

POLITECNICO DI TORINO
Corso di Laurea Magistrale

In Ingegneria Gestionale

Tesi di Laurea Magistrale

Dynamic and stochastic vehicle routing
problem: a simulation tool for a

large-scale study case

Relatore

Prof. Arianna ALFIERI

Candidato

Marco PAPPALARDO

Anno Accademico 2020/2021

Contents

List of Figures iv

List of Tables vi

1 Introduction 2

1.1 Motivation . 2

1.2 A short SMEs overview . 3

1.3 SMEs choices about logistic outsourcing 4

1.4 Presentation of the problem studied 7

1.5 Organization of the work . 9

2 Literature review 11

2.1 Capacitated vehicle routing problem 12

2.2 Evolution of VRPs . 13

2.3 VRPs features classification . 16

2.4 Combined VRPs . 19

2.5 Main references . 21

i

2.6 Our contribution to literature . 23

3 Problem definition and simulation tool 24

3.1 Theorical definition of the problem 25

3.2 Problem structure . 25

3.3 Problem assumption . 28

3.4 Simulation tool . 31

4 Likelihood function 38

4.1 Problem definition . 38

4.2 Likelihood matrix application . 45

4.2.1 Simple scenario (only volume and similarity constraints) . . . 45

4.2.2 Complex scenario (additional constrain on due date and stochas-

ticity) . 48

4.3 The solution algorithm . 55

4.4 Likelihood function implementation 57

4.4.1 Sorting every iteration . 57

4.4.2 Avoid delay condition and specific solution 58

4.4.3 Low demand scenario . 58

5 Simulation output analysis 60

5.1 Benchmark . 60

5.2 Simulation parameters . 62

5.3 Simulation . 68

5.3.1 Daily order distribution variation 68

ii

5.3.2 Waiting from supplier probability variation 72

5.3.3 Probability to refuse a delivery variation 75

5.3.4 Vehicle capacity variation . 78

5.4 Observations and weakness . 81

6 Conclusion and perspectives 83

A Software 86

A.1 The code, first part: Class Order definition 86

A.2 The code, second part: daily routine functions and simulation. 96

Bibliography 117

iii

List of Figures

3.1 Random orders generated, plotted on maps 33

3.2 Daily output example . 35

3.3 Optimized delivery tour for a cluster of locations 36

3.4 Final output example. 37

4.1 Pair of orders randomly generated, case 1. 41

4.2 Pair of orders randomly generated, case 2. 42

4.3 Pair of orders randomly generated, case 3. 43

4.4 Randomly generated orders for the simple scenario. 46

4.5 Randomly generated orders for a complex scenario. 49

5.1 Example of simulation parameters. 64

5.2 Example of likelihood function settings. 65

5.3 Example of collected statistics. 67

5.4 Simulation output with daily order distribution variation. 70

5.5 Daily order distribution variation, performance trends. 70

5.6 Daily order distribution variation, total travel duration reduction. . . 71

iv

5.7 Daily order distribution variation, total distance traveled reduction. . 71

5.8 Daily order distribution variation, total volume delivered reduction. . 71

5.9 Simulation output with waiting from supplier probability variation. . 73

5.10 Waiting probability variation, performance trends. 73

5.11 Waiting probability variation, total travel duration reduction. 74

5.12 Waiting probability variation, total distance traveled reduction. . . . 74

5.13 Waiting probability variation, total volume delivered reduction. . . . 74

5.14 Simulation output with probability to refuse a delivery variation. . . . 76

5.15 Probability to refuse a delivery variation, performance trends. 76

5.16 Probability to refuse a delivery variation, total travel duration reduction. 77

5.17 Probability to refuse a delivery variation, total distance traveled re-

duction. 77

5.18 Probability to refuse a delivery variation, total volume delivered re-

duction. 77

5.19 Simulation output with vehicle capacity variation. 79

5.20 Vehicle capacity variation, performance trends. 79

5.21 Vehicle capacity variation, total travel duration reduction. 80

5.22 Vehicle capacity variation, total distance traveled reduction. 80

5.23 Vehicle capacity variation, total volume delivered reduction. 80

v

List of Tables

1.1 SMEs classification, data source Eurostat 3

1.2 Enterprises with e-commerce sales (% of enterprises, all enterprises) . 5

1.3 Internet purchase by individuals (% of individuals, last online purchase

within 12 months) . 5

3.1 Random orders generated related to figure 3.1 34

4.1 Random orders generated related to figure 4.1 40

4.2 Random orders generated related to figure 4.2 43

4.3 Random orders generated related to figure 4.3 44

4.4 Random orders generated related to figure 4.4 45

4.5 Likelihood matrix. Simple scenario. 47

4.6 Complex scenario generated orders. Related to figure 4.5 49

4.7 Complex scenario, sorted orders. 50

4.8 Likelihood matrix. Complex scenario. 51

vi

Abstract

Logistic management is an increasingly topical issue nowadays. Most enterprise try

to improve their economics by optimizing their supply chain, continuously reducing

costs in the face of improving performance. The current market is mostly made up

of small and medium-sized enterprises (SMEs) not used to thinking in term of global

optimum and often do not even have the internal skills necessary to make their system

efficient. Over the past twenty years globalization has destroyed the boundaries of

local markets, as well the single European market brought to overcome the traditional

vision of “local-market”. Over the past twenty years internet has totally changed

consumers and their consumer habits. The e-commerce, born as an opportunity

is now a consolidated reality. Some large companies have begun to look abroad

with a view to growth, others in order to survive in saturated national markets.

All this has resulted in several changes in these company: new strategies, need for

new management, birth of new roles. Logistics have become the key to success in

industries, supply chain management a key function in order to minimize cost or

maximize profits.

In this work we will discuss a technical problem related to a famous logistic theme,

vii

the vehicle routing problem (VRP) in one practical exception. The purpose is to

demonstrate which and how many benefits are brought by an engineering approach

to problems.

Let’s imagine a small furniture shop with few employees and not-owned furniture

factory. The shop decide to sell online using a proprietary website. The demand is

low and shipments are managed by the shop itself. For this type of products is needed

an attended delivery, in other worlds the customer has to be at home the day of the

delivery. This small shop promise to customers a due date by which they will receive

the goods bought. Moreover the furniture shop has not an ERP system to manage

neither employees or production. This situation is common to small reality due to

cost and human skills lack. The shop is based in Turin and usually the customers

come from the city or from the surrounding areas. However since the shop decide

to sell from their e-commerce platform now receives orders (let’s assume) from the

entire North Italy. This growing market brought a totally new level of complexity

for the daily operations of the shop, historically shipments were not a problem and

were organized manually from an employee but with a growing demand it became

impossible.

A simulation tool will be developed in order to represent in a realistic way this

scenario, and then solve it. Moreover to address the problem in a proper way will be

developed a function able to optimized the delivery to customers of the shop.

1

Chapter 1

Introduction

1.1 Motivation

Supply chain management and logistic are becoming increasingly topical issue in

contemporary world. When we talk about logistic we include the entire management

of resource from planning to final delivery. Today an efficient logistic management

can be a success factor for a company, without considering aspects related to employ-

ment and the growing attention to polluting emission of which transport is one of

the main causes. Furthermore the cost of logistic is sunk, the customer is unwilling

to pay for a service of which he does not see the direct result. So there are several

reason why the topic of transport generates more and more interest. In this work we

will focus on the last part of the supply chain, the final shipment of goods to cus-

tomers. However we will not discuss a last mile logistic problem because our delivery

will take place far from the depot, in other word we will address a vehicle routing

2

problem on a large geographical scale. The problem assumes greater importance if

contextualised in the panorama of SMEs. In the final section of this chapter will be

clarify the specific situation introducing a study case scenario. But first we need to

go deep into the phenomenon of SMEs and their logistic management.

1.2 A short SMEs overview

According to the European Commission standards (further information in EU rec-

ommendation 2003/361) in Italy around the 79,5% of business are micro-enterprises,

than 18,2% are small, finally 2,3% of Italian company are medium and large compa-

nies (data source: Istat).

Looking to Italy we can say that around the 98% of existing economic realities

fall into the category of SMEs; broadening the gaze to the whole of Europe we

find the same situation with the 99% of all business being small and medium-sized

enterprises.

To better understand what we are talk about, table 1.1 allows us to understand

according to which criteria companies are classified.

Company category Staff Turnover Balance sheet % of italian companies

Medium and big-sized ≤ 250 ≤ 50ke ≤ 43ke 2,3 %

Small ≤ 50 ≤ 10ke ≤ 10ke 18,2 %

Micro ≤ 10 ≥ 4 ≤ 2ke ≤ 2ke 79,5 %

Table 1.1: SMEs classification, data source Eurostat

3

The economic impact of SMEs companies should not only be seen in relation

to the country’s GDP, but must be correlated with the supply chain in which they

operate. This first consideration brings to the center of our attention the logistic

theme that will be dominant from now on.

A main trend of every market is the e-commerce. To survive a SMEs business

cannot ignore strong changes in the market but often the lack of suitable human

resource and myopia in recognized the need to innovate leads to change when it is

too late.

Before delving into a more deep look at e-commerce phenomenon, take note

that COVID-19 drastically changed quite all industries, has promotes changes in

customers behaviours and at the same time it has resulted in the need for a quick

response from companies.

1.3 SMEs choices about logistic outsourcing

The first answer of many small business to the Coronavirus was investing in e-

commerce solution. To compensate for lost sales in physical store, we have observed

an exponential increase in online sales with home delivery .

From the Eurostat database we can observe the dimension of the growth in nu-

merical terms.

4

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Italy 5 5 6 8 8 10 11 13 14 14

EU(28 members) 15 15 16 17 18 19 20 20 20 20

Table 1.2: Enterprises with e-commerce sales (% of enterprises, all enterprises)

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Italy 10 15 17 20 22 26 29 32 36 38

EU(28 members) 40 42 44 47 50 53 55 57 60 63

Table 1.3: Internet purchase by individuals (% of individuals, last online purchase
within 12 months)

The information reported above shows an important growth in e-commerce until

2019, which has however surged during pandemic period. From a recent market

survey carried out by the Italian Consortium of Electronic Commerce, Netcomm, it

emerges that by the end of 2020 the sector will have a further growth of 55% in the

number of consumers who shop online.

Actually local business are able to use many sales channels, some of them are

incorporated in popular social apps others require affiliation with established online

sales platform (i.e. eBay and Amazon). If in the second case they became customers

themselves and must be subjected to conditions that are not very negotiable, a lots

of them prefer to use the web to reach customers and manage the logistical aspects

internally.

Owned e-commerce site offers any business significant growth potential, espe-

cially by opening up to physically unreachable customers, but on the other hand

5

the large marketplaces mentioned above make more difficult to create a own slice of

loyal customers. Moreover customer loyalty strongly depends on the service offered

including the entire customer experience: from the accessibility of the website to the

punctuality in the delivery. The customer is not interested in logistics management,

which is a deep-rooted aspect of his experience, however his expectation are highly

dependent on the consequences of this activity. Moreover managing an online busi-

ness involves the need to manage a web reputation, which involves exposing oneself

to negative reviews.

From the foregoing consideration it may appear evident that logistics plays a

key role therefore it can be considered a reasonable choice for SMEs to outsource

the logistics to 3PL provider. A research by Andrea Payaro (Vice President SCM

Academy) and Anna Rita Papa turns out that outsourcing the logistics management

is a controversial choice for small business. The main reason is the belief that the

benefits brought by outsourcing would not bring strategic advantages linked to a

reduction in cost and a higher level of service, however this phenomenon can be

tracked back to some factors, of which I report a brief summary:

• SMEs are not able to estimate the costs of logistics. By their nature they do

not have an administrative structure that takes note of the main cost centers

making it impossible to quantify the opportunity cost of switching;

• SMEs do not know the range of operations that a logistic provider is able

to accomplish, often considering only warehouse management and shipping

as “logistic”. They ignore the optimization approach that a 3PL operator

can adopt in management, also in terms of IT solutions for traceability and

6

identification of goods;

• SMEs often fear a losing of internal skills and a more complex decision-making

process.

The reticence to innovate, the delay in arriving on the market caused by ignoring

new trends is a very widespread problem sometimes with fatal consequences even on

large companies with consolidated economics (take a look at Kodak case). Obviously

the impact on small business are even more fatal.

1.4 Presentation of the problem studied

In the abstract we mentioned the specific case that led to this paper: a small furniture

shop with no intention of leaning on an external 3PL provider. This is now a far more

credible case. You can imagine a small business, few employees, no-owned factory,

no ERP system. This could be a familiar business heavily stressed by economic

condition.

The furniture shop usually received orders by surroundings, but recently decided

to have his own webstore to expand its clientele to a much higher geographical area.

It has always been the owner to manage the shipments of the goods, the experience

he has accumulated over the years allowed him to comfortably serve customers while

remaining within the promised deadline for delivery. The shop use its owned van

to delivery. However after the implementation of the webstore deliveries where no

longer in range of dozens of kilometres, having to take place in towns and cities in

other regions. The first attempts to manage this increasing complexity consisted

7

in continuing to manually manage the scheduling of deliveries. This approach was

obviously ineffective, in particular the cost of travel costs were such as to offset the

increase in demand and turnover. The main problem was that some customer were

in extremely isolated and distance places, and sometimes to avoid a delay in delivery

the van was sent to accomplish a single order. However this choice generated chain

delays to other pending orders, ready for delivery but waiting in the warehouse.

Furniture deliveries must take place in presence of the customer, so they must be

agreed in advance. Furthermore promising a date and not meeting it generates

strong discontent with the customer and destroy the reputation of the store. The

shop owner, who is not an engineer, makes his shipments decisions based on the

vehicle capacity, the delivery due date of the orders and an estimate of the time

that certain deliveries will require; on the basis of his estimates he often agrees on

deliveries for “tomorrow” which then do not take place. In low demand periods, the

owner manage to meet the deadlines promised to customers; but in cases of high

demand, delays become a daily situation.

We can rephrase the problem by asking: how the owner should manage isolated

and distance order? Maybe he could wait for other orders to appear close to the most

problematic ones, but how long to wait and how to consider two orders “close”?

We will try to give an answer to these and consequential question over the next

chapters. The shop chose to manage logistic aspects internally, but this should not

go beyond trying to optimize outgoing flows of goods. To solve the problem we will

create a tool capable of introducing measurable improvements to shipments with the

aim of managing transport costs and avoiding delays with respects to the promised

8

deadlines. The key aspect will be the logic within the next order to be served must

be chosen.

1.5 Organization of the work

The next section are organized as follows.

• Chapter 1 introduce the problem giving a first overview to the scenario devel-

oped in the present dissertation.

• Chapter 2 is a literature review. It introduce the theorical definition of vehicle

routing problem explaining its main variants developed during the last decades.

In particular more emphasis is given to stochastic and dynamic VRP as well

as to some publications that have most influenced the present work.

• Chapter 3 provide a wide description of the study case. Firstly the problem

is contextualized according to literature lexicon, then the problem structure is

formalized using an algorithmic approach. After the presentation of the main

assumptions needed to develop the problem, it is introduced the simulation

tool, the software created to address the problem in a realistic way.

• Chapter 4 is entirely focused on the likelihood function and its implementation

in the software. The main theorical contribution of this paper is firstly pre-

sented with a simple example and then made complex by using it in a realistic

scenario. The likelihood function is finally extended to the graph representa-

tion.

9

• Chapter 5 show some simulation output obtained from various run with differ-

ent parameters settings. This make possible to analyse strengths and weakness

of the tool.

• Chapter 6 is the brief conclusion of the work. Here some future perspectives

are proposed.

10

Chapter 2

Literature review

The Vehicle Routing Problem (VRP) is a common theme addressed in operational

research. It consist in manage a fleet of vehicles in order to accomplish several

deliveries within a given space, often with additional constraints. In this work is

studied a problem associated to VRP, but in a practical way which distances it

from classical literature; in most cases it is studied as a MILP (mixed integer linear

programming) problem, however, if this path has been followed in the present work it

would have been difficult to make a real contribution to current literature. Given the

mathematical complexity of recent papers above VRPs, this university thesis could

not have approached the issue in a dignified way. Instead the approach that will be

followed aims to avoid most of the theorical assumptions introduced in VRPs, i.e. a

graph will not be used to represent customers locations but the real road network.

We will look at a plausible problem, analyze it with an engineering eye, study a

possible solution, implement it and evaluate the results. In chapter 3 there is an

11

explanation for these choices. This more practical method of dealing with VRPs

is not very present in the literature, except in a few cases, therefore the marginal

benefit brought by this work can open to a different point of view on this issue as

well as making it an effective contribution.

Despite this, the starting point cannot not be an analysis of literature. After a

quick look at the first VRP formulation, will be discussed the literature evolution

around the theme, and a classification of VRPs main features will be introduced.

Finally some reference to papers that are the main inspiration for this work.

2.1 Capacitated vehicle routing problem

Vehicle routing problem was first introduced by Dantzig and Ramser (1959), their

main goal was to model a fleet of homogeneous truck to serve a certain number

of gas station looking minimizing the total travel distance. Only later, Clarke and

Wright (1964) formalized the generic VRP as a linear optimization problem. The

key features were a generic set of known customers (geographically dispersed) with

specific demands , a central depot as a starting point for tours and a fleet of vehicle

characterized by different loads capacity. Customers (and depot) are modelled as

nodes of a graph, representation from which it is possible to derive a distance matrix,

input for the linear optimization problem. Hence the optimization model tried to

assign customers to vehicles and sequences the customers visited by each vehicle in

order to minimize the total routing cost. Practically the output is an ordered set

of customers to be served by each vehicle. This classical version is also known as

12

Capacitated Vehicle Routing Problem (CVRP).

min
X
i

X
j

X
k

dijx
k
i j (2.1)

st.
X
i

xk
i j −

X
i

xk
i j = 0 (2.2)

X
i

X
k

xk
i j = 1 (2.3)

X
i

xk
i 0 = 1 (2.4)

X
j

xk
0j = 1 (2.5)

X
i

X
j

qix
k
i j ≤ Q (2.6)

The most simple case of VRP is the traveling salesman problem (TSP) where the

objective is to sequence a set of geographically dispersed customer while minimizing

the total travel cost, compared to CVRP this is a single-vehicle case.

2.2 Evolution of VRPs

Over decades the problem has become more popular and the number of papers has

increased dramatically (a more accurate view of this phenomenon is described in

Psaraftis, Wen, Kontovas, 2016), the raising complexity of modern industry resulted

in the need to help decision making processes specially in logistics or supply chain

management field. Obviously the first VRPs formulations lacked of realism, which

involved the need for multiple assumption. During last decades technological ad-

13

vancements and dozens of papers about the topic have brought academic literature

and real-life applications closer together. Actually many company uses VRP software

to better manage the cost structures, and the VRP is one of the most interesting

problem in Operation Research.

Some assumption have been relaxed to better reflect the reality of operations,

allowing the development of new variants of VRP to incorporate time windows for

pickup and delivery, temporal dependencies on travel times (e.g. due to traffic con-

gestion), multiple commodities, stochastic customer habits and many others. Lenstra

and Rinnooy Kan (1981) shown the NP-hard problem nature of VRP, hence the mul-

tiple constraints introduced by the variants to the main version have raised the level

of computational complexity making exact algorithm not suitable with large prob-

lem instances. Software for real application implement heuristic and meta-heuristic

solution approach as well large as large-scale problems. According to these consid-

eration, over the years various authors have proposed multiple solution approaches

to the multiplicity of versions. Several surveys classified VRPs literature accord-

ing to different perspectives. However, this task has not made easy by the copious

production of new publications. At the same time there are further problems: taxon-

omy may vary a lot in different papers and work on a common benchmark is difficult

since the difference in structuring the problem (this case is especially true in dynamic

VRPs, no benchmark instances are available).

For the purpose of this thesis work we can at first refer to Braekers et al. (2016),

a less recent overview which however helps to understand the reason of the next

classification. This paper does not consider any combined problems that will be in-

14

troduced later, but gave an interesting point of view around the “future” trends of

VRPs studies and allows to better contextualize the continuation. The authors used

a taxonomic framework to evaluate the relevant literature published between 2009

and 2015 relying on five categories: type of study, scenario characteristics, prob-

lem physical characteristics, information characteristics, data characteristics. Some

consideration highlights the benefits that this work can give to the current litera-

ture. What emerges from the analysis is a low utilization of a simulation approach

while metaheuristics one seem to be widely preferred, information are quite often

assumed deterministic and only in a few cases are stochastic or unknown. More-

over when stochasticity is considered it concerns only one aspect of the problem.

Multi-period problem have hardly been dealt with, even more poorly those that in-

corporated stochastic aspects. Our study case considers both dynamicity (so a multi

period problem) and stochasticity in customer behaviour, demand and geographical

location.

A more recent review is Mor, Speranza (2020), here the focus is set on the type of

decision to be taken to solve the problems. To better explain: the classical VRP only

require to assign customers to vehicles and to sequence them. A VRP whit profits

require to choice which customer to serve, a VRP with time windows (VRPTW)

requires to compliance with this temporal constraint. The authors aim to better deal

with the most recent variants of VRPs according to their multi-constrained nature,

element derived from the need for each job to get closer to real-life applications.

