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Abstract 

Energy system models for the analysis of future scenarios are mainly driven by the set 
of energy service demands which define the broad outlines of socio-economic 
development throughout the selected time horizon. Energy system optimization 
models serve as a valuable tool to of inquiry for relevant decision-making insights 
about the evolution of a Reference Energy System (RES) – a simplified representation 
of the complex and dynamic real-world interactions related to energy production and 
consumption – over medium-to-long-term time scales. Among such models, 
encompassing the four dimensions of Energy, Economy, Engineering and 
Environment – the so called “4Es” – those belonging to the TIMES framework 
represent a widespread choice for the exploration of contrasted future scenarios. In 
TIMES models, the proper modelling of energy service demands in all the final 
consumption sectors is one of the fundamental pillars to build credible scenarios, 
needed to generate a set of coherent set of demand growth rates. Indeed, once that 
drivers and elasticities are chosen and associated to the different energy service 
demands, TIMES can endogenously build demand curves for each energy service 
accounted for in the model. 
This thesis addresses the long-term effects of the Covid-19 pandemics on industrial 
production in Italy. Forecasts in 6 energy-intensive subsectors (Iron and Steel, Non-
ferrous metals, Non-metallic minerals, Chemicals, Pulp and Paper, Other industries) 
are obtained through the application of Vector AutoRegressive models, to perform 
projections partly based on historical trends, without the need for external regressors. 
Results of the application of the method are computed in two cases, either considering 
or not the effects of the pandemics, showing a long-term reduction ranging from 3.5 ÷ 
19.9 % in 2040, according to the subsector. A validation against the prescribed trends 
from the Italian Integrated National Energy and Climate Plan is also performed. As 
each industrial production trend acts itself as a driver in TIMES-Italia, the application 
to that model is presented to assess the impact on energy consumption forecasts. The 
results show how the long-term effects of the shock caused by the pandemics could 
lead, in the analyzed scenario, to a 10 % lower industrial energy consumption by 2040.
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 Chapter 1 

1.  Introduction 

The Covid-19 pandemic represents the biggest global crisis in generations, 
affecting almost all countries and more than 180 million people around the world1. 
Governments have been facing a real challenge where the taken measures consisted of 
trade-offs with respect to health, social, and economic issues that arose from such 
crisis. Spring 2020 has been the period where more than half of the world’s population 

ended up with hard lockdown measures [1], a drastic decision adopted by most of the 
governments worldwide to foster social distancing, recognized as the only way to slow 
down the circulation of the disease, in absence of suitable medications and vaccines 
[2]. It is now plain how coronavirus and the choices made to contain it led to short-
term shocks, mostly related to health and economy, and to long-term uncertain effects 
that still have to be deeply analyzed [3]. 

1.1 Covid-19 effects on the energy system 
Among the various socio-economic sectors affected by the crisis, the energy 

sector has experienced different shocks. In [4], the short-term consequences of the 
pandemic, and in particular its effects on the energy situation in the hardest-hit 
countries are analyzed. The main outcomes show how there has been an average 25 % 
decrease in energy demand per week in countries in full lockdown, while in countries 
in partial lockdown the average decrease has been of 18 %. 

Concerning the electrical sector, in Figure 1,  included in a report published by 
the Independent Commodity Intelligence Services (ICIS) [5], the percentage 
deviations from the expected electricity demand for five different European countries 
in the period of the first lockdown measures, from March to July 2020, are shown. 
Italy has been one of the first countries to have reported coronavirus cases in Europe, 
and the full lockdown measures taken have led to a percentage decrease of about 25 % 
from the expected electricity demand in the last week of March. Moreover, it is also 
the country registering the most intermittent recovery from April to the mid of May. 

France was the only EU economy to register a growth in June, while the other 
countries have faced partial lockdowns and other stringent measures to contain the 
virus spread. Whilst France has been the country with the highest speed of recovery, 

 
1 Google statistics: 

https://support.google.com/websearch/answer/9814707?p=cvd19_statistics&hl=en-
IT&visit_id=637609018476960817-3123340833&rd=1 (accessed Jul. 3, 2021). 

https://support.google.com/websearch/answer/9814707?p=cvd19_statistics&hl=en-IT&visit_id=637609018476960817-3123340833&rd=1
https://support.google.com/websearch/answer/9814707?p=cvd19_statistics&hl=en-IT&visit_id=637609018476960817-3123340833&rd=1
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Germany has registered the lowest deviations in terms of electricity demand during the 
period highlighted by Figure 1. 

 
Figure 1: Electricity demand percentage deviation from expectations for different European countries from 

March to July 2020 [5]. 

This is just an example of how such crisis has raised major new uncertainties 
for the future of the energy sector. Other major key questions include the duration of 
the pandemic, the shape of the recovery, and how energy and sustainability can be 
included into the strategies that the governments will build for the recovery of their 
economies [6]. 

Many reports and publications have tried answering such questions so far, and 
performing reliable energy projections has been a challenge due to the many 
uncertainties derived from the crisis, that is still not completely concluded. IEA in its 
World Energy Outlook 2020 (WEO 2020) highlights the need of rethinking their 
approach to the problem, refocusing the work in order to deal with such uncertainties 
[6].  Indeed, given the current level of near-term uncertainty, the WEO 2020 is focused 
mainly in projections up to the next ten years, analyzing in particular different 
pathways and opportunities for a sustainable recovery from the current crisis. While, 
in fact, the Delayed Recovery Scenario (DRS) defined in the IEA’s report considers a 

prolonged pandemic crisis with very high impacts on economy, health and energy 
sectors, the Sustainable Development Scenario (SDS) works backwards from the long-
term climate goals, examining the necessary actions to introduce to achieve them. 

Differently from such projections, where the results are based on assumption 
and constraints which do not analyze the response of  the socio-economic drivers of 
the energy demands, this work of thesis focuses on this issue, suggesting a different 
approach to the problem. 

The aim of this thesis is, then, to assess the long-term impact of the crisis on 
the industrial production in Italy, and how this affects the energy consumption. 
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1.1.1 Effects on the industrial energy consumption in Italy 

In Italy, the final energy demand in the whole 2020 has decreased by about 10 
% with respect to 2019 levels, with a total estimation of 115 Mtep [7]. This is mostly 
due to the decrease of the transport sector, with a decrease of 18 % compared to 2019 
levels. Such contraction is primarily related to the reduction of the oil products demand 
for both terrestrial and air transport.  

The analysis published by the Italian National Agency for New Technologies, 
Energy and Sustainable Economic Development (ENEA) for the year 2020 [7] shows 
how also the industrial sector has highly contributed to the energy demand decrease in 
2020. In fact, such crisis has accentuated the already declining trend in 2019, with a 
decrease in the total energy consumption in such sector of 15 Mtep, about 7 % lower 
than the 2019 levels. During the year, the lowest values of industrial energy 
consumption has been registered in the second trimester, with a drop of 15 % compared 
to the same period in the previous year. Although the energy consumption in the 
industrial sector has returned to grow in the Sumer period, with a conjunctural increase 
of about 15 %, the balance at the end of 2020 remains negative with respect to 2019. 
Concerning the fuels, natural gas and electricity have registered the highest decrease 
in demand, with a decline of respectively 6 % and 7 % compared to 2019 levels. 

The decline of the industrial energy consumption in 2020 follows the industrial 
production trend, where a new minimum is registered with respect to, at least, the last 
15 years, as Figure 2 shows. The effects of the pandemic crisis accentuated an already 
present decreasing trend, with a change in the direction of the decoupling between 
industrial production and energy consumption started in 2013. 

 
Figure 2: Italian industrial energy consumption (normalized at year 2005) compared to the total industrial 

production and of intermediate goods. Source: ENEA [7] 
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The economic shock registered in this year has raised new doubts on how the 
energy sector will respond on the long-term, as stated in the previous section. This 
work tries to partially answer such question by analyzing the Italian industry sector 
and performing projections on its final energy consumption, by means of the TIMES-
Italia model. Indeed, energy system optimization models are probably the natural tool 
to generate possible future scenarios of the energy system or a sub-system at national, 
regional or global level over a time horizon of usually multiple decades [8]. 

1.2 Macro-scale energy models 
Macro-scale models are generally used as supportive tools for policy making, 

in order to produce future projections for the evolution of the energy system and the 
analysis of the effects of targeted energy policies and climate change issues. Such 
models utilize techniques that range from mathematical programming to statistical and 
network analysis. Their main aim is to analyze the various components of an energy 
system and how they develop and interact together, in order to build cost-effective 
strategies for energy planning [8]. 

Macro-scale energy models can be generally classified on the basis of their 
approach. 

Top-down models are general equilibrium econometric models, and they 
endogenously evaluate the responses of the economic system to different policies and 
scenarios. The energy sector is represented in a limited way, due to their market-
oriented approach, and no detail on current and future technologies is present. Such 
technologies, in fact, are generally modeled through aggregated production functions 
defined for each economic sector [8]. For the mentioned reasons, top-down models are 
generally used to analyze the evolution of energy prices and macro-economic 
variables, but the effects of energy policies on the technological mix of the energy 
system are not considered. 

On the other hand, bottom-up models are generally used to analyze the 
dynamics and interactions of the four dimensions of economy, engineering, energy and 
environment.  Differently from top-down models, macroeconomic assumptions are 
here evaluated exogenously, and they represent input data to evaluate the energy 
demand required by the different services envisaged in the reference energy system.  

In bottom-up models production, transformation and end-use technologies are 
described by means of technical (engineering approach) and economic (economic 
approach) parameters. Technical parameters are …; on the other hand, investment cost, 
fixed O&M cost and variable O&M costs represent the economic features necessary 
to put into force the minimum cost optimization algorithm. 
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In this case, the mix of technologies and commodities is determined by means 
of an optimization procedure in which the service demands are met, and the total 
discounted system cost is minimized. Such optimization is performed over the whole 
time horizon and considering user-defined constraints, considering the application of 
particular tax policies or emission constraints, and scenarios considering different 
assumptions for the evolution of certain energy or socio-economic features on the basis 
of different policy assumptions. 

The Integrated MARKAL-EFOM System (TIMES) is one of the most popular 
bottom-up model generators. TIMES can be defined as “an economic model generator 

for local, national or multi-regional energy systems, which provides a technology-rich 
basis for estimating energy dynamics over a long-term, multi-period time horizon” [9]. 
Such framework allows to define partial equilibrium models where the optimization is 
based on the maximization of the total surplus, that is the sum of consumers surplus 
and producers surplus. 

As already specified above, the projections of the main macro-economic 
drivers are determined exogenously in the top-down models. Such projections 
generally serve as an input in bottom-up energy models to determine the demand for 
energy services. An example of this is represented by the top-down General 
Equilibrium Model for Economy – Energy – Environment (GEM-E3) [10], where the 
determined projections of precise socio-economic indicators  are utilized as an input 
in the TIMES models. 

In TIMES models, the proper modelling of energy service demands in all the 
final consumption sectors is one of the fundamental pillars to build credible scenarios, 
needed to generate a set of coherent set of demand growth rates. Indeed, once that 
drivers and elasticities are chosen and associated to the different energy service 
demands, TIMES can endogenously build demand curves for each energy service 
accounted for in the model [11], generally according to Equation 1,  

 
𝐷𝑡  =  𝐷𝑡−1 ∙ [1 + (

𝛿𝑡

𝛿𝑡−1
− 1) ⋅ 𝑒𝑡−1] (1) 

where 𝐷 is the demand, 𝑡 the time step, 𝛿 the demand driver and 𝑒 the elasticity 
of the demand to its driver. While driver projections are usually established starting 
from external sources, elasticities are generally computed to project the entire 
economy according to a general trend, based on econometric observations. 

Once all demands are defined for all the time periods envisaged in the TIMES 
model under exam, they will represent one of the most important and necessary 
constraint, the so-called “demand constraint”. The demand constraint drives the model 
ensuring that supply at least meets the demand specified in all periods and time slices, 
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by ensuring that the sum of all the demand output commodity generated must meet the 
modeler-specified demand. 

This work focuses on the assessment of the effects of the recent Covid-19 
pandemics on socio-economic drivers and energy use forecasts for the industrial sector 
of Italy, one of the hardest-hit countries in Europe, both from the economic and health 
point of views [4]. In fact, a key question about the effect of the pandemic is whether 
it has affected the dynamics of the demand of energy services, which is the first driver 
of energy demand (together with the dynamics of energy technologies) [12]. Those 
dynamics depend, on one hand, on the evolution of the key socio-economic drivers, 
on the other hand on the elasticity of each energy service demand to these socio-
economic drivers. Elasticities quantitatively describe the influence of each driver on 
the associated energy service demand [13]. They tend to change over time, and they 
have a decisive impact on the long-term evolution of energy demand [14]. In this sense, 
the aim of this work is to focus on these critical points and to suggest an approach 
based on traditional econometric models able to accurately project the socio-economic 
drivers of our interest. 

1.3 Aim of the work 
One of the main advantages of using general equilibrium models to derive 

demand trends for partial equilibrium model is that they ensure internal coherence 
among ocio-economic drivers’ projections, guaranteed by the fact that they analyze 

the economic system as a whole, highlighting the importance of linkages between 
sectors.. Nevertheless, the limitations of such models have to be found in the high 
amount of data and human capital investment required [15]. 

As stated above, an exceptional situation such as the Covid-19 pandemic crisis 
leads to critical uncertainties about the future of social and economic issues, and this 
is also reflected on the analyses of macro-economic projections. In such cases, 
obtaining accurate projections, not biased from ad-hoc assumptions based on some 
aprioristic expectations, of socio-economic indicators for a bottom-up energy 
modeling becomes more difficult [16].  Moreover, as bottom-up models require 
projections of very specific data, such as sectorial outputs for various economic 
subsectors, which can be very difficult to find in literature, given  the novelty of the 
case analyzed, and this adds complexity to the problem. 

This work comes from the need of facing such difficulties, driven by the need 
to derive more compelling drivers for the future evolution of highly technologically 
detailed energy systems in macroeconomic models, and the analysis is focused on 
obtaining reliable projections of the production indicators for different industrial 
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subsectors in Italy. Such indicators represent the drivers for the service demands of the 
entire industry sector in the TIMES model, and they well summarize all the discussed 
difficulties. In fact, at the time of the initial literature review for this work, no 
publications about projections of such data that also consider the Covid-19 outbreak 
effects have been found, while instead early analyses considered the very short-term 
effects on energy and electricity consumption, without analyzing the biggest picture 
of the impacts of the pandemic on the long-term future and on the drivers for energy 
demand. The change in energy intensity and electricity demand during lockdowns, 
assessed on different spatial scales in [17], leads to different considerations for energy 
recovery in areas of the world with the more diverse behaviors, while [18] investigates 
the electricity demand fluctuation between two subsequent years (2019 and 2020) in a 
limited spatial scale and [19] the most recent Chinese oil and electricity demand trends 
in order to drive future policy making in a sustainable recovery framework. As a 
common point, those and several other works all focus on final energy use providing 
future insights via a simulation approach. Nonetheless, they neglect the underlying 
socio-economic driver perturbations that would inevitably influence long-term energy 
service demand evolution. 

