
POLYTECHNIC OF TURIN
Master’s Degree in Computer Engineering Data

Science

Master’s Degree Thesis

Image Compression using Deep Neural
Networks

Applying Deep Neural Networks Compression Methods on

SIREN Architecture

Supervisors

Prof. Enrico MAGLI

Prof. Diego VALSESIA

Candidate

s253666 Francesco Maria CHIARLO

July 2021

Summary

The main focuse of the current thesis proposal is related to performing image
compression via Implicit Neural Representations based deep neural network ar-
chitectures, specifically employing SIREN architectures, adopting pruning and
quantization techniques for constraining in the number of weights parameters and
their numerical representation, respectively, while measuring and evaluating induced
performance image quality metrics to be related to achieved image compression bit
rate calculated from deep neural network overall footprint. The results obtained
while running and collecting data related to the involved image quality metrices,
such as Pnsr score and bit rate, have suggested us as well as provided us evidence
of how critical and still heavy task represents the attempt of reaching image com-
pression throughout common Neural Network Compression Techniques applied
directly to Neural Network Models. Finally, due to the vast number of potential
suitable hyper-parameter configurations, we have noticed that there are chance to
reduce the gap we can measure, in terms of performance, between well-established
image compression methods such as Jpeg and SIREN compressed models.

ii

Acknowledgements

ACKNOWLEDGMENTS My Parents, my sister and my brother for having sup-
ported me, throughout these years of study at Polytechnic of Turin.

“Any A.I. smart enough to pass a Turin test is smart enough to know to fail it.”
Ian McDonald

iii

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1

2 Related Works 5
2.1 Implicit Neural Representation and Periodic Nonlinearities based

Solutions . 6
2.2 Deep Neural Networks Compressing Techniques 6

3 Experiments 9
3.1 Distiller Framework . 9
3.2 Siren Setting . 11

3.2.1 Input Dataset . 14
3.2.2 First Trials done with Siren Based Architecture 16
3.2.3 Automed Gradual Pruning Deep Nets Compressing Technique 29
3.2.4 Weight quantization and Quatization-aware training 42
3.2.5 Range Linear Quantization: Theoretical Aspects 43
3.2.6 Generalization to other test images 55

4 Conclusions 63
4.1 Conclusions . 63

4.1.1 Summarizing Results . 63
4.1.2 Interesting further Deep Neural Network related Compression

Techniques . 64
4.1.3 Further Acknowledgments 67

Bibliography 70

v

List of Tables

3.1 Cropped Image Main characteristics 15
3.2 Jpeg Cameramen selected Functioning Data Points 25
3.3 Plain Siren Deep Net Cameramen selected Functioning Data Points 27
3.4 Plain Siren Deep Net Cameramen Baseline Choice 29
3.5 Best Siren AGP pruned cases . 36
3.6 Best Siren AGP pruned cases. Where low-,mid-,high depth stand

for lower than 4 hidden layers, between 5 up to 9 hidden layers,
and greater than 9 hidden layers, respectively. Instead low-params
stands for baseline models with not enough parameters to overcome
psnr score as jpeg compression image with unit bit rate,high-params
stands for baseline models with bit-rate greater than input image
bit rate, and mid-params stands for baseline models in between. . . 37

3.7 Best Siren AGP pruned cases: Showing which baseline architecture
have been overcomed in terms of Psnr score. Where low-,mid-,high
depth stand for lower than 4 hidden layers, between 5 up to 9
hidden layers, and greater than 9 hidden layers, respectively. Instead
low-params stands for baseline models with not enough parameters
to overcome psnr score as jpeg compression image with unit bit
rate,high-params stands for baseline models with bit-rate greater
than input image bit rate, and mid-params stands for baseline models
in between. 38

3.8 Best Siren AGP pruned cases: Selected Models with asterisk 41
3.9 Cropped Image Test066 Main characteristics 57
3.10 Best Siren AGP pruned cases: center cropped 256x256 test066 image 59
3.11 Best Siren Quanted Cases: center cropped 256x256 test066 image . 60

vii

List of Figures

3.1 Camera 512x512 whole image . 15
3.2 Cropped Camera 256x256 target image 15
3.3 Pixel Values Distributions for both Original and Centered Cropped

Cameramen image . 16
3.4 Jpeg & Plain Trained Siren Networks: Scatter Plot Psnr[db] vs BPP. 23
3.5 Jpeg & Plain and Pruned Siren Networks: Scatter Plot Psnr[db] vs

BPP. 35
3.6 Jpeg & Plain and Pruned Siren Networks: Scatter Plot Psnr[db] vs

BPP. 51
3.7 Test066.png image from BSD68 dataset. 56
3.8 Cropped Test066 256x256 target image 57
3.9 Pixel Values Distributions for both Original and Centered Cropped

Test066 image . 57
3.10 Cropped Test066 256x256 target image 58

viii

Chapter 1

Introduction

1

Introduction

In the following work thesis we are going to investigate the potential behaviors
that SIREN based instance models may attain, once they were already trained
at list to reach over trained stage and constitute a suitable baseline architectures
to be employed for image compression, improving reachable image compression
degree further employing some kind of deep learning compression method.

For what concerns with our targets beared in mind and related to thesis most
important goals, and since we decided to adopt SIREN based deep neural network
scheme as the model’s architecture, the main insights and information we take
care of, referring to the research work within which SIREN like models have been
present, we can state what follows.
As we can read from Stanford University supported research about SIREN Ar-
chitecture paper’s introduction [40], we know that implicitly defined, continu-
ous, differentiable signal representations parameterized by neural networks, have
emerged as a powerful paradigm, offering many possible benefits over conventional
representations. In particular, they propose:

• to leverage periodic activation functions for implicit neural representations and
demonstrate that these networks, dubbed sinusoidal representation networks
or SIREN s, are ideally suited for representing complex natural signals and
their derivatives.

• as well as, also analyze SIREN activation statistics to propose a principled
initialization scheme and demonstrate the representation of images, wavefields,
video, sound, and their derivatives.

However, as we can state, even from the very beginning, our work thesis instead
will be focused only and principally on computer vision related tasks, in particular
a computer vision problem which is not a common classification problem, but
rather a problem within regression family, where we want measure how much
well the SIREN architecture is able to represent and estimate pixel values based
on input pixels coordinates, so that, our model’s parameters along with picked
and fixed hyper-params as well, will become a good approximation of an implicit
representation of the input processed image we attempt to compress.

Furthermore, in the paper, researchers, since from the very beginning show what
they are looking and searching for, in math terms, and starting by the mathematical
formulation, the main equation that have lead their entire publication work, that
is the so called Implicit Neural Representation. In fact they reported that are
interested in a class of functions Φ such that satisfy equations of the form:

F (x, Φ, ∇xΦ, ∇2
xΦ, . . .) = 0, Φ : x → Φ(x) (1.1)

2

Introduction

The just above transcribed equation and function definition, in the precise case
of Φ function, should be interpreted as follows. This implicit problem formulation
takes as input the spatial or spatio-temporal coordinates x ∈ Rm and, optionally,
derivatives of Φ with respect to these coordinates. So that, the goal of Stanford’s
researchers has been to learn a neural network that parameterizes Φ to map x to
some quantity of interest while satisfying the constraint presented in Equation
1.1. In this manner, they say that Φ s implicitly defined by the relation defined
by F and they refer to neural networks that parameterize such implicitly defined
functions as implicit neural representations.

Therefore, as they show in their paper, a surprisingly wide variety of problems
across scientific fields fall into this form, such as modeling many different types
of discrete signals in image, video, and audio processing using a continuous and
differentiable representation, learning 3D shape representations via signed distance
functions [1, 34], and, more generally, solving boundary value problems, such as
the Poisson,Helmholtz, or wave equations.

They also stated and carried out most of their reasoning around the fact that
a continuous parameterization offers several benefits over alternatives, such as
discrete grid-based representations. So, they report as an example that:

• due to the fact that Φ is defined on the continuous domain of x, it can be
significantly more memory efficient than a discrete representation, allowing
it to model fine detail that is not limited by the grid resolution but by the
capacity of the underlying network architecture;

• furthermore, Being differentiable implies that gradients and higher-order
derivatives can be computed analytically, for example using automatic differ-
entiation, which again makes these models independent of conventional grid
resolutions;

• finally, with well-behaved derivatives, implicit neural representations may offer
anew toolbox for solving inverse problems, such as differential equations.

For these reasons, within their works and in particular inside section 2 they
states that implicit neural representations have seen significant research interest
over the last year. And citing what they mean they observe however that most of
these recent representations build on ReLU-based multilayer perceptrons(MLPs).
While promising, these architectures lack the capacity to represent fine details in
the underlying signals, and they typically do not represent the derivatives of a
target signal well. Thisis partly due to the fact that ReLU networks are piece-wise
linear, their second derivative is zero everywhere, and they are thus incapable

3

Introduction

of modeling information contained in higher-order derivatives of natural signals.
While alternative activations, such as tanh or softplus, are capable of representing
higher-order derivatives, we demonstrate that their derivatives are often not well
behaved and also fail to represent fine details.

Lastly. they ended their introduction on SIREN based neural network models
purposing how to address the several limitations they detected and we reported
just few line above. In fact, they leverage MLPs with periodic activation functions
for implicit neural representations. They have been able to demonstrate that this
approach is not only capable of representing details in the signals better than
ReLU-MLPs, or positional encoding strategies proposed in concurrent work [31],but
that these properties also uniquely apply to the derivatives, which is critical for
many applications, but that these properties also uniquely apply to the derivatives,
which is critical for many application.

To conclude, the contributions of their seminal work include:

• A continuous implicit neural representation using periodic activation functions
that fits complicated signals, such as natural images and 3D shapes, and their
derivatives robustly.

• An initialization scheme for training these representations and validation that
distributions of these representations can be learned using hypernetworks.

• Demonstration of applications in: image, video, and audio representation;
3D shape re-construction; solving first-order differential equations that aim
at estimating a signal by supervising only with its gradients; and solving
second-order differential equations

However, in our thesis work instead we focus mainly on computer vision related
problems, applying SIREN based neural network architecture properly configured,
choosing suitable hyper-parameters values for both number of hidden layers and
features per layers respectively, so that we are able to train base models that are
going to constitute our baselines in order to compare how much close compressed
counterpart derived models can be employed as an appropriate implicit neural
representation of input processed image to represented by network’s parameters.
We do not just halt comparing baseline models performance against compressed
counterparts, but also adopt as comparing baseline performance we can gather
when employing Jpeg algorithm for compressing and obtaining an artifact which
aims at representing as close as possible the original input image compressed by
Jpeg procedure itself.

4

Chapter 2

Related Works

5

Related Works

We briefly report some seminal and interesting already published research studies
and works both related to the problem and context of periodic nonlinearities as
well as other research issues and reports which instead are referring to compression
methods within the artificial intelligence area of investigation related to approaches
and algorithm derived for reducing in terms of memory footpring already trained
and finte-tuned models while maintaining as much as possible unaltered performance
properties or scores.

2.1 Implicit Neural Representation and Periodic
Nonlinearities based Solutions

As we can read from citations and references Stanford Research group, which
lead the study of Siren based models and their use, have reported about previous
already done works over Implicit Neural Representation area, within their related
work section, we understand that only more recent work has demonstrated the
potential of fully connected networks as continuous, memory-efficient implicit
representations for shape parts [11, 12], objects [1, 15, 30, 34], or scenes [5, 39].
These representations are typically trained from some form of 3D data as either
signed distance functions [1, 30, 34, 36] or occupancy networks [6, 29]. In addition
to representing shape, some of these models have been extended to also encode
object appearance [3,5,10,15,16],which can be trained using (multiview) 2D image
data using neural rendering [17]. Temporally aware extensions [18] and variants
that add part-level semantic segmentation [19] have also been proposed.

2.2 Deep Neural Networks Compressing Tech-
niques

As we can already read from seminal works done by Michael H. Zhu et a.l whit
in their research published paper known as "To prune, or not to prune: exploring
the efficacy of pruning for model compression"[50] we know that there exist a wide
range of reasons that lead to the widespread of several different categories of Deep
Neural Networks related Compressing Techniques.
In fact, as Michael H. Zhu et a.l stated, over the past few years, deep neural
networks have achieved state-of-the-art performance on several challenging tasks
in the domains of computer vision, speech recognition, and natural language
processing. Driven by increasing amounts of data and computational power, deep
learning models have become bigger and deeper to better learn from data. While
these models are typically deployed in a data center back-end, preserving user
privacy and reducing user-perceived query times mandate the migration of the

6

Related Works

intelligence offered by these deep neural networks towards edge computing devices.
Deploying large, accurate deep learning models to resource-constrained computing
environments such as mobile phones, smart cameras etc. for on-device inference
poses a few key challenges.
In particular, they further observe that state-of-the-art deep learning models
routinely have millions of parameters requiring O(MB) storage, whereas on-device
memory is limited. They also claim that, it is not uncommon for even a single
model inference to invoke O(109) memory accesses and arithmetic operations, all
of which consume power and dissipate heat which may drain the limited battery
capacity and/or test the device’s thermal limits.

These challenges, describe just above, lead to early works in the 1990s, as
still Michael H. Zhu et a.l reported in their works, where as an instance studies
conducted by LeCun et al.(1990)[25] or Hassibi et al. (1993)[19] investigated and
so performed pruning using a second-order Taylor approximation of the increase
in the loss function of the network when a weight is set to zero. when speaking
about another paper from LeCun et al.(1990)[25] which is referred to as Optimal
Brain Damage the saliency for each parameter was computed using a diagonal
Hessian approximation, and the low-saliency parameters were pruned from the
network and the network was retrained. While, in Optimal Brain Surgeon
(Hassibi et al., 1993)[19] he saliency for each parameter was computed using the
inverse Hessian matrix, and the low-saliency weights are pruned and all other
weights in the network are updated using the second-order information. As we
can understood from those two seminal early works about Compressing based
techniques, are mainly approaches that adopt extensively numerical approaches
which may be affected by numerical issues if input data are not properly treated,
which means that, if missing data or too correlated data are present within input
data set, them may let training procedure done via one of the previously cited
methods may degrade final performance or accuracy, due to numerical operation
applied to Hessian matrix derived from set of learnable net’s parameters.

However, Michael H. Zhu et a.l also made reference to more recent techniques
still speaking about Compressing based methods. More precisely, they describe
briefly works related to magnitude-based weight pruning methods. In fact,
they suggest that, such approaches ave become popular techniques for network
pruning as in those research studies as driven by Han et al. (2015b,a)[18], See
et al.(2016)[38], and finally Narang et al.(2017)[32]. Generally speaking we can
say that Magnitude-based weight pruning techniques are computationally efficient,
scaling to large networks and datasets.

7

Related Works

It is also known that, as Michael H. Zhu et a.l briefly discussed, while pruning
focuses on reducing the number of non-zero parameters, in principle, model pruning
can be used in conjunction with other techniques to further reduce model size.
So a number of other technique have been explored in conjunction with pruning-,
as well as, numerical-based or hessian-based techniques to constitute mixed or
hybrid approach to further push both compressing degree as well as accuracy or
more in general accuracy of trained Deep Net Models. In fact, as Michael H. Zhu
et a.l depicted in their own paper, we clearly understand that Quantization
Techniques aim to reduce the number of bits required to represent each parameter
from 32-bit floats to 8 bits or fewer. They recall some seminal works with pros and
cons as reported just below:

• Different quantization techniques such as fixed-point quantization by Vanhoucke
et al. (2011)[41] or vector quantization by Gong et al. (2014)[14] achieve
different compression ratios and accuracies but also require different software
or hardware to support inference at runtime.

• Pruning can be combined with quantization to achieve maximal compression
as in Han et al.(2015a)[17].

We also discovered that, in addition to all the previously cited compressing tech-
niques for deep nets, an emerging area of research resalts be low precision networks
where the parameters together with activations are quantized to 4 bits or fewer
integer-precision, as in the following array of seminal research papers: Cour-
bariaux et al.(2015)[7], Lin et al.(2015)[27], Hubara et al.(2016)[21], Rastegari et
al.(2016)[37], and lastly Zhu et al.(2016)[46].

8

Chapter 3

Experiments

3.1 Distiller Framework
As we can read from related paper[51], Distiller is nothing but an open-

source Python package for neural network compression research. In fact, Network
Compression can reduce the footprint of a neural network, increase its inference
speed and save energy. Distiller provides a PyTorch[35] environment for prototyping
and analyzing compression algorithms, such as sparsity-inducing methods and low
precision arithmetic. Distiller contains:

• A framework for integrating pruning, regularization and quantization algo-
rithms.

• A set of tools for analyzing and evaluating compression performance.

• Example implementations of state-of-the-art compression algorithms.

Where, the main motivations that lead Distiller’s developers to build up di-
rectly from the ground up to the top a Compressing Compliant and Supporting
Framework for enabling Deep Nets Compressing Techniques are the following. As
Distiller’s developers describe, large models are also memory-intensive with millions
of parameters. Moving around all of the data required to compute inference results
consumes energy, which is a problem on a mobile device as well as in a server
environment. Data center server-racks are limited by their power-envelope and
their ToC (total cost of ownership) is correlated to their power consumption and

9

Experiments

thermal characteristics. In the mobile device environment, we are obviously always
aware of the implications of power consumption on the device battery. Inference
performance in the data center is often measured using a KPI (key performance
indicator) which folds latency and power considerations: inferences per second,
per Watt (inferences/sec/watt). Moreover, Distiller’s developers also claim that
the storage and transfer of large neural networks is also a challenge in mobile
device environments, because of limitations on application sizes and long applica-
tion download times. They believe, in fact, that sparse neural networks hold the
promise of speed, small size, and energy efficiency. For these reasons, they wish to
compress the network as much as possible, to reduce the amount of bandwidth and
compute required.