This classification begins from the classical CVRP (assignment and sequencing) and

follow to:

15

• VRP with profits, when making a decision about which customer to serve ac-

cording to maximize profits;

• VRP with slip deliveries (SDVRP), which adds the choice of the quantity to

be delivered to a customer allowing a fractional delivery;

• VRP with multiple commodities ; usually is considered a common metrics as

volume or weight to represent different goods, however in some application

may be relevant to consider additional constraint to distinguish goods, i.e. in

multi-depot scenario which one preserves a type of good or in presence of an

heterogeneous fleet with restrictions on transportable goods;

• VRP over time are described as dynamic problems where the starting time of

each route is to be decide by the model.

This last category help us to introduce a larger set of VRP variants that consist

of combined problems; these constrain the resolution of a VRP to further constraints

not strictly connected to routing. The key element is a time-horizon discretized in

finite periods, in each a vehicle could perform a tour. The usual period is a day, so

when to serve a customer became a decision to be taken “over time”.

2.3 VRPs features classification

This work has no intention to provide a new classification, however, to the best of our

knowledge, a brief discussion of the main variants of VRP follows. This lengthening is

necessary for the reader to recognize the lexicon that will be used in the next chapter;

16

it will also help to recognize the specific characteristic that will be introduced into

our problem.

To get a more complete overview of what follows it is possible to refer to Psaraftis

et al. (2016), due is a similar but more in-depth analysis. The nature of a VRP can

be static or dynamic, the type of information can be deterministic or stochastic.

Combining these feature we obtain four main variations:

• SD VRP static and deterministic vehicle routing problem

• SS VRP static and stochastic vehicle routing problem

• DD VRP dynamic and deterministic vehicle routing problem

• DS VRP dynamic and stochastic vehicle routing problem

We can define a dynamic problem when not all the information are available

from the first moment and some of them become known only over time; in contrast

a static problem has all the information from the beginning. Information can be

deterministic when input are known without uncertainty, stochastic when are affected

by some form of randomness and therefore when are known only in generic terms of

probability distribution or not known at all. Stochasticity can be present on one or

more pieces of information, in the most common cases it concerns customer demand

or location. A more recent and complex case are stochastic travel times; according

to Ritzinger et al. (2016) they can be modelled as time-dependent, stochastic or

both. An interesting development particularly suitable for making last mile logistic

problems more realistic.

17

Assuming these types of VRPs we can identify other distinctive elements more

connected to the each element of the problem.

• Vehicles:

– fleet size can range from one vehicle to infinity, this last case is extremely

rare;

– capacity constraints are commonly adopted except in rare cases where the

volume of goods makes this constraint negligible;

– specific vehicle required for a specific good type.

• Customers:

– stochastic location and demand as suggested above;

– possibility to refuse a delivery (another form of stochasticity);

– release or/and due date constraints;

– attended delivery : the customer must be present, therefore the time of

delivery must be agreed in advance

– time window constraints (TW) so specific period during which delivery is

possible:

∗ soft TW allow forms of earliness or tardiness;

∗ hard TW (less adopted) can be realistic in a few scenarios, but de-

pending on other factors as fleet size and capacity can make problem

instances infeasible;

18

– type of service to customer:

∗ delivery-only or pick-up only ;

∗ delivery and pick-up combined.

• Tours can be characterized by:

– single or multi-depot scenarios, with possible constraints of departure and

return on each vehicle;

– open or closed routes, i.e. in the so called Open VRP (OVRP) vehicles do

not have to return to the depot as the final point of their tours;

– max route duration or length;

– other constraint can be introduced in specific cases, i.e. forbidden arcs on

a multi-graph.

Finally the objective function can minimize distance or travel time, maximize

profits or the number of customers served etc... In any case a proper formulation

depends strongly on the available data and the purpose of the solution strategy.

2.4 Combined VRPs

Nowadays a lots of organization based their organizational structure around the

key function of the supply chain management. Literature responded to this change

developing more complex variants of VRPs that combine the distribution of goods

to other business needs. Typically these are dynamic problems with the possibility

to add a stochastic element.

19

Inventory routing problems (IRPs) add the inventory management to the stan-

dard VRP. The basic version was introduced by Archetti et al. (2007) and present

multiple retailer each with a minimum and maximum inventory level, and a supplier

with a variable quantity available. The problem is dynamic, in each period the sys-

tem have to decide which customer to serve according to stocks availability. The

objective function point to minimize inventory and routing cost. Recently stochastic

aspects were added to the IRP often concerning customers demand. In Coelho et al.

(2014) it is proven that considering this aspect increase the quality of solution.

Periodic routing problems (PRPs) are characterized from having to visit cus-

tomer multiple times during a planning horizon. Often this problem is associated

to a supplier-to-retailer replenishment scenarios, and it is common to assign a fixed

delivery frequency to customers. A basic formulation of PRP is provided in Camp-

bell et al. (2014). In Archetti et al. (2015) is introduced an interesting variant, a

multi-depot VRP with release and due dates.

The family of VRPs with release date as well can be considered combined prob-

lems. These dynamic problems involve deciding when to serve a customer. Given a

set of existing customer the decision maker has to choose if start a route or wait for

new customer to appear, wait can bring to build better solution.

A more wide overview around integrated variants is provided in Vidal et al. (2020)

where a classification is developed according to the kind of combined problems to

solve. Main decision elements are:

• routing and districting, where a geographical partitioning is required;

• routing and facility location, where the purpose is to choice the place for a

20

facility comparing routing cost in different cases;

• routing and fleet composition, in order to dimensioning the vehicle fleet based

on variable demand pattern;

• routing, inventory, production management, is a development of IRPs whit the

production planning problem considered as well.

A general consideration regards recent trends, most of the literatures problems are

addressed to solve last mile logistic scenarios, long-range routing problem represent

a minority. The authors often conclude their papers suggesting a more real approach

for further development both considering stochastic information (overall in travel

times) and real road network.

2.5 Main references

A few articles has been the main inspiration for this work.

In Han et al. (2017) is presented a single-depot vehicle routing problem with

time windows (SDVRPTW) with attended home delivery (AHD); the purpose of

this paper was to analyse the appointment scheduling problem with a stochastic

behaviour in response time to the courier appointment. In the moment a delivery

happens the courier intercoms and awaits the arrival of the customer, here are two

type of scenario: customer do not respond (no-show), customer respond with random

response time. In courier’s tight scheduling that source of randomness can generate

delays in subsequent deliveries. The authors addressed the problem in the broader

21

framework of VRP combining: allocation of customers to vehicles, sequencing the

tour of each vehicle, determination a dynamical start and maximum waiting time at

each customer based on the previous delivery ending time. The comparison between

two type of approach, hierarchical and integrative, showed better performances in

the second one.

A Decision Support System (DSS) for attended home delivery was instead devel-

oped by Bruck et al. (2020). This paper explains the design and implementation of

an IT support system for Iren Group, an Italian company operating in energy sec-

tor. The specific problem was to manage the dispatching of technicians to customers

locations. This scenario is different from our case study because of the problem

structure. Here each municipality of some regions have their own team technicians

(multi-depot), who mainly work in their geographical area of competence, with the

possibility of sending them to nearby area in high demand cases. Customers make

appointments from an online portal that is constantly updated to show the time slot

available to receive the technician’s visit. In this case the scheduling is not done by

the system. The key problem is the allocation to resources and the sequencing of

location to visit. The simulation showed significant improvements in service qual-

ity compared to the previous manual scheduling adopted by Iren; this software is

currently being used. Moreover this DSS “run” on the real road network, the API

serviced used by the author is the same implemented in the tool developed in this

thesis.

The idea to implement a practical tool born within the analysis of this paper.

However we do not have historical data to compare performance and this is the

22

biggest weakness of this work. To overcome this problem a lot of input parameters

will be treated as experimental parameters with the aim to understanding in which

situation the tool performs better and in which it is not suitable.

2.6 Our contribution to literature

The main contribution this work is supposed to provide is answer some of the rising

questions in the current literature. Facing a dynamic and stochastic problem with

release and due dates from a theorical perspective would not make this a significant

paper given the large and complex literature already present, to get around this

I create a realistic case that included the least addressed features as long-range

routing, stochastic customer behaviour, real road network. Moreover is proposed

a simulation approach consisting in an ad-hoc developed software. Nevertheless

a theorical contribution is represented by a new choice function to select cluster

of customers. This function is thought to solve the trade-off about waiting new

customer to appear or starting a route in presence of stochastic customer behaviour

and for the rare exception of long-range routing scenario.

23

Chapter 3

Problem definition and simulation

tool

In section 1.4 we introduced our study case with a qualitative description. In this

chapter we will deeply discuss any aspect of the scenario starting by contextualizing

it according to the literature taxonomy, then restructuring the problem based on an

algorithmic logic and explaining all the assumption done in implementation. Finally

will be presented the developed tool and will be showed some example of input

generated and output expected.

A brief reminder of the furniture shop case study. The main problem was to

decide how to manage distance and isolated orders, waiting for other near them to

appear (risking delays) or send semi-empty vans to delivery.

24

3.1 Theorical definition of the problem

The main features present in our case make it a dynamic and stochastic problem:

the time of the simulation is divided in one day periods, every day some decisions are

made keeping memory of the past (dynamic aspect), customers can refuse a delivery

date proposed with a certain probability (stochasticity).

Vehicles are characterized by capacity constraints, in chapter ?? simulations out-

puts will be presented but will be limited to a single vehicle case. All tours start

from a single depot with constraints on the maximum duration of each tour. At

the end of the day vehicle as to comeback to depot. When customers place orders,

they are promised delivery by a due date. Some orders concerns goods that are not

immediately available and therefore become deliverable only after a release date.

3.2 Problem structure

The following algorithm better explain how orders are managed, from the receipt to

the delivery. As well it highlights all the change in order status that can occur. The

algorithm adopts a logic similar to those from use cases; this allow us to visualize

how the problem is articulated, on the other hand it provide an overview on how it

has been modelled in the developed tool.

Daily operations:

1. Check new incoming orders.

(a) If there are new orders, the IT system check if ordered good is available

25

in inventory:

i. if product is available the order status is set “ready-to-delivery”;

ii. ii. otherwise, create an order to supplier. Set order status as “waiting-

from-supplier” and set a release date.

(b) Otherwise, go to 2.

2. Check the status of all orders and eventually update it, for each

order:

(a) if occur the release date (previous status “waiting-from-supplier”), new

order status “ready-for-delivery”;

(b) if occur the due date (previous status “ready-for-delivery”), new status

“beyond-the-deadline”;

(c) if occur the shipment date (previous status “scheduled”), new order status

“delivered”;

(d) if occur the shipment date (previous status “scheduled-beyond-the-deadline”),

new status “delivered beyond deadline”.

3. Generate a list with only deliverables orders.

4. Apply a choice function to select a cluster of orders to be scheduled

for next day delivery.

(a) If all customers accept the delivery date, go to 5;

(b) if even just a customer refuse, exclude it from the list of deliverables

orders, return to 4.

26

5. Generate an optimized tour for the cluster of orders and set the

shipping date for each, then:

(a) if previous status was “ready-for-delivery”, change the status in “sched-

uled”

(b) if previous status was “beyond-the-deadline”, change the status in “scheduled-

beyond-the-deadline”;

6. STOP, go to next day.

Orders can have the following statuses:

• “ready-for-delivery”, is an order that can be scheduled on delivery

• “waiting-from-supplier”, an order characterized by a release date. The product

was not available and has been ordered by a supplier. On the release date it is

assumed that the asset is in the depot.

• “beyond-the-deadline”, when an order is on hold until it exceed the due date.

• “scheduled”, when an order is part of an already planned delivery tour.

• “scheduled-beyond-the-deadline”, as above but the order is delayed.

• “delivered”, after the delivery take place. The order is archived.

• “delivered beyond deadline”, as above but the delivery happen over the due

date.

27

Every period the tool run a “daily routine”. We assume that a certain number of

orders arrive every day (1), some of these concern products already in stock, others

concern customized goods that need to be ordered by a supplier. This assumption

is quite realistic for a small furniture shop, as well as it is common for bulky or low

demand products specially when they are not managed according to an inventory

policy. After an update of the status of all orders (2) on hold is possible to move

those that can be delivered (so “ready-for-delivery”, “beyond-the-deadline” orders)

to a separate list (3). The choice function (4) is the key element to achieve a good

solution, in this case it returns a cluster of customers which involves a benefit in

terms of duration (or distance) to serve in a single tour.

Chapter 4 is totally dedicated to the explanation of the function developed for the

tool, the idea is that if the cluster is broken you need to search for another in order to

have a good solution. The stochastic customer behaviour consists of the possibility to

refuse a delivery on a certain date. If this happen, according to reasoning of cluster,

a good solution is broken and the algorithm will iterate searching for another. When

a solution is finally found and confirmed, it is possible to solve a simple Travelling

Salesman Problem (TSP) obtaining for each vehicle a delivery tour (5).

3.3 Problem assumption

To model this complex problem a series of assumptions had to be added, some of

these are strong and involve in a growing distance between the model and the reality

but are necessary to avoid overburdening the simulation.

28

1. Inventory management is not part of the model.

When a new order arrives a random number is generated and it is compared

with a fixed probability, if it gets over the goods are assumed to be already in

stock. The probability can be chose, the smaller it is the less likely new orders

require a request to supplier (waiting-from-supplier status).

2. Geographical dimension.

Depot is based in Turin (Italy). In order to address a of long-distance rout-

ing problem, customer can appear in seven contiguous region of North Italy:

Valle d’Aosta, Piemonte, Liguria, Lombardia, Veneto, Trentino-Alto Adige,

Friuli-Venezia Giulia, Emilia Romagna. We assume that this area is a realistic

marketplace for the furniture shop; some location can be more than 500 km

away, actually making a problem to serve some customer. In order to manage

a specific number of possible customer locations we adopt a similar approach

as Restrepo et al. (2019), where customers were aggregate depending on the

geographic zone they belong using corresponding postal code. In this work we

aggregate areas using the Italian system of municipality code (data provided by

Istat). A database has been created containing 4423 possible location where

a customer can appear, each one correspond to a pair of longitude, latitude

coordinates. The original dataset is presented in Appendix. This assumption

avoid to randomly generate coordinates which involves the risk that some are

not accessible from the road network. Moreover in Bent, Hentenryck (2004) is

shown as a geographical decomposition is a good approach to solve large-scale

VRPs.

29

3. Orders and location generation.

(a) Customer location is randomly extracted by the locations database de-

scribed above. To make the generation more realistic, the probability of a

location being chosen randomly is proportional to the number of residents

in that municipality.

(b) The volume of orders is randomly drawn according to a probability dis-

tribution. The volume is modelled as multiples of a standard unit, can be

considered a-dimensional.

(c) The release date for new orders with the status “waiting-from-supplier”

is randomly extracted from a probability distribution.

(d) Due date is deterministic, but is possible to make it stochastic.

4. Vehicles

(a) Fleet size. By default only one vehicle is set and the simulations set out

in chapter 5 are all single-vehicle cases. This decision allows us to better

analyse the functioning of the developed tool reducing the complexity of

the outputs. However a multi-vehicle option (up to 3) is present in the

tool, but actually it is not optimized properly.

(b) Vehicle can work within a day’s working hours set wide enough to allow

the resource to reach even the most distant locations, avoiding infeasible

delivery. A service time option is present in the code but not used in

chapter 5 simulations in order to reduce the experimental parameters.

30

5. Time horizon and time management

The horizon of simulation is split in period of one day. The scheduling of deliv-

eries always take place for the next simulation day, a multi period scheduling

can be a future extension of this work. The length of simulation is set at

168 days, this number is the result of a trade-off between a sufficiently long

simulation period and an acceptable run time.

6. Stochastic customer behaviour The stochastic element of this work is the

chance that any customer has to refuse a proposed delivery date. A strong

assumption has been introduced around this, each customer can refuse a single

time.

3.4 Simulation tool

The tool developed to solve this study case is programmed in python and uses object

oriented programming (OOP) to better manage the order as a standard entity.

Each order created is characterized by the same set of attributes, these are de-

signed to keep track of the order history during the simulation period. This approach

follows a logic flexibility and scalability of the code. Some attributes are dynamically

computed during the generation following the assumption discussed before, others

derive from the database location selection (DB).

The main attributes of an order are:

• customer ID, assigned progressively;

31

• Istat code (DB);

• municipality name (DB);

• distance from depot, see next paragraph;

• travel duration from depot, see next paragraph;

• longitude (DB);

• latitude (DB);

• volume, randomly extracted;

• order date, corresponds to the generation date;

• due date, randomly extracted;

• order status, change dynamically during simulation;

• shipment date, added after the delivery is scheduled;

• release date (eventually) ;

• route from depot information, see next paragraph.

In order to be flexible with the depot selection (giving way to use the tool also

for location routing problems), distance, duration are computed when the order is

created moreover the road used from depot to the coordinates of the order is stored. A

back-end computation of the shortest path (based on the real-road network) between

two location was infeasible. As in Bruck et al. (2020) is used an open source routing

32

Figure 3.1: Random orders generated, plotted on maps

machine through real-time API requests; the service provider is OpenRouteService

(ORS), the maps are powered by Open Street Map.

Given a pair of start and ending point the API returns a GeoJSON file, consisting

in a collection of spatial geometries, analysing them it is possible to split the entire

path into the individual sections of road travelled. Each section often correspond to

a street, this allows us to compare the route from depot between different customer

locations. Moreover on this information was studied the likelihood function used to

select which order to delivery (chapter 4 is dedicated to explain the function) and

solve the study case.

Figure 3.1 present the orders generated during a day of simulation, the shortest

road are plotted on the map. This images came from a partial run of the tool.

Plotted orders are attributable to the following table (some information has been

33

cut out for a more comprehensive layout presentation). Here and in the continuation

the unit of measure for distance are kilometres, minutes for duration. RTD means

”READY-TO-DELIVERY” and WFS ”WAITING-FROM-SUPPLIER”: these sta-

tus define the possibility or not to ship an order immediately.

ID Munic. Dist. Dur. Vol. Order date Due date Status Release

1 Mesero 115 76 53 2021-01-10 2021-01-17 RTD

2 Scorzè 401 235 58 2021-01-10 21-01-17 RTD

3 Buguggiate 148 100 39 2021-01-10 21-01-17 RTD

4 Varano Borghi 132 92 67 2021-01-10 21-01-18 WFS 2021-01-11

5 Dolcedo 213 143 31 2021-01-10 21-01-17 RTD

6 Bentivoglio 348 207 40 2021-01-10 21-01-17 RTD

Table 3.1: Random orders generated related to figure 3.1

The simulation follows the daily routine introduced in section 4.1. To manage

orders during the simulation are used different lists, a python data structure definable

as a vector, where an order can be stored according to its current status. The tool

provides a visual output of the run ongoing giving a real-time daily description of

the events and, at the end of the run, a summary of the main statistics collected.

Moreover it is possible to create and store daily maps of tours scheduled.

Figure 3.2 proposed an output example of the feedback provided by the tool

during each day of a simulation.

Figure 3.3 is the maps representation of the scheduled tour from the previous

output.

34

Figure 3.2: Daily output example

35

Figure 3.3: Optimized delivery tour for a cluster of locations

The tour creation is a simple TSP solution. It is computed, as for distance

and duration, through an API request to OpenRouteService, then analysed to be

printable on the map.

The example is taken from a run conducted with the aim of showing how the

tool work, therefore the results of this run cannot be used to judge the goodness of

optimization. The final summary of a run appears as in figure 3.4. It may change in

future version of this tool.

The theorical contribution of this work is the study of the likelihood function

applied during simulation to choice a good cluster of orders to schedule the next day,

next chapter is dedicated to a deep analysis of how has been developed.

36

Figure 3.4: Final output example.

37

Chapter 4

Likelihood function

This chapter provide a description of the choice function developed ad-hoc for a

large-scale routing scenario.

Firstly, the specific problem is defined, then an example of implementation con-

textualizes it in the daily routine and explains the logic behind his utilization. Finally,

the function is exposed algorithmically, and it is shown how it has been implemented

in the code.

4.1 Problem definition

Last chapter introduced the tool but left open his main mechanism, the function used

to choose which order to schedule next day. The likelihood function is an iterative

algorithm that can be applied to a list of orders. The objective is to identify a cluster

of similar orders whose joint delivery can bring a benefit in term of cost; in this case

total distance and duration are used as a cost proxy. Let’s proceed step by step,

38

starting to illustrate how similarity between orders is computed.

In current literature a common approach to solve similar dynamic problem is to

adopt a waiting strategy, setting some constraints that if verified open to a solution

or, if not, force us to other choices. Literature approach is often based on a graph-

based model. A theorical simulation based on the graph theory with fixed arcs

bolded, simulating a real road network, is computationally feasible only for a small

size problem. If we want to create a mathematical model, sized as this simulation,

we need to manage a set of millions of fixed arcs each one characterized by different

travel time (according to the specific road speed limitation). Then to compute a

single travel we should execute hundreds of calculations, making it impossible to

solve the problem in a short time.

