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Abstract 

 

Warehouses’ performance evaluation has often been a relevant topic of research in the 

field of Logistics, moreover with the increasing importance acquired by digitalization and 

robotics, the research has found different ways to broaden itself. In an era where e-

commerce is expanding quickly, customers demand the right product at the right time and 

behind the ability of companies to fulfil customer orders, there is an efficient way of 

managing incoming orders, picking, retrieval and storage activities. Nowadays automatic 

warehouses, which have to perform such activities, are widely used and they allow, in most 

cases, to increase the performance of the warehouse by improving its order throughput 

and reducing orders cycle time. One of the most efficient automatic systems, aimed at 

fulfilling orders, is the automatic vehicle storage and retrieval system, also called AVS/RS. 

The present study wants to evaluate the performance of such a system with an additional 

feature designed by the Italian company Eurofork: a robotic arm mounted on the shuttle. 

In this way, in addition to retrieval and storage activities, the system will also be able to 

perform picking activities. The system is evaluated through discrete event simulation and 

tested under different scenarios and under different storage policies to see what are the 

best environment, best storage policy, and best external settings that maximize its 

performance. 

 

Keywords – AVS/RS, Discrete Event Simulation, Storage Policies, Innovative automated 

order picking system, Order Picking activity 
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1.Introduction 
 

Warehouses are considered crucial elements of the supply chain network, as they are the 

physical space where goods are stored to guarantee a fluid and uninterrupted flow of 

products along the supply chain (Shashank Kumar et al., 2021). The first studies related to 

warehouses are mainly focused on the identification of the optimal position for the facility 

that could lead to cost reduction, however, as the interest in warehouses increased and as 

the market changed, the focus of studies moved towards the concept of automated 

warehouse through the use of different innovative material handling systems (Shashank 

Kumar et al., 2021). Order picking is considered one of the most important activities 

happening inside warehouses and it is estimated that it accounts for around 55% of all 

operating costs as well as 70% of the overall time dedicated to warehouse activities (Josip 

Habazin et al., 2017). The continuous growth of e-commerce and consequently the 

increasing need to meet the customers’ demands in the most accurate way in terms of 

content and time, is putting the warehouse system under a lot of pressure (Shashank 

Kumar et al., 2021). Finding new automatized ways to handle material could lead to 

consistent improvements such as shorter delivery times, higher accuracy, better space 

utilization, lower costs, which are elements that increase the service offered to the 

customer and improve the company’s competitiveness (Gino Marchet et al., 2015). 

Because of the aforementioned reasons, research and studies are actively focusing on the 

evaluation of new technology which could lead to an overall improvement of the order 

picking activities (Yasmeen Jaghbeer et al., 2020). 

1.1 Objective of the study 
 

This study aims at evaluating the performance of an innovative system that could further 

advance the activities of autonomous storage, retrieval, and picking. The new automated 

system has been proposed by the company Eurofork, an Italian company that is 

continuously gathereing know-hows and competencies in the context of automated 

material handling systems. The new automated system will consist of a shuttle with a 

robotic arm installed on it and it will therefore try to combine the activities already 

performed by an AVS/RS with the activities of picking to create personalized pallets in the 
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most modular and flexible way (Figure 1). The technology will be based on the already 

commercialized ESMARTSHUTTLE®, which is able to perform activities similar to an AVS/RS 

system, however, a robotic arm is installed on the shuttle. This allows to enhance the 

potentiality of the system even more by enabling it to create mixed pallets with different 

units, based on the demand orders. This structure will equip the system with the skill to 

handle stock units of different dimensions, from pallets to small items. Moreover, the 

successful implementation of this system will eliminate the need to have a dedicated 

picking area where operators manually pick the relevant units to satisfy the orders. With 

the integration of different order picking systems, handling of pallets, and handling of small 

totes, the new technology aims at introducing a set of revolutionary advantages in the 

market compared to the solutions currently used: 

• Increased efficiency 

• Lower energy consumption 

• Lower resource allocation costs and maintenance cost 

• The entire order picking activity will be performed in a single plant 

• Higher flexibility 

 The performance of this new system will be evaluated using a simulation model in FlexSim 

which simulates a situation in which the new innovative technology is used to perform the 

picking activity. The study will try to identify the best storage policy to use in combination 

with the new picking technology as well as the best design in terms of rack configuration 

so that a better overall performance can be achieved. The study will therefore try to run 

several experiments to identify the best rack configuration as well as the best storage 

policy.  

Figure 1: Vehicle with robotic arm mounted on the shuttle 
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1.2 Organization of the thesis 
 

The study will start with an extensive literature review which will focus on describing the 

main and most used automated systems for storage, retrieval and picking. The literature 

review will then show how Discrete Event Simulation (DES) has been used in the past in the 

context of automated storage, retrieval and picking systems with specific focus on AVS/RS.  

The following section will focus on the description of the main functionalities of the 

simulation software FlexSim that has been extensively used for this study.  

The logic behind the different storage policies that will be part of the study will then be 

taken into consideration. The different storage policies, namely the Random, Class-Based 

Storage, Dedicated Slot storage, Storage by weight and storage by Association rules will be 

described and a graphical flow chart will show the modelling logic behind the activities of 

picking in an automated warehouse. 

After that, the study will describe the model that has been developed in FlexSim with focus 

on its implementation and the output expected from it. The paper will then show the 

results coming from the experiments run in the FlexSim model which simulates arrivals of 

products and arrivals of demands for specific combination of products stored in stock units. 

Through simulation it is possible to evaluate how the performance changes as different 

rack configurations and different storage strategies are employed. The analysis of the 

performance will give insights on the potential benefits that this new system can bring into 

the warehouse organization. 

The study will then conclude with the results of the exercises, and it will provide some 

limitations of the present study and further developments for a future research.  

 

2. Literature review 
 

The present literature review will first introduce a comprehensive presentation of the most 

important automated systems in warehouses, and it will later focus on studies that showed 
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interest in evaluating the performance of automates systems (mainly AVS/RS) through 

Discrete Event Simulation. 

2.1 Automated warehouse systems for storing, retrieving, and picking   

activities (OPS -Order Picking Systems) 
 

Automated Storage and Retrieval Systems, also abbreviated with AS/RS, have been 

introduced for the first time in the 1950s and right from the beginning they played a crucial 

role in ensuring substantial improvements in inventory management and material handling 

issues, increasing companies’ flexibility and competitiveness (Farah Hanani M.K. et al., 

2016). Among the many advantages that come with AS/RS it is important to underline the 

increasing in accuracy and material handling control, a better utilization of inventory space, 

equipment and better responsiveness and speed in storing and retrieving unit loads (Vasili 

M.R. et al., 2012). The automated solutions introduced over the years allowed to 

automatize activities such as storing, retrieving, and picking which are the focus of this 

paper. Storing activities refer to the need to put away SKUs (Stock Keeping Units) in specific 

locations inside a warehouse; the stocking activities can follow different policies, from 

predefined to random position assignments (Josip Habazin et al., 2017). The order picking 

activities include the retrieval of SKUs of interest and the picking of the right amount of 

products following the customer’s demand (Josip Habazin et al., 2017). These activities can 

be manual or automatized, in the first case, the retrieval and the selection of the right 

amount of products is done by operators, whereas in the second case, the retrieving 

activity is performed by AS/RSs which transport the relevant SKUs to an area dedicated to 

picking (Josip Habazin et al., 2017). Picking activities can be performed in different ways, 

some requiring human presence (picker) and others entirely automated: picker to parts, 

parts to picker, robot to parts, parts to robot and picker less (Automated picking) (Yasmeen 

Jaghbeer et al., 2020). 

 

Figure 2 represents a graphical classification of Order Picking Systems (Joo Ae Lee et al., 

2015, Yasmeen Jaghbeer et al., 2020). Only the parts to picker and the robot to parts types 

will be analysed since they are the most relevant to the present study. 
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The first AS/RSs ever introduced are called  CBAS/RSs (crane-based automated storage and 

retrieval system) and they consist in automated cranes capable of performing 

simultaneously both horizontal and vertical movements along the aisles of the warehouse 

(Kaveh Azadeh et al., 2019). Crane based systems can be used both in single and multi-deep 

storages; to make the cranes easily work on a multi-deep storage, they are equipped with 

double-deep telescopic forks. (Kaveh Azadeh et al., 2019). For multi-deep storages, the 

crane system is supported by some conveyors that facilitate the storage and retrieval of 

pallets. If instead of pallets, the stored items are totes, the system is way more compact 

and it is called a mini-load automated storage and retrieval system (Kaveh Azadeh et al., 

2019). 

The automated system called AVS/RS offers even more flexible solutions compared to the 

crane based automated system. The AVS/RS allows to increase the overall throughput 

while decreasing the energy consumption since the shuttles used to store and retrieve 

pallets are much lighter compared to cranes (Giulia Bruno and D'Antonio, 2018). The 

system consists of shuttles that focus on horizontal movements and of lifts dedicated to 

vertical movements of pallets or shuttles. The AVS/RS system can be tier-captive or tier-to-

OPS types

Human     
picker

Picker to parts

Low Level

High Level

Parts to picker

CBAS/RS

AVS/RS

VLM

Carousels

Machine   
picker

Robot to parts

AGV with robot picker 
installed

Parts to robot

Gantry robots

Automated 
picking

Dispenders

A-frames

Figure 2: Graphical representation of different OPS Systems 
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tier. In the first configuration, each tier has its own shuttle that focuses on storing or 

retrieving the pallet on that specific tier level. In the second configuration, the shuttle can 

move among different tiers by using the lift that allows vertical movements (Marchet G. et 

al., 2013). SBS/RS are part of the AVS/RS and they are generally used in mini-load 

warehouses (Lerher T. et al., 2015). 

Another type of automated storage and retrieval systems are vertical and horizontal 

carousels which are mainly used for products with medium to small sizes. They are made 

of shelves that rotate either vertically or horizontally and they carry the relevant parts to 

the picker following the demand order (Kaveh Azadeh et al., 2019). The VLM (vertical lift 

modules) are similar to carousels and they are characterized by two columns of storage 

and a lifting crane in the middle that extracts the right SKUs and it brings them directly to 

the picker (Kaveh Azadeh et al., 2019). 

 

The CBAS/RS, AVS/RS, VLM and Carousel fall into the category of those systems that bring 

parts to the picker in order to perform the picking activity (Yasmeen Jaghbeer et al., 2020). 

 

In some cases, the order picking activity is performed by a robot, the robot travels towards 

the stock units and selects the relevant ones in the right amount. One example is given by 

the innovative picking system proposed by Nobutaka Kimura et al. (2015) where a 

robotized dual arm is mounted on an AGV to grant a flexible order picking for a high-mix 

warehouse  (Nobutaka Kimura et al., 2015). Other robotized order picking solutions are the 

TORU and the SOTO robots. They are AGV able to pick items from the shelves, TORU can 

automatically pick cubic items without human assistance and SOTO directly handles totes 

(Richard Bormann et al., 2019). 

 

2.2 Discrete Event Simulation in the context of automated warehouses for 

order picking activities 
 

From the available past literature, it can be observed that many efforts have been put into 

finding ways to identify the best design configuration and to evaluate the performance of 

Automated Storage and Retrieval Systems using two main different approaches: Discrete 
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Event Simulation and development of analytical models in some cases tested and validated 

through simulation (Eder M, 2020).  

The next sections of the present literature review will focus at first on the main studies 

supported entirely by a Discrete Event Simulation approach, it will then cite some studies 

supported by a combination of both DES and other approaches. The design/performance 

analysis presented in the following sections have been categorized based on the type of 

system studied. The performance studies of AS/RS which do not include the use of DES will 

not be considered. As already anticipated, the Discrete Event Simulation is often used in 

AV/RS literature, through this approach, the studied system is defined as a series of 

instantaneous occurrences or discrete events among whom the system is considered fixed 

(M.Law, 2015). It is important to underline that every study, even if they share the Discrete 

Event Simulation approach, they monitor different KPIs on different AV/RS. 

 

2.2.1 DES in the context of AVS/RS 
 

An example is given by the work written by Lerher T. et al. (2015) where discrete event 

simulation has been used to evaluate how the performance of a Shuttle Based Storage and 

Retrieval system, also called SBS/RS, part of the AV/RS, is affected and how throughput 

performance varies if rack configuration (number of tiers, number of aisles, number of 

columns and therefore length and heigh of storage racks), velocity of shuttles and lifts vary. 

The study concluded that the throughput capacity of the system depends on the 

throughput performance of the lift multiplied by the aisles, so if the number of tiers 

decrease and aisles increase, the throughput of the system should improve (Lerher T. et al., 

2015). A later study by Lerher T. et al. (2016) tried to deepen the analysis on SBS/RS 

performance. In this article, a Discrete Event Simulation is applied to a SBS/RS System to 

evaluate its performance with specific focus on one KPI: Throughput. Nine different racks 

configurations have been studied and for each one of them the system’s throughput 

capacity has been recorded. It was observed that the performance of the entire system is 

greatly dependent on the rack configuration (number of tiers, columns, and isles) and on 

the velocity of the shuttle/lift which however is limited by physical constraints. Because the 

study only focuses on throughput performance, it lacks considerations in terms of energy 
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consumption and energy regeneration which have some influence when decisions need to 

be made on the optimal design of the system (Lerher T. et al., 2016).   

A similar study by Ekren B. et al. (2015) uses discrete event simulation and in which the 

main KPIs are the utilization of shuttles, utilization of lifts, cycle time of retrieval and cycle 

time of storage activity. The study gives some important contribution on warehouse design 

for tier captive SBS/RS systems and it identifies the best rack configuration for class-based 

storage policy through 10 different iteration of the simulation model. It is underlined that 

the study could be enriched even more if different arrival rates and different velocity 

profiles for shuttles and lifts are considered (Ekren B.Y. et al., 2015). 

In other studies, cycle time seems to be the main element to describe the performance of 

an AVS/RS System as it is shown in the work of Eken B.Y. et al. (2011). In this study, discrete 

event simulation is employed to find the best combination of vehicles and lifts given pre-

defined rack configurations. The performance measures used to evaluate each 

combination are cycle time, utilization of vehicle and utilization of lifts. It has been 

concluded that scenarios with larger number of lifts perform better compared to scenarios 

with lower number of lifts given that the number of vehicles is the same for both cases. It 

is important to underline that this study is not complete and exhaustive because it does 

not include considerations on costs (Ekren B. Y. and Heragu, 2011). 