During the last year, several works assessed the effects of the pandemics on 
energy and electricity use patterns, aiming at providing data and analysis solutions to 
overcome energy security and sustainability issues in a post-pandemic scenario. The 
change in energy intensity and electricity demand during lockdowns, assessed on 
different spatial scales in [17], leads to different considerations for energy recovery in 
areas of the world with the more diverse behaviors, while [18] investigates the 
electricity demand fluctuation between two subsequent years (2019 and 2020) in a 
limited spatial scale and [19] the most recent Chinese oil and electricity demand trends 
in order to drive future policy making in a sustainable recovery framework. As a 
common point, those and several other works all focus on final energy use providing 
future insights via a simulation approach. Nonetheless, they neglect the underlying 
socio-economic driver perturbations that would inevitably influence long-term energy 
service demand evolution. 

The need of having a simple model that is capable of perform accurate 
econometric forecasts arises from the fact that, in case of sudden shocks or necessary 
adjustments to be made to the evolution of demand drivers in partial equilibrium 
models, only small datasets could be available, without  any ad-hoc economic 
assumptions. Time series regression models represent the most reasonable choice, 
given their popularity for econometric projections due to their implementation 
simplicity [20]. 
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In the case of such analyses, Vector AutoRegressive (VAR) models represent 
the most natural tool when dealing with time-series regression models. In fact, this 
types of models are able to determine mathematical correlations among the different 
time-series to forecast, and for this reason they are capable to maintain, at least in part, 
such internal coherence discussed for the general equilibrium models [15]. 

The difficulty in the definition of explanatory and exogenous variables and 
their projections in the future adds more difficulties to the ones already discussed, and 
could dangerously increase the overall inaccuracy of the results [21]. For the 
abovementioned reasons, Vector AutoRegressive (VAR) models come in hand, 
considering that the benefits of modelling all the variables to forecast jointly rather 
than one equation at a time are well established [22], without the need of trying to 
necessarily define exogenous variables. In the same context of the COVID-19 
pandemics, similar tools have already been used for forecasting infection cases and 
deaths from the virus [23]: as in that work, while parameters for the models are 
estimated using real data, the accuracy of future projections may depend on many 
different, unpredictable variables. Nevertheless, the implementation of updated 
projections for socio-economic drivers is expected to radically impact on future energy 
consumption patterns, established by energy models, and cannot be neglected when 
working with a tool devoted to provide reliable and policy relevant insights as a 
TIMES model. 

Attempts at modelling the pandemic crisis response of the evolution of 
economic indicators like GDP have been made [24], but the results are generally short-
term projections which do not fit the needs of long-term analyses performed by energy 
system optimization models. Furthermore, even considering the possibility of 
extrapolating long-term forecasts starting from such results, the lack of literature that 
analyzes more specific socioeconomic drivers remains a problem. Thus, this work 
focuses on that need for a radical change of hypotheses and assumptions needed to 
drive the evolution of an energy system in an energy economy optimization model 
after such an unprecedented holistic crisis. 

More in detail, here it is addressed the quantitative assessment of long-term 
effects of the economic shock caused by the pandemics on production trends in the 
Italian industrial sector using the TIMES-Italia. TIMES-Italia is a model instance of 
the TIMES family for the development of perspective energy scenarios for Italy. It was 
developed and maintained at ENEA, the Italian National Agency for new technologies, 
energy and sustainable economic development, primarily for the analysis of supporting 
strategies for public and transparent decision-making [25]. Indeed, TIMES-Italia was 
also used to produce the Italian National Energy Strategy (SEN) [26] on a time horizon 
extended until 2030. However, the tool is capable to perform long-term energy 
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projections until 2050, and it describes the Italian energy system in its totality, starting 
from the upstream sector for import and extraction of primary supply resources, 
passing through energy transformation and distribution, to end-use devices for the 
satisfaction of final energy service demands in the transportation, buildings, industrial 
and agricultural sectors. Starting from 2006, the base year in which the energy system 
is represented matching actual energy consumption statistics provided by the national 
energy balances [27], energy consumption, and the related costs and emissions of 
greenhouse gases, among other aspects, are computed by the model on the basis of the 
available dataset of energy technologies which can be chosen to compose the future 
supply and production mix with the minimum total cost. The model can also be 
customized to account for particular user constraints on the maximum exploitation of 
some resources or putting a cap on the maximum amount of e.g., CO2 emissions over 
a certain time period. 

This thesis is structured as follows. A first discussion on the TIMES model 
framework rationale is carried out, followed to an in-depth description of the 
Reference Energy System (RES) of the industrial sector in the TIMES-Italia. The 
methodology for the econometric projections is then discussed, and VAR models are 
described together with all the steps needed to build such models and determine valid 
and reliable projections. Therefore, it follows a description of the cross-validation 
approach utilized to choose the best model specifications related to the 
abovementioned needs. This is then discussed the validation of the model starting from 
results of projections performed from 2018, i.e., without considering the effect of the 
pandemic crisis. Such results have been compared with the projections considered in 
the Italian Integrated National Energy and Climate Plan (PNIEC) [28], which in turn 
are projections taken from the EU Reference Scenario 2016 [29], in order to further 
validate such results. The final projections that consider the 2020 data are then 
presented and discussed in Chapter 6. The TIMES-Italia forecasts of the energy 
consumption of the various industrial sectors are presented and discussed in Chapter 
5, together with a comparison between the backcasting results of such model in the 
period 2006-2019 with the real data of final industrial energy consumption of Eurostat 
[30]. Eventually, the conclusions of the work are drawn in the final chapter.  



 Fundamentals of the TIMES Model generator 10 
 

 

 Chapter 2 

2.  Fundamentals of the TIMES Model 
generator 

The TIMES (The Integrated MARKAL-EFOM System) model generator was 
developed by IEA-ETSAP (Energy Technology Systems Analysis Program) context, 
to build long term energy scenarios and analyze energy and environmental topics [31]. 
Such model generator combines a technical engineering approach together with an 
economic approach. In fact, TIMES is a technology-rich, bottom-up model generator 
(engineering aspect), which uses linear-programming to produce a least-cost energy 
system (economic aspect), where the optimization is subject to a set of user constraints 
over a multi-period time horizon [11]. 

Bottom-up (BU) models present a wide description of technologies, for such 
reason are also defined as “technology rich”. They are very useful for modelling 
technological details for the energy systems to analyze, but they rely on a precise 
characterization of the various processes on which the model is built. 

2.1 TIMES models rationale 
TIMES model generator can be described as: 
• Technologically explicit and integrated. TIMES is a technology-rich 

model in which each technology is described by the definition of a series 
of technical and economic parameters. This means that an explicit 
identification and distinction of each technology is performed in such 
model. Furthermore, the user can change at will the number of 
technologies and their relative topology, without modifying the model’s 

equation. For this reason, the model can be also described as data driven. 
• Multi-regional. TIMES models like the global ETP-TIMES model can 

comprise several regional modules. The only limit on the number of 
regions in a model depends on the difficulty of solving the linear 
programming optimization. Energy and material trading variables link 
together the various modules. Given the existence of such linking 
variables the model can be seen as multi-regional, where actions taken in 
one region may as well affect the others. 
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• A model that computes a partial equilibrium on the energy market with 
perfect foresight. 

2.1.1 Partial equilibrium 

Once all the inputs, constraints and scenarios have been defined, the model 
tries to determine the energy system that meets the energy service demands over the 
entire time horizon through a least cost optimization. TIMES assumes perfect 
foresight, which means that there is a complete knowledge of future events concerning 
the investment decisions that are made. So, the optimization is made horizontally 
across all sectors, and vertically across all time periods. 

An optimal mix of technologies and fuels at each period is then determined, 
along with the production and consumption of the different commodities and their 
prices. The optimization process seeks the equilibrium between supply and demand, 
because in this state the producer and consumer surplus is maximized. 

 
Figure 3: Market equilibrium in the case of an energy service in TIMES [11] 

Figure 3Errore. L'origine riferimento non è stata trovata.shows the 
demand curve of an energy service, defined by the user via the specification of the own 
price elasticity of that demand. The supply-demand equilibrium point is represented 
by the intersection of the supply function and the demand function, and it corresponds 
to an equilibrium quantity QE and an equilibrium price PE. Considering that TIMES 
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equilibrium deals with many commodities simultaneously, the equilibrium is multi-
dimensional, and QE and PE are vectors and not scalars. 

2.1.2 TIMES model architecture 

The main output TIMES are energy system configurations, in which the end-
use energy service demands are met through a least cost optimization, while the 
various defined constraints are observed. Figure 4 shows the TIMES model schematic 
and its outputs [32], and it can be summarized in the following main parts [33]: 

• Resources, represented by the blue box: it includes current and potential 
availability of traditional and renewable energy sources, as also imports 
and trade. 

• Conversion, red boxes: it includes all the technologies and processes 
related to the conversion of resources into usable energy. 

• Consumption, represented by yellow boxes: the various uses, i.e., energy 
services, for the converted and distributed energy are described, along 
with the conversion technologies to usable forms of energy, such as light, 
heat, or refrigeration. 

• Demands, represented in green: it is defined the amount of energy-services 
required, determined by modeling their relation to socio-economic 
exogenous drivers. Such drivers are generally determined by means of 
applied general equilibrium models like GEM-E3 [10]. 

• Outputs, represented by white exiting arrows: they are energy commodity 
prices, energy flows, GHG emissions, capacities of technologies, energy 
costs and marginal emissions abatement costs. 
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Figure 4: Schematic of TIMES inputs and outputs [32] 

2.2 Reference Energy System 
In TIMES, the technologically detailed feature is given by the description of a 

very large number of processes and technologies that produce and transform energy. 
All the steps between primary resources to end-use consumption are modeled. The 
energy supply-side (upstream sector) includes fuel mining, primary and secondary 
production, along with exogenous import and export. Energy is delivered to the end-
use demand side through energy carriers, and those demands envisage all the activities 
included in the industrial, transportation, residential and commercial sectors.  

Three main elements constitute every TIMES model [11]: 
• Technologies (also called processes) transform commodities into other 

commodities. They can be primary sources of commodities (i.e., mining 
or import), conversion plants, energy-processing plants, or end-use 
devices such as cars or heating systems. 

• Commodities are energy carriers, energy services, materials, monetary 
flows, and emissions. It is either produced or consumed by a technology. 

• Commodity flows are what links processes with commodities. A flow 
represents, then, an input or an output of a particular process, and it is of 
the same nature as a commodity. 

Through such units a Reference Energy System (RES) characterizing the 
country or region to analyze can be defined. Figure 5 shows a partial view of a RES, 
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in which the blue boxes represent the processes, the vertical lines the commodities and 
the horizontal lines the commodity flows. 

 

Figure 5: Example of a (partial) Reference Energy System [11] 

2.3 Scenario analysis 
TIMES models are generally used to analyze possible energy futures by 

defining contrasted scenarios. The scenario approach is quite useful given the long-
time horizons simulated by such type of models, whereas econometric methods come 
in hand when shorter time scales are to be analyzed. In the definition of scenarios, the 
main drivers for the evolution of the energy system are not ad-hoc presupposed, but 
their projections are built starting from coherent assumptions. Four types of inputs 
need to be given to the model in order to well define scenarios: energy service 
demands, primary resources availability, sets of constraints, and the already mentioned 
set of technologies. 

2.3.1 Energy service demands 

Demand drivers (population, GDP, number of households, etc.) in the TIMES 
framework are obtained externally and given as inputs. For example, applied general 
equilibrium models like GEM-E3 can be used to derive such drivers trajectories [10]. 
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The main drivers considered in the TIMES framework are: population, GDP, GDP per 
capita, number of households, and sectoral outputs. 

The reference demand scenario can be constructed by computing a set of 
energy service demands trajectories. This is done by correlating such service demands 
to specific drivers, through the definition of elasticities of demands: 
 

𝐷𝑡 = 𝐷𝑡−1 ⋅ [1 +  (
𝛿𝑡

𝛿𝑡−1
− 1) ⋅ 𝑒𝑡−1] (1) 

where 𝐷 is the demand, 𝑡 the time step, 𝛿 the demand driver and 𝑒 the elasticity 
of the demand to its driver [11]. Different scenarios are then defined starting from 
different assumptions affecting the demand, such as emission constraints or different 
technology sets. The demands are endogenously adjusted in TIMES through the 
definition of another set of inputs, that are the elasticities of the demands to their own 
prices. 

Equation 1 shows that energy services demands and drivers’ projections are 

linked together through elasticities. Such elasticities are meant to describe any change 
in the patterns of energy service demands due to economic, technological, political, 
social or cultural factors, such as saturation effects like the decoupling of GDP and 
demand growth in developed countries. Elasticities usually take values close to 1, and 
the lower the elasticity the less influence of the driver on the energy demand service 
[13].  

The analysis presented in this work deals with understanding how the industrial 
energy demand trajectories in Italy will be affected by the pandemic crisis, developing 
subsequent insights with long-term energy system optimization models like TIMES-
Italy. In fact, a key question about the effect of the pandemic is whether it has affected 
the dynamics of the demand of energy services, which is the first driver of energy 
demand (together with the dynamics of energy technologies) [12]. Such dynamics 
depends on one hand on the evolution of the key socio-economic drivers, on the other 
hand on the elasticity of each energy service demand to these socio-economic drivers. 
Elasticities change over time, and they have a decisive impact on the long-term 
evolution of energy demand [14]. In this sense, the aim of this work is to focus on 
these critical points and to suggest an approach based on traditional econometric 
models able to accurately project the socio-economic drivers of our interest. 

2.3.2 Supply component 

Multi-stepped supply curves for primary energy and material resources, with 
each step representing a potential of the resource available at a particular cost, 
constitute another important input in the scenarios definition. Such potential can be 
expressed in different ways: 



 Fundamentals of the TIMES Model generator 16 
 

 

• Cumulative over the model horizon, like the amount of reserves of gas, 
crude oil or coal; 

• Cumulative over the resource base, like the available areas for wind or 
solar energy conversion, or the available farmland for biocrops; 

• Annual potential such as the maximum extraction rates, or the available 
potential of renewable resources. 

The supply component may also include trading possibilities of commodities 
determined endogenously. 

2.3.3 Policy component 

One of the major impacts on the energy system is the introduction of policies, 
and for this reason their definition is a fundamental part for modelling a scenario. One 
example can be related to policies on GHG emissions, that could be ignored in a 
reference scenario, while they may be an important constraint in term of emission 
restrictions or taxes in different policy scenarios. 

In the TIMES framework both micro measures like technology portfolios and 
wider policies like carbon taxes or nuclear policies can be simulated, given the 
technology richness of such model generator. 

2.3.4 Techno-economic component 

In TIMES, modelling the set of technical and economic parameters needed for 
converting primary resources into energy services may differ according to different 
analyzed scenarios. Such techno-economic parameters are presented as a set of 
technologies that transform some commodities into others (fuels, materials, energy 
services, emissions). Some of these technologies can be user imposed (i.e., starting 
from the energy mix at the base year) and others are simply available for the model to 
choose from, starting from the linear optimization problem. 

As already said above, one of the strengths of a TIMES model lies on its 
technology richness, where both current and future technologies are defined, and the 
model can choose from such sets following the cost minimization paradigm. 

Two types of technologies can be defined: 
• Base year technologies, representing the existing technology mix, and defined 

starting from the model calibration of the RES at the starting year, considering 
as a reference historical data of the energy balance in such year. 