In this work we want to decide the best moment to schedule a far

order, and the solution obviously involves to keep waiting some of them.

However, an order is not problematic if it is only distant, but when it is

isolated too. To define when an order is isolated, we can choose one and

observe its surroundings within a certain radius. If we contextualize this

state with the road network, we can also say that an order is isolated

when to reach it we do not pass by other orders.

In other words, even the most distant order is not isolated, then

problematic, when we can make other deliveries along the same road

and making small detours.

The algorithm proposed in this work rely on this concept, and exploits it building

a likelihood matrix to compare all the orders and choose the more similar.

39

It is important to note that the road network includes highways, freeways, provin-

cial and municipal road. To make them different is the speed limitation, therefore a

longer distance does not necessarily involve a longer travel time.

This work also takes this aspect into consideration using the duration and not

the distance for comparison between different paths.

The likelihood between two orders is computed comparing the “route from depot”

data information and expressed in percentage terms. Chosen a pair of orders their

roads are compared by their smaller segments, street by street, and the similarity

end when the path divides. Then the time taken up to the division point is compared

to the total duration of both paths.

Here are some examples obtained from program runs during which only two

orders were generated; in this partial run the maps output report the istat code of

the municipality from where the order come and a generic ID is assigned for a better

comprehension of the percentage. It is possible to see the similar path plotted on a

real map and read the corresponding similarity percentage to reach one location or

the other.

Example 1 - figure 4.1 - table 4.1

From ID To Duration [sec] Distance [km]
Torino 1 Scorzè 5669 116
Torino 2 Gavazzana 5702 138

Table 4.1: Random orders generated related to figure 4.1

Common distance: 86,607 kms. Common duration: 3525,6 seconds.

40

Figure 4.1: Pair of orders randomly generated, case 1.

Distance similarity:

• 74,29% (1 to 2);

• 62,66% (2 to 1).

Duration similarity:

• 62,19% (1 to 2),

• 61,83% (2 to 1).

41

Figure 4.2: Pair of orders randomly generated, case 2.

Example 2 - figure 4.2 - table 4.2

Common distance: 13,819 kms. Common duration: 1112,4 seconds.

Distance similarity:

• 13,71% (1 to 2);

• 5,81% (2 to 1).

Duration similarity:

• 20% (1 to 2),

42

From ID To Duration [sec] Distance [km]
Torino 1 Dronero 5561 101
Torino 2 Vezzano Ligure 11076 267

Table 4.2: Random orders generated related to figure 4.2

• 10,04% (2 to 1).

Example 3 - figure 4.3 - table 4.3

Figure 4.3: Pair of orders randomly generated, case 3.

Common distance: 0,34 kms. Common duration: 1112,4 seconds.

Distance similarity:

• 0,66% (1 to 2);

43

From ID To Duration [sec] Distance [km]
Torino 1 Cisterna d’Asti 3101 51
Torino 2 Cimbergo 12046 262

Table 4.3: Random orders generated related to figure 4.3

• 0,16% (2 to 1).

Duration similarity:

• 2,68% (1 to 2),

• 0,69% (2 to 1).

Analyzing these examples is possible to understand what happen if were used

distances instead of durations for the comparison: the output information would be

affected by a bias.

In the first the maps provide an explanation for the difference between similarity

sets. The remaining path to the second location looks bigger but probably part of

that road is a highway with higher speed limitation and therefore minor travel time.

Because of this difference in the type of streets traveled the remaining duration is

the same.

Something similar emerge from the second example. The common path is traveled

inside a city, in kilometers the impact of speed limitation is not significant but in

term of duration they are, the percentage double. The last example allows us to view

two totally different paths.

This likelihood comparison is applied to pairs of orders coming from a list and

returns a likelihood matrix. In the next section is proposed a scenario with multiple

orders to show how it works.

44

4.2 Likelihood matrix application

4.2.1 Simple scenario (only volume and similarity constraints)

From a program run is obtained this demand scenario for a random day. The map

below provides a graphic representation of the orders; in blue are highlighted the

“travel from depot” for each order.

The depot is set in Turin. Durations are computed in minutes while distances in

Kms. RTD means ”ready-to-delivery”, WFS means ”waiting-from-supplier”.

ID Munic. Dist. Dur. Vol. Order date Due date Status Release
1 Istriana 416 254 85 2020-12-10 2020-12-17 RTD -
2 Megliadino S.V. 381 225 95 2020-12-10 2020-12-17 RTD -
3 Benna 76 60 30 2020-12-10 2020-12-17 RTD -
4 Palanzano 306 218 45 2020-12-10 2020-12-17 RTD -
5 Dovadola 423 258 35 2020-12-10 2020-12-17 RTD -
6 Berra 400 269 60 2020-12-10 2020-12-17 RTD -

Table 4.4: Random orders generated related to figure 4.4

This case presents a few orders, but all of them located in other regions and with

significant travel times to reach.

Our main problem is deciding the tour composition for the next day without

knowing where will appear new orders in the following day. For example, a (wrong)

human choice could be to schedule 4 and 5 because the 5 looks distant; tomorrow or

further a new order can appear close to 5, forcing us to make more complex choice

in the future.

The key data to make the best choice are:

• Distance/duration, farther a location is, the more complex is to reach it. If

45

Figure 4.4: Randomly generated orders for the simple scenario.

we leave it pending, we can be forced to schedule an ad-hoc delivery to avoid

delay;

• due date, the closer we are to the deadline, the fewer opportunities to schedule

it in an optimal way are;

• volume, according to it we can fill the vehicle optimally.

The road likelihood matrix is generated with the duration similarities data; it

would appear as follow.

From this matrix we can assert that the most similar orders are 1 and 2, respec-

tively the first shares the 78,02% of the path with the second and observing in the

opposite direction the similarity grow to 88,21%. The same reasoning for all the

pairs.

46

Likelihood [%] 1 2 3 4 5 6
1 - 78,02 16,63 1 1 66,64
2 88,21 - 18,8 0,62 0,62 75,35
3 70,34 70,34 - 2,31 2,32 70,34
4 1,17 0,64 0,64 - 65,43 0,73
5 0,99 0,54 0,54 55,26 - 0,62
6 63,01 63,01 15,72 0,59 0,59 -

Table 4.5: Likelihood matrix. Simple scenario.

The matrix is used to identify a cluster of orders which can be reached along

the same road. In order to identity this cluster we need to introduce threshold that

suggest us when a solution is good or not.

• The first threshold regards the minimum percentage of similarity. We can

choose a starting level and then go to reduce it until a solution is found.

• The second threshold is instead a constraint that allows us to accept a solu-

tion, seen the problem structure it is a minimum vehicle saturation level.

In the current example we can start whit a similarity threshold of 90% and 90%

and a minimum vehicle saturation of 80% to a vehicle whit 300 as capacity (240).

By iterating reducing the first threshold, the first feasible solution is obtained whit

78% and 78%, it consists in the cluster 1, 2. The total volume to delivery would be

however below the minimal level (180 ¡ 240) so we continue to iterate. With 63%

and 63% of similarity we obtain a new solution, the cluster 1, 2, 6. The cumulated

volume is 240 and the solution is accepted. Then we solve a simple TSP (because

we have only one vehicle) and schedule a tour for these customers.

This procedure stops at the first solution, which can potentially lead to not

47

considering better solutions. This is a specific choice. The reason is the sequence of

pair compared, in this example the tool compared following the list orders, so: (1,2),

(1,2), (1,3), (1,4), (1,5), (1,6), (2,1) etc. When the comparison meets the threshold,

we store the orders and go on until the capacity level is reached.

Before starting the procedure, we should sort the list in a smart manner.

This example is simplified to provide a first look at the algorithm. There are two

main elements that have not been considered: what to dealt with orders close to

expiration, what to do if a cluster customer does not accept delivery.

4.2.2 Complex scenario (additional constrain on due date

and stochasticity)

To give priority to expiring orders before the application of the algorithm we have

to sort the list according to the due date. Then a second sorting can be applied

based on the maximum duration to reach a location. In this way the first order to be

considered is always the most problematic, the farthest and the next to expire. To

provide a better explanation we can modify the previous example adding additional

orders and varying some due date.

48

ID Munic. Dist. Dur. Vol. Order date Due date Status Release
1 Istriana 416 254 85 2020-12-15 2020-12-21 RTD -
2 Megliadino S.V. 381 225 95 2020-12-11 2020-12-18 RTD -
3 Benna 76 60 30 2020-12-12 2020-12-19 RTD -
4 Palanzano 306 218 45 2020-12-13 2020-12-20 RTD -
5 Dovadola 423 258 35 2020-12-11 2020-12-18 RTD -
6 Berra 400 269 60 2020-12-10 2020-12-17 RTD -
7 Arsiero 389 235 30 2020-12-11 2020-12-18 RTD -
8 Breno S.V. 251 191 40 2020-12-13 2020-12-20 RTD -
9 Ponte dell’Olio 204 139 40 2020-12-10 2020-12-17 RTD -
10 Tornaco 115 83 75 2020-12-11 2020-12-19 RTD -
11 Dolcedo 213 143 30 2020-12-11 2020-12-19 RTD -
12 Brusasco 45 43 90 2020-12-10 2020-12-20 WFS 2020-12-13

Table 4.6: Complex scenario generated orders. Related to figure 4.5

Figure 4.5: Randomly generated orders for a complex scenario.

49

Orders 12 is not ready to be delivered, so we can cut it from the list. Then apply:

1. EDD (earliest due date) sorting; 2. maximum duration sorting, to orders with

same due date.

1. EDD (earliest due date) sorting;

2. maximum duration sorting, to orders with same due date.

In the next section will be explained why this first sorting is needed. This sorting

is applied at any step of any iteration, however it is implied in this example. Table

4.7 is the output of these sorting.

ID Munic. Dist. Dur. Vol. Order date Due date Status

6 Berra 400 269 60 2020-12-10 2020-12-17 RTD

9 Ponte dell’Olio 204 139 40 2020-12-10 2020-12-17 RTD

5 Dovadola 423 258 35 2020-12-11 2020-12-18 RTD

7 Arsiero 389 235 30 2020-12-11 2020-12-18 RTD

2 Megliadino S.V. 381 225 95 2020-12-11 2020-12-18 RTD

11 Dolcedo 213 143 30 2020-12-11 2020-12-19 RTD

10 Tornaco 115 83 75 2020-12-11 2020-12-19 RTD

3 Benna 76 60 30 2020-12-12 2020-12-19 RTD

8 Breno S.V. 251 191 40 2020-12-13 2020-12-20 RTD

4 Palanzano 306 218 45 2020-12-13 2020-12-20 RTD

1 Istriana 416 254 85 2020-12-15 2020-12-21 RTD

Table 4.7: Complex scenario, sorted orders.

50

Now it is possible to start looking for a solution. The likelihood matrix follows.

Likelihood [%] 6 9 5 7 2 11 10 3 8 4 1

6 - 0,59 0,59 63,01 63,01 0,59 22,67 15,72 43,44 0,59 63,01

9 1,15 - 76,33 1 1 13,34 1 1 1 76,33 1,83

5 0,62 41,19 - 0,54 0,54 7,2 0,54 0,54 0,54 55,25 0,99

7 72,1 0,59 0,59 - 84,56 0,59 25,94 17,99 49,7 0,59 84,41

2 75,35 0,62 0,62 88,36 - 0,62 27,1 18,8 51,94 0,62 88,21

11 1,11 12,92 12,92 0,97 0,97 - 0,97 0,97 0,97 12,92 1,58

10 73,36 1,67 1,67 73,36 73,36 1,67 - 50,89 73,36 1,67 73,36

3 70,34 2,31 2,31 70,34 70,34 23,31 70,34 - 70,34 2,31 70,34

8 61,14 0,73 0,73 61,14 61,14 0,73 31,9 22,13 - 0,73 61,14

4 0,73 48,62 65,23 0,64 0,64 8,5 0,64 0,64 0,64 - 1,17

1 66,64 1 1 78,02 78,02 0,89 23,97 16,63 45,94 1 -

Table 4.8: Likelihood matrix. Complex scenario.

The algorithm fixes the first order and then start creating the matrix, if a feasible

solution is found it stops. Compared to the previous case, an improvement has been

made to the algorithm: the similarity threshold are not reduced together. The start

from the same level (i.e. 90% and 90%) then the first is fixed while the second is

reduced until it reaches 1%. This premise to hold the farthest order and search for

close others, then to search orders that are along the same road therefore have a

very similar road with a short detour (i.e. observe order 8 and 10). If any solution

is found both the threshold are reduced and the procedure iterate again.

51

It is proposed a solution for this demand scenario. Set:

• starting similarity threshold (SST) = 80% and 80%;

• reduction threshold level (RTL) = -5%;

• vehicle capacity = 300;

• min capacity vehicle saturation = 90% (270).

This example returns a solution in few steps.

Iteration 1 (min capacity vehicle saturation = 90%)

1. Step 1. SST = 80% and 80% return:

7-2 (84,55%) and 2-7 (88,36%).

Only orders 2,7 are selected.

TotalV olume : V (2, 7) = 95 + 30 = 125 ≤ 270

(CONTINUE with 80% and 75%)

2. Step 2. SST = 80% and 75% return (the second threshold is reduced ac-

cording to the RTL until it reaches 1%):

7-2 (84,55%) and 2-7 (88,36%)

7-1 (84,41%) and 1-7 (78,02%)

2-1 (88,21%) and 1-2 (78,02%)

Orders = 1,2,7

52

TotalV olume : V (1, 2, 7) = 85 + 95 + 30 = 210 ≤ 270

(CONTINUE with 80% and 70%)

3. Following steps [...] do not return any feasible solution. The selected order

remains the same as in step 2.

Iteration 2 (min capacity vehicle saturation = 90%)

1. Step 1. SST = 70% and 70% return:

7-2 (84,55%) and 2-7 (88,36%)

7-1 (84,41%) and 1-7 (78,02%)

2-1 (88,21%) and 1-2 (78,02%)

Orders = 1,2,7

Totalvolume : V (1, 2, 7) = 85 + 95 + 30 = 210 ≤ 270

(CONTINUE with 70% and 65%)

2. Step 2. SST = 70% and 65% return:

7-2 (84,55%) and 2-7 (88,36%)

7-1 (84,41%) and 1-7 (78,02%)

2-1 (88,21%) and 1-2 (78,02%)

Orders = 1,2,7

Totalvolume : V (1, 2, 7) = 85 + 95 + 30 = 210 ≤ 270

(CONTINUE with 70% and 60%)

53

3. Step 3. SST = 70% and 60% return:

7-6 (72,1%) and 6-7 (63,01%)

7-2 (84,55%) and 2-7 (88,36%)

7-1 (84,41%) and 1-7 (78,02%)

2-6 (75,35%) and 6-2 (63,01%)

2-1 (88,21%) and 1-2 (78,02%)

Orders = 1,2,6,7

Totalvolume : V (1, 2, 7) = 85 + 95 + 60 + 30 = 270 ≤ 270

(STOP)

The cluster is defined but the next step is to call all the customers selected and

propose them tomorrow as delivery date. If one of them refuse the entire cluster is

compromised and a new iteration must be made.

If even reducing both the threshold to 1% and 1% any solution is returned the

solution is to reduce the minimum capacity constraints and start again from the

beginning.

In the tool has been added a constraint on the number of times a customer can

refuse a delivery.

54

4.3 The solution algorithm

For the best of our knowledge this section provides the algorithm of the entire solution

approach, including the first sorting to the cluster as output.

Given a list of orders we can identify, according to the problem definition, ready-

to-delivery or waiting-from-supplier orders, only the first are deliverable. Then we

define a list R containing these orders. The algorithm works as follow. The expected

output is a shortlist called O, a cluster that we want to delivery; as well a value

for Q, the total volume that will be delivered linked to the list O. We can set the

thresholds and the RTL (reduction threshold level) to modify the behaviour of the

algorithm. Instead, we can act on the list of orders L changing their features to

simulate another scenario.

L = order list

O = list of selected orders

t1 = similarity threshold level first comparison entity to second

t2 = similarity threshold level second comparison entity to first

R.T.L. = Reduction Threshold Level, is the reduction applied to t1 and t2 at any

failed iteration

Cmin = min. capacity level, it constrains to a minimum level of saturation of the

vehicles

Cmax = max. capacity level of the vehicle

tij = likelihood coefficient of order i compared to j

tj i = likelihood coefficient of order j compared to i

55

Q = sum of volume of the selected orders (cumulative value, if an iteration fail it is

reset to zero).

qi = volume of the order i

qj = volume of order j

Algorithm 1: Likelihood function algorithm

Data: list L of orders with i, j pointers for orders.
Result: list O of selected orders.
initialization;
set t1, t2, Cmin, Cmax, RTL, Q;
while t1 ≥ 1 do

while t2 ≥ 1 do
for i ∈ L do

for j ∈ L and i 6= j do
if tij ≥ t1 and tj i ≥ t2 then

Q = Q + qi + qj;
if Q ≥ Cmin and Q ≤ Cmax then

O = O + {i,j};
STOP, Return list O

else
Q = Q− qi − qj;
j = j + 1;

Q = 0;
i = i + 1;

t2 = t2 −RTL;

t2 = t2,initial;
t1 = t1 −RTL;

56

4.4 Likelihood function implementation

Respect to a theorical scenario in a real application we need to consider a few more

constraints. For example, a careful reader may have already noticed a weakness in

a “as is” implementation of the function: in low demand scenario, we have orders

that remain isolated for long time. Some more consideration will explain how these

aspects were taken into consideration.

4.4.1 Sorting every iteration

In the previous section I dealt with the likelihood function explaining the logic behind

its choice. We can remember that the actual algorithm stops when it finds a solution,

not the best but a feasible one. The problem rises thinking about the “problematic

orders” that are distant and isolated, if we do not consider them for too long, they

became even more complicated to manage. In fact, the algorithm does not take into

consideration the due date as a constraint, so some orders may be late by exceeding

the due date by a lot.

To avoid excessive delay has been added the sorting at the beginning of any algorithm

iteration, we have to apply:

1. EDD (earliest due date) sorting;

2. maximum duration sorting, to orders with same due date.

In this way the first solutions searched always include the firsts orders of the lists,

57

that are the next to go beyond the deadline (if they are not already), and the most

distant (bigger duration).

We can say that this is an “home-made” solution tailored for this implementation,

future development of this algorithm should better consider the deadline aspect inside

the main algorithm.

4.4.2 Avoid delay condition and specific solution

The sorting is a partial solution but it is not enough to avoid “no-sense” lateness

during a run. If a problematic order is always the first so it is included in any solution

search but never scheduled for a delivery, we could stop it for too long. To simplify

we can imagine that for months no neigh-boring orders are generated. It would be

reasonable to sacrifice a good solution to avoid a delay? In this work the answer is

affirmative.

In this case is coded a specific module that adopt a “simple-solution”. It simply takes

order from the list in the same order they are found, until the capacity constraint

allows. The trigger for this solution is when we have orders expiring “tomorrow”.

We will lose efficiency, but we avoid delays.

4.4.3 Low demand scenario

The simple solution explained above is used also in another situation. The algorithm

creates a cluster using two thresholds, the first based on similar duration while the

58

second on vehicle capacity limit. What happen if we do not have enough order to

fulfil the condition about the capacity, if the total volume is not enough, we should

not delivery anything? Even if this answer should be the result of another trade-off

in the present work we decide to delivery every time there is an order. So has been

set a trigger that calls the simple solution if it is impossible to find a solution with

the algorithm because of a low volume scenario.

Future formulation of this algorithm could bring to different way to address these

implementation issues.

59

Chapter 5

Simulation output analysis

After the discussion on the specific problem (chapter 3), the solution approach (chap-

ter 4), in the following pages will be shown different output of the simulation tool

with the aim to identify how good is this approach and its weaknesses.

This part of the work wants to go into the technical details of the tool allowing

to understand which parameters can be set and how. Furthermore, will be explained

the configurations of the tool with which tests have been performed and then how an

overall performance assessment was performed. Finally, the chapter will close with

some considerations regarding the results of the tests performed, the weakness that

emerged, and possible ideas for improvement for future analyses.

5.1 Benchmark

This work dealt with a hypothetical scenario based on the observation of real SMEs

behaviour about long range delivery. This mean that there are any real data to use

60

as benchmark.

However, it is possible to create a benchmark according to the case scenario as

it has been introduced in chapter 1. We described a furniture shop where deliveries

where managed manually, so we can hypothesize that the strong growths demand

has forced to reduce the time dedicated to scheduling deliveries.

The idea for a benchmark is to imitate this scheduling approach using an algo-

rithm which manages deliveries by giving precedence to the next to go beyond the

deadline. This is the simplest way to choose the next customer to serve, a sort of

“dumb-approach”.