Marchet et al. (2013) introduced in their study some considerations on costs too. In this 

article discrete event simulation has been used to understand what the optimal rack 

configuration (number of aisles, tiers, and columns) for autonomous storage operated by 

AVS/RS could be. The rack configuration is very relevant as it has been underlined that the 

total annual costs related to autonomous warehouses are linked to vehicles, lifts, and space 

costs. During the simulation exercise, KPIs such as Throughput, flow time and cost have 

been monitored. The results suggest that the rack configuration has an impact on 

throughput and, based on how many tiers or how many columns the storage area has, 

different bottlenecks can be identified. In fact, if the storage develops on height (high 

number of tiers) the bottleneck may become the lift, so the throughput of the aisle is equal 

to the lift’s throughput. On the other hand, if the storage system has longer aisles and less 

tiers, the bottleneck may become the vehicle and similarly to what happens for the 
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previous case, the throughput of one aisle will be equal to the throughput of the vehicle 

(Marchet G. et al., 2013). 

Kriehn et al. (2018) used discrete event simulation to monitor changes in throughput in 

SBS/RS Systems when some specific storage management policies are applied contrary to 

performing a random storage assignment. The results of the study suggest that when class-

based storage, sequencing of retrieval requests and warehouse reorganization are put in 

place either individually or, in some cases, in combination with each other, the system’s 

throughput increases considerably. This leads to a reduction in processing time and lower 

energy consumption (Kriehn T. and Fittinghoff M., 2018). 

A later study includes a focus on sustainability, and it has been written by Akpunar et al. 

(2017). In this study different warehouse configurations have been tested in order to select 

the one that guarantees the highest vehicles utilization and minimum energy consumption 

considering an AVS/RS System. Discrete event simulation has been implemented and 81 

scenarios, which differ from each other in the rack configuration, have been analysed. It 

has been observed that energy consumption decreases when the warehouse is 

characterized by a low number of tiers and a high number of aisles. When the number of 

tiers or columns increase, energy consumption increases as well (Akpunar A. et al., 2017). 

2.2.2 DES in the context of Crane based systems 
 

Colla V. et al. (2010) used discrete event simulation to evaluate what could be the best 

storage policy in the context of crane based automated storage and retrieval systems. The 

storage policies evaluated are: FIFO reordering, Stacks reordering and Space reordering 

(Colla V. and Nastasi G., 2010). Different KPIs are monitored, the most important ones are 

listed below:  

• Throughput 

• Average Stock 

• Receptivity (how many units the warehouse can stock) 

• Handling potentiality (the average number of units handled by AV/RS) 

• Fragmentation 
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Like the previous study, the paper of Vishwesh Singbal and K.Adil (2019) discusses how the 

performance of a crane based automated system changes based on the storage policy 

employed (Random or Across aisles full turnover). The study also evaluates the changes 

that happen if the number of aisles and the number of products vary. The study shows that 

the performance (evaluated in terms of Expected Travel Time Per Request) of the AS/RS is 

better when a random storage policy is employed no matter what is the number of aisles 

or the number of products taken into consideration (Vishwesh Singbal and K.Adil, 2019). 

Lerher T et al. (2014) created a model that could support the activity of warehouse design 

when crane-based systems (mini load AS/RS) are employed. The study specifically focuses 

on energy consumption, the literature already written up to that point, extensively treated 

KPIs such as travel time, throughput, and cost. The model has been implemented through 

discrete event simulation and it has been observed that based on the variation of different 

factors (type of mini-load, velocity of devices), scenarios characterized by high velocity 

profiles resulted in higher CO2 consumption (Lerher T. et al., 2014). 

2.2.3. DES in the context of VLM 

 

A study conducted by Rosi B. et al. (2016) investigates how the performance of a single-

tray VLM changes if the velocity profile of the lift and the dimensions of the VLM change. 

Through discrete event simulation, the study was able to compare the throughput of 4 

different VLM configurations, and, it concluded that throughput improves when the height 

of VLM decreases and when the velocity of the lift increases (Rosi B et al., 2016). 

Simulation is used by Battini D. et al. (2016) to determine how to improve throughput in a 

dual-tray VLM system. Given a specific set of VLM characteristics the simulation generates 

10.000 random picking orders and different policies have been compared. It has been 

noted that Class Based Storage (storing most used items closer to the bay) and batch 

retrievals (higher probability to get more than one item on one tray) have influence in 

throughput improvements. The study also gives insights on how the operator can help the 

system performance by using a batch order picking approach (different orders are 

managed at the same time) (Daria Battini et al., 2016). 
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2.2.4 DES used to compare different AS/RS 
 

Other studies are less selective and broader in their analysis. An example is given by the 

work created by Ekren et al. (2012) where the discrete event simulation approach is used 

to compare the performance of two well known AS/RS systems which are AVS/RS and 

CBAS/RS (Crane-based automated storage and retrieval system). In particular, the focus is 

put on tier-to-tier AVS/RS systems and aisle to aisle CBAS/RS. The simulation software used 

is ARENA and during this study, the experiment has been iterated 198 times in total 

(considering different values for number of vehicles, lifts, cranes, number of aisles, bays, 

tiers and two variants in demand). Contrary to the already mentioned studies, in this case 

the spectrum of KPIs is much wider. For each exercise 5 different KPIs have been 

monitored: 

• Average Flow time 

• S/R device average utilization 

• Average waiting time in the S/R device queue  

• Average number of jobs in queue waiting to be processed 

• Cost 

The outcome of the study showed that AVS/RS system performs better compared to 

CBAS/RS. The first ones on average are characterized by lower Flow time considering the 

same utilization for both S/R devices. Moreover, it is shown that AVS/RS have usually less 

jobs waiting in a queue and shorter waiting time in the queue compared to CBAS/RS. 

Although AVS/RS seems to be performing better compared to the other option, it is 

highlighted several times in the paper that AVS/RS is also the option that costs the most. 

Consequently, if there is the need to implement a material handling device at a lower cost, 

the option CBAS/RS would be the preferred one between the two (Ekren B. Y. and Heragu, 

2012). 

Bruno et al. (2016) decided to shift the focus of past studies by introducing in their article 

the concept of sustainability in the evaluation of AVS/RS performance, in this context the 

energy consumption of the system is considered as a KPI together with cycle time and 

devices utilization. The study tries to compare traditional crane-based systems with 

AVS/RS. A conceptual model is first developed and then it is implemented through Discrete 
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event Simulation. The results obtained show that AVS/RS, apart from giving benefits in 

terms of improved cycle time, it also provides considerable reduction in energy 

consumption (Bruno G. et al., 2016). 

A more recent simulation-based analysis with focus on energy consumption is given by 

Guerrazzi E. et al. (2019) in the article “Energy Evaluation of Deep-Lane Autonomous 

Vehicle Storage and Retrieval System”. Through simulation, it has been observed that the 

utilization of AVS/RS can allow energy savings up to 60% compared to CBAS/RS (Guerrazzi 

E. et al., 2019). 

2.2.5 Design and performance evaluation of AS/RS with other methodologies validated 

through DES 
 

In some studies, simulation is used in combination with other approaches. A first example 

which is also one of the first studies linked to AVS/RS performance evaluation is given by 

the work of Malmborg (2002) where an analytical model has been developed to estimate 

AVS/RS performance in terms of cycle time and vehicle utilization under different rack 

configurations. The study aims at comparing AVS/RS with AV/RS performance. The 

analytical model is then validated through simulation (Malmborg Charles J., 2002). 

Eder M. and Kartnig G. (2016) later developed an analytical model to determine the best 

rack configuration and geometry capable to achieve the greatest throughput for a S/R 

Shuttle System. Discrete Event simulation through SIMIO simulation software is used in this 

study to validate the analytical model. The analytical model suggests that as the height and 

length of the racks increase, the throughput at first improves up to a certain point after 

which it tends to worsen (Eder M. and Kartnig G., 2016).  

A more recent study by Lerher T. et al. (2020) introduces in the already existing literature 

a focus on the performance evaluation of an AVS/RS with multiple-tier vehicles. An 

analytical model is able to calculate cycle time and throughput of this innovative storage 

system and a discrete event simulation validates the results obtained analytically. This 

study could be particularly beneficial during the system design process as it gives valuable 

insights on the best rack configuration and velocity profile of devices (Lerher T. et al., 2020). 
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 Lerher T. (2017) used DES together with Design of Experiments (DoE) applied to SBS/RS in 

order to better identify the optimal performance in terms of throughput. From the study it 

has been concluded that different factors affect throughput: number of columns, velocity 

and acceleration/deceleration of both shuttles and lifts. The study let these factors vary to 

see what the final throughput would be and, it has been observed that the best scenario is 

the one with the smallest number of columns and the greatest number of tiers (Lerher T., 

2017). 

The work of Sgarbossa et al. (2019) focuses on the throughput evaluation of a VLM System 

under different storage policies. In the paper it is stated that the overall performance of 

this system is tightly dependent on the performance of the operator and the dual bay VLM. 

The study focuses on the case in which the VLM is the bottleneck and it concluded that one 

way to improve the throughput of the system in this situation would be to switch from a 

random storage policy to a CBS (Class-Based Storage) one. The study develops an analytical 

model that is then validated through Discrete Event Simulation (Fabio Sgarbossa et al., 

2019). 

The performance of a carousel system is analysed in the work of Jennifer A. et al. (2012). 

They developed an analytical model for cycle time, supported by Discrete Event Simulation. 

The aim of the paper was to determine what is the retrieval policy applied to carousels that 

could increase its throughput. The results show that a batch processing policy allows to 

increase throughput compared to sequential processing, as a consequence, if batch 

processing is applied, financial gains can be achieved, as a lower number of carousels can 

be installed to achieve satisfactory results in terms of throughput (Jennifer A et al., 2012).  

It has been noted that there are no articles that use the Discrete Event Simulation to 

evaluate the performance of a robot to parts system. Several studies use other 

methodologies, like mathematical models, to estimate cost, lead time or flexibility of these 

OPS (Yasmeen Jaghbeer et al., 2020). 

The following table summarizes the studies cited in this literature review. 
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Table 1: Literature review on AS/RS performance analysis and AS/RS design criteria 

 

Year Author/s 
System 
studied 

Characteristics Main KPIs Model 

DES in the context of AVS/RS 

2015 Lerher T. et al. SBS/RS 
Tier-captive 

DCC 
Throughput Simulation 

2016 Lerher T. et al. SBS/RS 
Tier-captive 

SCC/DCC 
Throughput Simulation 

2015 Ekren B. et al. SBS/RS 
Tier-captive 

DCC 
Utilization 
Cycle time 

Simulation 

2011 Ekren B. et al. AVS/RS Tier to tier 
Utilization 
Cycle time 

Simulation 

2013 Marchet G. et al. AVS/RS 
Tier captive 

SCC 

Throughput 
Flow time 

Cost 
Simulation 

2018 Kriehn T. et al. SBS/RS 
Tier-captive 

SCC/DCC 
Throughput Simulation 

2017 Akpunar et al. AVS/RS 
Tier to tier 

DCC 
Energy consumption Simulation 

DES in the context of Crane based systems 

2010 Colla V et al. 
Crane based 

system 
- 

Throughput 
Average Stock 

Receptivity 
Handling 

potentiality 
Fragmentation 

Simulation 

2019 
Vishwesh S. and 

Gajendra K.Adil 

 

Crane-based 
system 

Single-crane 
multi-aisles 

Expected Travel 
Time 

Simulation 

2014 Lerher T. et al. Mini-load AS/RS SCC/DCC Energy consumption Simulation 

DES in the context of Carousels and VLM 

2016 Rosi B. et al.  VLM Single-Tray Throughput Simulation 

2016 Battini D. et el. VLM Dual-Tray Throughput Simulation 

DES used to compare different AS/RS 

2012 Ekren B et al. 
CBAS/RS vs 

AVS/RS  
Tier to tier 

Flow time 
Utilisation 

Waiting time 
N° jobs waiting 

Cost 

Simulation 

2016 Bruno G. et al. 
CBAS/RS vs 

AVS/RS 
Tier to tier 
SCC/DCC 

Cycle time 
Utilization 

Energy consumption 
Simulation 

2019 Guerrazzi E. et al. 
CBAS/RS vs 

AVS/RS 
Tier captive 

SCC 
Energy consumption Simulation 

Design and Performance evaluation of AS/RS with other methodologies in combination with 
DES 

2002 
Malmborg 
Charles J. 

AVS/RS 
Tier to Tier 
SCC/DCC 

Cycle time, devices 
utilization 

Analytical 
model 

Simulation 

2016 Eder M. et al. 
S/R shuttle 

system 
Tier captive Throughput  

Analytical 
model 

Simulation 
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2020 Lerher T et al. AVS/RS 
Multiple tier 

shuttles 
SCC/DCC 

Cycle time 
Throughput 

Analytical 
model 

Simulation 

2017 Lerher T. SBS/RS 
Tier-captive 

SCC/DCC 
Throughput 

Simulation 
DOE 

2019 Sgarbossa et al. VLM Dual bay Throughput  
Analytical 

model  
Simulation 

2012 Jennifer A. et al. Carousel  Horizontal Throughput 
Analytical 

model 
Simulation 

 

 

3. FlexSim: Simulation Software 
 

FlexSim is a simulation software that allows to build both 3D and 2D simulations of a 

specific system. The flexibility offered by the software gives the possibility to build a digital 

model that replicates in the most accurate way a real-life system. This software can be used 

in several different ways to simulate different processes, from manufacturing processes to 

warehouses and healthcare systems. It can be helpful in several situations, for instance 

when the end goal is to evaluate how a change in warehouse layout or how the introduction 

of new elements in the process can impact the overall system. The software offers, in fact, 

the possibility to gather and show data in an organized way and it enables to run and 

compare different simulations which differ from each other in terms of input parameters 

giving the possibility to identify the most convenient one.  

FlexSim is considered as a way to test and optimize a process before applying the changes 

in a real setting which would imply high-cost investments at a high risk. The software lets 

the user work in a risk-free environment and it give insights on how to fix bottlenecks, how 

to allocate resources in the most optimal way, how to improve throughput, how to reduce 

queues and waiting times (FlexSim). 