Other interesting motivations that Distiller’s programmers cited about their
own deep nets compression framework, and so, that further characterize such a
compressing framework are related to some features that so trained and treated
deep models will acquire, which can be represented by the fact that those resulting
architecture would be smaller, faster, as well as more energy efficient. In fact,
speaking about final neural net size, Distiller Framework’s designers noticed that
Sparse NN model representations can be compressed by taking advantage of the
fact that the tensor elements are dominated by zeros. . The compression format,
if any, is very HW and SW specific, and the optimal format may be different per
tensor (an obvious example: largely dense tensors should not be compressed). The
compute hardware needs to support the compressions formats, for representation
compression to be meaningful. Compression representation decisions might interact
with algorithms such as the use of tiles for memory accesses. Data such as a
parameter tensor is read/written from/to main system memory compressed, but
the computation can be dense or sparse. In dense compute we use dense operators,
so the compressed data eventually needs to be decompressed into its full, dense
size. The best we can do is bring the compressed representation as close as possible
to the compute engine. Sparse compute, on the other hand, operates on the sparse
representation which never requires decompression (we therefore distinguish between
sparse representation and compressed representation). This is not a simple matter
to implement in HW, and often means lower utilization of the vectorized compute
engines. Therefore, there is a third class of representations, which take advantage
of specific hardware characteristics. For example, for a vectorized compute engine
we can remove an entire zero-weights vector and skip its computation (this uses
structured pruning or regularization).
While speaking about faster deep compressed models, we can report what Distiller’s
developers intent for saving more computing time when smaller and compressed

10

Experiments

models are trained to be later employed for inference tasks once those models have
been deployed in production. In fact, tanks to Distiller framework we know as well
as from the following observation that many of the layers in modern neural-networks
are bandwidth-bound, which means that the execution latency is dominated by
the available bandwidth. We can take advantage of compressed model’s schema
to improve performance ant computational time. So, due to the fact that the
hardware spends more time bringing data close to the compute engines, than
actually performing the computations, where Fully-connected layers, RNNs and
LSTMs are some examples of bandwidth-dominated operations, Reducing the
bandwidth required by these layers, will immediately speed them up. Furthermore,
some pruning algorithms prune entire kernels, filters and even layers from the
network without adversely impacting the final accuracy. Depending on the hardware
implementation, these methods can be leveraged to skip computations, thus reducing
latency and power.
Lastly, analyzing the energy issue Distiller’s team attempt to save energy and built
a framework that would be more energy efficient. They in particular underline
that: because we pay two orders-of-magnitude more energy to access off-chip
memory (e.g. DDR) compared to on-chip memory (e.g. SRAM or cache), many
hardware designs employ a multi-layered cache hierarchy.Fitting the parameters
and activations of a network in these on-chip caches can make a big difference on
the required bandwidth, the total inference latency, and off course reduce power
consumption. And of course, if we used a sparse or compressed representation,
then we are reducing the data throughput and therefore the energy consumption.

3.2 Siren Setting
As we can understand from the preivous section, we established to employ

IntelLabs Distiller Framework to carry out our experiments related to adopting and
applying different Deep Nets Compression Techniques upon several different initial
or intermediate trained models by means of Siren-like Architecture as the backbone
of our principal Deep Neural Network. However, as we also have learnt from Siren
paper the wide range of usage for which such a model architecture was designed
for, we rather focused our mind ans payed our attention on a particular form of
employment of such a Deep Architecture. We still use it within Computer Vision
Field, but, yer we decided to adopt siren net models not for Classification Tasks
but instead for Regression one problems. In particular we attempt to learn models,
in more precise words, to learn a set parameters from which the architecture is
made that should represent somehow an implicit representation of the original
information that we decided to process.
In order to be more explicit, we adopt Siren architecture to investigate its own

11

Experiments

properties and capabilities even when some compressing technique have been
adopted to reduce original Network’s size either getting rid of non-salient weights,
or even whole units, or representing weights values with reduce precision, passing
from full- or complete-precision representation, a.k.a floating-point, to reduced-
or integer-precision, such as 8-bit precision or even lower, as well as a bit higher
whole-precision.

So, we briefly recall the main characteristics of Siren architectures that are
essential and fundamental in our experiment context, with respect to the overall
properties that might fully describe such architecture but that should result too
many for our explicit purposes. In fact, Siren architecture, as we adopted to solve
our regression problems within Computer Vision Context, is nothing but a Deep
Neural Network Model belonging to the family of Fully-Connected Architectures,
which are also referred to as Dense Deep Neural Networks. So such a model is
characterized by the fact that between two intermediate layers we can notice that
each output unit, from the preceding layer, is in relation with each input unit
from the subsequent layer so we have a dense interconnection supported by set of
weights that are involved when for each input unit the network has to calculate the
resulting activation value to be propagate ahead until reaching the output layer
which is in charge of either providing output scores. In our precise setting final
output values from the Siren architecture will represent pixel intensity obtained
from processing a pair of input coordinates from the grid matrix of the overall
coordinates by which input image is compound since. This means that the main
task of our fully connected based Siren network is represented by processing a set
of ordered pairs made from x and y coordinates for which we aim at estimate the
relative pixel intensity or value so that by means of the learnable weights, biases
values that all together resemble model’s parameters, which represent nothing but
an indirect or more precisely implicit representation of the processed input data or
information, which is represented by an Input Image, where in the most simple
setting such input image would be nothing but a grayscale centered cropped image
down to a square size such as 256x256 pixels. Summarizing what sayed just above,
we adopted a Fully connected based architecture in order to process a grid matrix
of coordinates related to a centered cropped down grayscale image’s pixels in order
to estimate the as more precise as possible pixel level or intensity by means of
learnable parameters represented by weights and biases that all together make up
the internal Network architecture.

Once we have specified how we decided to employ or for which precise task we
have established to use Siren Network, describing shortly which kind of internal
architecture Siren models lay on, that is a Fully connected Structure adopted for
Computer Vision related task, which result to be regression problems for estimating

12

Experiments

pixels intensities or levels from a grid of ordered coordinates so that learnable
models’ parameters should be an implicit derived representation of the image itself
a train time we attempt to represent, we spent few words around brief description
of which kind of activation function, e.i. non-linearity employed by the network
along each layer for computing output values to be propagated from layer to layer
until the end of the architecture itself, have been chosen by the Siren’s designer to
let such a model be unique within its genre or family of related architectures. In
fact, reading Siren’s papers we can read about the fact that the current adopted
non-linearity or non-linear function is nothing but a trigonometric based function
such as sine math function, which enables accurate representations of natural
signals, such as images, audio, and video in a deep learning framework, however
we narrow down our focus just to implicit image representations. The advantage
of using such trigonometric non-linearity that is nothing but a periodic activation
is that this non-linear function is able to fits complicated signals, such as natural
images in our cases and to just mention few scenarios, and even reveals to be
capable of representing details in the signals better than ReLU-MLPs, or positional
encoding strategies proposed in concurrent work[31].

Another interesting feature that Siren based architectures issue when describing
and speaking about their own properties is that, differently from many others
already purposed deep architectures that we can read about in several papers
already published in literature, such a Deep Model does not adopt a standard or
widely recognized weight and biases initialization schema such as that known as
Xavier Deep Nets initialization Schema, or more shortly just Xavier Initialization,
as we can read about within related research paper to such an interesting parameters
initialization method in [13]. In fact reading about Xavier Initialization, or also
referred to as Glorot Initialization, we clearly understand that it is an initialization
scheme for neural networks. Biases are initialized be 0 and the weights Wij at each
layer are initialized as:

Wij ∼ U [− 1√
n

,
1√
n

] (3.1)

where U is a uniform distribution and n is the size of the previous layer (number
of columns in W).

In Siren paper description[40], instead we learnt about the fact that as the statement
of the Siren’s initialization scheme declare, ropose to draw weights according to a
uniform distribution:

W ∼ U [−
ó

6
fanin

,

ó
6

fanin

] (3.2)

13

Experiments

where, they aim that this leads to the input of each sine activation being
Gauss-Normal distributed, and the output of each sine activation approximately
arcsine-distributed with a standard deviation of 0.5, providing even overview of the
proof that we accept greatly. These observations proven by Siren developers within
their own published papers allow us to also state that since such output weights
and parameters distributions have been theoretically as well as empirically found
out, these precise final probability distributions ensure us that when we are going
to adopt some kind of quantizing technique for compressing siren architectures
some properties from statistical quantization theory still hold. In other words even
when probability data distribution for model’s quantized parameters do not follow
a uniform like distribution but rather a Gauss-Normal distribution we can still
recovery original non-quantized parameters with a marginal quantizing error, and
such statement is even more acceptable when Gauss-Normal parameters distribution
reaches zero as much faster as possible though such a probability distribution is not
bandwidth-limited and support compact, as stated within works written by Bernard
Widrow and István Kollár in their textbook known as Quantization Noise[45]

3.2.1 Input Dataset
After having briefly exposed the properties and characteristics of both the

framework or tool and programming language, by means of which we will collect
data related to trials we are going to perform, as well as the setting and context
within which Siren Architecture will be employed, we go ahead describing which
kind of data set we will adopt for attempting to collect results coming from different
trials we should carry out. As we already mentioned in the previous section about
Siren scenario or context where we are going to use, our input dataset should be
represented by nothing but an Input Image, possibly Grayscale image that once
selected will be adapted to both time and available resources constraints, so that
we decided to centering crop whatever image we decided to adopt down to 256x256
pixels, in order to reduce the overall amount of data in a compatible way with time
and hardware resource limited constraints.

We decided to adopt Cameramen target input image, as also Siren’s developers
have already done for their own trials and experiments, which has been reported
just above in its whole size:

However, as we have already anticipated just in the sections above, we decided
not to adopt for our trials the entire image, but rather to crop from its center down
to 256x256 pixels, so reducing both in width and length the original untreated
image, which result in a smaller image as follows:

14

Experiments

Figure 3.1: Camera 512x512 whole image

Figure 3.2: Cropped Camera 256x256
target image

Image Feature Value
name Camera
shape (256, 256)

size_byte 65536
image_band (L,)

Table 3.1: Cropped Image
Main characteristics

The reduction both in width and length lead us to obtain starting from the
original a new smaller image that is four times smaller in size, leading to a 75% of
memory usage reduction to store and process such input image. However, we also
have add a look to how the original pixel values distribution have changed with
respect to the pixel values distribution we will obtain after having cropped from its
center the original image, to understand and let arise some questions about how
training will be affected from such a choice. In fact looking at the two distinct
pixel values distribution that are reported within the same chart for comparison
reasons as follows:

We can immediately notice that even if the pixel values distribution related
to cropped image has been subject to an important reduction nearly 75% with
respect to the entire original distribution from the original non-cropped cameramen
image, the distribution from cropped cameramen images is somehow still similar
to the original one, even if some consideration still shoudl be done referring to
some sub-intervals we can identify from the whole range of possible values that a
single pixel can assume from 0 up to 255, since we are dealing with a grayscale

15

Experiments

Figure 3.3: Pixel Values Distributions for both Original and Centered Cropped
Cameramen image

image with pixel values that are within the just mentioned above span from 0 up
to 255, since each pixel is encoded as 8bit unsigned integer. In fact as we can seen
from the picture above where a blue line color has been assigned to original pixels
distribution while, orange one for cropped image pixels distribution, while the
highest picks has been still the highest even if resized because of cropping procedure
applied to original image, where these picks can be located respectively within
[0; 50] and [150; 250] sub-ranges, we cannot state the same things for secondary and
so lower picks that instead have seen their distribution to resize dramatically down
toward number of occurrences that resembles those pixel values frequencies much
lower than 1000 samples. In particular those secondary picks that have seen their
frequencies to reduce in considerable manner lay within pixel values sub-ranges
as [100; 150] , and [150; 200] respectively. This observation leads us to raise a
question whether the experiments we will carry out in order to collect results and
statistics about compressed Siren based networks when employed for learning an
implicit representation from input image can be translated to full size image in
those case when full and cropped images shown not so much different pixel values
input distribution. In the context of this thesis work we do not investigate the
potential answer to the question just stated above, but focus on retrieving results
that should represent our initial baseline for further subsequent improvements or
other investigations.

3.2.2 First Trials done with Siren Based Architecture
Before starting explicitly with adopting different compression techniques centered

or focused only and mainly around pruning like and quantizing aware compressing
methods, we employ Siren Architecture to run a considerable wide number of
attempts and trials in order to collect basis results that allow us to constitute the
so called control group, that is, a set of samples represented from already trained

16

Experiments

and more precisely overly over-trained Siren based architectures which have been
learnt and estimated as models without using any kind of deep nets compression
techniques. We do not limit ourselves to just run and carry out training with
plain Siren architecture but we even produce results employing a well established
compression algorithm or technique for representing input target image to com-
pressed to final image characterized from a lower amount of data for their own
representation, such as Jpeg standard.

Among the other reasons for which we spent some time training plain Siren
Architectures we have the fact that we want at least to provide a fist measure of
comparison of this precise kind of Deep Model when compared against another
technique which is not focused around the employment of any source of Deep
Neural Network Architecture, as well as, to obtain a basis data sets of samples that
may be used for later comparisons against those examples that we will obtain by
running experiments and trials that will be focused instead on compressing somehow
original and untreated plain Siren architecture to reduce such models both in size
and memory consumption while still not corrupting or wasting selected model’s
performance metrics with respect to original non-compressed model’s performance
scores.

Considered Performance Metrics for Allowing Comparisons

Still before showing most insightful summarizing graphics about our early attempts
related to representing processed cameramen image both via Jpeg compressing
tool and plain siren models, we should decide and then pick the best perforamnce
metrics that result to be suitable and adequate for comparing differences that
naturally arise when distinct techniques are adopted. Within the view provided by
Computer Vision field we know that there exist several diverse metrics and scores
that one can choose from in order to estimate performance from the algorithm
we try to adapt for the purposes we attempt to reach. To cite few in such a
field and related to image processing, we recall: Means Squared Error (MSE)[42],
Peak-Signal-to-Noise-Ratio (PSNR)[8], Structural Similarity Index(SSIM)[33, 44],
and many others as well.

In particular, speaking about those few just above cited image quality measures
related to processed input items such our target images, we can recall few thing
for each of them to just point out or highlight the main reasons for them to be
requested for our purposes. More precisely, and starting out from MSE quality
measure, we claim that rather to directly using it for representing any kind of

17

Experiments

graphics, we exploit such metric to compute more interesting PSNR quality score
for the reasons we explain in the following. However referring such metric to just
Siren architectures, we claim that such function, represented by MSE score function
will be employed mainly as loss function or cost function at training time for let
models to learn the as right as possible parameter estimates that allow the models
to correctly infer pixel levels once them are fed via order grid matrix of picture
coordinates. Such a target function which is involved into the optimizing problem
by which Siren Training phase is characterized is part of the Optimizer Scheduler
identified, then fixed and adopted for the rest of our experiments represented
by Adam Optimizer (Diederik P. Kingma, 2015)[24]. That precise optimization
algorithm was used by us within our trials due to the fact that yet Siren developers
fixed such learning procedure as their reference optimizer. Furthermore, reading
Adam’s paper we can clearly understand the numerous advantages we can gain
from it. In fact, It represents:

• an algorithm for first-order gradient-based optimization of stochastic objective
functions, based on adaptive estimates of lower-order moments.

• a method that is is straightforward to implement, is computationally efficient,
has little memory requirements, is invariant to diagonal rescaling of the
gradients, and is well suited for problems that are large in terms of data
and/or parameters.

• The method is also appropriate for non-stationary objectives and problems
with very noisy and/or sparse gradients.

Once explained the ways we consider in our thesis, that is represented by Adam
Optimizer algorithm that embedded such quality measure in particular when
referring to regression problems as it is the case in our scenario, we go ahead
looking at how result really important and useful PSNR quality score. We start
by saying that generally speaking, PSNR is an expression for the ratio between
the maximum possible value (power) of a signal and the power of distorting noise
that affects the quality of its representation. Where, PSNR is usually expressed in
terms of the logarithmic decibel scale, due to the fact that many signals have a very
wide dynamic range, i.e. ratio between the largest and smallest possible values of a
changeable quantity. The need of using a metrics like Psnr depends on the fact that
usually image enhancement or improving the visual quality of a digital image can be
subjective. Saying that one method provides a better quality image could vary from
person to person. For this reason, it is necessary to establish quantitative/empirical
measures to compare the effects of image enhancement algorithms on image quality.
Using the same set of tests images, different image enhancement algorithms can
be compared systematically to identify whether a particular algorithm produces

18

Experiments

better results.
Mathematically speaking we discuss the PSNR implementation we adopt recalling
that we assume to deal with with a standard 2D array of data or matrix, related
to Grayscale Images, as well as we should guarantee that dimensions of the correct
image matrix and the dimensions of the compressed or learn image matrix must be
identical. Under those assumption we represent PSNR by:

PSNR = 20 log10

A
MAXf√

MSE

B
, (3.3)

where the MSE is:

MSE = 1
mn

m−1Ø
0

n−1Ø
0

|f(i, j) − g(i, j)|2 (3.4)

where, normally, f epresents the matrix data of our original image, g represents
the matrix data of our estimated image in question, m represents the numbers
of rows of pixels of the images and i represents the index of that row, as well as,
n represents the number of columns of pixels of the image and j represents the
index of that column. Lastly MAXf is the maximum signal value that exists in
our original "known to be good" image. The proposal suggested by PSNR is that
the higher the PSNR, the better degraded image has been reconstructed to match
the original image and the better the reconstructive algorithm. This would occur
because we wish to minimize the MSE between images with respect the maximum
signal value of the image. We should notice that when trying to compute the
MSE between two identical images, the value will be zero and hence the PSNR
will be undefined (division by zero). The main limitation of this metric is that
it relies strictly on numeric comparison and does not actually take into account
any level of biological factors of the human vision system such as the structural
similarity index. (SSIM). FInally, in a more general settings that includes colour
images, the MSE is taken over all pixels values of each individual channel and is
averaged with the number of colour channels. Another option may be to simply
perform the PSNR over a converted luminance or grayscale channel as the eye is
generally four times more susceptible to luminance changes as opposed to changes
in chrominance. Final remarks we want to add about PSNR are that, This precise
metric will represent together with Bit-per-pixel measure the two most important
measurements that we aim at representing as an instance via scatter plots where we
want to show and illustrate at several distinct working points how well jpeg, plain
siren models, as well as compressed siren version learn nets are going, comparing
the resulting pairs of coordinates made from PSNR, Bit-Per-Pixels values along
y-axis and x-axis respectively.