If we want to compare any simulation with a benchmark then a single simulation

is indeed a pair of runs with the same set of customers in the same order (same seed

for the random generation) but solved using different solution method: one with the

likelihood function introduced in chapter 4, the other with a dumb solution strategy

that schedule according to the due date order.

In other words, each simulation must be compared with its benchmark run where

the likelihood algorithm it is off, and it is used instead a simple EDD logic and a

vehicle capacity constraint to create clusters of orders to schedule.

The results presented in section 5.3 are the mean of the improvement/worsening

from multiple couples of benchmark-optimized runs.

As mentioned above the seed used to set up the twin simulation (optimized and

dumb) are the same, in this way we have the same demand scenario (customer,

volume, etc. . .). In different pair of run the seed has been changed randomly.

61

5.2 Simulation parameters

A part of the tool is able to generate customers based on the setting given to a series

of parameters. These elements regard the demand distribution, the probability to

refuse an order etc. . . these will be our experimental parameters.

The simulation run have the purpose to evaluate the response of the algorithm

according to different scenarios.

For reason of time, it was not possible to analyse in depth what was the best

setting for the likelihood function, in these simulations it is set up according to what

should be a good setting.

Firstly, it is important to introduce all the settings that can be modified. Some of

them are related to the generation of customer, for example it is possible to choose the

demand distribution both as regards the number of orders that can arrive each day

and in term of their volume. In these simulations only uniform distributions have

been used but nothing prevents from use normal, exponential or other statistical

distribution.

Other parameters define the length of the simulation and other features more

related to the delivery activity, as the service time spent at each customer location.

Other settings are related to the likelihood function. They can be changed at will,

however at this stage the goal was to test the goodness of the algorithm when the

demand scenarios changed, therefore only a specific configuration deemed sufficiently

good was used.

In the future it will be possible to conduct in depth analyses to define which are

62

the optimal settings.

The generation parameters are the following:

• days of simulation define the length of the simulation;

• likelihood function on/off, if turned off the run generate a benchmark;

• daily order distribution, (experimental);

• volume of order, it is set to vary according to a fixed probability distribution;

• waiting-from-supplier probability, (experimental) the stock-out probability;

• waiting-from-supplier waiting time, it is the time needed to get supplies from

the supplier;

• due date delay, respect to the moment of generation of an order is the time

when the due date is set;

• probability to refuse a delivery date(experimental);

• number of vehicles, the size of the fleet;

• vehicle capacity, (experimental) is the volume loadable on a truck;

• service time, it is the time spent to accomplish a delivery so to unload the orders

and deliver it;

• start hour of a working day, the time from which vehicles can star delivering;

63

• ending hour of a working day, the time by which all vehicles must be at the

depot.

In table 5.1 is presented an example of setting for a pair of runs, the benchmark one

and the optimized. In yellow the experimental parameters.

Figure 5.1: Example of simulation parameters.

The experimental parameters will vary during simulations while the others are

the chosen settings that are fixed across all the tests run.

Each simulation is long 168 days, 24 weeks. Each order has a random volume

extracted from a uniform distribution with a minimum size of 5 and a maximum of

100; the step in the extraction is set at one, so no float but only integers number.

The volume is a fictitious number with no unit of measure.

The due date delay is the time interval between when the order is generated and

when the deadline is set. During the run used to evaluate the overall performance this

parameter is set at 7 deterministic days. In other word when an order is generated

the deadline to delivery is always set seven days later.

The vehicle number is set as one. The tool support at most 3 vehicles but it is

not optimized to work properly with this setting. The complexity is in the cluster

creation inside the likelihood function.

64

The service time is zero. This choice to simplify the simulations. An idea could

be to make it proportional to the volume of the specific order.

The working time is a very stringent constraint as it does not allow exceptions.

Each delivery tour can start after 7 am but must be completed (the vehicle parked

at the depot) by 10 pm. Such a large time window is also made obligatory by the

large geographical region from which the orders can arrive (the entire North Italy); a

lower window would have made it impossible a priori to deliver to certain locations.

The following are instead the setting of the likelihood function.

• Similarity threshold level of the first order to compare with the second;

• similarity threshold level of the second order to compare with the first;

• minimum capacity saturation level of a vehicle;

• second best minimum saturation level of a vehicle;

• RTL, reduction threshold level.

Figure 5.2: Example of likelihood function settings.

These settings are fixed and refer to the likelihood function introduced in the

previous chapter.

65

The two-similarity duration percentage are the threshold about the similarity in

the duration to reach one location over another, they are the percentage used to

create the likelihood matrix and create a cluster of orders.

These similarity levels are the initial ones that, as described in the chapter 4, are

progressively reduced until a cluster of customers is identified.

The reduction of these threshold at each iteration that does not lead to a solution

occurs according to the RTL. The smaller the Reduction Threshold Level is, the

greater the number of iterations of the likelihood algorithm will be, increasing the

computational weight of the run. However, if the RTL is too big it turns out to be

a too permissive filter.

In the test simulations the similarity initial level is set at 95% and is reduced

according to an RTL set at 5%. These should be a good compromise.

In chapter 4 was identify a second big threshold, tied to the minimum saturation

of the vehicle to accept a cluster. In the tool are implemented two different level of

solution: a first best that can be found when a first level of saturation is reached,

a second solution that is search iterating from the beginning the entire algorithm

but using a less restrictive capacity constraint. This option is a choice in the code

implementation; in future development a more dynamic capacity threshold could be

implemented.

The performance of a simulation can be evaluated using a series of statistics that the

tool collects autonomously during its operation.

At the end of each simulation the tool presents a summary of the run which

66

contains the following information.

• Number of orders delivered;

• number of orders generated;

• number of orders delivered beyond the deadline;

• sum of days of delays;

• total simulation time;

• total distance travelled;

• total travel duration;

• total volume delivered.

Figure 5.3: Example of collected statistics.

The number of orders generated depends on the distribution of daily orders and

the number of simulation days. Two examples in the image above.

Given a total number of orders most of them are delivered, some beyond the

deadline. Each order delivered after its due date increase the counter of “order

delayed”, and at the same time the entity of that delay is summed to the counter

that track the total number of days of delay.

67

The simulation time is strongly dependent by the API used to compute distance

and durations from depot when an order is generated. This API allows you to have

detailed information on the route (indispensable for the creation of the likelihood

matrix and the creation of clusters) but is limited in the number of calls per minute,

up to 40.

It is important to say that using other provider, it could be possible to remove

this limitation, however ORS turns out to be one of the most reliable to offer this

resource for free. The main statistics used in the next sections are the total distance,

total duration and total volume delivered. These information are collected during

the simulation increasing these counters every time a tours is created.

In addition to this information, it is possible to collect further.

5.3 Simulation

We will analyse the results of four different scenario. As told before the algorithm

setting will not change and the performance are evaluated according to total dis-

tance, duration and volume. We will see four main variants where each experimental

parameter will be made to vary and the impact on the statistics will be evaluated.

5.3.1 Daily order distribution variation

The first parameter to be varied is related to the number of orders generable each day.

The purpose is understanding how the tool perform with an increasing variability.

The demand distribution is a Uniform with the mean fixed at 4,5 orders per day.

68

The minimum and maximum values of the uniform change while maintaining the

mean.

The daily order distribution scenario are the following:

• Uniform(0,9);

• Uniform(1,8);

• Uniform(2,7);

• Uniform(3,6).

The other experimental parameters are set as follow:

• waiting from supplier probability = 10

• refuse probability = 10

• vehicle capacity = 300.

The results of the simulations are summarized in the following tables and graphs.

69

Figure 5.4: Simulation output with daily order distribution variation.

Figure 5.5: Daily order distribution variation, performance trends.

70

Figure 5.6: Daily order distribution variation, total travel duration reduction.

Figure 5.7: Daily order distribution variation, total distance traveled reduction.

Figure 5.8: Daily order distribution variation, total volume delivered reduction.

The variability does not seem to have a significant impact on the volume deliv-

71

ered, in each scenario there is a minimal improvement over the benchmark. Total

distance and duration are significant reduced by the adoption of the likelihood func-

tion algorithm however the improvement is reduced as the variability increases. Both

distance and duration follow a similar worsening.

5.3.2 Waiting from supplier probability variation

The waiting probability represent the case when a customer asks for a product that

is not available and must be ordered to a supplier.

In this case the compared scenario are the following:

• waiting prob. = 0%;

• waiting prob. = 10%;

• waiting prob. = 20%;

• waiting prob. = 30%.

The other experimental parameters are set as follow:

• waiting from supplier probability = 10%;

• refuse probability = 10%;

• vehicle capacity = 300.

The results of the simulations are summarized in the following tables and graphs.

72

Figure 5.9: Simulation output with waiting from supplier probability variation.

Figure 5.10: Waiting probability variation, performance trends.

73

Figure 5.11: Waiting probability variation, total travel duration reduction.

Figure 5.12: Waiting probability variation, total distance traveled reduction.

Figure 5.13: Waiting probability variation, total volume delivered reduction.

The waiting from supplier probability is a form of stochasticity. The increas-

ing probability bring to a worsening in performance, the difference in performance

compared to benchmarks progressively is decreased. As in the previous case both

74

distance and duration have a similar behaviour. Even the delivered volume looks

similar to the first case, the increasing variability does not generate any significant

trends in performance and the difference between an optimized and a benchmark

scenario stay flat.

5.3.3 Probability to refuse a delivery variation

The next parameters that will be varied concern the opportunity of a customer to

refuse a delivery date. The major it is more frequently a cluster selected from the

likelihood function is broken. From a computational side this does not affect the

duration of a simulation.

For these parameters will used the following settings:

• refuse prob. = 0

• refuse prob. = 10

• refuse prob. = 20

The other experimental parameters are set as follow:

• daily orders distribution = Uniform(3,6);

• waiting probability = 10

• vehicle capacity = 300.

The results of the simulations are summarized in the following tables and graphs.

75

Figure 5.14: Simulation output with probability to refuse a delivery variation.

Figure 5.15: Probability to refuse a delivery variation, performance trends.

76

Figure 5.16: Probability to refuse a delivery variation, total travel duration reduction.

Figure 5.17: Probability to refuse a delivery variation, total distance traveled reduc-
tion.

Figure 5.18: Probability to refuse a delivery variation, total volume delivered reduc-
tion.

It seems that this type of increasing variability leads to a better exploitation

of the likelihood function. This form of stochasticity creates a delay in delivery so

77

each day there is a bigger customer base to choose from. Despite what we see, it is

necessary to specify that a strong assumption has been fixed around this parameter,

limiting the maximum number of refusals that a customer can give to one. Further

test are needed to establish whether this trend is realistic even in different situations.

To sum up, the increasing refuse probability bring to an opposite effect than the cases

3.1 and 3.2, the trends of total distance and duration highlight a better performance.

Moreover, it is possible to see a benefit also in the total volume delivered; in this

case the trend is evident.

5.3.4 Vehicle capacity variation

Last parameter to be variated is the vehicle capacity. This element is strongly con-

nected to the volume distribution that is fix. We will compare three different sce-

narios:

• vehicle capacity = 250;

• vehicle capacity = 300;

• vehicle capacity = 350.

The other experimental parameters are set as follow:

• daily orders distribution = Uniform(3,6);

• waiting probability = 10

• refuse probability = 10

78

Figure 5.19: Simulation output with vehicle capacity variation.

Figure 5.20: Vehicle capacity variation, performance trends.

79

Figure 5.21: Vehicle capacity variation, total travel duration reduction.

Figure 5.22: Vehicle capacity variation, total distance traveled reduction.

Figure 5.23: Vehicle capacity variation, total volume delivered reduction.

The vehicle capacity reduction brings to a worsening in the performance of the

algorithm. We can observe that the more this constraint is strong, the less the

80

algorithm works well. This is logical because of the nature of this problem. Whenever

we have a too large vehicle, we have more freedom to manage the scheduling of

delivery because the only strong constraint is the travel time, on the opposite side if

the space less the number of daily deliveries will be reduced anyhow. To sum up total

distance and duration improve with a larger vehicle. The volume delivered decrease

while increasing the volume deliverable, this element prove that the algorithm allows

to a better exploitation of the space.

5.4 Observations and weakness

The number of simulations needed to generate this performance analysis is around

one hundred, for at least more than 30 hours of run.

It would be interesting to analyse the behaviour of the tool by varying other

parameters. At the same time, it would be advisable to evaluate the combined effects

of the parameters to highlight any correlations form. Moreover, other simulations

can bring to understand what the best setting for the likelihood function is.

Obviously, it would be possible to analyse a lot of other cases, but this tool is

actually too much time-spending.

The conclusions that have been drawn must therefore be contextualized under

the specific conditions and cannot be considered universal.

We can observe that the tool has good performance, and it is able to solve the

study case giving an option for a better management about the delivery scheduling.

The likelihood function approach allows to achieve better performance overcoming

81

the limitation of a human approach (simulated with the dumb solution strategy).

The most interesting scenario is the one where the increased refuse probabil-

ity brings to better performance. The more complex element to dealt with is the

stochasticity in customer behaviour and we can be satisfied to record an improvement

according to its variation.

The next chapter will close the discussion opened in the introduction and devel-

oped during the chapters about our case scenario. Then will be described possible

evolution of this approach and what could be future development around these types

of routing problems.

82

Chapter 6

Conclusion and perspectives

Finally, it is time to take stock of this work.

This paper was born from a theorical topic a complex variant of vehicle routing

problem which also include stochasticity and dynamicity.

In a multi-periodical scenario with random customers coming from a large-scale

map, we need to decide how to manage deliveries with a limited vehicle capacity.

The main aspect is the geographical dimension: we need to decide if delivery to a

far location today or wait for nearby orders to be generated.

After an extensive study of the current literature, it was decided to follow the

little-travelled path of the simulation.

The simulation was a choice influenced by the real scenario of SMEs. Following a

brief investigation, a historical trend emerged in internal management of shipments,

not optimal in terms of costs.

Not having the opportunity to start from a real business case, it was decided to

83

treat the simulation parameters as experimental and conduct test to understand in

which simulation the tool behaved better.

From a theorical point of view the main problem of waiting or delivery to far

customer was addressed developing a likelihood function able to select cluster of

orders to be processed first.

This idea materialized in the writing of a code that was able to manage the

scenarios of our interest. The tool was developed with a view to being flexible and

allowing even substantial changes in the future to manage situations other than

those under analysis. As told before we need to vary the experimental parameters to

evaluate the goodness of the likelihood function. The tool is in fact able to simulate

and solve different scenario randomly generated according to the set settings.

Many simulations were conducted and by varying some selected parameters it was

possible to identify strength and weakness in the solution approach. As expected, an

increasing stochasticity implies a performance deterioration, however in some cases

the variability brings to improvements. To sum up the likelihood function was able

to bring benefits on total travel time and distance travelled in the order of 2% up

to 8%. The volume delivered, on the other hand, appeared to have no benefits from

this approach.

This thesis work can thus be said to be concluded. Faced with the problem, a

simulation software was developed, a solution function was implemented and sta-

tistical collections were implemented which allowed to positively evaluate the work

carried out.

Despite what has been said, many questions remain open therefore future devel-

84

opments of this work are manifold.

The likelihood function introduced has been applied to a simulation scenario, the

next step should be to apply it to a real dataset. Some constraints have been artifi-

cially introduced, future extension may work with multi-periodic delivery scheduling

as well with multiple vehicles fleet.

To be even more realistic could be introduced stochastic travel times due to traffic

conditions and traffic limitations in cities.

However the more future looking extension would involve replacing the solution

algorithm with an AI approach, based on machine learning.

The vehicle routing is actually an open field, it gave possibility to explore new

method. Moreover, new technologies like machine learning can lead to a new level

of flexibility making of VRP a topic of extreme interest.

85

Appendix A

Software

First part provides the code that manage the “order” entity. It is treated as a class

(OOP) in order to manage multiple object all with the same features. The second is

the core of the program, able to manage orders and simulate over multiple days.

A.1 The code, first part: Class Order definition

import pandas as pd

import geopandas as gpd

import fo l ium

import random

import datet ime

import time

import numpy as np

import openrout e s e rv i c e as or s

from fo l ium . p lug in s import Beaut i fy Icon

Set g r aph i c pandas data frame

pd . s e t op t i on (’ d i sp l ay . max rows ’ , 500)

pd . s e t op t i on (’ d i sp l ay . max columns ’ , 500)

pd . s e t op t i on (’ d i sp l ay . width ’ , 1000)

86

∗∗∗

DATA

∗∗∗

Api key f o r use open rou t e s e r v i c e

ap i key = ’ ∗∗∗

o r s c l i e n t = ors . C l i en t (key=api key)

Load data from csv about t r a v e l t imes and coo rd ina t e s

DATA = ’DATA Nord−i t a l y −i s t a t , com , lat , lng , reg , prov , sup , numres . cvs ’

COLUMNS: [’ i s t a t ’ , ’ comune ’ , ’ lng ’ , ’ l a t ’ , ’ r eg i one ’ , ’ p rov inc i a ’ , ’ s u p e r f i c i e ’ , ’ num res ident i

’]

d f coo rd = pd . r ead csv (DATA, header=0)

d f coord . drop ([2 7 0] , i np l a c e=True) # El iminate Torino

Open the database with the shape o f north i t a l y r eg i on s

d f r e g i o n = gpd . r e a d f i l e (’ DATA regioni . geo j son ’)

indexNames0 = d f r e g i o n [d f r e g i o n [’NOMEREG’] == ’Abruzzo ’] . index

indexNames1 = d f r e g i o n [d f r e g i o n [’NOMEREG’] == ’ Ba s i l i c a t a ’] . index

indexNames2 = d f r e g i o n [d f r e g i o n [’NOMEREG’] == ’ Calabr ia ’] . index

indexNames3 = d f r e g i o n [d f r e g i o n [’NOMEREG’] == ’Campania ’] . index

indexNames4 = d f r e g i o n [d f r e g i o n [’NOMEREG’] == ’ Lazio ’] . index

indexNames5 = d f r e g i o n [d f r e g i o n [’NOMEREG’] == ’Marche ’] . index

indexNames6 = d f r e g i o n [d f r e g i o n [’NOMEREG’] == ’ Mol ise ’] . index

indexNames7 = d f r e g i o n [d f r e g i o n [’NOMEREG’] == ’ Pugl ia ’] . index

indexNames8 = d f r e g i o n [d f r e g i o n [’NOMEREG’] == ’ Sardegna ’] . index

indexNames9 = d f r e g i o n [d f r e g i o n [’NOMEREG’] == ’ S i c i l i a ’] . index

indexNames10 = d f r e g i o n [d f r e g i o n [’NOMEREG’] == ’Toscana ’] . index

indexNames11 = d f r e g i o n [d f r e g i o n [’NOMEREG’] == ’Umbria ’] . index

d f r e g i o n . drop (indexNames0 , i np l a c e=True)

d f r e g i o n . drop (indexNames1 , i np l a c e=True)

d f r e g i o n . drop (indexNames2 , i np l a c e=True)

d f r e g i o n . drop (indexNames3 , i np l a c e=True)

d f r e g i o n . drop (indexNames4 , i np l a c e=True)

d f r e g i o n . drop (indexNames5 , i np l a c e=True)

d f r e g i o n . drop (indexNames6 , i np l a c e=True)

d f r e g i o n . drop (indexNames7 , i np l a c e=True)

d f r e g i o n . drop (indexNames8 , i np l a c e=True)

d f r e g i o n . drop (indexNames9 , i np l a c e=True)

d f r e g i o n . drop (indexNames10 , i np l a c e=True)

d f r e g i o n . drop (indexNames11 , i np l a c e=True)

Def ine the MAP centered on North I t a l y

m = fo l ium .Map(l o c a t i o n =[45.614037 , 10 . 360107] , zoom start=7)

Veh i c l e s are l o ca t ed at Torino , p l o t the depot

depot name = ’ Torino ’ # not in use a c tua l l y

depot = [45 . 073274 , 7 .68068748]

87

depo t l a t = 45.073274

depot lng = 7.68068748

fo l ium . Marker (

l o c a t i o n=depot ,

t o o l t i p=fo l ium .map . Too l t ip (”<h4>DEPOT I s t a t :\ n1272 </p><p>Comune di :\ nTorino </p>”) ,

i con=fo l ium . Icon (c o l o r=’ green ’ , i con=’ bus ’ , p r e f i x=’ fa ’) ,

se tZIndexOf f s e t=1000

) . add to (m)

Add reg ion l ay e r to the map

fo l ium . GeoJson (

d f r eg i on ,

name=’ geo j son ’ ,

s t y l e f u n c t i o n=lambda f e a tu r e : {

’ c o l o r ’ : ’ b lack ’ ,

’ weight ’ : 1 ,

’ f i l l ’ : Fa l se

}

) . add to (m)

l a y e r d i r e c t i o n s = fo l ium . FeatureGroup (name=’ laye r ’) # Add to m d i r e c t i o n s customer−depot on

t h i s l ay e r

∗∗∗

CLASS DEFINITION ” ORDER”

∗∗∗

c l a s s Order (ob j e c t) :

””” A c l a s s to model each order in the same way”””

