feature vector 2

In the last model with feature vector 3, the following architecture has been
implemented: As an input layer 18 nodes have been used and go towards the dense
layer of 300 units using the Leaky ReLu activation function, and glorot_normal is
assigned as a kernel initializer. After the dense layer of 300 units goes into a dense
layer with 15 units with softsign activation function and glorot_normal kernel
initializer. Adam optimizer with 0.001 learning rate has been used. Lastly, the
Neural network ends up with an output layer using a softmax activation function
with 8 nodes. We are able to reach 67% accuracy using this model. Figure 5.3
shows model accuracy and model loss. Since there is no big gap between training
and test data in the accuracy plot, we can say that there is no sign of overfitting.

60

Activity Classification

Figure 5.5: Accuracy and loss plots of model with feature vector 3

The highest activity scores were obtained by splash and login activities. Since
we didn’t include the semantic information to the feature vector 3, model activity
learning performance is low according to the other feature vectors.

Figure 5.6: Confusion Matrix of model with feature vector 3

5.2 Comparison of Results
As seen in figure 5.7, it has reached %78 accuracy in the model with feature vector
1. The best accuracy(83%) that has been reached with the model using feature
vector 2 by eliminating two features. It was decided that the number of recycler
views does not have the benefit to categorize the activities since the different types
of activities (main, search, setting, and map) use recycler view, and also the number
of total UI elements were eliminated.

61

Activity Classification

Since textual information of UI elements was not involved in the model with feature
vector 3, the model performance(67%) is lower than the other 2 feature vectors as
we can see in figure 5.7. To summarize, it can be said that supporting classification
with NLP has a positive effect on the classification result. It can more easily detect
which category activities belong to by using the NLP. On the other hand, selecting
the right UI elements can improve the performance of the model.

Figure 5.7: Comparison of classification results of three different models

62

Chapter 6

Android Testing Framework

6.1 Overview

UI testing is one of the significant tasks when an android developer implements
apps. In the meantime, the developer has to deal with the staging processes. Firstly,
writing a UI testing is often a time-consuming task and also the developer needs to
re-write the test scripts for the same functionality in the different apps when he
writes more than one app but the difference is the position of UI elements. Our
main aspects are providing a developer to write reusable, flexible, and
simpler human-understandable commands. The developer can write a single
test script for a specific activity type and can use it in the different applications
at the same activity types. Thanks to the classification process we can make
predictions of the app category type and activity layout. Basically, our framework
scans the activity layout and can find desirable UI elements then perform the
specified action. In addition to this, the developer does not need to care about
the graphical form and position of the UI element. As an example, in the login
activity the developer just provides information that would like to type an email
and password field without any other detail needed. The developer just writes a
general and simple command that we want to perform the input task of an email
password field and our framework finds the UI elements and performs the task. In
this way, since the test scripts are simplified and general developers can re-use this
test script for the same types of activities. We kept our command simpler because
commands can adapt to many applications and also developers can earn more time
writing the simple commands.

63

Android Testing Framework

6.2 Appium Architecture
Appium[20] is an automated testing tool that supports testing in native apps,
mobile web apps, and hybrid applications. One of the essential features is that
Appium is a cross-platform testing tool which means that it can support multiple
platforms such as Android, iOS, Windows using the same API. Another benefit of
using Appium is that it supports multi-programming language and it is possible to
write test code in python, JavaScript, Ruby, Java, C#. One of the reasons that we
are using Appium in our framework is that it does not require access to reach any
application source code.

Appium is based on client-server architecture. It is using some components
that support connection which are the Appium server, Appium client libraries, and
JSON Wire Protocol. To begin with, the Appium client can send a request to
the server using JSON Wire protocol for initialization of the session. This request
includes desired capabilities that provide control session requests. There are different
capabilities such as appActivity, platformName, deviceName, appWaitDuration.
As an example, if we want to work with an android device, the platform name must
be set to Android ("platformName": "Android"). The Appium server is an HTTP
server and one of the essential components of the architecture. Basically, it receives
the client request with the JSON wire protocol and checks desired capabilities;
after that it triggers the mobile driver to execute the test script by creating the
session. Finally, test results return back to the client. In addition, Appium uses
the UI Automator to inspect UI elements.