Some of the main functionalities, that will be mentioned in the following chapters in 

relation to the simulation model built for this thesis, are 3D model, Process Flow, 

Dashboard, Experimenter and Optimizer. These elements will be briefly described in the 

sections below.  
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3.1 Working with a 3D model 
 

A 3D model helps in better visualizing the space that the process will occupy if implemented 

in real life. It can be seen as a more accurate way to observe the path that the resources 

involved will follow and how the system behaves in general. FlexSim offers an Object-

oriented simulation through a system of classes and sub-classes. The user interface of a 3D 

model can be observed in Figure 3. 

 

 

From Figure 3 it is possible to identify three distinctive areas: Library, 3D Model and 

Properties. 

From the Library it is possible to insert in the model different objects, created from classes, 

through a Drag and Drop action. Some examples of objects relevant to this study and 

offered by the software are Fixed Resources, Task Executers, Warehousing and AGV 

(FlexSim). Another type of object that is not directly offered in the library is the Flow Item. 

• Flow Item: Items that flow into the process and during the simulation, they can be 

transformed, they can move, they can carry information stored in labels (static or 

dynamic) attached to them. Flow Items can be boxes, pallets, totes, spheres but 

also people, orders, trucks depending on the specific simulation. In the simulation 

Figure 3: FlexSim's 3D model User Interface 
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model described in the following chapters, an example of Flow Item is a pallet 

containing boxes. 

• Fixed Resources: Objects that interact with the Flow Items processed in the model 

and they are static meaning that they do not move during the simulation. As an 

example, they can be sources which generate items, processors that process items, 

buffers, combiners, separators.  

• Task Executers: Objects in the form of operators or machines that can move around 

the model and they can interact with the Flow Items. In the simulation model that 

will be described in the following chapters, the Task Executers are the AGV, the 

satellites and the robots which stock, retrieve pallets and satisfy orders. 

• Warehousing: These objects allow to put in place the rack configuration that most 

mirrors the real-life layout. FlexSim offers different types of storage systems, that 

can be highly personalized, such as standard racks, push backs and gravity racks, 

drive in racks. The latter will be used in the simulation model built for this study. 

• AGV: They are a specific type of task executers connected to an AGV travel network. 

They can be used to transport and carry Items in the simulation model. They are 

extremely relevant in our study since the technology that the thesis aims at 

evaluating can be represented by an AGV in the model. 

 

3.2 Working with a Process Flow 
 

The Process Flow is a great tool accessible from the main FlexSim window that allows to 

build and structure the model’s logic through flow charts. The users can insert activities in 

the Process Flow that will mirror the real activities happening during the process. Once the 

users run the Process Flow, tokens will be created (green circles in Figure 4) and they will 

follow the flow specified in the chart, it is possible to link tokens to specific items generated 

in the 3D model so that there is a direct link between the 3D and the 2D model.  An example 

of Process Flow can be observed in Figure 4. 
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3.3 Working with Dashboards 
 

Dashboards are blank pages that can be populated by the user with different types of 

information, mainly graphs that display in real time relevant data while the simulation is 

running. As an example, the charts can display information about the throughput of a 

specific machine, the processing time, the state of machines, the work in progress. In 

addition to that, the user has the freedom to choose the most suitable type of chart, from 

pie charts to bar charts and time plots. An example of dashboard can be observed in Figure 

5. 

Figure 4: FlexSim’s Process Flow example 

 

Figure 5: FlexSim’s Dashboard example 
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3.4 Working with the Experimenter and the Optimizer 
 

The Experimenter and the Optimizer are two important tools that help the users 

understand what the best variable setting for their model is. With the Experimenter it is 

possible to run the same simulation several time, each time changing some variables to see 

how those variables impact the process performance. The Optimizer tool will then try to 

understand what the best variables values are, in order to maximize the relevant 

performance measures. 

4. Warehouse storage policies and operating logic 
 

Before explaining in more details the structure of the model developed for this study, it is 

important to explain how the storage policies, that will be implemented, work. The model 

will focus on the implementation and comparison of five different storage policies to see 

which one could give the highest benefits when combined with the new technology. The 

examined storage policies in the context of deep-lane warehouses are: Random Storage, 

Class-Based Storage, Dedicates Slots Storage, Storage by Weight and Storage by Association 

Rules. 

4.1 Random Storage 
 

In this storage policy the warehouse slots are filled with a random approach meaning that 

every SKUs have equal probability of occupying available slots (Zaerpour N. et al., 2013). 

Figure 6 shows the Random storage policy. 

 

Figure 6: Warehouse with random Storage Policy 
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4.2 Class-Based Storage 
 

Class-Based Storage policy allows to classify the SKUs into three different classes A, B, C 

which will be stored in dedicated areas in the warehouse (Area A, Area B, Area C). Class-

Based Storage can be developed differentiating SKUs by using different product 

characteristics including picking frequency, products volume, quantity of products sold, 

values of product sales (Lorenc A. and Lerher T., 2019). The division is put into place based 

on the product involvement, generally the products which are highly involved (Class A) will 

account for 80%, product with medium involvement (Class B) will account for 15% and the 

remaining with low involvement (Class C) represent 5% (Lorenc A. and Lerher T., 2019). In 

the literature it is possible to find different percentages to the ones written above based 

on the specific study.  

As an example, if the products are differentiated by number of products sold, the products 

with the highest number of sold products will be part of Class A, the products which are 

characterized by a low number of units sold will be part of Class C and all the remaining will 

be part of Class B.  The items in class A are responsible for 80% of all products sold by the 

company, the items in class B are responsible for 15% of total sales and the ones in class C 

represent 5% of total sales. Generally, the items in Class A are a few but they are highly 

involved, on the other hand, products in class C are numerous but their level of involvement 

is low.  Figure 7 shows the ABC classification through a graphical representation. 

 

Figure 7: ABC curve  (Yugang Yu et al., 2015) 
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After the classification, it is important to trace the different areas in the warehouse. The 

products in Class A will be stored closer to the depot point to guarantee an easy and quick 

access, the other two Classes will be stored further away from the depot point since they 

are characterized by a lower demand and they will be accessed less frequently. As Figure 8 

shows, the shape and the location of the different areas change based on the organization 

of the warehouse and based on where the depot point is located. Different Areas 

configuration can be highlighted: Diagonal, Within Aisles and Across Aisles. All these 

configurations show that the Class A (black squares) is close to the depot point, the Class B 

(grey squares) is located in the middle of the warehouse a bit further away from the depot 

point and the Class C (white squares) is at the end of the warehouse. 

 

 

Figure 8: ABC Areas in a Warehouse (Aurelija., 2010) 
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When talking about Class-Based storage, the present study will be referring to picking 

frequency classification, which considers how many times the SKUs are appearing in the 

client orders without accounting for the quantity requested for each SKU. The percentages 

that will be used are equal to 60% for Class A, 30% for Class B and 10% for Class C. 

 

4.3 Dedicated Slots storage 
 

In a dedicated Slots Storage, the slots are assigned to specific products, even if the product 

is out of stock that place is only meant to be filled with that type of item (Aurelija., 2010). 

Figure 9 shows an example of Dedicates Slots Storage policy. 

 

4.4 Storage by weight 
 

In this storage policy weight is the product characteristics that helps determining where 

the SKUs should be stored. It can be seen as one of the variants of the Class-Based storage 

where the characteristic of interest is the weight (Lorenc A. and Lerher T., 2019). In the 

variant “storage by weight” part of model that will be described in the following chapters, 

the SKUs have not been divided into classes, but the heaviest units have been stored close 

to the pallet retrieval point and the lightest products have been stored far away from the 

same point to see whether a storage like this one could give some additional benefits in 

terms of energy savings. 

Figure 9: Warehouse Dedicated Slots Policy 
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4.5 Storage by Association rules 
 

Some studies have highlighted the importance of introducing data mining techniques, in 

particular the Apriori Algorithm, in the context of automated warehouses to improve the 

slot assignment activity so that the travel distance during the operations of order picking is 

minimized (Hau Ling Chan and King Wah Pang, 2011). 

The Apriori Algorithm helps in finding hidden patters in a list of several picking orders, it 

identifies what combination of items is requested with the highest frequency through an 

iterative process (Rifki Fahrial Zainal and Fardanto Setyatama, 2016). The steps of the 

Apriori Algorithm are listed below (Online, 2021) and the algorithm’s process flow is shown 

in Figure 10. 

Step 1: The list of picking orders is taken as input. In this first step a 1 list item called C1 is 

created in order to show the frequency of appearance of that item in the orders. If the 

frequency of appearance of items in list C1 is higher than a certain threshold called 

minimum support, then the item is significant and it can be included in another list of items 

called L1. 

Step2: Each item from list L1 is paired with another item from the same list in order to 

create subsets of items and their frequency is calculated by analysing the initial list of 

orders and stored in list C2. The subsets of items that have a frequency higher than the 

minimum support will be saved in list L2. 

Step3: The subsets from list L2 are paired with other subsets in order to create a subset of 

three items, they are saved in list C3 and their frequency is calculated from the initial list of 

orders. If the subsets of items have a frequency higher than the minimum support, they 

will be saved in list L3. 
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Step 4: The algorithm continues until the most frequent itemset is found. 

 

The following numerical exercise exemplifies how the Apriori Algorithm works assuming 

that the total number of different products is 5 and the minimum support is 5. Each order 

indicates the type of products requested, a combination of products 1,2,3,4, and 5. 

 

Initial picking orders 

1-3-5 

1-2 

4-5-1 

1-2-3-4-5 

1-2-5 

2-5-4 

1-3-5 

4-2-3 

 

 

 

 

Figure 10: Apriori Algorithm Process Flow (Bagui, 2019) 
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C1 L1 

Items Frequency Items Frequency 

1 6 1 6 

2 5 2 5 

3 4 5 6 

4 4  

5 6 

 

In List C1 the frequency of appearance of the single items is recorded. For instance, item 

type 1 has been requested 6 times in the input order list. Only the items that have been 

requested more than 5 times (5 is the minimum support) will be part of List L1. 

C2 L2 

Itemset Frequency Itemset Frequency 

1-2 3 1-5 5 

1-5 5  

2-5 3  

 

From L1 a combination of items is listed creating all possible item sets. The frequency of 

appearance of the item sets is recorded in C2. The item sets that are requested less than 5 

times are deleted and only the ones who are requested more than 5 times are saved in L2.  

The example shows that in this specific case, Items 1 and 5 create the itemset that is most 

frequently requested by customers and therefore it is sensible to store items 1 and 5 close 

together. 
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4.6 Warehouse Operating logic 
 

The present section describes in detail the conceptual model of the automated warehouse 

that will be studied in the following chapters through the simulation model: an automated 

deep-lane warehouse served by tier to tier vehicles each composed by a Shuttle, a Satellite 

and a Robotic Arm (Xv,Yv,Zv)  aimed at satisfying picking orders. In order to describe the 

operating logic of the warehouse in the most complete way, different warehouse activities 

will be described: from customer order satisfaction to slots replenishment. In other words, 

the descriptions will focus on how the Picking order mission, Pallet retrieval mission and 

Pallet storage mission work. The coordinates of the pallets/slot to retrieve/reach is 

indicated with Xp,Yp,Zp whereas the coordinate of the lift is Zl. 

4.6.1 Picking order mission 
 

The behaviour of the warehouse during the picking order system starts with the arrival of 

customer orders that require the creation of mixed pallets that mirrors the expectations of 

the clients. As soon as the order arrives, the request waits for a vehicle (intended in this 

context as shuttle, Satellites and Robotic arm grouped together) to proceed with the 

picking activity. If a vehicle is available, the task to fulfil the order is assigned to that vehicle, 

otherwise, the order waits. When a vehicle is ready to fulfil the order, the latter is read by 

the System and the first type of product to include in the mixed pallet is identified. The 

shuttle travels horizontally with the aim to reach the slot where it can find the right type of 

product. The location of the different pallets of products in the slots can vary based on the 

storage policy that the warehouse is employing. If the slot is on the ground floor, the shuttle 

directly travels to destination, if not, the shuttle needs to wait for the elevator to reach the 

ground floor and to lift the vehicle at the right level. If the slot is occupied by another 

vehicle for another picking activity, the vehicle that needs to reach that slot has to wait for 

it to be freed. Once the vehicle finally reaches the slot, the satellite travels to the pallet, 

loads the pallet and brings it closer to the shuttle, so that the Robotic Arm mounted on the 

shuttle can pick the right number of SKU units requested by the customer. Once this activity 

is done, and the satellite has put the pallet back in the slot, the system analyses the order 

to see if there are other types of products that need to be picked. If so, the shuttle needs 

to travel to the right slot destination as previously explained, if there are no other types of 
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products to be picked, the shuttle travels towards the discharge area, it unloads the mixed 

pallet and it waits in the buffer for a new order assignment. The Activity diagram that 

explains the logic behind the picking activity is shown in Figure 11. 

 

 

 

 

 

Figure 11: Order Picking Activity – Activity Diagram 
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4.6.2 Retrieval mission 
 

In the Retrieval missions the aim is to take out of the warehouses entire pallets filled with 

the SKU requested by the client. The Activity Diagram that explains how the retrieval 

missions work is shown in Figure 12. In this case, similarly to the previous scenario, the 

transaction that indicates the need for a retrieval mission enters the system and it is put 

on hold until a vehicle is ready to process that specific order. Once the vehicle is available, 

the system associates that vehicle to the order, and it tries to locate the pallet to retrieve 

giving to the vehicle the pallet coordinates to reach (Xp,Yp,Zp). The location of the pallet 

will vary based on the storage policy that is in use in that moment. The vehicle travels 

towards the destination taking the lift if the pallet slot is situated on a different level 

compared to where the vehicle is located. Once the vehicle is in front of the right slot, the 

satellite detaches from the vehicle and loads the pallet of interest onto the vehicle.  

Figure 12: Retrieval Activity – Activity Diagram 
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The AGV can now reach the discharge area and the entire vehicle is released and it will wait 

for a new order.  

4.6.3 Storage mission 
 

When the storage activity is required, the system identifies what the optimal location to 

unload the incoming pallet is. If there is vehicle availability, the storage mission is assigned 

to a vehicle. The system gives the vehicle the coordinates of the buffer where the pallet to 

load is located. Once the pallet is loaded, the vehicle is given the coordinates that indicate 

a position inside the rack, where the pallet should be stored. The vehicle reaches the 

destination by using the lift if necessary. Once the AGV reaches the right slot, the Satellite 

detaches from the shuttle and it unloads the pallet in the right position. The entire vehicle 

will then travel back to its buffer position waiting to perform a new activity. The Activity 

Diagram that explains how the storage missions work is shown in Figure 13. 