19

Experiments

Another image quality measure that we known we may desire to employ for
comparing different results we are going to collect and perform, via compression
techniques for obtaining compression version of plain fully precision Siren based
Deep Nets might be represented from Structural Similarity Index Measure, more
shortly SSIM. As we can understand reading about such an image quality score, it
is nothing but a method for predicting the perceived quality of digital television and
cinematic pictures, as well as other kinds of digital images and videos. So, SSIM in
mosto of the cases is used for measuring the similarity between two images, and it
is even considered to be a full reference metric, which means that e measurement
or prediction of image quality is based on an initial uncompressed or distortion-free
image as reference. So, from such a brief description we clearly suggest that it
is reasonable a meaningful metric to be employed for our experiments, however,
we prefer to employ more prominently PSNR score together with Bit-Per-Pixel
measure, as owr reference performance metrics for later discussion and analyses.
In particular, the rationale behind this choice is motivated by the fact that SSIM
values, as we had observed and appreciated after empirical experiment were un-
dergone, seem to share mostly the same results at least comparing different SSIM
quality measures related to different trials. In fact we need to go further several
decimal very often digits before finding out some signs of dissimilarity of models
performance to understand which was going better than the others for our tasks,
that is attempting to learn a set more or less wide of parameters that constitute a
whole Deep Nets which aims at representing implicitly a target image by means of
a grid of ordered pixels cartesian coordinates.

However, we still compute such interesting performance metric and store it at least
for future investigations or further analyses that might be carried out after this
very first analyses that we are going to compute within the space of this precise
thesys work. In fact we reprot shortly a math explanation of such image quality
score. As we have already sayd about SSIM, it is a perception-based model that
considers image degradation or as in owr case image processing as perceived change
in structural information. It also incorporates or is made from important perceptual
phenomena, including both luminance masking and contrast masking terms. I
differs from other image quality measures such as MSE and PSNR meanly because
those latter scores are focused on estimating absolute errors as their mean to convey
useful insights about how well a given procedure or processing technique affect a
certain input target piece of information as an instance image. Instead, structural
information is the idea that the pixels have strong inter-dependencies especially
when they are spatially close, These dependencies carry important information
about the structure of the objects in the visual scene. Laslty, luminance masking is
a phenomenon whereby image distortions or more generally image processing tend
to be less visible in bright regions, while contrast masking is a phenomenon whereby

20

Experiments

distortions become less visible where there is significant activity or "texture" in the
image.

Mathematically speaking, SSIM algorithm is given as follows, assuming that this
index is calculated on various windows of an image, and the measure between two
windows x and y y of common size NxN is[43]:

SSIM(x, y) = (2µxµy + c1)(2σxy + c2)
(µ2

x + µ2
y + c1)(σ2

x + σ2
y + c1)

(3.5)

with:

• µx the average of x;

• µy the average of y;

• σ2
x the variance of x;

• σ2
y the variance of y;

• σ2
xy the covariance of x and y;

• c1 = (k1L)2 and c2 = (k2L)2 two variables to stabilize the division with weak
denominator, in other words, for numerical reason issues;

• L the dynamic range of the pixel-values, typically 2#bits per pixel − 1

• k1 = 0.01 and k2 = 0.03 by default, that means them have been empirically
derived.

Other math properties that have been studied in [4] state and tell us that SSIM
satisfies the non-negativity, identity of indiscernibles, and symmetry properties,
but not the triangle inequality, and thus is not a distance function. However, under
certain conditions, SSIM may be converted to a normalized root MSE measure,
which is a distance function. The square of such a function is not convex, but is
locally convex and quasiconvex, making SSIM a feasible target for optimization.
However we adopted Adam optimizer equipped with MSE loss function as reference
target function to be opyimized in order to learn the best parameters for implicit
image representation. Finally we report that SSIM is still employed in a number
of different applications, such as Image Compression as described in [42], Image
Restoration as depicted in [42], Pattern Recognition as illutstrated in [10]. Due
to its popularity, SSIM is often compared to other metrics, including more simple
metrics such as MSE and PSNR, and other perceptual image and video quality
metrics. SSIM has been repeatedly shown to significantly outperform MSE and its
derivates in accuracy, including research by its own authors and others. Since in a

21

Experiments

paper[20], an analytical link between PSNR and SSIM was identified, so it might
result to be intriguing to investigate whether such correlation might happen even
when Siren Based Architectures whether compressed or not show same patterns,
but because of the small amount of time as well as because of hardware constraints,
we left for further extension to this initial thesis work.

Exploring Jpeg and Plain Siren Psnr vs Bpp Scatter Plot

Once we have ended with explanations as well as clarification about our main
choice that lead the overall experiment process carried out for collecting several kind
of results both from plain applications of Siren like architectures for creating a so
called control group which will be maded also from cases produced by jpeg standard
compression, as well as applying deep nets compression methods for reducing both
in size as well as precision as an instance by means of quantizing techniques, we
have begun our investigation from analysing which meaningful insights we can gain
just comparing plain Siren architectures trained throughout a mostly wide range of
distinct hyper-params initial configurations against Jpeg compressing algorithm.

However, for seek of completeness, we roughly say some main properties of Jpeg
algorithm just to introduce it as well, with in the context of our experiments.
JPEG or JPG is a commonly used method of lossy compression for digital images,
particularly for those images produced by digital photography. The degree of
compression can be adjusted, allowing a selectable trade-off between storage size
and image quality. JPEG typically achieves 10:1 compression with little perceptible
loss in image quality. Since its introduction in 1992, JPEG has been the most
widely used image compression standard in the world, and the most widely used
digital image format, with several billion JPEG images produced every day. The
basis for JPEG is the discrete cosine transform (DCT), a lossy image compression
technique that was first proposed by Nasir Ahmed in 1972. So, JPEG uses a
lossy form of compression based on the discrete cosine transform (DCT), and
this mathematical operation converts each frame/field of the video source from
the spatial (2D) domain into the frequency domain (a.k.a. transform domain).
A perceptual model based loosely on the human psychovisual system discards
high-frequency information, i.e. sharp transitions in intensity, and color hue. In the
transform domain, the process of reducing information is called quantization. In
simpler terms, quantization is a method for optimally reducing a large number scale
(with different occurrences of each number) into a smaller one, and the transform-
domain is a convenient representation of the image because the high-frequency
coefficients, which contribute less to the overall picture than other coefficients, are
characteristically small-values with high compressibility. The quantized coefficients
are then sequenced and losslessly packed into the output bitstream.

22

Experiments

Once we have done with briefly describing and presenting some characteristics
related to Jpeg Image Compressing Standard also involved as reference algorithm
against which comparing both plain as well as compressed version of Siren based
Deep Net Architectures which are aiming at implicitly representing target image by
means of which we attempt to learn some sets of parameters that indeed should as
much as possible represent an implicit so indirectly the overall image, that can be
obtained by processing a grid of ordered cartesian coordinate systems referring to
pixels x, and y pairs along axes, we are ready to go ahead presenting the very first
graphics related to measurements for Psnr and Bpp scores, that we have plotted via
Scatter Graph to start our analyses with a couple of consideration relative to how
well plain siren models are going with respect to Jpeg Standard if any improvement
or overcoming is match.

Figure 3.4: Jpeg & Plain Trained Siren Networks: Scatter Plot Psnr[db] vs BPP.

23

Experiments

As we can observe from the picture illustrated just below in 3.4, related to values
of Pnsr score, expressed in db scale, shown against Bpp measure for each trials we
have carried out for siren trained architecture, as well as for each compressed image
we could obtain from applying Jpeg algorithm, we focused on treating Cameramen
image cropped from its center down to 256x256 of width and length respectively.
From the graph itself, we notice that two distinct crowd of points, which resembles
to curve drawn within a 2-dimensional plane, where Jpeg data points and Siren
tested configurations do not overlap at all, and more precisely Jpeg cluster of points
seems to dominate over the whole set of Siren plain architectures, suggesting us
that at least without any further processing steps applied to Siren architectures for
learning implicit representations of target image by means of weights and other
net’s parameters, Siren Deep Nets do not compete with Jpeg Algorithm, if we
lead our considerations and reasoning comparing trade-off between Psnr values
and number of pixels necessary to represent compressed image without ruining
the quality of data that is the image itself. To support this initial investigation,
we reported and show for each clusters of points, that resemble distinct curves
with in Psnr VS Bpp Scatter Plot, some interesting points related to jpeg as well
as siren plain trials, where for the latter points we decided even to distinguish
them further into at least three separate sub groups depending on the amount of
parameters by which siren net are made from. Speaking about Jpeg algorithm
related data points, we have decided to try several different attempts that aim at
representing in a compressed form target cameramen image to be processed. We
definitely toggle or let vary and change a particular parameter that allow obtaining
distinct compression degree that eventually show different quality expressed in
terms of Psnr score as well as a corresponding Bpp score constituting a precise
functioning point within Psnr vs Bpp scatter plot. More precisely, we let quality
parameter to vary between somewhat wide range of possible values expressed in
percentage terms, that is from 20% up to 95% of quality. So, it results clear that
many unusual and normally unemployed quality compression configuration are
yet reported, and the main rationale behind such data examples releases on the
fact that even such points may results useful for later comparison we results we
should obtain from running both plain and compressed trained siren deep models.
However for letting the graph being more communicative we explicitly reported
some meaningful data pairs made from (psnr, bpp) values for about Jpeg applied
algorithm, as also reported directly in the table below, which also holds some
additional pieces of information:

As we can notice looking simultaneously toward both Jpeg reported short table
3.2 as well as those data points related to Jpeg cluster, we can notice that nearly

24

Experiments

quality(%) size(byte) psnr bpp
20 4133.0 33.27 0.50
45 6115.0 37.04 0.75
68 8083.0 39.59 0.99
85 11679.0 43.24 1.43
95 19863.0 48.69 2.42

Table 3.2: Jpeg Cameramen selected Functioning Data Points

68% of quality assured parameter tuned for jpeg algorithm we obtain data examples
that more or less gain a unit value for Bpp score while Psnr image quality measure
revolves around 39.59db while too far in the down direction we can reach values for
Pnsr and Bpp that both decrease, as an instance when we set a compression quality
equals to 45% we obtain ∼ 37.04db corresponding to nearly 0.75 bpp, which means
that while we lose ∼ 3db for psnr score, we require 25% bpp for compressing at
that precise degree cameramen image, however degradation and reduction become
more significant when we even decided to adopt a poor 20% compressing quality
which lead to few 33.27db at a cost of losing half of data information with respect
to a compression quality fixed at 68% or near that value. Conversely, when we
are referring to compressing qualities higher than 68%, where the latter as one
can quickly understand becomes to represent our reference compressing quality
rate for that precise cameramen image, we let Jpeg algorithm to take into account
more information, so both Pnsr and Bpp values increases, but at different rate,
in other words, with different steepness with respect to the trend with which
both Image Quality Measures we can see are growing when compressing quality
values are set before reaching 68% compressing rate. In fact in the latter case
the steepness is more evident, while moving toward higher compressing quality
rate such as 85% we notice that such a steepness is reduced and fade away the
more the compressing quality tunable parameter increases toward 95%, which
is our higher tested compressing quality for cameramen image. As instances for
compressing attempts via jpeg tool, for quality compressing higher than 68%, we
reported at least explicitly two data points referring to 85% and 95% of quality
rates, respectively. Where, the former allows reaching 43.24db at 1.43bpp, which
means that a significant increase in number of bits to be employed for each pixels
we can notice a marginal increasing in psnr score, differently from the latter case
where instead we can appreciate that even if a higher value for bpp than those we
have measured for 68% jpeg case, we have gained an important 10db leading to
48.68db for psnr at such high quality rate.

25

Experiments

Once we have done with explanations about most relevant features shown from
cluster of data points related to applying Jpeg Algorithm throughout a wide span of
distinct and increasing compressing quality rates from 20% up to 95%, where nearly
68% we have reported we can appreciate the limit before which bpp will be lower
than unity where psnr quality measure ranges from 33 to 39 db, contrary, above
which we will experience higher than unity bpp scores that corresponds to psnr
quality metric to vary from higher than 39 db until 48 db, we move on presenting
salient properties and characteristics of applying plain siren architectures while
several distinct model’s configurations have been tested, that allow us to identify
the potential candidate to be selected for further deep nets investigations carried
out by means of deep models compressing techniques.
As we have already mentioned in many rows before, we decided to split or divide the
whole cluster of siren related (psnr,bpp) pairs, measured once training procedure
was over for each single attempt, into three distinct sub groups depending on the
number of parameters from which each net is made and from other additional
constraints that we have established and we will discuss in the following. However,
before illustrating the constraints we refer above, we reported some information
about how different values related to models hyper-parameters lead our tests and
how they have been selected.
In fact we decided to let number of hidden layers from which the hidden stack of
layers would be made from to vary from 2 up to 4 consecutive layers in the case of
models categorized as being low depth, while whit a number of hidden consecutive
layers from 5 up to 9 we identify mid depth models, and finally when number of
hidden consecutive layers will be chose from 10 up to 12 we identify highly depth
models. Such a characterization is not the single one, but we have also described
our tested models on the basis of number of parameters per layers mixing such
information with both jpeg 68% quality rate that corresponds to unity gain in
terms of bpp as well as a vertical axis departing from 8bpp x-axis value which signs
the threshold we can report because of the rate we can obtain from un-compressed
original cameramen image which is a 256x256 width, height image.
All together, such observations made up our constraints that let us break whole
plain siren related data points clusters down into three separate groups of under-,
mid- and over-parameterized models, that further allow us to identify special
candidate for later employing deep nets compressing methods to gather results for
consequently comparisons in terms of performance. For explaining how different
configurations lay out within Pnsr vs Bpp graphics we also reported a summarizing
table just below, related to some data examples we decided to report for comparing
both against jpeg reported values as well as for later investigations when also data
points arriving from having trained plain siren models via deep nets compressing
techniques.

26

Experiments

size(byte) n_hf n_hl occurs_params psnr bpp
deepness
mid 16004.0 25 6 BL-U.P 34.48 1.95
low 17412.0 32 4 BL-U.P 34.59 2.13
low 50164.0 55 4 BL-M. 43.86 6.12
mid 50404.0 45 6 BL-M. 43.94 6.15
high 91804.0 45 11 BL-O.P 44.50 11.21
mid 87124.0 55 7 BL-O.P 44.61 10.64

Table 3.3: Plain Siren Deep Net Cameramen selected Functioning Data Points

As one can notice, both from Table 3.3, and looking at the curve that somehow
the overall set of data points from Plain Siren cluster approximates, we can notice
that such a curve within Psnr vs Bpp cartesian coordinate system also show us that
diverse steepness and so increasing trends are characterizing the data points when
different combinations of number of hidden layers and hidden features are employed.
In fact when we are dealing with those hidden layers, features combinations that
we can spot among low-parameterized models the curve’s steepness is more evident,
while the degree of steepness becomes smoother and lower as we advance passing
first through middle-parameterized and finally toward over-parameterized models.
However the Plain Siren cluster of data points as well as the imaginable fitting
curve that ft as much close as possible to these data is yet dominated and so
does not overlap with other curve we can instead fit toward jpeg data points,
where the later it is steeper and that fact indicates as jpeg algorithm is itself stil a
more competitive algorithm for image processing than siren architectures alone, in
other words without any further processing such as employing deep nets related
compressing methods.
Looking more closely to the points we decided to report explicitly and directly both
on the graph as well as within the Plain Siren Data Table, we can say what follows.
For those point that have been characterized as instances of low-parameterized
examples, the rationale depends on the fact that such instances expose a combination
of hidden layers and hidden features that are not enough to be better than jpeg data
points corresponding to a 68% of guaranteed quality, and moreover when compared
so against lower jpge guaranteed tested qualities the plain siren data examples
are not competitive in terms of numebr of bits required for representing image
pixels. In fact as we can see for reported examples where different hidden layers
and hidden features combinations that are however similar in terms of number
of final overall employed parameters that lead to somewhat similar psnr and bpp