SEED SETTING FOR GENERATION

orde r s s e ed = 111

random . seed (o rd e r s s e ed)

NOT IN USE Use to randomize the wait ing−from−s upp l i e r time

rng2 seed = 13 # SEED WAITING

rng2 = np . random . RandomState (rng2 seed)

due date de lay = 7 # [days] d e t e rm in i s t i c parameter to s e t the due date f o r a new order

PARAMETERS

volume min = 5

volume max = 100

volume step = 1

88

wait ing min = 1

waiting max = 5

prob no inventory = 0 .1 # WAITING PROB. p r obab i l i t y f o r a incoming order to not have

inventory

per iod = 1 # Day between s equ en t i a l per iod

s t a r t i n g d a t e = datetime . date . today () # Set the f i r s t day o f s imu lat i on as the ” r e a l ” today

cur r en t da t e = s t a r t i n g da t e # Parameter f o r the s imulat ion , i t w i l l change

cu r r en t i d = 0 # I n i t i a l i z a t i o n f o r the customers id

c oun t e r d i r e c t i o n r e qu e s t = 0 # Count the reques t to s e t max 40 per minute

Creat ion o f a dataframe to s t o r e a l l the i n f o about the orde r s

d f o r d e r s = pd . DataFrame (columns=[’ customer ID ’ , ’ i s t a t ’ , ’ comune ’ , ’ d i s t ance ’ , ’ durat ion ’ , ’

lng ’ , ’ l a t ’ ,

’ r eg i one ’ , ’ p rov inc i a ’ , ’ volume ’ , ’ da ta ord ine ’ , ’ due date ’

, ’ s t a t u s o r d i n e ’ ,

’ r e l e a s e d a t e ’ , ’ da ta sped i z i one ’ , ’ route f rom depot ’])

d f o r d e r s [’ da ta ord ine ’] = pd . to datet ime (d f o r d e r s [’ data ord ine ’] , format=’%Y%m%d ’)

d f o r d e r s [’ due date ’] = pd . to datet ime (d f o r d e r s [’ due date ’] , format=’%Y%m%d ’)

d f o r d e r s [’ da ta sped i z i one ’] = pd . to datet ime (d f o r d e r s [’ da ta sped i z i one ’] , format=’%Y%m%d ’)

d f o r d e r s [’ r e l e a s e d a t e ’] = pd . to datet ime (d f o r d e r s [’ r e l e a s e d a t e ’] , format=’%Y%m%d ’)

Creat ion o f a dataframe to s t o r e a l l the i n f o about the orde r s DELIVERED on the FINAL DAY

OF SIMULATION

d f f i n a l = pd . DataFrame (columns=[’ customer ID ’ , ’ i s t a t ’ , ’ comune ’ , ’ d i s t ance ’ , ’ durat ion ’ , ’

lng ’ , ’ l a t ’ ,

’ r eg i one ’ , ’ p rov inc i a ’ , ’ volume ’ , ’ da ta ord ine ’ , ’ due date ’ ,

’ s t a t u s o r d i n e ’ ,

’ r e l e a s e d a t e ’ , ’ da ta sped i z i one ’])

d f f i n a l [’ da ta ord ine ’] = pd . to datet ime (d f f i n a l [’ da ta ord ine ’] , format=’%Y%m%d ’)

d f f i n a l [’ due date ’] = pd . to datet ime (d f f i n a l [’ due date ’] , format=’%Y%m%d ’)

d f f i n a l [’ da ta sped i z i one ’] = pd . to datet ime (d f f i n a l [’ da ta sped i z i one ’] , format=’%Y%m%d ’)

d f f i n a l [’ r e l e a s e d a t e ’] = pd . to datet ime (d f f i n a l [’ r e l e a s e d a t e ’] , format=’%Y%m%d ’)

Creat ion o f a dataframe to s t o r e a l l the i n f o about the orde r s NOT DELIVERED on the FINAL

DAY OF SIMULATION

df mid = pd . DataFrame (columns=[’ customer ID ’ , ’ i s t a t ’ , ’ comune ’ , ’ d i s t ance ’ , ’ durat ion ’ , ’ lng

’ , ’ l a t ’ ,

’ r eg i one ’ , ’ p rov inc i a ’ , ’ volume ’ , ’ da ta ord ine ’ , ’ due date ’ , ’

s t a t u s o r d i n e ’ ,

’ r e l e a s e d a t e ’ , ’ da ta sped i z i one ’])

df mid [’ data ord ine ’] = pd . to datet ime (df mid [’ data ord ine ’] , format=’%Y%m%d ’)

df mid [’ due date ’] = pd . to datet ime (df mid [’ due date ’] , format=’%Y%m%d ’)

df mid [’ da ta sped i z i one ’] = pd . to datet ime (df mid [’ da ta sped i z i one ’] , format=’%Y%m%d ’)

df mid [’ r e l e a s e d a t e ’] = pd . to datet ime (df mid [’ r e l e a s e d a t e ’] , format=’%Y%m%d ’)

89

Creat ion o f a dataframe to s t o r e a l l the t r a v e l between depot and any order l o c a t i o n

d f t r a v e l = pd . DataFrame (

columns=[’ Distance ’ , ’ Duration ’ , ’From com . ’ , ’ From prov . ’ , ’To com . ’ , ’ To prov . ’ , ’

To i s t a t ’])

A l i s t with a l l the generated route s requested

route s = l i s t ()

A l i s t with a l l the order c reated

orde r s = l i s t ()

de f i n i t (s e l f , customer id , i s t a t , comune , d i s tance , duration , lng , la t , reg ione ,

prov inc ia ,

volume , data ord ine , due date , s t a tu s o rd in e , data sped i z i one , r e l e a s e d a t e) :

””” Al l the in format ion about customers ”””

s e l f . customer id = customer id

s e l f . i s t a t = i s t a t

s e l f . comune = comune

s e l f . d i s t ance = d i s tance

s e l f . durat ion = durat ion

s e l f . lng = lng

s e l f . l a t = l a t

s e l f . r eg i one = reg i one

s e l f . p rov inc i a = prov inc i a

s e l f . volume = volume

s e l f . da ta ord ine = data ord ine

s e l f . due date = due date

s e l f . s t a t u s o r d i n e = s t a tu s o r d i n e

s e l f . r e l e a s e d a t e = r e l e a s e d a t e

s e l f . da ta sped i z i one = data sped i z i one

s e l f . route f rom depot = {}

def show orde r in f o (s e l f) :

””” Show customer in fo rmat ions ”””

pr in t (f ’ ’ ’

ID customer : { s e l f . customer id }

Munic ipa l i ty i s t a t code : { s e l f . i s t a t }

Munic ipa l i ty : { s e l f . comune} , { s e l f . p rov inc i a } , { s e l f . r eg i one }

Travel d i s t ance (km) : { s e l f . d i s t ance }

Travel time (mins) : { s e l f . durat ion }

Longitude , l a t i d u t e : { s e l f . lng , s e l f . l a t }

Volume : { s e l f . volume}

Order date : { s e l f . da ta ord ine }

Order due−date : { s e l f . due date}

Actual order STATUS: { s e l f . s t a t u s o r d i n e }

Release date (i f needed) : { s e l f . r e l e a s e d a t e }

Shipment date : { s e l f . da ta sped i z i one }

90

∗∗∗ ’ ’ ’)

d e f o r d e r g e n e r a t i o n (s e l f) :

t r y :

””” Generat ion o f a s i n g l e new customer ; append a l l t h e i n f o to t h e data frame ”””

s e l f . c u s t omer i d = Order . u pda t e cu s t ome r i d ()

s e l f . c u s t ome r c ho i c e f r om da t a b a s e () # Ass ign i s t a t , comune , lng , l a t , r eg ione ,

p r o v i n c i a

s e l f . c ompu t e r ou t e d e po t t o c u s t ome r () # Ass ign d i s t ance , dura t ion , r o u t e f r om depo t

s e l f . volume = Order . s e t v o l ume o r d e r e d ()

s e l f . d a t a o r d i n e = Order . s e t d a t a o r d i n e () # Ass ign th e cu r r en t da t e

s e l f . s e t d u e d a t e () # Set t h e due da t e

s e l f . s t a t u s o r d i n e = Order . s e t i n i t i a l s t a t u s o r d i n e ()

s e l f . s e t r e l e a s e d a t e () # I f no i n v en t o r y s e t t h e r e l e a s e date , and d e l a y t h e due

da t e

s e l f . d a t a s p e d i z i o n e = ’ ’

new order = pd . DataFrame (

[[s e l f . cus tomer id , s e l f . i s t a t , s e l f . comune , s e l f . d i s t ance , s e l f . dura t ion , s e l f .

lng , s e l f . l a t ,

s e l f . r eg ione , s e l f . p rov inc i a , s e l f . volume , s e l f . d a t a o rd ine , s e l f . due da te ,

s e l f . s t a t u s o r d i n e ,

s e l f . r e l e a s e d a t e , s e l f . d a t a s p e d i z i o n e , s e l f . r o u t e f r om depo t]] ,

columns =[’ customer ID ’ , ’ i s t a t ’ , ’ comune ’ , ’ d i s t a n c e ’ , ’ du ra t i on ’ , ’ l n g ’ , ’ l a t ’ ,

’ r e g i on e ’ , ’ p r o v i n c i a ’ , ’ volume ’ , ’ d a t a o r d i n e ’ , ’ du e da t e ’ , ’

s t a t u s o r d i n e ’ ,

’ r e l e a s e d a t e ’ , ’ d a t a s p e d i z i o n e ’ , ’ r o u t e f r om depo t ’])

Order . d f o r d e r s = pd . conca t ([Order . d f o r d e r s , new order])

e x c e p t :

p r i n t (’ Di s tance e r r o r from API ’)

@classmethod

de f u pda t e cu s t ome r i d (c l s) :

””” Use to update t h e customer i d f o r each r e q u e s t ”””

c l s . c u r r e n t i d = c l s . c u r r e n t i d + 1

re tu rn c l s . c u r r e n t i d

d e f g e t c u s t ome r i d (s e l f) :

””” Use to o b t a i n t h e number o f a order ”””

r e t u rn s e l f . c u s t omer i d

d e f c u s t ome r c ho i c e f r om da t a b a s e (s e l f) :

””” Ex t r a c t a random customer from the da t a ba s e ; we i gh t i s custom ”””

popu l a t i o n = d f c o o r d [’ i s t a t ’]

w e i g h t s = d f c o o r d [’ num re s i d en t i ’]

91

Ex t ra c t a random i s t a t u s ing i s t a t p o pu l a t i o n as we i gh t

r andom i s t a t = random . c h o i c e s (p o pu l a t i o n=popu l a t i on ,

w e i g h t s=we igh t s ,

k=1)

random customer = random i s t a t [0]

e x t r a c t e d o r d e r = d f c o o r d . l o c [d f c o o r d [’ i s t a t ’] == random customer]

Order . o rd e r s . append (e x t r a c t e d o r d e r)

s e l f . i s t a t = e x t r a c t e d o r d e r . i s t a t . i tem ()

s e l f . comune = e x t r a c t e d o r d e r . comune . i tem ()

s e l f . l n g = e x t r a c t e d o r d e r . l n g . i tem ()

s e l f . l a t = e x t r a c t e d o r d e r . l a t . i tem ()

s e l f . r e g i on e = e x t r a c t e d o r d e r . r e g i on e . i tem ()

s e l f . p r o v i n c i a = e x t r a c t e d o r d e r . p r o v i n c i a . i tem ()

d e f c ompu t e r ou t e d e po t t o c u s t ome r (s e l f) :

””” Compute t h e t r a v e l d i s t a n c e and dura t i on ; then update t h e t r a v e l data frame ”””

Order . c o u n t e r d i r e c t i o n r e q u e s t += 1

coo r d i n a t e s = ((d epo t l n g , d e p o t l a t) , (s e l f . lng , s e l f . l a t))

d i r e c t i on pa r ams = { ’ c o o r d i n a t e s ’ : c oo rd ina t e s ,

’ p r o f i l e ’ : ’ d r i v i n g−car ’ ,

’ f o rma t ou t ’ : ’ g eo j s on ’ ,

’ u n i t s ’ : ’km ’ ,

’ geometry ’ : ’ t r u e ’}

rou t e = o r s c l i e n t . d i r e c t i o n s (∗∗ d i r e c t i on pa r ams)

s e l f . r o u t e f r om depo t = rou t e

Order . r o u t e s . append (rou t e)

Avoid to go over 40 r e q u e s t s per minute

i f l e n (Order . r o u t e s) % 39 == 0 :

t ime . s l e e p (60)

d i s t ance , du ra t i on = rou t e [’ f e a t u r e s ’] [0] [’ p r o p e r t i e s ’] [’ summary ’] . v a l u e s ()

s e l f . d i s t a n c e = d i s t a n c e

s e l f . du ra t i on = round (du ra t i on / 60 , 2)

Add i n f o about rou t e to t h e t r a v e l s i n f o rma t i on data frame

new record = pd . DataFrame (

[[s e l f . d i s t ance , s e l f . dura t ion , ’ Torino ’ , ’TO ’ , s e l f . comune , s e l f . p rov inc i a , s e l f .

i s t a t ,

s e l f . r o u t e f r om depo t]] ,

columns =[’ Di s tance ’ , ’ Durat ion ’ , ’ From com . ’ , ’ From prov . ’ , ’To com . ’ , ’ To prov . ’ ,

’ T o i s t a t ’ , ’ r o u t e f r om depo t ’])

Order . d f t r a v e l = pd . conca t ([Order . d f t r a v e l , new record])

@classmethod

92

de f s e t v o l ume o r d e r e d (c l s) :

”””Use to randomize t h e volume o f a new order ”””

vo lume = random . randrange (Order . volume min , Order . volume max , s t e p=Order . v o l ume s t e p)

r e t u rn vo lume

@classmethod

de f s e t d a t a o r d i n e (c l s) :

””” Use to s e t t h e cu r r en t day o f s imu l a t i o n as t h e order−da t e ”””

r e t u rn c l s . c u r r e n t d a t e

d e f s e t d u e d a t e (s e l f) :

””” Use to s e t t h e due da t e o f a new order , by a d e l a y s a t a t t h e b e g i nn in g ”””

s e l f . du e da t e = s e l f . d a t a o r d i n e + da t e t ime . t im e d e l t a (days=Order . d u e d a t e d e l a y)

@classmethod

de f s e t i n i t i a l s t a t u s o r d i n e (c l s) :

””” Use to s e t t h e s t a t u s as a l r e a d y ready to d e l i v e r y ; e v e n t u a l l y s e t t h e r e l e a s e da t e

”””

random prob = random . random () # gene ra t e a random number between [0 . 0 , 1 . 0]

i f random prob <= Order . p r o b no i n v en t o r y :

r e t u rn ’WAITING−FROM−SUPPLIER ’

e l s e :

r e t u rn ’READY−TO−DELIVERY ’

de f s e t r e l e a s e d a t e (s e l f) :

””” I f no inven to ry , we d e l a y t h e due da t e and add a r e l e a s e da t e ”””

n o i n v e n t o r y d e l a y = Order . rng2 . r and in t (Order . wa i t ing min ,

Order . wa i t ing max) # [days] d e t e rm i n i s t i c

parameter to s e t t h e r e l e a s e da t e f o r a new order

i f s e l f . s t a t u s o r d i n e == ’WAITING−FROM−SUPPLIER ’ :

s e l f . du e da t e = s e l f . du e da t e + da t e t ime . t im e d e l t a (days=no i n v e n t o r y d e l a y)

s e l f . r e l e a s e d a t e = Order . c u r r e n t d a t e + da t e t ime . t im e d e l t a (days=no i n v e n t o r y d e l a y)

@classmethod

de f change da t e (c l s) :

””” Use to update by t h e s a t p e r i od t h e da t e ”””

c l s . c u r r e n t d a t e = c l s . c u r r e n t d a t e + da t e t ime . t im e d e l t a (days=Order . p e r i od)

p r i n t (f

”””−−−

DATE: The da t e i s changed , today i s : { c l s . c u r r e n t d a t e }”””)

d e f u p d a t e s t a t u s o r d i n e (s e l f) :

””” When happen the a c e r t a i n date , t h e order s t a t u s change ”””

From WAITING−FROM−SUPPLIER −−> READY−TO−DELIVERY

i f s e l f . r e l e a s e d a t e == Order . c u r r e n t d a t e :

s e l f . r e l e a s e d a t e = ’ ’

93

s e l f . s t a t u s o r d i n e = ’READY−TO−DELIVERY ’

p r i n t (f ”””STATUS: order w i th ID customer { s e l f . c u s t omer i d } i s now { s e l f .

s t a t u s o r d i n e } . ”””)

From READY−TO−DELIVERY −−> BEYOND THE DEADLINE

i f s e l f . r e l e a s e d a t e == ’ ’ and s e l f . s t a t u s o r d i n e == ’READY−TO−DELIVERY ’ :

i f s e l f . du e da t e + da t e t ime . t im e d e l t a (days=1) == Order . c u r r e n t d a t e :

s e l f . s t a t u s o r d i n e = ’BEYOND THE DEADLINE ’

p r i n t (f ”””STATUS: order w i th ID customer { s e l f . c u s t omer i d } i s now { s e l f .

s t a t u s o r d i n e } . ”””)

From READY−TO−DELIVERY −−> SCHEDULED

i f s e l f . r e l e a s e d a t e == ’ ’ and s e l f . s t a t u s o r d i n e == ’READY−TO−DELIVERY ’ :

i f s e l f . d a t a s p e d i z i o n e != ’ ’ \

and s e l f . d a t a s p e d i z i o n e == Order . c u r r e n t d a t e + da t e t ime . t im e d e l t a (days=1) :

s e l f . s t a t u s o r d i n e = ’−SCHEDULED−’

p r i n t (f ”””STATUS: order w i th ID customer { s e l f . c u s t omer i d } i s now { s e l f .

s t a t u s o r d i n e } . ”””)

From SCHEDULED −−> DELIVERED

i f s e l f . r e l e a s e d a t e == ’ ’ and s e l f . s t a t u s o r d i n e == ’−SCHEDULED− ’:

i f s e l f . d a t a s p e d i z i o n e == Order . c u r r e n t d a t e :

s e l f . s t a t u s o r d i n e = ’DELIVERED ’

p r i n t (f ”””STATUS: order w i th ID customer { s e l f . c u s t omer i d } i s now { s e l f .

s t a t u s o r d i n e } . ”””)

From BEYOND THE DEADLINE −−> DELIVERED BEYOND THE DEADLINE

e l i f s e l f . r e l e a s e d a t e == ’ ’ and s e l f . s t a t u s o r d i n e == ’BEYOND THE DEADLINE ’ :

i f s e l f . d a t a s p e d i z i o n e == Order . c u r r e n t d a t e :

s e l f . s t a t u s o r d i n e = ’DELIVERED BEYOND THE DEADLINE ’

p r i n t (f ”””STATUS: order w i th ID customer { s e l f . c u s t omer i d } i s now { s e l f .

s t a t u s o r d i n e } . ”””)

d e f s e t d a t a s p e d i z i o n e (s e l f , d e l a y) :

””” Add a shipment da t e ; then update t h e d f o r d e r s . I n s e r t t h e ” d e l a y ” .”””

s e l f . d a t a s p e d i z i o n e = Order . c u r r e n t d a t e + da t e t ime . t im e d e l t a (days=de l a y)

p r i n t (

f ”””SHIPMENT: Order w i th ID customer { s e l f . c u s t omer i d } . Shipment da t e s c h edu l e d : {

s e l f . d a t a s p e d i z i o n e } . ”””)

d e f map add cu s t omer s l o ca t i on (s e l f) :

””” Add markers f o r customer l o c a t i o n s to t h e map”””

t o o l t i p = fo l i um .map . Too l t i p (”<h4>Customer ID : {}”

”</p><p>Mun i c i p a l i t y : {}</p>”

”</p><p>Order da t e : {}</p>”

94

”</p><p>Order due−da t e : {}</p>”

”</p><p>S t a t u s : {}</p>”. format (s e l f . cus tomer id , s e l f

. cmminomune ,

s e l f . d a t a o rd ine , s e l f

. due da te ,

s e l f . s t a t u s o r d i n e)

)

f o l i um . Marker (

l o c a t i o n =[s e l f . l a t , s e l f . l n g] ,

t o o l t i p=t o o l t i p ,

i con=Beau t i f y I c on (

i c on shape =’marker ’ ,

number=i n t (s e l f . c u s t omer i d) ,

s p in=True ,

t e x t c o l o r =’ red ’ ,

b a c k g r ound co l o r=’#FFF ’ ,

i n n e r i c o n s t y l e =’ fon t−s i z e : 12 px ; padding−top :−5px ; ’

)

) . add t o (m)

de f map add cu s t omer d i r e c t i on (s e l f) :