6.3 Specifying Framework Commands
The structure of our script language is simple and easy-readable. Our aim is to
develop simple and human-understandable commands and this way test cases can
apply to many other apps without the need for any changes. As we mentioned
before, a developer does not have to specify location or other detailed information
of UI elements.
The pre-conditions for executing the test case:

• Developer must have specified the app category type.

• Current screen associated with the specified activity type.

If these two conditions are not satisfied then the test case is associated as a FAIL.
In order to execute our script, the script must be executed using the following
instructions.

64

Android Testing Framework

As a first step, a test suite has to be created which includes one or more than
one test case. For creating the new test suite users must declare the type of app
category which is one of the 15 categories defined in chapter 2. By specifying
the app category we are defining that the test cases only execute in the specified
category. The following line shows the sample declaration of the test suite and
means that it can apply test cases for apps that are in the TRAVEL category.

• WHEN appcategory == TRAVEL :

After creating the test suite, the second step is to declare the test cases which
include commands. Before specifying the commands, the following line must be
written which is the header of the test case and includes activity type and post-
condition of the test cases.

• LOGIN activity -> check in DIFFERENT condition :

Test cases must execute in the specified activity types and can only use commands
included in the specified activity type and generic commands. The activity type can
be one of the 7 categories mentioned in chapter 4. We have specified 8 categories
in chapter 4 but splash activity is excluded. The reason is that we did not involve
the splash activity in our testing framework, the splash activity just appears for at
most 10 seconds and the user can not execute some operations.

The post-conditions must be specified to check if the test is passed or failed
after the execution. If we specify the post-condition as SAME, we expect to be
in the same activity according to the starting one. On the other hand, if the
post-condition is specified as DIFFERENT, it is expected to be in a different
activity type.

In the following script we can see that we have one test suite and this test suite
has two test cases which are going to be executed in exactly the same order. First
test cases must be executed in the login activity after the second test case executed
in the main activity with the specific commands.

65

Android Testing Framework

1 WHEN appcategory == TRAVEL :
2 LOGIN a c t i v i t y −> check in DIFFERENT cond i t i on :
3 TYPE INPUT " ayda . tanik@hotmail . com"
4 TYPE PASSWORD " sample "
5 CLEAR EDITTEXT FIELDS
6 CLICK FORGOT PASSWORD
7 END
8 MAIN a c t i v i t y −> check in SAME cond i t i on :
9 SCROLL DOWN

10 SCROLL UP
11 CLICK BOTTOM BAR ELEMENT 2
12 END
13 ENDSUITE

After the specified header of the test cases, the commands can be determined.
The developer can specify one or more commands We have mainly separated our
commands into two different types which are activity-specific commands and
generic commands. Activity-specific commands must be specified associated
with the activity type. Different commands exist for each of the 8 activity categories
and these commands perform an action for specific cases. In the meantime, generic
commands are common commands for all activity types and can be used for all
content. In total, we have implemented 37 commands.

6.3.1 Activity Specific Commands
1. Login Activity

• TYPE INPUT "string" : Type the given string can be username or email
into the associated field.

• TYPE PASSWORD "string" : Type the given string to the password field.
• CLICK LOGIN : Submit the form for moving the next activity.
• CLICK FORGOT PASSWORD
• CLICK CREATE ACCOUNT
• CLEAR EDITTEXT FIELDS : Delete the text in all fields.
• CLICK LOGIN WITH FACEBOOK : Proceed with the login with Face-

book activity.

2. Main Activity

• SCROLL DOWN

66

Android Testing Framework

• SCROLL UP
• SCROLL RIGHT
• SCROLL LEFT
• CLICK DRAWER NAV
• CLICK BOTTOM ACTION BAR
• CLICK BOTTOM BAR ELEMENT number

3. Search Activity

• TYPE INPUT SEARCH "string": Type the given string into the associated
search field.

