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INTRODUCTION 
 

The problem of measurement and management of risk has ancient origin in finance 

which can trace back to the end of the Middle Ages and the beginning of 

Renaissance when the first banks were born in order to finance commercial 

operations by investing their own and depositors' money. However, similar notions 

to the one of Value at Risk did not emerge until the late 1980s. A first track of such 

a concept was found in 1990 when the president of J.P. Morgan, Dennis 

Weatherstone, disappointed by the length of the report he received every day, 

wanted a simple summary of the bank's total exposure across its entire trading 

portfolio before the closing of the markets. From this need, the "4:15 report" was 

born, representing the time by which it was placed on Weatherstone's desk, and it 

constituted the first time in which the concept of Value at Risk was formally 

introduced. Moreover, in 1994 J.P. Morgan posted on the Internet a simplified 

version of their financial risk calculation system, called RiskMetricsTM in which Value 

at Risk was set as an industry-wide standard. From this point on, the V.a.R. 

application in the financial world has encountered a rapid development especially 

thanks to the Amendment to Basel I published in 1996 in which it was introduced 

the calculation of the minimum capital requirement for financial institutions to deal 

with the risk related to their trading book. In this paper it was specified that banks 

could estimate the capital requirement for market risk using two different 

approaches. The first one was the standardized method which was relatively simple 

and often used by small banks, while the second was the internal model which 

involves the use of validated internal models based on Value at Risk. Subsequently, 

with the development of Basel 2 and Basel 3 significant changes have occurred in 

the calculation of the capital requirement since it was refined the estimation of 

Value at Risk with a more conservative approach in order to improve the capability 

of financial institutions to cope with unexpected losses on their trading portfolio. 
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Hence, the scope of this thesis is to analyze in depth the main methods present in 

the academic literature to estimate the Value at Risk measure for a portfolio made 

up by financial assets in order to take a snapshot of the risk contained in such a 

portfolio. For each of them it is illustrated the underlying assumptions, the steps 

required for V.a.R. calculation and the main advantages and drawbacks. The thesis 

is divided into five chapters and for each of them it is provided a brief summary as 

follows. 

In the first chapter it is given an overview about the risk in finance, especially 

focusing on market risk. Then, it is debated about the importance to quantify and 

manage risk for financial institutions and society in general, listing all the 

implications of a poor risk management. Subsequently, it is explained the concept 

of risk measures clarifying which properties they should respect to be defined as 

“coherent”. 

In the second chapter it is introduced the Value at Risk measure, which is one of the 

most popular measures used by regulators and financial firms to gauge the amount 

of capital needed to cover possible losses. In addition, it is defined a financial 

portfolio from a mathematical point of view and then it is presented the notion of 

the Loss distribution for a given time horizon. Moreover, it is given some comments 

about Value at Risk highlighting its drawbacks and mentioning alternate options 

such as Expected Shortfall. 

In the third chapter it is presented the parametric approach which builds a model 

for the joint distribution of changes in market variables in order to estimate the 

model parameters of the Loss distribution. To start with, it is considered that daily 

returns of the market variables are normally distributed. Then, it is assumed that 

the change in portfolio’s value is linearly dependent on changes the underlying 

market variables returns so that the Loss distribution can be considered multivariate 

normal. Hence, the Value at Risk measure is estimated as a quantile of such a 

distribution. Successively, it is enhanced the previous approximation considering a 
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quadratic model which takes into account also the curvature of the relationship 

between the portfolio’s value and the underlying market variables returns. Thus, the 

Loss distribution can no longer supposed to be normal and its quantile is estimated 

with a numerical procedure basing on its expected value, variance and skewness. 

Finally, it is shown how to build the Loss distribution using Monte Carlo simulation 

which is a procedure for sampling random outcomes for a given stochastic process. 

In the fourth chapter it is talked about the historical simulation method, which has 

become the most popular method for calculating the Value at Risk measure since it 

does not require any assumption about the shape of the Loss distribution. In fact, it 

uses only past returns of the assets included in the financial portfolio in order to 

build an empirical distribution for losses. Furthermore, it is introduced two 

extensions of this method which aim to overcome the main drawbacks and improve 

the results obtained with the traditional historical simulation. 

In the last chapter of the thesis it is presented a practical example showing how to 

estimate the V.a.R. measure of a given financial portfolio using all the methods 

presented so far. In addition, it is illustrated the benefits of diversification comparing 

the Value at Risk computed at the portfolio level with the one calculated for each 

security individually. Lastly, it is explained the concept of back testing and then it is 

implemented in the previous example in order to draw some conclusions about the 

adequacy of the chosen methods. 
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1. FINANCIAL RISK 
 

Financial risk can be defined as any financial event that may adversely affect the 

organization’s ability to execute its strategies and achieve its objectives. This 

concept is strongly related to uncertainty and hence to the notion of probability. 

An axiomatic definition of probability was given in Kolmogorov (1933) in which a 

probabilistic model is described by a triplet (𝛺, ℱ, 𝑃) called the measure space. The 

term 𝛺 is the sample space, ℱ represents the set of all events and 𝑃 denotes the 

probability measure. To model situations in which there is randomness, it is defined 

a one-period risky position 𝑋 to be a function on the probability space (𝛺, ℱ, 𝑃) and 

it is called a random variable. Most of the modelling of a risky position 𝑋 is related 

to its distribution function 𝐹𝑋(𝑥)  =  𝑃(𝑋 ≤ 𝑥), which is the probability that the 

value of the risk 𝑋 is less than or equal to a given number 𝑥. If time is introduced, 

several risky positions would then be denoted by a random vector 𝑿 =

(𝑋1, 𝑋2, … , 𝑋𝑑) leading to the notion of stochastic processes which is termed 𝑋𝑡. 

In the financial industry risk can be categorized in three type of risks which are 

market risk, credit risk, and operational risk. Market risk is the risk of incurring in 

portfolio’s losses due to changes in the value of the underlying market variables and 

it will be further debated in this chapter. Credit risk deals with the possibility of not 

receiving the promised repayments on outstanding investments such as loans and 

bonds, due to the financial default of the borrower. Operational risk is the risk of 

losses resulting from inadequate internal processes, people, and systems or from 

external events. However, even if they have their own explanation, the boundaries 

of these three risk categories are not always clearly defined. 
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1.1 Market risk 
 

Market risk is the risk of incurring in portfolio’s losses due to changes in the value of 

the underlying market variables, which can be stocks, bonds, exchange rates, stock 

indices or commodities. More specifically, market risk can be classified in four 

categories, which are:  

• Price risk: Basically, financial assets’ prices depend on market trends and on 

expectations of the investors. More in detail, for the Law of One Price, the price 

of a security should equal the present value of the expected cash flows an 

investor will receive from owning it. For example, cash flows from a stock can be 

dividend payments or capital gains, while those from bonds can be interest 

payments or principal repayment. However, future cash flows cannot be 

precisely known and prices are affected by the perceptions of the investors 

which are driven by the flow of publicly available information. In this framework, 

price risk is defined as the risk which reflects the adverse fluctuations of price of 

the underlying financial assets. For instance, in Figure 1 it is shown the pattern 

followed by Netflix stock price (NASDAQ: NFLX) between 20th and 23rd April 

2021. 

 

Figure 1: NFLX Stock Price (Source: Google Finance) 

As it can be noticed from the graph, between the 4:00 PM of 20th April 2021 

and the 9:30 AM of 21st April 2021, Netflix stock price decreased from 
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$549,57 to $506,68 experiencing a loss of $42,89 (-7,8%). Just before that 

stock price started to drop, Netflix published the financial statements 

concerning the first quarter of 2021, which showed an increase in the 

subscribers far below the expectations of the analysts. Therefore, many 

investors were scared by a possible setback in the growth of the company 

and they sold their stocks causing a so fast fall in the price. 

• Exchange rate risk: The exchange rate is the ratio with which one currency 

can be traded for another one and it depends on many macroeconomic 

factors such as the differences between the interest rates of different 

countries and their monetary policies. Usually, the exchange rate is 

computed as the current spot price in the domestic currency of one unit of 

the foreign currency. Hence, exchange rate risk is the risk which depends on 

fluctuations in the exchange rate and it concerns those financial instruments 

denominated in foreign currencies. If there is a depreciation of a foreign 

currency with respect to the domestic one, the value of a financial instrument 

denominated in that foreign currency decreases accordingly. Basically, it is 

possible that although an asset denominated in a foreign currency is 

achieving excellent performance, an unfavorable movement in the exchange 

rate may cause a reduction in the value of the financial instrument for the 

investor. For instance, Figure 2 shows the pattern followed by the exchange 

rate between Great Britain Pound (GBP) and United States Dollars (USD) 

during the second half of June and the beginning of July in 2016. 

 

Figure 2: GBP/USD Exchange Rate (Source: Yahoo! Finance) 
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As it can be seen from the graph, between 23rd and 28th June the exchange 

rate GBP-USD dropped from 1,4789 to 1,3235 experiencing a loss of 0,1554 

(-10,5%) in only three trading days. Such a fast devaluation of the GBP with 

respect to USD was caused by the publication of the outcome of the 

referendum made on 23rd June 2016 concerning the exit of the Great Britain 

from the European Union (Brexit). The uncertainty surrounding Brexit and the 

risks of a "no deal" (i.e. a British exit from the European Union without a deal) 

pushed the GBP down on the currency markets, with strong repercussions on 

the UK economy. Therefore, an US investors who held one million GBP in a 

British bank account on 23rd June 2016, saw the value of this deposit, 

calculated in the domestic currency (USD), dropped by around 10,5% within 

three trading days. 

• Interest rate risk: Interest rate is defined as the percentage of the amount of 

money a borrower promises to pay to the lender in addition to the principal. 

For any given currency, many different types of interest rates are regularly 

quoted on the market using the convention of the effective annual yield 

(EAY), which indicates the actual amount of interest that will be earned at the 

end of one year. Basically, interest rates depend on the equilibrium between 

demand and supply of money. Demand of money is affected by the level of 

the investments of the firms and the confidence level of the investors, while 

its supply is driven by the monetary policies of central banks. In this context, 

interest rate risk is the risk which derives from the impact of movements in 

interest rates on financial assets. The most exposed financial instruments on 

interest rate movements are fixed-rate coupon bonds. For instance, if there 

is an increase in interest rates, an investor who holds a fixed-rate coupon 

bond in his portfolio will see its price decrease. In fact, if the interest rate 

changes, fixed-rate securities, conversely to floating-rate coupon bonds, 

cannot change their coupons and therefore the price changes in order to 
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adjust the yield to the new rate levels. In Figure 3 it is shown the pattern 

followed by the 12-month USD Libor in 2008.  

 

Figure 3: 12-month USD Libor (Source: Global-rates.com) 

As it can be noticed from the graph, the 12-month USD Libor increased by 

more than 100 basis points (1 basis point=0,01%) from the mid of September 

until the beginning of October, when it started to decrease rapidly. Such a 

high volatility in the interest rate was caused by the crisis of subprime 

mortgages in USA which affected the global financial industry in 2008. In fact, 

in a first moment the interest rate rose due to the lack of liquidity in the 

market, while in a second moment it started a constant decline phase 

because a lot of money was injected in the market by the Federal Reserve 

(FED) in order to support the economy. 

• Spread risk: Credit spread is given by the difference between the yields of 

bonds emitted by issuers with different creditworthiness but with the same 

maturity and liquidity. Generally, in order to compute the spread related to 

a specific issuer, it is utilized as reference the yield of bonds with the 

maximum creditworthiness such as German and U.S. government bonds, 

which are considered “safe”. For instance, if the yields on 10-year German 

bonds and 10-year Italian BTP are respectively 1% and 5%, the spread 

between the bonds of the two countries is 400 basis points. Spread risk 

depends on the creditworthiness of the issuer of a bond and it occurs when 

changes in its price cannot be explained by movements of other market 
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variables such as exchange rates or interest rates. More specifically, if the 

creditworthiness of an issuer of a bond gets worse it will increase the bond 

yield requested by the market and then its price will decrease. Spread risk 

can also occur when the creditworthiness of the issuer remains the same but 

there is an increase of the investors’ risk aversion. In Figure 4 it is plotted the 

evolution of the spread between 10-year Italian BTP and 10-year German 

Bund in 2018. 

 

Figure 4: Spread 10-year BTP-Bund (Source: Teleborsa) 

As it can be seen from the graph, the 10-year BTP-Bund spread doubled its 

value in May, going from 130 to 260 basis points in only one month. Such a 

high increase in the spread was caused by the institutional crisis which 

affected the Italian government and the threat of the impeachment charge 

made to the Italian president by political parties. Those events caused a fall 

in the confidence of the investors about the financial health of Italy and the 

chances of the country to cope with its obligations. 

In the next chapters of the thesis, it will be examined in depth statistical models in 

order to quantify market risk, focusing mostly on price and exchange rate risk.  
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1.2 Quantitative risk management 
 

Risk management is defined in Kloman (1990) as a discipline for living with the 

possibility that future events may cause adverse effects. The reasons for which a 

market player, as a financial institution or a fund manager, has to invest in 

quantitative risk management are various and they depend on which stakeholder is 

considered. 

For shareholders, managing the risk is related to preserving the flow of profit and to 

techniques which aim to earn an adequate return on funds invested and to maintain 

a proper surplus of assets beyond liabilities. Companies must take risks if they want 

to survive and prosper. Thus, the primary responsibility of quantitative risk 

management is to understand the portfolio of risks that the company is currently 

taking and the risks it plans to take in the future. It must decide whether the risks 

are acceptable and, if they are not acceptable, what action should be taken in order 

to reduce it. On the other hand, society, governments, and regulators have a 

collective interest on the smooth functioning of the financial system and its stability. 

For society, quantitative risk management is viewed positively because it enhances 

this stability and safeguards its interests. Instead, government and regulators are 

strongly motivated by the fear of systemic risk, which means the danger that 

problems in a single financial institution may spill over and, in extreme situations, 

disrupt the normal functioning of the entire financial system. When a bank or other 

large financial institution does get into financial difficulties, governments have a 

difficult decision to make. If they allow the financial institution to fail, they are 

putting the financial system at risk. If they bail out the financial institution, they are 

sending wrong signals to the market. In fact, there is a danger that large financial 

institutions will be less vigilant in controlling risks if they know that they are “too big 

to fail” and the government will always bail them out. Therefore, it can be easily 

understood the crucial role played by quantitative risk management in the financial 

industry. 
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Existing approach to quantify the risk of a financial portfolio can be grouped into 

four different categories, which are: 

• Notional-amount approach: The risk of a portfolio is determined as the sum 

of the notional values of the assets in the portfolio, where each notional value 

is weighted by a factor representing an assessment of the riskiness of the 

broad asset class to which the security belongs. This is the oldest approach 

to quantifying the risk of a portfolio consisting of financial assets and the 

advantage of the notional-amount approach concerns its apparent simplicity. 

However, it also presents a lot of drawbacks. First of all, the approach does 

not differentiate between long and short positions and there is no netting. In 

addition, this approach does not take into account the benefits of 

diversification on the overall risk of a portfolio. Finally, the notional-amount 

approach has problems when the portfolio contains derivative instruments, 

because the notional amount of the underlying asset and the value of the 

derivative position can differ widely. 

• Factor-sensitivity measures: This approach gives the change in the value of 

a portfolio with respect to a given predetermined change in one of the 

underlying risk factors. The most important factor-sensitivity measures are 

the Greeks for portfolios of derivatives and the duration for bond portfolios. 

However, while these measures provide useful information about the 

robustness of the portfolio value with respect to certain factors, they are not 

capable to measure the overall riskiness of a position. Moreover, factor-

sensitivity measures do not allow the aggregation of risks. In fact, for a given 

portfolio it is not possible to aggregate the sensitivity with respect to changes 

in different risk factors. 

• Risk measures based on a probability distribution: This approach is based on 

statistical quantities describing the distribution of the change in the 

portfolio’s value over a predetermined period. Risk measures based on a 

probability distribution are for instance the Value at Risk and the Expected 
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Shortfall. It is of course problematic to rely on any one particular statistic to 

summarize the risk contained in a portfolio. However, the advantages of this 

approach concern the diversification effect thanks to the aggregation 

property of these measures and the possibility to make comparisons among 

different portfolios. Instead, there are two major problems when working 

with probability distributions. The first one regards the fact that every 

statistical distribution is based on past data and if the laws governing financial 

markets change, these past data are of limited use in predicting future risk. 

The second problem is more practical and concerns the difficulty to estimate 

distributions accurately. 

• Scenario-based risk measures: This approach considers a number of possible 

future risk-factors changes (scenarios) and risk of a portfolio is measured as 

the maximum loss of the portfolio under all scenarios, where certain extreme 

scenarios can be downweighed to mitigate their effect on the result. 

Scenario-based risk measures are a very useful risk-management tool for 

portfolios exposed to a relatively small set of risk factors. Moreover, they 

provide useful complementary information to measures based on statistics 

of the distribution. The main problem is of course to determine an 

appropriate set of scenarios and weighting factors. Moreover, it is difficult to 

make comparisons across portfolios which are affected by different risk 

factors. 

