
POLITECNICO DI TORINO

Corso di Laurea in Ingegneria Aerospaziale

Tesi di Laurea

Deep Learning for prediction of
Aerodynamic Simulations

Relatore

Prof.ssa Sandra Pieraccini Nicolò Crichigno

Luglio 2021

Abstract

The motivation of this work is to conjugate the potential of Artificial Neural Net-
works and the Aerodynamic field.
Artificial Neural Networks (ANNs) are a constantly growing field of study, everyday
new applications in different fields such as Engineering, Medical, Data Science, or
even ’Everyday Life’ are found.
On the other hand, Computational Fluid Dynamic (CFD) is the ’state of the art’
of the Aerodynamic analysis field, nowadays there’s plenty of CFD software, both
commercial and open-source, capable of simulating the most complex fluid model
and geometry.
The goal is to develop a Neural Network (in this specific case a Multi-Layer Percep-
tron) that can predict the results of CFD simulations of a 2D airfoil giving as input
three parameters: the Angle of Attack of the airfoil with respect to the free-stream
velocity, the Mach number and the Reynolds number.
Two Neural Networks will be implemented: first, a Multi-Layer Perceptron will
be trained to predict the 2 aerodynamic coefficients CL (Lift coefficient) and CD
(Drag coefficient) of the airfoil. A second Multi-Layer Perceptron will be trained
to predict the velocity field of the fluid around the airfoil.
The thesis is organized as follows. In Chapter 1 there will be a brief introduction
to the state of the art of the Computational Fluid Dynamic and Artificial Neural
Networks and a discussion of the focus of this project and its possible applications.
The Chapter 2 consists of a theoretical analysis of the major aspects of a CFD
analysis (set of differential equations, turbulence models and discretization models)
and in Chapter 3 the theoretical analysis of ANN’s, their features and how the
training process works will be treated.
After this introductory chapters, in Chapter 4 the configuration of the CFD sim-
ulations used to produce the database and the features and architecture of the
ANN’s that was trained to predict the results of the simulations are presented and
discussed. Finally, in Chapter 5, the results of the CFD simulations and the
results obtained with the Neural Networks will be reported and discussed.

i

Acknowledgements

Vorrei ringraziare innanzitutto la mia relatrice, la professoressa Sandra Pieraccini,
per avermi permesso di intraprendere questo percorso di tesi su un argomento tanto
attuale quanto profondamente stimolante ed interessante, la ringrazio inoltre per
la pazienza e l’infinita disponibilità nell’aiutarmi nei momenti di difficoltà.
Ringrazio inoltre il professor Domenic d’Ambrosio per essersi reso disponibile ad
un utile e proficuo confronto nell’ambito della Fluidodinamica Computazionale.

Un ringraziamento va alla mia famiglia, a mia mamma Donatella, a mio papà
Luciano, a mio fratello Jacopo e alla nonna Lina che in questi anni mi hanno sup-
portato in ogni modo possibile, con sacrifici ma anche con grande fiducia nelle mie
capacità.
Senza di loro questo traguardo sarebbe rimasto solamente un sogno lontano, queste
quattro righe non sono che una briciola della gratitudine che dovrei dimostrar loro.

Ovviamente tra i ’Grazie’ non possono mancare i miei amici, tutti coloro con cui
ho legato in questi anni e con cui ho trascorso momenti belli e momenti difficili ma
che nell’insieme hanno contribuito a rendermi la persona che sono oggi.
Non posso quindi che ringraziare innanzitutto Andrea (Postino) con cui ho convis-
suto per 5 anni e che considero un fratello più che un amico, Dascia con cui ho
condiviso alcuni dei momenti più belli della mia vita finora e che con cui ho svilup-
pato un rapporto più unico che raro, Luca che con molta pazienza, disponibilità e
gentilezza ha messo a disposizione la sua competenza e il suo tempo per aiutarmi
a districarmi tra le insidie delle reti neurali, Stefano che in molte occasioni è stato
un mentore oltre che un amico e con loro Pacio, Claudia, Fabio, Pronky, Momo,
Roccino, Irene, Jessica, Simon, Scapa, Leonardo, Stefanino e tutti coloro che hanno
lasciato una parte di loro nei miei ricordi e nella mia persona.

Approfitto infine di questo spazio per ringraziare HPC@POLITO per aver fornito
le risorse di calcolo necessarie alla realizzazione di questo progetto di tesi.

ii

Contents

Summary i

Acknowledgements ii

List of Figures v

List of Tables viii

1 Introduction 1

1.1 Introduction to Computational Fluid Dynamic 1

Components of a CFD Simulation 2

The computational cost . 3

1.2 Introduction to Artificial Neural Networks 7

First generation Artificial Neural Networks 9

Second generation of Artificial Neural Networks 10

Third generation of Artificial Neural Networks 11

2 Theoretical analysis: Computational Fluid Dynamics 12

2.1 Governing Equations . 13

Navier-Stokes Equations . 13

Reynolds-Averaged Navier Stokes Equations 16

2.2 Turbulence Models . 23

Eddy Viscosity concept . 23

The Spalart-Allmaras model . 24

2.3 Discretization of the Governing Equations 26

The computational Grid . 29

Discretization Scheme . 34

3 The Multi-Layer Perceptron 40

3.1 Activation function . 43

3.2 The Learning Process: Backpropagation Algorithm 47

Gradient Descent (GD) algorithm 51

iii

4 Description of the Solution Techniques 54
4.1 The CFD Simulations: Creating the Dataset 54

The CFD Software . 54
Analysis of the Fluid Dynamic Problem 56
The mesh . 59
Simulation Setup . 63

4.2 Prediction of the Aerodynamic Coefficients 65
Preparation of the Database . 66
Cost Function . 67
Training Algorithm . 67
Hyperparameters . 68

4.3 Prediction of the Flow Field . 71
Cost Function . 73
Training Algorithm . 73
Hyperparameters . 73

5 Results & Conclusions 76
5.1 CFD Simulation: comparison with the reference Test Case 76
5.2 Results of the Aerodynamic Coefficients Multi-Layer-Perceptrons . 81

Single Coefficient MLP - CD . 81
Single Coefficient MLP - CL . 83
Double Coefficient MLP - CL and CD 84

5.3 Results of the Flow Field Prediction Multi-Layer-Perceptrons 86
Flow Field Prediction MLP - Grey-Scale 86
Flow Field Prediction MLP - Colored 88

5.4 Conclusions & Open tasks . 90

Bibliography 91

List of Figures

1.1 Cost-efficiency comparison between CFD (past and present) and ex-
perimental approach . 2

1.2 Mesh around an airfoil (software: Gmsh) 3
1.3 Mach field visualization around an airfoil (software: Paraview v5.9.0) 4
1.4 Streamlines and velocity field, lid driven cavity test-case (software:

Siemens Simcenter STAR-CCM+ v.2019.3) 4
1.5 Second-order space derivative of the local flow velocity (Software:

Siemens Simcenter STAR-CCM+ v.2019.3 [4]) 6
1.6 Second-order space derivative of the local flow velocity, detail of the

flow around the airfoil . 6
1.7 Flow-chart of a basic training process of an ANN 8
1.8 Basic structure of the layers in a neural network 9
1.9 Perceptron . 10
1.10 Different types of activation function g 10
1.11 Spiking Neuron model [13] . 11

2.1 Infinitesimal control volume, dimensions: dx, dy, dz 13
2.2 Transition from laminar to turbulent flow [45] 16
2.3 Turbulent wake behind a cylinder [26] 16
2.4 Reynolds decomposition [35] . 17
2.5 Continuous domain . 27
2.6 Discrete domain . 27
2.7 3D cell shapes representation [24] 30
2.8 Structured mesh (software: Gmsh) 30
2.9 Unstructured mesh (software: Gmsh) 31
2.10 Triangular unstructured mesh outside the structured boundary layer’s

mesh (software: Gmsh) . 32
2.11 Hexagonal unstructured mesh outside the structured boundary layer’s

mesh (software: Siemens Simcenter STAR-CCM+ v.2019.3) 32
2.12 Definition of skewness . 33
2.13 Inscribed and circumscribed circles in a triangular element 34
2.14 2-dimensional cell, interfaces indices i± 1

2
. 35

v

2.15 1D domain discretized with FVM 36

3.1 Artificial Neuron . 41

3.2 MLP architecture representation . 42

3.3 Sigmoid activation function . 44

3.4 Hyperbolic tangent activation function 45

3.5 ReLU activation function . 45

3.6 Leaky ReLU activation function . 46

3.7 Cost function C(wljk, b
l
j) representation [37] 51

3.8 High learning rate VS Low learning rate [30] 52

3.9 Fluctuation of the cost function with SGD algorithm [23] 52

4.1 Visualization of the ”supersonic pocket” on the airfoil at M∞ = 0.729 57

4.2 RAE 2822 Transonic Airfoil [65] . 57

4.3 CL = CL(α) curve at M∞ = 0.0 and Re∞ = 105 for the RAE2822
Airfoil [66] . 58

4.4 External Boundaries . 60

4.5 RAE2822 Airfoil . 60

4.6 Boundary layer structured mesh near the RAE2822 airfoil’s wall . . 61

4.7 Mesh outside the boundary layer 61

4.8 Overall view of the mesh . 61

4.9 γ distribution between the elements of the grid 62

4.10 SICN distribution between the elements of the grid 62

4.11 Single Hidden Layer Architecture 69

4.12 Funnel Architecture, where the hidden layers dimension are H1 >
H2 > H3 . 70

4.13 Rhombus Architecture, where the hidden layers dimension are H2 >
H1 and H2 > H3 . 70

4.14 Target sample (.png image with resolution 50× 50) 72

4.15 Representation of the network architecture of the MLP use for the
reconstruction of the coloured images 74

5.1 Pressure coefficient distribution around the airfoil, comparison be-
tween the results of the CFD simulation (left) and the reference [58]
(right) . 77