27

Experiments

scores, as in the case of (nhf = 32, nhl = 4) and (nhf = 25, nhl = 6), where nhf

stands for number of hidden features per layer, while nhl is referring to number of
hidden layers employed by that precise siren based architecture, we can understand
that both cases are even worst than employing a 45% compressing quality for jpeg,
while their bpp is even much more higher than 85% jpeg compressing quality case.
While, looking at data points laying within the sub group of middle-parameterized
instances, we can learn that as from reported cases, referring to (nhf = 45, nhl = 6)
and (nhf = 55, nhl = 4) which are again example of diverse initial hyper-params
configurations that correspond to somewhat similar psns and bpp values, that even
such points though owning psnr scores similar to that of jpeg points that are nearly
85% of compressing quality we got bpp score for such siren configurations that
is also more than nearly three times higher than an even high jpeg compressing
quality as 95%. However, such points are so classified because even if shown both
psnr and bpp score that are higher than 68% reference jpeg compressing quality,
them are not yet too parameterized in the sense that their bpp score is still lower
than the number of bits per pixels necessary for describing un-processed cameramen
256x256 image. We should, however, note that those plain siren configurations are
not captivating choices since do not seems competitive over jpeg algorithm still not
really employable for being subject to further processing via deep nets compressing
algorithms at least in our initial analyses. So them will be reported as reference
against which comparing later compressed plain siren models.
Lastly, looking at over-parameterized data points, them belong to such a category
or class due to the fact that own a so high number of parameters due to their
combination made up from number of selected hidden layers and hidden features
that both made them be suitable for being subject to deep nets compressing
methods as well as we can notice that some among them are at least competitive
over a jpeg 95% compressing quality, allowing us to attempt to embark one or more
of such plain trained siren models to state whether or not deep nets compressing
method allow for reducing model’s size without impacting heavily against psnr
scores, reducing it by an important extent. For such data examples we reported
up to three cases whith in our preliminary Psnr vs Bpp graph. Those points
corresponds to (nhf = 55, nhl = 7 and (nhf = 44, nhl = 11) that corresponds, as
earlier already motivated, to distinct models configurations that both show a final
overall number of parameters, with similar resulting scores relative to psnr and
bpp measurements. However, such reported point do not show performance that
are higher than data points we can identify looking at middle-parameterized trials,
even if we can spot over-parameterized examples that own a psnr score higher than
those from middle-parameterized istances. However the rationale behind showing
those low quality over-parameterized examples is due to the fact that the more the
higher are both (nhf nhl the more the number of epochs, or steps we require to the
model to converge to solutions that shown low variance, otherwise we end up with

28

Experiments

examples that are characterized by high variance leading to examples with poor
performance in terms of psnr score, while approximately similar bpp score.
Finally, arriving at the third point we decide to mention among those that are
related to over-parameterized plain trained siren models, we illustrated which was
the baseline plain siren model selected as our reference to be further processed
by means of deep nets compressing approaches. In particular such a point, which
is represented as red start with in our Introductory Pnsr vs Bpp Scatter plot,
is nothing but a siren model characterized from a low deepness and somewhat
intermediate number of hidden parameters for each layer that allow us to select an
over-parameterized model that is not too much far a part from reference vertical line
at 8bpp of x-coordinates, so that such model owns a 10.28 bpp value of information
ration between overall bits and number of pixels from which the original image
is made, as well as allowed us to train a basis siren models that is somewhat
competitive to jpeg 95% compressing quality, even if comparing to instead 68%
jpeg compressing quality we ca notice that our selected baseline model needs 1o
times more bits that lead to plus 10 db units in terms of psnr score, as reported
also in the following table where we included most salient information about our
selected baseline architecture:

size(byte) n_hf n_hl occurs_params psnr bpp
deepness
low 84228.0 64 5 BL-O.P 49.97 10.28

Table 3.4: Plain Siren Deep Net Cameramen Baseline Choice

3.2.3 Automed Gradual Pruning Deep Nets Compressing
Technique

Once we have effectively ended the introductory description which refers to the
illustrated Pnsr vs Bpp scatter plots where both (psnr,bpp) score pairs have been
discussed, investigated and motivated both for cases where jpeg algorithm was
adopted for compressing original cameramen 256x256 image, as well as, for other
cases where instead several different combinations of hyper-params as nhf and nhl

for plain siren architectures have been tested training such networks to reach over-
trained, over-fitting final states, we have reached an abundant control group from
which starting to develop further investigation of selected baseline candidate that
will be further processed by means of identified deep nets compressing technique
motivated both from their usefulness, as well as IntelLab Distiller framework

29

Experiments

support. To be more precise, we decided to begin our study from adopting firstly
pruning based compressing technique, then moving over and also applying some
kind of quantizing compressing technique to further reduce base line selected
model’s size as well as attempting to preserve and do not ruin or spoil reached
baseline performance, in terms of psnr score.

Theory behind Automated Gradual Pruning Based Compressing Tech-
nique

Speaking broadly, with Pruning Techniques applied to Deep Neural Nets Archi-
tecture Topologies we meant that the technique, involved during training phase,
aim at reducing the number of effective and salient deep nets’s parameters, that
are weights as well as biases if any, so that the resulting network models get rid
of unneccessary weights and/or biases since those nets’ parameters do not impact
significantly at inference time and during training phase do not impact or con-
tribute widely to improve the learning step. While, from theoretical standpoint the
minimum that we should report about Automated Gradual Pruning compressing
technique for deep neural networks, is represented from what follows in the current
section, before moving ahead presenting and overviewing meaningful results we have
collected by appling such technique against our over-trained as well as over-sized
fixed baseline model. Automated Gradual Pruning approach[50], more shortly
AGP, seeks to prune the network’s connections during training. In particular they
report that for every layer chosen to be pruned, we add a binary mask variable
which is of the same size and shape as the layer’s weight tensor and determines
which of the weights participate in the forward execution of the graph. However,
such binary mask variable is part of training and in IntelLab Distiller framework
it is involved in the training graph where there are sort the weights in each layer
by their absolute values and mask to zero the smallest magnitude weights until
some desired sparsity level denoted generally speaking as s is reached. We also
has to notice that the back-propagated gradients flow through the binary masks,
and the weights that were masked in the forward execution do not get updated
in the back-propagation step. In fact, Michael H. Zhu et al(2017)[50] were able
to introduce a new automated gradual pruning algorithm in which the sparsity is
increased from an initial sparsity value si, usually set starting from zero, to a final
sparsity value sf over a span of n pruning steps, starting at training step t0 and
with pruning frequency ∆t, as illustrated by the following math formula, which
governs the pruning algorithm that so becomes also part of training phase:

st = sf + (si − sf (1 − t − t0

n∆t
)3), t ∈ {t0, t0 + ∆t, . . . , t0 + ∆n} (3.6)

30

Experiments

From the math equation 3.6, we notice that the binary weight masks necessarily
involved in the pruning process will be updated every ∆t as the network is trained
to gradually increase the sparsity of the network while allowing the network training
steps to recover from any pruning induced loss in accuracy. An interesting feature,
that also have been introduced whit in AGP algorithm implementation provided
by IntelLab Distiller framework, is that one that enable the model to achieve the
target sparsity sf , the weight masks are no longer updated. This property has
the advantage over other well-known and established pruning techniques such as
some Magnitude based pruning approaches, where several attempts should be done
before knowing the amount of time through which let model to be pruned to carry
out several steps and epochs to fulfill the compression task as well as many different
derived threshold as an instance from statistics collected ahead of training time
for weight values distributions per layers, since we are freed from the necessary
or mandatory need of knowing statistics distributions or properties we have to
collect from per layer weights set reducing the amount of time required before
identifying promising hyper-params setting the lead the pruning algorithm when it
takes action at training time.
Another important feature about such pruning technique, proven by Michael H.
Zhu et al(2017) within their paper [50] is that they attempt to prune the network
rapidly in the initial phase when the redundant connections are abundant and
gradually reduce the number of weights being pruned each time as there are fewer
and fewer weights remaining in the network. Furthermore, the pruning method
described here does not depend on any specific property of the network or the
constituent layers, and can be extended directly to a wide-range of neural network
architectures.
Again, Michael H. Zhu et al(2017), within their paper [50], also provided at a high
level description some useful heuristics for selecting and picking values related to
hyper-params that characterize AGP compressing behavior at training time to
derive a compression of the trained models. As an instance, when they spoke about
pruning frequency ∆t they suggest to pick or select values between 100 and 1000
training steps, in order to let models to be pruned to recovery greatly from brain
damage, as well as they noticed that pruning frequencies chosen in such a way
had a negligible impact on the final model quality. Other interesting heuristics are
taking into account relationship between pruning scheduler, that will lead pruning
process, and learning scheduler that instead is in charge of leading the optimizer.
In particular they highlight the focus on the relationship we should carefully tune
between learning rate and pruning frequency need for reaching a desired pruning
level. In fact, Optimizers typically decay the learning rate during training, and
we have observed that pruning in the presence of an exceedingly small learning
rate makes it difficult for the subsequent training steps to recover from the loss
inaccuracy caused by forcing the weights to zero. At the same time, pruning with

31

Experiments

too high of a learning rate may mean pruning weights when the weights have not
yet converged to a good solution, so it is important to choose the pruning schedule
closely with the learning rate schedule.

AGP pruning: determining most adequate Hyper-parameters

Before showing the insights and generally speaking the results we have obtained
from the choices we have taken in order to accomplish a training phase characterized
from having compressed by means of AGP pruning based technique our selected
plain siren like baseline model, with nhf = 64 and nhl = 5 which corresponds
to an instance that features over-parameterized example, we dedicate some time
to exposing the choices partly guided by several heuristics purposed in literature
about how we can compressing a deep nets by means of pruning based approaches
such as AGP pruning.
In fact, as mentioned in [50], relative to AGP pruning method itself, we follow
partly what Michael H. Zhu et al(2017) suggested relative to how identifying and
then selecting best values for updating frequency ∆t, which is a hyper-parameter
in charge of partly guiding pruning algorithm represented by the overall procedure
by which AGP is made, because such hyper-parameters when correctly set allows
for properly recovery performance that normally get worse and so are somehow
wasted and ruined by a kind of damage that happens when some neurons, e.i. units
in each layers, have been removed by any kind of pruning algorithm. In particular,
They suggest to let ∆t vary between 100 and 1000 step.
However, due to resource and time constraints, in the context of our thesis, we
have initially followed a Random Search Approach for selecting only later more
promising subsets of plausible hyper-parameters.Then, from the briefly tested and
seen trial results from Random Search Approach, we decided instead to let ∆t vary
with in the fixed set of values represented from {50, 100, 200}.
In fact, we noticed that selecting too lower update frequency factor, we do not
let siren like pruned models to recovery from damage and this means that finally
those trained and pruned architectures shown to be less competitive both against
plain siren models due to ruined performance psnr scores. On the other hand,
if we instead let update frequency factor tunable hyper-param to be set with
values higher than 500 or 1000 we observe that those choices required too much
time for reaching desired pruning rates and so they should represent unfeasible
hyper-params choices, that we decided to discard a priori.

Once we have established the update frequency factor related to when or how
frequently applying or let AGP pruning routine that will take place along with plain
training procedure so that AGP method can prune away a number of not salient
weights as well as units in order to reach the wanted amount of selected pruning

32

Experiments

rate, we go further giving reasons for how distinct pruning rate have been derived,
how generally speaking the layers from which models are made have been treated
or pruned individually. We, first, recall that in literature normally the choice of
pruning rate have been suggested to be performed by means of a particular ahead of
pruning time technique named Sensitivity Analysis. Such a pruning rate selection
or deriving approach is motivated by the fact that we should treat each layer,
especially hidden stack of several layer, in different manner, without necessarily
adoping the same pruning degree for each intermediate layer beacues, these hidden
layers do not have the same tolerance to equal pruning degree. In other words,
sensitivity pruning analysis aims at identifying the most suitable pruning amount
for each layer depending on some layer’s information. In particular pruning level
should be dependent from layer location within net architecture stack, as well as
from how salient it results when only that precise layer alone is subject to pruning
without touching other remaining layers. This means that, sensitivity analysis for
being carried out requires both a given amount of time before a selected pruning
technique actually can be performed, as well as, needs to test an array of several
different pruning rates to establish the most suitable pruning amount for each
layer. From literature, however we know that, roughly speaking a shared heuristics
within deep learning community related to compressing methods is that , the
deeper the layer the greater the amount of pruning we can decide to apply. This is
mainly justified by the fact that we do not want information, that flow from input
data through different intermediate layers while being processed, can be heavily
truncated - because of reduced number of units within early layers that implicitly
re-project input data with in lower dimensional representational spaces - since from
the very beginning because that will produce a loss of information that will affect
the final prediction and heavily compromise model performance. On the other
hand, more aggressive pruning amounts have been proven to be more tolerant by
pruned deep net models so lead to less wasted performance with respect to original
non-pruned corresponding models because of the efficiency with which the pruning
method at deeper layers are able to remove non-salient neurons, e.i. layer’s units,
that do not allow for appreciable improvement for predicting out values from the
model.

Having provided reasons for applying sensitivity analysis before proceeding with
training baseline model for pruning and so compressing it, we follow suggestions
provided by such a preliminary analysis method. We have done also other considera-
tions before illustrating the various degree of pruning levels selected according with
layers characteristics partly derived from sensitivity analysis, in fact we consider
due to the particular architecture we fixed for siren like plain and baseline models,
to just prune hidden layers and more precisely to prune only weights matrices

33

Experiments

for each hidden layers, leaving untouched both biases arrays, in fact, each hidden
layers as well as the very first - also referred to the input embedding layer from
pixels domain to implicit intermediate multidimensional spaces to get intermediate
representations functional for our predicting task - as well as the last whole layers.
The reason is meanly due to the fact that both input and output layers as well as
intermediate biases arrays for each intermediate and hidden layers do not account to
huge amount of models’ parameters when compared to instead the overall amount
of weights that hidden layers account for. That choice has also another important
result, allowing first and last layer to take into account all the units from which
they are made from, allow nets to preserve as much input information as possible
for the former layer, while to get the most precision when speaking about the latter,
avoiding the final pruned models to ruing or impact importantly in a worst manner
to performance we instead want to preserve as much as possible when comparing
pruned models to their corresponding original baseline models.
Arrived at this point, we illustrate how we decide to prune individually hidden
layers on the basis of sensitivity analysis and other additional considerations. In
particular, the hidden layer right after the input embedding layer was pruned
sampling a pruning rate that ranges within 10% up to 20%. Instead, for middle
hidden layers except the one right before the output layer, we adopted or have
sampled a pruning rate that ranges within 25% up to 40%. Finally, we selected or
have sampled a pruning rate for the hidden layer right before the output layer that
whose value ranges within 45% up to 55%.

AGP pruning: Results

With all the observations we have done for justifying how our deep nets, derived
from selected baseline plain siren architecture, compressed following a pruning like
compressing algorithm such as AGP pruning based procedure we have obtained
the subsequent results as shown within the graphics provided below:

34

Experiments

Figure 3.5: Jpeg & Plain and Pruned Siren Networks: Scatter Plot Psnr[db] vs
BPP.

Looking at the graph we have reported just above in picture 3.5, and more
precisely focusing our attention to AGP pruning data examples, we can notice
how we have pruned our baseline model, as we have divided our pruned models
into five distinct groups created grouping data on the bases to which interval their
pruning rate fall into. Where those pruning intervals are equally sized, spanning by
5 percent units, from 15% up to 40 % so that we have formed up to four distinct
groups.

Starting our discussion from those pruned siren like models that fallen within
15%-20% pruning overall amount interval, clearly, we can state that those pruning
levels are not enough to cross and overcome the vertical threshold line located
at 8bpp on the x-axis which represents a constraints that we want our pruning

35

Experiments

model to pass if we want to migrate pruned models into Pnsr vs Bpp coordinate
system regions, where those models result to be no more over-parameterized mod-
els. However, such poorly pruned siren based instances show to be better than
some over-parameterized plain siren based models, such as plain siren models with
nhf = 45 and nhl = 8 which corresponds to a mid deep architecture with a psnr
value equals to ∼ 45.92db and a bpp score eqauls to ∼ 8.11, but at the same time
those pruned models went somehow worst than other plain siren cases such as plain
siren models with nhf = 64 and nhl = 4 which corresponds to a shallow architecture
with a psnr value equals to ∼ 47.0db and a bpp score equals to ∼ 8.25, as also we
have reported within the summarizing table:

baselines (nhf , nhl) size(byte) psnr(db) bpp
(chosen model*) (64, 5) 84228 49 10
(other plain model) (45, 8) 62384 46.59 8.17
(other plain model) (64, 4) 58954 47.33 8.25

agp (prune intervals) prune_rate(%) size(byte) psnr(db) bpp
15-20 19.0 67420 46.71 8.23
20-25 25.0 62688 47.87 7.65
25-30 30.0 58592 46.98 7.15
30-35 31.0 57780 45.42 7.05
35-40 38.0 52040 45.82 6.35

Table 3.5: Best Siren AGP pruned cases

36

Experiments

When we are looking at those interval pruning rates represented by 20-25, 25-30,
and 30-35 percent intervals, we noticed that for each sub interval there are more
examples that are slightly better than plain siren comparable, in terms of number
of parameters, models, but yet there are more cases that instead are somewhat
worst than some plain siren architectures. In fact, as an instance our pruned
models have been better than plain siren models such as (nhf = 45, nhl = 6)
and (nhf = 55, nhl = 4), with respectively (psnr = 43.94db, bpp = 6.15), (psnr =
42.43db, bpp = 6.12) performance, where the former corresponds to a mid depth
arch, while the latter to a low depth arch, while both being mid parameterized
models. Conversely, our pruned models, that lay with in one of the previous three
pruning intervals, were not able to improve over some other plain siren models
such as (nhf = 45, nhl = 7) and (nhf = 55, nhl = 5) with comparable number of
parameters such as (psnr = 45.87db, bpp = 7.16), (psnr = 45.95db, bpp = 7.63)
performance, where the former corresponds to a mid depth arch, while the latter
to a low depth arch while both being mid parameterized models. In summary,
we also report our results, where along with previously stated plain baseline siren
models we include also best pruned siren based models we have been able to train
for reaching desired pruning rate levels:

baselines (unbeaten) (nhf , nhl) size(byte) psnr(db) bpp
siren(chosen model*) (64, 5) 84228 49 10
(low-depth, mid-params) (55, 5) 62484 45.95 7.63
(mid-depth, mid-params) (45, 7) 58684 45.87 7.16
agp (prune intervals) prune_rate(%) size(byte) psnr(db) bpp

20-25 24.0 63304 45.32 7.72
25-30 28.0 59832 45.07 7.30
30-35 31.0 57780 45.42 7.05

baselines (beaten) (nhf , nhl) size(byte) psnr(db) bpp
(mid-depth, mid-params) (45, 6) 50404 44.48 6.15
(low-depth, mid-params) (55, 4) 50164 43.86 6.12

Table 3.6: Best Siren AGP pruned cases. Where low-,mid-,high depth stand for
lower than 4 hidden layers, between 5 up to 9 hidden layers, and greater than 9
hidden layers, respectively. Instead low-params stands for baseline models with not
enough parameters to overcome psnr score as jpeg compression image with unit bit
rate,high-params stands for baseline models with bit-rate greater than input image
bit rate, and mid-params stands for baseline models in between.