This thesis debates about Value at Risk, which is one of the most used risk measures 

based on probability distributions in the financial industry. In the next paragraph, it 

will be explained what is a risk measure, while in the next chapters it will deepen 

the knowledge about the Value at Risk. 
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1.3 Risk measures 
 

Fixing a probability space (𝛺, ℱ, 𝑃) and a time horizon ∆𝑡, denote by 𝐿0(𝛺, ℱ, 𝑃) the 

set of all random variables on (𝛺, ℱ) which are almost finite. Financial risk is 

represented by a set 𝑀 ⊂ 𝐿0(𝛺, ℱ, 𝑃) of random variables, which it is interpreted 

as portfolio losses over the period ∆𝑡. Furthermore, it is assumed that 𝑀 is a convex 

cone which implies that for every 𝐿1 ∈ 𝑀, 𝐿2 ∈ 𝑀, 𝜆 > 0 it is verified that 𝐿1 + 𝐿2 ∈

𝑀 and 𝜆 ⋅ 𝐿1 ∈ 𝑀. Risk measures are real-valued functions 𝑔:𝑀 → ℝ defined on 

such cone of random variables, satisfying certain properties. Therefore, 𝑔(𝐿) is 

interpreted as the amount of capital that should be added to a position with loss 

given by 𝐿. In Artzner et al. (1998) it is presented and justified a set of four desirable 

properties for measures of risk, and call “coherent” the measures satisfying these 

properties. 

The axioms that a risk measure should satisfy in order to be called “coherent” are: 

• Translation invariance: For all 𝐿 ∈ 𝑀 and every 𝑙 ∈ ℝ the relationship: 

𝑔(𝐿 + 𝑙) = 𝑔(𝐿) + 𝑙 

is always satisfied. Translation invariance axiom states that by adding or 

subtracting a deterministic quantity 𝑙 to a position leading to the loss 𝐿, the 

capital requirements is altered by exactly that amount 𝑙. 

• Subadditivity: For all 𝐿1, 𝐿2 ∈ 𝑀 it is valid the inequality: 

𝑔(𝐿1 + 𝐿2) ≤ 𝑔(𝐿1) + 𝑔(𝐿2) 

Subadditivity means that if there are two loss distributions for two portfolios, 

the overall loss distribution of the merged portfolio is bounded above by the 

sum of the losses of the individual portfolios. So, subadditivity reflects the 

idea that risk can be reduced by diversification. In addition, it makes 

decentralization of risk-management systems possible.  

• Positive homogeneity: For all 𝐿 ∈ 𝑀 and every 𝜆 > 0 it is true that: 
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𝑔(𝜆 ⋅ 𝐿) = 𝜆 ⋅ 𝑔(𝐿) 

Positive homogeneity implies the risk of a position is proportional to its size. 

Loosely speaking, if the size position is doubled then the risk capital will be 

doubled. 

• Monotonicity: For 𝐿1, 𝐿2 ∈ 𝑀 such that 𝐿1 ≤ 𝐿2, the relationship: 

𝑔(𝐿1) ≤ 𝑔(𝐿2) 

is always valid. Monotonicity implies that positions that lead to higher losses 

require more risk capital.  

These axioms are not restrictive enough to specify a unique risk measure. So, the 

choice of a particular risk measure should presumably be made on the basis of the 

specific objectives of quantitative risk management. The most important purposes 

for which risk measures are used are: 

• Determination of risk capital and capital adequacy: One of the principal 

functions of risk management in the financial sector is to determine the 

amount of capital a financial institution needs to hold as a buffer against 

unexpected future losses on its portfolio in order to satisfy a regulator, who 

is concerned with the solvency of the institution. A related problem is the 

determination by the clearing house of appropriate margin requirements for 

investors trading at an organized exchange. 

• Management tool: Risk measures are often used by management as a tool 

for limiting the amount of risk that a unit may take within a firm. For 

instance, traders in a bank are often constrained by that the risk of their 

position should not exceed a given bound. 

• Insurance premiums: Insurance premiums compensate an insurance 

company for bearing the risk of the insured claims. The size of this 

compensation can be viewed as a measure of the risk of these claims. 
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2. VALUE AT RISK MEASURE 
 

The Value at Risk measure represents in a monetary form the level of risk at which 

an owner of a portfolio is subject. It has become widely used by many market players 

such as financial institutions, corporate treasurers, and fund managers. Under 

certain conditions, V.a.R. represents the maximum loss which might occur in a 

financial portfolio for a given period and probability. For instance, if the time horizon 

is 5 days and the confidence level is 99%, a V.a.R. of ten million dollars states that 

the maximum loss which may occur in the following 5 days will be not greater than 

ten million dollars with a probability of 99%.  

Firstly, in this chapter it will be formally defined what is a portfolio in finance, then 

it will be described the Value at Risk measure of such a portfolio and finally it will be 

given some comments about the limitations of this measure. 
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2.1 V.a.R. of a financial portfolio 
 

In finance, a portfolio is defined as a vector 𝒉 = (𝑞1, 𝑞2, . . . , 𝑞𝑛) of the quantities of 

the financial assets from which it is made up. It is important to notice that each 𝑞𝑖, 

with 𝑖 = 1,2, . . . , 𝑛, can be either positive or negative in order to distinguish a long 

position from a short position. In the financial jargon, a long position involves 

owning a security or contract and there is a gain when the price of the asset 

increases. Instead, a short position involves selling a security or a contract and it is 

realized a gain when there is a decrease in the asset’s price. 

Denoting the current time as 𝑡, the value process of the portfolio 𝒉 at time 𝑡 is 

defined as: 

𝑉𝒉,𝑡 =∑𝑃𝑖,𝑡 ⋅ 𝑞𝑖

𝑛

𝑖=1

 

where 𝑃𝑖,𝑡 is the current price of the asset 𝑖 which it is assumed to be observable at 

time 𝑡. As a consequence, also the value of the portfolio 𝑉𝒉,𝑡 is known at time 𝑡. 

Then, considering a specific moment in the future which is denoted by 𝑡 + 𝛥𝑡, the 

change in the value of the portfolio 𝒉 from 𝑡 to 𝑡 + 𝛥𝑡 is represented by:  

𝛥𝑉𝒉,𝑡+𝛥𝑡 = 𝑉𝒉,𝑡+𝛥𝑡 − 𝑉𝒉,𝑡 

where 𝑉𝒉,𝑡+𝛥𝑡 is the value of the portfolio at time 𝑡 + 𝛥𝑡. Unfortunately, 𝛥𝑉𝒉,𝑡+𝛥𝑡 is 

a random variable at time 𝑡, because it can be observed only at time 𝑡 + 𝛥𝑡. 

The distribution of 𝛥𝑉𝒉,𝑡+𝛥𝑡 is often termed profit and loss (P&L) distribution and it 

is used by many practitioners in finance. However, risk managers are mainly 

concerned with the probability of large losses and hence they often use the loss 

distribution instead of P&L distribution. For this purpose, it makes sense to 

introduce the loss of the portfolio 𝒉 from 𝑡 to 𝑡 + 𝛥𝑡, which is defined as: 

𝐿𝒉,𝑡+𝛥𝑡 = −𝛥𝑉𝒉,𝑡+𝛥𝑡 
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As it is stated for 𝛥𝑉𝒉,𝑡+𝛥𝑡, also 𝐿𝒉,𝑡+𝛥𝑡 is a random variable at time 𝑡 since it is 

observable only at time 𝑡 + 𝛥𝑡. Thus, V.a.R. can be calculated as the quantile 

corresponding to a specific confidence level of the loss distribution. 

In statistics, a point 𝑥0 ∈ ℝ is the 𝛼-quantile of a cumulative distribution function 𝐹 

if and only if the following two conditions are satisfied: 𝐹(𝑥0) = 𝛼 and 𝐹(𝑥) < 𝛼 

for all 𝑥 < 𝑥0. Therefore, as it is shown in Figure 5, using the distribution of the 

portfolio’s loss 𝐿𝒉,𝑡+𝛥𝑡, the Value at Risk at the confidence level 𝛼 ∈ (0,1) for a 

period of length 𝛥𝑡 is defined as the number 𝑞 for which: 

𝑉𝐴𝑅𝒉,𝛼,𝑡+𝛥𝑡 = 𝑖𝑛𝑓{𝑞 ∈ ℝ+: 𝑃(𝐿𝒉,𝑡+𝛥𝑡 ≥ 𝑞) ≤ 1 − 𝛼} 

 

Figure 5: V.a.R. of the Loss Distribution 

As it can be noticed, V.a.R. depends on two parameters: the time horizon and the 

confidence level. These parameters are chosen accordingly the purpose for which 

V.a.R. is computed, but there is not a single optimal value for them. 

The time interval 𝛥𝑡 should reflect the period over which a market player is 

committed to hold its portfolio. When the financial assets included in the portfolio 

are very liquid and actively traded, it makes sense to use a short time horizon like 

few days. Thus, if the Value at Risk calculated turns out to be unacceptable, the 

portfolio can be adjusted quickly. Instead, when V.a.R. is being calculated by the 

manager of a pension fund, a longer time horizon is likely to be used. This is because 

the portfolio is traded less actively and some of the instruments in the portfolio are 

less liquid. However, when the liquidity of a portfolio varies from one instrument to 
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another, it makes sense to compute more than one V.a.R. measure, each with a 

different time horizon which takes into account the liquidity of a specific group of 

assets. 

Instead, the confidence level 𝛼 is chosen accordingly the risk aversion of a specific 

market player because holding all other conditions equal, the higher the confidence 

level the greater the Value at Risk. Thus, a relatively high confidence level leads to a 

greater protection against risk. However, the confidence level that is actually used 

for the V.a.R. calculation is sometimes much less than the one that is required by 

regulators in the financial world. In fact, as it will be shown in one of the following 

chapters, the standard error of estimate for the Value at Risk measure is greater 

when the confidence level is very high (typically greater than 99%). A general 

approach for increasing the confidence level is the use of the extreme value theory. 

This theory is a way of smoothing the tails of the probability distribution of daily 

changes in the portfolio’s value and it leads to estimates of V.a.R. which reflect the 

whole shape of the tail distribution. 

In addition to the choice of the time horizon and the confidence level, there is the 

necessity to also choose the method to calculate the Value at Risk measure. The 

most popular methods are the parametric approach and historical simulation, which 

will be extensively debated in the next chapters of the thesis. 
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2.2 Criticism on V.a.R. 
 

One of the drawbacks of the Value at Risk measure regards the fact that it does not 

give any information about the severity of losses which occur with a probability less 

than 1 − 𝛼. By the way, in Taleb (2008) it is stated that: 

“What I care about, with standard Value at Risk, is not the number that falls within 

the 99 percent probability. I care about what happens in the other 1 percent, at the 

extreme edge of the curve. The fact that you are not likely to lose more than a certain 

amount 99 percent of the time tells you absolutely nothing about what could happen 

the other 1 percent of the time. You could lose $51 million instead of $50 million — 

no big deal. That happens two or three times a year, and no one blinks an eye. You 

could also lose billions and go out of business. Value at Risk has no way of measuring 

which it will be. Something rare, something you have never considered a possibility. 

I call these events fat tails or black swans.” 

A measure that deals with this problem is Expected Shortfall (ES). It represents the 

expected loss during a period of length 𝛥𝑡 conditional on the loss being worse than 

the V.a.R. measure. More formally, the Expected Shortfall at the confidence level 𝛼 

of a portfolio 𝒉 calculated at time 𝑡 for a period of length 𝑡 + ∆𝑡 is defined as: 

𝐸𝑆𝒉,𝛼,𝑡+∆𝑡 =
1

1 − 𝛼
⋅ ∫ 𝑉𝐴𝑅𝒉,𝑢,𝑡+∆𝑡 ⋅ 𝑑𝑢

1

𝛼

 

Then, instead of fixing a particular confidence level 𝛼, V.a.R. is averaged over all 

levels 𝑢 ≥ 𝛼 and obviously Expected Shortfall is always greater than V.a.R. at the 

same confidence level. 

If it is assumed, as it will be shown in the next chapter, that the daily loss distribution 

is the multivariate normal distribution with expected value 0 and variance 𝜎𝒉
2, the 

daily Expected Shortfall at the confidence level 𝛼 can be written as follows: 
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𝐸𝑆𝒉,𝛼,𝑡+1 = 𝜎𝒉 ⋅
𝑒−𝑧𝛼

2/2

√2 ⋅ 𝜋 ⋅ (1 − 𝛼)
 

where 𝑧𝛼 is the quantile of the standard normal distribution corresponding to the 

probability 𝛼. The methods used to estimate Expected Shortfall are the same as 

those used for the V.a.R. measure and it is shown that ES, like Value at Risk, is 

proportional to 𝜎𝒉 which is the daily volatility of the portfolio. 

As it will be done with V.a.R., also the Expected Shortfall is usually estimated for a 

time horizon equal to one day and it is extended to a longer period 𝛥𝑡 using the 

formula: 

𝐸𝑆𝒉,𝛼,𝛥𝑡 = 𝐸𝑆𝒉,𝛼,𝑡+1 ⋅ √𝛥𝑡 

However, it represents an approximation unless the portfolio’s losses on successive 

days are independent and identically distributed. 

Furthermore, Value at Risk is fundamentally criticized because, in the most general 

case, it is not a coherent risk measure. In fact, although it satisfies the properties of 

translation invariance, positive homogeneity, and monotonicity, it does not meet 

the subadditivity property. However, it can be demonstrated that the V.a.R. 

measure does not satisfy this property if the assets included in the portfolio have 

very skewed loss distributions or they are independent but very heavy-tailed, such 

as defaultable bonds or options. On the other hand, V.a.R. is subadditive in the 

situation where the portfolio can be represented as a linear combination of the 

same set of underlying distributed risk factors. As it will be shown, the linear model 

may be a reasonable approximate model for various kinds of market variables, such 

as equity prices, commodity prices, currencies, and linear derivative instruments 

while it represents a rough approximation in case the portfolio contains non-linear 

derivative instruments such as options. Instead, in every case Expected Shortfall is a 

coherent risk measure because it satisfies all the four axioms of coherence.  
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Another criticism concerns the fact that V.a.R. neglects any problems related to 

market liquidity. By definition, a market is termed liquid if investors can buy or sell 

large amounts of an asset in a short time without affecting too much its price. 

Conversely, a market in which an attempt to trade has a large impact on price, or 

where trading is impossible since there is no counterparty willing to take the other 

side of the trade, is termed illiquid. However, it is difficult to implement in the model 

the effects of market illiquidity because they are hard to measure, and they depends 

on elusive factors such as market mood or the distribution of economic information 

among investors. Moreover, in illiquid markets traders are forced to close their 

position gradually over time to minimize the price impact of their transactions and 

it makes the aggregation of risk measures across portfolios impossible. Hence, in 

many practical situations, risk managers can therefore do not better than ignore the 

effect of market liquidity in computing risk measures.  
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3. PARAMETRIC APPROACH 
 

So far it was not made any assumption about the probability distribution of the 

losses in the value of a portfolio. Then, the scope of the parametric approach is to 

build a mathematical model which describes the distribution function of the 

portfolio’s loss over a specific period in order to estimate the Value at Risk measure. 

For this purpose, there is the need to understand the processes of the market 

variables included in the portfolio and analyze the relations among them. Following 

the market’s usual terminology, it will be referred to market variables as equity 

prices, commodity prices, or exchange rates. Instead, derivative instruments such as 

forward contracts or options will be related to the underlying market variables. 

In the first place, it will be supposed that, to a good approximation, the change in 

the value of the portfolio is linearly related to proportional changes in the market 

variables. Hence, it will be used a linear model to link the portfolio’s loss to the 

returns of the underlying market variables in order to calculate the Value at Risk 

measure. 

Successively, it will be used a quadratic model to shape the loss distribution from 

the returns of the market variables included in the portfolio in order to improve the 

estimate of the V.a.R. measure. In fact, if the portfolio contains non-linear derivative 

instruments, its loss cannot reasonably be considered to be linearly dependent on 

changes in the underlying market variables. Therefore, it is necessary to use a model 

for building the loss distribution which is more accurate than the linear one. 

Furthermore, it will be illustrated how V.a.R. is calculated with the Monte Carlo 

simulation which is a more practical approach used to shape the loss distribution of 

a financial portfolio starting from the returns of the underlying market variables. 

Finally, at the end of this chapter, it will be debated how volatilities and correlations 

of the market variables’ returns are calculated because they play a crucial role in the 

calculation of the Value at Risk measure of a financial portfolio.  
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3.1 Linear model 
 

Recalling the definition of the change in the value of a financial portfolio, it makes 

sense to relate it with the changes in the market variables which compose the 

portfolio. Therefore, if it is supposed that in a period of length 𝛥𝑡 the quantity of the 

financial assets which compose the portfolio remains the same, the change in the 

portfolio’s value over this period can be written as: 

𝛥𝑉𝒉,𝑡+𝛥𝑡 =∑(𝑃𝑖,𝑡+𝛥𝑡 − 𝑃𝑖.𝑡

𝑛

𝑖=1

) ⋅ 𝑞𝑖 =∑ Δ𝑃𝑖,𝑡+𝛥𝑡

𝑛

𝑖=1

⋅ 𝑞𝑖 

Therefore, in order to know the probability distribution of 𝛥𝑉𝒉,𝑡+𝛥𝑡, it is necessary 

to understand the value process of each market variable included in the portfolio. 