• SCROLL DOWN LIST
• SCROLL UP LIST
• CLICK LIST INDEX number
• SCROLL LIST INDEX RANGE number TO number

4. Settings Activity

• CLICK INDEX number
• PRESS SWITCH IN INDEX number
• LONG CLICK INDEX number
• CLICK POPUP CHECKED ELEMENT INDEX number

5. Advertisement Activity

• CLICK AD CONTENT
• CLICK DOWNLOAD

6. Map Activity

• TYPE INPUT SEARCH MAP "string": Search location on the map by
entering the associated string to the field.

• CLICK PIN INDEX number
• SCROLL MAP DOWN
• SCROLL MAP UP
• SCROLL MAP RIGHT
• SCROLL MAP LEFT

7. Camera Activity

• CLICK CAPTURE
• CLICK GALLERY

67

Android Testing Framework

6.3.2 Generic Commands
• PRESS ANDROID BACK BUTTON

• PRESS BACK

• PRESS CLOSE

• CLICK ELEMENT "text"

6.4 Implementation
The automated testing framework was developed using the ANTLR[21] tool which
automatically produces a parse tree. We have created an interpreter by using
ANTLR and also the Python language. In addition to this, the Appium server
was used for capturing the layout structure of the activity and executing each
command. The interpreter that we implemented consists of a Lexer (automated-
ToolLexer.g4) that takes input strings and transforms them into tokens, Parser
(automatedToolGrammar.g4) that builds a parse tree (syntactic analysis) and
Semantic Analyzer consist of all python codes.

6.4.1 Framework Structure
Figure 6.1 shows a general view of our automated testing framework structure.
As a first step, the developer must specify the test script which includes a test
suite. A test suite can include more than one test case. Each test case has a list of
commands. These commands are associated with the python code.

Figure 6.1: Android Automated Testing Framework Structure

68

Android Testing Framework

While the interpreter is managing the syntax of the script, Python code performs
the specified command and for performing commands our code includes appium
client libraries and JSON wire protocol. Appium client sends a request to the
appium driver. The new appium session starts and performs on an android device
for each test case.

6.4.2 Lexical Analysis
The first step is determining the Lexical Analysis which takes the input characters
and converts them into tokens. The output of the lexer is the sequence of tokens
sent to the second step, which is a parser. In our implementation lexer takes all the
strings from the test script and produces outputs which are called tokens. In lexer,
we can define letters as fragments for providing to developers writing case-sensitive
commands in scripts. After the definition of the fragment, it can be used in the
words that we would like to apply to a case-sensitive string.

1 fragment A : (’A’ | ’ a ’) ;
2 fragment B : (’B ’ | ’ e ’) ;
3 fragment G : (’G’ | ’ g ’) ;
4 fragment H : (’H’ | ’ h ’) ;
5 fragment Z : (’ Z ’ | ’ z ’) ;

We can use these fragments in the terminal strings for creating case-sensitive strings.
In this way our interpreter accepts upper and lower characters for these strings
(’WHEN’,’when’).

• WHEN: W H E N;

• CHECK: C H E C K;

• CONDITION: C O N D I T I O N;

• SAME: S A M E;

• DIFFERENT: D I F F E R E N T;
We can use the regular expression for taking the strings ,numbers and for managing
white-space. In this way, when the scanner comes across the white-space, it can
skip every white-space.

1 NUMBER : [0 −9] [0 −9]∗ ;
2 QUOTEDSTRING: ’ " ’ [a−zA−Z0−9.#$@] ∗ ’ " ’ ;
3 STRING: [0−9a−zA−Z.#$@]+;
4 SPACE: (’ ’ | ’\ t ’)+−> sk ip ;
5 NEWLINE: (’\ r ’ ? ’\n ’ | ’\ r ’)+ −> sk ip ;

69

Android Testing Framework

6.4.3 Syntactic Analysis

After the lexical analysis, the second step is writing the parser which takes the
tokens and matches the sequence for creating a proper parse tree. Upper case
strings belong to the terminal symbol and on the other hand lower case strings are
associated with non-terminal symbols. Our grammar starts with the non-terminal
symbol and includes more than one production rule. The production rules were
created based on Context Free Grammar . The idea of context-free grammar
is the left side of the rules which has to be non-terminal symbols replaced by the
right side symbols of the rule. It can derivate right side symbols from the left side
of the symbols. Terminal symbols can appear on the left side or right side of the
production rule and non-terminal symbols can only appear on the right side of the
production rule but to remind them that only one terminal symbol can exist on
the left side of the production. In the following examples, including our production
rules that we have created, we tried to create replicated production rules.