5.2 Pressure field around the airfoil, comparison between the results of
the CFD simulation (left) and the reference [58] (right) 77

5.3 Convergence history of the lift coefficient CL 78

5.4 Convergence history of the Drag coefficient CD 78

5.5 Residuals history of the two aerodynamic coefficients 79

5.6 Low aerodynamic incidence α = 0.0 [deg] (left) and High aerody-
namic incidence α = 3.0 [deg] (right) comparison 79

5.7 Low Mach number M∞ = 0.60 (left) and High Mach number M∞ =
0.80 (right) comparison . 80

5.8 Low Reynolds number Re∞ = 105 (left) and High Reynolds number
Re∞ = 107 (right) comparison . 80

5.9 Grid Search results (not filtered), logarithmic scale - Single coefficient
MLP (CD) . 81

5.10 Grid Search results - Single coefficient MLP (CD) 82
5.11 Accuracy of the Test prediction (left) and Loss vs Epochs (right) . . 82
5.12 Grid Search results - Single coefficient MLP (CL) 83
5.13 Accuracy of the Test prediction (left) and Loss vs Epochs (right) . . 84
5.14 Grid Search results - Double coefficient MLP (CL and CD) 84
5.15 Accuracy of the Test prediction for CD (left) and for CL (right) . . 85
5.16 Loss vs Epochs, double coefficient MLP 85
5.17 Grid Search results - Grey-Scale MLP 86
5.18 Test prediction at the beginning of the training (left) and after 500

epochs (right) . 87
5.19 Test prediction after the training (left) and target (right) 87
5.20 Loss vs Epochs - Grey-Scale MLP 87
5.21 Grid Search results - color MLP . 88
5.22 Test prediction at the beginning of the training (left) and after 500

epochs (right) . 88
5.23 Test prediction after the training (left) and target (right) 89
5.24 Loss vs Epochs - color MLP . 89

List of Tables

3.1 Structure of a Database with N samples of input features and targets 40

4.1 Sutherland’s law coefficient and reference values 64
4.2 Database for the aerodynamic coefficients, N = 7056 samples 66
4.3 Number of samples for the different subsets (prediction of the aero-

dynamic coefficients) . 66
4.4 Batch size values used for the grid search 68
4.5 Architectures for the Aerodynamic Coefficients MLP 71
4.6 Database for the flow field (in terms of local Mach number), N =

7056 samples . 72
4.7 Architectures for the grey-scale MLP 75
4.8 Architectures for the color images MLP 75

viii

Chapter 1

Introduction

The goal for this introductory chapter is to give a preliminary description of the
two major subjects of this thesis project: the Computational Fluid Dynamic and
the Artificial Neural Networks.

1.1 Introduction to Computational Fluid Dynamic

Computational Fluid Dynamic (CFD) is a branch of fluid mechanics that uses nu-
merical analysis to numerically approximate problems involving a fluid flow [68].
CFD is a widely interdisciplinary subject that involves Mathematics, Fluid dy-
namics, Computer science and Data handling, it’s used to obtain accurate results
of physical phenomena more cost-efficiently with respect to experimental testing.
Moreover, it enables to simulate flow around large-scale models that would be im-
possible to analyze through the experimental approach.
CFD presents several advantages:

- The cost of analysis is low compared to experiments.

- CFD analysis requires less time to get results compared to experimental tests.

- CFD allows to get detailed information of the flow at every point of the
domain, in an experimental test there’s no possibility to place pressure ports
and probes at all locations.

In Figure 1.1 we present a comparison between the cost of the CFD simulations
(old techniques and modern techniques) and the experimental approach (wind tun-
nel experiments). Improvements in meshing strategy translated down the older
CFD curve leading to an overall diminishing of basic cost per simulation, mean-
while new algorithms and better computational hardware led to a decrease of the
slope of the curve, resulting in an improvement of cost-efficiency [46].

1

Introduction

Number of simulations

F
in

a
n

ci
a
l

co
st

cfd (past)

cfd (present)

wind tunnel

Figure 1.1. Cost-efficiency comparison between CFD (past and present)
and experimental approach

Components of a CFD Simulation

Given a fluid dynamic problem, the process behind the definition of a CFD analysis
can be divided into three major ’steps’.

Pre-processing

Pre-processing is the first step in CFD simulation, which is necessary to correctly
define the parameters of the simulation, it can be subdivided into different sub-
steps:

- Problem Analysis: Problem analysis is the cornerstone of the simulation;
it’s necessary to understand the problem that has to be solved in order to
properly define the objectives and parameters of the CFD simulation.

- Geometry: Once the physics of the problem is defined the next step is to
define a geometry (which can be 2D or 3D, depending on the problem setting)
that correctly represents the problem.

- Mesh: The computational grid, or ’mesh’, is a key factor of a CFD simu-
lation, it affects every other aspect of it and heavily contributes to the final
quality of the results. The governing equations will be solved, and the fluid
properties evaluated, for every cell of the mesh, giving the representation of
the flow in the physical domain. A finer mesh, with several small cells, leads
to more accurate results but with an increase in the computational cost of
the simulation.

2

Introduction

Figure 1.2. Mesh around an airfoil (software: Gmsh)

- Setup of the solver: This stage consists in the definition of the flow con-
ditions of the problem into the software: boundary conditions, flow type and
flow properties, mathematical models for the equations, turbulence models,
discretization schemes, etc.

Processing

Once all the pre-processing steps have been undertaken, it’s possible to run the
simulations on a CFD software. At this stage, the software will iteratively solve the
system of equations in order to obtain the lowest residual (which can be considered
the ’error’ of the CFD simulation) which is computed based on the solver setup.
When the ’Convergence criteria’ is satisfied the processing ends and the results are
obtained.

Post-processing

When the results are obtained the final step is to analyze this results to produce
images, vector-plots, streamlines and data plots, the focus is to correctly represent
every aspect of the solution.

The computational cost

Setting up the discrete system and solving it involves a very large number of repet-
itive calculations, a task that humans palm over to the digital computer [50]. The
computational effort of a CFD simulation grows rapidly with it’s complexity: high
resolution models, unsteadiness in the flow field, multi-phase flows, etc., all these
different aspects contribute to increase the computational cost of a simulation. This
problem leads to different possible solutions.

3

Introduction

Figure 1.3. Mach field visualization
around an airfoil (software: Paraview
v5.9.0)

Figure 1.4. Streamlines and velocity
field, lid driven cavity test-case (software:
Siemens Simcenter STAR-CCM+ v.2019.3)

Increase the computational power available

High Performance Computing (HPC) is a well consolidated technology based on
the concept of parallel computing, which consists in the partition of a high compu-
tational cost demanding task on many different CPUs.
There are different possible architectures for a HPC system, the most common is
the ’cluster’ version where all computing units, or ’nodes’, work simultaneously on
the same task, to do this all nodes are connected to each other using fast local
area networks (LAN), for example the ’InfiniBand’ communication standard which
is widely used for node-to-node, node-to-storage or intra-node communication in
many different supercomputers or cluster systems. To measure the performance of
a HPC system the FLOPS (FLoating-point Operations Per Second) is used, the
magnitude of the computational power of modern super computers is measured in
’peta-FLOPS’ (or PFLOS, which is 1015 FLOPS).
Some examples of modern supercomputer systems (according to the ’TOP500’
November 2020 list [2]) are:

- Supercomputer Fugaku (RIKEN Center for Computational Science, Japan)
with a max computational speed of 442.01 PFLOPS

- IBM Power System AC922 ’Summit’ (DOE/SC/Oak Ridge National Labora-
tory, United States) with a max computational speed of 148.6 PFLOPS

- IBM Power System AC922 ’Sierra’(DOE/NNSA/LLNL, United States) with
a max computational speed of 96.64 PFLOPS

Simplification and optimization of the overall problem

Simulating a full scale turbulent flow in the time domain using the Direct Numer-
ical Simulation (DNS) method, which means solving the full set of Navier-Stokes

4

Introduction

equations for every element of the grid in every single time-step, would give as re-
sult an almost-exact depiction of the analyzed phenomena but, on the other hand,
brings with it an overwhelming computational cost. The FLOPS needed to perform
a turbulent flow DNS grows rapidly with the size and complexity of the computa-
tional grid and with the number of time-steps but it also grows with the cube of
the Reynolds number of the phenomena, this could quickly overcome the maximum
computational power of any supercomputer existing at this time.
For this reason several simplified and optimized models exist, instead of solving
the exact phenomena different approximations are used in order to give an over-
all less accurate result but with a significant decrease in terms of computational
cost. For example, for a turbulent problem like the aforementioned one, different
approximate approaches exist:

- Raynolds Averaged Navier-Stokes (RANS), proposed by Osborne Reynolds,
is a well consolidated model for solution of turbulent phenomena, it relies on
the concept of ’Reynolds decomposition’ which states that an instantaneous
time-dependent quantity can be separated in its time-averaged component
and fluctuating component. This set of approximate Navier-Stokes equations
brings with it a drawback: after the decomposition and time-averaging of the
original equations a non-linear term remains (the so called Reynolds stress
tensor) that requires additional modelling equations for closing the RANS
problem.
In Chapter 2 we will dive much deeper into the RANS method, as it’s the
one used for the CFD simulations that will produce the dataset for the ANN,
subject of this thesis.