For this purpose, the following sections explain the models used to describe the 

process of the main financial instruments and what are the assumptions underlying 

these models. 

 

3.1.1 Equities, Commodities and Currencies 
 

In finance, it is a common practice to assume that the process followed by market 

variables such as equity prices, commodities prices, and currencies is the geometric 

Brownian motion, which is defined as: 

d𝑃𝑡 = (𝜇 − 𝑞) ⋅ 𝑃𝑡 ⋅ d𝑡 + 𝜎 ⋅ 𝑃𝑡 ⋅ d𝑊𝑡 

where:  

- 𝜇 is the expected return of the asset; 

- 𝑣 is a term which summarizes the income (𝑣 > 0) or the cost (𝑣 < 0), 

expressed as a percentage of the price, provided by the asset in a unitary 

period of time. For instance, in case of stocks or stock indices 𝑞 represents 
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the dividend yield, for commodities it is defined as the storage cost, while for 

currencies it represents the foreign risk-free interest rate; 

- 𝜎 represents the volatility, which is a measure of the uncertainty about the 

returns provided by the asset. It is defined as the standard deviation of its 

return in a unitary period of time; 

- 𝑊𝑡 is the standard Weiner process which is a particular type of stochastic 

process with a mean change of zero and a variance rate equal to one. 

An important result known as Ito’s lemma, shows that if a variable 𝑥 follows the Ito’s 

process 𝑑𝑥𝑡 = 𝑎(𝑡, 𝑥) ⋅ 𝑑𝑡 + 𝑏(𝑡, 𝑥) ⋅ 𝑑𝑊𝑡, in which the terms 𝑎(𝑡, 𝑥) and 𝑏(𝑡, 𝑥) 

depend also on 𝑥 and 𝑡, a function 𝑓 of the variable 𝑥 and time 𝑡 follows the process: 

d𝑓 = (
𝜕𝑓

𝜕𝑡
+ 𝑎(𝑡, 𝑥) ⋅

𝜕𝑓

𝜕𝑥
+
1

2
⋅ 𝑏(𝑡, 𝑥)2 ⋅

𝜕2𝑓

𝜕𝑥2
) ⋅ d𝑡 + 𝑏 ⋅

𝜕𝑓

𝜕𝑥
⋅ d𝑊 

Thus, considering 𝑓 = 𝑙𝑛( 𝑃), the process followed by 𝑓 is: 

d𝑙𝑛( 𝑃𝑡) = (𝜇 − 𝑣 −
1

2
⋅ 𝜎2) ⋅ d𝑡 + 𝜎 ⋅ d𝑊𝑡 

which is named drifted Brownian motion and it is a particular case of the Ito’s 

process. So, the change in 𝑙𝑛( 𝑃) in a discrete time period, defined from 𝑡 to 𝑡 + Δt, 

can be computed as: 

𝑙𝑛( 𝑃𝑡+𝛥𝑡) − 𝑙𝑛( 𝑃𝑡) = ∫ (𝜇 − 𝑣 −
1

2
⋅ 𝜎2) ⋅ 𝑑𝑠

𝑡+𝛥𝑡

𝑡

+∫ 𝜎 ⋅ 𝑑𝑊𝑠

𝑡+𝛥𝑡

𝑡

 

Firstly, it is important to notice that the terms in the left side of the above equation 

represents the logarithmic return of a specific market variable over a period of 

length 𝛥𝑡. Secondly, there is the need to make a distinction between the two 

integrals in the right side of the previous equation. In fact, the former is a Riemann-

Stieltjes integral which can be easily calculated, while the second is a stochastic 

integral, also known as Ito’s integral, which is not easy to manage. Nevertheless, 

since 𝜇, 𝑣 and 𝜎 are assumed to be constant it is valid that: 
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∫ (𝜇 − 𝑣 −
1

2
⋅ 𝜎2)

𝑡+𝛥𝑡

𝑡

⋅ 𝑑𝑠 = (𝜇 − 𝑣 −
1

2
⋅ 𝜎2) ⋅ ∫ 𝑑𝑠

𝑡+𝛥𝑡

𝑡

= (𝜇 − 𝑣 −
1

2
⋅ 𝜎2) ⋅ Δ𝑡 

∫ 𝜎 ⋅ 𝑑𝑊𝑠

𝑡+𝛥𝑡

𝑡

= 𝜎 ⋅ ∫ 𝑑𝑊𝑠

𝑡+𝛥𝑡

𝑡

= 𝜎 ⋅ (𝑊𝑡+𝛥𝑡 −𝑊𝑡) 

and the previous equation can be rewritten as: 

𝑙𝑛 (
𝑃𝑡+𝛥𝑡
𝑃𝑡

) = (𝜇 − 𝑣 −
1

2
⋅ 𝜎2) ⋅ Δ𝑡 + 𝜎 ⋅ (𝑊𝑡+𝛥𝑡 −𝑊𝑡) 

From the definition of the Weiner process, the random variable 𝑊𝑡+𝛥𝑡 −𝑊𝑡 is 

normally distributed with mean zero and variance rate equal to the difference 

between 𝑡 + 𝛥𝑡 and 𝑡. So, it can be written: 

𝑊𝑡+𝛥𝑡 −𝑊𝑡 ~ 𝑁(0, ∆𝑡) 

Therefore, it can be stated that the logarithmic return of a specific market variable 

over a period of length Δt is normally distributed with expected value and variance 

which are respectively: 

𝐸 [𝑙𝑛 (
𝑃𝑡+𝛥𝑡
𝑃𝑡

)] = (𝜇 − 𝑣 −
1

2
⋅ 𝜎2)𝛥𝑡 

𝑣𝑎𝑟 [𝑙𝑛 (
𝑃𝑡+𝛥𝑡
𝑃𝑡

)] =𝜎2 ⋅ 𝛥𝑡 

because the term (𝜇 − 𝑣 −
1

2
⋅ 𝜎) ⋅ Δ𝑡 is deterministic, while the term 𝜎 ⋅

(𝑊𝑡+𝛥𝑡 −𝑊𝑡)~ 𝑁(0, 𝜎
2 ⋅ ∆𝑡) is the only random variable present in the equation of 

the return. 

Logarithmic returns are widely used in finance because of their useful property of 

additivity over subsequent and non-overlapping intervals of time. However, in the 

framework to computing the Value at Risk of a portfolio, it is more convenient to 

use percentage returns because the return of the portfolio can be calculated as the 

weighted sum of the linear returns of the assets from which it is made up. For this 

purpose, by using the first-order Taylor expansion for 
𝑃𝑡+𝛥𝑡

𝑃𝑡
→ 1 it is valid that 
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𝑙𝑛 (
𝑃𝑡+𝛥𝑡

𝑃𝑡
) ≃

𝑃𝑡+𝛥𝑡−𝑃𝑡

𝑃𝑡
. It means that if the returns of a portfolio are close to zero then 

the linear returns and the logarithmic returns of a portfolio are similar to each other. 

Moreover, in Miskolczi (2017) it is conducted an empirical study in which it is 

illustrated that the Value at Risk of a considered sample of financial portfolios is not 

significantly affected by the type of returns used. 

Hence, from this point on, it will be used the normal distribution also to model linear 

returns and moreover it is supposed that their expected value is equal to zero. This 

assumption seems reasonable if it is considered a relatively short period of time (e.g. 

days), while it is not realistic for longer periods (e.g. years). In fact, if the annual 

expected return of a financial asset is supposed to be, let’s say, 20% of its price, the 

daily return, considering 252 trading days in a year, is approximately 0,12% and it 

can be assumed to be equal to zero without making a huge approximation. 

So, for the purpose of calculation of the Value at Risk, it is considered that time is 

measured in days and it is chosen a period of length equal to one day (∆𝑡 = 1) as 

time horizon. Thus, the daily change in the portfolio’s value can be written as: 

𝛥𝑉𝒉,𝑡+1 =∑𝑞𝑖 ⋅ 𝑃𝑖,𝑡 ⋅ 𝛥𝑥𝑖

𝑛

𝑖=1

=∑𝑉𝑖,𝑡

𝑛

𝑖=1

⋅ 𝛥𝑥𝑖  

where Δ𝑥𝑖 =
𝑃𝑖,𝑡+1−𝑃𝑖.𝑡

𝑃𝑖,𝑡
 is the percentage return in the price of asset 𝑖 incurred 

between 𝑡 and 𝑡 + 1, while 𝑉𝑖,𝑡 = 𝑞𝑖 ⋅ 𝑃𝑖,𝑡 represents the monetary position in the 

asset 𝑖. 

 

3.1.2 Derivative instruments 
 

So far, it is considered that the portfolio is made up only by equity prices, commodity 

prices and currencies. However, in order to include the possibility that the portfolio 

also contains derivatives instruments such as forward contracts or financial options, 

there is the need to make some additional considerations. 
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Therefore, without defining an additional market variable for every derivative 

instrument present in the portfolio, it makes sense to link the return of each 

derivative with the one of the underlying asset. For this purpose, it is introduced the 

concept of delta 𝛿 of a derivative instrument, which is defined as 𝛿 =
𝜕𝑓

𝜕𝑃
 and it 

represents the rate of change in the value of the derivative 𝑓 with respect to a 

unitary change in the price of the underlying asset 𝑃. For small changes in the value 

of the underlying asset and for small periods of time (e.g. a day), it is valid the 

relation 𝛿 =
𝛥𝑓

𝛥𝑃
 which allow to obtain 𝛥𝑓 = 𝛿 ⋅ 𝛥𝑃𝑡+1. So, having defined the daily 

return of the underlying asset as 𝛥𝑥 =
∆𝑃𝑡+1

𝑃𝑡
, it can be written 𝛥𝑓 = 𝛿 ⋅ 𝑃𝑡 ⋅ 𝛥𝑥. 

Thus, for a portfolio 𝒉 containing n financial assets, which can be also derivative 

instruments, the daily change in the value of the portfolio can be defined as: 

𝛥𝑉𝒉,𝑡+1 =∑𝑞𝑖 ⋅ 𝑃𝑖,𝑡 ⋅ 𝛿𝑖 ⋅ 𝛥𝑥𝑖

𝑛

𝑖=1

=∑𝑉𝑖,𝑡

𝑛

𝑖=1

⋅ 𝛥𝑥𝑖  

where 𝑉𝑖,𝑡 = 𝑞𝑖 ⋅ 𝑃𝑖,𝑡 ⋅ 𝛿𝑖 and it represents the monetary delta position in the asset 

𝑖. It is important to remark that each 𝛥𝑥𝑖  represents the return of the market 

variable 𝑖 underlying the derivative instrument, which can be considered to be 

normally distributed. Fundamentally, when considering also derivative instruments, 

what changes in the distribution of 𝛥𝑉𝒉,𝑡+1 is only the terms 𝑉𝑖,𝑡, with 𝑖 = 1,2, . . . , 𝑛, 

which contains the monetary delta position in every asset included in the portfolio. 

It is interesting to notice that the last definition of the daily change in the value of 

the portfolio can be considered as a general case of the former. In fact, by definition 

the delta of a stock, commodity, exchange rate or stock index is equal to one and if 

the portfolio includes only these assets, the above-mentioned equation of 𝛥𝑉𝒉,𝑡+1 

becomes equal to the first one. 
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3.1.3 Estimating V.a.R. 
 

In order to compute the Value at Risk of the portfolio, it is also necessary to consider 

that market variables are not independent each other, but there is a correlation of 

𝜌𝑖,𝑗 between the returns of every pair of assets 𝑖 and 𝑗. Starting from the correlation 

coefficient, the covariance between each couple of variables is computed as: 

𝑐𝑜𝑣𝑖,𝑗 =𝜌𝑖,𝑗 ⋅ 𝜎𝑖 ⋅ 𝜎𝑗 

where 𝜎𝑖 and 𝜎𝑗 are the daily volatilities of asset 𝑖 and 𝑗, respectively. 

Hence, since the returns of the market variables are modeled with the univariate 

normal distribution Δ𝑥𝑖~𝑁(0, 𝜎𝑖
2) and the change in the portfolio’s value is a convex 

linear combination of these returns, it follows that 𝛥𝑉𝒉,𝑡+1 is multivariate normally 

distributed. Thus, the expected value of 𝛥𝑉𝒉,𝑡+1 is simply: 

𝜇𝒉 = 0 

Instead, the variance is computed as:  

𝜎𝒉
2 = 𝑽𝑡

′ 𝛴𝑽𝑡 

where 𝑽𝑡 is the column vector of size n containing the monetary delta position in 

each asset at time 𝑡, and 𝛴 is the covariance matrix defined as: 

𝛴 =

(

 
 

𝜎1
2 𝑐𝑜𝑣1,2 … 𝑐𝑜𝑣1,𝑛

𝑐𝑜𝑣1,2 𝜎2
2 ⋯ 𝑐𝑜𝑣2,𝑛

⋮ ⋮ ⋱ ⋮
𝑐𝑜𝑣1,𝑛 𝑐𝑜𝑣2,𝑛 ⋯ 𝜎𝑛

2

)

 
 

 

In the covariance matrix, which is a symmetric matrix, the entry in the 𝑖𝑡ℎ  row and 

𝑗𝑡ℎ column is the covariance between variable 𝑖 and variable 𝑗. Instead, the diagonal 

entries in the matrix are the variances since the covariance of a variable and itself is 

its variance. 
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Generally, before proceeding in calculating the standard deviation of 𝛥𝑉𝒉,𝑡+1, it is 

important to check whether the covariance matrix 𝛴 is positive semidefinite, which 

means that it should satisfy the condition 𝝎′𝛴𝝎 ≥ 0 for all 𝑛 × 1 vectors 𝝎. To 

understand the intuition behind this condition, suppose that 𝝎𝑡 is the vector of the 

values of the financial assets included in the portfolio at time 𝑡. The variance of the 

portfolio is defined as 𝝎𝑡
′ 𝛴𝝎𝑡 and it cannot be negative. To ensure that 𝛴 is positive 

semidefinite, the covariance matrix has to be internally consistent, which means 

that variances and covariances should be estimated using the same models and 

parameters which will be further debated at the end of this chapter. 

In conclusion, having shown that 𝛥𝑉𝒉,𝑡+1~𝑁(0, 𝜎𝒉
2) and recalling the definition of 

the portfolio’s loss which is 𝐿𝒉,𝑡+𝛥𝑡 = −𝛥𝑉𝒉,𝑡+𝛥𝑡, it can be stated that also the daily 

loss of the portfolio 𝒉 is normally distributed with the following parameters: 

𝐿𝒉,𝑡+1~𝑁(0, 𝜎𝒉
2) 

The previous expression can be written as 𝐿𝒉,𝑡+1~ 𝜎𝒉 ⋅ 𝛷, where 𝛷 represents the 

standard normal distribution. Hence, the daily Value at Risk of the portfolio 𝒉 at the 

confidence level 𝛼, which is defined as a quantile of the loss distribution, is given by: 

𝑉𝐴𝑅𝒉,𝛼,𝑡+1 = 𝑧𝛼 ⋅ 𝜎𝒉 

where 𝑧𝛼 is the quantile of the standard normal distribution corresponding to the 

chosen probability level 𝛼. This result is proved as follows: 

𝑃(𝐿𝒉,𝑡+1 ≤ 𝑉𝐴𝑅𝒉,𝛼,𝑡+1) = 𝑃(𝐿𝒉,𝑡+1 ≤ 𝑧𝛼 ⋅ 𝜎𝒉) = 𝑃 (
𝐿𝒉,𝑡+1
𝜎𝒉

≤ 𝑧𝛼) = 𝛷(𝑧𝛼) = 𝛼 

Furthermore, if the aim is to compute the Value at Risk of the same portfolio 𝒉 for 

a longer time horizon than a single day, it can be used the formula:  

𝑉𝐴𝑅𝒉,𝛼,𝑡+𝛥𝑡 = 𝑉𝐴𝑅𝒉,𝛼,𝑡+1 ⋅ √𝛥𝑡 
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This formula is exactly true when the changes in the value of the portfolio on 

successive days have independent identical normal distributions with mean zero, 

while in other cases it represents an approximation. 
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3.2 Quadratic model 
 

The linear model has some assumptions that, on the one hand, make the model easy 

to apply, but on the other hand, ensure that the model strays too far from reality, 

effectively constituting a limit in case the portfolio contains non-linear derivatives. 

In fact, when a portfolio includes options and other non-linear derivatives, the 

probability distribution of the portfolio’s loss over a short period of time can no 

longer reasonably assumed to be normal because the gamma exposures of the 

portfolio cause the probability distribution of change in its value to exhibit 

skewness. It is related to the third moment of the distribution and a positive 

skewness indicates that the right tail is heavier than the left tail, while a negative 

skewness indicates the reverse. 