• New technologies, representing future technologies from which the model can 
choose from, available from a precise user-defined year. 
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2.4 TIMES-Italia 
In the Italian context, an energy model based on the TIMES framework has 

been developed by ENEA, Italian National Agency for New Technologies, Energy and 
Sustainable Economic Development, primarily for the analysis of supporting strategies 
for public and transparent decision-making [25]. Indeed, TIMES-Italia was also used 
to produce the Italian National Energy Strategy (SEN) [26] on a time horizon extended 
until 2030. However, the tool is capable to perform long-term energy projections until 
2050, and it describes the Italian energy system in its totality, starting from the 
upstream sector for import and extraction of primary supply resources, passing through 
energy transformation and distribution, to end-use devices for the satisfaction of final 
energy service demands in the transportation, buildings, industrial and agricultural 
sectors. Starting from 2006, the base year in which the energy system is represented 
matching actual energy consumption statistics provided by the national energy 
balances [27], energy consumption, and the related costs and emissions of greenhouse 
gases, among other aspects, are computed by the model on the basis of the available 
dataset of energy technologies which can be chosen to compose the future supply and 
production mix with the minimum total cost. The model can also be customized to 
account for particular user constraints on the maximum exploitation of some resources 
or putting a cap on the maximum amount of e.g., CO2 emissions over a certain time 
period. 

An aggregated scheme of such described RES is presented in Figure 6. 

 

Figure 6: TIMES-Italia Reference Energy System [25] 
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2.4.1  Time horizon 

TIMES-Italia allows to analyze time horizons until 2050, as discussed in the 
previous paragraph. In Table 1 the periods of the entire time horizon are shown. As it 
can be seen, the duration of such periods increases as we go towards 2050: one year 
for the first three periods, two years up to 2022, five years between 2025 and 2030, 
and ten years up to 2050. Having a lower duration of the first periods allows a deeper 
description of the already implemented policies, and as the uncertainty increases going 
in the future, the need of detail with smaller periods’ length goes decreasing.  

Table 1: Periods of TIMES-Italia time horizon. 

2006 2007 2008 2010 2012 2014 2016 
2018 2020 2022 2025 2030 2040 2050 

 
Furthermore, a base year defined in 2006 allows to validate the model by 

comparing the results in the first years with the historical data at disposal. 

2.4.2 Time slices 

In TIMES-Italia each period of the year is divided in Times Slices, comprising 
the four seasons, and day and night hours, as presented in Table 2. 

Table 2: Time slice in TIMES-Italia 

 Summer Fall Winter Spring 
Day 0.125 0.115 0.105 0.115 

Night 0.115 0.125 0.135 0.125 
Peak 0.010 0.010 0.010 0.010 

 
Such level of detail is fundamental to have a specific characterization of energy 

supply and demand. For example, some energy services concerning the demand are 
only active in some periods of the year, such as the residential heating during winter, 
or in some hours of the day, like the lightning during night. As for energy production, 
the same goes for renewable sources, only active in some periods of the year 
(hydroelectric) or in some hours of the day (photovoltaic). 

Such points cannot be neglected, and for this reason some parameters 
characterizing various processes have different values depending on the time slices. 
At each time slice, the balance between supply and demand is ensured by the model. 
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2.4.3 Discount and depreciation rates 

A constant real discount rate of 5 % is considered starting from the base year. 
Different discount rates can also be employed to differentiate innovative technologies 
from more mature ones. 

A reasonable definition of depreciation rates are important in such energy 
models to well describe possible evolutions of the energy system. In TIMES-Italia the 
depreciation rate differs from sector to sector. In Table 3 it can be seen how in the 
industrial, commercial and agricultural sector the dicount rate is 30 %, in the 
residential sector is 60 %, and for transports it varies from 10 % to 45 %. Each 
investment in the energy sector is discounted with a 6 % rate. 

Table 3: Discount rates in TIMES-Italia. * Discount rate increasing for more advanced vehicles [25]. 

Sector Discount rate 
Energy 6 % 
Industry 30 % 
Commercial 40 % 
Residential 60 % 
Transport*  

Bus and trucks 10 % 
Cars and motorcycles 15 % 

 

2.4.4 Greenhouse gases emissions 

TIMES-Italia also allows to define different scenarios to perform 
environmental analyses examining the consequences of a certain environmental policy 
on the greenhouse gases (GHG) emissions. Each fuel in such model is associated an 
emission factor related to CO2, N2O and CH4. At traditional fuels are associated static 
emission factors derived from literature, while at aggregated fuels are associated 
dynamic factors depending on the composition of such fuels. The emission of the 
different GHG defined above are then an output of the model, and different scenarios 
can be compared in such terms.  
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 Chapter 3 

3.  Industry sector Reference Energy System 

As discussed in Chapter 2, one fundamental step for energy system modeling 
requires the definition of the Reference Energy System (RES), which can be described 
as the set of “all the components related to the production, conversion, delivery and 

end-use of energy” [34]. A detailed RES for each analyzed sector allows the analysis 
of the mix of traditional and innovative technologies given by the optimization 
techniques in different scenarios. 

This chapter presents the RES for the Italian industry sector as modeled in 
TIMES-Italia. The industrial module used in the current version of TIMES-Italia, used 
in this work for energy projections, is based on the open-source industrial demand 
technology database (Open-IDTD) by Lerede et al. [35], in which, among other things, 
the importance of having data transparency and result reproducibility when dealing 
with macro-scale energy modelling is stressed. 

Globally, the industrial sector accounted for 37 % of total global final energy 
use in 2018 [36], while it accounted for about 20.5 % in Italy [37], being one of the 
most energy-intensive sectors means having a big impact on the results of energy 
modeling. For this reason, a detailed characterization of all the processes constituting 
such sector is necessary for analyzing the energy sector as a whole. In TIMES-Italia, 
the industrial sector is subdivided in six energy-intensive subsectors for each end-use 
energy service demand: 

• Iron and steel, in which steel is produced. 
• Non-ferrous metals, aluminum, copper and zinc production technologies 

are taken into account. 
• Non-metallic minerals, including cement, ceramics, glass, and lime 

production technologies. 
• Chemicals, and namely ammonia, chlorine, high value chemicals (HVC) 

and methanol. 
• Pulp, paper and printing, contributing to the final paper demand. 
• Other Industries, representing textile, food, beverage, tobacco, plant 

construction, machinery, and transport equipment sectors. 
The technologies included in the TIMES-Italia database are based on the 

technological portfolio presented in the International Energy Agency (IEA) Energy 
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Technology Perspectives (ETP) Model [38], in which several low-carbon options are 
presented for the different industrial subsector included in TIMES-Italia. 

In the following paragraphs a general description of how the energy intensive 
technologies are modeled in the TIMES framework precedes an in-depth analysis of 
the technologies characterizing the various industrial subsectors in TIMES-Italia. 

For each sector, they are also presented the drivers related to their respective 
service demand. Such drivers follow the statistical classification of economic activities 
in the European Community (NACE) [39], a derived classification of the International 
Standard Industrial Classification (ISIC). NACE is the subject of legislation at the 
European Union level2, which imposes the use of a uniform classification within all 
the Member States. It belongs to the international integrated system of economic 
classifications, which is based on the classifications made by the UN Statistical 
Commission (UNSTAT), Eurostat, and other national classifications. All of them are 
strongly related each to the others, and for this reason a comparability among other 
economic statistics produced worldwide by different institutions is made possible [39]. 

3.1 Energy intensive technologies 
A set of technologies is modelled for each of the subsectors mentioned above,  

as shown in Figure 7. 

 

Figure 7: Structure of each energy-intensive industrial technology [35]. 

Entering in detail of Figure 7, the inputs of such technologies involved in the 
transformation process generally are: 

 
2 Council Regulation (EEC) No 3037/90 of 9 October 1990 on the statistical classification of 

economic activities in the European Community (OJ No L 293, 24.10.1990, p. 1) as amended by 
Commission Regulation (EEC) No 761/93 of 24 March 1993 (OJ No L 83, 3.4.1993, p. 1, and 
corrigendum, OJ No L 159, 11.7.1995, p. 31). 
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• Fuels expressed in GJ/tproduct, where tproduct is the mass of the output 
product. Some examples of fuels are coal, natural gas, crude oil, etc. 

• Energy carriers expressed in GJ/tproduct. Steam, electricity and machine 
drive are examples of energy carriers. 

• Feedstock fuels, used in the chemical sector and expressed in  GJ/tproduct. The 
difference with common fuels is related to the fact that feedstock fuels are not 
involved in combustion processes. 

• Energy-intensive materials, expressed in t/tproduct. 
The outputs of such technologies are, on the other hand: 

• End-use products, expressed in tproduct; 

• Byproducts successively used for producing other end-use products in other 
processes, expressed in tproduct. 

• Recovered energy carriers, expressed in GJ/tproduct. 

• Greenhouse gas (GHG) emissions, expressed in kg/tproduct. 

• Waste materials, like the slag from steel production, expressed in t/tproduct. 
Factors characterizing each technology are of three main types: 

• Technical factors, like its energy input requirements, the starting date for the 
availability of the technology in the production system, the plant lifetime and 
the availability factor. 

• Economic factors, such as investment cost or annual fixed O&M costs, both 
given in $/𝑡𝑓𝑖𝑛𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡.  

• An environmental performance factor, which is actually automatically 
calculated by TIMES on the basis of the provided fuel emission factors and 
input commodity efficiencies. 

 

3.1.1 Iron and steel 

According to the industrial demand technology database in [35], steel 
production can be satisfied according to a set of thirteen technologies which 
comprehend the whole manufacturing process starting from raw materials to crude 
steel. The Open-IDTD also includes generic process defined for ferroalloys 
production, which considers a weighted average energy consumption of global 
production processes, but ferroalloys are not included as a demand commodity in 
TIMES-Italia. Concerning technologies that include carbon capture and storage 
(CCS), processes for smelting reduction are considered, blast and basic oxygen 
furnaces (BFBOF) and electric arc furnaces (DRI-EAF) [40]. Table 4 summarizes such 
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technologies together with the starting date in the TIMES-Italia model, related to 
technology readiness, expressed in terms of its deployment state. 

Table 4: Iron and steel technologies, comprising their starting date in TIMES-Italia model and their deployment 
state. 

Product Technology 
Starting 
date 

Deployment state 

Steel Blast furnace-basic oxygen 
furnace (BF-BOF) 

Base year Traditional 

Direct reduced iron-electric arc 
furnace (DRI-EAF) 

Base year Traditional 

Steel from scrap – EAF Base year Traditional 
Smelting reduction – BOF 2006 Innovative/Commercial 
BF-BOF with CCS 2020 Demonstration phase 
BF with top gas recovery – BOF 2020 Demonstration phase 
DRI-EAF with CCS 2020 Demonstration phase 
HIsarna – BOF 2025 Demonstration phase 
HIsarna – BOF with CCS 2025 Demonstration phase 
Hydrogen direct reduction – 
EAF 

2030 Demonstration phase 

Ulcored with CCS 2030 Demonstration phase 
Ulcolysis 2030 R&D phase 
Ulcowin 2030 R&D phase 

The driver for the Iron and steel service demand is related to the statistical 
classification of economic activities in the European Community (NACE), and it 
corresponds to the industrial production index of the manufacture of basic metals and 
fabricated metal products, except machinery and equipment (code CH, divisions 24-
25). The reference data is derived from ISTAT Database [41]. 

3.1.2 Non-ferrous metals 

The eleven non-ferrous metals manufacturing technologies characterized in 
Open-IDTD are shown in Table 5. Aluminum is modeled by considering six different 
technologies, while for copper, zinc, tin, titanium and niobium a single technology 
each is considered. Two steps can be determined for aluminum, that are the alumina 
production represented by the Bayer process [42], and the output of such process is 
given as input for aluminum technologies except the secondary route [43] and the 
kaolinite reduction [44]. 
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Table 5: Non-ferrous metals technologies, comprising their starting date in TIMES-Italia model and their 
deployment state. 

Product Technology Starting date Deployment state 
Alumina Bayer process Base year Traditional 

Aluminum Hall-Héroult Base year Traditional 
Secondary 
aluminum 

Base year Traditional 

Hall-Héroult with 
inert anodes 

2030 Innovative/Commercial 

Carbothermic 
reduction 

2050 Demonstration phase 

Kaolinite 
reduction 

2050 Demonstration phase 

Copper Primary copper 
production 

Base year Traditional 

Zinc Zinc production Base year Traditional 

Non-ferrous metals service demand is derived from the driver related to the industrial 
production index of the manufacture of basic precious and other non-ferrous metals. 
In the ISTAT Database, this corresponds to the division 244, a sub-category of the 
manufacture of basic metals. 

3.1.3 Non-metallic minerals 

Concerning Non-metallic mineral manufacture, in TIMES-Italia eleven 
technologies are considered, as shown in Table 6. A clinker production step before 
cement blending is the traditional process modeled for cement production [45]. 
Innovative processes like Alkali-activated cement-based (AAC) blinders [46] and 
belite cement [47] are also modeled. Lime and ceramics production are modeled 
according to a single technology, while glass production considers two processes 
relying either on fossil fuels or electricity. 

Table 6: Non-metallic minerals technologies, comprising their starting date in TIMES-Italia model and their 
deployment state. 

Product 
Technology 

Starting 
date 

Deployment state 

Clinker 
Dry process 

Base 
year 

Traditional 
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Wet process 
Base 
year 

Traditional 

 Dry process with post-combustion 
CCS 

2025 Demonstration phase 

 Dry process with oxy-fuel 
combustion CCS 

2025 Demonstration phase 

Cement 
Cement blending 

Base 
year 

Traditional 

Alkali-activated cement-based 
blinders 

2010 Innovative/Commercial 

Belite cement 2010 Innovative/Commercial 
Lime 

Long rotary kiln 
Base 
year 

Traditional 

Glass 
Fossil fuel-fired furnace 

Base 
year 

Traditional 

All-electric furnace 
Base 
year 

Traditional 

Ceramics 
Ceramics production 

Base 
year 

Traditional 

The driver corresponding to such subsector is the production index of the manufacture 
of rubber and plastics products, and other non-metallic mineral products (code CG, 
divisions 22-23) [39]. 

3.1.4 Chemicals 

The chemical sector is characterized by twenty-three technologies, eight for 
high value chemicals, which include olefins and aromatics, five for ammonia 
production, six for methanol production and three for chlorine production, as in Table 
7. 

Table 7: Chemicals technologies, comprising their starting date in TIMES-Italia model and their deployment 
state. 

Product Technology Starting date Deployment state 
HVC Naphta steam 

cracking 
Base year Traditional 

Ethane steam 
cracking 

Base year Traditional 
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Gas oil steam 
cracking 

Base year Traditional 

LPG steam 
cracking 

Base year Traditional 

Propane 
dehydrogenation 

2010 Innovative/Commercial 

Naphta catalytic 
cracking 

2011 Innovative/Commercial 

Methanol-to-
olephins 

2015 Innovative/Commercial 

Bioethanol 
dehydration 

2020 Demonstration phase 

Ammonia Natural gas steam 
reforming (NG SR) 

Base year Traditional 

Naphta partial 
oxidation 

Base year Traditional 

Coal gasification Base year Traditional 
Synthesis via 
electrolysis 

2015 Innovative/Commercial 

Biomass 
gasification 

2025 Demonstration phase 

 NG SR with CCS 2025 Demonstration phase 
Methanol NG SR Base year Traditional 

Coke oven gas 
steam reforming 

Base year Traditional 

LPG partial 
oxidation 

Base year Traditional 

Coal gasification Base year Traditional 
Synthesis via 
electrolysis 

2015 Innovative/Commercial 

Biomass 
gasification 

2025 Demonstration phase 

Chlorine Mercury cell Base year Traditional 
Diaphragm cell Base year Traditional 
Membrane cell Base year Traditional 

The driver associated to the chemicals sector in TIMES-Italia is the average of two 
industrial production indexes: 



 Industry sector Reference Energy System 27 
 

 

• Manufacture of chemicals and chemical products, code CE division 20. 
• Manufacture of pharmaceuticals, medicinal chemical and botanical products, 

code CF, division 21. 