- Large Eddies Simulation (LES), firstly proposed by Joseph Smagorinsky (1963)
[59], is another approximate model for turbulent flow modeling. Since tur-
bulence is a multi-scale phenomena, the basic concept of LES is to apply a
spatial low-pass filter that ignores the smaller length-scales of the flow (the
so-called ’sub-grid components’, which are the most expensive to simulate
in terms of computational cost). If the problem analyzed has a large char-
acteristic dimension the smaller scales contribute to the overall flow can be
treated statistically as a time and spatial average as it’s quite irrelevant for
the ’global’ scale of the phenomena. On the other hand, if the smaller length-
scales gives a relevant contribution to the overall phenomena (for example in
near-wall flows or multi-phase flows) they need to be modeled (some sub-grid
components models are Smagorinsky’s model, Dynamic Smagorinsky’s model
or the sub-grid turbulent kinetic energy model).

Another recently developed simulation technique for turbulent flows is the Hybrid
RANS/LES model which uses the RANS method to solve the smaller scale near-
wall flow and the outer, larger scale, layer of the flow is modelled with the LES
approach.

5

Introduction

Pre-simulation on a coarser grid model

If the target of the simulation is a flow with particular relevant behaviours or in-
teractions that involve high gradients, fast change in flow quantities etc., these be-
haviours need particular attention and a higher resolution of the grid to be correctly
represented. The problem rises when it’s not known ’a-priori’ where (or when, if
the phenomena is time dependant) these behaviours could occur in the simulation.
For example, if the CFD simulation involves a transonic flow around an airfoil, the
presence of a shock-wave on the upper-side of the airfoil is expected, but the exact
location is not known in advance, because it depends on many different factors,
and refining entirely the mesh to be sure that the shock will be accurately depicted
would lead to an unfeasible increase in the computational cost.
A possible solution to this problem is to run a preliminary simulation of the flow
on a quite coarse grid, this gives a good ’picture’ of the overall flow. It’s then
possible to use the results of this coarser solution to compute the gradients or the
second-order space derivative (as shown in fig. 1.5 and 1.6) of a certain quantity
that is representative of the flow (for example, in an airfoil simulation, the local
flow velocity or the static pressure).

Figure 1.5. Second-order space derivative of the local flow velocity (Software:
Siemens Simcenter STAR-CCM+ v.2019.3 [4])

Figure 1.6. Second-order space derivative of the local flow velocity, detail
of the flow around the airfoil

6

Introduction

It’s now possible to define a ’mesh refining function’ based on these gradients/second
derivatives of the coarse solution that refines the mesh locally only in the areas that
present higher gradients in order to increase the accuracy of the simulation only
where it’s needed, this leads to an extremely accurate depiction of the flow with
a limited increase in terms of computational effort. Some software, like Siemens
Simcenter STAR-CCM+ [4], gives also the possibility to define the solution on the
refined grid extrapolating it from the coarse one through an interpolation process,
with a further save of computational resources.
Another possible way to obtain this preliminary simulation is through Artificial
Intelligence. If we train an Artificial Neural Network to learn, for example, the ve-
locity field around an airfoil using many different CFD simulations results as input
database, it’s then possible to use the predictions of the velocity field in different
free-stream conditions as a preliminary result to compute the gradients of the ve-
locity fields and finally obtain the optimally refined mesh, saving a lot of time and
computational cost but still obtaining the desired accuracy for the CFD simulation.

1.2 Introduction to Artificial Neural Networks

The concept of Machine Learning (ML) firstly appeared in the early of the XX
century, it’s based on the concept of using statistical methods to improve the per-
formance of pattern recognition and prediction [10].
Machine Learning methods can be split in 3 main categories, also known as ’paradigms’:

- Unsupervised Learning: The neural network need to learn a pattern from
the inputs without having any output as reference target.

- Supervised Learning: The neural network receives both inputs and desired
target outputs and needs to define a pattern that successfully associates the
inputs and the outputs.

- Reinforced Learning: In this case, the model interacts with a dynamic
environment in which it must achieve a certain goal (such as driving a vehicle
or playing a game against an opponent).
As it navigates its problem space, the program is provided feedback that’s
analogous to a reward, which it tries to maximize [10].

Artificial Neural Networks (ANNs) are a subset of the Supervised Learning meth-
ods. The basic principles behind the supervised training process of an ANN are the
following: the network first creates a mathematical model based on the inputs it
receives (this is called ’forward’ process or ’inference’), then it computes the classi-
fication error (or ’loss’) between the desired and the predicted outputs. This error
is then used in the so-called ’backward’ process to update and adjust the previously
made model by modifying its internal parameters.

7

Introduction

Figure 1.7. Flow-chart of a basic training process of an ANN

The architecture of an ANN loosely reminds the structure of the animal brain: the
basic unit of a neural network is the ’Neuron’ which is closely linked to the others
units of the network in different and complex ways based on the specific goal it has
to achieve.
As mentioned, the neuron is the fundamental element of an ANN and it’s respon-
sible for all the basic operations, they behave in different ways, depending on the
model of the neuron. Each neuron model is characterized by an activation function
that decides if the neuron is activated or inactivated based on the input it receives.
ANNs consist of various groups of neurons organized in different ways, the basic
structure of organized neurons is called ’Layer’, many different layers can be present
in a neural network. The layers of a neural network can be generically divided into
3 main categories based on the specific elaboration step of the layer (fig. 1.8):

- Input layer: It receives the input from the training dataset

- Hidden layer: It elaborates the data received from the Input layer

- Output layer: It gives the results of the computation

The architecture depicted above is just the basic structure of a neural network,
it can be expanded by adding more hidden layers and increase the complexity of
the layers themselves.
Based on the complexity of the mathematical model that defines the Neuron be-
haviour, we can classify neural networks into three generations [43].

8

Introduction

Input Layer

Hidden Layer

Output Layer

Figure 1.8. Basic structure of the layers in a neural network

First generation Artificial Neural Networks

The first generation of ANNs, which are also called ’Perceptrons’ or ’Thresh-
oldgates’) is based on the concept of the neuron of McCulloch-Pitts:

y =

{
1, if h =

∑
i xiwi ≥ u

0, otherwise
(1.1)

where y is the output of the neuron, that can be 0 (stands for not activate) and
1 (stands for activate), h is the state of the neuron, wi is a synaptic weight, xi is
an output of the previous neurons and u is the threshold, that at the beginning
was set to 0, and then can be set by the user (introduction of a bias), giving more
flexibility to the network [69].
A Perceptron doesn’t work well with continuous data, in fact is an algorithm used
for supervised learning of binary classifiers which are a type of networks that decide
whether an input, usually represented by a series of vectors, belongs to a specific
class.
In short, a perceptron is a single-layer neural network that consists of four main
parts (fig. 1.9): input values, weights and bias, net sum, and an activation function
(which is a step function) [3].
Thanks to the binary nature of this ANN, the theory of Hebb1 is used for training
this type of NN: it claims that if a pre-synaptic neuron (that acts as input) causes

1Donald Olding Hebb (July 22, 1904 – August 20, 1985) was a Canadian psychologist that
worked in the neurophysiology field.
He is popular for the Hebbian rule, which asserts that if a pre-synaptic cell helps to fire a post-
synaptic cell, the synapses is strengthened [32].

9

Introduction

x1

x2

xN-1

w1

w2

wN-1

xN wN

Weights

Input

Weighted Sum

Step Function

Output

Figure 1.9. Perceptron

the activation of the post-synaptic neuron (it receives the input stimulus), the
synaptic weight is enhanced [69].

Second generation of Artificial Neural Networks

The second generation of ANNs is an evolution of the previous one, introducing a
continuous activation function.
The neuron can be represented as:

y = g(
∑
i

xiwi − b) (1.2)

where g is the activation function (different functions are possible, Fig. 1.10: Sig-
moid, Hyperbolic tangent, ReLU, etc.) and b is a translation term called ’Bias’.

Figure 1.10. Different types of activation function g

10

Introduction

With this type of ANNs the training process works differently, the rule of Hebb
becomes outdated and new types of algorithms are employed, such as the family
of algorithms based on the concept of gradient descendent, which allows to update
the internal parameters of the neurons in the layers using the error between the
predicted output and the expected one. These methods allows the training of ANNs
containing many hidden layers (Deep Learning) [69].
The second generation of ANNs is computationally more powerful: it has been
proven that an ANN of second generation can approximate any continuous func-
tion with just one hidden layer [69].