The gamma 𝛾 of a derivative is defined as 𝛾 =
𝜕2𝑓

𝜕𝑃2
=

𝜕𝛿

𝜕𝑃
 and it represents the rate of 

change of the derivative’s delta with respect to a unitary change in the price of the 

underlying asset. So, gamma 𝛾 measures the curvature of the relationship between 

the derivative value and the underlying market variable. Using the second-order 

Taylor expansion, the change in the value of the derivative is represented by: 

𝜕𝑓 =
𝜕𝑓

𝜕𝑡
⋅ 𝛥𝑡 + 𝛿 ⋅ 𝛥𝑃 +

1

2
⋅ 𝛾 ⋅ (𝛥𝑃)2 

Considering a small period of time, like a day, the term 
𝜕𝑓

𝜕𝑡
⋅ 𝛥𝑡 can be neglected and 

the previous equation can be written as follows: 

𝛥𝑓𝑡+1 = 𝛿 ⋅ 𝛥𝑃𝑡+1 +
1

2
⋅ 𝛾 ⋅ (𝛥𝑃𝑡+1)

2 

It represents an improvement in the accuracy of the approximation with respect the 

previous case in which it is considered only the first-order relationship. Since 

𝛥𝑃𝑡+1 = 𝑃𝑡 ⋅ 𝛥𝑥 as it is shown before, the previous formula becomes: 

𝛥𝑓𝑡+1 = 𝛿 ⋅ 𝑃𝑡 ⋅ 𝛥𝑥 +
1

2
⋅ 𝛾 ⋅ 𝑃𝑡

2 ⋅ (𝛥𝑥)2 
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More generally, for a portfolio 𝒉 with 𝑛 underlying financial assets and with each 

instrument in the portfolio being dependent on only one of the market variables, 

the daily change in the portfolio’s value can be expressed as: 

𝛥𝑉𝒉,𝑡+1 =∑𝑞𝑖 ⋅ 𝑃𝑖,𝑡 ⋅ 𝛿𝑖 ⋅ 𝛥𝑥𝑖

𝑛

𝑖=1

+∑
1

2

𝑛

𝑖=1

⋅ 𝑞𝑖
2 ⋅ 𝑃𝑖,𝑡

2 ⋅ 𝛾𝑖 ⋅ (𝛥𝑥𝑖)
2 

Instead, when individual instruments in the portfolio depend on more than one 

market variable, the previous formula becomes: 

𝛥𝑉𝒉,𝑡+1 =∑𝑞𝑖 ⋅ 𝑃𝑖,𝑡 ⋅ 𝛿𝑖 ⋅ 𝛥𝑥𝑖

𝑛

𝑖=1

+∑∑
1

2
⋅ 𝑞𝑖 ⋅ 𝑞𝑗 ⋅ 𝑃𝑖,𝑡 ⋅ 𝑃𝑗,𝑡 ⋅ 𝛾𝑖𝑗 ⋅ 𝛥𝑥𝑖

𝑛

𝑗=1

𝑛

𝑖=1

⋅ 𝛥𝑥𝑗  

where 𝛾𝑖𝑗  is the “cross gamma” defined as 𝛾𝑖𝑗 =
𝜕2𝑓

𝜕𝑃𝑖⋅𝜕𝑃𝑗
 which measures the rate of 

change of delta of the derivative instrument 𝑖 with respect to a unitary change in its 

underlying asset 𝑖 and another asset 𝑗. The last equation represents a generalization 

of the previous one because if each instrument in the portfolio depends on only one 

risk factor, there are no cross gammas so that 𝛾𝑖𝑗 = 0 except when 𝑖 = 𝑗. 

It is interesting to note that if the portfolio does not include any non-linear 

derivative instrument, this model will become equivalent to the linear one and the 

V.a.R. measure is calculated as illustrated in the previous paragraph. Conversely, 

considering the most general case in which there are also non-linear derivative 

instruments in the portfolio, 𝛥𝑉𝒉,𝑡+1 results not to be normally distributed and it is 

more difficult to compute the Value at Risk measure. However, if there are only a 

small number of variables, the previous equation can be used to calculate moments 

for the distribution of 𝛥𝑉𝒉,𝑡+1. 

Denoting 𝑉𝑖,𝑡 = 𝑞𝑖 ⋅ 𝑃𝑖,𝑡 ⋅ 𝛿𝑖 and 𝛽𝑖𝑗 =
1

2
⋅ 𝑞𝑖 ⋅ 𝑞𝑗 ⋅ 𝑃𝑖,𝑡 ⋅ 𝑃𝑗,𝑡 ⋅ 𝛾𝑖𝑗, the change in the 

portfolio’s value can be written as: 

𝛥𝑉𝒉,𝑡+1 =∑𝑉𝑖,𝑡 ⋅ 𝛥𝑥𝑖

𝑛

𝑖=1

+∑∑𝛽𝑖𝑗 ⋅ 𝛥𝑥𝑖

𝑛

𝑗=1

𝑛

𝑖=1

⋅ 𝛥𝑥𝑗  
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So, the daily loss of the portfolio 𝒉 is defined as: 

𝐿𝒉,𝑡+1 = −(∑𝑉𝑖,𝑡 ⋅ 𝛥𝑥𝑖

𝑛

𝑖=1

+∑∑𝛽𝑖𝑗 ⋅ 𝛥𝑥𝑖

𝑛

𝑗=1

𝑛

𝑖=1

⋅ 𝛥𝑥𝑗) 

Then, assuming that each 𝛥𝑥𝑖 is normally distributed, it can be shown that the first, 

second, and third moment of the probability distribution of 𝐿𝒉,𝑡+1 are respectively: 

𝐸[𝐿𝒉,𝑡+1] = −∑𝛽𝑖𝑗 ⋅ 𝜎𝑖𝑗
𝑖,𝑗

 

𝐸[(𝐿𝒉,𝑡+1)
2] =∑𝑉𝑖,𝑡 ⋅ 𝑉𝑗,𝑡

𝑖,𝑗

+ ∑ 𝛽𝑖𝑗 ⋅ 𝛽𝑘𝑙 ⋅ (𝜎𝑖𝑗 ⋅ 𝜎𝑘𝑙 + 𝜎𝑖𝑘 ⋅ 𝜎𝑗𝑙 + 𝜎𝑖𝑙 ⋅ 𝜎𝑗𝑘)

𝑖,𝑗,𝑘,𝑙

 

𝐸[(𝐿𝒉,𝑡+1)
3 = −3 ⋅ ∑ 𝑉𝑖,𝑡 ⋅ 𝑉𝑗,𝑡 ⋅ 𝛽𝑘𝑙 ⋅ (𝜎𝑖𝑗 ⋅ 𝜎𝑘𝑙 + 𝜎𝑖𝑘 ⋅ 𝜎𝑗𝑙 + 𝜎𝑖𝑙 ⋅ 𝜎𝑗𝑘)

𝑖,𝑗,𝑘,𝑙

+ ∑ 𝛽𝑖1𝑖2 ⋅ 𝛽𝑖3𝑖4 ⋅ 𝛽𝑖5𝑖6 ⋅ 𝑄

𝑖1,𝑖2,𝑖3,𝑖4,𝑖5,𝑖6

 

where the variable 𝑄 consists of fifteen terms of the form 𝜎𝑝1𝑝2 ⋅ 𝜎𝑝3𝑝4 ⋅ 𝜎𝑝5𝑝6  where 

𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6 are permutations of 𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5, 𝑖6.  

From the moments of the distribution of 𝐿𝒉,𝑡+1, it can be estimated the mean, 

variance, and skewness of this distribution as: 

𝜇𝒉 = 𝐸[𝐿𝒉,𝑡+1] 

𝜎𝒉
2 = 𝐸[(𝐿𝒉,𝑡+1)

2] − 𝐸[𝐿𝒉,𝑡+1]
2 

𝜉𝒉 =
𝐸[(𝐿𝒉,𝑡+1−𝜇𝒉)

3]

𝜎𝒉
3  

Hence, using a procedure named Cornish-Fisher expansion which approximates the 

quantile of a random variable based only on these parameters, it can be shown that 

for the portfolio 𝒉 the V.a.R. measure at the confidence level 𝛼 is determined as:  

𝑉𝐴𝑅𝒉,𝛼,𝑡+1 = 𝜇𝒉 + 𝑤𝛼 ⋅ 𝜎𝒉 
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where 𝑤𝛼 = 𝑧𝛼 +
1

6
⋅ (𝑧𝛼

2 − 1) ⋅ 𝜉𝒉 and 𝑧𝛼 is the percentile corresponding to the 

probability 𝛼 of the standard normal distribution. 

Finally, if there is the need to calculate the Value at Risk for a time horizon longer 

than one day, it can be used the formula shown in the linear model, which is: 

𝑉𝐴𝑅𝒉,𝛼,𝑡+𝛥𝑡 = 𝑉𝐴𝑅𝒉,𝛼,𝑡+1 ⋅ √𝛥𝑡 

However, using the quadratic model, this formula always represents an 

approximation and it should be aware about its accuracy in the V.a.R. computations 

for longer periods of time. 
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3.3 Monte Carlo simulation 
 

The parametric approach can be also implemented using Monte Carlo simulation, 

especially when there is the necessity to deal with non-linear derivative 

instruments. By definition, the Monte Carlo simulation is a procedure for sampling 

random outcomes for a given stochastic process. This procedure consists of some 

steps, which allow to obtain a single outcome of the process and they have to be 

repeated, generally thousands of times, in order to build the probability distribution 

for 𝐿𝒉,𝑡+1 from which the Value at Risk measure is calculated. 

Firstly, it is necessary to value the portfolio using the current values of market 

variables and for this purpose it is recalled the equation: 

𝑉𝒉,𝑡 =∑𝑃𝑖,𝑡 ⋅ 𝑞𝑖

𝑛

𝑖=1

 

Secondly, since it is assumed that 𝛥𝑥𝑖 ∼ 𝑁(0, 𝜎𝑖
2), it has to sample the value of the 

daily return ∆𝑥𝑖 of each market variable from the normal distribution: 

∆𝑥𝑖 = 𝜎𝑖,𝑡+1 ⋅ 𝜀𝑖  

where 𝜀𝑖  is a random sample obtained from a standard normal distribution and 

𝜎𝑖,𝑡+1 is the daily volatility of the market variable 𝑖 estimated for the next day. 

After that, it must be obtained a simulation trial of the daily change in the portfolio’s 

value. In case of a portfolio consisting of 𝑛 financial assets, a simulation trial involves 

getting 𝑛 samples of the ∆𝑥𝑖, where 1 ≤ 𝑖 ≤ 𝑛, from a multivariate standard normal 

distribution. However, since between each pair of variables 𝑖 and 𝑗 there is a 

correlation 𝜌𝑖,𝑗, the samples of ∆𝑥𝑖 and ∆𝑥𝑗 cannot be independent and there must 

be a relationship between the random samples 𝜀𝑖  and 𝜀𝑗 obtained from the standard 

normal distribution. Thus, denoting 𝑧𝑖  the independent sample obtained from a 

univariate normal distribution, the required samples 𝜀𝑖  are then obtained using a 

procedure known as Cholesky decomposition. For instance, if there are three 
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market variables, the relation of the three samples obtained from the standard 

normal distribution is the following: 

𝜀1 = 𝑎11 ⋅ 𝑧1 

where 𝑎11 = 1, 

𝜀2 = 𝑎21 ⋅ 𝑧1 + 𝑎22 ⋅ 𝑧2 

where 𝑎21 ⋅ 𝑎11 = 𝜌1,2 and 𝑎21
2 + 𝑎22

2 = 1, 

𝜀3 = 𝑎31 ⋅ 𝑧1 + 𝑎32 ⋅ 𝑧2 + 𝑎33 ⋅ 𝑧3 

where 𝑎31 ⋅ 𝑎11 = 𝜌1,3, 𝑎31 ⋅ 𝑎21 + 𝑎32 ⋅ 𝑎22 = 𝜌2,3 and 𝑎31
2 + 𝑎32

2 + 𝑎33
2 = 1. 

In general, for a given market variable 𝑖, it is valid the relation: 

𝜀𝑖 =∑𝑎𝑖𝑘 ⋅ 𝑧𝑘

𝑖

𝑘=1

 

where ∑ 𝑎𝑖𝑗 ⋅ 𝑎𝑘𝑗
𝑘
𝑗=1 = 𝜌𝑖,𝑘 with 𝑘 = 1, . . . , 𝑖 − 1 and ∑ 𝑎𝑖𝑗

2 = 1𝑖
𝑗=1  with 𝑖 = 1, . . . , 𝑛. 

If the equations for the 𝑎’s do not have real solutions, it means that the assumed 

correlation structure is internally inconsistent. 

Therefore, one simulation outcome of the change in the portfolio’s value can be 

defined as: 

𝛥𝑉𝒉,𝑡+1 =∑𝑞𝑖 ⋅ 𝑃𝑖,𝑡 ⋅ 𝛿𝑖 ⋅ 𝜎𝑖,𝑡+1 ⋅ 𝜀𝑖

𝑛

𝑖=1

+∑∑
1

2
⋅ 𝑞𝑖 ⋅ 𝑞𝑗 ⋅ 𝑃𝑖,𝑡 ⋅ 𝑃𝑗,𝑡 ⋅ 𝛾𝑖𝑗 ⋅ 𝜎𝑖,𝑡+1 ⋅ 𝜎𝑗,𝑡+1 ⋅ 𝜀𝑖

𝑛

𝑗=1

𝑛

𝑖=1

⋅ 𝜀𝑗 

Finally, the portfolio’s loss of one simulation trial is calculated as usual: 𝐿𝒉,𝑡+1 =

−𝛥𝑉𝒉,𝑡+1.  

The above explained procedure must be repeated several times until it is generated 

a sufficient number of trials (typically thousands of simulations) to approximate the 
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real distribution of the daily portfolio’s loss 𝐿𝒉,𝑡+1. It is then constructed a vector 

where each sample of 𝐿𝒉,𝑡+1 is sorted from the biggest to the smallest value. At this 

point, the Value at Risk corresponding to the confidence level 𝛼, can be estimated 

as the value present in the position (1 − 𝛼) ⋅ 𝑚, where 𝑚 is the number of trials 

performed. Again, if the chosen time horizon is longer than one day, the V.a.R. 

measure can be computed multiplying the daily V.a.R. with the square root of the 

period’s length, even if this calculation often represents an approximation. 

The accuracy of the result given by Monte Carlo simulation depends on the number 

of trials chosen. Usually, the accuracy of this method is calculated as the standard 

deviation of the distribution of 𝐿𝒉,𝑡+1 given by the simulation trials. Denoting the 

standard deviation of this distribution as 𝑠𝑳, the standard error of the estimate is 
𝑠𝑳

√𝑚
 

where 𝑚 is the number of trials. This shows that uncertainty is inversely 

proportional to the square root of the number of trials. Hence, the greater the 

number of simulations performed the better the accuracy of this method. 

On the other hand, one of the main drawbacks of the Monte Carlo simulation 

concerns the computational cost for large portfolios. In fact, the number of 

computations can be considerable, as every simulation requires the revaluation of 

the portfolio. This is particularly problematic if the portfolio contains many 

derivatives which cannot be priced in closed form. 
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3.4 Estimating volatilities and correlations 
 

Whatever the model used, in order to compute the Value at Risk measure in the 

parametric approach, it is fundamental to analyze the current level of volatilities and 

correlations of the underlying market variables. The most common mathematical 

models used to estimate volatilities and correlations are the exponentially weighted 

moving average (EWMA) and the generalized autoregressive conditional 

heteroscedasticity (GARCH). The distinctive feature of these models is that they 

recognize that volatilities and correlations are not constant. So, they try to keep 

track of the variations in the volatility or correlation through time. 

First of all, it is important to remark that the process followed by volatilities and 

correlations is considered to be discrete in time, so there is the need to define a 

fixed time bucket, usually a day, in which these variables are observed and 

estimated. Secondly, before explaining how the models are constructed, it would be 

useful to introduce the variables included in these models, which are: 

- 𝑥𝑡 =
𝑃𝑡−𝑃𝑡−1

𝑃𝑡−1
 is the linear return of a particular financial asset from 𝑡 − 1 to 𝑡, 

which is observed at time 𝑡; 

- 𝜎𝑡
2 is the variance of the return at time 𝑡, which is estimated at 𝑡 − 1; 

- 𝑐𝑜𝑣𝑖,𝑗,𝑡 is the covariance between the returns of two generic market variables 

at time 𝑡, which is estimated at 𝑡 − 1. 