37

Experiments

However, if we focus our attention instead on just those AGP pruned models
which correspond to best results we have found when training baseline siren instance
involving AGP procedure as our compressing deep nets technique, we notice that
at least there are few pruned examples that were able to overcome greatly in term
of performance mid-parameterized plain siren models, as well as, have been able to
overpass some over-parameterized plain siren instances, as reported within below
summarizing table:

unbeaten baselines (nhf , nhl) size(byte) psnr(db) bpp
siren(chosen model*) (64, 5) 84228 49.0 10

(mid-depth, over-params) (55, 7) 87124 48.5 10.63
(high-depth, mid-params) (45, 9) 75244 48.53 9.18
agp (prune intervals) prune_rate(%) size(byte) psnr(db) bpp

25-30 30.0 58592 46.98 7.15
beaten baselines (nhf , nhl) size(byte) psnr(db) bpp

(mid-depth, mid-params) (45, 10) 83524 46.88 10.19
(mid-depth, mid-params) (55, 7) 87124 46.19 10.63

Table 3.7: Best Siren AGP pruned cases: Showing which baseline architecture
have been overcomed in terms of Psnr score. Where low-,mid-,high depth stand for
lower than 4 hidden layers, between 5 up to 9 hidden layers, and greater than 9
hidden layers, respectively. Instead low-params stands for baseline models with not
enough parameters to overcome psnr score as jpeg compression image with unit bit
rate,high-params stands for baseline models with bit-rate greater than input image
bit rate, and mid-params stands for baseline models in between.

38

Experiments

Since we can notice that two entries among plain siren architectures reported
within the table illustrated just above, where those entries corresponds to the same
initial hyper-param configuration that leads to distinct results depending on the
initial random weights and biases initialization, that observation again suggest us
as it is more difficult learning low variance estimates of siren based models as them
begin to become more and more wider and deeper. In other words we can still
notice when comparing our pruned models against over-parameterized plain siren
models, the latter show a wider variance than AGP pruned instances, where among
those compressed deep nets examples we can still identify even competitive results
in terms of performance represented by Psnr image quality measure that are better
than un-compressed siren counterparts.

The remaining prune interval that we have to discuss is represented by 35-40
percent pruning span. This range corresponds to that with the highest amount of
pruning rate that we have attempted to apply and reach when compressing our
deep Siren baseline net. The interesting things we can reported about trials we have
carried out setting a pruning degree that lays within 35-40 percent pruning span are
the following. Those cases show to be less subject to a wider variance with respect
to lower selected pruning rate with which carrying out AGP compression. Moreover,
we have also several cases belonging to 35-40 percent pruning span that overcome
other pruned instances with lower pruning rate. However, best siren architectures
compressed by means of a pruning rate higher than 35% show a psnr score that is
much lower than corresponding psnr score for other siren compressed case by means
of lower pruning rate. But, due to the fact that these last samples from found
within 35-40 percent pruning span have experienced a lower variance we decided to
pick for the downstream quantizing step, to further compress intermediate pruned
siren architectures, best instance identified within this precise group.

Finally, as we compare jpeg data points represented also within Pnsr vs Bpp
scatter plot where also we have shown pruned siren instances along with plain siren
architectures samples, we can understand roughly speaking what follows. If we
consider the overall set of pruned siren architectures by means of AGP pruning
method as a unique group of data examples along with the performance we have
obtained for psnr score when a further training phase has been conducted for
accomplishing AGP compressing technique, we can end up saying that on average
our compressed architectures are comparable against 85% up to 90% quality jpeg
results but withsignificantly higher rates, in the order of a 78% inrease.

Up to this point, that is, having both shown main features related to both jpeg
and plain deep siren architectures where the latter have been trained to reach
over-trained state and which do not have been further processed, and then having

39

Experiments

also added the discussion and insights about AGP compressing most relevant theory
aspects as well as strategy adopted for identifying best or most suitable sets of
values related to AGP pruning algorithm hyper-params so that such compressing
can be applied and finally the results collected from recorded models’ performance,
we can state what follows. Before moving on with next step, we have gain some
interesting results from having just pruned away non-salient weights or even units
from hidden stack of siren architecture’s layers to compress nets without reducing
yet numeric precision as we will do in the remaining sections. In particular, by
testing several different overall pruning degree, which can however be divided into
pruning rate ranges into which them are then grouped, we have seen that we were
able to reduce baseline siren model’s size still obtaining processed architecture
that can even overcome other siren plain models with more or less same number
of overall net’s learnable parameters for implicitly representing target image we
aim at learning, more specifically such overcome models have been found among
both mid- and over-parameterized plain siren architecture as depicted in previous
sections. However, on average our pruned models, via AGP technique, shown a
nearly ∼ 10% reduction relative to Psnr score, where we moved down from ∼ 49db
for a baseline fixed siren model for our trials corresponding to a low depth examples
with (nhf = 64, nhl = 5) which leads to a ∼ 10bpp model, which is competitive
with a 95% quality jpeg instance but requiring ∼ 75% more memory storage,
for reaching similar performance. While looking at the difference between jpeg
image compressed psnr image quality scores against compressed by means AGP
process compressed siren architectures we can claim that on average our siren
compressed models are similar referring to psnr score them have obtained to those
jpeg compressed images that are characterized from 85% up to nearly 95% quality,
even if agp instances are still on average nearly ∼ 78 − 80% wider in terms of
memory footprint.
From the results we have reached so far, by means of Autometed-Gradual Pruning
Approach, we can end up saying that there exist some configuratios we can adopt
by setting specific pruning rate for each of the hidden layers, from which pruned
shallow SIREN picked architecture was made, that are able to overpass other
reference shallow SIREN configurations that are similar in terms of achieved bit
rate but different somewhat in terms of Psnr score. In particular, keeping more
weights while pruning we can increase significantly Psnr score, without spoiling
too much the Psrn image quality score, but the differnt pruned models lead to
higher intra-variance amongst models with similar pruning rate. On the other and,
deeper pruning rate adopted for pruning basic SIREN architecture leads to higher
compression but even Psnr values get low quicklier but with models experiencing
lower intra-variance when calcualted among pruned models with not so far pruning
level.

40

Experiments

We, finally, state that for the remaining analyses we have to report about quant-
aware training technique we will consider in particular to distinct cases taken from
agp pruned siren models, which correspond to a low pruned model and a higher
pruned model, more precisely to a 25% and 38% pruned models, where those
choices depend on the fact that we want to observe how quantizing methods can
improve, if any improvement will be indeed observed, models performance or just
to observe which kind of performance we will get. We report below best results
found for each pruning rate intervals, as well as we indicated which have become
our pruned models that will be subject to quant aware training subsequent phase,
which have been marked by means of asterisk symbol:

baseline (nhf , nhl) size(byte) psnr(db) bpp
fixed siren baseline (64, 5) 84228 49 10

agp (prune intervals) prune_rate(%) size(byte) psnr(db) bpp
15-20 19.0 67420 46.71 8.23
20-25 25.0* 62688 47.87 7.65
25-30 30.0 58592 46.98 7.15
30-35 31.0 57780 45.42 7.05
35-40 38.0* 52040 45.82 6.35

Table 3.8: Best Siren AGP pruned cases: Selected Models with asterisk

41

Experiments

3.2.4 Weight quantization and Quatization-aware training

Quantization refers to the process of reducing the number of bits that represent
a number. In the context of deep learning, the predominant numerical format used
for research and for deployment has so far been 32-bit floating point. However, the
desire for reduced bandwidth and compute requirements of deep learning models has
driven research into using lower-precision numerical formats. It has been extensively
demonstrated that weights and activations can be 8-bit integers without incurring
significant loss in accuracy. The use of even lower bit-widths, such as 4/2/1-bits,
is an active field of research that has also shown great progress. In fact, as we
can imagine the more obvious benefit from quantization is significantly reduced
bandwidth and storage. For instance, using INT8(8-bit integer representation
for both weights, biases as well as even activations) for weights and activations
consumes 4x less overall bandwidth compared to FP32(floating point full precision).
As already mentioned, we mainly Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference work [23] by Benoit Jacob et.al(2018),
which attempt to propose a quantization scheme along with a co-designed training
procedure allowing inference to be carried out using integer-only arithmetic while
preserving an end-to-end model accuracy that is close to floating-point inference,
as we will shortly describe for seek of completeness.

Having done with the earlier section within which we have dedicated most of our
discussion about how can we employ a kind of pruning based deep nets compression
algorithm, such Automated Gradual Pruning approach whose major properties can
be read within Michael Zhu et al (2017)[50] research paper, we move ahead we
another section where we focus our attention to a kind of Quant-Aware Training
compression algorithm to further reduce in size our already pruned models via
AGP procedure, as well as attempting to keep as much as possible unaltered our
quantized models performance with respect to pruned counterparts. However, we
do not limit our strength for comparing quantized models over pruned ones, but
even compare the results we derive from applying one such quantizing algorithm
against jpeg and our baseline reference from which we have begun our experiment
which consists, as we have already said many times, to understanding which might
be the implications of adopting different deep nets compressing approaches applied
on siren like models in terms of our selected image quality measures that assess
how much well those compressing algorithm can be. There are several reasons
for adopting a kind of quantizing compression algorithm for further compressing
in size huge deep nets. As we can read from Xiandong Zhao et al. (2020) [47],
while the past few years witnessed the success of DNNs on cloud and server-end
computers, neural networks have been recently pushed to embedded and mobile
areas to enable edge intelligence. For these scenarios, the power provision and

42

Experiments

computational strength on the edge computing devices are limited. As a result, it
is essential to have more efficient network architectures and less expensive inference
overhead, however within the context of our work thesis we mainly focus on the
fact that we rather attempt to learn and memorize a implict image representation
with the value of the models’ weights that we will try to quantize, so that the more
compressed. There is increasing attention from the research community to study the
compression of modern deep neural networks that are typically over-parameterized
and computationally costly, for such reasons we focuses on quantization which
have demonstrated to be not only a method to reduce the memory footprint as
in traditional work, but also a mandatory step to make the network deployable
on integer hardware. Having said that just above, we proceed providing a brief
introduction and explanation about the quantizing method we have finally chose
for our later experiments - where we will deal with quantizating aware approach for
further reduce memory footprint of our compressed both via agp pruning and then
quatized models - which is represented from Qantization and Training of Neural
Networks for Efficient Integer-Arithmetic-Only Inference, a seminal work done by
Benoit Jaco et al. (2018)[23].

3.2.5 Range Linear Quantization: Theoretical Aspects

Quantization refers to the process of reducing the number of bits that represent
a number. In the context of deep learning, the predominant numerical format used
for research and for deployment has so far been 32-bit floating point. However,
the desire for reduced bandwidth and compute requirements of deep learning
models has driven research into using lower-precision numerical formats. It has
been extensively demonstrated that weights and activations can be 8-bit integers
without incurring significant loss in accuracy, for models addressing classification
problems. The use of even lower bit-widths, such as 4/2/1-bits, is an active field
of research that has also shown great progress. In fact, as we can imagine the
more obvious benefit from quantization is significantly reduced bandwidth and
storage. For instance, using INT8(8-bit integer representation for both weights,
biases as well as even activations) for weights and activations consumes 4x less
overall bandwidth compared to FP32(floating point single-precision). As already
mentioned, we mainly follow Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference work [23] by Benoit Jacob et.al(2018),
which attempt to propose a quantization scheme along with a co-designed training
procedure allowing inference to be carried out using integer-only arithmetic while
preserving an end-to-end model accuracy that is close to floating-point inference,
as we will shortly describe for seek of completeness.

43

Experiments

In particular, they provide a quantization scheme that quantizes both weights and
activations as 8-bit integers,and just a few parameters - such as bias vector - as 32-
bit integers. They try to provide a quantized inference framework that is efficiently
implementable on integer-arithmetic-only hardware such as the Qualcomm Hexagon,
however in our thesis research we do not focus onto such low level and hardware
compliant issue, and so prefer to postpone such interesting argument for future
extension to our primal analyses on collecting meaningful statistics about siren
deep nets main performance metrics values when trained adopting any kind of
compressing algorithm for deep nets such as pruning, or quantizing methods. Lastly,
they applied their frameworks to efficient classification and detection system that
showed ignificant improvements in the latency-vs-accuracy trade offs for state-of-
the-art architectures.

In this paragraph, we are going to rapidly describe Benoit Jacob et.al(2018)
general quantizing scheme, which deals with a correspondence between the bit-
representation of values them have denoted with q which stands for quantized value,
and their interpretation as mathematical real numbers instead denoted by r for
real value. Their quantization scheme is implemented using integer-only arithmetic
during inference and floating-point arithmetic during training, where them have
attempted for both implementations maintaining a high degree of correspondence
with each other. Roughly speaking their quantization scheme reduced to be an
affine transformation or mapping of interger q to real numbers r of the form

r = S (̇q − Z) (3.7)

for some constants S and Z, which are their quantizing parameters. Benoit
Jacob et.al have been able to treat also by means quantization such requirement, in
fact, activations can be quantized at points where they would be during inference,
e.g. after the activation function is applied to a convolutional or fully connected
layer’s output,or after a bypass connection adds or concatenates the out-puts of
several layers together such as in ResNets. However, we recall, since from the very
beginning of our technical overview of such quantization method, that we aim at
just focusing on quantization applied to only models’s weghts rather than taken
into account also biases, in order to simplify our treatment of such quantization
procedure. Moreover, We specify that, their quantization scheme uses a single
set of quantization parameters for all values within each activations array and
within each weights array; separate arrays use separate quantization parameters,
in that manner each layer can be quantized differently from other previous and
later layers along the pile or stack of many layers from which our deep nets are
normally constituted. We have to specify how are more precisely defined both S
and Z quantization parameters. Starting from S, we can read from Benoit Jacob
et.al(2018) paper that such parameter stands for "scale" and is an arbitrary positive

44

Experiments

real number. It is typically represented in software as a floating-point quantity, like
the real values r. While the latter that is Z, such constant represents "zero-point"
and is of the same typeas quantized values q, and is in fact the quantized value
q corresponding to the real value 0. This allows us to automatically meet the
requirement that the real value r = 0 be exactly representable by a quantized value.

Benoit Jacob et.al(2018), while describing their quantization scheme they have
provided for their quantizing experiments, have also shown and described the main
reasons for training with simulated quantization and at the same time have briefly
depicted the main reason that suggest why post quantization training represents
sometimes a uneffective fine tune choices under certain conditions. So that, by
their analyses, we should not adopt post-train quantization but rather to follow
a quant-aware strategy if we want to exploit some kind quantization processing
of the models we aim at compressing for reducing memory foot-print, and keep
as much as possible performance untouched or nearly shallow models’s original
performance. In fact as they have found, just appling post train quantization to
resulting trained models works sufficiently well for large models with considerable
representational capacity, but leads to significant accuracy drops for small models.
They have explained some common failure reasons for simply applying to our
models post-training quantization, as large differences in ranges of weights for
different output channels, or, outlier weight values that make all remaining weights
less precise after quantization. Having saying that, we can now report the high
level behavior of Benoit Jacob et.al(2018) quantization algorithm, which consists
in simulating quantization effects in the forward pass of training. They, however,
still made backpropagation to work as we are used to and all weights and biases
are stored in floating point, but the forward propagation pass simulates quantized
inference as it will happen at inference time, by implementing in floating-point
arithmetic the rounding behavior of the quantization scheme. Finally, Benoit Jacob
et.al stated that, weights are quantized before they are convolved with the input,
furthermore, if batch normalization - as its use have been explored into [22] - is
used for the layer, the batch normalization parameters are folded into the weights
before quantization. However such additional features is not meaningful for our
experiments since SIRENs do not use either convolution or batch normalization
operations. Furthermore, if quantizing even net’s activations concerns us for per-
formance or constraints issue.
Mathematically speaking, Benoit Jacob et.al’s quantization scheme can be formal-
ized for each layer as follows. Quantization is parameterized by the number of
quantization levels and clamping range, and is performed by applying pointwise
the quantization function q defined as follows:

45

Experiments

clamp(r; a, b) := min(max(x, a), b)

s(a, b, n) := b − a

n − 1

q(r; a, b, n) :=
7

clamp(r; a, b) − a

s(a, b, n)

:
s(a, b, n) + a

(3.8)

where, we recall that r is a real-valued number to be quantized, instead [a; b] is the
quantization range, and n is the number of quantization levels, finally ⌊·⌉ denotes
operation corresponding to rounding to the nearest integer.

However, having made explicit the math formulae underling the quantization
process for translating a full-precision real number to a reduce-precision whole value,
Benoit Jacob et.al have also suggested how to correctly work weights and activations
out, in fact, quantization ranges are treated differently for weight quantization
vs. activation quantization. On one side, that is, for weights, the basic idea is
simply to set a := minw,b := maxw. They apply a minor tweak to this so that
the weights, once quantized as int8 values, only range in [−127,127] and never
take the value −128. On the other, that is, for activations, ranges depend on
the inputs to the network. To estimate the ranges, them collect [a; b] ranges seen
on activations during training and then aggregatethem via exponential moving
averages (EMA) with the smoothing parameter being close to 1 so that observed
ranges are smoothed across thousands of training steps. This allows the network
to enter a more stable state where activation quantization ranges do not exclude
a significant fraction of values, however, for our experiments activation do not
have been quantized or treated so that them can be represented in terms of lower
precision values, and so, we left such further trick we may apply to compress to a
wider degree the target AGP pruned models for future extension to this current
initial analyses related to compressing siren based models for collecting statistics
and performance showing how well such processed models behave with respect
to original plain siren models when addressing the task of implicitly representing
target input image.