Figure 13: Storage Activity – Activity Diagram 
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5. Implementation of Simulation model 
 

The simulation model built in FlexSim for this study aims at representing a generic deep-

lane warehouse served by automatic vehicles which consist of a shuttle that is mainly used 

for travels on the x and y axis, a satellite which mainly travels on the x axis and a robot 

which is activated during the picking operations. The movements on the z axis are provided 

by lifts. The vehicles operate in the warehouse following a FIFO (First In First Out approach) 

and it is assumed that the warehouse can receive mixed orders as well as simple retrieval 

orders. The simulation model will not include the storage activities (replenishment of pallet 

slots) as it is not part of the focus of this study. The efficiency of the warehouse will be 

evaluated under different scenarios based on variations concerning its rack configuration, 

number of vehicles, frequency of incoming orders, number of SKUs and type of Storage 

Policy used. Figures 14 and 15 show the main elements that make up the generic physical 

structure of the facility. As it is shown below, it is possible to distinguish different design 

elements like corridors, bays, levels, vehicles.  

Figure 14: View from above of warehouse and its main elements 
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Some of these elements will vary during the simulations to register how they affect the 

overall warehouse performance and consequently the performance of the new technology. 

 

5.1 Key input Model Parameters and simulation design 
 

As already anticipated, this study will perform several simulation runs which will differ from 

each other based on the value of pre-determined parameters. Some key parameters have 

been identified and they will be varied during different simulations to see what their effect 

on the warehouse performance is. The input model parameters that will be taken into 

consideration are the frequency of order arrival, the number of corridors, the number of 

levels, the number of available vehicles, the number of SKUs and the type of storage policy. 

The aim is to identify what is the best storage policy for picking operations under different 

circumstances. The simulation will be divided into two scenarios. In the first scenario the 

study wants to identify the best storage policy under different circumstances given the fact 

that the warehouse can accept as input orders both picking orders and retrieval orders. In 

the second scenario the element of disturb will be removed, in this case the warehouse can 

only accept picking orders. The second scenario is a simplification of what happens in real 

life but it can be interesting to see if the isolation of picking orders leads to different results. 

With these two scenarios it will be possible to understand how the different storage 

policies react if the activities are not solely focused on fulfil mixed orders. The different 

parameters mentioned above are summarized in Table 2 where it is possible to see the 

Figure 15: Frontal view of warehouse and its main elements 



32 
 

different values assigned to them in different simulation runs. For every parameter 

configuration, a total of five simulation runs will be performed, every simulation will be 

characterized by the same input parameter values but certain elements, like the sequence 

at which orders arrive, will vary since this information is generated through a random 

distribution that gives different outputs at every simulation run. The final result will be 

calculated as the average of the five simulation runs. This will guarantees a more precise 

and reliable result. 

 

 
Parameter name (factors) 

 

 
Parameter values (levels) 

Number of corridors 2 

 4 

Number of levels 3 

 6 

Number of vehicles 3 

 6 

Number of SKUs 5 

 9 

Inter-arrival time of piking orders [s] 50 

 100 

Storage Policy (1) Random 

 (2) Class Based Storage 

(3) Dedicated Slots Storage 

(4) Storage by SKU weight 

(5) Storage by Association rules 

 

Taking into account only one scenario, for every storage policy, different simulations will 

be performed, where every simulation is the result of the average of five simulations with 

the same input parameters. In order to evaluate the behaviour of the different storage 

policies under different circumstances, the study will use the full factorial design at 2-levels, 

meaning that for every storage policy there will be five factors and two levels (two possible 

values for each factor). Following the full factorial design approach, the total number of 

simulations that will be performed is equal to 𝑙𝑒𝑣𝑒𝑙𝑠𝑓𝑎𝑐𝑡𝑜𝑟𝑠, which translates into 2𝑓𝑎𝑐𝑡𝑜𝑟𝑠 

in a 2-levels full factorial design (Jiju A., 2014). In this specific study, for every storage policy 

there will be 25 = 32  simulations as it is possible to observe in Table 3. Since each 

Table 2: Parameter input values  
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simulation is an average of other five simulations as already mentioned above, the actual 

number of simulations for each storage policy will be equal to 32 × 5 = 160.  

Considering five different storage policies, the total number of simulations that will be 

carried out in one scenario will be equal to 160 × 5 = 800. 

 

 

The other scenario will experience the same number of simulations. As a result, the total 

number of simulations that will be performed, considering both scenarios will be equal to 

1600. 

Table 3: Simulations that need to be performed for each storage policy 

N° Simulations N° Runs
N° 

Corridors
N° Levels

N° 

Vehicles
N° SKUs

Orders Inter-

arrival time

1 5 2 3 3 5 50

2 5 2 3 3 5 100

3 5 2 3 3 9 50

4 5 2 3 3 9 100

5 5 2 3 6 5 50

6 5 2 3 6 5 100

7 5 2 3 6 9 50

8 5 2 3 6 9 100

9 5 2 6 3 5 50

10 5 2 6 3 5 100

11 5 2 6 3 9 50

12 5 2 6 3 9 100

13 5 2 6 6 5 50

14 5 2 6 6 5 100

15 5 2 6 6 9 50

16 5 2 6 6 9 100

17 5 4 3 3 5 50

18 5 4 3 3 5 100

19 5 4 3 3 9 50

20 5 4 3 3 9 100

21 5 4 3 6 5 50

22 5 4 3 6 5 100

23 5 4 3 6 9 50

24 5 4 3 6 9 100

25 5 4 6 3 5 50

26 5 4 6 3 5 100

27 5 4 6 3 9 50

28 5 4 6 3 9 100

29 5 4 6 6 5 50

30 5 4 6 6 5 100

31 5 4 6 6 9 50

32 5 4 6 6 9 100

factors
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Through this extensive study it will be possible to not only compare the single storage 

policies based on different factor configurations, but it will also be possible to determine 

what the best storage policy is as the varying factors change. 

5.2 Key Performance variables  
 

All simulations will be evaluated based on specific performance variables which act as the 

output of the study. The final discussion of the results will be based on the numerical values 

that these variables have, and they will indicate what the best storage policy is. The 

Performance variables vary from variables concerning the structure of the warehouse to 

the total energy consumption calculated during the simulation. The most relevant 

performance variables for this study are listed below. 

 

• Throughput [orders/h] 

It is defined as the number of elements that enter or exit the system in a given 

time unit (Colla V. and Nastasi G., 2010). In the present study the throughput 

indicates the number of orders that the system is able to fulfil in the time unit, that 

is the number of orders that exit the system in the time unit (hours).  

• Receptivity [units] 

It is the maximum number of items that can be stored in the warehouse (Colla V. 

and Nastasi G., 2010). 

• Selectivity [%] 

It is a percentage equal to the directly reachable unit loads divided by the total unit 

loads stored in the warehouse. 

• Shelf Occupation [%] 

It is a percentage that indicates the space occupied by the items, it is equal to the 

space occupied by items divided by the total space available. 

• Unoccupied space [%] 

It is a percentage that indicates the unoccupied space, it is equal to the unoccupied 

space divided by the total space available. 
 

• Vehicle utilization [%] 
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In the model this index has been calculated as the total activity time of the vehicle 

including travel time, picking time divided by the total time included vehicle 

activity time and vehicle idle time.  

• Average Order Cycle time [min/order] 

Cycle time is the time between the arrival of an order request to the time the 

request has been fully satisfied and fulfilled (Ekren B. Y. and Heragu, 2011). In the 

model the cycle time is the time between the order arrival and the time the mixed 

pallet is ready and unloaded in the buffer out, it includes all the waiting times that 

might happen during the picking activity. 

• Average order Task time (Picking) [min/order] 

It has been calculated as the time it takes to complete the picking activities without 

considering the waiting times divided by the total number of picking orders 

fulfilled. 

• Average order Task time (Retrieval) [min/order] 

It has been calculated as the time it takes to complete the retrieval activities 

without considering the waiting times divided by the total number of retrieval 

orders fulfilled. 

• Average order waiting time [min/order] 

It has been calculated as the total waiting time of fulfilled orders divided by the 

number of fulfilled orders. 

• Directly reachable pallets [units] 

Number of pallets that can be directly reached by the vehicle. It is useful to 

calculate the index of selectivity. 

• N pallets stored [unit] 

Total number of stored pallets in the warehouse. It is useful to calculate the index 

of occupied/unoccupied space 

• Area Occupation [m3] 

It indicates the volume in  𝑚3 occupied by the warehouse 

• Area Occupation [m2] 

It indicates the area in 𝑚2 occupied by the warehouse 

• Average meters run by vehicles [m/n°vehicles] 
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It has been calculated as the total number of meters run by the vehicles divided by 

the number of vehicles. 

• Average Energy consumption per vehicle [KWh/n°vehicle] 

The calculation of the Average energy consumption has been carried out following 

some studies conducted on the same topic. Considering the paper written by 

Akpunar A. et al. the necessary KWh in an AVS/RS system during travel with 

constant velocity can be calculated as 𝑊𝑐 = 𝑝𝑐 × 𝑡. Pc is the power needed to 

overcome the traction force in travel with constant velocity and 𝑡 is equal to the 

time the vehicle has travelled with constant velocity (Akpunar A. et al., 2017). The 

paper of Bruno G. et al. gives an indication of the power needed by the AVS/RS 

shuttle when the shuttle is empty (1 KW) and when it is loaded (2KW)  (Bruno G. 

et al., 2016). These elements have been useful to calculate the energy 

consumption in the simulation model. Assuming that the maximum load that can 

be put on a pallet is equal to 1500 kg and assuming that the power at load in the 

article of Bruno G et al. is related to full load, the power necessary to move 1500kg 

would be equal to 𝑝𝑒 − 𝑝𝑓 where pe is the power when the shuttle is empty, and 

pf is the power needed when the shuttle is fully loaded. This means that every kg 

requires a power of  
𝑝𝑒−𝑝𝑓

1500
. Knowing this information and knowing the time 

travels of the vehicles in the model, it is possible to calculate the energy 

consumption of the vehicles during the simulation, taking into account the 

different weights that the vehicles carry during the picking activity. The index of 

average energy consumption also includes an indication of the vehicles’ passive 

energy, which is the energy used when the vehicles are on but they are not 

performing any activity.  
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5.3 Structure of Simulation model 
 

To better understand how the simulation model works, it is important to describe its 

structure. Before running any simulation, the right model parameters are set so that 

through a code, triggered at simulation start, the model knows how many corridors, bays, 

pallets in each bay, levels, vehicles to build in the 3D model. It is also important to tell the 

model what storage policy it has to replicate. All this information is set in a specific table 

called “Model parameters Table”, showed in Figure 16.  

As it is possible to observe, the model parameters in this case are: the storage policy (1 for 

Random, 2 for Class based storage, 3 for Dedicated slot storage, 4 for storage by weight 

and 5 for storage by association rules), the inter-arrival time for picking and retrieval orders, 

number of SKUs, physical structure of the racks. Some of these parameters will be modified 

to test different scenarios as already explained in the previous sections. 

Having this information as input, the software is able to build the 3D model and together 

with the elementary elements of the warehouse, the initial code will also create the path 

that the vehicles can follow during the simulation and it will also create the so called 

“control points”. Control points are areas in which the vehicle makes some sort of decision, 

whether it is about loading/unloading of items/pallets or waiting to proceed with the next 

activity. For instance, they can be spotted in front of every slot address. In the model, the 

control points are extremely important because they have been used as a way to calculate 

the total amount of meters that the vehicles have run during the simulation. Once the 3D 

Figure 16: Model Parameters table 
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structure is in place, the Process Flow animates the simulation giving an order and a 

sequence to the different activities to perform. Based on the storage policy specified in the 

Model parameters Table, the software activates specific process flows through a 

conditional decision. A simplified view of this approach is showed in Figure 17. 

The raw model process flow is similar across all five storage policies tested in this study. 

What differentiates the five storage policies lies in the details of the code that has been 

written in FlexScript, a simplified coding language used in FlexSim, and in C++ and inserted 

in specific parts of the Process Flow. In the next sections there will be a general description 

of the Process Flow, which had already been built before the present study, followed by 

details on the custom codes that enable the simulation and comparison of different storage 

policies, specifically created for this thesis. The basic structure of the process flow is divided 

into two big areas: Initialization of data which include the actions of automatically 

populating the warehouse and the picking area which include orders generation, material 

handling and conclusion of picking order. 

5.3.1 Initializing data 
 

The process flow is initiated with the creation of a token which is an indication of the 

progress of the activity of warehouse filling, the token creation is not visible in Figure 18, 

but it is right before the first custom code called “Assegnazione SKU casuale”. Figure 18 

shows the process flow concerning the warehouse filling operations.  

Figure 17: Process Flow approach 
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In this section of the process flow, every rack slot will receive a label that contains the 

information of the SKU that it will host because at this stage, the model is preparing all the 

necessary to fill the warehouse completely. The lists which contain the Shuttles, the 

Satellites and the Robots are created, and some preliminary analyses are conducted to 

create tables that will host information needed to calculate the model performance 

variables. Once these first preliminary actions are done, the token moves into the other 

process box called “Creation of initial pallets” (“Creazione pallet iniziali”). In this section for 

every address of the slot, there is the creation of a pallet which is then automatically loaded 

with 12 boxes. The label of the slot address, containing the SKU value, is passed to the pallet 

and then to the boxes, so that the pallet is assigned to a slot with the same SKU. The process 

continues until the warehouse has been filled, which means that all levels, all sides and all 

bays of the warehouse have been correctly filled with pallets. After that, the token is 

destroyed. 

  

 

 

Figure 18: Process Flow Data initialization 
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5.3.2 Picking order Activities 
 

Together with the creation of the token that enables the operation of filling the warehouse 

with pallets, there is the creation of tokens, with pre-specified interarrival token time, that 

trigger the creation of orders (picking orders and retrieval orders). As soon as the order is 

created, the activity of order picking starts. Figure 19 shows a fraction of the Process flow 

that handles the order fulfilment operations. 