An unbiased estimator of the variance of the return of a specific financial asset, 

computed using the last 𝑚 observations, is: 

𝜎𝑡
2 =

1

𝑚 − 1
⋅∑(𝑥𝑡−𝑘 − �̄�)

2

𝑚

𝑘=1

 

Since from one day to the next one, the expected return �̄� is considered to be 

approximately 0 and replacing 𝑚 − 1 with 𝑚, the estimator of the variance 

becomes: 
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𝜎𝑡
2 =

1

𝑚
⋅∑𝑥𝑡−𝑘

2

𝑚

𝑘=1

 

What is obtained is a maximum likelihood estimator of the variance per day using 

the most recent 𝑚 observations. However, it makes sense to give more weight to 

recent data and less to the past ones, so it can be assigned a weight for each return 

observation. Hence, the estimate of the variance weighting the observation 

becomes: 

𝜎𝑡
2 =

1

𝑚
⋅∑𝛼𝑘 ⋅ 𝑥𝑡−𝑘

2

𝑚

𝑘=1

 

where 𝛼𝑘 represents the weight of the observation 𝑘 and it decreases as it is moved 

back in time. A constraint is that the weights of the 𝑚 returns must sum to unity. 

Making the same considerations, an estimator of the covariance between the 

returns of two generic market variables, computed weighting each observation is 

defined as: 

𝑐𝑜𝑣𝑖,𝑗,𝑡 =
1

𝑚
∑𝛼𝑘 ⋅ (𝑥𝑖,𝑡−𝑘 ⋅ 𝑥𝑗,𝑡−𝑘

𝑚

𝑘=1

) 

 

3.4.1 EWMA (Exponentially Weighted Moving Average) 
 

The exponentially weighted moving average (EWMA) is a model where the weights 

𝛼𝑘 decrease exponentially as it is gone back in time. More in detail, 𝛼𝑘 = 𝜆 ⋅ 𝛼𝑘−1 

where 𝜆 is a constant between 0 and 1. So, the model used to calculate the variance 

estimate is given by the formula: 

𝜎𝑡
2 = 𝜆 ⋅ 𝜎𝑡−1

2 + (1 − 𝜆) ⋅ 𝑥𝑡−1
2  

To understand why in the previous equation the weights decrease exponentially in 

time, it can be substituted 𝜎𝑡−1 with the formula of its estimate, obtaining: 
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𝜎𝑡
2 = 𝜆 ⋅ [𝜆 ⋅ 𝜎𝑡−2

2 + (1 − 𝜆) ⋅ 𝑥𝑡−2
2 ] + (1 − 𝜆) ⋅ 𝑥𝑡−1

2

= 𝜆2 ⋅ 𝜎𝑡−2
2 + (1 − 𝜆) ⋅ (𝑥𝑡−1

2 + 𝜆 ⋅ 𝑥𝑡−2
2 ) 

So, in general it is valid the following relation: 

𝜎𝑡
2 = 𝜆𝑚 ⋅ 𝜎𝑡−𝑚

2 + (1 − 𝜆) ⋅ (∑𝜆𝑘−1 ⋅ 𝑥𝑡−𝑘
2

𝑚

𝑘=1

) 

It is easy to notice that the weight for each 𝑥𝑡−𝑘 declines at a rate 𝜆 as it is moved 

back in time. 

Instead, the model used to estimate the covariance between the returns of two 

market variables 𝑖 and 𝑗 is given by the formula: 

𝑐𝑜𝑣𝑖,𝑗,𝑡 =𝜆 ⋅ 𝑐𝑜𝑣𝑖,𝑗,𝑡−1+(1 − 𝜆) ⋅ 𝑥𝑖,𝑡−1 ⋅ 𝑥𝑗,𝑡−1 

One of the advantages of the EWMA model is that relatively little data need to be 

stored. In fact, the only data needed are the most recent variance or covariance rate 

and the last return over the considered time bucket. In addition, choosing the value 

of the constant 𝜆, it can be decided the responsiveness of the model to the last 

observation. A relatively low value of 𝜆 (close to 0) gives more weight to the last 

return observation 𝑥𝑡−1 and less to the older ones, which are included in the term 

𝜎𝑡−1
2  or 𝑐𝑜𝑣𝑡−1. So, the estimates of the volatilities or covariances tend to respond 

rapidly to new information provided by the last return. Instead, a relatively high 

value of 𝜆 (close to 1) gives less weight to the last percentage change in the 

considered market variable and it makes the estimates more stable through time 

and less responsive to potential noises. 

 

3.4.2 GARCH (Generalized Autoregressive Conditional 

Heteroscedasticity) 
 

The generalized autoregressive conditional heteroscedasticity (GARCH) computes 

the variance from a long-run average variance rate 𝑉𝐿, the previous variance rate 
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𝜎𝑡−1
2  and the last return observation 𝑥𝑡−1, giving a weight to each parameter. So, it 

is defined as:  

𝜎𝑡
2 = 𝛼 ⋅ 𝑥𝑡−1

2 + 𝛽 ⋅ 𝜎𝑡−1
2 + 𝛾 ⋅ 𝑉𝐿 

Also, the GARCH model is used to update covariance estimates. The covariance 

between two financial assets 𝑖 and 𝑗 is computed assigning appropriate weights to 

the long-run covariance rate 𝐶𝑂𝑉𝐿,𝑖,𝑗, the most recent covariance rate 𝑐𝑜𝑣𝑖,𝑗,𝑡−1 and 

the last return observations 𝑥𝑖,𝑡−1 and 𝑥𝑗,𝑡−1. Thus, the formula is represented by: 

𝑐𝑜𝑣𝑖,𝑗,𝑡 =𝛼 ⋅ 𝑥𝑖,𝑡−1 ⋅ 𝑥𝑗,𝑡−1 + 𝛽 ⋅ 𝑐𝑜𝑣𝑖,𝑗,𝑡−1+𝛾 ⋅ 𝐶𝑂𝑉𝐿,𝑖,𝑗 

The weights 𝛼, 𝛽, 𝛾 must sum to unity. GARCH model is very similar to EWMA, but 

the former gives a predetermined importance 𝛾 to the long-run variance or 

covariance rate. Also, it can be noticed that in GARCH model the weights of the past 

data on variance or covariance decline exponentially at rate 𝛽 which is called “decay 

rate” and it plays the same role of 𝜆 in EWMA. However, GARCH model recognizes 

that over time variance and covariance tends to get pulled back to a long-run 

average level of 𝑉𝐿 and 𝐶𝑂𝑉𝐿,𝑖,𝑗 at a rate 𝛾. It is called mean reversion and empirical 

studies show that variance and covariance rates tend to be mean reverting. Thus, 

the presence of this feature makes GARCH model be more appealing than EWMA. 
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4. HISTORICAL SIMULATION METHOD 
 

The historical simulation has become the most popular method for calculating the 

Value at Risk measure of a financial portfolio because the parametric approach has 

some assumptions that ensure that the model strays too far from reality. In fact, the 

empirical evidence indicates that assets’ returns, especially the daily ones, are 

rather non-normal. Excess kurtosis will cause losses greater than V.a.R. to occur 

more frequently and be more extreme than those predicted by the normal 

distribution. In addition, a large number of financial markets crash together and the 

correlation forecasts used to calculate V.a.R. in the parametric approach failed to 

predict such a synchronous crash. Instead, the historical simulation method 

overcomes the previous problems since it involves using the day-to-day changes in 

the values of market variables that have been observed in the past in a direct way, 

in order to estimate the empirical probability distribution of the daily change in the 

value of the current portfolio. 

In the first place, it will be described the mechanics of the historical simulation 

explaining how this method is developed starting from the empirical probability 

distribution of the portfolio’s loss. Successively, it will be debated a couple of 

extensions which can improve the accuracy of the V.a.R. estimate obtained from the 

traditional historical simulation method. 
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4.1 Empirical distribution and V.a.R. estimate  
 

The empirical distribution is the cumulative distribution function which can be used 

to describe a sample of observations of a given variable. Its value at any specified 

value of the measured variable is the fraction of observations of the measured 

variable which are less than or equal to the specified value. 

Assuming that 𝑚 is the sample size, denote with 𝑥 a generic observation of the 

variable of interest and sort all the observations in an ascending order, so that 𝑥𝑗 >

𝑥𝑗−1 for 𝑗 = 2,3, … ,𝑚. Then, the empirical distribution 𝐹(𝑥) of the variable 𝑥, can 

be written as: 

𝐹(𝑥) =

{
 
 
 
 

 
 
 
 

0                         𝑖𝑓 𝑥 < 𝑥1 
1

𝑚
               𝑖𝑓 𝑥1 ≤ 𝑥 < 𝑥2

2

𝑚
               𝑖𝑓 𝑥2 ≤ 𝑥 < 𝑥3

⋮                                 ⋮         
𝑚 − 1

𝑚
         𝑖𝑓 𝑥𝑚−1 ≤ 𝑥 < 𝑥𝑚

1                        𝑖𝑓 𝑥 ≥ 𝑥𝑚 }
 
 
 
 

 
 
 
 

 

Hence, 𝐹(𝑥) is a step function which is everywhere flat except at each of the 𝑚 data 

points, where it jumps up by 1/𝑚. The main feature of the empirical distribution is 

that it can be considered as an estimate of the cumulative distribution function 

which generates the points in the sample. In fact, according to the Glivenko-Cantelli 

theorem, the empirical distribution converges with probability 1 to the underlying 

distribution as the sample size tends to infinity (𝑚 → ∞). 

In the framework of calculating the Value at Risk measure, it is considered the 

empirical distribution of the daily portfolio’s loss 𝐿𝒉,𝑡+1 which depends on the daily 

returns in the underlying market variables. In order to build such a distribution, the 

first step is to identify the market variables affecting the portfolio. These market 

variables are sometimes referred to as risk factors which can be stocks, exchange 

rates, commodities, stock indices, interest rates and so on. It is important to notice 
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that, conversely of what it is done in the parametric approach, in the historical 

simulation method derivative instruments as options or forward contracts are 

considered as distinct market variables from their underlying assets. Then, data are 

collected on movements in the market variables over the most recent 𝑚 + 1 days. 

This provides 𝑚 alternative scenarios for what can happen between today and 

tomorrow. Denote the first day for which data are available as Day 0, the second 

day as Day 1, and so on. Scenario 1 is where the percentage changes in the values 

of all variables are the same as they were between Day 0 and Day 1, Scenario 2 is 

where they are the same as between Day 1 and Day 2, and so on. 

For each scenario 𝑗, the loss of the portfolio between today and tomorrow is 

calculated and it is denoted as 𝐿𝒉,𝑗. Thus, it can be constructed a 𝑚-dimensional 

vector which includes all the sample observations 𝐿𝒉,𝑖 with 𝑗 = 1,2, … ,𝑚 sorted in 

an ascending order. This vector defines the empirical probability distribution for 

daily loss of the portfolio. 

Hence, the daily Value at Risk measure, which is the quantile of the distribution of 

𝐿𝒉,𝑡+1 corresponding to the confidence level 𝛼, can be estimated as the 𝛼 ⋅ 𝑚 value 

of the sample. For example, if 𝑚 = 500, the 99% daily V.a.R. corresponds to the 

495th value of the sample, which is the fifth highest loss. Instead, if the result of 𝛼 ⋅

𝑚 does not correspond to an integer number the V.a.R. measure will be calculated 

using linear interpolation. For instance, if 𝑚 = 250, the 99% daily V.a.R. 

corresponds the mean between the second and the third highest loss of the sample. 

Again, if the aim is to compute the V.a.R. of the portfolio for a longer period than 

one day, it can be used the formula shown in the previous chapter, which is: 

𝑉𝐴𝑅𝒉,𝛼,𝑡+𝛥𝑡 = 𝑉𝐴𝑅𝒉,𝛼,𝑡+1 ⋅ √𝛥𝑡 

The historical-simulation method has obvious attractions: it is easy to implement, 

reduces the risk-measure estimation problem to a one-dimensional problem and 

there is no necessity to make any particular assumption about the distribution of 
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the change in the portfolio’s value. However, the main disadvantages of historical 

simulation are that it is computationally slow and does not easily allow volatility 

updating schemes to be used. In fact, an implicit assumption of this method is that 

the volatility of the portfolio remains stable in time and therefore the future values 

of the losses in the portfolio’s value are well estimated by the past ones. Moreover, 

the success of the approach is highly dependent on the ability to collect sufficient 

quantities of relevant, synchronized data for all market variables. In the next 

paragraphs it will be debated some extensions to the traditional model which allow 

the historical simulation method to overcome these drawbacks. 
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4.2 Accuracy of V.a.R. 
 

The historical simulation method estimates the distribution of the portfolio’s loss 

from a finite number of observations. As a result, the estimates of quantiles of the 

distribution are subject to error. 

In Kendall and Stuart (1961) it is described how to calculate a confidence interval for 

the percentile of a probability distribution when it is estimated from sample data. 

Suppose that the 𝛼-percentile of the distribution is estimated as 𝑥. The standard 

error of the estimate, denoted with 𝑆𝐸 is: 

𝑆𝐸 =
1

𝑓(𝑥)
√
(1 − 𝛼) ⋅ 𝛼

𝑚
 

where 𝑚 is the number of observations and 𝑓(𝑥) is an estimate of the probability 

density function of the change in the value evaluated at 𝑥. The probability density 

𝑓(𝑥), can be estimated approximately by fitting the empirical data to an appropriate 

distribution whose properties are known. 

From the above formula it can be observed that the standard error declines as the 

density function 𝑓(𝑥) increases. Assuming that the density function is considered to 

be approximately normal, it means that the confidence level 𝛼 used to estimating 

V.a.R. should be reduced in order to obtain results which are more accurate. 

Moreover, it can be noticed that 𝑆𝐸 decreases as the sample size is increased, but 

only as its square root. For instance, in order to halve the standard error of the 

estimate it is needed to quadruple the sample size which involves increasing the 

computational cost of implementing the historical simulation method. 
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4.3 Hybrid approach 
 

When the Value at Risk is calculated with the historical simulation method, the 

assumption is that recent history is in some sense a good guide to the future. More 

precisely, it is that the empirical probability distribution estimated for market 

variables over the immediately preceding period is a good guide to the behavior of 

the market variables over the next day. Unfortunately, the behavior of market 

variables is non-stationary. Sometimes the volatility of a market variable is high, 

while sometimes it is low. For this purpose, in Boudoukh et al. (1997) it is suggested 

a method which combines the historical simulation with the parametric approach 

by estimating V.a.R. from the empirical distribution of 𝐿𝒉,𝑡+1, using declining weights 

on past data. Thus, it makes sense that more recent observations should be given 

more weight because they are more reflective of current volatilities and current 

macroeconomic conditions. 

The natural weighting scheme to use is one where weights decline exponentially, 

which is already used in the previous chapter when developing the EWMA 

(Exponentially Weighted Moving Average) model for monitoring volatility. The 

weight assigned to Scenario 1 (which is the one calculated from the most distant 

data) is 𝜆 times that assigned to Scenario 2. This in turn is 𝜆 times that given to 

Scenario 3, and so on. In general, the weight given to Scenario 𝑘 is: 

𝜆𝑚−𝑘 ⋅ (1 − 𝜆)

1 − 𝜆𝑚
 

where 𝑚 is the number of scenarios. It is important to notice that the previous 

definition of the different weights for the 𝑚 observations is consistent since they 

sum to unity: 

∑
𝜆𝑚−𝑗 ⋅ (1 − 𝜆)

1 − 𝜆𝑚
= 1

𝑚

𝑗=1
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The parameter 𝜆 ∈ (0,1] can be chosen by trying different values and seeing which 

one is the best according to back testing. Furthermore, it is interesting to observe 

that as 𝜆 approaches 1, this method approaches the basic historical simulation 

where all observations are given a weight of 1/𝑚: 

lim 
𝜆→1 

𝜆𝑚−𝑗 ⋅ (1 − 𝜆)

1 − 𝜆𝑚
=
1

𝑚
 

Then, having defined all the weights, the Value at Risk measure is calculated by 

ranking the observations from the worst outcome to the best. Starting from the 

worst outcome, weights are summed until the required quantile of the distribution 

is reached. For instance, if it is calculating V.a.R. with a 95% confidence level, the 

weights are continued to be summed until the sum just exceed 0,05. Thus, in the 

hybrid approach the Value at Risk measure depends on how recent the worst 

scenarios occurred. In fact, using the basic historical simulation method over a 

period of 100 days, the daily V.a.R. of the portfolio at the 95% confidence level is 

always estimated as the fifth highest loss. Instead, using the hybrid approach, if the 

greatest losses occur in a relatively recent time the V.a.R. measure is represented 

by the value of a worse loss than the fifth one, while if they occur in the most distant 

scenarios V.a.R. corresponds to a better outcome than those calculated with the 

basic historical simulation. 

Although it is empirically shown that the hybrid approach represents an 

improvement in the accuracy of V.a.R. estimates compared to the ones obtained 

with the traditional historical simulation and parametric approach, this method is 

criticized on the grounds that it represents an indirect and somewhat inefficient way 

of considering stochastic volatility in the empirical distribution of 𝐿𝒉,𝑡+1. In fact, in 

the hybrid approach a short run sequence of abnormally large positive (or negative) 

returns of the market variables will markedly skew the predicted distribution to the 

right (or the left). For instance, when 𝜆 = 0,98, the most recent observation is 

assigned a probability of about 2% so that a single large outcome is enough to 

generate this sort of skew. As a consequence, the hybrid method shortens the 
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effective sampling period to capture the behavior of stochastic volatility. 