3.1.5 Pulp and paper 

Table 8 shows the six traditional pulp-processing technologies included in 
TIMES-Italia, and one generic process representing the paper production. CCS 
technologies are not considered for the pulp and paper sector. 

Table 8: Pulp and paper technologies, comprising their starting date in TIMES-Italia model and their deployment 
state. 

Product Technology Starting date Deployment state 
Pulp Mechanical 

pulping 
Base year Traditional 

Semi-chemical 
pulping 

Base year Traditional 

Kraft process Base year Traditional 
Sulfite process Base year Traditional 
Recycled fiber 
pulping 

Base year Traditional 

Paper Paper production Base year Traditional 

Pulp and paper service demand is determined from the driver related to the industrial 
production index of the manufacture of paper and paper products, code CC, division 
17 [41]. 

3.1.6 Other Industries 

The remaining industrial technologies are aggregated in a final subsector, in 
which a generic process is modeled. The associated driver for the energy service 
demand related to such sector is the industrial production index of the total 
manufacturing industry, which is labeled with the code C in the NACE classification 
[39].  
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 Chapter 4 

4.  Analysis of the industrial historical data 

The following paragraphs give a deeper description of the historical data 
utilized to train the VAR model. The general trend of each dataset is firstly showed 
considering the yearly aggregated data from 1990 to 2020. More in detail, an 
assessment on how each sector has responded to the 2009 crisis can help to understand 
what to expect for this current crisis caused by the Covid-19 pandemic. This assumes 
that a similarity in terms of response to an economic crisis exists within each sector, 
but such practice can be seen in different econometric analyses in literature. For 
example, Foroni et al. [24] perform a GDP nowcast in different European countries 
based on autoregressive models, and an intercept correction adjustment [48] is 
performed in order to force a behavior in the post-pandemic projection similar to the 
one had after the Great Recession in 2009. A final analysis is made by comparing the 
industrial production values of the different sectors in the first quarter of 2021 with the 
values had in the same period in 2019 and 2020. Being the most recent data at disposal 
for the projections, they hold the information related to the expected pace of the crisis 
recovery, and, therefore, they help to build some expectations on the results, especially 
for the short-term. 

4.1 Iron and steel 
Figure 8 shows the historical data of the industrial production index of iron and 

aggregated yearly from 1990 to 2020. It corresponds to the manufacturing volume of 
the industrial subsector normalized in base 100 at year 2015. A slow but steady 
increase prior to the 2009 crisis can be seen, and a constant and lower post-crisis trend 
is present, underlying how there has not been a full recovery from the Great Recession. 
Furthermore, 2020 values suggest how the pandemic crisis has had a big impact on 
this sector. 
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Figure 8: Historical data of the Iron and steel industrial production index 

Such index is presented in the ISTAT Database as monthly values, and the first 
quarter of 2021 shows how there has been a full recovery with respect to 2019 values. 
In particular, in Figure 9 it can be seen that in March and April 2021 the industrial 
production of iron and steel has been even higher to the 2019 values. The percentage 
increase with respect to 2019 has been of 6.11 % and 9.00 %, respectively for March 
and April. Such months in 2020 represent the first lockdown measures taken by Italy, 
and with respect to that the increase in 2021 has been respectively of 63.6 % and 119 
%. Such results can suggest that a fast recovery from the crisis is possible, considering 
that in the last two months the industrial production is even higher than the one 
registered in the same period of 2019. 

 
Figure 9: Comparison of the Iron and steel industrial production for the first quarter of 2019, 2020 and 2021. 
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4.2 Non-ferrous metals 
The yearly industrial production index (base 100 at year 2015) of the Non-

ferrous metals sector is shown in Figure 10. In this case, the pre-2009 trend is quite 
constant on average, with an initial increase up to year 2000 and a subsequent decrease. 
Similarly to the iron and steel sector, after the 2009 crisis the industrial production has 
been steady at a lower value with respect to the pre-crisis data. In this case, Covid-19 
crisis has accentuated the decreasing trend started in 2019, but the values are not the 
lowest of the total period analyzed. The lowest values are, in fact, registered in 2013.  

 
Figure 10: Historical data of the Non-ferrous metals industrial production index 

The first quarter of 2021 shows for such data the same recovery pattern 
registered for the iron and steel sector. In fact, Figure 11 shows how the values in 
March and April of 2021 have been higher than the ones had in 2019. The percentage 
increase with respect to 2019 has been of 11.8 % and 15.9 %, respectively. Concerning 
the 2020 values, the increase in 2021 has been of 50.1 % and 59.4 %. Such results, 
along with the ones discussed for Figure 10, can suggest a fast recovery from the 
pandemic crisis, considering the low total impact in 2020 and the fast improvement 
had in the first months of 2021. 
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Figure 11: Comparison of the Non-ferrous metals industrial production index for the first quarter of 

2019, 2020 and 2021. 

4.3 Non-metallic minerals 
Concerning the non-metallic minerals sector, the yearly industrial production 

index (base 100 at year 2015) is shown in Figure 12. A similar pattern with iron and 
steel and non-ferrous metals sectors is present, with respect to the clear difference in 
the trend between pre- and post-2009 crisis. In fact, the values up to 2007 are 
increasing, with a maximum in the year 2001, while after the Great Recession the trend 
presents a slow decrease. The Covid-19 pandemic has amplified such situation, and 
the 2020 has become the worse year in the past 30 years, at least. It is interesting to 
notice, however, how such decrease in 2020 is comparable in amplitude with some 
other years in the past, especially the 2011. 
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Figure 12: Historical data of the Non-metallic minerals industrial production index 

In Figure 13 is presented the first quarter of 2021 compared with the same 
quarter in 2020 and 2019 for the industrial production index of the Non-metallic 
minerals sector. Differently from the iron and steel and non-ferrous metals sectors, the 
recovery with respect to 2019 has already started in February, with a 6.02 % percentage 
increase. As for March and April, the recovery has been of respectively 8.60 % and 
8.79 % compared to 2019. Furthermore, the percentage increases of 50.6 % and 161.4 
of the industrial production index of March and April 2021 with respect to 2020 show 
both the high impact of such crisis and the high resilience of such sector, which has 
returned to pre-pandemic values. 

 
Figure 13: Comparison of the Non-metallic minerals industrial production index for the first quarter of 2019, 

2020 and 2021. 
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4.4 Chemicals 
The chemicals sector presents many differences both in terms of historical 

trend and crisis response. Figure 14 shows the yearly industrial production index (base 
100 at year 2015) of such sector, and the first main dissimilarity with respect to the 
previously discussed sectors is its increasing trend in the whole period analyzed. A 
first fast increase is present up to the year 2000, while a full recovery of the 2009 crisis 
has been registered, with a returning of the industrial production index to pre-crisis 
values in 2017. Furthermore, 2018 registers the highest value in the past 30 years. 
Besides, the pandemic crisis has mildly hit such sector, which presents a steeper 
decrease in the years 2018-2019. 

 
Figure 14: Historical data of the Chemicals industrial production index 

If the 2020 crisis has not hit the chemicals sector as hard as the previously 
discussed sectors, Figure 15 shows how the recovery in the first months of 2021 has 
been more moderate, highlighting how a decreasing trend is already present from 2018. 
In fact, only in March 2021 it can be noted a higher industrial production index with 
respect to 2019, with a percentage increase of 4.47 %. The period from February to 
April 2021 presents an average percentage decrease of 0.36 % with respect to the same 
period in 2019, while if only the last two months are considered, the situation 
improves, with an average increase of 1.02 %. The increase from the 2020 data in 
March and April is also moderate, with respectively 9.13 % and 9.63 %, showing both 
the low impact of the crisis on such sector and its slow recovery from it. 
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Figure 15: Comparison of the Chemicals industrial production index for the first quarter of 2019, 2020 and 

2021. 

4.5 Pulp and paper 
The pulp and paper sector presents various similarities with all the sectors 

discussed above. In fact, like the iron and steel sector, Figure 16 shows a constant 
increasing trend up to 2007, also being the year with the highest value in the period 
analyzed. The trend is more moderately increasing on average after the crisis, with no 
recovery from it registered up to 2020. Covid-19 crisis has hit such sector even more 
modestly than the chemicals industry, with industrial production index values in 2020 
comparable with the ones in 2019. 

 
Figure 16: Historical data of the Pulp, paper and printing industrial production index 
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Such low impact of the 2020 crisis can be seen by comparing the industrial 
production indexes in the period from January to April in 2019, 2020 and 2021, as 
presented in Figure 17. In fact, 2021 data shows a high recovery in March and April 
with respect to 2019, with a percentage increase of respectively 2.45 % and 8.25 %. 
Furthermore, the increase from 2020 in the same period is of 8.47 % and 13.0 %, 
respectively, which is much lower with respect to sectors such as iron and steel and 
non-ferrous metals. The reason is related especially to the small decrease in 2020 
compared to 2019, as it is shown in a monthly basis in Figure 17 for the first lockdown 
period, and yearly in Figure 16. 

 
Figure 17: Comparison of the Pulp, paper and printing industrial production index for the first quarter of 2019, 

2020 and 2021. 

4.6 Other industries 
The historical trend of the industrial production index (base 100 at year 2015) 

aggregated yearly for the other industries is shown in Figure 18. The behavior is very 
similar to the one seen in the iron and steel, non-ferrous metals, and non-metallic 
minerals sectors, with the 2009 crisis splitting in two the graph. A small increase in 
the pre-crisis period is, in fact, translated to an average stagnation after 2009. The 
pandemic crisis has hit very hard such sector, registering in 2020 the lowest industrial 
production index in the past 30 years, and a steep decrease with respect to 2019 which 
is second only to the 2008-2009 drop-down. 
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Figure 18: Historical data of the Other industries industrial production index 

Such response to the crisis period can be also seen in the 2020 data for March 
and April with respect to 2019, as shown in Figure 19. However, an hint of recovery 
has been registered in March and April 2021, which present a percentage increase with 
respect to 2019 data of 3.22 % and 5.26 %, respectively. The increase of 2021 data in 
the same period compared to 2020 is very high, with 45.9 % in March and 92.2 % in 
April. This suggests, as for the non-metallic minerals sector, both the high impact of 
such crisis and the high resilience of such sector, which has returned to pre-pandemic 
values. 

 
Figure 19: Comparison of the Other industries industrial production index for the first quarter of 2019, 2020 and 

2021. 

  



 Vector AutoRegressive Models 37 
 

 

 Chapter 5 

5.  Vector AutoRegressive Models 

Vector AutoRegressive models are usually used to forecast multiple time series 
variables in a single system of equations, and to analyze the dynamic impact of the 
disturbance factors contained in the system variable. They were firstly developed in 
control theory, where linear dynamic systems were identified by vector-valued 
autoregressive moving average (VARMA) and state-space representations [49]. VAR 
models were successively introduced in economic analyses by Granger and Sims. The 
Granger causality concept was proposed by Granger in order to determine whether a 
time series 𝑥𝑡 brings relevant information to forecast a variable 𝑦𝑡 [50]. Sims proposed 
in [51] an alternative to large scale structural simultaneous econometric models 
(SSEM) [52] that treat some variables as exogenous by ad- hoc assumptions, not 
supported by solid theories. VAR models have been widely used since then, especially 
for testing Granger-causal relationships among macroeconomic variables, like 
government spending and taxes on economic output [53]. 

The variables in VAR models are treated as a-priori endogenous, and their 
success depends mostly on their simplicity and their forecast accuracy. They are also 
used in economic analysis to understand the interrelationship between variables, by 
means of tools like impulse response and variance decomposition [54]. 

A VAR model can be seen as a generalization of univariate autoregressive 
models. Its main assumption is that all the variables to forecast affect each other, and 
they are endogenous. 

It is generally presented with the notation 𝑉𝐴𝑅(𝑑), where 𝑑 represents the 
number of lagged variables considered for the regression. For simplicity let us consider 
a two variable VAR(1), i.e. with one lag: 

 
𝑦1,𝑡 = 𝑐1 + 𝜙11,1𝑦1,𝑡−1 + 𝜙12,1𝑦2,𝑡−1 + 𝜀1,𝑡 

𝑦2,𝑡 = 𝑐2 + 𝜙21,1𝑦1,𝑡−1 + 𝜙22,1𝑦2,𝑡−1 + 𝜀2,𝑡 
(2) 

where 𝜀1,𝑡 and 𝜀2,𝑡 are white noise error terms. The lagged variables of 𝑦1,𝑡 and 𝑦2,𝑡 
are represented respectively by 𝑦1,𝑡−1 and 𝑦2,𝑡−1. In general, the coefficients 𝜙𝑖𝑖,𝑚 and 
𝜙𝑖𝑗,𝑚 describe respectively the relation between the m-th lag of variable 𝑦𝑖 on itself, 
and the relation between the m-th lag of variable 𝑦𝑗 on 𝑦𝑖 [20]. Given its simplicity, 
the coefficients are estimated by a simple Ordinary Least Squares (OLS) regression. 



 Vector AutoRegressive Models 38 
 

 

Forecasts for each variable in the system are generated in a recursive manner. 
Assuming VAR(1) model described in Equation (2), the one-step-ahead forecasts can 
be written as: 

 
�̂�1,T+1|T = �̂�1 + �̂�11,1�̂�1,𝑇 + �̂�12,1�̂�2,𝑇 

�̂�2,T+1|T = �̂�2 + �̂�21,1�̂�1,𝑇 + �̂�22,1�̂�2,𝑇 
(3) 

This is the same form as Equation (2) except that the errors have been set to zero and 
parameters have been replaced with their estimates. The process can be iterated for all 
future time periods by replacing the unknown values of 𝑦1 and 𝑦2 with their forecasts 
[20]. 

VAR models can be defined “as a directed network of interactions among the 
individual time series” [55], as showed in Equation 2. Generalizing such equation, a 
VAR model of order 𝑑, with the notation VAR(d), can be written for a p-dimensional 
process 𝑌𝑡 = (𝑌𝑡1, … , 𝑌𝑡𝑝) as: 

 𝑌𝑡 = Φ1𝑌𝑡−1 + Φ2𝑌𝑡−2 + ⋯ + Φ𝑑𝑌𝑡−𝑑 + 𝜀𝑡 
𝑉𝑎𝑟(𝜀𝑡) =  Σ𝜀 

(4) 

where Φ1, … , Φ𝑑 are 𝑝 × 𝑝 matrices called transition matrices, which describe the 
temporal relationships among the variables. Σ𝜀 is the error covariance matrix, in which 
additional dependences among the various processes are present, while 𝜀𝑡 represents 
the white noise. As stated above, in forecasting problems the transition matrices have 
to be determined, and this is generally done with simple tools like an Ordinary Least 
Squares (OLS) regression. 

5.1 Sparse Vector AutoRegressive (sVAR) models 
The elements of the transition matrices Φ1, … , Φ𝑑 in Equation 4 are often 

described as being part of a Granger-causal network, while the transition matrices are 
also called adjacency matrices. In macroeconomic analyses the Granger-causal 
networks are determined from a dataset consisting of a stationary time series process 
in the form of a vector {𝑌1, … , 𝑌𝑇}, with 𝑇 generally very large. 