””” Add to t h e map the d i r e c t i o n s : from depo t to customer ”””

t o o l t i p 2 = fo l i um .map . Too l t i p (”””<h4>Torino −−> {0} </h4>

<s t rong>Durat ion : </s t rong >{1:.1 f } mins

<s t rong>Dis tance : </s t rong >{2:.3 f } km””” . format (

s e l f . comune , s e l f . dura t ion , s e l f . d i s t a n c e))

f o l i um . GeoJson (

s e l f . r ou t e f r om depo t ,

t o o l t i p=t o o l t i p 2 ,

s t y l e f u n c t i o n=lambda f e a t u r e : { ’ c o l o r ’ : ’ b l u e ’}

) . add t o (l a y e r d i r e c t i o n s)

d e f d f f i n a l c r e a t i o n (s e l f) :

””” Use i t e r a t i n g on a l i s t ORDER DELIVERED to c r e a t e a da t a ba s e ”””

l a s t o r d e r u p d a t e = pd . DataFrame (

[[s e l f . cus tomer id , s e l f . i s t a t , s e l f . comune , s e l f . d i s t ance , s e l f . dura t ion , s e l f . lng ,

s e l f . l a t ,

s e l f . r eg ione , s e l f . p rov inc i a , s e l f . volume , s e l f . d a t a o rd ine , s e l f . due da te , s e l f .

s t a t u s o r d i n e ,

s e l f . r e l e a s e d a t e , s e l f . d a t a s p e d i z i o n e]] ,

columns =[’ customer ID ’ , ’ i s t a t ’ , ’ comune ’ , ’ d i s t a n c e ’ , ’ du ra t i on ’ , ’ l n g ’ , ’ l a t ’ ,

’ r e g i on e ’ , ’ p r o v i n c i a ’ , ’ volume ’ , ’ d a t a o r d i n e ’ , ’ du e da t e ’ , ’ s t a t u s o r d i n e

’ ,

’ r e l e a s e d a t e ’ , ’ d a t a s p e d i z i o n e ’])

Order . d f f i n a l = pd . conca t ([Order . d f f i n a l , l a s t o r d e r u p d a t e])

d e f d f m i d c r e a t i o n (s e l f) :

95

””” Use i t e r a t i n g on a l i s t o r d e r o p t im i z e d to c r e a t e a da t a ba s e ”””

l a s t o r d e r u p d a t e = pd . DataFrame (

[[s e l f . cus tomer id , s e l f . i s t a t , s e l f . comune , s e l f . d i s t ance , s e l f . dura t ion , s e l f . lng ,

s e l f . l a t ,

s e l f . r eg ione , s e l f . p rov inc i a , s e l f . volume , s e l f . d a t a o rd ine , s e l f . due da te , s e l f .

s t a t u s o r d i n e ,

s e l f . r e l e a s e d a t e , s e l f . d a t a s p e d i z i o n e]] ,

columns =[’ customer ID ’ , ’ i s t a t ’ , ’ comune ’ , ’ d i s t a n c e ’ , ’ du ra t i on ’ , ’ l n g ’ , ’ l a t ’ ,

’ r e g i on e ’ , ’ p r o v i n c i a ’ , ’ volume ’ , ’ d a t a o r d i n e ’ , ’ du e da t e ’ , ’ s t a t u s o r d i n e

’ ,

’ r e l e a s e d a t e ’ , ’ d a t a s p e d i z i o n e ’])

Order . d f mid = pd . conca t ([Order . df mid , l a s t o r d e r u p d a t e])

A.2 The code, second part: daily routine func-

tions and simulation.

import pandas as pd

import random

import numpy as np

import fo l ium

from fo l ium . p lug in s import Beaut i fy Icon

import datet ime

import openrout e s e rv i c e as or s

import A06 c la s s as c l a

Set g r aph i c f o r pandas data frame

pd . s e t op t i on (’ d i sp l ay . max rows ’ , 500)

pd . s e t op t i on (’ d i sp l ay . max columns ’ , 500)

pd . s e t op t i on (’ d i sp l ay . width ’ , 1000)

ap i key = c l a . ap i key

∗∗∗

SETTING

∗∗∗

””” GENERATION SETTINGS ”””

TIME HORIZON = 168

day s o f g en e r a t i on = 1 # Used in n d a y o r d e r c r e a t i o n

PROB REFUSE THE DELIVERY = 0.2 # REFUSE. I s t h e p r o b a b i l i t y t h a t a customer r e f u s e t h e d e l i v e r y

f o r a c e r t a i n da t e

96

da i l y m in o rde r s = 3 # Set t h e MIN number o f o rd e r s t h a t can be c r e a t e d in a day

da i ly max order s = 6 # Set t h e MAX number o f o rd e r s t h a t can be c r e a t e d in a day

SEED SETTINGS f o r r e f u s e d e l i v e r y

rng1 seed = 127

rng1 = np . random . RandomState (rng1 seed)

””” LIKELIHOOD FUNCTION SETTINGS”””

min d i s t a n c e l i k e l i h o o d 1 t o 2 = 0 # Is a % o f d i s t a n c e s i m i l a r i t y

min d i s t a n c e l i k e l i h o o d 2 t o 1 = 0 # Is a % o f d i s t a n c e s i m i l a r i t y

min du r a t i o n l i k e l i h o od 1 t o 2 = 95 # Is a % o f du ra t i on s i m i l a r i t y (b e f o r e ad jus tment)

min du r a t i o n l i k e l i h o od 2 t o 1 = 95 # Is a % o f du ra t i on s i m i l a r i t y (b e f o r e ad jus tment)

d i s t a n c e l im i t = 0 # Is a l i m i t t o choose f o r o p t im i z a t i o n on l y order f a r enough NOT IN USE

RTL = 5 # REDUCTION THRESHOLD LEVEL I s a % used to a d j u s t t h e i n i t i a l l e v e l above

MIN CAPACITY LOAD = 0.9 # min % l e v e l o f v e h i c l e l oad to ac c ep t a ba t ch o f o rd e r s

HALF CAPACITY LOAD = 0.75 # h a l f o f t h e v e h i c l e c a p a c i t y

””” OPTIMIZATION SETTINGS”””

OPTIMIZATION = ’ on ’ # Set ’ on ’ to use t h e op t ima l a l g o r i t hm i n s t e a d

on o f f map c r ea t i on = ’ o f f ’ # wr i t e ’ on ’ / ’ o f f ’ t o c r e a t e d a i l y r o u t i n g maps ; used 2 t imes in

d e l i v e r y o p t im i z a t i o n ()

NUMBER OF VEHICLES = 1 # Max number o f v e h i c l e i s 3

VEHICLE CAPACITY = 300

TOT VEHICLES CAPACITY = NUMBER OF VEHICLES ∗ VEHICLE CAPACITY

opt s t a r t hou r = 8

opt end hour = 23

SERVICE TIME = 0

””” DATA STRUCTURES ”””

o r d e r l i s t = l i s t () # Store ALL the o rde r s

o r d e r r e ady t o d e l i v e r y = l i s t () # Store o rde r s READY−TO−DELIVERY, so to be s c h edu l e d

o rde r r e ady to op t im i z e = l i s t () # Store o rde r s TO BE OPTIMIZED f o r t h e d e l i v e r y

o r d e r d e l i v e r e d = l i s t () # Store o rde r s DELIVERED so not to be touch aga in

f i r s t r e f u s e = l i s t () # Store a l l t h e r e f u s e , in t h i s way a customer can ’ t r e f u s e mu l t i p l e t ime

””” GENERAL COUNTER FOR STATISTICS”””

t o t a l d i s t a n c e = 0 # meters

t o t a l du r a t i o n = 0 # sec

tota l vo lume = 0

broken promise = 0 # counte r f o r d e l i v e r y promised bu t not happened

97

f i r s t s o l c o u n t e r = 0

s e cond so l c oun t e r = 0

s tup id avo id de l ay = 0

s t u p i d l a s t s o l = 0

opt so lu t i on b roken = 0 # counte r o f number o f t imes a good s o l u t i o n i s b reak from a customer

r e f u s e

∗∗∗

FUNCTIONS

∗∗∗

def map da i ly o rde r s r eady () :

””” Use when you want to p l o t t h e o rde r s from ready to ana l y s e t h e a l g o r i t hm cho i c e ”””

SETTINGS

Load data from csv about t r a v e l t imes and c oo r d i n a t e s

DATA = ’DATA Nord−i t a l y −i s t a t , com , lat , lng , reg , prov , sup , numres . cvs ’

COLUMNS: [’ i s t a t ’ , ’ comune ’ , ’ r e g i one ’ , ’ l n g ’ , ’ l a t ’ , ’ r e g i on e ’ , ’ p r o v i n c i a ’ , ’ s u p e r f i c i e ’ ,

’ num re s i d en t i ’]

d f coord = pd . r ead csv (DATA)

Veh i c l e s are l o c a t e d a t Torino , p l o t t h e depo t

depot name = ’ Torino ’ # not in use a c t u a l l y

depot = c l a . depot

Def ine t h e MAP cen t e r ed on North I t a l y

m3 = fo l ium .Map(l o c a t i o n =[45.614037 , 10 . 360107] , zoom start=7)

Add to m d i r e c t i o n s customer−depo t on t h i s l a y e r

fo l ium . Marker (

l o c a t i o n=depot ,

t o o l t i p=fo l ium .map . Too l t ip (”<h4>DEPOT I s t a t :\ n1272 </p><p>Comune di :\

nTorino </p>”) ,

i con=fo l ium . Icon (c o l o r=’ green ’ , i con=’ bus ’ , p r e f i x=’ fa ’) ,

se t Z I n d e xO f f s e t =1000

) . add to (m3)

l a y e r d i r e c t i o n s = fo l ium . FeatureGroup (name=’ l ay e r ’)

f o r ordine m in l i s t (o r d e r r e ady t o d e l i v e r y) :

ADD LOCATIONS

t o o l t i p = fo l ium .map . Tool t ip (”<h4>Customer ID : {}”

”</p><p>VOLUME: {}</p>”

”</p><p>Order date : {}</p>”

”</p><p>Order due−date : {}</p>”

”</p><p>Status : {}</p>” . format (ordine m . customer id ,

98

ordine m . volume ,

ordine m . data ord ine ,

ordine m . due date ,

ordine m . s t a t u s o r d i n e

)

)

fo l ium . Marker (

l o c a t i o n =[ordine m . lat , ordine m . lng] ,

t o o l t i p=too l t i p ,

i con=Beaut i fy Icon (

i con shape=’marker ’ ,

number=in t (ordine m . customer id) ,

sp in=True ,

t e x t c o l o r=’ red ’ ,

background co lor=’#FFF ’ ,

i n n e r i c o n s t y l e=’ font−s i z e : 12 px ; padding−top :−5px ; ’

)

) . add to (m3)

ADD DIRECTION

t o o l t i p 2 = fo l ium .map . Too l t ip (”””<h4>Torino −−> {0} </h4>

<s t rong>Durat ion : </s t rong >{1:.1 f } mins

<s t rong>Dis tance : </s t rong >{2:.3 f } km””” . format (

ordine m . comune , ordine m . duration , ordine m . d i s t ance))

fo l ium . GeoJson (

ordine m . route f rom depot ,

t o o l t i p=too l t i p2 ,

s t y l e f u n c t i o n=lambda f e a tu r e : { ’ c o l o r ’ : ’ b lue ’}

) . add to (l a y e r d i r e c t i o n s)

m3. add ch i ld (l a y e r d i r e c t i o n s)

m3. save (f ’ A07 order s ready { c l a . Order . cu r r en t da t e + datet ime . t imede l ta (days=1) } . html ’)

de f d f o r d e r s a n a l y s i s () :

””” Use to ana l y s e t h e d f o r d e r s ; so a few s t a t i s t i c s about t h e g ene ra t ed o rde r s ”””

d f input = ’ tba ’

df = pd . r ead csv (d f i nput)

df . drop (’Unnamed : 0 ’ , ax i s =1, i np l a c e=True)

counter = 0

f o r row in df . i t e r t u p l e s () :

i f row . s t a t u s o r d i n e == ’WAITING−FROM−SUPPLIER ’ :

counter += 1

volume = df . groupby (by=df . data ord ine) .mean ()

99

o r d i n i g i o r n a l i e r i = df . groupby (by=df . data ord ine) . count ()

p r in t (f ’ ’ ’

Sono p r e s e n t i { l e n (d f)} i s t a n z e d i cu i { coun te r } , { coun te r / l en (d f) ∗ 100}% i s t a n z e sono

WAITING−FROM−SUPPLIER (s e t 30%)

Ogni g i o rno possono e s s e r c i t r a 2 e 10 o r d i n i ; in media sono : { round (o r d i n i g i o r n a l i e r i [’

i s t a t ’] . mean () , 2)} (s e t random in 2 , 10)

Data l a media g i o r n a l i e r a d e i vo lumi o r d i n a t i , l a media d e l l e medie r i s u l t a : { round (volume [’

volume ’] . mean () , 2)} (s e t un i f . 5 ,100 , s t e p =5)

’ ’ ’)

de f compute delay () :

day s o f d e l ay = 0

orde r de layed = 0

f o r o rd i n e d e l in l i s t (o r d e r d e l i v e r e d) :

i f o r d i n e d e l . s t a t u s o r d i n e == ’DELIVERED BEYOND THE DEADLINE ’ \

or o rd i n e d e l . s t a t u s o r d i n e == ’BEYOND THE DEADLINE ’ :

o rde r de layed += 1

s p e c i f i c d e l a y = o rd i n e d e l . da ta sped i z i one − o rd i n e d e l . due date

day s o f d e l ay += s p e c i f i c d e l a y . days

f o r o rd ine ready in l i s t (o r d e r r e ady t o d e l i v e r y) :

i f o rd ine ready . s t a t u s o r d i n e == ’BEYOND THE DEADLINE ’ :

o rde r de layed += 1

s p e c i f i c d e l a y = c l a . Order . cu r r en t da t e − ord ine ready . due date

day s o f d e l ay += s p e c i f i c d e l a y . days

return days o f de l ay , o rde r de layed

de f n day o rd e r s c r e a t i on () :

””” Give him a number o f days , f o r each c r e a t e a random number o f o rd e r s between min and max

”””

f o r day in range (0 , day s o f g en e r a t i on) :

max da i ly order s = random . randint (da i l y min orde r s , da i l y max order s)

p r in t (f ”\nGENERATION: on the { c l a . Order . cu r r en t da t e } , has been generated : {

max da i ly order s } orde r s \n”)

f o r o rd in e in range (0 , max da i ly order s) :

o rd in e = c l a . Order (i n t () , i n t () , s t r () , f l o a t () , f l o a t () , f l o a t () , f l o a t () , s t r , s t r

, int , s t r , s t r , s t r ,

s t r , s t r (’ ’))

o rd in e . o rd e r g ene ra t i on ()

o r d e r l i s t . append (o rd in e)

de f s e t o r d e r s t o r e a dy () :

100

””” Look in ORDER LIST , i f an order i s ready−to−d e l i v e r y a t i t t o ORDER READY TO DELIVERY

l i s t ”””

f o r o rd i n e r in l i s t (o r d e r l i s t) :

i f o r d i n e r . s t a t u s o r d i n e == ’READY−TO−DELIVERY ’ :

i f order . d a t a s p e d i z i o n e == Order . c u r r e n t d a t e :

o r d e r r e ady t o d e l i v e r y . append (o rd i n e r)

p r in t (f ””” Order { o r d i n e r . cu s t omer i d } moved to l i s t ready to d e l i v e r y ”””)

o r d e r l i s t . remove (o rd i n e r)

de f e d d d i s t a n c e l i s t s o r t i n g (l i s t name) :

””” Use to s o r t a l i s t o f order based on EARLIEST DUE DATE;

then a l l t h e order w i th same due da t e are s o r t e d from the max d i s t a n c e ”””

l i s t name . s o r t (key=lambda x : (x . due date , −x . durat ion))

de f e d d l i s t s o r t i n g (l i s t name) :

””” Use to s o r t a l i s t o f order based on EARLIEST DUE DATE”””

l i s t name . s o r t (key=lambda x : x . due date)

de f r o ad l i k e l i h o od (o rde r route f rom depot 0 , o rde r rou t e f r om depot 1) :

””” Used in l i s t r o a d l i k e l i h o o d . Give as i npu t two j son route , r e t u rn s i m i l a r i t y % about

d i s t a n c e and dura t i on ”””

S e t t i n g parameters

distance0 , durat ion0 = orde r rou t e f r om depot 0 [’ f e a t u r e s ’] [0] [’ p r op e r t i e s ’] [’ summary ’] .

va lues ()

d i s tance1 , durat ion1 = orde r rou t e f r om depot 1 [’ f e a t u r e s ’] [0] [’ p r op e r t i e s ’] [’ summary ’] .

va lues ()

p a r t i a l d i s t 0 = 0

p a r t i a l d i s t 1 = 0

pa r t i a l d u r 0 = 0

pa r t i a l d u r 1 = 0

s t o p s i g n a l = ’None ’

I t e r a t i o n i n t o d i c t

NB: i t s t o p a t t h e l a s t i t e r a t i o n o f t h e s h o r t e s t l i s t

f e a t u r e s 0 = orde r rou t e f r om depot 0 [’ f e a t u r e s ’]

f e a t u r e s 1 = orde r rou t e f r om depot 1 [’ f e a t u r e s ’]

f o r f eature0 , f e a tu r e1 in z ip (f ea ture s0 , f e a tu r e s 1) :

segment0 = f ea tu r e0 [’ p r op e r t i e s ’] [’ segments ’]

segment1 = f ea tu r e1 [’ p r op e r t i e s ’] [’ segments ’]

f o r seg0 , seg1 in z ip (segment0 , segment1) :

s tep0 = seg0 [’ s t ep s ’]

s tep1 = seg1 [’ s t ep s ’]

f o r st0 , s t1 in z ip (step0 , step1) :

d i s t 0 = st0 [’ d i s t ance ’]

101

dur0 = st0 [’ durat ion ’]

i n s t r 0 = st0 [’ i n s t r u c t i o n ’]

d i s t 1 = st1 [’ d i s t ance ’]

dur1 = st1 [’ durat ion ’]

i n s t r 1 = st1 [’ i n s t r u c t i o n ’]

Condi t ion to update p a r t i a l d i s t a n c e and dura t i on

i f s t o p s i g n a l == ’None ’ :

i f i n s t r 0 == in s t r 1 and d i s t 0 == d i s t 1 :

p a r t i a l d i s t 0 = p a r t i a l d i s t 0 + d i s t 0

p a r t i a l d i s t 1 = p a r t i a l d i s t 1 + d i s t 1

p a r t i a l d u r 0 = pa r t i a l d u r 0 + dur0

p a r t i a l d u r 1 = pa r t i a l d u r 1 + dur1

e l i f i n s t r 0 == in s t r 1 and d i s t 0 != d i s t 1 :

s t o p s i g n a l = ’FINE SOMIGLIANZA ’

i f d i s t 0 < d i s t 1 and dur0 < dur1 :

p a r t i a l d i s t 0 = p a r t i a l d i s t 0 + d i s t 0

p a r t i a l d i s t 1 = p a r t i a l d i s t 1 + d i s t 0

p a r t i a l d u r 0 = pa r t i a l d u r 0 + dur0

p a r t i a l d u r 1 = pa r t i a l d u r 1 + dur0

e l i f d i s t 0 >= d i s t 1 and dur0 >= dur1 :

p a r t i a l d i s t 0 = p a r t i a l d i s t 0 + d i s t 1

p a r t i a l d i s t 1 = p a r t i a l d i s t 1 + d i s t 1

p a r t i a l d u r 0 = pa r t i a l d u r 0 + dur1

p a r t i a l d u r 1 = pa r t i a l d u r 1 + dur1

e l i f d i s t 0 >= d i s t 1 and dur0 < dur1 :

pr i n t (”ATTENZIONE: d i s t 0 maggiore d i d i s t 1 ma dur0 minore d i d i s 1 ”)

p r i n t (d i s t 0 , d i s t 1 , dur0 , dur1)

p a r t i a l d i s t 0 = p a r t i a l d i s t 0 + d i s t 1

p a r t i a l d i s t 1 = p a r t i a l d i s t 1 + d i s t 1

p a r t i a l d u r 0 = pa r t i a l d u r 0 + dur0

p a r t i a l d u r 1 = pa r t i a l d u r 1 + dur0

e l i f d i s t 0 <= d i s t 1 and dur0 > dur1 :

pr i n t (”ATTENZIONE: d i s t 0 minore d i d i s t 1 ma dur0 maggiore d i dur

1”)

p r i n t (d i s t 0 , d i s t 1 , dur0 , dur1)

p a r t i a l d i s t 0 = p a r t i a l d i s t 0 + d i s t 0

p a r t i a l d i s t 1 = p a r t i a l d i s t 1 + d i s t 0

p a r t i a l d u r 0 = pa r t i a l d u r 0 + dur1

p a r t i a l d u r 1 = pa r t i a l d u r 1 + dur1

i f p a r t i a l d i s t 0 == p a r t i a l d i s t 1 and pa r t i a l d u r 0 == pa r t i a l d u r 1 :

d i s t s im i l a r i t y 0 = round ((p a r t i a l d i s t 0 / d i s tance0) ∗ 100 , 2)

d i s t s im i l a r i t y 1 = round ((p a r t i a l d i s t 1 / d i s tance1) ∗ 100 , 2)

du r s im i l a r i t y 0 = round ((p a r t i a l d u r 0 / durat ion0) ∗ 100 , 2)

du r s im i l a r i t y 1 = round ((p a r t i a l d u r 1 / durat ion1) ∗ 100 , 2)