Unfortunately, in doing so it captures the stochastic behavior of all other sample 

moments of the distribution. 
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4.4 Volatility updating schemes 
 

A different method used in quantitative risk management to overcome the main 

drawback of the hybrid approach is described in Hull and White (1998). In this paper 

it is proposed to incorporate volatility updating schemes into historical simulation 

in order to bridge the gap between this method and the parametric approach. In 

fact, it is observed that the probability distribution of a market variable’s return, 

when scaled by an estimate of its volatility, is found to be approximately stationary. 

So, historical simulation can be improved by considering the volatility changes 

experienced during the period covered by the historical data. For instance, if the 

current volatility of a market variable is 2% per day and three months ago the 

volatility was only 1% per day, the data observed three months ago understates the 

changes it is expected to see now. On the other hand, if the volatility was 3% per 

day three months ago the reverse is true. 

For the purpose of V.a.R. calculation, it is monitored the daily volatility of each 

market variable included in the portfolio using either a GARCH or EWMA model. 

Thus, it is defined: 

- 𝑥𝑖,𝑘 the historical linear return in the variable 𝑖 on day 𝑘 of the period covered 

by the historical sample (𝑘 = 1,2, … ,𝑚); 

- 𝜎𝑖,𝑘
2  the historical GARCH/EWMA estimate of the daily variance of the linear 

return in the variable 𝑖 made for day 𝑘 at the end of day 𝑘 − 1. 

The most recent estimate of the daily variance in the return of the variable 𝑖 is 𝜎𝑖,𝑚+1
2  

made at the end of day 𝑚 for day 𝑚 + 1. Since it is assumed that the probability 

distribution of 𝑥𝑖,𝑘/𝜎𝑖,𝑘 is stationary, it is replaced 𝑥𝑖,𝑘  by 𝑥𝑖,𝑘
∗  where: 

𝑥𝑖,𝑘
∗ = 𝑥𝑖,𝑘 ⋅

𝜎𝑖,𝑚+1
𝜎𝑖,𝑘

 

and set the sample return at day 𝑘 for variable 𝑖 to 𝑥𝑖,𝑘
∗  instead of 𝑥𝑖,𝑘. 
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Therefore, instead of using the actual historical percentage returns in market 

variables for the purposes of calculating Value at Risk, this approach builds the 

empirical distribution of 𝐿𝒉,𝑡+1 using historical returns that have been adjusted to 

reflect the ratio of the current daily volatility with respect to the one at the time of 

the observation. So, from this point on, the steps required to compute the V.a.R. 

measure of the portfolio are the same to the ones explained for the traditional 

historical simulation. In addition, it is interesting to notice that the V.a.R. estimates 

can be greater than any of the historical losses that would have occurred for the 

current portfolio during the historical period considered, especially if the current 

volatility of the underlying market variables is relatively high. 

To conclude, in their scientific article Hull and White produce evidence using 

exchange rates and stock indices to show that this approach is superior to traditional 

historical simulation and to the hybrid method described earlier because it produces 

V.a.R. estimates which are demonstrated to be more accurate in quantifying the 

portfolio losses at a given confidence level. 
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5. EMPIRICAL ANALYSIS 
 

In this chapter it will be calculated the Value at Risk measure of a financial portfolio 

made up by four of the most important stocks included in the index NASDAQ 100, 

which are: 

- Google (GOOGL) 

- Microsoft (MSFT) 

- Apple (AAPL) 

- Intel (INTC) 

Successively, it will be shown the benefits of diversification related to this portfolio 

comparing the V.a.R. calculated at a portfolio level with the one computed for each 

asset individually. 

In conclusion, it will be explained the concept of back testing and then it is used to 

monitor the accuracy of the estimation methods in quantifying the portfolio losses 

at a given confidence level. 
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5.1 Example of V.a.R. calculation 
 

To illustrate how the Value at Risk measure is estimated with all the methods 

explained so far, it is assumed that an U.S. investor on 1st May 2021 holds a portfolio 

consisting of: 

- 1.000 shares of Google (GOOGL) 

- 10.000 shares of Microsoft (MSFT) 

- 20.000 shares of Apple (AAPL) 

- 50.000 shares of Intel (INTC) 

which are four stocks belonging to the technological sector of the NASDAQ 100. The 

numbers of shares are chosen to balance the current value of each asset in the 

portfolio and they represent the vector of the quantities 𝒉 in the given models. 

Before starting the description of the steps required to estimate the Value at Risk 

measure of this portfolio, it is necessary to choose the confidence level and the time 

horizon. Hence, for all the methods that will be used, it is decided to set the 

confidence level equal to 99% and the time horizon equal to one day.  

Then, in order to build the distribution of the daily portfolio’s loss, it is collected the 

closing prices of these market variables on the most recent 501 trading days (from 

07/05/2019 to 30/04/2021), which are summarized in Table 1: 

DATE DAY 
(𝒌) 

GOOGL 
(𝒊 = 𝟏) 

MSFT 
(𝒊 = 𝟐) 

AAPL 
(𝒊 = 𝟑) 

INTC 
(𝒊 = 𝟒) 

07/05/2019 0 $1.178,86 $125,52 $50,72 $50,48 

08/05/2019 1 $1.170,78 $125,51 $50,73 $49,24 

09/05/2019 2 $1.167,97 $125,50 $50,18 $46,62 

10/05/2019 3 $1.167,64 $127,13 $49,29 $46,20 

13/05/2019 4 $1.136,59 $123,35 $46,43 $44,76 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

23/03/2020 221 $1.054,13 $135,98 $56,09 $49,58 

24/03/2020 222 $1.130,01 $148,34 $61,72 $52,40 

25/03/2020 223 $1.101,62 $146,92 $61,38 $51,26 

26/03/2020 224 $1.162,92 $156,11 $64,61 $55,54 

27/03/2020 225 $1.110,26 $149,70 $61,94 $52,37 
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⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

26/04/2021 496 $2.309,93 $261,55 $134,72 $58,76 

27/04/2021 497 $2.290,98 $261,97 $134,39 $57,97 

28/04/2021 498 $2.359,04 $254,56 $133,58 $57,62 

29/04/2021 499 $2.392,76 $252,51 $133,48 $58,28 

30/04/2021 500 $2.353,50 $252,18 $131,46 $57,53 
Table 1: Market variables’ prices over the last 501 trading days (Source: Investing) 

Successively, from the market variables’ closing prices, it is calculated the daily 

percentage returns using the following formula: 

𝑥𝑖,𝑘 =
𝑃𝑖,𝑘 − 𝑃𝑖,𝑘−1
𝑃𝑖,𝑘−1

 

where 𝑖 = 1,2,3,4 and 𝑘 = 1,2, … ,500. So, in Table 2 are shown the results of these 

computations: 

DAY GOOGL MSFT AAPL INTC 

1 -6,85E-03 -7,97E-05 1,97E-04 -2,46E-02 

2 -2,40E-03 -7,97E-05 -1,08E-02 -5,32E-02 

3 -2,83E-04 1,30E-02 -1,77E-02 -9,01E-03 

4 -2,66E-02 -2,97E-02 -5,80E-02 -3,12E-02 

5 -1,03E-02 1,12E-02 1,59E-02 9,16E-03 

⋮ ⋮ ⋮ ⋮ ⋮ 

221 -1,32E-02 -9,97E-03 -2,13E-02 8,18E-02 

222 7,20E-02 9,09E-02 1,00E-01 5,69E-02 

223 -2,51E-02 -9,57E-03 -5,51E-03 -2,18E-02 

224 5,56E-02 6,26E-02 5,26E-02 8,35E-02 

225 -4,53E-02 -4,11E-02 -4,13E-02 -5,71E-02 

⋮ ⋮ ⋮ ⋮ ⋮ 

496 4,35E-03 1,53E-03 2,98E-03 -8,10E-03 

497 -8,20E-03 1,61E-03 -2,45E-03 -1,34E-02 

498 2,97E-02 -2,83E-02 -6,03E-03 -6,04E-03 

499 1,43E-02 -8,05E-03 -7,49E-04 1,15E-02 

500 -1,64E-02 -1,31E-03 -1,51E-02 -1,29E-02 
Table 2: Market variables’ daily percentage returns 

In addition, for each day of the considered period it is calculated the portfolio’s value 

as: 

𝑉𝒉,𝑘 = 𝑞1 ⋅ 𝑃1,𝑘 + 𝑞2 ⋅ 𝑃2,𝑘 + 𝑞3 ⋅ 𝑃3,𝑘 + 𝑞4 ⋅ 𝑃4,𝑘 

where 𝑘 = 0,1, … ,500 and the resulting values are summarized in Table 3: 
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DATE PORTFOLIO’S VALUE 

07/05/2019 $5.972.460,00 

08/05/2019 $5.902.480,00 

09/05/2019 $5.757.570,00 

10/05/2019 $5.734.740,00 

13/05/2019 $5.536.690,00 

⋮ ⋮ 

23/03/2020 $6.014.730,00 

24/03/2020 $6.467.810,00 

25/03/2020 $6.361.420,00 

26/03/2020 $6.793.220,00 

27/03/2020 $6.464.560,00 

⋮ ⋮ 

26/04/2021 $10.557.830,00 

27/04/2021 $10.496.980,00 

28/04/2021 $10.457.240,00 

29/04/2021 $10.501.460,00 

30/04/2021 $10.381.000,00 
Table 3: Portfolio's value over the last 501 trading days 

As it can be easily noticed, the portfolio has almost doubled its value with respect 

to the beginning of the given period. 

From now on the steps followed in the calculation of the Value at Risk measure 

depend on the specific approach used. Hence, in order to be as clear as possible, 

every method is treated separately and for each of them it is dedicated a section 

within this paragraph. 

 

5.1.1 Linear model example 
 

In the linear model it is supposed that the market variables’ returns follow a normal 

distribution with expected value equal to zero. Hence, first of all it is necessary to 

verify if the mean of the daily asset’s returns can be assumed zero. For this purpose, 

it is performed a bilateral hypothesis test at 95% confidence level in which it is tested 

the null hypothesis 𝐻0: 𝜇𝑖 = 0 against the alternative hypothesis 𝐻1: 𝜇𝑖 ≠ 0 for all 

the considered market variables (𝑖 = 1,2,3,4). 
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Thus, using the results represented in Table 2 it is calculated for each asset’s return 

the sample mean and the standard deviation. Then, it is performed the above-

mentioned hypothesis test and the outcomes are shown in Table 4: 

 
SAMPLE MEAN SAMPLE STANDARD 

DEVIATION 
P-VALUE 

(𝝁𝒊 = 𝟎) 
GOOGL 1,60E-03 2,06E-02 46,92% 

MSFT 1,63E-03 2,17E-02 47,00% 

AAPL 2,19E-03 2,39E-02 46,35% 

INTC 6,48E-04 2,77E-02 49,07% 
Table 4: Hypothesis test 

Since the p-value is far greater than the pre-defined threshold (𝛼/2 = 2,5%) for all 

the market variables, the null hypothesis cannot be rejected at the significance level 

of 95%. 

Having shown that the mean of the market variables returns’ can be assumed zero, 

the next step consists in the calculation of their variance. For this purpose, it is used 

the Exponentially Weighted Moving Average (EWMA) with 𝜆 = 0,94. However, it is 

necessary to decide how to initialize the model, which means to choose for each 

market variable a value of the variance for the first day. In the scientific literature 

there are two main approaches used for the initialization of the model, which are: 

- Set the first variance of each market variable equal to the sample variance of 

the returns in the selected period; 

- Set the first variance of each asset equal to its first squared return. 

It is decided to go with the first option because it produces consistent values of 

variance from the beginning of the given period even if this choice does not affect 

the final values in a significative way. Then, from Day 2 variances are calculated using 

the following formula: 

𝜎𝑖,𝑘
2 = 0,94 ⋅ 𝜎𝑖,𝑘−1

2 + (1 − 0,94) ⋅ 𝑥𝑖,𝑘−1
2  

where 𝑖 = 1,2,3,4 and 𝑘 = 2,3, … 501. The results of these calculations are reported 

in Table 5:  
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DAY GOOGL MSFT AAPL INTC 

1 4,26E-04 4,71E-04 5,73E-04 7,68E-04 

2 4,04E-04 4,42E-04 5,38E-04 7,58E-04 

3 3,80E-04 4,16E-04 5,13E-04 8,82E-04 

4 3,57E-04 4,01E-04 5,01E-04 8,34E-04 

5 3,78E-04 4,30E-04 6,73E-04 8,42E-04 

⋮ ⋮ ⋮ ⋮ ⋮ 

221 2,17E-03 3,72E-03 3,22E-03 5,67E-03 

222 2,05E-03 3,50E-03 3,06E-03 5,73E-03 

223 2,24E-03 3,79E-03 3,48E-03 5,58E-03 

224 2,15E-03 3,57E-03 3,27E-03 5,28E-03 

225 2,20E-03 3,59E-03 3,24E-03 5,38E-03 

⋮ ⋮ ⋮ ⋮ ⋮ 

496 2,34E-04 1,85E-04 2,77E-04 5,73E-04 

497 2,21E-04 1,74E-04 2,61E-04 5,42E-04 

498 2,12E-04 1,64E-04 2,45E-04 5,21E-04 

499 2,52E-04 2,02E-04 2,33E-04 4,92E-04 

500 2,49E-04 1,94E-04 2,19E-04 4,70E-04 

501 2,50E-04 1,82E-04 2,19E-04 4,52E-04 
Table 5: Variances of the market variables’ daily returns 

Thereafter, it is necessary also to compute the covariances between the returns of 

each pair of market variables. For this purpose, it is used again the EWMA model 

with 𝜆 = 0,94 and are still valid the considerations made for the variance 

calculation. However, the only difference is related to the initialization of the model 

since the first values of covariances are set equal to the sample covariance of each 

pair of market variables’ returns. Instead, for all the other days the covariances are 

calculated as: 

𝑐𝑜𝑣𝑖,𝑗,𝑘 =0,94 ⋅ 𝑐𝑜𝑣𝑖,𝑗,𝑘−1+(1 − 0,94) ⋅ 𝑥𝑖,𝑘−1 ⋅ 𝑥𝑗,𝑘−1 

where 𝑖 = 1,2,3,4, 𝑗 > 𝑖 and 𝑘 = 2,3, …501. The results of these calculations are 

shown in Table 6: 

DAY GOOGL-
MSFT 

GOOGL-
AAPL 

GOOGL-
INTC 

MSFT-
AAPL 

MSFT-
INTC 

AAPL-
INTC 

1 3,61E-04 3,42E-04 3,32E-04 4,15E-04 4,01E-04 4,00E-04 

2 3,39E-04 3,22E-04 3,23E-04 3,90E-04 3,77E-04 3,76E-04 

3 3,19E-04 3,04E-04 3,11E-04 3,67E-04 3,55E-04 3,88E-04 

4 2,99E-04 2,86E-04 2,92E-04 3,31E-04 3,27E-04 3,74E-04 

5 3,29E-04 3,62E-04 3,25E-04 4,15E-04 3,63E-04 4,60E-04 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
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221 2,75E-03 2,52E-03 3,16E-03 3,31E-03 4,34E-03 3,87E-03 

222 2,59E-03 2,39E-03 2,91E-03 3,12E-03 4,03E-03 3,53E-03 

223 2,83E-03 2,68E-03 2,98E-03 3,48E-03 4,10E-03 3,66E-03 

224 2,68E-03 2,52E-03 2,83E-03 3,27E-03 3,87E-03 3,45E-03 

225 2,72E-03 2,55E-03 2,94E-03 3,28E-03 3,95E-03 3,51E-03 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

496 1,63E-04 1,77E-04 8,82E-05 1,76E-04 1,24E-04 1,53E-04 

497 1,54E-04 1,68E-04 8,08E-05 1,66E-04 1,16E-04 1,43E-04 

498 1,44E-04 1,59E-04 8,25E-05 1,56E-04 1,07E-04 1,36E-04 

499 8,48E-05 1,38E-04 6,68E-05 1,56E-04 1,11E-04 1,30E-04 

500 7,28E-05 1,29E-04 7,26E-05 1,47E-04 9,89E-05 1,22E-04 

501 6,97E-05 1,37E-04 8,09E-05 1,40E-04 9,40E-05 1,26E-04 
Table 6: Covariances of the market variables’ daily returns 

Thus, using the most recent values of variances and covariances which are present 

in the last row of the previous two tables, it can be built the covariance matrix 𝛴, 

which is represented in Table 7: 

 
GOOGL MSFT AAPL INTC 

GOOGL 2,50E-04 6,97E-05 1,37E-04 8,09E-05 

MSFT 6,97E-05 1,82E-04 1,40E-04 9,40E-05 

AAPL 1,37E-04 1,40E-04 2,19E-04 1,26E-04 

INTC 8,09E-05 9,40E-05 1,26E-04 4,52E-04 
Table 7: Covariance Matrix 

Successively, it is constructed the vector 𝑽𝑡 multiplying the number of shares of a 

given market variable held by the investor with the respective price observed on the 

last trading day (Day 500): 

𝑽𝑡 =

(

 

𝑉1,𝑡
𝑉2,𝑡
𝑉3,𝑡
𝑉4,𝑡)

 = (

$2.353.500,00
$2.521.800,00
$2.629.200,00
$2.876.500,00

) 

The values in this vector represent the monetary positions on the most recent 

trading day in Google stock, Microsoft stock, Apple stock and Intel stock, 

respectively. 