One of the most important issues in VAR modeling is related to the 
identification of relevant variables in the regression. In fact, neglecting relevant 
variables brings to spurious correlations among the time series, meaning that a non-
causal relationship has been determined, due to the absence of such relevant factor. 
This brings to incorrect estimations of the elements of the Granger-causal network, 
with consequent inaccuracies in the forecasts. Such problem has been highly discussed 
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in literature. Christiano et al. [56], for example, states that a counterintuitive increase 
in inflation from the unexpected monetary tightening in the post-war US economy is 
caused by having neglected forward looking variables in the VAR model. 

A high-dimensional VAR framework can help to include all the relevant 
parameters and relationship among them. Nonetheless, such approach may result in 
high standard errors of OLS estimates or even in the infeasibility of the regression 
[57], and such problem is strictly related to the dimensionality of the VAR. Vector 
autoregressive models are intrinsically high-dimensional, considering that the number 
of parameters grows quadratically. In fact, considering to fit a VAR of order 𝑑 for 𝑝 
time series, the number of parameters is given by 𝑑 ⋅ 𝑝2. Furthermore, the need of 
hundreds of variables is increasing in recent applications in different research areas, 
from macroeconomics to genetics. This brings to the need of making structural 
assumption to aim to low-dimensionality [55]. 

Another common approach to manage such dimensionality issue is to force 
some shrinkage on the coefficients of the transition matrices [58], like the Bayesian 
shrinkage, which is the most popular approach [59]. In the recent years the 
implementation of regularization methods in VAR models for time series forecasting 
has been analyzed, especially for methods like the lasso [60] and its variants. Such 
methods are defined as penalized least squares (PLS) optimization problems, and they 
can be efficiently solved with iterative optimization algorithms, such as coordinate 
descent [61] and generalized gradient descent [62]. The shrinkage of coefficients 
towards a zero value makes the matrix of regression coefficients in the VAR model 
sparse, for this reason we refer to sparse VAR (sVAR) models when dealing with such 
methods.  In the paragraphs below, a detailed description of the lasso method and its 
variants is discussed, based on [57]. 

5.1.1 Traditional lasso method 

The lasso (least absolute shrinkage and selection operator) method was firstly 
proposed in [60], while different structural variants can be seen in [63] and [64]. It 
corresponds to a penalized least squares (PLS) method which brings to zero some 
coefficients of the VAR model, and for this reason both estimation and variable 
selection are performed simultaneously. 

Considering a 𝑘 × 1 vector 𝑎 = (𝑎1, … , 𝑎𝑘)′, a = (a1, . . . , ak) 0 , the 𝐿1 and 

𝐿2 norms of 𝑎 are defined respectively as ‖𝑎‖1 = ∑ |𝑎𝑗|𝑘
𝑗=1  and ‖𝑎‖2 = √∑ 𝑎𝑗

2𝑘
𝑗=1 . 

The lasso of a h-step-ahead direct forecast model of a generic time series variable 
𝑦𝑖,𝑡+ℎ is obtained by the problem: 



 Vector AutoRegressive Models 40 
 

 

 
min

𝜇𝑖,𝜙1,𝑖,…,𝜙𝑑,𝑖

∑ ‖𝑦𝑖,𝑡+ℎ − 𝜇𝑖 − ∑ 𝜙𝑗,𝑖
′ 𝑦𝑡+1−𝑗

𝑑

𝑗=1

‖

2

2

+ 𝜆 ∑‖𝜙𝑗,𝑖‖1

𝑑

𝑗=1

𝑇−ℎ

𝑡=𝑑

 (5) 

where 𝜇𝑖 is the intercept of the regression equation and 𝜆 the so called regularization 
parameter. The second term of Equation 5 is the penalty term, which shrinks some 
coefficients towards zero. The sparsity of the transition matrix depends on the value 
of the regularization parameter, the larger is 𝜆, the sparser is the model. In high-
dimensional macroeconomic analyses lasso has some limitations. In fact, in such 
analyses the number of predictors is generally higher than the number of observations, 
while lasso uniquely determines a number of predictors at most equal to the 
observations. Furthermore, macroeconomic variables are often highly correlated, and 
in this case lasso does not perform well in terms of forecasting [60]. 

5.1.2 Elastic net and group lasso 

The elastic net proposed in [63] tries to solve the drawbacks of lasso through 
a combined implementation of the 𝐿1 and 𝐿2 penalties. The related minimization 
problem is: 
 

∑ ‖𝑦𝑖,𝑡+ℎ − 𝜇𝑖 − ∑ 𝜙𝑗,𝑖
′ 𝑦𝑡+1−𝑗

𝑑

𝑗=1

‖

2

2

+ 𝜆 ∑ ((1 − 𝛼)‖𝜙𝑗,𝑖‖1
+ 𝛼‖𝜙𝑗,𝑖‖2

2
)

𝑑

𝑗=1

𝑇−ℎ

𝑡=𝑑

 (6) 

where 𝛼 is a tuning parameter that weights the two penalty functions, and can assume 
the value 0 or 1. Lasso corresponds to 𝛼 = 0, while 𝛼 = 1 leads to the so-called ridge 
regression. In [63] it is described how the elastic net is able to perform well in case of 
high correlations among the variables, and how such method can select more 
predictors than observations. This makes such method suited when dealing with 
macroeconomic data. 

The last approach described here is the group lasso, firstly proposed in [64]. 
This method needs that groups of variables have to be defined in advance, in order to 
automatically include or exclude some sets of variables. Having to firstly specify group 
of variables makes group lasso more restrictive than the elastic net, but when dealing 
with macroeconomic variables this is rarely a problem, considering that such 
parameters have generally specific attributes that help to group them properly. 

Let us have the time series variable 𝑦𝑡 divided into 𝐿 groups. Such variables 

can be then written as 𝑦𝑡 = (𝑦𝑡
1′

, … , 𝑦𝑡
𝐿′

)
′
. The minimization problem for group lasso 

is then: 
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∑ ‖𝑦𝑖,𝑡+ℎ − 𝜇𝑖 − ∑ ∑ 𝜙𝑗,𝑖

𝑙 ′
𝑦𝑡+1−𝑗

𝑙

𝑑

𝑗=1

𝐿

𝑙=1

‖

2

2

+ 𝜆 ∑ ∑ √𝑑𝑙‖𝜙𝑗,𝑖
𝑙 ‖

2

𝑑

𝑗=1

𝐿

𝑙=1

𝑇−ℎ

𝑡=𝑑

 (7) 

where 𝑑𝑙 is the dimension of 𝑦𝑡
𝑙 and 𝜙𝑗,𝑖

𝑙  is the vector of regression coefficient of 

dimension 𝑑𝑙 × 1. In order to avoid favoring high dimension groups √𝑑𝑙 is present in 
the penalty term. Group lasso has also the characteristic that all the coefficient are 
penalized by the 𝐿2 norm, and this means that the whole group of variables is either 
dropped or not. It is also interesting to notice that grouping each variable in single 
groups means having 𝑑𝑙 = 1, leading to the traditional lasso case described in Equation 
5. 

5.1.3 Selection of regularization and tuning parameters 

An important step in lasso methods is to choose an appropriate value for 𝜆 and 
𝛼. In case of series that are not time-dependent, this can be done by cross-validation 
techniques, such as K-fold cross-validation [65]. When dealing with time-dependent 
series, a similar procedure can be applied. The regularization parameters can be, in 
fact, selected by minimizing the Mean Squared Prediction Error (MSPE) of rolling 
window forecasts. The data sample is splitted in two periods, respectively called 
training (𝑡 = 1, … , 𝑇1) and test period (𝑡 = 𝑇1 + 1, … , 𝑇). Then, an iterative procedure 
is implemented, where ℎ step-ahead forecasts of 𝑦𝑖,𝑇1+𝑗 based on the observation 
(𝑦𝑗, … , 𝑦𝑇1+𝑗−ℎ). The MSPE is finally calculated for several values of 𝜆, and the value 
of regularization parameter that minimize such error is selected for the lasso method: 
 

𝑀𝑆𝐹𝐸𝑖,ℎ
𝜆 =

1

𝑇 − 𝑇1
∑ (𝑦𝑖,𝑇1+𝑗 − �̂�𝑖,𝑇1+𝑗|𝑇1+𝑗−ℎ,…,𝑗)

2
 

𝑇−𝑇1

𝑗=1

 (8) 

 
where �̂�𝑖,𝑇1+𝑗|𝑇1+𝑗−ℎ,…,𝑗 is the ℎ step-ahead forecast. In a very similar way the values 
of 𝛼 and 𝜆 are determined for elastic net and group lasso.  
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 Chapter 6 

6.  Application and Validation of VAR Models 

In this thesis, all the analyses and forecasts have been performed in the R 
computing environment, by means of the HDeconometrics package [66], capable 
of estimating the transition matrices of a VAR model through the lasso penalized least 
squares method. 

To perform accurate projections of such datasets it is important to address not 
only the historical trends, but also exploiting the structural interdependencies among 
such sectors. This is the main reason to choose a multivariate regression model like 
VAR over univariate models like ARIMA or Exponential Smoothing, and such 
statement will be discussed by comparing the VAR results with projections performed 
by means of such univariate regression models. 

The main problem of VAR models is the overparameterization derived from 
the number of variables to analyze and coefficients needed to describe all the 
relationships among the lagged values. In such cases, a sparse VAR modelling 
approach comes in hand [67]. In fact, it is reasonable that not every coefficient 
describing the relations among different lagged values introduces significant 
information to improve the regression accuracy, and for this reason a sparse VAR 
model (sVAR) can be implemented, where most of the autoregressive coefficients are 
set equal to zero. The methods to select which parameters can be set to zero are 
automatically implemented by the fitting functions in the R HDeconometrics 
package. 

6.1 Industrial historical dataset 
The analyzed data consists of the monthly industrial production index of six 

different Italian industrial sectors. As stated by the Board of Governors of the Federal 
Reserve System (US) [68], the industrial production index (IPI) is a monthly economic 
indicator measuring real output in the manufacturing, mining, electric, and gas 
industries, relative to a base year. It also measures capacity, estimating the production 
levels that could be sustainably maintained, and capacity utilization, the ratio between 
actual output and capacity. It is generally expressed as an index level relative to a base 
year, and this means that they do not express absolute production volumes, but the 
percentage change in production relative to the base year. Within the general IPI, many 
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other sub-indices provide a detailed look at the output of specific industries’ 

subsectors. 
Figure 20 shows the historical data of the industrial production index of all the 

six Italian industrial sectors, as categorized in TIMES-Italia, during the period 1990-
2020. It shows a clear annual seasonal pattern, and this cannot be neglected when 
constructing a VAR model. 

 
Figure 20: Historical series of the Italian monthly industrial production index for all the industrial subsectors. 

This is done by implementing centered seasonal dummy variables [69], that 
are capable to address pre-specified seasonality patterns. Considering the case of this 
work, where the aim is to forecast monthly data, Table 9 shows the dummy variables 
needed, represented by 𝑑𝑖,𝑡. 

It is important to notice that only eleven dummy variables are needed to code 
twelve categories. That is because the eleventh category, December in this case, is 
captured by the intercept, and is specified when the dummy variables are all set to zero. 
Each coefficient related to the dummy variable can be interpreted as a measure of the 
effect of that category relative to the omitted category [20]. In such case, the coefficient 
of 𝑑1,𝑡 associated with January will measure the effect of January on the forecast 
variable compared to the effect of December. 

Table 9: Seasonal dummy variables for monthly data forecasting. 

 𝒅𝟏,𝒕 𝒅𝟐,𝒕 𝒅𝟑,𝒕 𝒅𝟒,𝒕 𝒅𝟓,𝒕 𝒅𝟔,𝒕 𝒅𝟕,𝒕 𝒅𝟖,𝒕 𝒅𝟗,𝒕 𝒅𝟏𝟎,𝒕 𝒅𝟏𝟏,𝒕 
01/1990 1 0 0 0 0 0 0 0 0 0 0 
02/1990 0 1 0 0 0 0 0 0 0 0 0 
03/1990 0 0 1 0 0 0 0 0 0 0 0 
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04/1990 0 0 0 1 0 0 0 0 0 0 0 
05/1990 0 0 0 0 1 0 0 0 0 0 0 
06/1990 0 0 0 0 0 1 0 0 0 0 0 
07/1990 0 0 0 0 0 0 1 0 0 0 0 
08/1990 0 0 0 0 0 0 0 1 0 0 0 
09/1990 0 0 0 0 0 0 0 0 1 0 0 
10/1990 0 0 0 0 0 0 0 0 0 1 0 
11/1990 0 0 0 0 0 0 0 0 0 0 1 
12/1990 0 0 0 0 0 0 0 0 0 0 0 
01/1991 1 0 0 0 0 0 0 0 0 0 0 

… … … … … … … … … … … … 
 

It has to be noticed that, without a seasonal adjustment, it would be difficult to 
process any kind of trend that the series can have, considering the high fluctuations of 
the data. 

6.2 Cross-validation procedures for VAR model 
construction 
An important step for the VAR model construction is selecting the best number 

of lagged variables in the system. Information criteria such as Akaike, Bayesian and 
Hannan-Quinn criteria (AIC, BIC and HQC respectively) are generally used to select 
the number of lags to be included [20], but since we are only interested in forecasting, 
a cross-validation approach has been utilized. Cross-validation is widely employed in 
regression and prediction of time series to assess the accuracy of a forecast model by 
averaging predictive errors across mutually exclusive data subsamples. Estimates can 
then be used to select the most accurate model among multiple candidates [70].  

More in detail, a time-series cross-validation procedure based on a rolling 
forecast origin has been performed [20]. This is an iterative process, where the first 
iteration has consisted in considering a two-years training set in the period 1990-1991. 
The test set comprises a one-step ahead forecast (i.e., the projection at January 1992), 
and from this a forecast error can be estimated comparing the result with the historical 
value. In the second iteration, the training set is increased by one month ahead, and the 
test set consists of the forecast at February 1992. This procedure is iterated until the 
training set corresponds to the last month in the historical dataset. Figure 21 shows the 
first six steps of the procedure, considering the historical values of the chemicals 
industrial production index as an example. 
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Figure 21: Cross-Validation procedure for model selection. 

The final output of this procedure is a vector containing the various forecast 
errors computed, and a Root Mean Square Error (RMSE) can be determined to have a 
quantitative evaluation of the overall forecast accuracy of the selected model. In fact, 
such cross-validation has been performed for various VAR models with different 
number of lags, and it can be seen that the most accurate model with the lowest RMSE 
is the VAR(12) model, that is with 12 monthly lagged values, see Figure 22. This can 
be expected given the strong annual seasonality of the time series analyzed. 

 
Figure 22: Selection of the number of lags from RMSE minimization. 
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6.3 VAR model projections results 
The validation of the forecast model described above has been made by 

considering the historical series up to 2017 and performing forecasts starting from 
2018 up to 2040, comparing the results with the projections considered in the Italian 
Integrated National Energy And Climate Plan (PNIEC) [28], which in turn are 
projections taken from the EU Reference Scenario 2016 [29]. The results of the 
validation are reported in Figure 23 - Figure 28, showing the post-2020 projections of 
the VAR model, along with their 95% confidence bounds.  

Figure 23 shows the projections of Iron and steel production, and as it can be 
seen how the pre-pandemic projections seem to well follow the PNIEC projections, 
especially in the mid- and long-term. Even though major differences arise for the first 
years of the projections, VAR projections are more in line with the decrease of 2019 
registered in the historical data, compared to PNIEC. 