prog: testSuite COL (testcase END (ENDSUITE)*)+ EOF;
testSuite: WHEN APPCATEGORY EQ categoryName;

testcase: activitytype1 ACTIVITY ARROW CHECK IN postcondtype
CONDITION COL (commandlist1)+

commandlist1 : commandtype1str | commandtype1 |genericommand ;

The antlr [22] uses a top-down parsing strategy which is called LL(*) parser. The
idea behind the LL(*) parser is to start the build parse tree from the root(top) to
the leaves(bottom). The antlr generates a recursive descent parser which is allowed
to predict the next production with parsing decisions. After that, it implements
look-ahead DFA. The system keeps checking DFA on the input until it finds an
accepting state. Figure 6.2 shows the example of the parse tree after the following
script is executed.

1 WHEN appcategory == SHOPPING :
2 SEARCH a c t i v i t y −> check in DIFFERENT cond i t i on :
3 CLICK LIST INDEX 1
4 END
5 ENDSUITE

70

Android Testing Framework

Figure 6.2: The Parse Tree after the sample script executed

6.4.4 Semantic Analysis
The last step is implementing semantic analysis. Type checking, Scope resolution
are involved in the semantic analysis step. Since our script language is simple, we
will not perform these operations. In this part we will focus on combining the
syntax part of the script with our python code. The idea is implementing the
python function for each command and this function is supposed to do the actual
work. Each command is associated with one python function and this python
function performs some testing and visual gestures on specified android devices.

We have proved that the same activity types can include similar design patterns
and also similar UI elements. We are able to classify activities supported by
Machine learning and NLP. To consider this valuable information, we need to
identify UI elements on the screen. We can find desirable UI elements looking for
following information:

• Class Type: We can eliminate useless elements by using class names. For
example, let’s consider search activity. In the search activity there is search
editText for searching desirable elements so we can only take elements which
are editText. In camera activity when we are searching the capturing button,
we can decrease the options to imageButton and to imageView.

• Attribute Values: When we find the desirable UI elements, in order to
constrict our options we can take a look at attribute values. As needed to
give an example, In the login page when we would like to perform a TYPE
PASSWORD "string" , we can simply search for an element whose "isPassword"
attribute is equal to True. In the settings activity when we want to execute
the PRESS SWITCH IN INDEX command, we can select and take only switch
elements in this activity.

• Textual Informations: While developers implement the apps, they leave
some clues about the apps. It can capture a lot of information using the
textual information such as resource-id, contentDescription and text.

71

Android Testing Framework

– Resource-id : Developers give ids for the UI elements when they develop
an app. The resource-id can be simple and commentator . It can be
used to indicate the specified elements. When the developer involves the
button for capturing the picture in the camera activity, the button can
be named as "captureButton" , "takePicture" or in the login page they
can specify "loginButton" or "signInButton". We can detect UI elements
with specified keywords. If this keyword occurs in the resource-id of the
UI element, we can take this UI element.

– Content-Description : Another important useful information that we can
obtain is content Description. Some elements include context-description.
Content description must be unique.

– Text : UI elements can include textual information and this information
can be viewed by the user. In the login activity, the Forgot password
button can contain these keywords : "forgot", "remember", "forgotten".

• Location Information: We can reach boundaries of UI elements and for
this we have X and Y coordinates. For instance, in Main activity when
we perform the CLICK DRAWER NAV command, we can use the location
information because generally the navigation bar should be at the top of the
screen.

According to this information, without knowing the UI interface it can detect
elements by combining this information and performing desirable actions. To sum
up, The lexer and parser handles the test scripts syntax and on the other hand
python code deals with the actual work which is performing the some gestures on
the android device.

72

Chapter 7

Evaluation of Testing
Framework

In chapter 6, we have examined our android testing framework architecture in
detail. In this chapter, we are going to evaluate our framework with applying some
testing procedures.