 As already anticipated, the orders are created, and they are created in an Array format and 

saved in a table. The model works with the assumption that for every SKU, the client can 

order no more than three units (in this case three boxes). For instance, if the total number 

of SKU is five and the customer picking order is equal to [0,2,2,1,3] it means that the client 

is requesting 0 items of SKU1, 2 items of SKU2, 2 items of SKU3, 1 item of SKU4 and 3 items 

of SKU5. The client could not request more than 3 items per SKU.  

The modifications of the model carried out specifically for this study include a very specific 

way of picking order generation. The model takes as input some past orders, it analyses the 

historical data by calculating the probability of SKU appearance in an order and it generates 

new orders based on that probability following a discrete empirical distribution. In this way 

the new order generated are not randomly created but they follow the behaviour of past 

data.    

For every order generated, a pallet is created in a specific buffer and a specific resource (in 

this case a shuttle with a satellite and a robotic arm) is acquired and assigned to that specific 

customer order. The model reads the generated order and some labels, which store 

information on the SKU to pick and in which quantity, are created and assigned to the 

token. As soon as the model understand what the first SKU to pick is and how many boxes 

to pick, the handling operations can start. The handling operations vary a bit if the vehicle 

is dealing with the first SKU picking activity or if the vehicle is in the middle of satisfying an 

order. When the vehicle has completed the picking for the first SKU, the token goes back 

to the “Gestione cicli picking” box in order to read the next SKU to pick and its quantity for 

that same order. Once all the SKUs have been read and all the handling operations have 

been completed, the vehicle finds itself with a mixed pallet that needs to be discharged in 

a specific buffer for completed orders. Once this is done, the vehicle travels back to its 
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parking spot, it is released, and it waits for a new order to fulfil and some important 

information on the operations that just happened are saved in dedicated tables. 

 

5.3.3 Handling Operations 

 

The handling operations are triggered in the “Gestione cicli picking” box whenever the 

customer order requires boxes of a specific SKU to be picked. Figure 20 aims at showing 

the complexity of the handling operations, they will not be described in detail, but they are 

certainly an important part that enables the vehicles to move around the model by reaching 

prebuilt control points. The information boxes that include the handling operations are 

mainly instructions given to the vehicle for it to reach the correct slot address with the right 

SKU to pick. It is a process that triggers travel activities, loading activities and picking 

activities. As soon as the model identifies the right slot for the vehicle, the vehicle travels 

and it reaches the destination. The loading activity is created in the first iteration of the 

handling process when the vehicle loads on itself the pallet onto which to put the boxes. 

Figure 19: Process Flow Order picking 
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The picking activity is activated when the vehicle has reached the correct slot address and 

the satellite needs to bring the pallet stored in that address to the shuttle and the robotic 

arm needs to pick the needed boxes from the loaded pallet. During the handling process 

flow, some custom codes have been added so that important information on the behaviour 

of the vehicles, such as meters run and energy consumption, can be accurately stored in 

specific tables.  

Figure 21 shows the picking operation, which is one of the most important activity that is 

triggered during the handling operations process flow. As soon as the vehicle has reached 

the slot hosting the unit load with the correct SKU to pick, the operation starts. The satellite 

detaches from the vehicle, it loads the stored pallet, and it goes back to the vehicle. The 

model verifies whether there are enough boxes in the stored unit load. If yes, the robotic 

arm picks the boxes from the unit load and it place them on the pallet resting on the vehicle. 

After that, the satellite unloads the unit load back to its slot. If there are not enough boxes 

on the stored unit load, the robotic arm picks all the boxes that the unit load can offer, and 

the token will trigger the handling operations in order to find another stored unit load with 

the same SKU. In this way it is possible to pick the remaining number of boxes for that SKU 

and satisfy the request in the order.  

Figure 20: Process Flow First Handling operation and Handling Operation 
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5.3.4 Custom codes in Random Storage Policy 
 

In the Random Storage Policy every slot is filled with ten unit loads and every unit load is 

characterized by a random SKU. In this storage policy, the codes give a random SKU value 

to the unit loads and the SKU then is associated to the slot. Since the total number of unit 

loads is 10, the slot has in total 10 labels called SKU, SKU1, SKU2, SKU3 until SKU9. Every 

time one unit load is created in the slot, its SKU is saved. When the first unit load is inserted 

(considered as the 10th in line in the slot), SKU1 will be equal to the SKU of that unit load. 

The same works for all the other unit loads so that for instance, when the last unit load of 

the slot is inserted (the most accessible unit load and the one closer to the corridor), the 

label SKU of the slot will be set equal to the SKU of that unit load. The vehicle, when looking 

for a specific SKU, will look for the right SKU by reading the slots labels. The following code 

shows how the SKU is given to the slot when the first unit load is created in the slot, a very 

similar code is applied for every unit load but, it will not be shown to avoid unnecessary 

repetitions. 

if(token.cpal==1) 

{ 

 token.UDC.num = 1; 

 if (token.cbai<=9) 

Figure 21: Process Flow Picking operation 
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{ 

 caddressA = concat(string.fromNum(token.ccor),"-1-

0",string.fromNum(token.cbai),"-",string.fromNum(token.cliv),"-

",string.fromNum(token.cslo)); 

 Storage.system.getSlot(caddressA).SKU1 = token.UDC.sku; 

 } 

 else 

 { 

 caddressA = concat(string.fromNum(token.ccor),"-1-

",string.fromNum(token.cbai),"-",string.fromNum(token.cliv),"-

",string.fromNum(token.cslo)); 

 Storage.system.getSlot(caddressA).SKU1 = token.UDC.sku; 

 }  

} 

Whenever a unit load is empty, the SKU of the slot will be set equal to the next unit load 

SKU so that the correct SKU picking is always guaranteed. As an example, if one unit load 

has been fully emptied and the slot contains nine full pallets and not ten, the SKU of the 

slot should not be equal to the empty unit load anymore, but it should be equal the one 

next in line. The code counts for all the unit loads in the slot and when it realizes that there 

are nine unit loads, instead of ten, the SKU of the slot is set equal to the 9th unit slot SKU, 

SKU9. If the counted unit loads of the slot are equal to eight, then the SKU of the slot should 

be set equal to the SKU of the 8th unit load, SKU8. The same reasoning applies when the 

unit loads in the slot are lower than eight. The following code shows how the right SKU is 

applied to the slot whenever a unit load is emptied, where “ind” indicates the address of 

the slot and “oggetti_presenti” are the number of unit loads in the slot. 

if (oggetti_presenti==9) 

{  

Storage.system.getSlot(ind).SKU =Storage.system.getSlot(ind).SKU9; 

} 

 

Figure 22 shows what the Random Storage Policy looks like in the FlexSim Simulation Model 

when the warehouse has one corridor, three levels, three vehicles, 15 bays and five SKUs 

(differentiated by colour).  

In this Storage Policy the vehicles satisfy the orders starting from SKU1 and ending with 

SKU5 if there is a total of five SKUs. No particular prioritization instructions have been given 

to the vehicles when dealing with picking order activities. 
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5.3.5 Custom codes in Class Based Storage Policy 
 

In the Class Based Storage Policy, the model deeply analyses past data fed as input in order 

to assign each SKU to the right area. The code specifically written for this storage policy 

counts all the occurrences of the SKUs in the past orders, it orders the findings from highest 

output to lowest output and a cumulative share is calculated. All the SKUs that contribute 

to a cumulative share lower than 60% are part of class A, the ones who contribute to a 

cumulative share which is between 60% and 90% are part of class B and lastly the SKUs 

which contribute to a cumulative share between 90% and 100% are part of class C. Knowing 

this information, the model stores the SKUs belonging to class A, closer to the buffer out, 

it stores the SKUs of class B right after the ones in class A and in the end the  SKUs from 

class C are taken into account. In order to follow this storage logic, it has been necessary to 

save all the distances between the control points of the slots and the buffer out, order them 

in ascending order and gradually assign them to the SKUs in class A, then class B, and then 

class C. If more than one SKUs were belonging to the same class, the slot SKU from that 

class was assigned randomly between the available SKUs. Figure 23 shows what the Class 

Based storage looks like in the model. The slots closer to the buffer out are dedicated to 

the SKUs belonging to class A (in this case SKU 1 and SKU 3), these two SKUs have been 

distributed randomly in the Area A. Class B is dedicated to SKU 4 and SKU2 and the last 

Figure 22: Implementation of Random Storage Policy  
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class, class C hosts SKU 5. The division of the SKUs into different classes will vary if the past 

orders, fed as input into the model, change. 

 

 

 

 

The following code partially shows how the slot assignment has been performed for class 

A. A very similar approach has been used for class B and C. The code reads the SKUs 

belonging to the class A after having analysed the past orders. It calculates how many slots 

it has to save for class A considering the total number of SKUs belonging to class A. It then 

reads a table which stores all the distances from the control points to the buffer out in 

ascending order and it randomly assign the slots in class A to the SKUs belonging to class A 

using a discrete uniform distribution. 

for (int i=1; i<= Table("Tabella_CP").numRows; i++) 

{ 

 /*class A*/ 

 if(counter1 < num_pallet_sku*a) 

 { 

 indirizzo = Table("Tabella_CP")[i][1]; 

 indici = indirizzo.split(); 

  

  

Figure 23: Implementation of Class Based Storage Policy  
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 caddressA = concat(indici[3],"-1-",indici[5],indici[6],"-

",indici[4],"-",indici[7]); 

 posizione = duniform(1,a); 

 skudaassegnare = A[posizione]; 

 Storage.system.getSlot(caddressA).SKU = skudaassegnare; 

 caddressB = concat(indici[3],"-2-",indici[5],indici[6],"-

",indici[4],"-",indici[7]); 

 posizione = duniform(1,a); 

 skudaassegnare = A[posizione]; 

 Storage.system.getSlot(caddressB).SKU = skudaassegnare; 

    

  

 counter1 = counter1 + Model.parameters.Numero_pallet_slot*2; 

 l=i;  

 } 

  

} 

It is important to underline that in this storage policy, the vehicles, when satisfying a picking 

order, they give priority to the SKUs that belong to class A, then they deal with the ones in 

class B and lastly the care about the ones in class C. This allows to further optimize the path 

that the vehicles follow during the picking order activity and it allows to maximize the 

benefits of this storage policy. 

5.3.6 Custom codes in Dedicated slots Storage Policy 
 

In this storage policy which was part of the original version of the model, the label with the 

SKU information is assigned randomly to the slots and, contrarily to what happens in the 

random storage policy, the slots are filled with unit loads that have the same SKU. The code 

below partially shows how this assignment is performed and Figure 24 shows what the 

Dedicated Slots storage looks like in the model. 

caddressA = 

concat(string.fromNum(ccor),"10",string.fromNum(cbay),"-

",string.fromNum(clevel),"-",string.fromNum(cslot)); 

 

skudaassegnare = duniform(1,Model.parameters.N_sku); 

Storage.system.getSlot(caddressA).SKU = skudaassegnare; 

 

caddressB =  

concat(string.fromNum(ccor),"-2-0",string.fromNum(cbay),"-

",string.fromNum(clevel),"-",string.fromNum(cslot)); 

 

skudaassegnare = duniform(1,Model.parameters.N_sku); 

Storage.system.getSlot(caddressB).SKU = skudaassegnare; 
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In this Storage Policy the vehicles satisfy the orders starting from SKU1 and ending with 

SKU5 if there is a total of five SKUs. No prioritization instructions have been given to the 

vehicles when dealing with picking order activities. 

5.3.7 Custom codes in Storage by weight Policy 
 

For this storage policy, the weight of the single boxes is extremely important because the 

weight determines where the SKU will be stored. In the simulation model, boxes from SKU 

4 (SKU yellow) are the heaviest ones and they are stored closest to the buffer out, the 

lightest SKUs will be stored far away from the buffer out. The code below shows how the 

unit loads have been stored. The code reads what the heaviest SKU is, and it goes through 

a table that contains the distances between the control points and the buffer out and it 

assigns the slots with the shortest distance to the heaviest SKUs.  

 

for ( int k=1; k <= Model.parameters.N_sku; k++) 

{  

    j = 0; 

     

 for (int i=l; i<= Table("Tabella_CP").numRows; i++) 

 { 

  if(j<num_pallet_sku) 

  { 

   indirizzo = Table("Tabella_CP")[i][1]; 

Figure 24: Implementation of Dedicated slots storage 
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         indici = indirizzo.split(); 

       

      caddressA = concat(indici[3],"-1-

",indici[5],indici[6],"-",indici[4],"-",indici[7]); 

      skudaassegnare = weights[k][1]; 

      Storage.system.getSlot(caddressA).SKU = skudaassegnare; 

      caddressB = concat(indici[3],"-2-

",indici[5],indici[6],"-",indici[4],"-",indici[7]); 

      skudaassegnare = weights[k][1]; 

      Storage.system.getSlot(caddressB).SKU = skudaassegnare; 

       

      l=l+1; 

      j = j + Model.parameters.Numero_pallet_slot*2;  

       

  } 

 } 

} 

Figure 25 shows what the Storage by weight looks like considering that in the model, SKU 

4 weights 50 kg, SKU 3 weights 40 kg, SKU 5 and 2 weight 30 kg and SKU 1 weights 20kg. 

 

It is probably straight forward to understand the benefits of this storage policy when only 

dealing with retrieval activities. Since in this study the focus is mainly on picking order 

activities, the vehicles follow some prioritization rules when fulfilling an order. In this way 

it is possible to maximize the benefits of this storage policy when dealing with picking 

orders. The vehicle will read how many boxes for each SKUs are required for that specific 

order and it will calculate the total weight of the SKUs, which depends on the quantity of 

Figure 25: Implementation of Dedicated slots storage 
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boxes required and on the weight of a single box. It will then start picking the SKUs from 

the ones that overall weight less. This implies that the sequence followed by the vehicle is 

linked to the order that it is fulfilling and therefore it will most likely change every time that 

the vehicle deals with a new order. 

5.3.8 Custom codes in Storage by association rules Policy 
 

In this storage policy the model analyses past order and on them it applies the Apriori 

algorithm in order to identify the combination of SKUs that happen most frequently in the 

customer orders. Having this information, the model stores the SKUs with highest 

frequency close to each other. In order to maximize the benefits of this storage policy, the 

vehicles will give prioritization to the SKUs identified as the ones that most frequently 

appear together in a customer order and it will then pick the remaining SKUs. The code 

below is a simplified version of what has been written in the model, but it still gives an idea 

on the approach followed to store the unit loads in this storage policy. The code saves in 

one array the SKUs that have been identified through the Apriori algorithm and it will put 

in another array the remaining SKUs. The code will then fill the slots one by one by always 

storing the SKUs in the separate arrays together.  