Post-pandemic VAR projections present a fast recovery from the crisis, as 
expected from the analysis on the historical data performed in Paragraph 4. 
Furthermore, the long-term trend presents many similarities with the PNIEC 
projections, with only a slighter lower steepness. Note that, despite the growing rate, 
the production remains significantly smaller than that it was in 2007 (peak level), but 
Post-pandemic projections are able to reach pre-pandemic (2019) historical levels 
already starting from 2022. Eventually, the Iron and steel sector shows in 2040 just a 
- 3.5 % deviation with respect to PNIEC and Pre-pandemic projections. 

 
Figure 23: Iron and steel industrial production projections. The light red area encloses the 95 % confidence 

bounds related to Pre-pandemic projections, while the light blue area represents the range enclosed within the 95 
% confidence bounds related to Post-pandemic projections 
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Figure 24 shows the projections of Non-ferrous metals production. In this case 
the similarities with PNIEC projections can be noticed mostly in the long-term. 
Nonetheless, similarly to iron and steel, the pre-pandemic VAR projections better 
follow the decreasing trend of the latest years, further dejected by the 2020 economic 
crisis. 

Post-pandemic projections present a strong resilience, presenting again a shock 
response similar to the one had after the Great Recession. Even in this case, Post-
pandemic projections are able to reach pre-pandemic historical levels starting from 
2022, as expected in Paragraph 4.2, but 2000 peak production levels are never reached 
again. In the long-term there is still an increasing trend, even if slower than that of Pre-
pandemic projections. Non-ferrous metals production in 2040 is computed to be just 
6.5 % lower than in PNIEC and Pre-pandemic projections. 

 
Figure 24: Non-ferrous metals industrial production projections. The light red area encloses the 95 % confidence 
bound related to Pre-pandemic projections, while the light blue area represents the range enclosed within the 95 

% confidence bounds related to Post-pandemic projections 

Figure 25 shows the projections for the chemical sector. Such sector presents 
a stronger increasing trend with respect to the previously shown Iron and steel and 
Non-ferrous metals, but the pre-pandemic VAR projections present again a similar 
behavior to the one discussed above. Pre-pandemic projections present a first 
stagnation phase up to 2020 which better follows the historical data with respect to 
PNIEC, while in the long term the two projections tend to overly. 

Post-pandemic projections show a small bouncing effect on the short-term, in 
line with the post-2009 crisis recovery behavior, and no stagnation in the medium term. 
However, the pandemics has a very time-limited effect on this set of forecasts, and the 
growth highlighted by the historical series is confirmed in projections using both Pre- 
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and Post-pandemic drivers. The Chemicals sector is the one showing the highest 
growth rate and the highest absolute growth with respect to the 2006 value, despite the 
pandemics, but also a wide range between PNIEC/Pre-pandemic and Post-pandemic 
projections, with a 6.25 % difference. 

 
Figure 25: Chemicals industrial production projections. The light red area encloses the 95 % confidence bound 

related to Pre-pandemic projections, while the light blue area represents the range enclosed within the 95 % 
confidence bounds related to Post-pandemic projections. 

The projections of the non-metallic minerals sector production are reported in 
Figure 26. Similarly to the other sectors discussed above, the short-term bounce is 
more in line with the decreasing trend of the historical data in 2019, compared to 
PNIEC results. Such bounce is then followed by a strong increasing trend, being able 
to reach in 2040 comparable levels with respect to 2006. Both in the mid- and long-
term, Pre-pandemic projections are mostly overlying the PNIEC curve. 

Post-pandemic projections also present a strong increasing trend, with a full 
crisis recovery reported in 2023, as expected from the historical analysis described in 
Paragraph 4.3. In 2040, such trend in the Post-pandemic projections leads to a 4.55 % 
difference in 2040 compared to PNIEC/Pre-pandemic. 
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Figure 26: Non-metallic minerals industrial production projections. The light red area encloses the 95 % con-

fidence bound related to Pre-pandemic projections, while the light blue area represents the range enclosed within 
the 95 % confidence bounds related to Post-pandemic projections. 

The results for the Pulp, paper and printing sector are presented in Figure 8, 
and in this case of the Pre-pandemic trend, VAR projections are in line with PNIEC 
even in the short-term. The strong increasing trend leads to 2007 values, which present 
the peak in the analyzed period, already in 2026. 

Post-pandemic projections tend to follow in 2021 the increasing bounce started 
in the first months of the year, as described in Paragraph 4.5, reaching 2018 values. In 
the long-term the trend is increasing, but with a slower pace with respect to Pre-
Pandemic/PNIEC projections, and the 2007 values are reached in 2038. The reason for 
the lower increase in the projection of Pulp and paper production can be investigated 
by giving a look at its historical series, and considering that the recovery from the 2009 
crisis was very slow. The results of the projections lead to a 10.5 % difference between 
PNIEC/Pre-pandemic and Post-pandemic projections in 2040. 



 Application and Validation of VAR Models 50 
 

 

 
Figure 27: Pulp, paper and printing industrial production projections. The light red area encloses the 95 % 

confidence bound related to Pre-pandemic projections, while the light blue area represents the range enclosed 
within the 95 % confidence bounds related toPost-pandemic projections. 

The remainder of the industrial production is grouped under “Other industries”, 

even though it represents an important share of the total Italian industrial production. 
Results for Other industries production trend is shown in Figure 28. The Pre-pandemic 
VAR future projections do not differ much from the results of Non-metallic minerals 
in Figure 26, with an initial bounce that follows the historical values of 2019. The main 
difference from the Non-metallic minerals can be seen in the long-term, where a 
flattening trend starts to happen in 2026, contrary to PNIEC. Nevertheless, the Pre-
pandemic projections acceptably follow the PNIEC trend in the period of interest for 
the analysis. 

The Post-pandemic projections, on the other hand, present a good response 
from the pandemic crisis in 2021, in line with what it has been showed in Paragraph 
4.6. It follows a stagnation up to 2026, which is also the year where a full recovery 
from the crisis is reported. In the long-term, the steepness of the projections’ curve 

presents higher values than that of Pre-pandemic projections, more in line with PNIEC 
results. The difference between PNIEC/Pre-pandemic and Post-pandemic projections 
in 2040 for such sector is of 3.65 %, and, differently from Pulp and paper production, 
2007 peak production levels are never reached again. 
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Figure 28: Other Industries industrial production final projections. The light red area encloses the 95 % con-

fidence bound related to Pre-pandemic projections, while the light blue area represents the range enclosed within 
the 95 % confidence bounds related to Post-pandemic projections 

In Table 10, the plotted behavior of the pre-pandemic VAR projections is 
translated in terms of average annual growth rates and compared to the annual growth 
rates of the added values of the industrial sectors in the baseline and PNIEC scenarios, 
taken as reference for the model validation. 

Table 10: Average annual growth rates of VAR projections and of the added value of the industrial sectors in the 
PNIEC scenarios (in brackets). 

 
2018-2020 
[%] 

2020-2025 
[%] 

2025-2030 
[%] 

2030-2035 
[%] 

2035-2040 
[%] 

Iron and steel -0.57 (0.43) 0.36 (0.04) 0.27 (0.04) 0.20 (0.23) 0.20 (0.23) 
Non-ferrous metals 0.20 (1.1) 0.64 (0.59) 0.52 (0.30) 0.46 (0.32) 0.44 (0.30) 
Chemicals 0.24 (1.4) 1.4 (0.96) 1.3 (0.91) 1.3 (1.2) 1.2 (1.4) 
Non-metallic 
minerals 

0.46 (1.8) 2.1 (1.5) 1.8 (1.4) 1.5 (1.3) 1.3 (1.5) 

Pulp, paper and 
printing 

0.94 (1.2) 1.1 (1.0) 1.1 (0.83) 1.1 (1.1) 1.0 (1.3) 

Other industries 0.61 (0.80) 0.88 (0.49) 1.0 (0.67) 0.80 (0.90) 0.61 (0.96) 

As it can be seen, such growth rate values present various differences for the 
VAR model results and the PNIEC projections, especially in the short-term. Note, 
however, that the 2019 projections of the VAR model seem to better follow the 
historical decreasing trend, and this good short-term accuracy is important to have 
reliable forecasts of the post-pandemic recovery. Table 11 shows the absolute values 
of such projections, in terms of average annual industrial production index, expressed 
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as industrial output normalized as a base value of 100 at the year 2005. The percentage 
deviations between the values are also showed, and it can be seen how in the short-
term, every VAR projection confirms slightly lower results than the PNIEC values, 
but better following the decreasing historical values, as seen in the previous figures. In 
the long-term, all the computed results tend to get closer to the reference projections, 
by maintaining a slight underestimation for the whole period as for iron and steel and 
non-ferrous metals, or by also having overestimations in some years. Nonetheless, the 
difference in the two results is low, as already qualitatively visible from the figures 
above. 

Table 11: Average annual industrial production projections according to the VAR model adopted in this paper 
and PNIEC projections (base 2015 = 100), along with the percentage deviation of the VAR value with respect to 

PNIEC estimates. 

  2020 2025 2030 2035 2040 

Iron and steel 
VAR 105.3 107.2 108.6 109.8 110.9 
PNIEC 108.5 108.7 109.0 110.2 111.5 
Percentage deviation [%] 3.04 1.38 0.368 % 0.364 0.541 

Non-ferrous  
metals 

VAR 107.8 111.3 114.1 116.8 119.4 
PNIEC 110.8 114.1 115.8 117.7 119.5 
Percentage deviation [%] 2.81 2.56 1.47 0.790 0.0922 

Chemicals 
VAR 109.0 116.7 124.6 132.6 140.8 
PNIEC 112.8 118.4 123.9 131.6 141.2 
Percentage deviation [%] 3.52 1.43 - 0.613 - 0.774 0.268 

Non-metallic  
minerals 

VAR 106.4 117.9 128.7 138.4 147.3 
PNIEC 110.8 119.4 127.7 136.2 146.8 
Percentage deviation [%] 4.14 1.22 -0.782 - 1.55 - 0.399 

Pulp, paper and  
printing 

VAR 102.8 108.6 114.9 121.3 127.7 
PNIEC 103.5 108.8 113.3 119.5 127.2 
Percentage deviation [%] 0.673 0.115 - 1.37 - 1.46 - 0.398 

Other  
industries 

VAR 106.8 111.6 117.5 122.2 126.0 
PNIEC 109.3 112.0 115.8 121.1 127.0 
Percentage deviation [%] 2.34 0.374 -1.44 -0.939 0.798 

Table 12 represents the industrial production VAR projections with and 
without the 2020 pandemic effects. Overall, all the industrial sectors seem to be 
affected by the crisis, but with different amplitudes, both in the short- and long-term. 
In fact, sectors like Chemicals and Pulp and paper present a better response at year 
2020 to the pandemic crisis, differently from the other sectors. The Iron and steel and 
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Other Industries industrial sectors seem to get closer to the pre-pandemic results in the 
long-term, while the rest tend to follow the same trend of the pre-pandemic projections, 
maintaining constant the shift in the values. An exception is the Pulp, paper and 
printing sector, that presents in the long-run a larger difference in the two projections. 

Table 12: Industrial production pre- and post-pandemic VAR projections. Average annual values of the monthly 
industrial production index (base 2015 = 100). 

 2020 2025 2030 2035 2040 

 Pre Post Pre Post Pre Post Pre Post Pre Post 

Iron and steel 105.3 89.76 107.2 104.8 108.6 105.7 109.8 106.3 110.9 107.0 

Non-ferrous 
metals 

107.8 95.41 111.3 106.0 114.1 108.1 116.8 110.0 119.4 111.6 

Chemicals 109.0 103.5 116.7 109.7 124.6 115.4 132.6 123.2 140.8 132.0 

Non-metallic 
minerals 

106.4 90.46 117.9 108.4 128.7 120.1 138.4 130.9 147.3 140.6 

Pulp, paper and 
printing 

102.8 96.16 108.6 102.4 114.9 106.1 121.3 110.2 127.7 114.3 

Other industries 106.8 92.83 111.6 104.7 117.5 109.0 122.2 115.3 126.0 121.4 

6.4 Univariate regression results comparisons 
It has been said how demand drivers (population, GDP, number of households, 

etc.) in the TIMES framework are obtained externally and given as inputs. For 
example, applied general equilibrium models like GEM-E3 can be used to derive such 
drivers trajectories [10]. One of the main advantages of using such general equilibrium 
models is having an internal coherence of the socio-economic drivers’ projections 

given by analyzing the economy as a whole, without neglecting any type of 
interdependence among its various actors. The limitations of such models have to be 
found in the high amount of data requirements and human capital investment required. 

Projections like the ones discussed in this work can be non-trivial to perform 
when dealing with very specific data such as the various industrial subsectors, and at 
this it is added the issue of a scarce literature. From such difficulties it has arisen the 
need of having a simple model that is capable of perform accurate forecasts, starting 
from small datasets and not biased from ad-hoc assumptions based on some aprioristic 
expectations. 
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Time series regression models represent the most reasonable choice, given 
their popularity for econometric projections due to their implementation simplicity. 
Exponential smoothing (ES) and ARIMA models represent the two most widely used 
models to time series forecasting, providing complementary approaches to the 
problem. In fact, while ES models analyze the trend and seasonality in the data to 
forecast, ARIMA models focus on the autocorrelations that can characterized the data 
[71]. 

Nevertheless, when trying to perform projections of multiple time series, such 
models cannot address any structural interdependencies that can arise among the data. 
Multivariate regression models like VAR are the most natural tool to consider such 
correlations among the different time series to forecast, as already stated, and for this 
reason they are capable to maintain, at least in part, such internal coherence discussed 
for the general equilibrium models. 

In the following paragraph, a small description of the ARIMA and ES models 
it is carried on. Successively, the Pre- and Post-pandemic projections performed by 
means of such models are showed and compared to the PNIEC projections. Highlight 
the criticalities of such models  results is useful to understand the need of having 
chosen for this analysis a more complex model like VAR3 over the most common time 
series forecasting models. 

 

6.4.1 ARIMA and Exponential Smoothing general description 

A quick description of ARIMA and Exponential Smoothing models is 
presented in this section, based on [20]. 

ARIMA models are used to describe the pattern of time series data, generally 
for forecasting purposes. They may include autoregressive terms (AR), moving 
average terms (MA), and differencing operations (I). They differ from the exponential 
smoothing models because they look for the autocorrelations in the data. 

An extension of this family of models, is the so-called SARIMA, used to model 
time series with seasonal components, i.e., a regular pattern of changes in the data that 
repeats over a precise time period. 

Their general form is written as follows: 

𝐴𝑅𝐼𝑀𝐴 (𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑆 

 
3 The complexity of VAR models is intrinsically given by the fact that VAR models can be seen as 

a generalization of univariate regression models [71], as it will also be clear in the following 
paragraphs. 
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where the seasonal part of the model is written using the upper notation. The 𝑆 
represents the seasonality. 

The non-seasonal and seasonal autoregressive terms are respectively 
represented by 𝑝 and 𝑃, while 𝑞 and 𝑄 represent the moving average terms. The terms 
𝑑 and 𝐷 indicate respectively the presence of a non-seasonal and seasonal differencing 
operation, in order to eliminate any kind of nonstationary behavior. 

Exponential Smoothing is used to forecast univariate time series data, where 
the prediction is a weighted sum of past observation, with the weights decaying 
exponentially as the observations get older. This is an alternative of the ARIMA 
methods, and they are often used together for benchmarking and comparisons of the 
results. 

This is a big family of methods, and like the ARIMA models they can be 
classified depending on the trend and seasonal components. 