Third generation of Artificial Neural Networks

The third generation neural networks introduce a new type of neural model called
Spiking Neuron. The model behind this new type of neurons is based on a system
of Ordinary Differential Equation (ODE) and simulate the spike dynamics of the
biological neuron.

Figure 1.11. Spiking Neuron model [13]

The presence of the spikes causes the information to be encoded over time: the
codification is determined by the firing rate or by the period of time between two
consequent spikes [41].
This type of ANN can learn any function can be learned by the first two generations
of ANN using a single hidden layer and, in some cases, with fewer neurons [69].

11

Chapter 2

Theoretical analysis:
Computational Fluid Dynamics

In this chapter the focus will be the theory behind the main aspects and features
of a CFD simulation, with particular focus on the methods, models and features
chosen for the definition of the RAE 2822 Transonic Airfoil Simulation (which will
be discussed later in this document).
As anticipated in section 1.1, Computational Fluid Dynamics is a widely interdis-
ciplinary subject, in the following sections the main elements that compose a CFD
simulation will be described from a theoretical point of view, namely:

- System of Governing Equations: Derivation of the Reynolds Averaged Navier-
Stokes (RANS) system of Partial Differential Equations (PDE) starting from
a discussion on the set of Navier-Stokes equations.

- Turbulence Model: Analysis of different Turbulence models used in modern
CFD, in particular the Spalart-Allmaras model.

- Mesh: Description of the different features of a computational grid.

- Discretization Schemes: Introduction on the possible discretization meth-
ods for the system of PDE, in particular the Jameson-Schmidt-Turkel (JST)
Scheme.

12

Theoretical analysis: Computational Fluid Dynamics

2.1 Governing Equations

Navier-Stokes Equations

The Navier-Stokes Equations describe how the velocity, pressure, temperature, and
density of a moving fluid are related. The equations were derived independently
by George Gabriel Stokes, in England, and Claude-Luis Navier, in France, in the
early 1800’s. They are an extensions of the Euler Equations and include the effects
of viscosity on the flow [15].
The Navier-Stokes Equations consist of a time-dependent continuity equation for
conservation of mass, three time-dependent conservation of momentum equations
and a time-dependent conservation of energy equation.
There are four independent variables in the problem: the x, y, and z spatial coor-
dinates of the computational domain, and the time t.
There are six dependent variables: the pressure p, density ρ, and temperature T
(which is contained in the energy equation through the total energy E) and three
components of the velocity vector (the u component is in the x direction, the v
component is in the y direction, and the w component is in the z direction). All
the dependent variables are functions of all four independent variables, therefore
the differential equations are Partial Differential Equations (PDE) [15].
In the following the Navier-Stokes Equations for a compressible, 3 dimensional and
unsteady fluid will be presented in their differential and conservative formulation,
which means that they are written for an infinitesimal control volume fixed in space.

x

y

z

î

ĵ

k̂

dx

dy

dz

Figure 2.1. Infinitesimal control volume, dimensions: dx, dy, dz

13

Theoretical analysis: Computational Fluid Dynamics

Continuity Equation

The continuity equation (or mass balance equation) states that the rate of change
of the mass inside the control volume (fig. 2.1) is equal to the net flux of the mass
coming out of the volume through its surfaces.

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0 (2.1)

The equation consists in the time variation of the density inside the control volume
and the convective transport of mass through the volume surfaces.

Momentum Balance Equations

The momentum balance equations form a system of three equations related to the
x, y and z directions. It’s the result of the application of the Second Newton’s Law
in the 3 directions to the control volume, upon which pressure and friction forces
act (only the surface forces acting on the control volume are considered, the volume
forces in this formulation are neglected).
x -direction

∂(ρu)

∂t
+
∂(ρu2)

∂x
+
∂(ρuv)

∂y
+
∂(ρuw)

∂z
= −∂p

∂x
+

1

Re

[
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

]
(2.2)

y-direction

∂(ρv)

∂t
+
∂(ρvu)

∂x
+
∂(ρv2)

∂y
+
∂(ρvw)

∂z
= −∂p

∂y
+

1

Re

[
∂τyx
∂x

+
∂τyy
∂y

+
∂τyz
∂z

]
(2.3)

z -direction

∂(ρw)

∂t
+
∂(ρwu)

∂x
+
∂(ρwv)

∂y
+
∂(ρw2)

∂z
= −∂p

∂z
+

1

Re

[
∂τzx
∂x

+
∂τzy
∂y

+
∂τzz
∂z

]
(2.4)

The LHS accounts for the time variation of momentum and the convective transport
of momentum through the volume surfaces; The RHS collects pressure forces and
friction forces. The latter term is a contribute related to the viscosity of the fluid
and the presence of velocity gradients; in fact, for a Newtonian fluid, the shear
stresses can be expressed as:

τij = δijλ∇ · ~V + µ

(
∂ui
xj

+
∂uj
xi

)
(2.5)

where τij represents the stress in the j-direction that acts on a surface whose normal
unit vector points to the i-direction and δij is the so-called ’Kronecker’s delta’ which
is 1 if i = j (normal shear stress) and 0 if i /= j (tangential stress), µ is the dynamic

14

Theoretical analysis: Computational Fluid Dynamics

viscosity of the fluid and λ is the so-called ’bulk viscosity’ which can be expressed,
in aerodynamic applications, as λ = −2

3
µ.

The importance of the viscous term in (2.2), (2.3) and (2.4) is dictated by the
inverse of the Reynolds number:

Re =
ρV L

µ
(2.6)

This dimensionless term represents the ratio between the contributes of the convec-
tion and diffusion, a high Reynolds number means that convection is predominant
in respect to diffusion as transport phenomena.

Energy Balance Equation

The energy balance equations is obtained by applying the First Principle of Ther-
modynamics on the control volume. According to such principle, the rate of change
of total energy inside the control volume is equal to the sum of the net heat flux
through the volume and the work done per unit time by the surface (and volume,
if present) forces on the control volume.

∂(ρE)

∂t
+
∂(ρuE)

∂x
+
∂(ρvE)

∂y
+
∂(ρwE)

∂z
= −

[
∂(up)

∂x
+
∂(vp)

∂y
+
∂(wp)

∂z

]
− 1

Re Pr

[
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

]
+

1

Re

[
∂

∂x
(uτxx + vτxy + wτxz) +

∂

∂y
(uτyx + vτyy + wτyz) +

∂

∂z
(uτzx + vτzy + wτzz)

]
(2.7)

The LHS of the equations presents the time variation of the total energy in the
control volume and the convective transport of total energy; the RHS contains, left
to right: the work done per unit time by the pressure forces, the net heat flux and
the work done by the shear stresses.
The RHS of (2.7) contains another dimensionless term, the Prandtl number:

Pr =
µcp
k

=
ν

α
(2.8)

This term represents the ratio between cinematic diffusion (ν) and thermal diffusion
(α).
The total energy per unit mass, E, can be expressed as the sum of the internal
energy per unit mass of the fluid and its kinetic energy per unit mass:

E = e+
1

2
|~V |2 (2.9)

15

Theoretical analysis: Computational Fluid Dynamics

For a perfect gas, with specific heats constant cv and cp, the internal energy can be
written as e = cvT , in this way the total energy of the fluid in the control volume
is only function of the temperature and fluid velocity, which are both unknown
dependant variables of the governing equations.
The second term on the RHS contains the heat fluxes due to heat conduction and
they depend on the temperature gradients through the Fourier’s law:

q̇i = −k ∂T
∂xi

(2.10)

with k thermal conductivity of the fluid.

Since the CFD simulation that is the object of this thesis project involves a transi-
tional/fully turbulent flow, it’s necessary to introduce a model of governing equa-
tions suitable for the solution of turbulent flows and which doesn’t involve an un-
bearable computational cost. This set is the RANS (Reynolds-Averaged Navier-
Stokes) system of equations.

Reynolds-Averaged Navier Stokes Equations

The Reynolds-averaged Navier–Stokes equations are time-averaged equations of
motion for fluid flow, the basic concept behind the equations is the ’Reynolds de-
composition’: any instantaneous quantity can be decomposed into its time-averaged
and fluctuating quantities, this concept was firstly proposed by Osborne Reynolds.
The RANS equations are primarily used to describe turbulent flows, they can be
used with approximations based on knowledge of the properties of flow turbulence
to give approximate time-averaged solutions to the Navier–Stokes equations [51].

Figure 2.2. Transition from laminar to
turbulent flow [45]

Figure 2.3. Turbulent wake behind a
cylinder [26]

Turbulent flows are characterized by self sustained velocity, pressure and density
fluctuations superimposed to the main flow. The intensity of fluctuations is vari-
able, but it usually doesn’t exceed a value between 10% to 30% of the mean value
of the considered quantity. Looking at the time history of a velocity component

16

Theoretical analysis: Computational Fluid Dynamics

at a given point, for example, it looks like a random signal, but it is not really
random, because there is a recognizable structure in turbulence.
The irregularities in the velocity field can look like a vortex, or a jet, or any other
recognizable form, these irregularities are called ’eddies’. Eddies are embedded one
in each other, small eddies can exist inside larger eddies and even smaller eddies can
be found inside the former, this is related to the multi-scale nature of the turbu-
lence. This continuous distribution of the eddies size characterize turbulence with
respect, for example, to a separated laminar flow where large scale vortices detach
from a body, in this case the irregularity in the flow would be limited to just a few
frequencies.