7.1 Evaluation of Commands Robustness
As a first step, we can try to evaluate the robustness and adaptiveness of our
commands. In chapter 6.3, we have listed the activity-specified commands available
for 8 different activity categories. Our commands are based on layout attributes
and textual information, but is this information enough to detect desirable
UI elements? In order to answer this question, we have taken complex activity-
specified commands and tried to execute them in different kinds of applications.

In table 7.1 we can see the results of evaluated commands. The first command
is about the login activity. The 7 test cases have passed out 8, The reason that
failure of the one login test cases is application was in different language. The
second command is "CLICK BOTTOM BAR ELEMENT 3". It has been tried
with 3 different applications and 2 out of 3 tests were passed. The reason the
wine-searcher did not pass is that we are looking at the clickable and long-clickable
of the elements in the bottom bar when we find the bottom bar element. Since the
current fragment is not clickable it is skipping the one fragment in the bottom bar
then the framework clicks the next bottom element instead of the desirable one.
Our third command which is typing input to the search editText was executed
very well and all the test cases have passed. In the "CLICK INDEX 3" command 3
out of 5 commands have passed. Since the 2 apps use unusual structure instead of
RecyclerView, ListView and ScrollView, it can not find the list.

73

Evaluation of Testing Framework

To sum up, we have tested 7 different commands for different applications.
Most of the commands were perfectly executed and the reason for the failure of
commands is unusual or different structural behaviors for the specified activity or
because of the different language.

Command Explation App Name Pass Fail Notes
TYPE INPUT
"sam-
ple@hotmail.com"
TYPE
PASSWORD
"aaa"

Zalando X /
IMDB X Text language

Trip.com X /
Zara X /

Nespresso X /
Ebay X /
HM X /

Wine-searcher X /
CLICK
BOTTOM
BAR
ELEMENT 3

Zara X /

WineSearcher X Clicking the wrong
bottom bar element

GoMeetings X /

TYPE INPUT
SEARCH
"element"

Wish X /
IMDB X /
Ebay X /

Takeway X /
PullAndBear X /

PRESS
SWITCH IN
INDEX 4

GoMeetings X /
Vivino X /
Adidas X /

CLICK

INDEX 3

Zaful X Unusual pattern
not used RecyclerView

Ebay X /
Glassdoor X Using framelayout

Wish X /
PrimeVideo X /

TYPE INPUT
SEARCH
MAP "torino"

Lidl plus X /
HM X /

Nespresso X /
CLICK
POPUP
CHECKED
ELEMENT
INDEX 1

ClearScanner X /
Flixbus X /
Vivino X /

Table 7.1: Evaluation of Commands

74

Evaluation of Testing Framework

7.2 Evaluation of Scripts with Functional
Testing

Functional testing is based on black box technique which is without knowing
the source code of the program. Functional testing aims to check system func-
tionality with the given output and there are two outputs which are expected
and actual. In this way, we can verify the actual result with the expected result.
Using our testing framework, developers can write test scripts to check if the
system functionality is working properly or not. We have created adaptable test
scenarios to evaluate our framework. 15 test scripts can be applied to the 8
types of activities. Table 7.1 shows results of test scripts when we applied the
functional test. The appendix section includes the corresponding test script. On the
other hand, we can observe that the same script can be adapted for the same type
of activity. In this way, we can also prove consistency and re-usability of our scripts.

In conclusion, our testing framework benefits, test scripts can be easily imple-
mented with written human-understandable commands by developers and new
developers that involve the project can easily understand already written scripts. In
UiAutomator and Appium developers need to write more lines of codes according
to our framework. The android testing framework reduces the time needed for
writing UI testing with simple commands. Lastly, we have proved that our test
cases can be used in similar activity types in different applications. Also, developers
are able to use the same test suite in the same type of application categories.