     

for(int i=1;i<=v.length;i++) 

{ 

 caddressA = concat(string.fromNum(ccor),"-1-

0",string.fromNum(cbay),"-",string.fromNum(clevel),"-

",string.fromNum(cslot)); 

 

 caddressB = concat(string.fromNum(ccor),"-2-

0",string.fromNum(cbay),"-",string.fromNum(clevel),"-

",string.fromNum(cslot)); 

 

 skudaassegnare= stringtonum(v[i]); 

 Storage.system.getSlot(caddressA).SKU = skudaassegnare; 

 Storage.system.getSlot(caddressB).SKU = skudaassegnare; 

 cbay=cbay+1; 

  

  

      

for(int i=1;i<=k.length;i++) 

{ 

       

      caddressA = concat(string.fromNum(ccor),"-1-

",string.fromNum(cbay),"-",string.fromNum(clevel),"-

",string.fromNum(cslot)); 
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      caddressB = concat(string.fromNum(ccor),"-2-

",string.fromNum(cbay),"-",string.fromNum(clevel),"-

",string.fromNum(cslot)); 

 

 skudaassegnare=k[i]; 

 Storage.system.getSlot(caddressA).SKU = skudaassegnare; 

 Storage.system.getSlot(caddressB).SKU = skudaassegnare; 

 cbay=cbay+1; 

  

} 
       

 

Figure 26 shows what the storage by association rules look like in the model, keeping in 

mind that through the past orders analysis, it has been discovered that the SKUs that 

appear most frequently together in an order are SKU1 and SKU3.     

 

5.3.9 Custom codes for Performance variables calculation 

 

The original model has been modified not only in the way unit loads are stored and in the 

way they are chosen by the vehicles, but important modifications have been introduced in 

order to calculate in real time, relevant performance variables.  

As soon as the process flow of warehouse filling ends all its loops, a custom code calculates 

the most important warehouse characteristics like receptivity, selectivity, 

occupied/unoccupied shelves. These indexes are regularly updated as the simulation 

proceeds so that they correctly mirror the warehouse changes. 

Figure 26: Implementation of Storage by association rules 



52 
 

The vehicles utilization is calculated by tracking the state of each vehicle through a function 

in FlexScript as showed in the code below. The utilization is given by the time used by the 

vehicle to perform its activities such as travel, loading, picking, divided by the total time of 

the vehicle including idle time. In this way it is possible to have a fraction of work time over 

total vehicle time. 

a = Model.find(s).as(Object).stats.state().getTotalTimeAt(STATE_ALLOCATED_IDLE);  

I = Model.find(s).as(Object).stats.state().getTotalTimeAt(STATE_IDLE); 

b = Model.find(s).as(Object).stats.state().getTotalTimeAt(STATE_BLOCKED); 

t = Model.find(s).as(Object).stats.state().getTotalTimeAt(STATE_TRAVEL_LOADED);  

For the vehicle meters and vehicle consumption it was necessary to create some dedicated 

tables in order to store the relevant information in the clearest way. No matter what kind 

of storage policy will be used, the model will create a Table aimed at containing the meters 

run by each vehicle and a Table containing the energy consumptions in KWs. These data 

will be used in the end to calculate the energy consumption in KWh. The Tables are 

organized in a way that show how much energy and how many meters have been 

consumed and run by the vehicles when carrying different weights during the order 

fulfilment. An example of these data organization is showed in Table 4 and Table 5. 

 

Every time a vehicle travel activity is concluded so, every time the vehicle reaches a new 

control point, the values in the tables are updated. 

In the Process Flow there are other custom code that keep track of when the orders first 

appear in the simulation as requests and when the orders are completed and the physical 

mixed or retrieved pallet is discharged. This information is stored in the Table containing 

the list of incoming orders and it helps in calculating the Cycle time and the Task time of 

order fulfilling operations. Whenever an order is waiting to be processed or whenever a 

vehicle with an order is waiting for a specific corridor to be freed, a code saves the start 

Empty box1 box2 box3 box4 box5 box6 box7 box8 box9 box10 box11 box12 box13 box14 box15

AGV1 563.9073 16.2133 14.3733 8.9867 2.32 61.8133 99.3822 0 0 0 0 0 0 0 0 0

AGV2 579.9868 0 20.1867 8.32 33.3667 2.48 39.7454 16.1457 0 0 0 0 71.6682 0 0 0

AGV3 534.7483 0 4.1067 32.4716 8.8533 7.04 2.2933 0 36.2548 40.8225 0 0 40.18 0 0 0

Empty box1 box2 box3 box4 box5 box6 box7 box8 box9 box10 box11 box12 box13 box14 box15

AGV1 563.9073 16 14 8 2 48.5 77.8246 0 0 0 0 0 0 0 0 0

AGV2 579.9868 0 18 8 26.5 2 30.6623 13.1623 0 0 0 0 47.1623 0 0 0

AGV3 534.7483 0 4 29.5828 8 6 2 0 27.5828 27.5828 0 0 20.5 0 0 0

Table 4: Meters run by all vehicles with different loads 

Table 5: Energy consumed by all vehicles with different loads 
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and end time of that wait so that it is possible to quantify the waiting time of each request. 

Table 6 shows how the order information is organized in the Table, all the data are then 

used to calculate the average order cycle time, average order task time and average order 

waiting time. 

 

6. Execution of Simulation model and discussion of results 
 

All the simulations performed in the study have given different outputs that will be deeply 

analysed in this section. The focus will mostly be set on the behaviour of Throughput, Cycle 

time, Vehicle utilization and energy consumption under two macro scenarios: scenario with 

retrieval and picking orders and scenario with picking orders only. In both scenarios there 

will be the analysis of the outputs of the storage systems taken independently from each 

other. In this first part, the study wants to understand how the single storage policies 

behave when the input parameters are varied, if the output trend is the same for all storage 

policies, then, only one storage policy will be deeply analysed. After that, there will be an 

output comparison between all five different storage systems to determine the best 

performing one. 

6.1 Scenario 1: Retrieval and Picking orders 
 

These analyses have been performed by considering that both picking orders and retrieval 

orders enter the warehouse at specific and pre-determined interarrival times. As previously 

mentioned, the interarrival time is one of the input parameters that will be changed in 

different simulations and it will be set equal to 50 seconds in some cases and equal to 100 

seconds in other ones. On the other hand, the interarrival time of retrieval orders is always 

set equal to 300 seconds. 

Table 6: Information about incoming orders 

Orders Entry_time Exit_time Waiting time at the beginning Waiting time during picking Cycle time Task time Picking Task time Retrieval

Array[5]: {2, 1, 2, 1, 0} 1 323.0587 0 0 322.0587 322.0587 0

Array[5]: {0, 0, 12, 0, 0} 51 221.5662 0 0 170.5662 0 170.5662

Array[5]: {3, 2, 1, 2, 0} 101 471.4933 0 0 370.4933 370.4933 0

Array[5]: {0, 0, 2, 2, 0} 201 496.9933 31.5662 0 295.9933 264.4271 0

Array[5]: {1, 2, 0, 2, 1} 301 622.7169 30.0587 0 321.7169 291.6582 0

Array[5]: {0, 0, 0, 12, 0} 351 669.3154 134.4933 0 318.3154 0 183.8221
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As previously explained, for every storage policy, 32 simulations have been performed, 

each one of them having different input parameters. Every single simulation is an average 

of other five simulations in order to get results as reliable as possible, an example is given 

by Table 7. For every storage policy a Table like Table 8 has been created and it gathers all 

results from the 32 simulations. For simplicity only one storage policy will be analysed 

independently, in this case the Random policy, to understand its behaviour with different 

input parameters. If, however, the other storage policies show different patterns compared 

to the Random storage policy, this difference will be highlighted. 

 

 

 

 

 

Table 7: An example of a simulation given by the average of other five simulations 

Table 8: Overview of 32 simulations for one storage policy 

Throughput [orders/h] 32.2304 31.902 32.554 31.7395 33.2462 32.33442

Receptivity [units] 1800 1800 1800 1800 1800 1800

Selectivity [%] 0.0978 0.0978 0.0978 0.0978 0.0989 0.09802

Shelf Occupation [%] 0.9 0.9006 0.8978 0.9033 0.9033 0.901

Unoccupied space [%] 0.1 0.0994 0.1022 0.0967 0.0967 0.099

AGV utilization [%] 0.9738 0.9715 0.9759 0.9746 0.9729 0.97374

Avg Order Cycle time [min/order] 176.9087 183.7014 182.5969 178.5851 178.5179 180.062

Avg order Task time (Picking) [min/order] 5.5307 5.6584 5.4917 5.6523 5.3993 5.54648

Avg order Task time (Retrieval) [min/order] 4.0738 3.9815 4.2379 4.0536 4.0289 4.07514

Avg order waiting time [min/order] 172.7254 178.2664 177.2691 174.3416 173.3161 175.1837

Directly reachable pallets [units] 176 176 176 176 178 176.4

N pallets stored [unit] 1620 1621 1616 1626 1626 1621.8

Area Occupation [m3] 15660 15660 15660 15660 15660 15660

Area Occupation [m2] 2384 2384 2384 2384 2384 2384

Avg meters run by Agvs [m/Agv] 19589.1092 19754.57 18767.45 19472.93 19656.46 19448.11

Avg Energy consumption per Agv [KWh/Agv] 5.9318 5.9907 5.677 5.8514 5.9642 5.88302

Meters Agv1 19566.9312 19679.44 18438.98 19465.47 20137.41 19457.65

Meters Agv2 19723.0737 19557.58 18797.53 19581.75 19238.64 19379.71

Meters Agv3 19477.3227 20026.7 19065.84 19371.56 19593.34 19506.95

Energy consumption Agv1 5.9344 5.9267 5.5687 5.8377 6.0976 5.87302

Energy consumption Agv2 5.9609 5.9114 5.702 5.8898 5.84 5.86082

Energy consumption Agv3 5.9001 6.134 5.7603 5.8266 5.955 5.9152

Simulation 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Throughput [orders/h] 32.33442 33.18594 23.17164 24.64066 53.36496 47.35552 36.0666 40.00584 32.23654 32.96626 23.71282 24.94796 54.00506 46.74654 40.36036 42.97092 23.25692 23.72948 18.10786 19.44574 30.47596 30.51352 29.4326 29.71652 23.13274 23.60254 18.50994 19.2743 30.45488 30.47944 29.29764 29.79766

Receptivity [units] 1800 1800 1800 1800 1800 1800 1800 1800 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 7200 7200 7200 7200 7200 7200 7200 7200

Selectivity [%] 0.09802 0.09612 0.09976 0.09964 0.09522 0.09502 0.09942 0.09756 0.09912 0.09854 0.09994 0.09982 0.0975 0.09786 0.09932 0.09862 0.09944 0.09928 0.1 0.09994 0.09928 0.0989 0.1 0.09964 0.09992 0.09966 0.1 0.1 0.09964 0.0994 0.09996 0.09972

Shelf Occupation [%] 0.901 0.88758 0.89756 0.88788 0.8311 0.837 0.83978 0.80944 0.95188 0.9455 0.9497 0.94502 0.91494 0.92502 0.9103 0.90596 0.96484 0.9619 0.96206 0.95866 0.95388 0.94936 0.93578 0.93506 0.98306 0.98126 0.98048 0.97974 0.977 0.975 0.96888 0.96664

Unoccupied space [%] 0.099 0.11242 0.10244 0.11212 0.1689 0.163 0.16022 0.19056 0.04812 0.0545 0.0503 0.05498 0.08506 0.07498 0.0897 0.09404 0.03516 0.0381 0.03794 0.04134 0.04612 0.05064 0.06422 0.06494 0.01694 0.01874 0.01952 0.02026 0.023 0.025 0.03112 0.03336

AGV utilization [%] 0.97374 0.97114 0.975 0.97694 0.9735 0.7602 0.9751 0.9653 0.9424 0.94084 0.9506 0.94516 0.9429 0.93194 0.94816 0.93464 0.98068 0.98174 0.98054 0.983 0.98528 0.98338 0.98326 0.98198 0.9594 0.95952 0.96484 0.96314 0.97288 0.97218 0.96646 0.96262

Avg Order Cycle time [min/order] 180.062 89.0973 209.971 138.2841 102.4319 5.79878 141.50766 39.54874 182.1038 92.35044 210.0304 138.346 105.72232 83.4583 153.3403 25.01408 216.2657 150.1638 236.3026 180.4924 196.04468 114.0642 197.9292 117.0223 218.2712 153.1207 233.3162 179.1967 195.4046 114.8315 198.1917 116.6948

Avg order Task time (Picking) [min/order] 5.54648 5.58472 8.00076 7.88074 6.5844 5.98984 9.7459 9.29578 5.59882 5.68416 7.89068 8.00346 6.5662 7.34726 9.03462 8.7369 7.7133 7.80556 10.20632 10.0178 11.60982 11.91878 12.32678 12.6796 7.76134 7.95826 10.0159 10.17152 11.67064 11.94634 12.42022 12.68908

Avg order Task time (Retrieval) [min/order] 4.07514 4.09504 3.9961 4.06424 4.81504 4.48276 4.70478 4.88094 4.06022 3.9036 4.03702 3.81756 4.9229 5.65004 4.74854 4.71332 6.29682 5.91646 6.1373 5.98374 10.1336 9.81766 8.23038 8.26616 6.099 5.63366 5.98434 5.71732 9.96434 9.75984 7.87438 8.2052

Avg order waiting time [min/order] 175.18372 84.00188 202.5441 131.3494 96.1695 0.17508 132.84206 31.89364 176.7235 87.09768 202.6932 131.858 99.62396 76.64066 145.2382 17.46226 208.7443 142.8244 227.2133 171.471 184.63994 102.6658 186.1533 106.3596 210.7436 145.7232 223.8711 170.1101 184.2242 103.5755 186.9474 105.2615

Directly reachable pallets [units] 176.4 173 179.6 179.4 171.4 171 179 175.6 356.8 354.8 359.8 359.4 351 352.2 357.6 355 358 357.4 360 359.8 357.4 356 360 358.8 719.4 717.6 720 720 717.4 715.6 719.6 718