Reynolds Decomposition

As previously mentioned, the basic idea behind the derivation of RANS model is
the Reynolds decomposition.

Figure 2.4. Reynolds decomposition [35]

Given a physical quantity u(x, y, z, t), the Reynolds decomposition states that the
instantaneous value of this quantity can be expressed as the sum of its averaged
value (space, time or ensemble average) and the deviation from it (the so-called
’fluctuation’).

u(x, y, z, t) = u(x, y, z) + u′(x, y, z, t) (2.11)

where u(x, y, z) is the averaged value (time average, in this case) and u′(x, y, z, t)
the fluctuation.
Depending on the type of turbulence that needs to be modeled there are three
possible ways to obtain the averaged value [49].

17

Theoretical analysis: Computational Fluid Dynamics

- Time Average: Suitable for turbulence phenomena where the mean value
doesn’t change in time (Stationary turbulence).

u(x, y, z) = lim
T→∞

1

T

∫ t+T

t

u(x, y, z, t) dt (2.12)

where T is the averaging time period.

- Space Average: This averaging method is used for turbulence flow that are
uniform in all directions (Homogeneous turbulence).

u(t) = lim
V→∞

1

V

∫∫∫
V

u(x, y, z, t) dV (2.13)

where V is the averaging volume.

- Ensemble Average: Used for flows that decay in time, ensemble average is
made upon N identical experiments on the same flow and conditions.

u(x, y, z, t) = lim
N→∞

1

N

N∑
n=1

un(x, y, z, t) (2.14)

It is clear from the definition of the averaging operation that the Reynolds decom-
position possesses the following two properties [40]:

u = u u′ = 0 (2.15)

These two properties are fundamental for the derivation of the RANS equations.

Derivation of RANS Equations

Let’s consider a 3 dimensional turbulent flow, for the sake of simplicity is considered
a flow where density and temperature don’t change in time.
In this case the instantaneous flow variables can be expressed, using the Reynolds
decomposition, as the sum of their average value and fluctuation:

u = u+ u′

v = v + v′

w = w + w′

p = p+ p′

(2.16)

Because changes in density are considered negligible (which is an approximation
valid only for a flow with low Mach number, specifically M < 0.3), the fluid evo-
lution can be described using the incompressible formulation of the Navier-Stokes

18

Theoretical analysis: Computational Fluid Dynamics

equations.

Continuity Equation
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.17)

Momentum Balance Equation (x -direction)

ρ

[
∂u

∂t
+
∂(u2)

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z

]
= −∂p

∂x
+ µ

[
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

]
(2.18)

The others direction can be written in the same way.
Starting from the Continuity Equation and applying the Reynolds decomposi-
tion:

∂(u+ u′)

∂x
+
∂(v + v′)

∂y
+
∂(w + w′)

∂z
= 0

∂u

∂x
+
∂u′

∂x
+
∂v

∂y
+
∂v′

∂y
+
∂w

∂z
+
∂w′

∂z
= 0

Assuming a stationary turbulence, it’s possible to time-average the decomposed
equation:

∂u

∂x
+
∂u′

∂x
+
∂v

∂y
+
∂v′

∂y
+
∂w

∂z
+
∂w′

∂z
= 0

∂u

∂x
+
∂u′

∂x
+
∂v

∂y
+
∂v′

∂y
+
∂w

∂z
+
∂w′

∂z
= 0

Now, using the average operation properties in (2.15), it’s possible to set to 0
the mean values of the fluctuations, obtaining the Time-averaged Continuity
Equation:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.19)

It’s easy to notice that the time-averaged continuity equation is identical in its for-
mulation to the normal continuity equation with the instantaneous values replaced
by the time-averaged ones.
The next step is to derive the time-averaged momentum balance equation, the pro-
cess is the same used previously. Since the equation is longer and more complex
the LHS and the RHS will be treated separately.

LHS: Applying the Reynolds decomposition an then time-averaging the equation
obtained:

LHS = ρ

 ∂u

∂t
1st term

+
∂(u2)

∂x
2nd term

+
∂(uv)

∂y

3rd term

+
∂(uw)

∂z
4th term

 (2.20)

19

Theoretical analysis: Computational Fluid Dynamics

1st term:
∂(u+ u′)

∂t
=
∂u

∂t
+
∂u′

∂t
(2.21)

Note that, even since the mean velocity u is independent of the time-averaging
period, it’s not possible to simply set equal to 0 its time derivative because
the global flow is intrinsically unsteady and its properties can still change in
time. Therefore two different timescales have to be distinguished, one for the
turbulence (T1) and one for the global flow (T2), and choose the averaging
time such that T1 < T < T2 so that only the turbulent fluctuations are
time-averaged. Hence, the time derivative term for the mean velocity is not
eliminated [49].
Now time-averaging the (2.21):

∂u

∂t
+
∂u′

∂t
=
∂u

∂t
+
∂u′

∂t

and applying the average operation properties (2.15), the 1st term of the LHS
becomes:

∂u

∂t
+
∂u′

∂t
=
∂u

∂t
=
∂u

∂t
(2.22)

The 2nd, 3rd and 4th terms of the LHS are the convective terms of the
equations, the steps are the same:

∂[(u+ u′)2]

∂x
=

∂

∂x
(u2 + 2uu′ + u′ 2) (2.23)

∂

∂x
(u2 + 2uu′ + u′ 2) =

∂

∂x
(u2 + u′ 2) +

∂

∂x
(2uu′)

Since u′ = 0, consequently also ∂
∂x

(2uu′) = 0. Therefore, the time average of
the second term is:

∂[(u+ u′)2]

∂x
=

∂

∂x
(u2 + u′ 2) =

∂

∂x
(u2 + u′ 2) (2.24)

The 3rd and 4th terms are obtained in the same way, so the results are:

∂[(u+ u′)(v + v′)]

∂y
=

∂

∂y
(uv + u′v′) (2.25)

∂[(u+ u′)(w + w′)]

∂z
=

∂

∂z
(uw + u′w′) (2.26)

In conclusion, the LHS of the time-averaged momentum balance equation is:

LHS = ρ

[
∂u

∂t
+

∂

∂x
(u2 + u′ 2) +

∂

∂y
(uv + u′v′) +

∂

∂z
(uw + u′w′)

]
(2.27)

20

Theoretical analysis: Computational Fluid Dynamics

RHS : The right-hand side of the x -direction momentum balance equation is:

RHS = −∂p
∂x

Pressure term

+µ

[
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

]
Shear-stress term

(2.28)

The pressure gradient term becomes:

−∂(p+ p′)

∂x
= −

(
∂p

∂x
+
∂p′

∂x

)
= −

(
∂p

∂x
+
∂p′

∂x

)
= −∂p

∂x
(2.29)

The Shear-stress term can be decomposed as:

µ

[
∂2

∂x2
(u+ u′) +

∂2

∂y2
(u+ u′) +

∂2

∂z2
(u+ u′)

]
Time-averaging the decomposed term:

µ

[
∂2

∂x2
(u+ u′) +

∂2

∂y2
(u+ u′) +

∂2

∂z2
(u+ u′)

]

µ

[
∂2

∂x2
(u+ u′) +

∂2

∂y2
(u+ u′) +

∂2

∂z2
(u+ u′)

]
Finally, applying again the properties in (2.15) the Shear-stress term be-
comes:

µ

[
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

]
(2.30)

Therefore, the RHS of the time-averaged momentum equation is:

RHS = −∂p
∂x

+ µ

[
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

]
(2.31)

In conclusion, putting together the LHS (2.27) and the RHS (2.31), the time-
averaged momentum balance equation in the x -direction is obtained:

ρ

[
∂u

∂t
+

∂

∂x
(u2 + u′ 2) +

∂

∂y
(uv + u′v′) +

∂

∂z
(uw + u′w′)

]
=

− ∂p

∂x
+ µ

[
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

] (2.32)

It’s very important to do some further rearrangements to the terms of the equation:

ρ

[
∂u

∂t
+

∂

∂x
(u2) +

∂

∂y
(uv) +

∂

∂z
(uw)

]
=

− ∂p

∂x
+ µ

[
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

]
−
[
∂

∂x
(ρu′ 2) +

∂

∂y
(ρu′v′) +

∂

∂z
(ρu′w′)

]
21

Theoretical analysis: Computational Fluid Dynamics

to finally obtain:

ρ

[
∂u

∂t
+

∂

∂x
(u2) +

∂

∂y
(uv) +

∂

∂z
(uw)

]
=

− ∂p

∂x
+

[
∂

∂x

(
µ
∂u

∂x
− ρu′ 2

)
+

∂

∂y

(
µ
∂u

∂y
− ρu′v′

)
+

∂

∂z

(
µ
∂u

∂z
− ρu′w′

)] (2.33)