Range Linear Quantization: Hyper-params Choice

Earlier for hyper-parameters choice when speaking about learning strategy
pursued for training to prune selected baseline plain siren arch - represented from
a plain siren example with fixed setting equal to (nhf = 64, nhl = 5) which is a low
depth but over-parameterized instance that lead to (psnr(db) =∼ 49db, bpp =∼ 12).
In particular, We then describe how was pruned by means of a specific compressing
algorithm we have identified in Automated Gradual Pruning approach from Michael

46

Experiments

Zhu et al(2018) paper. Also here, that is quantization step, where we are going
to treat our already agp-pruned siren models via Range Linear Quantization -
which is a quant-aware deep nets compressing technique. In fact, we have also
to understand what would be best hyper-params setting for adequately learning
quanted versions of our pruned siren instances to further reduce memory footprint
as well as maintaining as much high as possible psnr score or at least not to ruin
or impact heavily on psnr image quality measure.

Nevertheless, we have to follow different considerations and take into account
distinct observation to guide the derivation and choice of suitable hyper-parameters
to be tested quantized pruned siren architectures. We known, in fact, that when
dealing with quantizing algorithm we cannot rely on some kind of preliminary
analysis we can conduct as Sensitivity Pruning Tool, commonly applied for pruning
based approaches for identifying the most suitable pruning rate for each involved
layer within network structure. So, we should follow other heuristics or suggestions
provided by literature that mainly leverage empirical experiments results obtained
from other research works or studies to determine the right amount of quantizing
level we desire to reach across several attempts we will carry out. However, as in
pruning based methods, also for most quantizing approaches we have to establish
the most adapt values for update frequency, that is, the amount of steps/epochs
we have to wait and let pass before selected compression algorithm will take place
to improve or update some statistics moving toward the goal of reducing processed
models’ memory footprint while preserving or attempting to slightly ruining those
models’ image performance quality measures. We have noticed some differences,
however, when one comes to decide how to tune or pick frequency update value for
allowing a kind of deep net compressing algorithm in different contexts. In fact,
to be more concrete, we have learned that on a side, that is pruning method, we
should adopt frequency update hyper-parameters values that are enough large to
let pruning algorithm to made pruned nets while training is ongoing to recover
from brain- or unit-damages which means that we attempt to let pruned models
to recovery as much as possible through the intermediate reasonably abundant
amount of epochs before net’s architecture undergoes further neural units pruning.
On the other side, that is quantization algorithms, instead we are suggested to
sample our frequency update most suitable values from a low range of positive
integers, in order to let quant procedure to follow as much closer as possible the
learnable weights, biases as well as activation values distribution to be able to
properly model the quant application that is in charge of mapping or matching
floating-point parameters or units’ output activations to some whole-precision
n-bits levels that can maintain as much as possible unaltered final models’ inference
performance or as much as possible those output scores to original un-quanted
models, before the latter have been trained by means of our selected quant-aware

47

Experiments

training approach. That choice and suggestion was mainly due to the observations -
that we will better explain, but that we briefly anticipate here - which deal with the
fact that models quantized to a given bit-level for reduced-precision representation
of their learnable parameters seem to better maintain original models performance
otherwise too heavily corrupted when wider update frequencies span are preferred.
Summarizing, we have selected update frequency values that resemble the following
set of hyper-params values we have tested {2,5,10,25} with less attempts when we
have tried 10, 25 update frequencies since yet from such values performance seem
to degrade importantly.

Having suggested the strategy we follow for adopting or hypothesizing most
eligible update frequency hyper-param values that are in charge to determine the
amount of middle steps/epochs before quant-functions take place for updating
internal quant-parameters necessary to allow quant scheme to correctly work, we
have focused our attention to another relevant hyper-param that is learning rate.
In fact, as we have previously already done when speaking about AGP pruning,
also here we have to understand which is the relation of such hyper-param to
other more closely related and proper quant-setting from which roughly speaking
range linear quantization is characterized. Furthermore, while from the content
we can read about AGP algorithm within its paper description we learned that
pruning methods generally don’t need important variations or fine-tuning about
learning rate such that one can stick it to the value as it had reached when
plain architecture was earlier trained, in the more general scenario where even a
scheduling decaying learning rate was adopted together with optim-strategy to
lead the procedure of learning parameters values, we instead have understood that
when we further train deep nets archs via quantizing method we should follow a
different way. In particular, it is conversely suggested to ulterior slightly reduce
learning rate, and the main rationale underling such option is due to the fact that
if we adopt a wider learning rate, quant-aware work-flow operate somewhat worst
than adopting or preferring lower learning rate choices, which lead to broader
performance spoils impacting dramatically as an instance to Psnr image quality
measures. So, also for learning rate we can sum that the adopted learning rate we
decided to tests end up to rely within the following subset of possible learning rate
values, 1e − 4,7.5 − e5,5.5 − e5. So, as we can seen, we still stick with unchanged
learning rate value that is 1e−4 but further attempt to run some trainings via much
lower learning rates that have nearly a lower order of magnitude in difference. We
can briefly anticipate that we have collected better results when lower in magnitude
learning rate was fixed together with a higher update frequency for training our
already compressed agp-siren instances via quant-aware range linear quantization
method.

48

Experiments

Once having finished with justifications and main motivation behind our choices -
partly due to already studied research literature suggestions and heuristics provided
for correctly guiding deep nets training - about such important and central hyper-
parameters as update frequency and learning rate, where the former deals with more
directly and closer than learning rate to quantizing algorithm settings, whereas
the latter is a common and cross hyper-params that is involved into learning
procedure generally adopted when fitting deep nets toward target cost functions to
obtain resulting models able to correctly inferring and predicting output values,
we made a further step toward discussing another major hyper-params we find
ourselves to necessarily treat since differently from the other two already cited
hyper-params, that one is much closer to quantizing algorithm essence, still roughly
speaking. In fact, here we are going to tell how major choice behind bits-depth we
have experimented with when attempting to quantizing our agp-pruned instance,
for collecting and gathering results to be employed later for comparing gained
statistics and performance scores against already trained plain, agp-pruned siren
base architectures as well as jpeg cameramen compressed images we can create
by running jpeg algorithm choosing diverse percentage qualities. We decided to
test different options for bits depth, where such terms stands to genrally speking
the number of level of bits or equivalently the integer precision desired, we can set
for transforming, in other words, quantizing complete- or full-precision survived
floating points already pruned via agp strategy siren based models’ weights values
which are the arch’s parameters upon which we focus our strength and attention
toward further reducing memory footprint while having still care about preserving
or slightly spoiling performance image quality measures. In fact, as suggested in
research literature, we firstly established which layers as well as parameters within
each selected layer to quantize. In particular, due to original as well as pruned
structure owned by siren models arrived at current phase of our experiments - that is,
quantization stage - we opted to just reduce precision and so to represent in whole-
precision way those parameters values that correspond to weights net’s params,
leaving untouched and intact biases vectors - considered not really important within
the context of our primal analyses subject in future to further extensions and so
left for future work’s extensions - as well as activations for same reasons we have
provided to biases vectors. Furthermore, we end up and complete the claim and
hypotheses we supply for justifying our rationale underling selection of subset
of networks parameters to be quantized, saying that we converge our strength
and attention to merely handle weight parameters belonging to hidden stack of
layers that siren architectures are commonly made from, so, avoiding quantizing
both input layer, also referred to embedding layer from pixel’s coordinate pairs
to very first latent space further processed by remaining downstream network,
as well as, output layer which instead by means plain fully connected layer is in
charge of providing pixel level output estimate at inference time but earlier during

49

Experiments

training stage even output signal employed as information to guide regression task
compliant learning progresses. Such as choice allows us to exploit in a better way
fully-precision latent representation will be provided from input embedding layer
as well as floating-point precision when estimating output pixel magnitude given
pairs of (x,y)-coordinates related to ordered grid of entries or cells that corresponds
to pixel location that input image - we want to either learn, at train time, or infer,
at inference subsequent time - is made from.
Summarizing, we can state that we have done several trials fixing a quantizing bit
depth for rounding floating-points values down to integer-precision weight values
choosing and one after other substituting bits representation depth in the set
corresponding to {4,7,8,9,16}, that is, we have tested both very-low bits depth
representation that allowed for more than ∼ 90% memory requirements for handling
siren models quanted down to 4-bits, as well as we have tried middle bits-depth
such as those quanted architectures down to either 7, 8, or 9 where we accounted for
∼ 80% of storage when dealing with those resulting networks, and finally to 16-bits
integer-precision representation that allows for slightly more than just nearly 50%
memory savage since we started quantizing to already slightly compressed siren
networks since them have been already processed by means of a kind of pruning
based algorithm known as AGP pruning approach.

Range Linear Quantization: Results

Having written all about hyper-parameters we have adopted for our downstream
trials, we will discuss further, about how much well to be quanted, but yet pruned via
AGP technique, siren-based deep networks, as well as we are ready for understanding
what meaningful insights and knowledge we were able to find out having carried
out several experiments throughout several distinct quantizing hyper-parameters
setting we have applied to let training procedure to handle quantizing process, in
other words, gathering statistics and learning quant-parameters for exploiting our
networks to infer or predict desired output pixels magnitude as closer as possible
to original unprocessed cameramen 256x256 image to be learned.

Looking at the Pnsr vs Bpp scatter plot figure 3.6 we have provided for analyzing
the results we have found when we had carried out quantization training by means
of Range Linear Quantization technique, we can state what follows. Starting our
discussion from a quantizing level equals to 4-bits for representing floating point
precision weights numbers as reduced precision integers, we can notice that we were
able account for a bit rate reduction that is close enough to unity. This means that
our siren models whose middle stack of hidden layers - from the layer right after
embedding layer and up to the last but one layer - was forced to turn its weights
representation to 4-bits depth or precision obtained a bit rate that is comparable

50

Experiments

Figure 3.6: Jpeg & Plain and Pruned Siren Networks: Scatter Plot Psnr[db] vs
BPP.

with same bit rate we can achieve when applying jpeg compression algorithm
assuring at least a quality factor equal to nearly 68%. However, speaking about
psnr image quality measure, we can notice that we were not neither able to reach
a jpeg compressed instance image through assuring 20% quality of result, thus,
even if we can employ 4-bit quantization to reach more than nearly 90% percent of
memory reduction when we compare those compressed siren models against our
baseline reference corresponding to (nhf = 64, nhl = 5) plain configuration, we lose
more than 20db with respect to the original performance equal to 49.97db. So we
conclude saying that such a critical quantizing level is too high for allowing trained
models with such configuration to keep as much as possible unaltered the original
psnr performance we got from training in a plain manner our selected baseline
reference. However, comparing to other quantization levels we have take into

51

Experiments

account in the remaining case we have to discuss, we can see lower variance when
fixing quantizing n-bits but let learning rate or update frequency hyper-parameters
to vary from trial to trial, demonstrating that when our siren architectures already
pruned by means of AGP pruning method are even quanted via a very low degree
of quantization other hyper-parameters affect slightly to the training procedure as
well as to final psnr score. Instead if we are looking at the final results we have
gathered when 7-bits or 8-bits depth are tried for achieving models’ further memory
compression to save storage capacity and at the same time keeping as higher as
possible measurement performance, we notice that both lower precision mapping
from floating point real numbers to integer corresponding digits, we end up with
network examples that even if a somewhat low bit rate, nearly to 1.59 and 1.78
respectively, as so really close one another we still assist to psnr image quality scores
that are not enough high as an achievable psnr score as we can when compressing
input target image via jpeg assuming a 69% quality, though the difference is just
about 3 up to 2 db, but sufficient to stating that by means those two distinct
quantizing levels we reached a bit rate comparable with much more higher than a
guaranteed 69 quality, but rather a jpeg compressing quality ranging from 85% up
to nearly 90%, but with a dramatic psnr reduction from ∼ 20% up to ∼ 25% or
even more. However, when comparing such quantized models against the nearest or
closer in terms of number of parameters or bit rate plain siren architectures we can
see that those lower precision networks outperform the full-precision counterpart
siren models by an extent that ranges from few percentage points up to ∼ 10%,
and but a lower rate that ranges instead from ∼ 15% up to ∼ 20%. We also
notice that as we started quantizing from a already pruned model instance with
a bit rate equal to 6.35 and a psnr score that achieves 45.82db we end up with
quantized models with 7-bits and 8-bits weights integer presentation that account
for a 70% reduction of memory footprint at the cost of 20% lower psnr values,
much more similar to the results we have discussed when comparing scores we
have for applying jpeg algorithm assuring 85% up to 95% quality but the pruned
model we have quantized required nearly four or even more times memory. Finally,
when put into relationship our original baseline plain siren trained instance to our
instead quantized results from 7-bit and 8-bit quantization we can suggested that
we have obtained results that seem much similar to those we can achieve when
applying jpeg compression guarteeing at least 69% quality speaking about psnr
score, that is, a reducition in magnitude that corresponds to minus ∼ 10db but we
a ∼ 85% memory reduction. Differently from 4-bit quantization, we noticed that
choices we have done for other hyper-parameters to be set before training via a
quant-aware technique, which were learning rate and update frequency, have an
important impact on the final gathered performance. In fact, we have observed that
selecting lower learning rate while adopting a high update frequencies, models seem
to learn better preserving as high as possible psnr score than otherwise preferring

52

Experiments

larger learning rate as well as lower update frequecies. In other words, due to those
differences in registered performance we have recorded for distinct hyper-params
quantizing configs, we end up saying that such quantizing levels are more affected
and show larger variance than trained instances we have found out when adopting
4-bit level of quantization. So, in such cases the proper selection or fine-tuning of
other quant-parameters other than bith depth is meaningful and can impact in a
sever manner on final models’ measurament metrices.
Only arriving at a quantizing level equal to 9-bits we were able to obtain psnr
values comparable with a jpeg resulting compression that assume 69% of saved
quality, however, we need more than half of the data for representing our learned
image with respect to the amount of information we should store when 69% jpeg
quality is adopted for compressing our target picture. Furthermore, when picking
9-bits quantizing level up for representing weights parameters within the middle
hidden stack of our already compressed siren architecture, via pruning technique
as AGP pruning, we got instance that in the best cases are comparable in terms
of bit rates to higher than compressed image instances we could gain when jpeg
algorithm is exploited fixing quality to 90% or more, but with a ∼ 20% lower psnr
final score. So the quantized instances that we found out training our siren models,
already compressed via AGP tech, were 5 times smaller than full-precision reference
baseline from which all experiments started but we have been able to preserver up
to ∼ 83% of psnr score, in the best case that is adopting a somewhat low learning
rate as low as 5.5e − 5 and a high update frequency that allows for learning to
properly approximate pixel scores even if we reduced network capacity, optimizing
the resources in terms of available learnable parameters. Moreover, among the
tested n-bits quantization levels, 9-bit quantization degree was the only one that
allowed for reaching the highest distance from both those plain siren architectures,
that are those learned without any further compressing technique, comparable from
bit rate standpoint as well as from psnr score viewpoint. In fact, in the former
case we can notice that we were able to save nearly 16% of memory while at the
same time we increased by nearly 6% the psnr score. Instead, in the latter case
we were able to save two times more memory and still competitive to those plain
siren models. Also for 9-bits quantizing hyper-parameter choice we have noticed
that allowing other quant-parameters as well as learning rate to vary when sticking
with such reduce-precision bit-width size resulting network models suffer from high
variance, where lower learning rate and high update frequencies allow for better
results than higher learning rate and lower update frequencies that instead get
worst in terms of achievable measurement scores such as psnr value, demonstrating
that also such n-bist depth is affected from distinct hyper-paraks configs we decided
to adopt in different cases we will train.
Lastly, the final n-bit quantizing level we have tried was based on 16-bit floating-
point to integer-precision mapping. It represented the biggest integer-representation

53

Experiments

we have tried in order to accomplish and fulfill our goal we have beard in mind at
that precise stage within our experiments setting, that is, quantizing our already
pruned siren based architecture via AGP pruning technique, in order to understand
whether we such low depth n-bit quantization we can really take advantage from
such low deepness transformation that might corresponds to a negligible reduction
in quanted models’ performance in terms of psnr image quality measurements, as
well as, a somewhat acceptable memory footprint reduction when comparing those
results we have obtained with such quantizing configuration against both jpeg’s psnr
performance cases, pruned and plain siren deep nets examples psnr score measures.
However the fact that our experiments we have carried out when 9-bits quantization
was fixed lead to both highest enhancement over plain siren architectures of same
size, as well as highest enhancement over plain siren architectures sharing similar
psnr score but we advantage that 9-bits quantized models occupy less memory
when integer representation is involved, we still can appreciate somehow a kind of
measurable and impotant improvement when also 16-bit whole-precision is adopted
when comparing such quantized models against plain siren models with both a
comparable size or with a comparable psnr score, where, in the latter case we can
say in advance that 16-bit models required less memory with respect to comparable
models in terms of psnr score. More specifically, when exploiting 16-bit integer
representation, we noticed that in the best case, our results lead to examples
characterized from a bit rate of ∼ 3.31, at the cost of a psnr score equals to
∼ 41.25db, which corresponds to a nearly 17% reduction of image quality with
respect to our baseline siren architecture that was firstly compressed via AGP
pruning technique and then quanted, but saving nearly 67.80% of memory usage,
from a bit rate of 10.28bpp down toward slightly over 3bpp. While comparing such
results against compressed siren instance from which quantizing experiments have
been carried out, we notice that halving the memory requirement, we reduced
image quality about just ∼ 10% which can be considered as a great advantage since
with an important memory reduction we do not assisted to a dramatically image
quality score decreasing. So we can consider ourselves satisfied from both results
we have reached when quantization was invoked adopting either 8-, 9-, 16-bit depth
quantization levels, even if 8-bit quantizing depth was not so satisfying as it were
the latter two. However, when 16-bit depth level was considered, we should have
said that such quant-parameter in the context also of the particular pruning degree
employed earlier for compressing our initial plain siren architecture, we obtained
results that in terms of bit rate were still higher than the maximum jpeg quality we
have reported, corresponding to 95% of ensured image quality result with a nearly
49db psnr score, while in terms of guaranteed image quality measurements our
results seems to be remarkably higher than a jpeg compressed image obtained fixing
a 69% quality, by rather a resulting compressed image of ranging more or less from
75% to 78% quality. Finally, we can end up saying that when we focused on an

54

Experiments

instance of pruned siren architecture which was compressed up to ∼ 38% of plian
siren original size and then quantized passing through several distinct attempts
between which a number of diverse n-bits quantizing levels have been substituted
for quantizing and so representing floating-point full precision hidden weights into
integer numbers for whole-precision, pursuing the target of being able to further
compressing deep net siren-based architecture for reducing memory footprint but
at the same time attempting to keep image quality performance measures as high
as possible, we have obtained remarkable results that suggest us what follows. We
were able to quantizing an existing already partly compressed via pruning technique
siren architecture finding some examples thanks to which we can state that it is
possible to take advantage of both pruning and quantizing compression techniques
and steps to reduce memory footprint or requirements of compressed, quantized
models but still with final trained models that were in the best cases better than
plain siren architectures of comparable size as well as lead to a interesting memory
compression even when those quantized models have compared against plain siren
architectures that instead were similar in terms of psnr image quality measure
score.