N pallets stored [unit] 1621.8 1597.6 1615.6 1598.2 1496 1506.6 1511.6 1457 3426.8 3403.8 3419 3402 3293.8 3330 3277 3261.4 3473.4 3462.8 3463.4 3451.2 3434 3417.8 3368.8 3366.2 7078 7065 7059.4 7054.2 7034.4 7020 6976 6959.8

Area Occupation [m3] 15660 15660 15660 15660 15660 15660 15660 15660 31320 31320 31320 31320 31320 31320 31320 31320 31320 31320 31320 31320 31320 31320 31320 31320 62640 62640 62640 62640 62640 62640 62640 62640

Area Occupation [m2] 2384 2384 2384 2384 2780 2780 2780 2780 2384 2384 2384 2384 2780 2780 2780 2780 4936 4936 4936 4936 5854 5854 5854 5854 4936 4936 4936 4936 5854 5854 5854 5854

Avg meters run by Agvs [m/Agv] 19448.1055 19779.32 18206.52 18159.55 18665.71 16006.07 17392.059 18868.42 19780.48 20126.36 18083.63 19070.62 18635.415 19752.4 18016.82 18373.82 23185.26 23474.28 21333.58 21559.34 16268.583 15959.45 18339.84 18252.52 23375.14 23630.9 21190.88 21560.07 16063.39 15977.46 18738.6 18416.81

Avg Energy consumption per Agv [KWh/Agv] 5.88302 6.00082 5.7439 5.70544 5.65232 4.877 5.69214 5.93878 5.93794 6.08506 5.65892 5.73982 5.67185 4.8463 5.65024 5.71224 6.8069 6.9211 6.4697 6.49228 4.80856 4.72378 5.56626 5.5382 6.82454 6.91886 6.35948 6.44108 4.6941 4.65788 5.64806 5.54352

Meters Agv1 19457.649 19780.6 18190.05 18199.41 18471.54 18554.03 17044.053 19308.67 19680.6 20191.14 18121.08 18186.81 18691.193 19684.44 18070.64 18199.58 23367.49 23489.26 21316.32 21634.24 16293.987 16030.04 18306.78 18148.06 23613.34 23535.91 20963.36 21577.28 16194.07 16008.51 18876.4 18370.49

Meters Agv2 19379.7141 19747.44 18197.95 18180.78 18739.03 18321.31 17333.064 18716.83 19817.1 20109.04 18080.69 18474.42 18556.854 19693.8 18392.48 18396.15 23189.4 23431.67 21558.82 21562.91 16416.371 16029.57 18275.33 18216.22 23250.29 23607.75 21272.1 21422.27 16019.28 16008.39 18741.88 18468.83

Meters Agv3 19506.9534 19809.91 18231.55 18098.47 18601.44 16958.18 17468.846 18885.83 19843.76 20078.9 18049.13 20550.64 18322.224 19803.9 18021.52 18382.99 22998.88 23501.89 21125.59 21480.88 16290.067 15977.36 18659.23 18572.22 23261.78 23749.04 21337.18 21680.66 16120.26 15916.94 18965.32 18536.02

Meters Agv4 5.87302 5.98918 5.7137 5.73634 18527.34 16686.63 17310.707 18715 5.90496 6.1131 5.661 5.69296 18747.306 19436.37 17877.72 18506.02 6.8452 6.89766 6.46612 6.49422 16237.394 15918.04 18398.43 18174.74 6.899 6.87072 6.31178 6.45284 16002.5 16181 18606.24 18192.94

Meters Agv5 5.86082 6.00868 5.73662 5.6982 18661.03 15019.19 17647.403 18847.75 5.95348 6.07436 5.66006 5.72776 18878.503 20058.16 17712.32 18566.47 6.76768 6.8583 6.53906 6.50516 16147.204 15896.94 18402.63 17810.71 6.79144 6.92774 6.3772 6.40702 16061.14 15795.97 18495.41 18459.23

Meters Agv6 5.9152 6.00462 5.78144 5.6817 18993.88 10497.06 17548.282 18736.45 5.95538 6.06774 5.65572 5.79876 18616.411 19837.73 18026.23 18191.68 6.7358 6.88736 6.40394 6.47754 16226.479 15904.78 17996.63 18593.15 6.7832 6.95814 6.38948 6.4633 15983.06 15953.94 18746.38 18473.37

Energy consumption Agv1 5.56988 5.65754 5.7382 6.08696 5.57818 5.8192 5.6056 5.67614 4.74774 4.71606 5.55698 5.53078 4.6919 4.66754 5.72532 5.50988

Energy consumption Agv2 5.67892 5.57314 5.67384 5.86694 5.54096 5.81356 5.76916 5.70858 4.80682 4.69574 5.54274 5.53008 4.7057 4.6531 5.65184 5.55838

Energy consumption Agv3 5.634 5.17464 5.68676 5.92108 5.47148 5.8537 5.65752 5.70196 4.7513 4.6707 5.66612 5.61948 4.6853 4.63154 5.7044 5.57306

Energy consumption Agv4 5.6159 5.08646 5.71478 5.87742 5.61248 5.75644 5.63686 5.72248 4.7366 4.67882 5.57318 5.52322 4.75856 4.73348 5.58358 5.48688

Energy consumption Agv5 5.65642 4.58028 5.62002 5.9439 5.62526 5.94548 5.5736 5.76164 4.71106 4.68138 5.58002 5.37478 4.68592 4.60412 5.593 5.59988

Energy consumption Agv6 5.75856 3.19006 5.71954 5.93626 5.57616 5.85342 5.6586 5.70274 4.73784 4.67198 5.4786 5.65084 4.63708 4.65744 5.6302 5.533
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6.1.1 Analysis of a single storage policy: Throughput 
 

The diagram shows the throughput obtained by running all 32 simulations under the 

Random storage policy. The structure of the warehouse under each simulation is 

highlighted right below the graph and the different colours in the dots identify other 

variations, this time not in rack configuration but in interarrival time and number of SKUs. 

There are eight different warehouse structures. The graph clearly shows that no matter the 

inter-arrival time and the number of SKUs, an increase in the number of vehicles or an 

increase in the number of corridors, produces greatest results in terms of throughput. On 

the other hand, it looks like the increase in the number of levels does not create 

considerable differences as far as final throughput is concerned. By focusing on the effect 

of the interarrival time and the number of SKUs, it can be observed that, given a specific 

warehouse configuration, the simulations with a low number of SKUs have given a higher 

throughput compared to the ones with a higher number of product types. This is 

understandable since the higher the number of SKUs, the higher the complexity of order 

fulfilment. The number of orders that can be satisfied in a unit time decreases since more 

time is allocated to each order. It can be noted that in most of the cases, the scenario with 

order interarrival time 100 seconds and 5 SKUs has a throughput slightly better compared 

the scenario with order interarrival time of 50 seconds and 5 SKUs. This might seem quite 

odd since if the order interarrival time increases, one would expect the throughput to 

decrease. This does not happen because in these simulations there is the element of disturb 

which is the presence of retrieval orders. In a configuration with interarrival time equal to 

50s there is the creation of orders in the following sequence: six picking orders and one 

retrieval order. On the other hand, in a configuration with interarrival time equal to 100s 

there is the creation of orders in the following sequence: three picking orders and one 

retrieval order. As a consequence, the first case has more picking orders to satisfy in an 

hour, and since the picking orders take more time to be fulfilled, the overall throughput is 

lower compared to the other scenario. The situation changes when the throughput is 

dictated by the rate at which the orders are generated and not by the velocity of vehicles. 

This is the case of scenario two and four where the blue configuration has a higher 

throughput compared to the orange one. In the blue configuration, the vehicles never wait 

for orders to come, the orders are generated very quickly, and they accumulate in a buffer. 
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Therefore, the throughput is directly related to the vehicle capacity. In the orange scenario, 

the vehicles capacity is higher than the rate at which the orders are generated and the 

maximum throughput that can be obtained is directly linked to the orders arrival rate. In 

other words, during this simulation, the orders do not wait to be processed at all and the 

vehicles wait for orders to be generated and consequently less orders are fulfilled. This 

aspect can be seen in the graphs that show the order waiting times. All the other storage 

policies share the same trend in the graphs; Therefore, they will not be described. 

 

6.1.2 Analysis of a single storage policy: Cycle Time 
 

The cycle time has been calculated as the sum of order task time and waiting time. From 

the respective graph, it is possible to observe that the higher the number of corridors, the 

higher the cycle time. This happens because whenever the total area of the warehouse 

increases, the time needed to perform tasks increases as well. The increase in the number 

of vehicles leads to a decrease in cycle time, because more vehicles are able to satisfy more 

orders and the waiting time of each order decreases, making the cycle time decrease as 
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well. Similarly to the throughput, a change in the number of levels does not create great 

differences in cycle time.  

 

By analysing the data in the cycle time graph, it is clear that the simulations with order 

interarrival time of 50s and SKUs equal to 5 and 9 are the ones with the highest cycle time. 

This is due to the high frequency of order interarrival time which makes the orders wait a 

long time before they can be processed by the vehicles. The waiting time graph confirms 

that these two scenarios are characterized by a high level of waiting time.  On the other 

hand, if the focus is moved to the Picking time graphs, it is clear that the higher the number 

of SKUs, the higher the time needed to satisfy the order will be. In fact, scenarios grey and 

yellow which have SKUs equal to 9 are characterized by a higher picking time compared to 

scenarios blue and orange, no matter the warehouse structure. 

 

 As far as the retrieval time is concerned, a bigger warehouse structure makes the retrieval 

time increase because the vehicles have to cover more meters to reach a specific slot. This 
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is particularly evident in the configurations with a higher number of vehicles probably 

because with more vehicles it is more difficult to find an empty corridor and, in some cases, 

it is necessary to reach corridors located further away. All the other storage policies share 

the same trend in the graphs; Therefore, they will not be described. 

 

6.1.3 Analysis of a single storage policy: Energy consumption 
 

In most of the cases the energy consumption increases as the number of corridors increases 

and this is justified by the fact that vehicles need to travel more and as a consequence, they 

consume more. Another aspect that is highlighted in the graph is the behaviour of energy 

consumption as the number of vehicles increases. No matter the interarrival time and the 

number of SKUs, whenever the number of vehicles increases, the overall energy 

consumption increases as well because the vehicles fulfil more orders and perform more 

tasks. However, in those scenarios where the overall energy consumption of six vehicles is 

lower than double compared to the scenario with three vehicles, the energy consumption 

per vehicle of the six vehicles scenarios is lower compared to the three vehicles scenarios. 

This is justified by the fact that the difference between the overall energy consumptions is 

not that great and with more vehicles, the energy is spread on a greater number of units, 

leading to a lower energy consumption per vehicle. An example is given by scenario 3 (2C, 

6L, 3V) and 4(2C,6L,6V). In the Overall energy consumption graph, scenario number three 

has a lower energy consumption compared to scenario four but the energy consumption 

per vehicle is lower in the scenario four compared to scenario three.  
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Taking into consideration the number of SKUs it is possible to observe that the energy 

consumption is higher when both the number of SKUs and the number of vehicles increase. 

The higher the number of vehicles, the more time vehicles need to wait for a corridor to be 

freed and the more passive energy is consumed during the waiting time. With a lower 

number of vehicles, on the other hand, the increase in number of SKUs does not seem to 

give higher energy consumption values. All the other storage policies share the same trend 

in the graphs; Therefore, they will not be described. 

6.1.4 Analysis of a single storage policy: Vehicle Utilization 
 

As it is possible to infer from the utilization graph, the vehicles’ utilization is very high in 

almost all scenarios except for scenario with 2 corridors, 2 levels, 6 vehicles, 100 s of order 

interarrival time and 5 SKUs and scenario with 2 corridors, 6 levels, 6 vehicles, 100 s of 

order interarrival time and 5 SKUs. This is probably due to the fact that in these specific 

scenarios, the small warehouse structure, the high interarrival time and the low number of 

SKUs have given vehicles time to fulfil orders without working at full potential during the 

entire simulation.  

 

Keeping constant the warehouse structure, the increase in the number of vehicles should 

lead to a decrease in the vehicles’ utilization. This is not very clear in the graph because 

with the two different interarrival times, the orders enter the model quite quickly and the 

units have no time to rest. However, if the number of vehicles is set to 8 or more or the 
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interarrival time is increased to 200s or more, this will give as result a lower value in the 

vehicles’ utilization performance variable. Figure 27 proves this by showing graphs with the 

same rack configuration and with higher number of vehicles first and then with lower 

values of interarrival time. 

6.1.5 Comparison of the five storage policies 
 

The present study also aims at identifying the best storage policy when it comes to 

satisfying picking orders through the new innovative technology of Eurofork. The 

comparison will focus on Throughput, Cycle time and Energy consumption under all 32 

simulations. 

6.1.5.1 Throughput 

 

The graph below shows the throughput of all five storage policies under the 32 simulations 

(Table 3). From a first look at the graph it seems like the storage policy with Association 

rules is the one that gives the best results in almost all scenarios. In order to better 

understand the data, they will be represented into two different graphs. 

Figure 27: Vehicles’ utilization under different number of vehicles and interarrival times 
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As anticipated, the data points above have been represented onto two separate graphs for 

clarity reasons. The graph on the right shows the throughput of simulations 5-6-7-8- and 

13-14-15-16 whereas the graph on the left shows all the other ones. In most of the cases, 

the best throughput is given by the storage policy with Association rules. It is relevant to 

highlight that the throughput of the Class Based storage comes very close to the storage 

policy with association rules and in some simulations the Class Based Storage policy 

performs better than the one with Association rules. 
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In most of the cases, the worst performing one is the storage by weight policy followed by 

the random storage. The Dedicated Slots storage shows an average performance. 

6.1.5.2 Cycle time 

 

Cycle time is an indication of how much time it takes for an order to be fulfilled and the 

lower the cycle time, the better. From the data represented in the graph it can be noticed 

that in many cases the storage policy by Association rules has the lowest Cycle time.  