The formulation (2.33) is the standard representation of the Reynolds-averaged
momentum balance equation.
As it can be seen there’s a new term that appears due to the time-averaging of
the Navier-Stokes momentum equation, this term is part of the total shear stress
and represents the part of shear stress that is created due to the fluctuations of
the turbulence. Since this additional term arises from the Reynolds averaging
operation it has been called Reynolds stress. It’s possible to make an analogy
with the shear stresses that are present in the Navier-Stokes equations, the latter
are due to the transport of momentum due to the random motion of molecules.
Similarly, the Reynolds stresses are the effect of the convection of momentum due
to the turbulent flow. Note that shear stresses are an effect with a molecular origin,
while the shear stresses are due to the convective, fluctuating motion of fluid packets
(the aforementioned eddies).
The time-averaged momentum equations for the other two directions, y and z, are
obtained in the exact same way of the (2.33).
In general, it’s possible to write the time-averaged momentum balance equation in
the generic i -direction as:

ρ
Dui
Dt

= − ∂p

∂xi
+ µ∇2ui − ρ

(
∂u′iu

′
j

∂xj

)
(2.34)

with the rightmost term representing the Reynolds stress tensor.
The Reynolds stress tensor is a 3 × 3 symmetric tensor with a total of 6 unique
components:

ρ
(
v’v’

)
= ρ

u′ 2 u′v′ u′w′

v′u′ v′ 2 v′w′

w′u′ w′v′ w′ 2

 (2.35)

The first thing to note of the RANS equations system is that the time-averaging
of the Navier-Stokes equations brings with it additional quantities:

- 4 mean values p, u, v, w

- 6 unique terms of the Reynolds stress tensor

for a total of 10 additional unknowns.
Since the equations remain always 4 (continuity equation and the 3 components

22

Theoretical analysis: Computational Fluid Dynamics

of the momentum balance equation), the RANS equation system is not a closed
problem and, to be solved, it needs additional equations to model the components
of the Reynolds stress tensor and finally close the problem. This problem led to
the definition of the various turbulence models that are used today in modern CFD
and which are the subject of the next section.

2.2 Turbulence Models

In order to solve the closure problem of the RANS equations system, it’s necessary
to find a way to evaluate the Reynolds stresses. Unfortunately, an exact theory
that defines the Reynolds stresses doesn’t exist, all the models that are used in
modern CFD are based on semi-empirical assumptions.

Eddy Viscosity concept

This is the simplest model to approximate the Reynolds stresses, it’s based on the
concept of ’Eddy Viscosity’ introduced by Joseph Valentin Boussinesq, in 1877 [11].
This method puts in relation the Reynolds stress tensor and the averaged-velocity
gradients through the eddy viscosity µT which is a scalar, dimensional (I.S. [Pa s])
and isotropic quantity that can vary in space and time.
The ’Boussinesq relation’ for the Reynolds stresses is:

−u′iu′j = µT

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
kδij (2.36)

where:

- µT is the eddy viscosity.

- k = 1
2
u′iu
′
i is the Turbulence Kinetic Energy (TKE).

- δij is the Kronecker’s delta (previously mentioned in the paragraph 2.1, which
is 1 if i = j (normal stress) and 0 if i /= j (tangential stress).

In this model, the additional turbulence stresses are given by increasing the overall
molecular viscosity through the eddy viscosity. There are several subcategories for
the eddy viscosity models, depending on the number of (transport) equations solved
to compute the eddy viscosity coefficient [17]:

- Zero equations (algebraic) models, for example the Prandtl’s Mixing-Length
model, Cebeci-Smith model, . . .

- One equation models, for example the Spalart-Allmaras model, k -model, . . .

- Two equations models, for example the k -ε model, k -ω model, k -τ model, . . .

23

Theoretical analysis: Computational Fluid Dynamics

- Three equations models, such as the k -ε-A model

- Four equations models, such as the v2-f model

The one equation Spalart-Allmaras model will be further investigated in the next
paragraph as it’s used as turbulence model in the CFD simulation subject of this
thesis project.

The Spalart-Allmaras model

The Spalart-Allmaras (S-A) is a one equation model that introduces a modelled
transport equation for the turbulent kinetic energy (TKE) [60].
In its standard formulation the S-A is a low-Reynolds model, which means that is
used for solving the flow in the regions where the Re number is low and viscosity
effects are relevant. For this reason it specifically requires that the regions near
the wall, where the viscosity effects are present, are properly resolved (generally a
parameter that represents the quality of the mesh near the wall is y+, the normalized
distance from the wall, and it has to be as close as possible to 1; later on this chapter
there will be further discussions on the mesh and its features).
This method is particularly suitable for aerodynamics applications but it’s not
designed for generic industrial flows and leads to large errors (for example jet-
like free shear flows) [22]. Compared to the low Reynolds number k -ε model, the
Spalart-Allmaras model is generally considered more robust and is often used as
a way to obtain a preliminary solution for more advanced models. It can give
reasonable results on relatively coarse meshes for which the low Reynolds number
k -ε model does not converge or even diverges [5].
The one-equation model solves a transport equation for a viscosity-like variable ν̃
(also called ’Spalart–Allmaras variable’):

∂ν̃

∂t
+ uj

∂ν̃

∂xj
= cb1 (1− ft2) S̃ν̃ −

[
cw1fw −

cb1
k2
ft2

](ν̃
d

)2

+
1

σ

[
∂

∂xj

(
(ν + ν̃)

∂ν̃

∂xj

)
+ cb2

∂ν̃

∂xj

∂ν̃

∂xj

] (2.37)

where ρ is the density, ν = µ
ρ

is the kinematic viscosity and µ is the dynamic
viscosity.
Once the S-A variable is known, the eddy viscosity is given by the equation:

µT = ρν̃fv1 (2.38)

with:

fv1 =
χ3

c3
v1 + χ3

where χ =
ν̃

ν
(2.39)

24

Theoretical analysis: Computational Fluid Dynamics

The terms that appears in (2.37) are:

S̃ = S +
ν̃

k2d2
fv2 (2.40)

where S =
√

2ωijωij is the magnitude of the vorticity, Ωij = 1
2

(
∂ui
∂xj
− ∂uj

∂xi

)
is the

rotation tensor, d is the distance from the field point to the nearest wall and the
coefficient fv2 is given by the equation:

fv2 = 1− χ

1 + χfv1

(2.41)

The other terms in the S-A equation (2.37) are:

fw = g

[
1 + c6

w3

g6 + c6
w3

] 1
6

(2.42)

where g = r + cw2

(
r6 − r

)
and r = min

[
ν̃

S̃k2d2
, 10

]
And

ft2 = ct3 e
−ct4χ2

(2.43)

The dimensionless constants are:

cb1 = 0.1355 cw2 = 0.3

cb2 = 0.622 cw3 = 2.0

σ = 2/3 ct3 = 1.2

k = 0.41 ct4 = 0.5

cv1 = 7.1 cw1 = 3.239

where cw1 is obtained from the others constant with the equation:

cw1 =
cb1
k2

+
1 + cb2
σ

The boundary conditions of the S-A model are defined near the wall and in the
’farfield’, which is the free-stream external boundary of the physical domain:

ν̃wall = 0 and ν̃farfield = 3ν∞ ÷ 5ν∞ (2.44)

where ν∞ is the kinematic viscosity of the fluid in the farfield.
The formulation presented above, developed by P.R. Spalart and S.R. Allmaras in

25

Theoretical analysis: Computational Fluid Dynamics

1994 [60], is the most commonly used; since then, some modification have been
implemented in order to improve the method. For example, to avoid numerical
instability, the term S̃ in (2.40) should never go to zero or becoming negative, for
this reason in 2012 [7] a new equation for S̃ was proposed.
Defining:

S =
ν̃

k2d2
fv2

The equation (2.40) becomes:

S̃ =


S + S if S ≥ −c2S

S +
S(c22S+c3S)
(c3−2c2)S−S if S < −c2S

(2.45)

Where c2 = 0.7 and c3 = 0.9 1.
Others modifications to this formulation led to several variants of the Spalart-
Allmaras model, to name a few [42]:

- Negative Spalart-Allmaras One-Equation Model (SA-neg) [7]: developed to
address issues related to under-resolved grids and non-physical transient states
in discrete settings.

- Spalart-Allmaras One-Equation Model without the ft2 Term (SA-noft2) [9]:
several implementations of the S-A model ignore the ft2 term, which is a
numerical fix in the original model in order to make zero a stable solution to
the equation.

- Spalart-Allmaras One-Equation Model with Rotation/Curvature Correction
(SA-RC) [56]: variant of the original model developed to account for rotation
and curvature effects.

2.3 Discretization of the Governing Equations

Considering the Navier-Stokes set of governing equations presented in section 2.1,
these five equations (two scalar equations and a vector equation in 3 directions)
together form a set of coupled, nonlinear partial differential equations. It is not
possible to solve these equations analytically for most engineering problems. How-
ever, it is possible to obtain approximate computer-based solutions to the governing

1Note that, even with this modification, if the vorticity magnitude S is identically zero also
the term S̃ becomes zero, in this conditions is necessary to impose the value of r, that appears in
(2.42), to avoid dividing by zero. So, whenever S̃ = 0, set r = 10.