3.2.6 Generalization to other test images

Once we have done with our results we have precisely drawn from training
several distinct SIREN-based models applying first AGP-pruning technique and
then followed by LRQ-quantization algorithm where we stick on cropped by its
center Cameramen input image, we attempt to understand whether our pruning
and quantization choices can generalize to different test images. Particularly, we
moved on another image which is the one coming from the so called BSD68 dataset
as we can find cited in here[28] which has been This widely used for measuring
image denoising algorithms performance, however I could not find it easily. It
includes the original .jpg files, converted to lossless .png, and noisy with Additive
White Gaussian Noise of different levels. However, we focused our attention on
grayscale image to be aligned with our earlier analyses done by fixing as input
target image cameramen picture. Moreover, we even crop, where it was possible,
the second picked image by its center down to 256 by 256 pixels. In particular, we
adopted test066.png grayscale picture, which is the image 3.2.6:

As done before when cameramen 512x512 image was cropped by its center down
to 256x256 image, also for test066.png input target image we have cropped it
down by its center, that corresponded passing from full-image 481x321 to 256x256
cropped image, which results into the subsequent image ??:

55

Experiments

Figure 3.7: Test066.png image from BSD68 dataset.

56

Experiments

Figure 3.8: Cropped Test066 256x256
target image

Image Feature Value
name Test066
shape (256, 256)

size_byte 65536
image_band (L,)

Table 3.9: Cropped Image
Test066 Main characteristics

Currently, having cropped test066 image as illustrated above does not changed
its own pixel values distribution shape in an appreciable manner, as shown in the
following picture where original and cropped test066 image version pixel values
distribution have been reported:

Figure 3.9: Pixel Values Distributions for both Original and Centered Cropped
Test066 image

In fact, we still can see how the most of values about cropped image 3.9 are
laying between 100 to 150 pixel magnitude values, as in the original test066 picture
, and even pixel values corresponding to very low magnitude seems somewhat
untouched from cropping preprocessing phase. So, we still kept most of the data
from low intensity pixels which corresponds somehow to airplane shape, as one
might think out. In other words, even if our pre-processed image have been cropped
we can state that even if the actual learnt image would be the full reference, we
should face safe issues when attempting to learnt weight parameters necessary to
represent the airplane related form.

For the different trials we have done sticking with test066.png image we had
followed same kind of tests and we have adopted more or less similar hyper-
parameters configuration values, in order to understand and see how diverse the
performance statistics we may collect from those successive attempts are from the
ones we have observed from processing cameramen image. The computed output

57

Experiments

results are reported below within the Figure 10:

Figure 3.10: Cropped Test066 256x256 target image

As we can observe from the graphics shown just above in 3.10, we decided to
select a baseline model represented from a hyper-parameter configuration equals
to (nhf = 65, nhl = 5) where leads to a similar configuration, in terms of number
of weights as the one picked up for cameramen image. However, the major
difference among the two initial configurations, even if both correspond to over-
parameterized instances, is in terms of achieved performance. In fact, the baseline
model corresponding to test066 learnt image had gained an higher psnr score rate
equals, greater than 50 db. But, if we look at the difference with highest Jpeg
quality for the same picture we can notice that the gap is significant due to the
fact that the difference is nearly ten folds as 54.14, reminding at the same time
that while the 95% guaranteed quality for Jpeg compressed image leaded to nearly
a bit rate lower than 2 bpp, adopting a plain siren architecture as the one shown
for our baseline instead caused a bit rate much grater as 10.28, overcoming at the
same time untouched original image bit rate, which instead corresponds to 8 bpp.
However, this time for the subsequent pass corresponding to applying pruning
technique to our baseline model, we established to focus on less attempts, just the
most promising, which instead lead to restricting interesting prune rate intervals
to just three, corresponding to 20-25, 25-30, 30-35. This choice has been also

58

Experiments

motivated by the observation that other intervals do not guarantee any kind of
interesting gain in terms of performance and Psnr over Bpp score ratio, as also
already observed for previously processed cameramen image.
As can be noticed looking at the graphics, we can observe that all the tests we
have done varying pruning rate seem to lie within the same range of values related
to Psnr score, while guaranteeing that we have been able to reduce bit rate so that
resulting model instances obtained a bit rate lower than that corresponding to the
original cropped test066 image. As also noticed for cameramen image, even for
test066 image as the pruning rate increases we were able to reduce variance among
different tested hyper-parameter configurations, confirming that as we increase
weights pruning varying update frequency rate we approximate somewhat similar
pruned models that are able to still represent input image with minor difference
between each others. So, improving pruning rate as encouraging more aggressive
weights filtering we end up with models that behave more or less in the same way
with similar performance in terms of preserved Psnr score values. For improving
result analysis, we have filled the following summary table with most important
results among the tests we have performed for measuring how well automated
gradual pruning has gone when test066 was the input data set.

Image Test066 (nhf , nhl) size(byte) psnr(db) bpp
(baseline model) (64, 5) 84228 54.14 10

agp (prune intervals) prune_rate(%) size(byte) psnr(db) bpp
20-25 25.0 62688 52.32 7.65
25-30 30.0 58592 51.64 6.95
30-35 35.0 57780 51.27 6.65

Table 3.10: Best Siren AGP pruned cases: center cropped 256x256 test066 image

As one can notice in table 3.10, pruned models caused the resulting image to get
some noise when attempting to estimate its pixel intensity values, in fact on average
we have lost nearly 5% db units relative to Psnr performance quality measure, but
we have been able to reduce memory footprint nearly to 30% with respect the
original plain siren architecture. This suggest that even if we decided to restrict
pruning rate to be quite not aggressive, we have shown that we can still get rid of
a portion of less salient subset of weights for the task at hand of learning weights
for image compression that have lead to pruned SIREN architectures still able to
represent input image in a suitable manner.

59

Experiments

For the subsequent final stage, corresponding to weights quantization we decided to
fix our choice among the prune test066 architectures to an instance corresponding
to an example which have been pruned within 25-30 pruning sub-interval. More
precisely we picked up the second entry among those reported just above within such
table where we have recorded results we have obtained from pruning phase. So, we
decided to quantize that pruned model which gained (Pnsr = 51.64db, Bpp = 6.65)
at a 30% level of pruning rate. As we have already done before for cameramen
quantization analysis, we decided to test the following set of quantization levels, 4, 7,
6, 8, 9, and 16. Such quantization levels have been set just for hidden layers weights
parameters, avoiding to quantize both very first hidden layer as well as output
layer and finally we have not quanted biases vectors. As done for camermen image
we followed similar hyper-parameter settings, where in particular encouraged lower
learning rate and higher frequency update so that quantization technique at hand
was able to get over learning issues improving notably image quality performance
represented by Psnr score with respect those other quant-configurations that taken
into account higher learning rate or higher frequency updated, where we recall
that frequency updated correspond to how long takes before adotped quantization
technique takes place for updating quant parameters over different epochs through
which fine-tuning process came across. As for pruning cases, also for quanted
examples obtained from adopting test066 as data set for accomplishing fine-tuning
phase by means of quantization technique, we have reported best entries within
the following summary table:

Image - Test066 (nhf , nhl) psnr(db) bpp
baselines (64, 5) 54.14 10.28

quant models bith depth (nhf , nhl) psnr(db) bpp
4 (64, 5) 20.99 1.09
7 (64, 5) 34.09 1.72
8 (64, 5) 45.88 1.93
9 (64, 5) 48.05 2.14
16 (64, 5) 49.27 3.60

Table 3.11: Best Siren Quanted Cases: center cropped 256x256 test066 image

Looking at the results in table 3.11 we can appreciate from the above summary
table we can notice what follows. Adopting very low bit depth as 4 bits in order to
represent reduced precision weights we end up with resulting tuned models that lost

60

Experiments

more than half of Pnsr score value on average when compared a Jpeg compression
image with a quality of 85% which shares with those poor models a similar bit
rate. In other words a very hard quantization level applied on weights affects
widely image quality performance so that not enough precision for representing
our 4-bit quanted models’s weights loose totally the advantage we gotten early
when pruning plain reference baseline model. The difference between such low bit
resolution models and baseline model is even greater attaining nearly 34(db) loss in
Psnr score, which means that without enough bit-width per weight for representing
such reduced precision weights the networks are not able to correctly predict from
pixel coordinates the corresponding magnitude level. Different situation we met
when decide to select a 7-bit width for our hidden already pruned models’ weights.
In fact we have gained 10 more db units when comparing such models over 4-bit
smaller architectures, but we still face performance issue, in fact we require from
these models a bit rat greater than the number of pixels we end up when original
image is compressed via Jpeg guaranteeing 95% quality of the final compression
result, while the image quality score looks like to Jpeg compressed image cases
where we adopted a quality score as equal as 20% which is normally not employed
since leads to unacceptable compressed images since with a bit rate as lower as
25% those jpeg compressed images have not enough data per pixel to guarantee a
recognizable compressed image when aligned with original image.
When looking at results we gotten observing trained models via 8-, 9-bits quantiza-
tion we have can state that the difference among these two close levels are grater
than the difference we have recorded from cameramen image in terms of Psnr db
units. In other words, applying 8-bit quantization for turning hidden parameters
to reduced precision integer-weights we have seen a wider reduction from 9-bit
quantized models. However, training already pruned SIREN architecture setting a
8-bit quantization level when test066 has been selected as our data set, we were
able to cross that horizontal line corresponding to Psnr score of nearly 44 db, when
we compressed via Jpeg original image so that the resulting compression version
has a unit bit rate. This observation is necessary to understand that even if we have
obtained Psnr score for 8-,9-bit quantization that are similar to Jpeg compressed
images with a guaranteed quality greater than 85% when still go worst than Jpeg
compressed images at 90-95% of guaranteed quality in terms of bit rate, since we
are still further, with on average 28% more bit per pixels.
Arrived at 16-bit depth quantization setting, we have noticed that instead the
difference with 9-bit quant level is lower than the same difference if calculated
to the same kind of quantization levels when looking back to cameramen data
quantization results. However, when 16-bit level is fixed as hyper-parameter for
performing models’ quantization phase, we observed as comparing compression
results from pruned instances with such 16-bt quanted models we have noticed that
existing gap is much lower while still halving the number of bits or the amount of

61

Experiments

data per pixels. This means that, adopting quantization after just having pruned
baseline models even just halving the information to include for representing as
reduced precision hidden layers we do not waste or impact critically on Psnr score
of resulting quanted models’s adopting 16-bit quantization.
Also the results we have collected when another image, different from the main
cameramen image that was adopted as reference image for performing exhaustive
test analyses, such as test066 we end up to similar performance in terms of difference
among the intermediate results coming from the different phases we have come
across, starting from baseline training, then followed firstly from AGP pruning and
after by quantization, where quantization technique was fundamental to rapidly
decreasing significantly bit rate, even if that widen reduction with respect pruning
phase, arrived at the cost of lower image quality scores that imply more noise is
introduced when not enough reduced precision depth is guaranteed for representing
as integer number hidden layers’ weight parameters.

62

Chapter 4

Conclusions

4.1 Conclusions

4.1.1 Summarizing Results
The major remarks we have found while appling Automated Gradual Pruning

(AGP) have been the following. Models seem to need a reasonable extensive
number of epochs to improve over performance reduction, when weights are pruned.
However, we were able to outperform baseline architectures, that are plain Siren-
based Nets as well as satisfy constraints of being at least lower in size with respect
to Learned Image as well as still performing better than some comparing in size
plain Siren-nets. Laslty, compared to Jpeg compression results we still notice that
the existing gap between AGP-pruning bit rate and jpeg instances rate.
On the other and, the main results we have found while appling Quantization-Aware
Training Procedure, which is Linear Range quantization-aware training were the
subsequent. Firstly, by means of a wide reduction in bit rate score we noticed that
such choice corresponded a drammaticaly reduction in Pnsr image quality score,
high distortion (as for 4-bit representation). Nevertheless, we have been able to
train quantized model that show an acceptable Distorsion level with respect to both
Jpeg compressed counterpart, and overcome with a large extent plain Siren-based
models (as for 9-, 16-bit representations). Moreover, Learning Rate hyper-param
was crucial for identifying promising Linear Range Quant Configurations, and lower
Learning Rate values seem to outperform larger ones. We end up saying that,
Learning Rate hyper-param was crucial for identifying promising Linear Range
Quant Configurations, and lower Learning Rate values seem to outperform larger
ones. Finally, even by means of a combination of both a Pruning Approach and
next a quantization method, we had still faced the problem of having models that
did not approached significantly closely to results we can instead reach by simply
appling well-estabished compression techniques for image compression such as

63

Conclusions

Jpeg. But we know that diving deep in the sudy of more sophisticated techique
for accomplishing neural networks compression or looking for more suitable hyper-
parameters configurations there exist room for potential improvements that have
not yet been found, suggesting how the problem of attempting to compress images
by means of deep nets such as SIREN is still an open and interesting field.

4.1.2 Interesting further Deep Neural Network related
Compression Techniques

As we already mentioned, NN Pruning Techniques can reduce the parameter
counts of training networks, decreasing storage requirements and improving compu-
tational performance of inference, without compromising accuracy. Though, that
was not really our case, when attempting to pruning SIREN based architectures, we
still want to suggest other interesting pruning based methods that can be employed
to further explore SIREN behaviors and learning capabilities when exposed to
such deep nets class of compressing algorithms. As an instance we recall the so
called Lottery Ticket Hypothesis (LTH) pruning approach studied and proposed
by Jonathn Frankle et al. (March2019)[9], where the main reason for using it that
them illustrate are as follows. In fact, they found out standard pruning techniques
uncover trainable subnetworks, i.e. winning tickets, from FCs and CNNs. So, they
understood that winning tickets, i.e. best initial params intialization, lead to connec-
tions having initial weigths that make training particularly effective. Throughout
such suggested hypotheses Jonathn Frankle et al. show in their paper that there
consistently exist smaller subnetworks that when trained from the start are able to
learn at least as fast as their larger counterpart while reaching similar test accuracy.
While, other interesting LTH characteristics are represented by the fact that It
supports both one-shot and iterative-pruning behaviour, making it suitable in a
variety of context when hardware and time constraints arise. Furthermore, LTH
follows unstructured-pruning heuristics, focusing on reaching sparisiy. So, we can
end up saying that by means of Lottery Ticket Hypothesis pruning method we can
provided another iterative based pruning algorithm that however follows another
pruning workflow that makes such technique a interesting alternative to be tested
in order to later compare performance it let gain by SIREN based architecture
we are going to prune over AGP pruned models to understand which might be
the most suitable to be exploited for fulfilling our goal, that is being able to fit
a subset of suitable, salient learnable models’ parameters that will make up the
pruned architecture that implicitly should represent the target image we aim at
representing throughout a deep neural network architecture.

Having shown a potential candidate among pruning based deep neural network
techniques for extending our initial thesis work for also including more results

64

Conclusions

coming from distinct pruning centered approaches so that we can further compare
and cross checking the results we would record by testing different hypotheses,
pruning-parameters configurations or settings, we also propose and suggest other
interesting quantization technique that we might desire to explore and investigate
for improving our baseline analyses we have performed by means of current thesis
scenario. In other words, we do not want to just fix or stick to a unique and
precise quantization-methods such as the one that we have explored somehow and
that we even want to extend by attempting to further test other missed possible
quant-parameters settings, as well as want collect and gather data results that
instead we should obtain by running other quant-based algorithms for as earlier
said when speaking about pruning method, to enlarge our beginning report and
analysis performed around compressing SIREN -based deep-net architectures. As
an examples of another distinct and interesting quantization algorithm that we may
suggest and purpose as a valid alternative to the earlier quant-method that instead
we have employed along with the experiments we have performed for current thesis
context, we indicate the work done by Xiandong Zhao et al. (2020) [47], Linear
Symmetric Quantization of Neural Networks for Low-precision Integer Hardware
where them introduced a learned linear symmetric quantization (LLSQ) to quantize
the whole network including the bias and scaling factors. Among the main reasons
to trying employing such quantization method might be the observation that
Xiandong Zhao et al. have done since they have opinion that even linear symmetric
quantizer can be trained to outperform asymmetric or non-linear quantization when
also a low quantization depth is employed. Thus, it might be curios to attempt
investigating whether we may able to fit low precision counterpart SIREN -like
architectures as lower as 4-bit to take advantage of such quantization depth in
order to understand if we can overcome jpeg related image performance quality
scores when fitting deep models with such quant configuration.