6.4.2 ARIMA and ES models construction 

All the analysis and forecasts have been performed in R. A first step has been 
defining the best ARIMA and ES models that minimize the AIC through the R built-
in functions auto,arima() and ets(). Because the time series is relatively long, a training 
and a test set have been used to compare the models, rather than time series cross-
validation [6]. This brings to much faster results, without losing too much accuracy for 
not having considered all the data at our disposal. A training set for the model selection 
from January 1990 to December 2013, and a test set from January 2014 to December 
2019 to compare the forecasting accuracy of the models have been defined. The year 
2020 has been excluded in this part of the analysis on purpose, because the outliers 
from the pandemic crisis could bias this selection phase. In fact, as much as we are 
interested in modeling the crisis recovery, the work also aims at a long-run forecast, 
where the global trend is strongly affected by outliers. As the results will show, the 
presence of the 2009 recession (similar in some ways to the present crisis) in the 
training dataset seems to bring to reasonable results in terms of post-pandemic 
recovery, having similarities with the post-2009 trend. 

The nowcasts from 2014 to 2019 performed by the various models have been 
compared to the real data. The final results consist of a weighted average forecast 
combination [7], where the weights are higher for the models that have shown lower 
MAPE in the nowcasts. It is, in fact, well known how forecast combinations often lead 
to increased forecast accuracy [8][9]. 

As last step, all the historical and forecasted data have been annualized through 
averaging the monthly values.  
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Here follows a practical example describing all the various steps of the analysis 
for one of the industrial subsectors (pulp, paper and printing), while all the results are 
shown below. 

The annualized historical data well shows the overall trend of the series, as 
well as the subsector’s behavior to the 2009 crisis. This is an important information 

for critically assess the forecast results. For example, in Figure 2 it can be seen how 
for the pulp and paper sector the general increasing trend has been stopped by the 2009 
recession, and the further recovery has been very small. From this, it can be expected 
a very small recovery from the today crisis. 

 
Figure 29: Pulp, Paper and Printing annualized production index (2015 = 100) 

The R function auto.arima() auto selects the ARIMA model with the lowest 
AIC. From the Table 13 it can be seen that the 𝐀𝐑𝐈𝐌𝐀(𝟏, 𝟏, 𝟑)(𝟎, 𝟏, 𝟏)𝟏𝟐 has the 
lowest AIC. 

Table 13: Performances of different ARIMA models considering non-seasonal differencing of the time-series. 

Model AIC Model AIC 
𝐀𝐑𝐈𝐌𝐀(𝟎, 𝟏, 𝟐)(𝟎, 𝟏, 𝟏)𝟏𝟐 1571.22 𝐀𝐑𝐈𝐌𝐀(𝟐, 𝟏, 𝟎)(𝟎, 𝟏, 𝟏)𝟏𝟐 1569.66 
𝐀𝐑𝐈𝐌𝐀(𝟎, 𝟏, 𝟐)(𝟐, 𝟏, 𝟎)𝟏𝟐 1577.73 𝐀𝐑𝐈𝐌𝐀(𝟐, 𝟏, 𝟎)(𝟐, 𝟏, 𝟎)𝟏𝟐 1566.34 
𝐀𝐑𝐈𝐌𝐀(𝟎, 𝟏, 𝟑)(𝟎, 𝟏, 𝟏)𝟏𝟐 1563.50 𝐀𝐑𝐈𝐌𝐀(𝟐, 𝟏, 𝟏)(𝟎, 𝟏, 𝟏)𝟏𝟐 1564.91 
𝐀𝐑𝐈𝐌𝐀(𝟎, 𝟏, 𝟑)(𝟐, 𝟏, 𝟎)𝟏𝟐 1569.06 𝐀𝐑𝐈𝐌𝐀(𝟐, 𝟏, 𝟏)(𝟐, 𝟏, 𝟎)𝟏𝟐 1566.48 
𝐀𝐑𝐈𝐌𝐀(𝟎, 𝟏, 𝟒)(𝟎, 𝟏, 𝟏)𝟏𝟐 1563.29 𝐀𝐑𝐈𝐌𝐀(𝟐, 𝟏, 𝟐)(𝟎, 𝟏, 𝟏)𝟏𝟐 1566.74 
𝐀𝐑𝐈𝐌𝐀(𝟏, 𝟏, 𝟐)(𝟎, 𝟏, 𝟏)𝟏𝟐 1567.39 𝐀𝐑𝐈𝐌𝐀(𝟑, 𝟏, 𝟎)(𝟎, 𝟏, 𝟏)𝟏𝟐 1567.24 
𝐀𝐑𝐈𝐌𝐀(𝟏, 𝟏, 𝟐)(𝟐, 𝟏, 𝟎)𝟏𝟐 1572.12 𝐀𝐑𝐈𝐌𝐀(𝟑, 𝟏, 𝟎)(𝟐, 𝟏, 𝟎)𝟏𝟐 1566.93 
𝐀𝐑𝐈𝐌𝐀(𝟏, 𝟏, 𝟑)(𝟎, 𝟏, 𝟏)𝟏𝟐 1562.23 𝐀𝐑𝐈𝐌𝐀(𝟑, 𝟏, 𝟏)(𝟎, 𝟏, 𝟏)𝟏𝟐 1566.95 
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Despite this first analysis, forecasting with this model brings to completely 
inaccurate results. Figure 30 well shows such inaccuracy, considering the diverging 
confidence bounds and the strong decrease in the projections, contrarily from what it 
is expected given the historical trend. 

 
Figure 30: Forecast results for ARIMA(1,1,3) (0,1,1)12 

Even choosing other models in the table do not improve the accuracy. For this 
reason, the model selection has been performed again by forcing the function 
auto.arima() to work without non-seasonal differencing. The final models have been 
chosen for comparison (2 ARIMA and 1 ES): 

• 𝐀𝐑𝐈𝐌𝐀(𝟑, 𝟎, 𝟎)(𝟎, 𝟏, 𝟐)𝟏𝟐:  AIC = 1535.86 
• 𝐀𝐑𝐈𝐌𝐀(𝟑, 𝟎, 𝟎)(𝟐, 𝟏, 𝟎)𝟏𝟐 𝐰𝐢𝐭𝐡 𝐝𝐫𝐢𝐟𝐭: AIC = 1564.82 
• 𝐄𝐓𝐒(𝐀, 𝐀𝐝, 𝐀): AIC = 2461.5 

 
Table 14 summarizes the MAPE determined from the nowcasts of each model and the 
real data. 

 
Table 14: Final selection of the univariate regression models for performing the forecast combination 

Model MAPE [%] 
𝐀𝐑𝐈𝐌𝐀(𝟑, 𝟎, 𝟎)(𝟎, 𝟏, 𝟐)𝟏𝟐 4.282 

𝐀𝐑𝐈𝐌𝐀(𝟑, 𝟎, 𝟎)(𝟐, 𝟏, 𝟎)𝟏𝟐 𝐰𝐢𝐭𝐡 𝐝𝐫𝐢𝐟𝐭 4.976 
𝐄𝐓𝐒(𝐀, 𝐀𝐝, 𝐀) 4.292 

 
At this point, the three models can be combined to obtain the final results. As 

stated above, the forecast combination consists of a weighted average of the forecasts 
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with respect to their MAPE value in the training. In this case, the ARIMA model 
without drift has the highest weight, while the ARIMA model with drift has the lowest. 

The results of the projections for the Pulp and paper and Non-Metallic minerals 
subsectors are presented in Figure 31 – Figure 32. It is showed how the Pre-Pandemic 
and Post-pandemic projections present very similar long-term linear trends, as if they 
were shifted horizontally. The two Pre-pandemic projections highly differ from the 
PNIEC projections, which present a higher general increase up to 2040. Compared 
with the VAR projections in Figure 26 and Figure 27, a higher inaccuracy is also 
present in terms of amplitude of the confidence bounds, ranging in 2040 in an interval 
much higher than the one of the entire historical dataset. 

 
Figure 31: ARIMA and ES forecast combination of the Pulp and paper sector. The red and blue areas represent 

the 95 % confidence bounds of respectively the Pre-pandemic and Post-pandemic projections. 
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Figure 32: ARIMA and ES forecast combination of the Non-metallic minerals sector. The red and blue areas 

represent the 95 % confidence bounds of respectively the Pre-pandemic and Post-pandemic projections. 

Furthermore, the decreasing trend in the projections of Non-metallic minerals 
is a perfect example of the limitations that univariate regression models like ARIMA 
and ES present in this type of analyses. In fact, if on one hand the projections for such 
sector seem to perform well in following the general historical trend, the final results 
go in a completely opposite direction with respect to PNIEC. This is mostly due to the 
fact that such models do not work with any information on the linkages that can be 
present among the various industrial sectors, differently from multivariate regression 
models like VAR. In fact, in the VAR results showed in Figure 26, the increase of the 
Non-metallic minerals industrial production projections derives from having 
considered such relationships among the different sectors. 

For this reasons, the advantages of having chosen a multivariate regression 
model to perform such analysis are clear. In fact, VAR models have proven to be able 
to partially recreate one of the main strengths of general equilibrium models, that is 
the internal coherence among the various sectors that have to be analyzed4. The only 
drawback can be related to the overall accuracy in terms of the confidence bounds of 
the projections, which remain relatively high. However, the amplitude of such intervals 
can be exploited when performing the energy consumption projections by means of a 
sensitivity analysis. Such analysis have the advantage of defining different future 
pathways without the need of defining any constraint, differently from what it is 
generally done in a scenario analysis approach.  

 
4 Such internal coherence can be defined as partial being that it is based only on mathematical 

relationships (i.e., the correlations among the time-series), and not on macroeconomic assumptions. 
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 Chapter 7 

7.  Energy consumption projections 

Once industrial production projections are computed via VAR models and 
validated against PNIEC projections, their application to an energy system modeling 
framework is presented here, using the TIMES-Italia model deeply discussed in 
Chapter 1 and focusing on the outcomes for the Italian industrial sector. 

Both Pre-pandemic and Post-pandemic industrial production projections are 
used to act as drivers in Equation 1 for the calculation of energy service demand 
throughout a time scale from 2006 to 2040. The time horizon is divided into a user-
chosen number of time-periods, each period containing a (possibly different) number 
of years, which are then identified according to a single milestone year per period [11]. 
The current version of TIMES-Italia is characterized by time intervals with increasing 
amplitude: the first two periods represent single years, then the duration of each time 
step increases to two years until 2022, to five years between 2025 and 2030, and to ten 
years between 2030 and 2040. Therefore, the identified milestone years are presented 
in Table 15. 

Table 15: Milestone years considered in the TIMES-Italia 

Milestone years → 2006 2007 2008 2010 2012 2014 
 2016 2018 2020 2022 2025 2030 2040 

For this reason, even though industrial production drivers were calculated in 
this paper for each single year after 2018 (or 2020 in the case of Post-pandemic 
projections), the remaining drivers calculated through GEM-E3 follow the 
abovementioned time-step resolution. As TIMES interpolates the user-defined 
timeseries data (among which drivers) only for the milestone years, and then uses the 
value at the milestone year as a representative value for the whole period [9], the 
computed industrial production rates are averaged to representative values for each 
milestone years in order to be used in TIMES-Italia. 

Since energy service demands for the industrial sector identified in TIMES-
Italia exactly match physical industrial production, elasticities from Equation 1 are set 
to a value equal to 1, making the industrial production growth both driver and service 
demand growth rate. 

Those demand drivers are then coupled to the highly technologically detailed 
Reference Energy System encompassed in TIMES-Italia and described in Chapter 2 
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to calculate the exact match of energy supply and demand needed to satisfy the given 
energy service demand. 

Results from a business as usual (BAU) scenario are presented here, without 
considering the adoption of any particular policy measure neither to contrast the 
increase of CO2 emission nor any limitation on the use of specific energy carriers e.g., 
coal and gas, just to show the effects of the modified drivers on the energy 
consumption pattern when applied to TIMES-Italia. 

In Paragraph 7.1 it will be described a backcasting analysis concerning the 
TIMES-Italia results compared to the Eurostat balances [30] has been performed, in 
order to validate such results with the real data. In fact, as already stated in Chapter 2, 
one of the most important advantages of starting the TIMES model optimization in 
2006 is the possibility of performing a validation procedure based on the comparison 
of the first year results with historical data. 

The first, and most expected outcome from Figure 10, which presents the total 
energy consumption patterns in the 6 Italian industrial subsectors modeled in TIMES-
Italia and the whole industry sector, is that lower demand corresponds to lower energy 
consumption, as in the case of projections obtained using Post-pandemic industrial 
productions. 

7.1 Energy final consumption backcasting analysis 
Concerning the benchmark against Eurostat historical series for the period 

2006-2019, the Iron and steel is one of the most critical subsectors in terms of 
inconsistencies between the TIMES-Italia results and the historical data. Figure 33 
shows how TIMES-Italia seems to overestimate the energy consumption starting 
levels for the iron and steel sector. The difference keeps happening throughout the 
whole backcasting time scale and is reflected for the total industrial energy 
consumption. The initial 45 PJ difference in 2006 is constantly flattened due to the 
strongly decreasing energy consumption trend, resulting from the uptake of the electric 
arc furnace for steel production. Another important point to highlight is how the drop 
in energy consumption in 2009 due to the crisis is not present in TIMES-Italia due to 
how the milestone years are defined, but this is a minor issue considering that the 
trends of the backcasting results and of the Eurostat data present the same steady 
decrease. 
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Figure 33: Energy consumption backcasting for the Iron and steel subsector using TIMES-Italia. The TIMES-

Italia backcasting is benchmarked against Eurostat historical series 2006-2019. 

Figure 34 shows the backcasting analysis for the Non-ferrous metals subsector. 
In this case, the starting point corresponds to the one of the Eurostat balances, and the 
two trends are comparable in the whole period of the analysis. The major difference 
can be found in the year 2008, where TIMES-Italia results show a higher decrease than 
the one in the Eurostat values. In fact, TIMES-Italia seems to anticipate the decrease 
happened up to 2013, but the differences between the two curves remain reasonably 
small. 

 
Figure 34: Energy consumption backcasting for the Non-ferrous metals subsector using TIMES-Italia. The 

TIMES-Italia backcasting is benchmarked against Eurostat historical series 2006-2019. 

The energy consumption of the Non-metallic minerals sector presents a very 
similar starting point with respect to the Eurostat data in 2006, as showed in Figure 35. 



 Energy consumption projections 63 
 

 

Furthermore, the differences between the two curves remain at acceptable values in 
the whole period from 2006 to 2019, with the TIMES-Italia results mildly 
overestimating the real energy consumption. Similarly to the other sectors, the effect 
of the 2009 crisis is lowly anticipated, as expected due to the definition of the milestone 
years. 

 
Figure 35: Energy consumption backcasting for the Non-metallic minerals subsector using TIMES-Italia. The 

TIMES-Italia backcasting is benchmarked against Eurostat historical series 2006-2019. 

Along with Iron and steel, the Chemicals sector presents the highest deviation 
from the Eurostat values, as showed in Figure 36. In such sector, the initial 39 PJ 
difference between Eurostat and TIMES-Italia consumption in 2006 is slowly 
broadened due to the lower decreasing rate in energy consumption in TIMES-Italia. 
Furthermore, TIMES-Italia does not present any decrease in 2007 compared to the 
Eurostat, and the 2009 crisis effect is more moderate. 
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Figure 36: Energy consumption backcasting for the Chemicals subsector using TIMES-Italia. The TIMES-Italia 

backcasting is benchmarked against Eurostat historical series 2006-2019. 