26

Theoretical analysis: Computational Fluid Dynamics

equations for a variety of engineering problems, this is the subject matter of Com-
putational Fluid Dynamics [50].
Broadly speaking, the strategy of CFD is to replace the continuous problem domain
with a discrete domain using a grid. In the continuous domain, each flow variable is
defined at every point in the domain, for instance, the pressure p in the continuous
1D domain would be given as:

p = p(x), 0 < x < 1 (2.46)

x = 0 x = 1

Figure 2.5. Continuous domain

In the discrete domain, each flow variable is defined only at the grid points.
So, in the discrete domain shown below, the pressure would be defined only at the
N grid points:

pi = p(xi), i = 1,2, . . . , i, . . . , N (2.47)

In a CFD solution, one would directly solve for the relevant flow variables only at

x1 x2 xi xN

Figure 2.6. Discrete domain

the grid points, the values at other locations are determined by interpolating the
values at the grid points.
The governing partial differential equations and boundary conditions are defined
in terms of the continuous variables p(x), ~V etc., as already said, they can be

approximated in the discrete domain in terms of the discrete variables pi, ~Vi etc.
[50]. In this way the discrete system is a large set of coupled, algebraic equations
in the discrete variables.
There are mainly three methods to discretize the computational domain and the
set of equations:

- Finite-Difference Method (FDM): A 2D computational domain is usually
divided into hexahedral elements and the numerical solution is obtained at
each node. The results is a system of discrete equations of the variables in
each grid point.
For spatial derivatives approximation there are different schemes that can be

27

Theoretical analysis: Computational Fluid Dynamics

adopted, according to the desired order of accuracy: Forward (or Backward)
difference scheme (first order of accuracy), Central difference scheme (second
order of accuracy, but intrinsically unstable), Upwind scheme (which can be
both first order or second order accurate), etc.
FDM works well with regular grids, for non-uniform grids it’s very difficult
to use, for this reasons is rarely adopted for CFD solvers [46].

- Finite-Volume Method (FVM): This method is based on the integrated
version of the governing equations.
The 3D or 2D domain is discretized into finite volumes or cells, respectively,
and the governing equations are solved for every volume/cell. The final form
of the equations after discretization involves the calculation of the fluxes of the
conserved quantities (mass, momentum and energy), at the volumes interfaces
which is an essential part in this method.
Unlike FDM, finite volume approach is also suitable for non-uniform grids
and, most important it is an intrinsically conservative2 method (both FDM
and FEM need to be carefully formulated to ensure the conservative solution).
For this reasons the Finite-Volume approach is the most used discretization
method for CFD solvers [46].

- Finite-Element Method (FEM): This method is used in structural anal-
ysis of solids, but is also applicable to fluids. The main drawback of the FEM
formulation is that it requires special care to ensure a conservative solution.
It is much more stable than the finite volume approach but FEM can require
more memory and has slower solution times than the FVM [68].

If the subject of the CFD simulation is time dependant there’s also the necessity
of a method for the time discretization.
There are two possible schemes:

- Explicit scheme: With this method the value of the conserved quantities
(for example the pressure p) at the time-step t is only function of its value at
the time-step t− 1:

pt = f(pt−1) (2.48)

This is the simplest scheme to implement in a CFD simulation because it
doesn’t need any kind of matrix inversion to update the conserved quantities

2Granting the ’conservative’ formulation means that once the equations are discretized, the
flux terms form a ’telescoping-series’, that is when fluxes are summed into and out of a row of
cells, the inter-cell fluxes cancel and the net flux is just the difference between the fluxes at the
boundaries.
The main advantage of this formulation is that it allows discontinuous solution, which is necessary
for shock-related problems.

28

Theoretical analysis: Computational Fluid Dynamics

at the next time-step. The downside of this method is that it’s stable only if
the Courant-Friedrichs-Lewy (CFL) condition is satisfied:

C = a
∆t

∆x
< 1 (2.49)

where C is the Courant number and a is the propagation speed of the per-
turbation.

- Implicit scheme: with this method the updated value of the conserved
quantities is function of its value at both the time-steps t and t− 1:

pt = f(pt, pt−1) (2.50)

In this case, we can’t update the variable at each grid point independently,
we instead need to solve a system of algebraic equations in order to calculate
the values at all grid points simultaneously. In any case, the Implicit scheme
is not unconditionally stable for governing equations (due to their non-linear
behaviour) but it’s less limited regarding the Courant number adopted, which
can be greater than 1.

Courant number is a key factor in CFD simulations as it defines the time-step with
which the simulation advances. Taking larger time-steps leads to faster convergence
to the steady state, so it is advantageous to set the Courant number as large as
possible, within the limits of stability.

The computational Grid

Creating a high-quality computational grid (or ’mesh’) is one of the most critical
factors that must be considered to ensure simulation accuracy. A mesh partitions
the space of the domain into elements (or ’cells’) over which the equations can be
solved, which then approximates the solution over the complete domain [24].
The 2 major aspects that characterize a mesh are the element shape and the grid
structure.

Element Shape

For a 2-dimensional grid the most common cell shapes are: Triangular, which is
the simplest one and the most common used for ’unstructured’ grids, and Quadri-
lateral, most commonly used for ’structured’ grids.
If the domain is 3-dimensional the elements can have different shapes depending on
the complexity of the geometry. If the 3D domain is obtained from an extrusion of
a 2D model the grid can be constituted by Triangular prisms or Hexaedron ob-
tained by direct extrusion of the triangular o quadrilateral cells from the 2D model.

29

Theoretical analysis: Computational Fluid Dynamics

Other common element shapes for 3D meshes are the Pyramid (commonly used
as transition elements between square and triangular faced elements and other in
hybrid meshes and grids [24]), the Tetrahedron and Polyhedron, which is the
most complex one as it can have any number of faces depending on the geometry
and requires more computational effort per cell compared to others shapes.

Figure 2.7. 3D cell shapes representation [24]

Grid Structure

There are three types of grid structure:

- Structured Grids: they are characterized by regular connectivity between
the elements of the grid.It has a high spatial efficiency and leads to a better
resolution of the domain and a faster convergence but it’s limited to relatively
simple and regular geometries.

Figure 2.8. Structured mesh (software: Gmsh)

30

Theoretical analysis: Computational Fluid Dynamics

- Unstructured Grids: they are characterized by irregular connectivity be-
tween the elements. This is the simplest structure for a mesh but it gives
more numerical diffusion than a structured mesh [71]. This means that a so-
lution obtained on an unstructured mesh is more ’damped’ compared to the
solution obtained on a structured mesh. Numerical diffusion is not always
an undesirable effect because it can increase the ’robustness’ of the solution,
leading to an easier convergence.

Figure 2.9. Unstructured mesh (software: Gmsh)

- Hybrid Grids: Hybrid grids integrate both structured and unstructured
grids in order to improve the spatial efficiency of the overall mesh. They are
particularly suitable for large domains with different complex geometries, the
structured grid is used where the shape of the geometry is regular and the
unstructured one is used to discretize the parts where the geometry is com-
plex.
A different application for hybrid meshes could be, for example, the discretiza-
tion of a two-dimensional domain that contains an airfoil: if the simulation
that needs to be defined involves molecular viscosity, the mesh in the near-wall
region on the airfoil must have a high resolution (especially in the direction
normal to the wall) in order to fully capture the high gradient of velocity
that is characteristic of this region, which is called ’Boundary Layer’. For
this reason to discretize boundary layers is common to use structured mesh
with elements very thin near the wall which gradually become thicker moving
away in the normal direction. Outside the boundary layer is possible to use a
simple unstructured mesh with the elements that are small in the region near
the airfoil where there are the major changes in the fluid properties, becoming
larger and larger moving far from the airfoil in the region where the fluid is
almost still.

31

Theoretical analysis: Computational Fluid Dynamics

Figure 2.10. Triangular unstructured
mesh outside the structured boundary
layer’s mesh (software: Gmsh)

Figure 2.11. Hexagonal unstructured
mesh outside the structured boundary
layer’s mesh (software: Siemens Simcenter
STAR-CCM+ v.2019.3)

Mesh Quality

The mesh quality determines the accuracy of the solution and the convergence
velocity, these two aspects are inversely proportional: refining the mesh, reducing
the elements size, leads to an increase in accuracy but brings with it an increase in
computational cost of the simulation.
The three aspects that a mesh needs to ensure to the solution are:

- Accuracy, which means ensuring that the discretization error3 is the lowest
possible.

- Rate of convergence, after every iteration of the simulation the truncation
error4 needs to be as low as possible, leading to a faster convergence.

- Grid independence, a solution is considered grid-independent if the dis-
cretization and truncation error are small enough given sufficient iterations,
this aspect is important for comparative results [24].

There are different parameters used to measure the quality of the elements that
form the grid, and they can vary from software to software. Taking as example
a 2-dimensional grid constitute by triangular elements, some common parameters
used to measure the grid quality are:

3The discretization error is the error due to the approximation of the derivatives with a finite
difference:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
' f(xi)− f(xi−1)

xi − xi−1

4The truncation error is the difference between the exact solution and the approximated solu-
tion obtained from the discretization

32

Theoretical analysis: Computational Fluid Dynamics

- Skewness. The skewness is a suitable indicator of the overall quality of the
mesh, for triangular elements, with reference to Fig. 2.12, the skewness is
given by the equation:

skewness = 1− e e′√
A

(2.51)

where e is the inner face center, e’ is the center of PE and A is the area of
the inner face. The skewness indicates the distance between the connecting

P
E

e

e’

Figure 2.12. Definition of skewness

center and face center, if these two centers, e and e’, are coincident, the skew-
ness is equal to 1.