75

Evaluation of Testing Framework

Activity Script App Name Expected
Output

Actual
Output Commands

Login
Activity

script 1 Nespresso Passed Passed Login with wrong
credentials

script 1 Bershka Passed Passed Login with wrong
credentials

script 1 Winesearcher Passed Passed Login with wrong
credentials

script 2 Tripadvisor Passed Passed Click create account /
facebook

script 2 Zara Passed Passed Click create account /
facebook

script 3 PullBear Passed Passed Click login with
facebook

script 3 Bershka Passed Passed Click login with
facebook

Main
Activity

script 4 Wish Passed Passed Scroll up-down
script 4 IMDB Passed Passed Scroll up-down
script 4 Hotelscom Passed Passed Scroll up-down
script 5 Zara Passed Passed Scroll left-right
script 5 Nespresso Passed Passed Scroll left-right
script 6 Wish Passed Passed Click nav bar
script 6 HM Passed Passed Click nav bar
script 7 Lidl Passed Not Passed Click bottom bar
script 7 WineSearcher Passed Not Passed Click bottom bar
script 7 GoMeetings Passed Passed Click bottom bar

Camera
Activity

script 8 PdfScanner Passed Passed Scroll up-down
script 8 WineSearcher Passed Passed Click capture/gallery
script 8 Wish Passed Passed Click capture/gallery

Map
Activity

script 9 TripAdvisor Passed Passed Scroll up-down
script 9 HomeToGo Passed Passed Scroll up-down
script 9 KAYAK Passed Passed Scroll up-down
script 10 HM Passed Passed Click index in map

Search
Activity

script 11 IMDB Passed Passed Scroll up-down
script 11 WineSearcher Passed Passed Search in list
script 12 WineSearcher Passed Passed Scroll list

Settings
Activity

script 11 IMDB Passed Passed Scroll up-down
script 13 Vivino Passed Passed Press switch
script 14 Vivino Passed Passed Check Popup element

Ad
Activity script 15 Translator Passed Passed Click ad

Table 7.2: Functional Evaluation of Test Scripts76

Chapter 8

Conclusions and Future
Work

To summarize, Our work consist of three main part. In the first part we have
implemented apk classification with three different feature vectors. Our result is
quite well and acceptable, different feature vectors can be created using different
sentence embedding vectors for improve the accuracy of the model and also different
classifiers can be used. In the second step which is the activity classification step,
we have collected the activity samples in different activity types and classified
this activities. As a future work, it can be added more samples and more activity
types. Also, more feature vector can be generated. Finally, in the last step it
has been developed an android automated testing framework providing reusable,
flexible, and human-understandable commands. Our framework provides users
the ability to write simple test scripts and this test script can use in the same
kind of category and activity apps. In this way, our automated tool provides user
re-usability and saving time. The framework that we developed is improvable and
extendable. More commands can be added to the automatedToolGrammar.g4 file
in future development. Since the appium server is slow to improve the performance
of the framework, another supporting tool different than Appium can be used.

77

Appendix A

Automated Test Framework
Scripts

Script 1

1 LOGIN a c t i v i t y −> check in SAME cond i t i on :
2 TYPE INPUT " atanik@hotmail . com"
3 TYPE PASSWORD " aaa "
4 CLICK LOGIN
5 END

Script 2

1 LOGIN a c t i v i t y −> check IN SAME cond i t i on :
2 CLICK CREATE ACCOUNT
3 PRESS ANDROID BACK BUTTON
4 END
5 LOGIN a c t i v i t y −> check IN SAME cond i t i on :
6 CLICK FORGOT PASSWORD
7 END

Script 3

1 LOGIN a c t i v i t y −> check IN DIFFERENT cond i t i on :
2 TYPE INPUT " atanik95@gmail . com"
3 TYPE PASSWORD " bbbb "
4 CLEAR EDITTEXT FIELDS
5 CLICK LOGIN WITH FACEBOOK
6 END

78

Automated Test Framework Scripts

Script 4

1 MAIN a c t i v i t y −> check IN SAME cond i t i on :
2 SCROLL DOWN
3 SCROLL UP
4 END

Script 5

1 MAIN a c t i v i t y −> check IN SAME cond i t i on :
2 SCROLL RIGHT
3 SCROLL LEFT
4 END

Script 6

1 MAIN a c t i v i t y −> check IN SAME cond i t i on :
2 CLICK DRAWER NAV
3 END

Script 7

1 MAIN a c t i v i t y −> check IN SAME cond i t i on :
2 CLICK BOTTOM BAR ELEMENT 2
3 END

Script 8

1 CAMERA a c t i v i t y −> check in SAME cond i t i on :
2 CLICK CAPTURE
3 END
4 CAMERA a c t i v i t y −> check in SAME cond i t i on :
5 CLICK GALLERY
6 END