Then, it can be estimated the daily portfolio’s volatility (measured in $) for the next 

trading day with the following formula: 
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𝜎𝒉 = √𝑽𝑡
′ 𝛴𝑽𝑡 = $128.603,36 

At this point all the required computations have been performed and it can be 

stated that the daily portfolio’s loss has the following distribution: 

𝐿𝒉,𝑡+1~𝑁(0, 𝜎𝒉
2) → 𝐿𝒉,𝑡+1~𝑁($0, $128.603,36

2) 

Finally, the estimate of the Value at Risk measure for the next trading day using the 

linear model is obtained as: 

𝑉𝐴𝑅𝒉,𝛼,𝑡+1 = 𝑧𝛼 ⋅ 𝜎𝒉 = $299.176,15 

where 𝑧𝛼 = 2,33 and it represents the quantile of the standard normal distribution 

corresponding to the 99% probability level. 

Since the assets included in the portfolio are only stocks, the quadratic model has 

no differences compared to the linear one and it is redundant to show what are the 

calculations underlying this model. 

  

5.1.2 Monte Carlo simulation example 
 

The steps to be followed in the Monte Carlo simulation are the same as those 

explained in the linear model until the calculation of the portfolio’s covariance 

matrix for the next trading day. However, using this method it is more convenient 

to work with the correlation matrix instead of the covariance matrix. Therefore, 

starting from the latter, it can be obtained the correlation matrix which is 

summarized in Table 8: 

 
GOOGL MSFT AAPL INTC 

GOOGL 1,00 0,32 0,58 0,24 

MSFT 0,32 1,00 0,68 0,31 

AAPL 0,58 0,68 1,00 0,39 

INTC 0,24 0,31 0,39 1,00 
Table 8: Correlation matrix 
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Before proceeding further, in the Monte Carlo simulation it must be chosen the 

number of trials to be performed in order to build the probability distribution of the 

daily portfolio’s losses. Hence, it is decided to perform one thousand simulations 

because this number is considered to be a good tradeoff between the 

computational complexity of this approach and the resulting error of the estimate. 

In order to build one trial of the given sample, the starting point is to obtain four 

random values (one for each market variable) from the standard normal distribution 

which are extracted using the Microsoft Excel’s built-in function NORM.S.INV 

(RANDOM ()) and termed 𝑧1, 𝑧2, 𝑧3 and 𝑧4. Then, this procedure is repeated one 

thousand of times and the outcomes are shown in Table 9: 

TRIAL GOOGL (𝒛𝟏) MSFT (𝒛𝟐) AAPL (𝒛𝟑) INTC (𝒛𝟒) 

1 0,9877 -0,3130 0,9403 -0,4478 

2 -1,2366 0,9847 0,1221 0,6370 

3 0,7286 1,0220 0,7515 -0,6467 

4 -1,5245 1,7060 0,9422 1,1943 

5 -1,0397 0,6304 -0,6525 -1,1886 

⋮ ⋮ ⋮ ⋮ ⋮ 

498 0,7120 -1,2703 0,8472 -0,2894 

499 -1,5800 -0,2197 1,1657 0,6060 

500 -1,3919 0,0683 -0,7844 1,0345 

501 0,3356 1,0797 0,6570 1,5872 

502 -1,7357 -0,7123 -1,5094 -1,4475 

⋮ ⋮ ⋮ ⋮ ⋮ 

996 0,7217 0,4950 0,3709 3,1010 

997 0,1511 -0,4946 -0,7326 -1,2760 

998 -0,5327 0,6243 1,6299 -1,5468 

999 -0,4659 0,6563 0,6682 1,2934 

1000 -0,3706 -1,2090 -0,7653 -0,6144 
Table 9: Random values obtained from the standard normal distribution 

After that, in order to find out the random values of the standard normal distribution 

according to the correlation scheme among the market variables included in the 

portfolio, it must be calculated the value of the coefficients 𝑎𝑖𝑗  where 𝑖 = 1,2,3,4 

and 𝑗 ≤ 𝑖. Hence, basing on the formulas presented in the paragraph in which it is 

explained the Monte Carlo simulation, every coefficient is calculated as: 

𝑎11 = 1 
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𝑎21 =
𝜌1,2
𝑎11

= 0,3262 

𝑎22 = √1 − 𝑎21
2 = 0,9453 

𝑎31 =
𝜌1,3
𝑎11

= 0,5826 

𝑎32 =
𝜌2,3 − 𝑎31 ⋅ 𝑎21

𝑎22
= 0,5382 

𝑎33 = √1 − 𝑎31
2 − 𝑎32

2 = 0,6090 

𝑎41 =
𝜌1,4
𝑎11

= 0,2406 

𝑎42 =
𝜌2,4 − 𝑎41 ⋅ 𝑎21

𝑎22
= 0,2635 

𝑎43 =
𝜌3,4 − 𝑎41 ⋅ 𝑎31 − 𝑎42 ⋅ 𝑎32

𝑎33
= 0,1947 

𝑎44 = √1 − 𝑎41
2 − 𝑎42

2 − 𝑎43
2 = 0,9137 

So, for a given trial it is obtained the random values of the standard normal 

distribution which are based on the correlation scheme among the market variables 

according to the following relations: 

𝜀1 = 𝑎11 ⋅ 𝑧1 

𝜀2 = 𝑎21 ⋅ 𝑧1 + 𝑎22 ⋅ 𝑧2 

𝜀3 = 𝑎31 ⋅ 𝑧1 + 𝑎32 ⋅ 𝑧2 + 𝑎33 ⋅ 𝑧3 

𝜀4 = 𝑎41 ⋅ 𝑧1 + 𝑎42 ⋅ 𝑧2 + 𝑎43 ⋅ 𝑧3 + 𝑎44 ⋅ 𝑧4 

Repeating these calculations for all the considered simulations, it is obtained the 

outcomes shown in Table 10: 

TRIAL GOOGL (𝜺𝟏) MSFT (𝜺𝟐) AAPL (𝜺𝟑) INTC (𝜺𝟒) 

1 0,9877 0,0263 0,9797 -0,0709 

2 -1,2366 0,5274 -0,1162 0,5677 
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3 0,7286 1,2038 1,4322 0,0001 

4 -1,5245 1,1153 0,6037 1,3572 

5 -1,0397 0,2567 -0,6639 -1,2971 

⋮ ⋮ ⋮ ⋮ ⋮ 

498 0,7120 -0,9685 0,2471 -0,2628 

499 -1,5800 -0,7231 -0,3289 0,3426 

500 -1,3919 -0,3895 -1,2520 0,4755 

501 0,3356 1,1301 1,1767 1,9433 

502 -1,7357 -1,2395 -2,3139 -2,2217 

⋮ ⋮ ⋮ ⋮ ⋮ 

996 0,7217 0,7033 0,9128 3,2095 

997 0,1511 -0,4183 -0,6243 -1,4024 

998 -0,5327 0,4164 1,0183 -1,0596 

999 -0,4659 0,4684 0,4886 1,3726 

1000 -0,3706 -1,2638 -1,3327 -1,1180 
Table 10: Random values obtained according to the correlation scheme 

Successively, it is computed for each trial the daily return of each market variable 

as: 

∆𝑥𝑖,𝑘 = 𝜎𝑖,𝑡+1 ⋅ 𝜀𝑖,𝑘 

where 𝑖 = 1,2,3,4 and 𝑘 = 1,2, … ,1000. Then, for every simulation it can be 

calculated the resulting portfolio’s loss with the following equation: 

𝐿𝒉,𝑡+1,𝑘 = −∑𝑞𝑖 ⋅ 𝑃𝑖,𝑡 ⋅ 𝜎𝑖,𝑡+1 ⋅ 𝜀𝑖,𝑘

4

𝑖=1

 

where 𝑘 = 1,2, … ,1000. Finally, daily losses are ranked from the biggest to the 

smallest one and the results are summarized in Table 11: 

TRIAL LOSS 

667 $524.835,30 

759 $402.340,12 

487 $381.240,90 

61 $373.982,37 

381 $365.928,69 

34 $357.694,38 

611 $345.333,88 

502 $332.790,83 

508 $322.380,42 

390 $321.792,07 

700 $321.591,89 
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578 $312.587,82 

914 $308.612,60 

144 $307.550,77 

41 $306.398,45 

863 $304.223,12 

563 $298.155,33 

⋮ ⋮ 
Table 11: Ranked simulated portfolio's losses 

So, the Value at Risk measure corresponds to the loss present in the tenth position, 

which is $321.792,07. 

Using the Monte Carlo simulation method, it is also interesting to see the density 

distribution of the losses resulting from the performed trials. Therefore, in Figure 6 

it is shown the frequency with which the losses belong to a given bin:  

 

Figure 6: Loss Distribution obtained from Monte Carlo simulation 

From the previous figure, it can be observed that the frequency distribution is a bell-

shaped function and the majority of the losses (714) belong to the range [-

$135.000,$135.000]. 

In addition, calculating the sample standard deviation of the loss distribution, which 

is 𝑠𝑳 = $129.570,67, it can be noticed that it can be well approximated by the 
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normal distribution also because about two-thirds of the observations (684) fall 

within one standard deviation from the average value, which is assumed to be zero. 

Finally, it can be calculated the standard error of the estimate as: 

𝑆𝐸 =
𝑠𝑳

√𝑚
=
$129.570,67

√1000
= $4.097,38 

This result confirms that, as it was said before, using 1000 trials the error of the 

estimate is very small (around 1,5%) in relation to the value of the Value at Risk 

measure calculated with the Monte Carlo simulation. 

 

5.1.3 Historical simulation example 
 

Using the traditional historical simulation it is not necessary to calculate variances 

and covariances as it is done in the previous two methods, but from the market 

variables’ returns it can be computed directly the portfolio’s loss for each day of the 

given period using the following formula: 

𝐿𝒉,𝑘 = −∑𝑞𝑖

4

𝑖=1

⋅ 𝑃𝑖,𝑘−1 ⋅ ∆𝑥𝑖,𝑘 

where 𝑖 = 1,2,3,4 and 𝑘 = 1,2, … 500. Then, all the losses are sorted in a 

descending order and the results are summarized in Table 12: 

DAY LOSS 

216 $1.045.170,00 

214 $687.050,00 

211 $549.850,00 

336 $534.780,00 

307 $516.240,00 

204 $482.020,00 

277 $461.800,00 

338 $394.810,00 

374 $371.280,00 

455 $350.160,00 

201 $344.000,00 
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225 $328.660,00 

470 $311.180,00 

241 $305.190,00 

213 $302.570,00 

228 $294.650,00 

452 $291.550,00 

⋮ ⋮ 
Table 12: Ranked portfolio's losses 

The daily Value at Risk measure corresponds to the fifth highest loss, which is 

$516.240,00. 

In addition, it is interesting to see the empirical density function of the portfolio’s 

loss over the last 500 trading days which is shown in Figure 7: 

 

Figure 7: Historical Portfolio's Loss Distribution 

From the previous graph, it can be observed that the distribution is a bell-shaped 

function and the majority of the losses (397) belong to the range [-

$150.000,$150.000]. Then, it can be also estimated the average value (-$8.817,08) 

and the sample deviation ($157.090,25) of the historical losses. 

Finally, assuming that empirical losses can be fitted using the normal distribution 

with the previous parameters, it can be calculated the probability density function 
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𝑓(𝑥) of the quantile corresponding to a confidence level equal to 99%, which is 

1,93 ⋅ 10−7. So, the standard error of the estimate can be calculated as: 

𝑆𝐸 =
1

𝑓(𝑥)
√
(1 − 𝛼) ⋅ 𝛼

𝑚
=

1

1,93 ⋅ 10−7
√
(1 − 0,99) ⋅ 0,99

500
= $23.165,64 

Comparing the standard error of the estimate with the Value at Risk measure 

calculated in the historical simulation, it can be noticed that it is relatively small since 

it is about 4,5% of the V.a.R. measure. 

 

5.1.4 Hybrid approach example 
 

The steps required to compute the V.a.R. measure in the hybrid approach are the 

same followed in the traditional historical simulation. The only difference concerns 

the fact that each loss has a different weight basing on the day in which it occurs. 

The chosen weighting scheme is the one presented in the related paragraph with 

𝜆 = 0,94 and the loss observed on Day 𝑘 is given a weight equal to: 

0,94500−𝑘 ⋅ (1 − 0,94)

1 − 0,94500
 

For instance, the loss occurs on Day 1 is given a weight equal to 2,34 ⋅ 10−15 while 

the one observed on Day 500 has a weight equal to 0,06. Then, as it was done in the 

traditional historical simulation, losses are ranked from the highest to lowest one 

but for each of them it is also reported the corresponding weight as it can be noticed 

in Table 13: 

DAY LOSS WEIGHT 

216 $1.045.170,00 1,40E-09 

214 $687.050,00 1,24E-09 

211 $549.850,00 1,03E-09 

336 $534.780,00 2,35E-06 

307 $516.240,00 3,91E-07 

204 $482.020,00 6,67E-10 

277 $461.800,00 6,10E-08 
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338 $394.810,00 2,66E-06 

374 $371.280,00 2,47E-05 

455 $350.160,00 3,71E-03 

201 $344.000,00 5,54E-10 

225 $328.660,00 2,45E-09 

470 $311.180,00 9,38E-03 

241 $305.190,00 6,58E-09 

213 $302.570,00 1,16E-09 

228 $294.650,00 2,94E-09 

452 $291.550,00 3,08E-03 

⋮ ⋮ ⋮ 
Table 13: Ranked portfolio's losses with weights 

The daily Value at Risk measure of the portfolio corresponds to the highest loss for 

which the cumulative weight overcomes 1% and it occurs on Day 470, when the loss 

is $311.180,00. It is interesting to notice that this approach produces a V.a.R. 

measure which is lower than the one calculated with traditional historical simulation 

since the greatest losses occurred not so recently. 

 

5.1.5 Volatility updating scheme example 
 

Using the volatility updating scheme it is necessary to compute variances for the 

market variables’ returns. Again, it is used the EWMA model with 𝜆 = 0,94 and the 

results are already calculated in Table 5. 

Successively, for each market variable 𝑖 and day 𝑘, it is calculated the volatility ratio 

using the following formula: 

𝜎𝑖,501
𝜎𝑖,𝑘

 

where 𝑖 = 1,2,3,4 and 𝑘 = 1,2, … ,500. The outcomes of these computations are 

summarized in Table 14: 

DAY GOOGL (𝜺𝟏) MSFT (𝜺𝟐) AAPL (𝜺𝟑) INTC (𝜺𝟒) 

1 0,77 0,62 0,62 0,77 

2 0,79 0,64 0,64 0,77 

3 0,81 0,66 0,65 0,72 
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4 0,84 0,67 0,66 0,74 

5 0,81 0,65 0,57 0,73 

⋮ ⋮ ⋮ ⋮ ⋮ 

221 0,34 0,22 0,26 0,28 

222 0,35 0,23 0,27 0,28 

223 0,33 0,22 0,25 0,28 

224 0,34 0,23 0,26 0,29 

225 0,34 0,23 0,26 0,29 

⋮ ⋮ ⋮ ⋮ ⋮ 

496 1,03 0,99 0,89 0,89 

497 1,06 1,02 0,92 0,91 

498 1,09 1,05 0,95 0,93 

499 1,00 0,95 0,97 0,96 

500 1,00 0,97 1,00 0,98 
Table 14: Volatility ratio 

In addition, in Figure 8 it is plotted the evolution of the volatility ratio of each market 

variable over the considered period: 

 

Figure 8: Evolution of volatility ratios 

As it can be seen from the previous figure, at the beginning of the considered period 

the market variables’ volatilities are relatively low and their volatility ratios reach 

the peak at the end of 2019. Instead, during the first months of 2020 it can be 

noticed a fast increase in the level of volatilities and consequently a decrease in the 

assets’ volatility ratios caused by the Covid-19 pandemic.  
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After obtaining the volatility ratios for each trading day, it is calculated the adjusted 

returns as: 

𝑥𝑖,𝑘
∗ = 𝑥𝑖,𝑘 ⋅

𝜎𝑖,501
𝜎𝑖,𝑘

 

where 𝑖 = 1,2,3,4 and 𝑘 = 1,2, … ,500. 