102

pr i n t (f ”\ nDis tance s i m i l a r i t y : { d i s t s i m i l a r i t y 0 }%, { d i s t s i m i l a r i t y 1 }%”)

p r i n t (f ”\ nDuration s i m i l a r i t y : { d u r s im i l a r i t y 0 }%, { d u r s im i l a r i t y 1 }%”)

e l s e :

p r i n t (f ”””ERRORE: i l c on f r on to non por ta a d i s t a n z a e dura t e p a r z i a l i u g u a l i .

p a r t d u r 0 = { p a r t i a l d u r 0 }

p a r t d u r 1 = { p a r t i a l d u r 1 }

p a r t d i s t 0 = { p a r t i a l d i s t 0 }

p a r t d i s t 1 = { p a r t i a l d i s t 1 }”””)

d i s t s im i l a r i t y 0 = round ((p a r t i a l d i s t 0 / d i s tance0) ∗ 100 , 2)

d i s t s im i l a r i t y 1 = round ((p a r t i a l d i s t 1 / d i s tance1) ∗ 100 , 2)

du r s im i l a r i t y 0 = round ((p a r t i a l d u r 0 / durat ion0) ∗ 100 , 2)

du r s im i l a r i t y 1 = round ((p a r t i a l d u r 1 / durat ion1) ∗ 100 , 2)

re turn d i s t s im i l a r i t y 0 , du r s im i l a r i t y 0 , d i s t s im i l a r i t y 1 , d u r s im i l a r i t y 1

de f a l l l i s t r o a d l i k e l i h o o d () :

””” Use on o r d e r r e a d y t o d e l i v e r y ; o b t a i n a l i s t o f comparison about d i s t a n c e s and du r a t i on s

”””

index = 0

l i k e l i h o o d l i s t = l i s t () # d i v en t a una l i s t a d i t u p l e

f o r o r d e r i in o r d e r r e ady t o d e l i v e r y :

index += 1

f o r o r d e r j in o r d e r r e ady t o d e l i v e r y [index :] :

c ompar i s on r e su l t s = r o ad l i k e l i h o od (o r d e r i . route f rom depot , o r d e r j .

route f rom depot)

compar i son in fo = (o r d e r i . customer id , o r d e r j . customer id)

compar i s on r e su l t s = compar i s on r e su l t s + compar i son in fo

i f c ompar i s on r e su l t s not in l i k e l i h o o d l i s t :

l i k e l i h o o d l i s t . append (compar i s on r e su l t s)

re turn l i k e l i h o o d l i s t

de f o n e t o l i s t r o a d l i k e l i h o o d (index) :

””” Use on o r d e r r e a d y t o d e l i v e r y ; o b t a i n a l i s t o f comparison about d i s t a n c e s and du r a t i on s

”””

l i k e l i h o o d l i s t = l i s t () # d i v en t a una l i s t a d i t u p l e

o r d e r i = o rd e r r e ady t o d e l i v e r y [index]

f o r o r d e r j in o r d e r r e ady t o d e l i v e r y [index + 1 :] :

c ompar i s on r e su l t s = r o ad l i k e l i h o od (o r d e r i . route f rom depot , o r d e r j . route f rom depot)

compar i son in fo = (o r d e r i . customer id , o r d e r j . customer id)

compar i s on r e su l t s = compar i s on r e su l t s + compar i son in fo

i f c ompar i s on r e su l t s not in l i k e l i h o o d l i s t :

103

l i k e l i h o o d l i s t . append (compar i s on r e su l t s)

re turn l i k e l i h o o d l i s t

de f me an o f d i s t a n c e l i s t (l i s t name) :

””” Return the mean o f d i s t a n c e from depo t f r o a l i s t o f o rd e r s ”””

t o t d i s t a n c e = 0

number of order = 0

f o r ordine m in l i s t name :

number of order += 1

t o t d i s t a n c e = t o t d i s t a n c e + ordine m . d i s t ance

mean o f d i s tance = t o t d i s t a n c e / number of order

re turn mean o f d i s tance

de f s i n g l e c u s t ome r r e f u s e (customer order) :

random prob = rng1 . random () # gene ra t e a random number between [0 . 0 , 1 . 0]

i f customer order in l i s t (f i r s t r e f u s e) :

r e turn ’ no t r e f u s ed ’

e l i f random prob <= PROB REFUSE THE DELIVERY:

f i r s t r e f u s e . append (customer order)

p r in t (f ’ Order { customer order . customer id } REFUSED DELIVERY DATE’)

return ’ r e fu s ed ’

de f l i s t c u s t ome r r e f u s e (l i s t a , d e l i v e r y r e f u s e d) :

””” I n i t i a l i z e a d e l i v e r y r e f u s e d l i s t f o r t h e a c t u a l day , than update t h e l i s t wh i t a l l t h e

r e f u s e ”””

f o r o rd in e c in l i s t (l i s t a) : # pass l i s t o r d e r r e a d y t o d e l i v e r y

i f o rd in e c not in l i s t (f i r s t r e f u s e) : # check i f a customer has a l r e a d y r e f u s e d a

d e l i v e r y

random prob = rng1 . random () # gene ra t e a random number between [0 . 0 , 1 . 0]

i f random prob <= PROB REFUSE THE DELIVERY:

f i r s t r e f u s e . append (o rd in e c)

d e l i v e r y r e f u s e d . append (o rd in e c)

p r in t (f ’ Order { o rd in e c . customer id } REFUSED DELIVERY DATE’)

break

i f l en (d e l i v e r y r e f u s e d) == 0 :

return ’ c l u s t e r a c c ep t ed ’

e l s e :

r e turn ’ c l u s t e r r e f u s e d ’

104

def s ch edu l e cho i c e (d e l i v e r y r e f u s ed , min capac i ty load , thre sho ld 1to2 , th r e sho ld 2 to1) :

””” I s t h e cho i c e a l g o r i t hm used in n ew s e t o r d e r s t o o p t im i z e ”””

g l oba l op t s o l u t i on b roken

l i s t i n d e x = −1

f o r o r d i n e i in l i s t (o r d e r r e ady t o d e l i v e r y) :

i f o r d i n e i in l i s t (d e l i v e r y r e f u s e d) :

cont inue

l i s t i n d e x += 1

t r i a l l i s t = l i s t () # L i s t used i n s i d e t h e cho i c e a l g o r i t hm

Create t h e l i k e l i h o o d l i s t t o c ho i c e c oup l e s o f o rd e r s to op t im i z e

s i m i l a r i t y l i s t = l i s t (o n e t o l i s t r o a d l i k e l i h o o d (l i s t i n d e x))

pr i n t (s i m i l a r i t y l i s t)

f o r element in l i s t (s i m i l a r i t y l i s t) :

i d 2 = element [5]

dur 1to2 = element [2]

dur 2to1 = element [3]

F i r s t c ho i c e c ond i t i o n

i f dur 1to2 > th r e sho ld 1 to2 and dur 2to1 > th r e sho ld 2 to1 :

Search th e second order and add bo th to a t r i a l l i s t

f o r o r d i n e j in l i s t (o r d e r r e ady t o d e l i v e r y) :

i f o r d i n e j . customer id == id 2 :

i f o r d i n e i not in t r i a l l i s t :

t r i a l l i s t . append (o r d i n e i)

i f o r d i n e j not in t r i a l l i s t :

t r i a l l i s t . append (o r d i n e j)

break

Update c a p a c i t y coun te r f o r v e r i f y c ond i t i o n

capac i ty counte r = 0

f o r o rd i n e t in l i s t (t r i a l l i s t) :

c apac i ty counte r += ord i n e t . volume

Check c a p a c i t y cond i t i on , then check p o s s i b l e d e l i v e r i e s r e f u s e d

i f TOT VEHICLES CAPACITY ∗ min capac i ty load < capac i ty counte r < TOT VEHICLES CAPACITY:

c a l l cus tomers from t r i a l l i s t , i f one r e f u s e r e p ea t a l l

answer = l i s t c u s t ome r r e f u s e (t r i a l l i s t , d e l i v e r y r e f u s e d)

i f answer == ’ c l u s t e r r e f u s e d ’ :

op t s o l u t i on b roken += 1

i f answer == ’ c l u s t e r a c c ep t ed ’ :

o rd e r r e ady to op t im i z e . extend (t r i a l l i s t)

Remove o rde r s from ready to d e l i v e r y l i s t

f o r j in l i s t (t r i a l l i s t) :

105

pr in t (f ””” Order { j . c u s t omer i d } moved to l i s t ready to op t im i z e ”””)

i f j in l i s t (o r d e r r e ady t o d e l i v e r y) :

o r d e r r e ady t o d e l i v e r y . remove (j)

re turn ’ ok ’

e l s e :

cont inue

return ’ no ’

de f o p t s e t o r d e r s t o op t im i z e () :

””” I s t h e f u n c t i o n used to choose o rde r s to s c h e du l e f o r tomorrow ”””

g l oba l broken promise , f i r s t s o l c o u n t e r , s e cond so l counte r , s tup id avo id de lay ,

s t u p i d l a s t s o l

I n i t i a l i z e t h e l i s t ready adding o rde r s t h a t s t a y in op t im i z e from ye s t e r d a y

o r d e r r e ady t o d e l i v e r y . extend (o rde r r e ady to op t im i z e)

f o r x in l i s t (o rd e r r e ady to op t im i z e) :

p r i n t (f ’ATTENZIONE: ord ine {x . customer id } promesso ma non schedu lato i e r i ’)

broken promise += 1

orde r r e ady to op t im i z e . remove (x)

e d d d i s t a n c e l i s t s o r t i n g (o r d e r r e ady t o d e l i v e r y) # Sor t w i th EDD + DISTANCE orde r s ready

to be s c h edu l e d

s t o p s i g n a l = ’ ’

l a s t c a l l o r d e r s = l i s t ()

d e l i v e r y r e f u s e d = l i s t ()

Use opt s t u p i d s o l u t i o n f un c t i o n to avo id d e l a y

f o r o r d i n e l in l i s t (o r d e r r e ady t o d e l i v e r y) :

i f (o r d i n e l . due date == c l a . Order . cu r r en t da t e + datet ime . t imede l ta (days=1)

or o r d i n e l . due date == c l a . Order . cu r r en t da t e + datetime . t imede l ta (days=2)

or o r d i n e l . s t a t u s o r d i n e == ’BEYOND THE DEADLINE ’) \

and o r d i n e l . da ta sped i z i one == ’ ’ :

l a s t c a l l o r d e r s . append (o r d i n e l)

i f l en (l a s t c a l l o r d e r s) > 0 :

p r in t (f ”OPT: use dumb so l u t i on to avoid delay ”)

s tup id avo id de l ay += 1

avo i d d e l a y s t up i d s o l u t i o n ()

e l s e :

todo RITENGO POSSIBILE MIGLIORARE ULTERIORMENTE TALI CONDIZIONI

Look f o r a f i r s t s o l u t i o n

th r e sho ld 1 to2 = min du r a t i o n l i k e l i h o od 1 t o 2

th r e sho ld 2 to1 = min du r a t i o n l i k e l i h o od 2 t o 1

i f l en (o rde r r e ady to op t im i z e) == 0 :

f o r i in range (0 , 19) :

106

i f s t o p s i g n a l == ’ stop ’ :

p r i n t (f ”OPT: f i r s t best s o l u t i on found with { th r e sho ld 1 to2}% and {

th r e sho ld 2 to1}%”)

f i r s t s o l c o u n t e r += 1

break

e l s e :

th r e sho ld 1 to2 = min du r a t i o n l i k e l i h o od 1 t o 2 − RTL ∗ i

t h r e sho ld 2 to1 = min du r a t i o n l i k e l i h o od 2 t o 1 − RTL ∗ i

c apa c i t y th r e sho l d = MIN CAPACITY LOAD

whi le th r e sho ld 1 to2 >= 0 and s t o p s i g n a l != ’ stop ’ :

answer = schedu l e cho i c e (d e l i v e r y r e f u s ed , capac i ty th r e sho ld ,

thre sho ld 1to2 , th r e sho ld 2 to1)

th r e sho ld 1 to2 −= RTL

i f answer == ’ ok ’ :

s t o p s i g n a l = ’ stop ’

p r in t (’ s egna l e 1 ’)

I f a f i r s t s o l u t i o n in not found , reduce v e h i c l e c a p a c i t y l i m i t and search ano ther

i f l en (o rd e r r e ady to op t im i z e) == 0 :

p r in t (f ”OPT: f i r s t cho i c e s o l u t i on not a v a i l a b l e . Check i f 0 = { l en (

o rd e r r e ady to op t im i z e)}”)

th r e sho ld 1 to2 = min du r a t i o n l i k e l i h o od 1 t o 2

th r e sho ld 2 to1 = min du r a t i o n l i k e l i h o od 2 t o 1

f o r i in range (0 , 19) :

i f s t o p s i g n a l == ’ stop ’ :

p r i n t (

f ”OPT: second best s o l u t i on found . Orders number : { l en (

o rd e r r e ady to op t im i z e)} with { th r e sho ld 1 to2}% and { th r e sho ld 2 to1}%”)

s e cond so l c oun t e r += 1

break

e l s e :

th r e sho ld 1 to2 = min du r a t i o n l i k e l i h o od 1 t o 2 − RTL ∗ i

t h r e sho ld 2 to1 = min du r a t i o n l i k e l i h o od 2 t o 1 − RTL ∗ i

c apa c i t y th r e sho l d = HALF CAPACITY LOAD

whi le th r e sho ld 1 to2 >= 0 and s t o p s i g n a l != ’ stop ’ :

answer = schedu l e cho i c e (d e l i v e r y r e f u s ed , capac i ty th r e sho ld ,

thre sho ld 1to2 , th r e sho ld 2 to1)

th r e sho ld 1 to2 −= RTL

i f answer == ’ ok ’ :

s t o p s i g n a l = ’ stop ’

p r in t (’ s egna l e 2 ’)

i f l en (o rd e r r e ady to op t im i z e) == 0 :

p r in t (f ”OPT: second best s o l u t i on not a v a i l a b l e . Check i f 0 = { l en (

o rd e r r e ady to op t im i z e)}”)

107

pr in t (’OPT: FAILED, us ing dumb so l u t i on ’)

s t u p i d l a s t s o l += 1

opt dumb solut ion (d e l i v e r y r e f u s e d)

p r in t (f ’Number o f d e l i v e r y r e fu s ed today : { l en (d e l i v e r y r e f u s e d)} ’)

de f a v o i d d e l a y s t up i d s o l u t i o n () :

””” I s t h e s o l u t i o n to avo id d e l a y ”””

I n i t i a l i z e t h e l i s t ready adding o rde r s t h a t s t a y in op t im i z e from ye s t e r d a y

e d d l i s t s o r t i n g (o r d e r r e ady t o d e l i v e r y) # Sor t w i th EDD orde r s ready to be s c h edu l e d

capac i ty counte r = 0

de l i v e r y a c c ep t ed = l i s t ()

d e l i v e r y r e f u s e d = l i s t ()

Choice t h e o rde r s s imp l y f o l l o w i n g t h e order edd + max dura t i on

i f l en (o r d e r r e ady t o d e l i v e r y) >= 2:

f o r o rd in e e in l i s t (o r d e r r e ady t o d e l i v e r y) :

answer = s i n g l e c u s t ome r r e f u s e (o rd in e e)

i f answer == ’ r e fu s ed ’ :

d e l i v e r y r e f u s e d . append (o rd in e e)

e l s e :

i f c apac i ty counte r + ord in e e . volume > TOT VEHICLES CAPACITY:

pr in t (

f ’STOP, l im i t e c a p a c i t ragg iunto : { capac i ty counte r + ord in e e . volume}

> {TOT VEHICLES CAPACITY} ’)

break

e l s e :

capac i ty counte r += ord in e e . volume

de l i v e r y a c c ep t ed . append (o rd in e e)

Remove o rde r s chosen f o r o p t im i z a t i o n from o r d e r r e a d y t o d e l i v e r y

f o r o rd ine a in l i s t (d e l i v e r y a c c ep t ed) :

i f o rd ine a in o r d e r r e ady t o d e l i v e r y :

o r d e r r e ady t o d e l i v e r y . remove (o rd ine a)

i f o rd ine a not in o rde r r e ady to op t im i z e :

p r i n t (f ””” Order { o rd i n e a . cu s t omer i d } moved to l i s t ready to op t im i z e ”””)

o rd e r r e ady to op t im i z e . append (o rd ine a)

de f opt dumb solut ion (d e l i v e r y r e f u s e d l i s t) :

””” Last c a l l s o l u t i o n when has not been p o s s i b l e f i n d an op t ima l one ”””

I n i t i a l i z e t h e l i s t ready adding o rde r s t h a t s t a y in op t im i z e from ye s t e r d a y

e d d l i s t s o r t i n g (o r d e r r e ady t o d e l i v e r y) # Sor t w i th EDD orde r s ready to be s c h edu l e d

capac i ty counte r = 0

108

de l i v e r y a c c ep t ed = l i s t ()

Choice t h e o rde r s s imp l y f o l l o w i n g t h e order edd + max dura t i on

i f l en (o r d e r r e ady t o d e l i v e r y) >= 2:

f o r o rd in e e in l i s t (o r d e r r e ady t o d e l i v e r y) :

i f o rd in e e in d e l i v e r y r e f u s e d l i s t :

cont inue

e l s e :

answer = s i n g l e c u s t ome r r e f u s e (o rd in e e)

i f answer == ’ r e fu s ed ’ :

d e l i v e r y r e f u s e d l i s t . append (o rd in e e)

e l s e :

i f c apac i ty counte r + ord in e e . volume > TOT VEHICLES CAPACITY:

pr in t (

f ’STOP, l im i t e c a p a c i t ragg iunto : { capac i ty counte r + ord in e e .

volume} > {TOT VEHICLES CAPACITY} ’)

break

e l s e :

capac i ty counte r += ord in e e . volume

de l i v e r y a c c ep t ed . append (o rd in e e)

Remove o rde r s chosen f o r o p t im i z a t i o n from o r d e r r e a d y t o d e l i v e r y

f o r o rd ine a in l i s t (d e l i v e r y a c c ep t ed) :

i f o rd ine a in o r d e r r e ady t o d e l i v e r y :

o r d e r r e ady t o d e l i v e r y . remove (o rd ine a)

i f o rd ine a not in o rde r r e ady to op t im i z e :

p r i n t (f ””” Order { o rd i n e a . cu s t omer i d } moved to l i s t ready to op t im i z e ”””)

o rd e r r e ady to op t im i z e . append (o rd ine a)

de f dumb solution () :

””” Simple s o l u t i o n f o r benchmark ; run when OPTIMIZATION i s not ’ on ’ ”””

g l oba l broken promise

I n i t i a l i z e t h e l i s t ready adding o rde r s t h a t s t a y in op t im i z e from ye s t e r d a y

o r d e r r e ady t o d e l i v e r y . extend (o rde r r e ady to op t im i z e)

f o r x in l i s t (o rd e r r e ady to op t im i z e) :

p r i n t (f ’ATTENZIONE: ord ine {x . customer id } promesso ma non schedu lato i e r i ’)

broken promise += 1

orde r r e ady to op t im i z e . remove (x)

e d d l i s t s o r t i n g (o r d e r r e ady t o d e l i v e r y) # Sor t w i th EDD orde r s ready to be s c h edu l e d

capac i ty counte r = 0

de l i v e r y a c c ep t ed = l i s t ()

d e l i v e r y r e f u s e d = l i s t ()

Choice t h e o rde r s s imp l y f o l l o w i n g t h e order edd + max dura t i on

f o r o rd in e e in l i s t (o r d e r r e ady t o d e l i v e r y) :

109

answer = s i n g l e c u s t ome r r e f u s e (o rd in e e)

i f answer == ’ r e fu s ed ’ :

d e l i v e r y r e f u s e d . append (o rd in e e)

e l s e :

i f c apac i ty counte r + ord in e e . volume > TOT VEHICLES CAPACITY:

pr in t (

f ’STOP, l im i t e c a p a c i t ragg iunto : { capac i ty counte r + ord in e e . volume} > {

TOT VEHICLES CAPACITY} ’)

break

e l s e :

capac i ty counte r += ord in e e . volume

de l i v e r y a c c ep t ed . append (o rd in e e)