Furthermore, we propose to extend our proposed future works, to improve base-
line current analyses we have finished throughout our thesis study, suggesting
not only to focus mainly upon on investigating and searching for other potential
deep-nets compression compliant techniques or algorithms to still fit and learn
to the data we provided at training time for feeding models’ from their input
layers all the way down toward output layer for let both forward and backward
procedures to act in order to learn suitable set of net’s parameters for the task we
aim at satisfying. But even want to suggest another interesting way of thinking
about lossy compression algorithm normally employed for reaching less expensive
deep-archs in terms of memory consumption both at inference time as well as when
we store and memorize such compressed deep networks. In other words, provide
interesting evidence about a study lead by Yochai Blau et al. (2019) [2] where
the main focus leverage around how we can rethinking about lossy compression

65

Conclusions

deep learning based procedure when we have to take into account quantization
transformations as it is the case in our precise investigation process. In fact, as
Yochai Blau et al. (2019) reported, lossy compression algorithms are typically
de-signed and analyzed through the lens of Shannon’s rate-distortion theory, where
the goal is to achieve the lowest possible distortion at any given bit rate. This was,
precisely, the workflow we mainly have followed when attempting to carry out our
experiments. Moreover, Yochai Blau et al. (2019) started their reasoning from the
comparing we can have between low distortion and high perceptual quality, where
they observed that many times optimization of one often comes at the expense of
the other. In light of this understanding, it is natural toseek for a generalization of
rate-distortion theory which takes perceptual quality into account. Furthermore,
within their paper, Yochai Blau et al. (2019) adopt the mathematical definition
of perceptual quality recently proposed by Blau Michaeli (2018) [3], and use it
to study the three-way tradeoff between rate, distortion, and perception. Finally,
they show that restricting the perceptual quality to be high, generally leads to an
elevation of the rate-distortion curve, thus necessitating a sacrifice in either rate or
distortion. Then, they prove several fundamental properties of this triple-trade off,
calculate it in closed form for a Bernoulli source, and illustrate it visually on a toy
MNIST example. So, it might be interesting to understand as their work could be
adapted and integrated within training workflow applied instead to SIREN based
models when we are focused onto fit such models to input data image that we aim
at implicitly representing via the architecture final configuration itself.
Even if such approach is somewhat almost recent, we can still take into account
already existing solutions to tackle the quantizing problems, attempting to imple-
ment by ourselves or either adopting existing code, if any, to be incorporated into
our initial training scheme we have derived for such starting phase. More precisely
the solution that might result interesting can be the following:

• The Deep Compression by Han et al. (2015) [16], which uses clusters
to categorize weights into groups of quantized values. More precisely, Deep
Compression stands for a three stage pipeline:pruning, trained quantization
and Huffman coding, that work together to reduce the storage requirement of
neural networks.

• The DoReFa-Net by Zhou et al. (2016) [48], in which quantization is achieved
through quantizing weights, activation, and gradients with different width of
bits via absolute values of full-precision weights as layer scaling factor.

• Finally, the Trained Ternary Quantization by Chenzhou Zhu et al. (2017)
[49], improvement over TWN by Li & Liu(2016) [26]. In fact, it resembles
Aggressive quantization that enabling at the same time for even a bit of layers
sparsity, embedding such feature directly in the designed quantization scheme.

66

Conclusions

Lastly, we propose to extend our initial work based on MSE default constructed
target function employed for carrying out training of our baseline, pruned, as well
as quanted model instances by incorporating another constraining terms to the
overall loss function to take into account perception. Such idea arose from previous
research works by Yochai Blau et al. (2019), in The Rate-Distortion-Perception
Tradeoff [2], where the authors seek to achieve a minimizing distortion level so that
decoded signal still have good perceptual quality, exploring the effect of the balance
between bit rate, distortion and perception in image (input signal) restoration,
and and, to achieve their goal they defined a perceptual quality index embedded
within loss target definition, as a regularization term, together with λ, tuning
parameter to control the balance between perception and distortion scenario.

4.1.3 Further Acknowledgments
I’m going to acknowledge for the support offered to me, during the whole period

of time that required for carry on experiments and suggesting which choices to
follow in order to test several different ideas linked to the purposes of leading the
analyses of different compressing solutions and setting Diego Valsesia, which, so,
provided me again suggestions and held helpful discussions for letting me overcome
troubles when they sometimes have faced. Lastly, I’m going to acknowledge my
parents and my friends for supporting me, the former economically and morally,
the latter especially offering kind words when fatigue sometimes arose.

67

Conclusions

69

Bibliography

[1] Matan Atzmon and Yaron Lipman. «SAL: Sign Agnostic Learning of Shapes
from Raw Data». In: CoRR abs/1911.10414 (2019). arXiv: 1911.10414. url:
http://arxiv.org/abs/1911.10414.

[2] Yochai Blau and Tomer Michaeli. «Rethinking Lossy Compression: The Rate-
Distortion-Perception Tradeoff». In: CoRR abs/1901.07821 (2019). arXiv:
1901.07821. url: http://arxiv.org/abs/1901.07821.

[3] Yochai Blau and Tomer Michaeli. «The Perception-Distortion Tradeoff». In:
CoRR abs/1711.06077 (2017). arXiv: 1711.06077. url: http://arxiv.org/
abs/1711.06077.

[4] D. Brunet, E. R. Vrscay, and Z. Wang. «On the Mathematical Properties of
the Structural Similarity Index». In: IEEE Transactions on Image Processing
21.4 (2012), pp. 1488–1499. doi: 10.1109/TIP.2011.2173206.

[5] Rohan Chabra et al. «Deep Local Shapes: Learning Local SDF Priors for
Detailed 3D Reconstruction». In: (2020). arXiv: 2003.10983 [cs.CV].

[6] Zhiqin Chen and Hao Zhang. «Learning Implicit Fields for Generative Shape
Modeling». In: CoRR abs/1812.02822 (2018). arXiv: 1812.02822. url: http:
//arxiv.org/abs/1812.02822.

[7] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. «BinaryCon-
nect: Training Deep Neural Networks with binary weights during propaga-
tions». In: (2016). arXiv: 1511.00363 [cs.LG].

[8] J. Erfurt et al. «A Study of the Perceptually Weighted Peak Signal-To-Noise
Ratio (WPSNR) for Image Compression». In: (2019), pp. 2339–2343. doi:
10.1109/ICIP.2019.8803307.

[9] Jonathan Frankle and Michael Carbin. «The Lottery Ticket Hypothesis:
Training Pruned Neural Networks». In: CoRR abs/1803.03635 (2018). arXiv:
1803.03635. url: http://arxiv.org/abs/1803.03635.

[10] Y. Gao, A. Rehman, and Z. Wang. «CW-SSIM based image classification».
In: (2011), pp. 1249–1252. doi: 10.1109/ICIP.2011.6115659.

70

https://arxiv.org/abs/1911.10414
http://arxiv.org/abs/1911.10414
https://arxiv.org/abs/1901.07821
http://arxiv.org/abs/1901.07821
https://arxiv.org/abs/1711.06077
http://arxiv.org/abs/1711.06077
http://arxiv.org/abs/1711.06077
https://doi.org/10.1109/TIP.2011.2173206
https://arxiv.org/abs/2003.10983
https://arxiv.org/abs/1812.02822
http://arxiv.org/abs/1812.02822
http://arxiv.org/abs/1812.02822
https://arxiv.org/abs/1511.00363
https://doi.org/10.1109/ICIP.2019.8803307
https://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
https://doi.org/10.1109/ICIP.2011.6115659

BIBLIOGRAPHY

[11] Kyle Genova et al. «Deep Structured Implicit Functions». In: CoRR abs/1912.06126
(2019). arXiv: 1912.06126. url: http://arxiv.org/abs/1912.06126.

[12] Kyle Genova et al. «Learning Shape Templates with Structured Implicit
Functions». In: CoRR abs/1904.06447 (2019). arXiv: 1904 . 06447. url:
http://arxiv.org/abs/1904.06447.

[13] Xavier Glorot and Yoshua Bengio. «Understanding the difficulty of train-
ing deep feedforward neural networks». In: Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics. Ed. by Yee
Whye Teh and Mike Titterington. Vol. 9. Proceedings of Machine Learning
Research. Chia Laguna Resort, Sardinia, Italy: PMLR, 2010, pp. 249–256.
url: http://proceedings.mlr.press/v9/glorot10a.html.

[14] Yunchao Gong et al. «Compressing Deep Convolutional Networks using Vector
Quantization». In: (2014). arXiv: 1412.6115 [cs.CV].

[15] Amos Gropp et al. «Implicit Geometric Regularization for Learning Shapes».
In: (2020). arXiv: 2002.10099 [cs.LG].

[16] Song Han, Huizi Mao, and William J. Dally. «Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding». In: (2015). cite arxiv:1510.00149Comment: Published as a conference
paper at ICLR 2016 (oral). url: http://arxiv.org/abs/1510.00149.

[17] Song Han, Huizi Mao, and William J. Dally. «Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding». In: (2016). arXiv: 1510.00149 [cs.CV].

[18] Song Han et al. «Learning both Weights and Connections for Efficient Neural
Networks». In: (2015). arXiv: 1506.02626 [cs.NE].

[19] B. Hassibi, D. Stork, and G. Wolff. «Optimal Brain Surgeon and general
network pruning». In: IEEE International Conference on Neural Networks
(1993), 293–299 vol.1.

[20] A. Horé and D. Ziou. «Image Quality Metrics: PSNR vs. SSIM». In: (2010),
pp. 2366–2369. doi: 10.1109/ICPR.2010.579.

[21] Itay Hubara et al. «Quantized Neural Networks: Training Neural Networks
with Low Precision Weights and Activations». In: (2016). arXiv: 1609.07061
[cs.NE].

[22] Sergey Ioffe and Christian Szegedy. «Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift». In: CoRR
abs/1502.03167 (2015). arXiv: 1502.03167. url: http://arxiv.org/abs/
1502.03167.

[23] Benoit Jacob et al. «Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference». In: (2018).

71

https://arxiv.org/abs/1912.06126
http://arxiv.org/abs/1912.06126
https://arxiv.org/abs/1904.06447
http://arxiv.org/abs/1904.06447
http://proceedings.mlr.press/v9/glorot10a.html
https://arxiv.org/abs/1412.6115
https://arxiv.org/abs/2002.10099
http://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1506.02626
https://doi.org/10.1109/ICPR.2010.579
https://arxiv.org/abs/1609.07061
https://arxiv.org/abs/1609.07061
https://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167

BIBLIOGRAPHY

[24] Diederik P. Kingma and Jimmy Ba. «Adam: A Method for Stochastic Opti-
mization». In: (2017). arXiv: 1412.6980 [cs.LG].

[25] Yann Lecun et al. «Optimal brain damage». English (US). In: 2 (1990). Ed. by
David Touretzky.

[26] Fengfu Li and Bin Liu. «Ternary Weight Networks». In: CoRR abs/1605.04711
(2016). arXiv: 1605.04711. url: http://arxiv.org/abs/1605.04711.

[27] Zhouhan Lin et al. «Neural Networks with Few Multiplications». In: (2016).
arXiv: 1510.03009 [cs.LG].

[28] D. Martin et al. «A Database of Human Segmented Natural Images and its
Application to Evaluating Segmentation Algorithms and Measuring Ecological
Statistics». In: 2 (2001), pp. 416–423.

[29] Lars M. Mescheder et al. «Occupancy Networks: Learning 3D Reconstruction
in Function Space». In: CoRR abs/1812.03828 (2018). arXiv: 1812.03828.
url: http://arxiv.org/abs/1812.03828.

[30] Mateusz Michalkiewicz et al. «Implicit Surface Representations As Layers in
Neural Networks». In: (2019).

[31] Ben Mildenhall et al. «NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis». In: (2020). arXiv: 2003.08934 [cs.CV].

[32] Sharan Narang et al. «Exploring Sparsity in Recurrent Neural Networks». In:
(2017). arXiv: 1704.05119 [cs.LG].

[33] Jim Nilsson and Tomas Akenine-Möller. «Understanding SSIM». In: (2020).
arXiv: 2006.13846 [eess.IV].

[34] Jeong Joon Park et al. «DeepSDF: Learning Continuous Signed Distance
Functions for Shape Representation». In: CoRR abs/1901.05103 (2019). arXiv:
1901.05103. url: http://arxiv.org/abs/1901.05103.

[35] Adam Paszke et al. «PyTorch: An Imperative Style, High-Performance Deep
Learning Library». In: (2019). arXiv: 1912.01703 [cs.LG].

[36] Songyou Peng et al. «Convolutional Occupancy Networks». In: (2020). arXiv:
2003.04618 [cs.CV].

[37] Mohammad Rastegari et al. «XNOR-Net: ImageNet Classification Using
Binary Convolutional Neural Networks». In: (2016). arXiv: 1603 . 05279
[cs.CV].

[38] Abigail See, Minh-Thang Luong, and Christopher D. Manning. «Compression
of Neural Machine Translation Models via Pruning». In: (2016). arXiv: 1606.
09274 [cs.AI].

72

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1605.04711
https://arxiv.org/abs/1510.03009
https://arxiv.org/abs/1812.03828
http://arxiv.org/abs/1812.03828
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/1704.05119
https://arxiv.org/abs/2006.13846
https://arxiv.org/abs/1901.05103
http://arxiv.org/abs/1901.05103
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/2003.04618
https://arxiv.org/abs/1603.05279
https://arxiv.org/abs/1603.05279
https://arxiv.org/abs/1606.09274
https://arxiv.org/abs/1606.09274

BIBLIOGRAPHY

[39] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. «Scene Rep-
resentation Networks: Continuous 3D-Structure-Aware Neural Scene Rep-
resentations». In: CoRR abs/1906.01618 (2019). arXiv: 1906.01618. url:
http://arxiv.org/abs/1906.01618.

[40] Vincent Sitzmann et al. «Implicit Neural Representations with Periodic
Activation Functions». In: (2020). arXiv: 2006.09661 [cs.CV].

[41] Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao. «Improving the speed
of neural networks on CPUs». In: (2011).

[42] Z. Wang and A. C. Bovik. «Mean squared error: Love it or leave it? A new
look at Signal Fidelity Measures». In: IEEE Signal Processing Magazine 26.1
(2009), pp. 98–117. doi: 10.1109/MSP.2008.930649.

[43] Z. Wang, E. P. Simoncelli, and A. C. Bovik. «Multiscale structural similarity
for image quality assessment». In: 2 (2003), 1398–1402 Vol.2. doi: 10.1109/
ACSSC.2003.1292216.

[44] Zhou Wang et al. «Image Quality Assessment: From Error Visibility to
Structural Similarity». In: Trans. Img. Proc. 13.4 (Apr. 2004), 600–612. issn:
1057-7149. doi: 10.1109/TIP.2003.819861. url: https://doi.org/10.
1109/TIP.2003.819861.

[45] B. Widrow and I. Kollár. «Quantization Noise: Roundoff Error in Digital
Computation, Signal Processing, Control, and Communications». In: (2008).

[46] Yonghui Wu et al. «Google’s Neural Machine Translation System: Bridging
the Gap between Human and Machine Translation». In: (2016). arXiv: 1609.
08144 [cs.CL].

[47] Xiandong Zhao et al. «Linear Symmetric Quantization of Neural Networks
for Low-precision Integer Hardware». In: (2020). url: https://openreview.
net/forum?id=H1lBj2VFPS.

[48] Shuchang Zhou et al. «DoReFa-Net: Training Low Bitwidth Convolutional
Neural Networks with Low Bitwidth Gradients». In: CoRR abs/1606.06160
(2016). arXiv: 1606.06160. url: http://arxiv.org/abs/1606.06160.

[49] Chenzhuo Zhu et al. «Trained Ternary Quantization». In: CoRR abs/1612.01064
(2016). arXiv: 1612.01064. url: http://arxiv.org/abs/1612.01064.

[50] Michael Zhu and Suyog Gupta. «To prune, or not to prune: exploring the
efficacy of pruning for model compression». In: (2017). arXiv: 1710.01878
[stat.ML].

[51] Neta Zmora et al. «Neural Network Distiller: A Python Package For DNN
Compression Research». In: (2019). arXiv: 1910.12232 [cs.LG].

73

https://arxiv.org/abs/1906.01618
http://arxiv.org/abs/1906.01618
https://arxiv.org/abs/2006.09661
https://doi.org/10.1109/MSP.2008.930649
https://doi.org/10.1109/ACSSC.2003.1292216
https://doi.org/10.1109/ACSSC.2003.1292216
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://openreview.net/forum?id=H1lBj2VFPS
https://openreview.net/forum?id=H1lBj2VFPS
https://arxiv.org/abs/1606.06160
http://arxiv.org/abs/1606.06160
https://arxiv.org/abs/1612.01064
http://arxiv.org/abs/1612.01064
https://arxiv.org/abs/1710.01878
https://arxiv.org/abs/1710.01878
https://arxiv.org/abs/1910.12232

	List of Tables
	List of Figures
	1 Introduction
	2 Related Works
	2.1 Implicit Neural Representation and Periodic Nonlinearities based Solutions
	2.2 Deep Neural Networks Compressing Techniques

	3 Experiments
	3.1 Distiller Framework
	3.2 Siren Setting
	3.2.1 Input Dataset
	3.2.2 First Trials done with Siren Based Architecture
	3.2.3 Automed Gradual Pruning Deep Nets Compressing Technique
	3.2.4 Weight quantization and Quatization-aware training
	3.2.5 Range Linear Quantization: Theoretical Aspects
	3.2.6 Generalization to other test images

	4 Conclusions
	4.1 Conclusions
	4.1.1 Summarizing Results
	4.1.2 Interesting further Deep Neural Network related Compression Techniques
	4.1.3 Further Acknowledgments

	Bibliography