Script 9

1 MAP a c t i v i t y −> check in SAME cond i t i on :
2 SCROLL MAP DOWN
3 SCROLL MAP UP
4 END
5 MAP a c t i v i t y −> check in SAME cond i t i on :

79

Automated Test Framework Scripts

6 CLICK PIN INDEX 1
7 END

Script 10

1 MAP a c t i v i t y −> check in SAME cond i t i on :
2 TYPE INPUT SEARCH MAP " t o r i n o "
3 CLICK PIN INDEX 1
4 END

Script 11

1 SEARCH a c t i v i t y −> check in DIFFERENT cond i t i on :
2 TYPE INPUT SEARCH " c h i a n t i "
3 END
4 SEARCH a c t i v i t y −> check in DIFFERENT cond i t i on :
5 CLICK LIST INDEX 2
6 END

Script 12

1 SEARCH a c t i v i t y −> check in SAME cond i t i on :
2 SCROLL LIST INDEX RANGE 4 TO 2
3 SCROLL LIST INDEX RANGE 2 TO 4
4 END

Script 13

1 SETTINGS a c t i v i t y −> check in SAME cond i t i on :
2 PRESS SWITCH IN INDEX 4
3 END

Script 14

1 SETTINGS a c t i v i t y −> check in SAME cond i t i on :
2 CLICK INDEX 1
3 CLICK POPUP CHECKED ELEMENT INDEX 2
4 END

Script 15

1 ADVERTISEMENT a c t i v i t y −> check in DIFFERENT cond i t i on :

80

Automated Test Framework Scripts

2 CLICK AD CONTENT"
3 END

81

Bibliography

[1] Statista. Mobile operating systems’ market share worldwide from December
2009 to December 2020. 2021. url: https://www.statista.com/statistic
s/272698/global-market-share-held-by-mobile-operating-systems-
since-2009/ (cit. on p. 6).

[2] statista. Number of available applications in the Google Play Store from
December 2009 to December 2020. 2021. url: https : / / www . statista .
com/statistics/266210/number-of-available-applications-in-the-
google-play-store/ (cit. on p. 6).

[3] APKPure. url: https://apkpure.com/ (cit. on p. 7).
[4] APKMirror. url: https://www.apkmirror.com/ (cit. on p. 7).
[5] Apktool. url: https://ibotpeaches.github.io/Apktool/ (cit. on p. 7).
[6] Android Manifest File. url: https://developer.android.com/guide/

topics/manifest/manifest-intro (cit. on p. 8).
[7] Myeonggeon Lee Seong Je Cho Changha Hwang Masoud Reyhani Hamedani

Dongjin Shin. «An Effective Method to Classify Android Applications by
Applying Deep Neural Networks to Comprehensive Features». In: (May 2018)
(cit. on p. 9).

[8] Christopher D. Manning Jeffrey Pennington Richard Socher. «GloVe: Global
Vectors for Word Representation». In: () (cit. on p. 14).

[9] url: https://developer.android.com/reference/android/Manifest.
permission (cit. on p. 14).

[10] url: https://developer.android.com/reference/classes (cit. on p. 14).
[11] A. Joulin T. Mikolov E. Grave P. Bojanowski C. Puhrsch. «Advances in

Pre-Training Distributed Word Representations». In: (Dec. 2017) (cit. on
p. 16).

[12] Piotr Bojanowski Edouard Grave Armand Joulin Tomas Mikolov. «Enriching
Word Vectors with Subword Information». In: (June 2017) (cit. on p. 16).

82

https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://apkpure.com/
https://www.apkmirror.com/
https://ibotpeaches.github.io/Apktool/
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/classes

BIBLIOGRAPHY

[13] Ming-Wei Chang Jacob Devlin. «Open Sourcing BERT: State-of-the-Art Pre-
training for Natural Language Processing». In: (Nov. 2018) (cit. on p. 17).