Remove o rde r s chosen f o r o p t im i z a t i o n from o r d e r r e a d y t o d e l i v e r y

f o r o rd ine a in l i s t (d e l i v e r y a c c ep t ed) :

i f o rd ine a in o r d e r r e ady t o d e l i v e r y :

o r d e r r e ady t o d e l i v e r y . remove (o rd ine a)

i f o rd ine a not in o rde r r e ady to op t im i z e :

p r i n t (f ””” Order { o rd i n e a . cu s t omer i d } moved to l i s t ready to op t im i z e ”””)

o rd e r r e ady to op t im i z e . append (o rd ine a)

de f d e l i v e r y op t im i z a t i o n () :

””” Read a l i s t o f o rd e r s and op t im i z e . Create a map f o r each day where an o p t im i z a t i o n i s

done ”””

g l oba l t o t a l d i s t an c e , t o t a l du ra t i on , to ta l vo lume

s t a r t hou r = op t s t a r t hou r

end hour = opt end hour

d e l i v e r i e s d a t a = orde r r e ady to op t im i z e

cu r r en t da t e = c l a . Order . cu r r en t da t e + datetime . t imede l ta (days=1)

t ime s ta r t work = datetime . time (s ta r t hour , 0 , 0)

time end work = datet ime . time (end hour , 0 , 0)

s t a r t hou r = datetime . datet ime . combine (cur rent date , t ime s ta r t work) # Fri 8−20:00 ,

e x p r e s s e d in POSIX timestamp

end hour = datetime . datet ime . combine (cur rent date , t ime end work)

i f l en (d e l i v e r i e s d a t a) > 1 :

SETTINGS

Def ine t h e map cen t e r e d on North I t a l y

Veh i c l e s are l o c a t e d a t Torino , p l o t t h e depo t

depot = [45 . 073274 , 7 .68068748]

d epo t l a t = 45.073274

depot lng = 7.68068748

m2 = fo l ium .Map(l o c a t i o n =[45.614037 , 10 . 360107] , zoom start =7.2)

110

Plo t t h e l o c a t i o n s on the map wi th more i n f o in t h e ToolTip

i f on o f f map c r ea t i on == ’ on ’ :

f o r l o c a t i o n in l i s t (d e l i v e r i e s d a t a) :

t o o l t i p = fo l ium .map . Tool t ip (”<h4>ID {}</p><p>Volume : {}</p>” .

format (

l o c a t i o n . customer id , l o c a t i on . volume

))

fo l ium . Marker (

l o c a t i o n =[l o c a t i on . la t , l o c a t i on . lng] ,

t o o l t i p=too l t i p ,

i con=Beaut i fy Icon (

i con shape=’marker ’ ,

number=in t (l o c a t i on . customer id) ,

sp in=True ,

t e x t c o l o r=’ red ’ ,

background co lor=”#FFF” ,

i n n e r i c o n s t y l e=” font−s i z e : 12 px ; padding−top :−5px ; ”

)

) . add to (m2)

Plo t t h e depo t

fo l ium . Marker (

l o c a t i o n=depot ,

t o o l t i p=fo l ium .map . Too l t ip (

”<h4>DEPOT I s t a t :\ n1272 </p><p>Comune di :\ nTorino </p>”)

,

i con=fo l ium . Icon (c o l o r=’ green ’ , i con=’ bus ’ , p r e f i x=’ fa ’) ,

s e tZ IndexOf f s e t=1000

) . add to (m2)

m2. save (f ’ A07 optimization mappa { c l a . Order . cu r r en t da t e + datet ime . t imede l ta (days=1)

} . html ’)

VEHICLE ROUTING SET UP

Def ine t h e v e h i c l e s

v e h i c l e s = l i s t ()

f o r idx in range (NUMBER OF VEHICLES) :

v e h i c l e s . append (

or s . opt imizat i on . Veh ic l e (

id=idx ,

s t a r t=l i s t ([depot lng , d epo t l a t]) ,

end=l i s t ([depot lng , d epo t l a t]) ,

capac i ty=[VEHICLE CAPACITY] ,

time window=[i n t (s t a r t hou r . s t r f t ime (”%s”)) , i n t (end hour . s t r f t ime (”%s”))]

)

)

111

Def ine t h e d e l i v e r y s t a t i o n

d e l i v e r i e s = l i s t ()

f o r d e l i v e r y in l i s t (d e l i v e r i e s d a t a) :

d e l i v e r i e s . append (

or s . opt imizat i on . Job (

id=de l i v e r y . customer id ,

l o c a t i o n =[d e l i v e r y . lng , d e l i v e r y . l a t] , # Expected order i s Longi tude ,

La t i t u d e

s e r v i c e=SERVICE TIME, # Assume 20 minutes a t each s i t e as s e r v i c e t ime

amount=[d e l i v e r y . volume]

)

)

I n i t i a l i z e a c l i e n t and make t h e r e q u e s t

o r s c l i e n t = ors . C l i en t (key=api key)

r e s u l t = o r s c l i e n t . opt imizat i on (

jobs=d e l i v e r i e s ,

v e h i c l e s=veh i c l e s ,

geometry=True

)

Add the ou tpu t to t h e map

i f on o f f map c r ea t i on == ’ on ’ :

f o r co lor , route in z ip ([’ green ’ , ’ red ’ , ’ b lue ’] , r e s u l t [’ r oute s ’]) :

decoded = ors . convert . d e code po l y l i n e (route [’ geometry ’])

g j = fo l ium . GeoJson (

name=’ Veh ic l e {} ’ . format (route [’ v e h i c l e ’]) ,

data={” type” : ” Featur eCo l l e c t i on ” , ” f e a t u r e s ” : [{ ” type” : ”Feature ” ,

”geometry” : decoded ,

” p r op e r t i e s ” : {” co l o r ” :

c o l o r }

}]} ,

s t y l e f u n c t i o n=lambda x : {” co l o r ” : x [” p r op e r t i e s ”] [’ c o l o r ’]}

)

g j . add ch i ld (fo l ium . Tool t ip (

”””<h4>Veh i c l e { v e h i c l e }</h4>

Distance { d i s t a n c e } m

Duration { dura t i on } s e c s

””” . format (∗∗ route)

))

g j . add to (m2)

fo l ium . LayerControl () . add to (m2)

m2. save (f ’ A07 optimization mappa { c l a . Order . cu r r en t da t e + datetime . t imede l ta (days=1)

} . html ’)

DATA VIEW

112

Ex t ra c t r e l e v a n t f i e l d from the re sponse

e x t r a c t f i e l d = [’ d i s t ance ’ , ’ durat ion ’ , ’ amount ’]

data = [{ key : route [key] f o r key in e x t r a c t f i e l d } f o r route in r e s u l t [’ r oute s ’]]

Update g en e r a l s t a t i s t i c s

f o r d in l i s t (data) :

t o t a l d i s t a n c e = t o t a l d i s t a n c e + d [’ d i s t ance ’]

t o t a l du r a t i o n = to t a l du r a t i o n + d [’ durat ion ’]

to ta l vo lume = tota l vo lume + d [’ amount ’] [0]

v e h i c l e s d f = pd . DataFrame (data)

v e h i c l e s d f . index . name = ’ v eh i c l e ’

Create a l i s t t o d i s p l a y t h e s c h e du l e f o r a l l t h e v e h i c l e s

s t a t i o n s = l i s t ()

d e l i v e r e d i d = l i s t ()

f o r route in r e s u l t [’ r oute s ’] :

v e h i c l e = l i s t ()

f o r s tep in route [’ s t ep s ’] :

d e l i v e r e d i d . append (step . get (’ id ’))

v eh i c l e . append (

[

s tep . get (” job ” , ”Depot”) , # Sta t i o n ID

s tep [” a r r i v a l ”] , # Ar r i v a l t ime

s tep [” a r r i v a l ”] + step . get (” s e r v i c e ” , 0) # Departure t ime

]

)

s t a t i o n s . append (v eh i c l e)

d f a l l t o u r = pd . DataFrame ()

f o r route in range (l en (v e h i c l e s d f)) :

route = pd . DataFrame (s t a t i o n s [route] , columns=[” Stat ion ID” , ” Ar r i va l ” , ”Departure ”])

route [’ Ar r i va l ’] = pd . to datet ime (route [’ Ar r i va l ’] , un i t=’ s ’)

route [’ Departure ’] = pd . to datet ime (route [’ Departure ’] , un i t=’ s ’)

d f a l l t o u r = pd . concat ([d f a l l t o u r , route])

””” From a l i s t o f numbers , o b t a i n ed from op t im i z a t i on , add o rde r s to o r d e r d e l i v e r e d ”””

Add d e l i v e r e d order to o r d e r d e l i v e r e d l i s t

f o r idx in d e l i v e r e d i d :

f o r o rd ine h in l i s t (o rd e r r e ady to op t im i z e) :

i f o rd ine h . customer id == idx :

o rd ine h . s e t d a t a s p ed i z i o n e (1)

o r d e r d e l i v e r e d . append (ord ine h)

o rd e r r e ady to op t im i z e . remove (ord ine h)

p r in t (v e h i c l e s d f)

113

pr in t (d f a l l t o u r)

de f a l l l i s t u p d a t e () :

””” UPDATE orde r s s t a t u s in a l l l i s t s ”””

f o r ord ine1 in o r d e r l i s t :

ord ine1 . upda t e s t a tu s o rd in e ()

f o r ord ine2 in o r d e r r e ady t o d e l i v e r y :

ord ine2 . upda t e s t a tu s o rd in e ()

f o r ord ine3 in o rde r r e ady to op t im i z e :

ord ine3 . upda t e s t a tu s o rd in e ()

f o r ord ine4 in o r d e r d e l i v e r e d :

ord ine4 . upda t e s t a tu s o rd in e ()

de f d a i l y r o u t i n e () :

””” A s i n g l e day r ou t i n e :

1 . change da t e

2 . c r e a t e new orde r s

3 . update o rde r s and s e t t h e o r d e r l i s t

4 . choose o rde r s to be s c h edu l e d nex t day

5 . op t im i z e o rde r s

”””

c l a . Order . change date () # Change da t e

n day o rd e r s c r e a t i on () # Creat ion o f o rde r s ; a u t oma t i c a l l y s t o r e d in o r d e r l i s t

a l l l i s t u p d a t e () # UPDATE orde r s s t a t u s in a l l l i s t s

s e t o r d e r s t o r e a dy () # Put ready−to−d e l i v e r y o rde r s in o r d e r r e a d y t o d e l i v e r y

i f on o f f map c r ea t i on == ’ on ’ :

map da i ly o rde r s r eady ()

i f OPTIMIZATION == ’ on ’ :

o p t s e t o r d e r s t o op t im i z e ()

e l s e :

dumb solution ()

d e l i v e r y op t im i z a t i o n () # Take from o r d e r r e a d y t o o p t im i z e and made the o p t im i z a t i o n

a l l l i s t u p d a t e () # UPDATE orde r s s t a t u s in a l l l i s t s

∗∗∗

MAIN()

∗∗∗

def main () :

””” X days s imu l a t i o n s ”””

114

f o r a in range (0 , TIME HORIZON) :

d a i l y r o u t i n e ()

DF ORDERS i s t h e c o l l e c t i o n o f a l l t h e o rd e r s c r e a t e d on the day o f t h e i r c r e a t i o n

f o r ord ine in o r d e r d e l i v e r e d :

ord ine . d f f i n a l c r e a t i o n ()

DF MID i s t h e c o l l e c t i o n o f a l l t h e order from r e a d y t o o p t im i z e and r e a d y t o d e l i v e r y

o r d e r r e ady t o d e l i v e r y . extend (o rde r r e ady to op t im i z e)

f o r ord ine in o r d e r r e ady t o d e l i v e r y :

ord ine . d f m id c r ea t i on ()

t o t a l o r d e r d e l a y = compute delay () [1]

t o t a l d ay s d e l a y = compute delay () [0]

c l a . Order . d f o r d e r s . t o c sv (’ A07 d f o rder s . csv ’)

c l a . Order . df mid . t o c sv (’ A07 df mid . csv ’)

c l a . Order . d f f i n a l . t o c sv (’ A07 d f f i n a l . csv ’)

p r in t (’\nALL ORDERS ∗∗∗ ’)

p r i n t (c l a . Order . d f o r d e r s)

p r in t (’\nREADY−TO−DELIVERY (LAST DAY) ∗∗∗ ’)

p r i n t (c l a . Order . df mid)

p r in t (’\nDELIVERED (LAST DAY) ∗∗∗ ’)

p r i n t (c l a . Order . d f f i n a l)

p r in t (’ ∗∗ ’)

p r i n t (f ”””

OPTIMIZATION: {OPTIMIZATION}

ORDINI DELIVERED: { l e n (c l a . Order . d f f i n a l)}

ORDINI GENERATI: { l e n (c l a . Order . d f o r d e r s)}

d i cu i ready (l a s t day) : { l e n (o r d e r r e a d y t o d e l i v e r y)}

d i cu i in op t im i z e (l a s t day) : { l e n (o r d e r r e a d y t o o p t im i z e)}

d i cu i in wa i t ing−from−s u p p l i e r (l a s t day) : { l e n (o r d e r l i s t)}

NUMERO ORDINI IN RITARDO (on l a s t day) : { t o t a l o r d e r d e l a y }

GIORNI TOTALI DI RITARDO (on l a s t day) : { t o t a l d a y s d e l a y }

Opt s o l u t i o n broken from r e f u s e s : { o p t s o l u t i o n b r o k e n }

RIFIUTI TOTALI : { l e n (f i r s t r e f u s e)}

ORDINI PROMESSI NON CONSEGNATI: { b roken promi se }

TOTALE DISTANZA COPERTA: { round (t o t a l d i s t a n c e / 1000 , 2)} kms

TOTALE DURATA VIAGGIO: { round (t o t a l d u r a t i o n / 3600 , 2)} hours

TOTALE VOLUME CONSEGNATO: { t o t a l v o l ume }

115

SIMULATION PERIOD: {TIME HORIZON} days

from { c l a . Order . s t a r t i n g d a t e } t o { c l a . Order . c u r r e n t d a t e }

Counter s o l u t i o n found : { f i r s t s o l c o u n t e r + s e c o n d s o l c o u n t e r + s t u p i d l a s t s o l +

s t u p i d a v o i d d e l a y }

− f i r s t s o l u t i o n : { f i r s t s o l c o u n t e r }

− s e c o n d s o l u t i o n : { s e c o n d s o l c o u n t e r }

− l a s t c a l l : { s t u p i d l a s t s o l }

− a v o i d d e l a y : { s t u p i d a v o i d d e l a y }

Order g en e r a t i on from UNIFORM({ d a i l y m i n o r d e r s } , { da i l y ma x o r d e r s })

Volume o f o rde r s from UNIFORM({ c l a . Order . volume min } , { c l a . Order . volume max } , s t e p={c l a . Order

. v o l ume s t e p })

Wait ing from s u p p l i e r d e l a y from UNIFORM({ c l a . Order . wa i t ing min } , { c l a . Order . wa i t ing max })

Wait ing from s u p p l i e r prob : { c l a . Order . p r o b no i n v en t o r y ∗ 100}%

Due da te d e l a y : { c l a . Order . d u e d a t e d e l a y } days

Refuse prob : {PROB REFUSE THE DELIVERY ∗ 100}%

Ve i c o l i : {NUMBER OF VEHICLES}

C a p a c i t v e i c o l o : {VEHICLE CAPACITY}

Se r v i c e t ime : {SERVICE TIME}

Working d a i l y t ime : { o p t s t a r t h o u r − 1} :00 − { op t end hou r − 1} :00

S t a r t r o a d l i k e l i h o o d : { m i n d u r a t i o n l i k e l i h o o d 1 t o 2}% and { m i n d u r a t i o n l i k e l i h o o d 2 t o 1

}%

REDUCTION THRESHOLD LEVEL: −{RTL}%

F i r s t s o l u t i o n c a p a c i t y t h r e s h o l d : {MIN CAPACITY LOAD ∗ 100}%

Second s o l u t i o n c a p a c i t y t h r e s h o l d : {HALF CAPACITY LOAD ∗ 100}%

Seed o rde r s : { c l a . Order . o r d e r s s e e d }

Seed r e f u s e (rng1) : { rng1 s e ed }

Seed d e l a y (rng2) : { c l a . Order . rn g2 s e ed }

CHECK IF : { l e n (o r d e r l i s t) + l en (c l a . Order . d f f i n a l) + l en (c l a . Order . d f mid)} = { l e n (c l a .

Order . d f o r d e r s)}

”””)

i f name == ’ ma in ’ :

main ()

116

Bibliography

[1] Campbell, Ann Melissa, and Wilson, Jill Hardin. Forty Years of Periodic Vehicle

Routing. Networks, vol. 63, no. 1, 2014, pp. 2–15.

[2] Clarke G. and J.W. Wright Scheduling of vehicles from a central depot to a number

of delivery points. Operations Research, vol. 12, no. 4, 1964, pp.568-581.

[3] Dantzig, G. B, and Ramser, J. H. The Truck Dispatching Problem. Management

Science, vol. 6, no. 1, 1959, pp. 80–91.

[4] Mor, A, and Speranza, M. G. Vehicle Routing Problems over Time: a Survey.

4OR, vol. 18, no. 2, 2020, pp. 129–149.

[5] Psaraftis, Harilaos N, et al. Dynamic Vehicle Routing Problems: Three Decades

and Counting. Networks, vol. 67, no. 1, 2016, pp. 3–31.

[6] Dempster, M. A. H, et al. Analytical Evaluation of Hierarchical Planning Systems.

Operations Research, vol. 29, no. 4, 1981, pp. 707–716.

117

[7] Ritzinger, Ulrike, et al. A Survey on Dynamic and Stochastic Vehicle Routing

Problems. International Journal of Production Research, vol. 54, no. 1, 2016, pp.

215–231.

[8] Archetti, Claudia, et al. Multi-Period Vehicle Routing Problem with Due Dates.

Computers Operations Research, vol. 61, 2015, pp. 122–134.

[9] Archetti, Claudia, et al. A Branch-and-Cut Algorithm for a Vendor-Managed

Inventory-Routing Problem. Transportation Science, vol. 41, no. 3, 2007, pp.

382–391.

[10] Oyola, Jorge, et al. The Stochastic Vehicle Routing Problem, a Literature Re-

view, Part I: Models. EURO Journal on Transportation and Logistics, vol. 7, no.

3, 2018, pp. 193–221.

[11] Adewumi, Aderemi Oluyinka, et al. A Survey of Recent Advances in Vehicle

Routing Problems. International Journal of System Assurance Engineering and

Management, vol. 9, no. 1, 2018, pp. 155–172.

[12] Sarasola, Briseida, et al. Variable Neighborhood Search for the Stochastic and

Dynamic Vehicle Routing Problem. Annals of Operations Research, vol. 236, no.

2, 2016, pp. 425–461.

[13] Braekers, Ramaekers, Van Nieuwenhuyse, Inneke. The vehicle routing problem:

state of art classification and review. Computers Industrial Engineering, vol. 99,

2016, pp. 300-313.

118

[14] Bruck, Bruno P, et al. A Decision Support System for Attended Home Services.

Interfaces (Providence), vol. 50, no. 2, 2020, pp. 137–152.

[15] Vidal, Thibaut, et al. A Concise Guide to Existing and Emerging Vehicle Rout-

ing Problem Variants. European Journal of Operational Research, vol. 286, no.

2, 2020, pp. 401–416.

[16] Coelho, Leandro C, et al. Heuristics for Dynamic and Stochastic Inventory-

Routing. Computers Operations Research, vol. 52, 2014, pp. 55–67.

[17] Han, Shuihua, et al. Appointment Scheduling and Routing Optimization of At-

tended Home Delivery System with Random Customer Behavior. European Jour-

nal of Operational Research, vol. 262, no. 3, 2017, pp. 966–980.

[18] Bent, Russell W, and Van Hentenryck, Pascal. Scenario-Based Planning for Par-

tially Dynamic Vehicle Routing with Stochastic Customers. Operations Research,

vol. 52, no. 6, 2004, pp. 977–987.

[19] Restrepo, Maria I, et al. Integrated Shift Scheduling and Load Assignment Op-

timization for Attended Home Delivery. Transportation Science, vol. 53, no. 4,

2019, pp. 1150–1174.

[20] Archetti, Claudia, et al. A Branch-and-Cut Algorithm for a Vendor-Managed

Inventory-Routing Problem. Transportation Science, vol. 41, no. 3, 2007, pp.

382–391.

[21] Campbell, Ann Melissa, and Wilson, Jill Hardin. Forty Years of Periodic Vehicle

Routing. Networks, vol. 63, no. 3, 2014, p. 276.

119

[22] https://www.istat.it/it/archivio/238337

[23] https://ec.europa.eu/growth/smes/sme-definitionen

[24] https://www.pmi.it/tecnologia/prodotti-e-servizi-ict/

330571/commercio-la-nuova-gestione-degli-ordini.html

[25] https://ec.europa.eu/eurostat/web/digital-economy-and

-society/data/database

[26] https://www.lastampa.it/economia/2020/09/09/news/

l-e-commerce-ha-fatto-boom-71-grazie-al-covid-1.39282548

[27] https://www.leadershipmanagementmagazine.com/articoli

/vincoli-alloutsourcing-logistico-le-pmi-italiane/

120