Then, portfolio’s losses are calculated from the adjusted returns of the market 

variables and they are ranked in a descending order, as it can be seen in Table 15: 

DAY ADJUSTED 
LOSS 

307 $657.578,83 

204 $417.591,99 

336 $404.959,37 

371 $391.826,18 

277 $353.086,78 

201 $349.454,26 

211 $329.172,77 

214 $323.314,04 

216 $318.954,80 

455 $302.198,03 

182 $283.906,98 

374 $274.479,50 

452 $257.548,23 

62 $253.995,35 

410 $253.270,32 

470 $248.307,68 

338 $247.231,79 

⋮ ⋮ 
Table 15: Losses calculated from adjusted returns 

Therefore, the daily Value at Risk measure is estimated as the fifth highest loss, 

which corresponds to $353.086,78. 
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5.2 Benefits of diversification 
 

Diversification is a risk management strategy that aims to reduce the riskiness of a 

financial portfolio simply investing in a wide variety of assets. Harry Markowitz was 

one of the first researchers to study the benefits of diversification for a portfolio 

manager and he was awarded with the Nobel prize in 1990 for his publications about 

this theme. The rationale behind this technique is that a portfolio constructed of 

different kinds of assets will, on average, yield higher long-term returns and lower 

the risk of any individual holding or security. Diversification strives to smooth out 

unsystematic risk, which is unique to a specific company, so that the positive 

performance of some investments neutralizes the negative performance of others. 

The benefits of diversification hold only if the securities in the portfolio are not 

perfectly correlated, so they respond differently to market influences. 

In this paragraph it will be quantified the benefits of diversification for the financial 

portfolio analyzed so far, choosing the daily Value at Risk at the 99% confidence level 

as a measure of the portfolio’s risk. More specifically, for each method it will be 

made a comparison between the V.a.R. calculated at a portfolio level and the sum 

of V.a.R. measures computed for each asset individually.  

Concerning the V.a.R. calculated at a portfolio level, it was already obtained the 

value of this measure for each of the methods explained in this thesis and the results 

are summarized in Table 16: 

METHOD DAILY 99% V.a.R. 

Linear Model $299.176,15 

Monte Carlo Simulation $321.792,07 

Historical Simulation $516.240,00 

Hybrid Approach $311.180,00 

Volatility Updating Scheme $353.086,78 
Table 16: Daily 99% V.a.R. of the portfolio 

Instead, concerning the Value at Risk measure calculated for each asset individually 

it is necessary to repeat all the computations made in the previous paragraph 
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neglecting the correlations among the market variables. However, without showing 

all the steps necessary to obtain this measure for each market variable individually, 

in Table 17 are reported for each method all the final values of Value at Risk: 

METHOD GOOGL MSFT AAPL INTC TOTAL 

Linear 
Model 

$86.654,62 $79.213,37 $90.594,33 $142.220,16 $398.682,48 

Monte Carlo 
Simulation 

$91.709,90 $84.766,30 $85.362,62 $148.222,08 $410.060,90 

Historical 
Simulation 

$88.080,00 $115.900,00 $129.200,00 $285.000,00 $618.180,00 

Hybrid 
Approach 

$67.860,00 $74.100,00 $87.200,00 $166.500,00 $395.660,00 

Volatility 
Updating 
Scheme 

$73.992,84 $62.015,43 $75.960,05 $187.067,97 $399.036,30 

Table 17: Daily 99% V.a.R. computed for each asset individually 

The first consideration that stands out is that historical simulation produces V.a.R. 

measures which are always higher with respect to any other method. This can be 

explained by the fact that the dataset takes into account the pandemic period in 

which stock prices have suffered sharp drops and the historical simulation is the 

method which suffers most. 

In addition, it can be easily noticed from Table 17 that for every method the sum of 

all the V.a.R. measures at the security level is always greater than the one computed 

for the portfolio on its whole. Hence, the benefits of diversification for each 

approach can be quantified by the difference between these two values and the 

results are shown in Table 18: 

METHOD BENEFITS OF 
DIVERSIFICATION 

PERCENTAGE ON 
PORTFOLIO’S V.a.R. 

MEASURE 

Linear Model $99.506,33 33,26% 

Monte Carlo Simulation $88.268,84 27,43% 

Historical Simulation $101.940,00 19,75% 

Hybrid Approach $84.480,00 27,15% 

Volatility Updating Scheme $45.949,52 13,01% 
Table 18: Benefits of diversification 
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From the results reported in the previous table it can be stated that on average risk, 

measured by the portfolio’s daily 99% Value at Risk, is reduced by approximately 

one fourth (25%) of its value thanks to the diversification effect.  
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5.3 Back testing 
 

Whatever the method used for calculating the Value at Risk, an important reality 

check is back testing. It involves testing how well the V.a.R. estimates would have 

performed in the past. 

Denoting as 𝑉𝐴𝑅𝒉,𝑡+𝛥𝑡 the Value at Risk measure of a portfolio 𝒉 which is estimated 

at time 𝑡 for a period of length equal to 𝛥𝑡, once it is arrived at time 𝑡 + 𝛥𝑡 there is 

the opportunity to compare the daily estimate with what actually happened. 

By definition of Value at Risk: 

𝑃(𝐿𝒉,𝑡+𝛥𝑡 ≥ 𝑉𝐴𝑅𝒉,𝑡+𝛥𝑡) = 1 − 𝛼 

so that the probability of a so-called violation of V.a.R. is 1 − 𝛼. Hence, it is 

introduced an indicator notation for violations of the Value at Risk estimates which 

is defined as: 

𝐼𝑡+𝛥𝑡: = 𝐼{𝐿𝒉,𝑡+𝛥𝑡≥𝑉𝐴𝑅𝒉,𝑡+𝛥𝑡} 

If the estimation method is reasonable then this indicator should behave like a 

Bernoulli random variable with probability of success close to 1 − 𝛼. More in detail, 

if it is considered 𝑚 periods, the number of violations over this 𝑚 periods should 

follow a binomial distribution with expected value equal to 𝑚 ⋅ (1 − 𝛼). For 

example, suppose that it is computed a daily Value at Risk at a confidence level of 

99%. Back testing would involve looking at how often the loss in a day exceeded the 

V.a.R. measure that would have been calculated for that day. If this happened on 

about 1% of the days, the methodology for calculating V.a.R. can be considered 

appropriate. If it happened on, say, 10% of days, the methodology must be revised. 
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5.4 Monitor the V.a.R. performance 
 

In this paragraph it will be applied back testing to show the performance that the 

daily 99% Value at Risk measure would have had in the 500 previous trading days 

for the chosen financial portfolio. 

It means that for all the considered period, it is compared the V.a.R. estimated on 

Day 𝑘 for Day 𝑘 + 1 with the loss occurred on Day 𝑘 + 1. Thus, if the loss exceeds 

the V.a.R. calculated for a given day it will be registered a violation. So, it is 

monitored the number of the violations occurred over the considered period in 

order to draw some conclusions about the adequacy of the estimation methods. 

However, given the huge computational effort due to the calculation of 500 daily 

V.a.R. measures for each method, back testing is applied only for linear model and 

historical simulation. 

Before showing the implementation of this technique for the above-mentioned 

methods, it is important to mention that, in order to have consistent values of V.a.R. 

from the first day of the given period, it is collected the closing prices of the chosen 

market variables on the 500 trading days (from 10/05/2017 to 06/05/2019) ahead 

of the considered period.  

 

5.4.1 Back testing and linear model 
  

Concerning the linear model, it is calculated the assets’ returns from the market 

variables’ closing prices and then, according to the EWMA model with 𝜆 = 0,94, it 

is computed their variances and covariances. Successively, for each day it is 

calculated the covariance matrix 𝛴𝑘+1 from the values of variances and covariances 

estimated on Day 𝑘 for Day 𝑘 + 1 and also the vector of the monetary position in 

the market variables 𝑽𝑘. 

After that, it is computed the daily portfolio’s volatility using the following formula: 



    

 

 
  72 

 

𝜎𝒉,𝑘+1 = √𝑽𝑘
′ 𝛴𝑘+1𝑽𝑘 

and successively it is calculated the corresponding daily 99% V.a.R. measure as: 

𝑉𝐴𝑅𝒉,𝛼,𝑘+1 = 𝑧𝛼 ⋅ 𝜎𝒉,𝑘+1 

where 𝑘 = 0,1, … ,499 and 𝑧𝛼 = 2,33. 

Then, the Value at Risk estimated on Day 𝑘 for Day 𝑘 + 1 is compared to the loss 

observed on Day 𝑘 + 1. If the loss on a given day is higher than the respective V.a.R. 

it is registered a violation and the occurrence of these violations during the 

considered period are reported in Table 19: 

DAY DATE VALUE AT RISK LOSS 

4 13/05/2019 $172.583,16 $198.050,00 

62 05/08/2019 $154.243,61 $227.570,00 

76 23/08/2019 $203.481,56 $222.040,00 

182 27/01/2020 $211.792,62 $247.840,00 

186 31/01/2020 $245.607,81 $245.770,00 

201 24/02/2020 $244.942,31 $344.000,00 

204 27/02/2020 $295.288,26 $482.020,00 

211 09/03/2020 $461.453,33 $549.850,00 

214 12/03/2020 $560.351,55 $687.050,00 

216 16/03/2020 $892.936,72 $1.045.170,00 

277 11/06/2020 $392.394,85 $461.800,00 

307 24/07/2020 $326.468,16 $516.240,00 

336 03/09/2020 $302.443,44 $534.780,00 

338 08/09/2020 $384.953,90 $394.810,00 

374 28/10/2020 $322.527,63 $371.280,00 

455 25/02/2021 $324.057,86 $350.160,00 
Table 19: Violations for daily 99% V.a.R. computed with linear model 

So, it can be noticed that using the linear model the number of violations in the 

previous 500 trading days is 16 which corresponds to 3,2% of the total. Since the 

number of violations over this period should behave like a binomial random variable 

with expected value 𝑚 ⋅ (1 − 𝛼), corresponding to 5, it can be computed the 

variance of this random variable as: 

𝑚 ⋅ 𝛼 ⋅ (1 − 𝛼) = 500 ⋅ 0,99 ⋅ (1 − 0,99) = 4,95 
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Then, it can be verified if the actual number of violations resulting from the linear 

model is significantly greater than the expected value from a statistical point of view. 

For this purpose, it is performed a unilateral hypothesis test at 99% significance level 

in which it is tested the null hypothesis 𝐻0: 𝜇 = 5 against the alternative hypothesis 

𝐻1: 𝜇 > 5. Since it is considered a number of days relatively high (𝑚 = 500), the 

binomial distribution can be well approximated by the normal one. So, with the 

normal distribution the resulting p-value is 0,00004% and then the null hypothesis 

should be rejected for the chosen significance level because this value is far below 

the pre-defined threshold (1%). Thus, it means that during the considered period 

the linear model systematically underestimated the portfolio’s Value at Risk and it 

can be related to the fact that the normal distribution is not the most suitable 

distribution to model daily assets’ returns. 

 

5.4.2 Back testing and historical simulation 
 

Concerning the historical simulation, for each day of the considered period it is 

calculated the portfolio’s losses over the preceding 500 trading days. Then, it is 

constructed a vector of losses in which they are ranked in a descending order and 

the Value at Risk measure for Day 𝑘 + 1 corresponds to the fifth highest loss of the 

vector. This procedure is repeated for 𝑘 = 0,1, … ,499 and for each day it is 

compared the resulting V.a.R. with the corresponding loss, recording a violation for 

each time the loss exceeds the respective V.a.R. measure. 

So, in Table 20 it is reported the occurrence of these violations during the considered 

period: 

DAY DATE VALUE AT RISK LOSS EXCEEDING 
AMOUNT 

201 24/02/2020 $249.190,00 $344.000,00 $94.810,00 

204 27/02/2020 $254.110,00 $482.020,00 $227.910,00 

207 03/03/2020 $257.790,00 $289.300,00 $31.510,00 

211 09/03/2020 $274.510,00 $549.850,00 $275.340,00 
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213 11/03/2020 $289.300,00 $302.570,00 $13.270,00 

214 12/03/2020 $292.210,00 $687.050,00 $394.840,00 

216 16/03/2020 $302.570,00 $1.045.170,00 $742.600,00 

277 11/06/2020 $344.000,00 $461.800,00 $117.800,00 

307 24/07/2020 $461.800,00 $516.240,00 $54.440,00 

336 03/09/2020 $482.020,00 $534.780,00 $52.760,00 
Table 20: Violations for daily 99% V.a.R. computed with historical simulation 

It can be noticed that using the historical simulation method the number of 

violations in the previous 500 trading days is 10 which corresponds to the 2% of the 

total. Then, it can be performed the same hypothesis test as the one made for the 

linear model in order to verify if the actual number of violations is significantly 

higher than its expected value. So, the resulting p-value is 1,23% and even if this 

value is near to the pre-defined threshold (1%), the null hypothesis cannot be 

rejected at the 99% significance level. Hence, the difference between the actual 

number of violations and the expected value can be considered not to be statistically 

significant.  

 

5.4.3 Conclusions 
 

From the previous considerations it seems that it is better to use the historical 

simulation method rather than the linear model for the Value at Risk calculation of 

the given financial portfolio. 

However, taking into account only the number of violations as the indicator of the 

adequacy of a specific method, it is achieved a partial view of the reality. In fact, the 

number of violations does not consider the magnitude of each violation and hence 

it does not distinguish a relatively small violation from a high one. Thus, in order to 

consider this difference, for both methods it is computed the excess amount of each 

violation (𝐸𝐴) as: 

𝐸𝐴𝒉,𝑘+1 = max (𝐿𝒉,𝑘+1 − 𝑉𝐴𝑅𝒉,𝑘+1; 0) 

where 𝑘 = 0,1, … ,499. 
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Then, in Table 21 it is shown the results of these calculations only for those days in 

which at least one of the two considered methods has a violation: 

 EXCESS AMOUNT 

DAY DATE LOSS LINEAR MODEL HISTORICAL 
SIMULATION 

4 13/05/2019 $198.050,00 $25.466,84 - 

62 05/08/2019 $227.570,00 $73.326,39 - 

76 23/08/2019 $222.040,00 $18.558,44 - 

182 27/01/2020 $247.840,00 $36.047,38 - 

186 31/01/2020 $245.770,00 $162,19 - 

201 24/02/2020 $344.000,00 $99.057,69 $94.810,00 

204 27/02/2020 $482.020,00 $186.731,74 $227.910,00 

207 03/03/2020 $289.300,00 - $31.510,00 

211 09/03/2020 $549.850,00 $88.396,67 $275.340,00 

213 11/03/2020 $302.570,00 - $13.270,00 

214 12/03/2020 $687.050,00 $126.698,45 $394.840,00 

216 16/03/2020 $1.045.170,00 $152.233,28 $742.600,00 

277 11/06/2020 $461.800,00 $69.405,15 $117.800,00 

307 24/07/2020 $516.240,00 $189.771,84 $54.440,00 

336 03/09/2020 $534.780,00 $232.336,56 $52.760,00 

338 08/09/2020 $394.810,00 $9.856,10 - 

374 28/10/2020 $371.280,00 $48.752,37 - 

455 25/02/2021 $350.160,00 $26.102,14 - 

CUMULATIVE EXCESS AMOUNT $1.382.903,23 $2.005.280,00 

AVERAGE EXCESS AMOUNT $86.431,45 $200.528,00 
Table 21: Excess amount of violations 

From the previous table it can be easily noticed that both the cumulative and the 

average excess amount computed for the linear model is lower than the one 

calculated for the historical simulation method. So, considering the average excess 

amount of the violations as the indicator of the adequacy of a specific method to 

the V.a.R. calculation of the given financial portfolio, it is preferred to use the linear 

model instead of the historical simulation. 

In addition, it is interesting to visualize the evolution of the V.a.R. values and the 

losses over the considered period for both the methods. For this purpose, in Figure 

9 it is plotted the V.a.R. measures and the corresponding loss for every day of the 

considered period:  
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Figure 9: Evolution of V.a.R. measures and losses 

As it can be seen from this picture, the V.a.R. measure estimated with the linear 

model has the capability to adapt well to the different levels of losses. Instead, the 

Value at Risk computed with the historical simulation method has a trend which is 

quite different with respect to the evolution of the past portfolio’s losses. A possible 

reason could be related to the fact that the portfolio’s V.a.R. measure estimated 

with the historical simulation is based on the implicit assumption that the volatility 

of the portfolio remains stable in time, while it can be easily noticed that it is not 

valid in this specific case. 

In conclusion, it cannot be stated a priori that a method can be considered to be 

better than the other one. However, it can be chosen the most suitable method 

basing on the purpose for which the Value at Risk of the portfolio is calculated. In 

fact, in this example the linear model would be preferred if V.a.R. is calculated as a 

management tool for limiting the amount of risk that a unit may take within a firm 

because it has been proved that the resulting measure well represents the 

portfolio’s volatility. Instead, if Value at Risk of the given portfolio is calculated for 

the determination of the capital amount the investor needs to hold as a buffer 

against unexpected future losses, it would be preferred the historical simulation 
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method since it has been shown with back testing that the resulting measure is not 

systematically underestimated. 
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