[14] Lee Kristina Toutanova Jacob Devlin Ming-Wei Chang Kenton. «BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding».
In: (May 2019) (cit. on p. 17).

[15] Neural networks and their application to textile technology. url: https :
//www.sciencedirect.com/topics/engineering/sigmoid-function (cit.
on p. 23).

[16] url: https://www.researchgate.net/figure/Illustration-of-output-
of - ELU - vs - ReLU - vs - Leaky - ReLU - function - with - varying - input -
values_fig8_334389306/actions#reference (cit. on p. 24).

[17] url: https://paperswithcode.com/method/adagrad (cit. on p. 27).
[18] Odaya Kardashov Ariel Rosenfeld and Orel Zang. «Automation of Android

Applications Testing Using Machine Learning Activities Classification». In:
(Sept. 2017) (cit. on pp. 41, 43).

[19] Statista Research Department. Most popular Google Play app categories 2020.
May 2021. url: https://www.statista.com/statistics/279286/google-
play-android-app-categories/ (cit. on p. 42).

[20] url: http://appium.io/docs/en/about-appium/intro/?lang=en (cit. on
p. 64).

[21] Terence Parr Jean Bovet. «ANTLRWorks: An ANTLR Grammar Development
Environment». In: (July 2007) (cit. on p. 68).

[22] Kathleen S. Fisher Terence Parr. «The Foundation of the ANTLR Parser
Generator». In: (2011) (cit. on p. 70).

83

https://www.sciencedirect.com/topics/engineering/sigmoid-function
https://www.sciencedirect.com/topics/engineering/sigmoid-function
https://www.researchgate.net/figure/Illustration-of-output-of-ELU-vs-ReLU-vs-Leaky-ReLU-function-with-varying-input-values_fig8_334389306/actions#reference
https://www.researchgate.net/figure/Illustration-of-output-of-ELU-vs-ReLU-vs-Leaky-ReLU-function-with-varying-input-values_fig8_334389306/actions#reference
https://www.researchgate.net/figure/Illustration-of-output-of-ELU-vs-ReLU-vs-Leaky-ReLU-function-with-varying-input-values_fig8_334389306/actions#reference
https://paperswithcode.com/method/adagrad
https://www.statista.com/statistics/279286/google-play-android-app-categories/
https://www.statista.com/statistics/279286/google-play-android-app-categories/
http://appium.io/docs/en/about-appium/intro/?lang=en

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Thesis Aim and Goals
	Thesis Organization
	Implementation Details

	Data Preparation for APK Classification
	Overview
	APK File Structure
	Android Manifest File
	Dalvik Executable format
	String XML File

	Creation of APK Data set
	Collecting Set of APK Files
	Obtaining Set of Features

	Feature Extraction and NLP
	Background
	Word Embeddings
	Generating GloVe feature vector
	Generating FastText feature vector
	Generating BERT feature vector

	APK Classification
	Building a Model
	Data Pre-processing
	Evaluation Metrics
	Tuning Hyper-parameters and Selecting the Best Results

	Classification Results
	Comparison of Results

	Data Preparation for Activity Classification
	Overview
	Activity Structure and UI Elements
	Creation of Activity Data set
	Specifying Activity Types
	Collecting Set of Activity
	Determining a Set of Activity Features

	Feature Extraction and NLP
	Generating feature vector 1
	Generating feature vector 2
	Generating feature vector 3

	Activity Classification
	Building a Model
	Data Pre-processing
	Evaluation Metrics
	Tuning Hyper-parameters and Selecting the Best Results
	Classification Results

	Comparison of Results

	Android Testing Framework
	Overview
	Appium Architecture
	Specifying Framework Commands
	Activity Specific Commands
	Generic Commands

	Implementation
	Framework Structure
	Lexical Analysis
	Syntactic Analysis
	Semantic Analysis

	Evaluation of Testing Framework
	Evaluation of Commands Robustness
	Evaluation of Scripts with Functional Testing

	Conclusions and Future Work
	Automated Test Framework Scripts
	Bibliography