Pulp and paper is the sector presenting the most similarities in terms of energy 
consumption with respect to the Eurostat balance, as showed in Figure 37. The starting 
point in 2006 is practically the same as Eurostat, and the two curves are overlying in 
many points. Differently from the other sectors discussed above, the first three years 
of the backcasting are perfectly coherent with the historical data, resulting in a detailed 
representation of the 2009 crisis effects. 

 
Figure 37: Energy consumption backcasting for the Pulp and paper subsector using TIMES-Italia. The TIMES-

Italia backcasting is benchmarked against Eurostat historical series 2006-2019. 

The Other industries subsector corresponds to the highest share of energy 
consumption with respect to the other sectors, as showed in Figure 38. For this reason, 
the high similarities both in the initial value in 2006 and in the whole trend between 
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TIMES-Italia results and Eurostat data present an important point in favor of the 
reliability of such model concerning the forecasting results. Similarly on how it has 
been seen in other industrial subsectors, TIMES-Italia results are overestimated 
compared to the Eurostat, but the differences remain acceptable. 

 
Figure 38: Energy consumption backcasting for the Other industries subsector using TIMES-Italia. The TIMES-

Italia backcasting is benchmarked against Eurostat historical series 2006-2019. 

The main reason for the different starting points of TIMES-Italia results and 
Eurostat data is to be found in the change of the accounting method for the compilation 
of Eurostat energy balances. Indeed, TIMES-Italia calibration was performed using 
the 2009 version of the IEA energy balances for OECD countries [27], before the 
update in the accounting methodology. 

Figure 39 shows that such differences are not negligible when the energy 
consumption of the total industry sector is considered, with a constant overestimation 
of TIMES-Italia. Such  issue can be solved by a careful recalibration of the model, 
starting from the energy balances in the base year. Nonetheless, such results are 
acceptable for the analysis performed in this work, considering that the general trend 
is of higher importance over the actual values for assessing the results response to a 
change in the input drivers. In fact, analyzing the change of the Industrial sector 
forecasts due to the pandemic crisis means, above all, comparing the general trends of 
Pre- and Post-pandemic projections, together with the historical trends. Figure 39 
highlights such strong similarity between the lowering model results values and the 
Eurostat data. 
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Figure 39: Energy consumption backcasting for the total industry sector using TIMES-Italia. The TIMES-Italia 

backcasting is benchmarked against Eurostat historical series 2006-2019. 

7.2 Energy final consumption forecasting results 
Even though the economic shock caused by the pandemics shows its effects in 

most subsectors, according to the strong bump highlighted for 2020 industrial 
production, the energy consumption reduction due to the use of Post-pandemic drivers 
is almost imperceptible in the Iron and steel subsector (Figure 40), where also relevant 
demand growth is not taken into account when looking at demand growth rates in 
Figure 23, after 2025. Pre-pandemic projections also present a small decrease in 2020, 
followed by an increasing trend that flattens in the long-term. Post-pandemic 
projections show the same behavior, with a more pronounced flattening trend. 
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Figure 40: Energy consumption forecasting for the Iron and steel subsector using TIMES-Italia. 

Projections obtained using the upper and lower bounds of the 95 % confidence interval as drivers are enclosed 
within the light red (Pre-pandemics) and light blue (Post-pandemics) areas. 

Concerning the Non-ferrous metals subsector, the low energy consumption 
levels (always < 50 PJ) bring to almost negligible differences in the two alternative 
projection sets, as showed in Figure 41. In this case, the two trends are very similar, 
but shifted by a difference related more on the one between 2018 and 2019 values of 
the drivers (Figure 24), and not from the pandemic crisis. In fact, both in Figure 24 
and Figure 41 it can be seen how a total recovery from the crisis happens in the first 
years of the projections. 
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Figure 41: Energy consumption forecasting for the Non-ferrous metals subsector using TIMES-Italia. Projections 

obtained using the upper and lower bounds of the 95 % confidence interval as drivers are enclosed within the 
light red (Pre-pandemics) and light blue (Post-pandemics) areas. 

In Figure 42 the sector where one of the lowest demand gap between Pre-
pandemics and Post-pandemics projections was highlighted in Figure 26 (Non-
metallic minerals, with 4.55 % difference in 2040), presents a very similar difference 
of just 4.5 % when coming to energy consumption. In the long term, in fact the two 
projections tend to converge. 

 
Figure 42: Energy consumption forecasting for the Non-metallic minerals subsector using TIMES-Italia. 

Projections obtained using the upper and lower bounds of the 95 % confidence interval as drivers are enclosed 
within the light red (Pre-pandemics) and light blue (Post-pandemics) areas. 
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On the other hand, it is interesting to notice how the optimization process 
encompassed in TIMES can lead to a stronger energy consumption reduction in a 
sector where demand growth, even when considering Post-pandemic drivers, leads to 
a large growth with respect to 2006 levels. Such a strong demand growth, happening 
for instance in the Chemicals sector (Figure 43), is reflected on an energy consumption 
level which is the 40 % lower in 2040 with respect to 2006. Indeed, Figure 43 shows 
how Chemicals energy consumption is the 5 % and the 11 % lower in projections using 
Pre-pandemic and Post-pandemic drivers, respectively, in 2040 with respect to 2006. 

 
Figure 43: Energy consumption forecasting for the Chemicals subsector using TIMES-Italia. Projections 

obtained using the upper and lower bounds of the 95 % confidence interval as drivers are enclosed within the 
light red (Pre-pandemics) and light blue (Post-pandemics) areas. 

Figure Figure 44 shows how the Pulp and paper sector presents the same 
decreasing behavior of the Chemicals compared to its respective driver increase 
showed in Figure 27. Furthermore, Pre-pandemic and Post-pandemic forecasts tend to 
diverge on the long term, following the same behavior of the driver projections. 
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Figure 44: Energy consumption forecasting for the Pulp and paper subsector using TIMES-Italia. Projections 
obtained using the upper and lower bounds of the 95 % confidence interval as drivers are enclosed within the 

light red (Pre-pandemics) and light blue (Post-pandemics) areas. 

The Other industries subsector also presents an important difference between 
the Pre-pandemic and Post-pandemic energy forecasts, as showed in Figure 45. Such 
projections show a stagnation in the mid- and long-term, but a small increase in the 
Post-pandemic forecast brings the two curves to a smaller deviation in 2040. 

 
Figure 45: Energy consumption forecasting for the Other industries subsector using TIMES-Italia. Projections 
obtained using the upper and lower bounds of the 95 % confidence interval as drivers are enclosed within the 

light red (Pre-pandemics) and light blue (Post-pandemics) areas. 

Eventually, concerning total industrial energy demand, the 7 % energy 
consumption range between projections using Pre- and Post-pandemic drivers, visible 
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in Figure 46 for the year 2020, shows even more long-term effects when highlighting 
a 60 PJ difference, corresponding to a 5 % over total consumption still in 2040. 

 
Figure 46: Energy consumption forecasting for the total industrial sector using TIMES-Italia. Projections 

obtained using the upper and lower bounds of the 95 % confidence interval as drivers are enclosed within the 
light red (Pre-pandemics) and light blue (Post-pandemics) areas. 

Overall, the energy consumption projections results can be summarized in two 
main points. First of all, both the Pre-pandemic and Post-pandemic projections seem 
to show the same trend on the long-term, with a difference mostly related to the one 
registered from 2018 and 2019 in the historical data of the drivers. In fact, the second 
important point showed by such results is that in almost all the sectors a fast recovery 
from the pandemic crisis is registered, as expected from the historical data of the 
industrial production indexes analyzed in Chapter 4.  
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 Chapter 8 

8.  Conclusions 

8.1 A ‘methodological’ objective: VAR models projections 
VAR models have proved themselves to be a valid approach to obtain reliable 

projections, that have a reasonable global trend and minimize the information loss of 
the post-pandemic period. The results discussed in this thesis show how a simple 
model like VAR can present very good similarities with respect to more complex 
models like the ones used for constructing the PNIEC scenarios, even without dealing 
with exogenous terms. This represents how such a simple model can be a valid 
alternative to obtain reliable forecasts in cases where unexpected periods like the 
pandemic crisis make the already rare past projections unusable. 

In fact, one of the strengths of multivariate regression models such as VAR is 
its capacity to obtain such internal coherence that more complex general equilibrium 
models present. This is done in a VAR model by analyzing the interdependencies 
among the time-series to project. Although such coherence is given by mathematical 
correlations and not by economic assumptions, the Pre-pandemic results have showed 
to be in line with PNIEC results. 

The fact that the Post-pandemic VAR projections in the short-term seem to 
follow the same behavior of the post-2009 recession represents a further qualitative 
validation of the model, considering that in econometric forecasting this similarity is 
often forced with ad hoc approaches to improve the short-term accuracy [24]. 

Overall, all the industrial sectors seem to be affected by the crisis, but with 
different amplitudes, both in the short- and long-term. In fact, sectors like Chemicals 
and Pulp and paper present a better response at year 2020 to the pandemic crisis, 
differently from the other sectors. The Iron and steel and Other Industries industrial 
sectors seem to get closer to the pre-pandemic results in the long-term, while the rest 
tend to follow the same trend of the pre-pandemic projections, maintaining constant 
the shift in the values. An exception is the Pulp, paper and printing sector, that presents 
in the long-run a larger difference in the two projections. 
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8.2 An objective of ‘merit’: final energy consumption 

forecasts 
The industrial production trends computed using VAR models have then been 

applied to the energy system modeling framework TIMES-Italia, suited for the 
analysis of the Italian energy system on the long run, in a Business As Usual scenario 
in order to highlight the effects of the applications of the newly computed drivers. 

One of the most important advantages of the TIMES-Italia model is the fact 
that its optimization starts in 2006, and this gives the possibility of performing a 
validation procedure based on the comparison of the first year results with historical 
data. 

Such validation procedure has been performed comparing TIMES-Italia results 
with Eurostat data, highlighting different criticalities and strengths. 

The main reason for the different starting points of TIMES-Italia results and 
Eurostat data is to be found in the change of the accounting method for the compilation 
of Eurostat energy balances. Indeed, TIMES-Italia calibration was performed using 
the 2009 version of the IEA energy balances for OECD countries [27], before the 
update in the accounting methodology. 

Such differences are not negligible when the energy consumption of the total 
industry sector is considered, with a constant overestimation of TIMES-Italia. Such  
issue can be solved by a careful recalibration of the model, starting from the energy 
balances in the base year. Nonetheless, such results are acceptable for the analysis 
performed in this work, considering that the general trend is of higher importance over 
the actual values for assessing the results response to a change in the input drivers. In 
fact, analyzing the change of the Industrial sector forecasts due to the pandemic crisis 
means, above all, comparing the general trends of Pre- and Post-pandemic projections, 
together with the historical trends. The backcasting resultsFigure 39 highlight such 
strong similarity between the lowering model results values and the Eurostat data. 

Concerning the energy projections, Both the Pre-pandemic and Post-pandemic 
seem to show the same trend on the long-term, with a difference mostly related to the 
one registered from 2018 and 2019 in the historical data of the drivers. In fact, the 
second important point showed by such results is that in almost all the sectors a fast 
recovery from the pandemic crisis is registered, as expected from the historical data of 
the industrial production indexes analyzed in Chapter 4.  
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Appendix: R script for VAR projections 

library(ggplot2) 

library(forecast) 

library(lubridate) 

library(dplyr) 

library(FitAR) 

library(HDeconometrics) 

 

setwd("C:/Users/mayto/Desktop/Uni/tesi magistrale/Dati Italia") 

getwd() 

 

# Open the file containing the historical dataset 

 

Industry <- read.csv( 

  file="Industry_R.csv", 

  stringsAsFactors = FALSE 

) 

 

# Adjust the database matrix 

 

Industry$date = seq(from = as.Date("1990/01/01"), to = 

as.Date("2021/04/01"), by = 'month') 

 

 

sector = data.frame(Industry[,2:7]) 

 

date = Industry$date 

 

ind_data <- ts(sector,frequency=12,start=c(1990,1)) 

 

colnames(ind_data) <- 

c('chemicals','nonferrous','siderurgy','nonmetal','paper','other') 

 

# Create the matrix of seasonal dummies 

 

x=ts(ind_data[,1:6],freq=12,start=c(1990,1)) 

x = seasonaldummy(x,h = NULL) 

x1 = x[1:376,] 

x1 = ts(x1,frequency = 12, start=c(1990,1)) 

x2 = x[377:612,] 

x2 = ts(x2,frequency = 12, start=c(2021,5)) 

 

e <- matrix(rep(NA, 2016), nrow = 6) 

 

# Cross-validation for lag selection: change the p value, and choose 

the one that minimizes e 

 

for (i in 30:375) 

{ 

  var1 <- lbvar(window(ind_data[,1:6],end=c(1990,i)), p=12, lambda = 

0.05, xreg = window(x1,end=c(1990,i))) 

  var_for <- predict(var1,h=1,newdata = window(x1,end=c(1990,i+1))) 

  e[1,i-29] <- ind_data[i+1,1]-var_for[,1] 

  e[2,i-29] <- ind_data[i+1,2]-var_for[,2] 

  e[3,i-29] <- ind_data[i+1,3]-var_for[,3] 

  e[4,i-29] <- ind_data[i+1,4]-var_for[,4] 

  e[5,i-29] <- ind_data[i+1,5]-var_for[,5] 



 Appendix: R script for VAR projections 81 
 

 

  e[6,i-29] <- ind_data[i+1,6]-var_for[,6] 

} 

sqrt(mean(e^2, na.rm=TRUE)) 

 

# Perform fit and forecast 

 

var1 <- lbvar(ind_data, p = 12, lambda = 0.05, xreg = x1, ps = 

FALSE) 

var_for <- predict(var1,h=236,newdata = x2, interval = "confidence") 

var_for_ts <- ts(var_for,frequency=12,start=c(2021,5)) 

 

# Adjust the results for the plots: change accordingly the sector to 

show 

 

df_forec <- data.frame("date" = seq(from = as.Date("2021/05/01"), to 

= as.Date("2040/12/01"), by = 'month'), 

                       "inds" = c(var_for_ts[,1])) 

df_hist <- data.frame("date" = c(date), 

                      "inds" = c(sector$chemicals)) 

df_lower <- data.frame("date" = seq(from = as.Date("2021/05/01"), to 

= as.Date("2040/12/01"), by = 'month'), 

                       "inds" = c(var_for_ts[,2])) 

df_upper <- data.frame("date" = seq(from = as.Date("2021/05/01"), to 

= as.Date("2040/12/01"), by = 'month'), 

                       "inds" = c(var_for_ts[,3])) 

 

# Pass from monthly to yearly data 

 

industry_2020 <- rbind(df_hist,df_forec) 

 

industry_2020_annual <- industry_2020 %>% 

  group_by(year(date)) %>% 

  summarize(inds_year = mean(inds)) 

 

industry_2020_annual <- 

ts(industry_2020_annual$inds_year,frequency=1,start=c(1990,1)) 

 

data_lower <- df_lower %>% 

  group_by(year(date)) %>% 

  summarize(inds_year = mean(inds)) 

 

data_upper <- df_upper %>% 

  group_by(year(date)) %>% 

  summarize(inds_year = mean(inds)) 

 

data_lower <- ts(data_lower$inds_year,frequency=1,start=c(2021,1)) 

data_upper <- ts(data_upper$inds_year,frequency=1,start=c(2021,1)) 

 

ts.plot(industry_2020_annual,data_lower,data_upper,gpars = list()) 