 

Because in some cases the data are so close to each other that the data points almost 

overlap, the cycle time of the storage policy by association rules will be compared against 

the other storage policies. When compared to the storage by weight, it is clear that the 

cycle time of the storage by association rules is much better. With the other three storage 

policies, in some cases the storage by association rules is showing a better cycle time and 

in other cases it is showing a very similar output compared to the others. However, it never 

happens that the cycle time of the storage by association rules is clearly outperformed by 

the one of another storage policy. 
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6.1.5.3 Energy consumption 

 

The Energy consumption seems to be lower for the storage policy with association rules 

across almost all 32 simulations. However, it is important to notice that in some cases, 

when the number of SKUs is low, like simulations 1-2-17-18, the Random storage policy 

operates at the lowest energy. In simulations 19-20-12 the policy with the lowest amount 

of energy consumed is the storage policy by weight. The isolated interpretation of this 

graph could lead to some wrong statements that believe in the success of the random 

policy and the storage by weight in certain simulations. A better interpretation would be 

to study the energy graph in relation to the throughput generated by the five storage 

policies and see which one has used energy in the most efficient way. Through a simple 

proportion, it has been calculated the energy that the different storage policies would 
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consume if they had to achieve the same throughput as the storage policy by association 

rules. 

Thanks to the new graph, it is possible to appreciate even more the difference that lies 

among the five storage polices. In most of the cases, the random storage policy and the 

storage by weight are the ones that consume more energy in total. This aspect was hidden 

in the previous graph. The dedicated slots storage shows an average to low performance 

and the Class Based storage policy seems to perform well when the number of SKUs if high, 

but it performs poorly with a lower number of SKUs.  
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This is probably due to the fact that with lower SKUs the different types of products are 

well spaced apart, and it might require more energy to fulfil an entire order.  

 

6.2 Scenario 2: Picking orders only 
 

In this second scenario, the retrieval activity has been removed so that the only task 

assigned to the vehicles is the picking order task. Generally speaking, the overall trends of 

the graphs do not change but the numerical value of the single simulations varies. The 

results obtained during the analysis of the second scenario, will be directly compared to 

the results obtained from scenario 1. Similarly to what has been done previously, the 

Random storage policy will be analysed independently, since its results have the same 

trend of the other policies, and then the five storage policies will be compared to see which 

one is the best under scenario2. 

6.2.1 Analysis of a single storage policy: Throughput 

 

The removal of the retrieval activity did not change the throughput trend already explained 

in Scenario 1. What can be observed from the two scenarios is that in the majority of the 

cases the throughput has decreased, sometimes the decrease is more evident and in other 

simulations it is more subtle. The decrease is justified by the fact that in scenario 2 there 

are picking orders only which generally need more time to be processed.  
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The retrieval orders, on the other hand are quicker to process and they contribute to 

increase the throughput in scenario 1. 

Another difference worth highlighting is that, in scenario 2 the simulations which differ only 

from the interarrival time have a very similar throughput. This happens because, no matter 

the two interarrival times, there are no retrieval orders (quicker orders) and the throughput 

is given by the capacity of the vehicles and it does not change when the interarrival time 

changes from 50 s to 100s. The difference between throughput can be observed in 

simulation two and four in the graphs, but this is due to the fact that in one case the 

throughput is determined by the interarrival time (blue data point) and in the other case 

the throughput is determined by the vehicles’ capacity (orange data point).  

6.2.2 Analysis of a single storage policy: Cycle time 
 

When observing the Cycle time graphs it is clear that the scenario with picking orders only, 

Scenario 2, is characterized by a lower cycle time in almost all simulations. This happens 

because, keeping everything else fixed, the number of incoming orders is lower and 

consequently the order waiting time is lower, this makes the cycle time decrease. 

 

The picking time shows a very similar behaviour compared to scenario 1 while the waiting 

time seems to be much lower compared to scenario 1 in almost all simulations. 
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6.2.3 Analysis of a single storage policy: Energy Consumption 
 

The analysis of the energy consumption confirms what already discovered in the previous 

graphs. The lower number of incoming orders shows a lower value of energy consumed 

because vehicles have overall less orders to process. In addition to that, also the vehicles’ 

utilization is lower in the second scenario compared to the first one.  

 



68 
 

It happens more frequently that vehicles wait for orders to arrive rather than orders waiting 

for vehicles to be available. 

6.2.4 Comparison of the five storage policies 
 

The comparison of the five storage policies of scenario 2 gives the same results as the 

comparison of the storage policies under scenario 1. This suggests that the retrieval 

activities with an order interarrival time of 300s does not influence on the final results. The 

storage policy that gives the best outcomes in terms of throughput, cycle time and energy 

consumption is the storage policy by association rules. 
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7. Final considerations on results 
 

The following section will investigate in more details the results obtained from the analysis 

of Scenario 1 to understand what the best storage policy for every warehouse configuration 

is. This last analysis is important because it completes the results already discussed, which 

were approximative and quite vague, the past results presented a description of the data 

and they suggested that the storage by association rules is the best policy. The present 

analysis goes deeper to see if that storage policy is really the best one in every scenario 

considering all performance variables at the same time. Only Scenario number 1 will be 

considered as it shows a dynamic closer to what happens in reality, with both retrieval and 

picking orders.  

The following graphs show how the different policies performed in terms of throughput, 

cycle time and energy consumption. For every performance variable, there are four graphs 

which represent 32 different results based on SKUs and order interarrival time variations. 

For every representation, the smaller graphs on the right are simply a zoomed view of the 

graph on the left. As far as throughput is concerned, the highest the result, the better it is. 
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It can be observed that the Class Based storage policy could be a good solution especially 

when the structure of the warehouse is small, and the number of SKUs are low. In fact, the 

highest throughput is given by Th Class Based storage policy in simulations 1, 2, 5, 7 where 

the number of levels and corridors is at its minimum. When the number of SKUs is small, 

the Class based storage can be a good option even in a slightly bigger area, where the 

number of corridors is 4 and the other parameters are at their minimum. However, this 

does not hold true when the number of SKUs increases. For all other scenarios, the storage 

policy by association rules is the best one, except for scenario 6 where the best one seems 

to be the dedicated slots policy.  

The next graphs show in detail the cycle time results for all five storage policies. Contrarily 

to what happens with throughput, when it comes to cycle time, the lowest value it has, the 

better the policy is performing. Therefore, the best policies will be the ones that rank the 

lowest in the graphs. 
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The results obtained with the analysis of cycle time show different results compared to 

what observed with the throughput. This mean that looking at the cycle time only, other 

storage policies seem to be the best ones. 

The Random storage policy seems to be the best option especially in those simulations in 

which there is a slightly variation in the dimensions on the warehouse in combination with 

a low SKU value. In fact, simulations 9-10-17-18 show exactly what just observed. The 

random storage policy could also be a solution when the number of SKUs is equal to 9, 

however it can be observed that its performance decreases as the number of SKUs 

increases. The class-based storage policy is the best option when the number of vehicles is 

at its maximum and the structure of the warehouse is small or relatively small like 

simulations 5-6-21-22. The Dedicated slots storage is the best performing policy in 

simulation 23 and 30 where there is a substantial level of complexity. 

The following graphs show the best performing policies under the perspective of Energy 

consumption. Similarly to Cycle time, the lower energy is consumed, the better it is.  
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The Random storage policy shows low values in energy consumption when the number of 

SKUs is low and the structure of the warehouse is relatively small. On the other hand, when 

the number of SKUs increases, the Random storage policy shows poor performances in 

energy consumption. In these scenarios the storage policies by weight and by association 

rules have the best outcomes. The storage policy by weight has low energy consumptions 

in simulations 5-19-12-20 where the structure of the warehouse is relatively small and the 

number of vehicles is low. In all other cases, the storage policy by association rules is the 

best one in terms of energy consumption. Figure 28 summarizes what discussed above, 

highlighting what is the best storage policy for every performance variable under different 

warehouse structures, number of SKUs and interarrival times.  

Figure 28: The best performing storage policies under different scenarios for different performance 
variables 
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The best storage policies are indicated through their respective colour as indicated in the 

legend: blue is Random, Red is Storage by weight, Green is Dedicated slots storage, Violet 

is CBS and Orange is storage by association rules.  

It can be noted that in some simulations, there is not one single storage policy that 

outperforms the other ones in all performance variables. In simulation 1 for example the 

storage policy that gives the best throughput is the Class Based storage, however the one 

that gives the best cycle time and the best energy consumption is the Random storage 

policy. In order to conclude the study and to decide the single best storage policy that 

should be used in the different simulations, an AHP analysis will be carried out. 

7.1 AHP Analysis on results 
 

The Analytical Hierarchy Process is a multi-criteria decision-making tool that enables to 

select the best option out of several alternatives which are all evaluated based on some 

shared criteria (Pachemska T.A. et al., 2014). The AHP analysis has been developed for 

those simulations that did not agree on the best storage policy, in all those cases, the 

problem has been developed using a hierarchical structure. Figure 29 exemplifies the 

hierarchical structure for the AHP analysis under simulation 1. The fist level of the graph 

represents the Objective of the study, the second layer represents the criteria under which 

the options are evaluated, and the last level shows the alternatives available. The AHP 

methodology is quite flexible, and it is based on the Saaty scale (Figure 30) to explain the 

relationship among criteria and between criteria and alternatives (Pachemska T.A. et al., 

2014). This is an instrument that has 9 grades for intensity of importance. 

Figure 30: Saaty’s scale (Alireza Afshari et al., 
2010) 

Figure 29: Hierarchical structure for AHP 
analysis on simulation 1 
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The preferences of the criteria have been inserted considering that the ability to fulfil as 

many orders as possible is certainly an ability appreciated by the customer and that lower 

cycle time and lower energy consumption alone do not automatically equal to a successful 

outcome if the aim is to satisfy incoming orders. Therefore, the importance of the criteria 

has been given as it is showed below. 

 

The results of the AHP analysis are showed in Table 9 and Figure 31 summarizes the AHP 

results next to the results previously showed.  

Throughput Cycle time Energy consumption

Throughput 1 6 5

Cycle time 0.166666667 1 2

Energy consumption 0.2 0.5 1

Comparison matrix of 3 criteria

Table 9: AHP results for every simulation 

CBS 0.504196499 1

Random 0.495803501 2

CBS 0.505294791 1

Weight 0.494705209 2

Association rules 0.501623039 1

Random 0.498376961 2

Association rules 0.505909609 1

Random 0.494090391 2

CBS 0.503911743 1

Random 0.496088257 2

CBS 0.499901232 2

Association rules 0.500098768 1

Association rules 0.503359121 1

Random 0.496640879 2

Association rules 0.500131011 1

Random 0.499868989 2

CBS 0.503012512 1

Random 0.496987488 2

CBS 0.333433603 1

Random 0.333219286 3

Association rules 0.333347112 2

Association rules 0.502505916 1

Random 0.497494084 2

CBS 0.502882829 1

Random 0.497117171 2

Association rules 0.500090348 1

CBS 0.499909652 2

Association rules 0.501488 1

Random 0.498512 2

CBS 0.331995562 3

Dedicated slots 0.334084887 1

Random 0.33391955 2

Association rules 0.512281836 1

Weight 0.487718164 2

CBS 0.499861323 2

Association rules 0.500138677 1

Association rules 0.516053364 1

Random 0.483946636 2

Association rules 0.505806697 1

Weight 0.494193303 2

Association rules 0.502812468 1

Dedicated slots 0.497187532 2

Association rules 0.527337219 1

Random 0.472662781 2

CBS 0.478492265 2

Association rules 0.521507735 1

Association rules 0.526827441 1

Weight 0.473172559 2

Association rules 0.509628337 1

Weight 0.490371663 2
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The AHP analysis put some clarity on which storage policy is the best one under the 

scenarios studied and in combination with the new technology. In those cases where the 

warehouse structure is relatively small, the AHP analysis highlights that the CBS policy is 

the best one and this holds true for simulations 5,17,2,6,18 where the level of complexity 

of the structure is still quite low. However, as the complexity of the structure increases and 

especially as the number of SKUs increases, it is clear that the storage policy by association 

rules offers greater benefits compared to all the other options. 

 

 

 

 

 

 

 

 

 

Figure 31: The best performing storage policies under different scenarios for different performance 
variables (top) and the best storage policies under different scenarios after AHP analysis (bottom) 
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8. Conclusions 
 

The present study wanted to evaluate the performance of the new technology of Eurofork 

consisting of an AVS/RS system operating though vehicles composed by a shuttle, a satellite 

and a robotic arm mounted on the shuttle. The study evaluated the behaviour of the 

technology when dealing with picking activity under different storage policies. The aim of 

the thesis was to generally understand the performance of the technology under different 

rack configurations and different scenarios as well as finding the most efficient storage 

policy that gives the best outcomes when combined with the innovative technology. The 

study has been performed through Discrete Event Simulation, using FlexSim as simulation 

software. The results of the 1600 simulations show that the output in terms of throughput 

is responsive when the physical structure of the facility changes. Generally, a smaller 

warehouse facilitates the fulfilment of a higher number of orders with low cycle time and 

relatively low energy consumption. The same reasoning applies when increasing the 

number of vehicles. The simulations also pointed out that a storage policy by weight is not 

the most efficient one when it comes to picking activities, contrary to what initially believed 

and the best storage policy to use in combination with the new shuttle and robotic arm is 

the storage policy by association rules. This one often outperforms all the other storage 

policies on all fronts studied: throughput, cycle time and energy consumption. The study of 

scenario 2, which excludes the retrieval activities from the simulations, does not change 

the final outcome: according to this study the storage policy by association rules is still the 

best performing policy in combination with the innovative technology. The final analysis 

performed with the AHP methodology, applied for that data in scenario1, confirmed the 

results already discussed in the preliminary analysis. The AHP removed all the doubts in 

identifying the best storage policy in those simulations where different policies were 

considered the best under different performance variables. The outcome proves that 

although the Class Based Storage policy is great in those simulations with a lower level of 

complexity, the best one in more complex, and therefore closer to reality, scenarios is the 

storage policy by association rules. 

The present study shows some limitations as it is very difficult to replicate what happens in 

real life in a simulation model and the model itself does not contain all the complexities 



78 
 

that may characterize a real warehouse. The present study could be further expanded by 

analysing other storage policies or by studying how the different storage policies behave 

under scenarios more similar to reality. An interesting further analysis would be to simulate 

the behaviour of the innovative technology on a real case scenario rather than a generic 

warehouse like the one proposed in this thesis. Despite these limitations, the thesis still 

gives a good understanding of what are the performances of the technology in an 

automated warehouse under different scenarios and storage policies. 
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