- Aspect Ratio (γ). For a triangular element the aspect ratio is given by
the ratio between the diameter of the inscribed circle and the radius of the
circumscribed circle of the triangle:

γ =
2ri
re

(2.52)

The value of γ needs to be as close as possible to 1 to ensure the regularity
of the elements of the grid.

- Signed Inverse Condition Number (SICN). Is a parameter based on the
definition of the condition number of the transformation matrix S between
the ideally shaped element and the actual element.

- Normalized wall distance (y+). This is a parameter that measures the
quality of the mesh of the boundary layer in near-wall regions of the domain.
It depends on the flow conditions (cinematic viscosity ν, density ρ and dy-
namic viscosity µ), the wall shear stress τw and the normal distance of the

33

Theoretical analysis: Computational Fluid Dynamics

2re

2ri

Figure 2.13. Inscribed and circumscribed circles in a triangular element

first cell center from the wall ∆y:

y+ =
∆y

ν

√
τw
ρ

with τw = µ

(
∂u

∂y

)
y=0

(2.53)

The ideal value of y+ for a turbulent boundary layer modelled with the
Spalart-Allmaras model (see paragraph 2.2) is y+ = 1, this is not a uni-
versal rule and it depends of the turbulence model used and the associated
wall functions (if present). Due to this fact, the different models require dif-
ferent values of y+ as well as different spatial resolutions of the near wall area.
Note that differently from the previous quality indicators of the mesh, which
are strictly related to the geometry of the elements, the y+ can’t be known be-
fore the actual simulation of the flow because it’s related to the flow quantities
that need to be computed.

Discretization Scheme

Considering a generic conservation law problem, it’s integral form over a control-
volume V with external surface S is:∫

V

∂W

∂t
dV +

∫
S

F(W) · n dS = 0 (2.54)

Where W is the vector of the conserved quantities and F(W) is the corresponding
flux tensor [39]. The semi-discrete formulation of this system of equation with the
finite volume method, for the generic i cell, is:

∂

∂t
Wi∆Vi +

∑
Sj

(F(W) · n)j ∆Sj = 0 (2.55)

where Wi is the cell-averaged value of the conserved quantities, ∆Vi is the cell
volume, ∆Sj is the j -th face surface of the cell.

34

Theoretical analysis: Computational Fluid Dynamics

ii− 1 i+ 1

i− 1
2

i+ 1
2

Figure 2.14. 2-dimensional cell, interfaces indices i± 1
2

The second term of the formulation in (2.55) collect the fluxes of the conserved
quantities evaluated at the interface between the cells and they can be evaluated
by interpolation of the values of the conserved quantities at the cell centers. In the
governing equations for a viscous fluid, there are two kinds of fluxes: the convective
fluxes due to the convective transport of the conserved quantities and the diffusive
fluxes due to the viscous transport of the conserved quantities. The convective
fluxes are the most critical ones because, in general, the viscosity of the flow acts
as ’natural’ stabilizer of the diffusive term, on the other hand the convective term
isn’t stabilized by its own, so particular care needs to be used when determining
this term.

Convective Schemes

Since the focus of the definition of the discretization scheme is only the convective
term, in order to relieve the notation, in this section will be considered the Euler
equations5 for a one-dimensional domain. In general, the Euler equations in 3-
dimensions can be expressed in a compact way as:

∂

∂t

∫
V

W dV +

∫
S

Fc · n dS = 0 (2.56)

Where W =


ρ
ρu
ρv
ρw
E

 and Fc =


ρv

pi + ρuv
pj + ρvv
pk + ρwv
(E + p)v


5The Euler equations are governing equation obtained from the Navier-Stokes equations ne-

glecting the viscosity and the thermal conductivity of the flow.

35

Theoretical analysis: Computational Fluid Dynamics

with ρ the fluid density, p is the pressure, E is the total energy of the fluid and v
the flow velocity vector with components u, v and w. Simplifying to the 1D case
in the x -direction, equation (2.57) is obtained:

∂

∂t

∫ x2

x1

W dx+ Fc(x2)− Fc(x1) = 0 (2.57)

Where W =


ρ
ρu
E

 and Fc =


ρv

p+ ρu2

(E + p)u



i− 1
2

i+ 1
2

i− 1 i i+ 1

Figure 2.15. 1D domain discretized with FVM

The Euler equations written for the i cell of the discretized domain in fig. 2.15 are:

∂Wi

∂t
∆x+ Fc(xi+ 1

2
)− Fc(xi− 1

2
) = 0 (2.58)

where Wi is the vector of the conserved quantities evaluated in the cell center and
Fc(xi+ 1

2
) and Fc(xi− 1

2
) are the convective fluxes evaluated at the cell interfaces.

Finally, since Fc = Fc(W), the fluxes can be written as:

∂Wi

∂t
∆x+ Fc(Wi+ 1

2
)− Fc(Wi− 1

2
) = 0 (2.59)

With this formulation is possible to define the convective fluxes at the cell interface
using the values of the conserved quantities at the cell center, which are known.
The basic discretization schemes that can be used to evaluate the convective fluxes
are:

- Central Difference Scheme (CDS): The most obvious way to define the
fluxes at the interface is a linear interpolation:

Fc(Wi+ 1
2
) = Fc

[
1

2
(Wi+1 + Wi)

]
(2.60)

This scheme has a second order accuracy6 in space but it’s intrinsically un-
stable for flows characterized by strong convection or flow discontinuities like

6The order of accuracy of a method represents the rate of convergence discussed in paragraph
2.3, given an approximate solution u∆x, a method is n-th order accurate if the error E(∆x) is
proportional to:

E(∆x) = ||u− u∆x|| ∝ ∆xn

Where ∆x is the spacing of the grid.

36

Theoretical analysis: Computational Fluid Dynamics

shock waves. It can be used for very low Reynolds number flow where the
diffusive term dominates over the convection [16].

- Upwind Difference Scheme (UDS): Also known as First-Order Upwind
scheme (FOU scheme), is based on the concept of ’taking the information from
the direction from which the flow is coming’, it’s mathematically defined as:

Fc(Wi+ 1
2
) =


Fc(Wi) if v · n > 0

Fc(Wi+1) if v · n < 0

(2.61)

If the velocity vector is directed rightward, a backward scheme is used, oth-
erwise, a forward scheme is used.
As mentioned this is a first order accurate scheme (because both backward
and forward schemes are first order accurate) so it’s less accurate than the
CDS but it’s highly stable. The downside of this scheme is that it’s highly
diffusive, specially when the flow direction is skewed relative to the grid lines
[16].

- Hybrid Difference Scheme (HDS): Defined by Dudley Brian Spalding in
1970 [61], the HDS is a numerical scheme that combines the aforementioned
CDS and UDS. The method consists of using the second order CDS only for
the cells where the local Pèclet7 number is sufficiently low (Pe < 2), otherwise
the first order Upwind scheme will be used.

In order to obtain higher accuracy order methods and ensure the stability of the so-
lution, even in high Reynolds number flows where the convective effect is dominant,
more advanced discretization schemes were developed. Some of these methods are
based on the second order CDS combined with a scalar artificial diffusion term to
increase the stability (Lax-Friedrichs method or Jameson-Schmidt-Turkel scheme).
Another concept on which several numerical methods are based is the REA Algo-
rithm, where the acronym stands for: Reconstruct, Evolve and Average, which are
the basic steps of the algorithm:

1) The solution is reconstructed using a polynomial piece-wise function (constant
piece-wise functions gives first order accuracy, linear piece-wise functions gives
a second accuracy, etc.)

7The Pèclet number is the numerical counterpart of the Reynolds number, it measures the
relative strengths of diffusion and convection and it’s defined as:

Pe =
ρu∆x

Γ

Where ρ is the density, u is the velocity, Γ is the numerical diffusion coefficient and ∆x the cell
dimension.

37

Theoretical analysis: Computational Fluid Dynamics

2) The reconstructed solution is then evolved at the successive time step, intro-
ducing discontinuities in the cells interfaces which have to be solved using the
Riemann problems theory8.

3) The evolved reconstructed solution is then averaged to obtain the new cell
averaged values.

Higher order methods of this family also introduce slope limiting function to pre-
vent oscillations and unstable behaviours (Minmod limiter, Van Albada limiter,
Venkatakrishnan limiter, etc.). Some numerical schemes that belongs to this fam-
ily are: Monotonic Upwind Scheme for Conservation Laws (MUSCL), Essentially
Non-Oscillatory (ENO) schemes, Harmonic Quadratic Upwind Interpolation Con-
vective Kinetics (H-QUICK).
In this section will be further discussed the Jameson-Schmidt-Turkel (JST)
central scheme as it’s the one used for the CFD simulation object of this thesis
project. As mentioned, the JST scheme is based on the CDS but with an ad-
ditional artificial dissipative flux term. The convective flux evaluated at the cell
interface with the JST scheme is given by the equation:

Fc(Wi+ 1
2
) = Fc

[
1

2
(Wi+1 + Wi)

]
−Di+ 1

2
(2.62)

where Di+ 1
2

is the diffusive flux term given by:

Di+ 1
2

= ε
(2)

i+ 1
2

∆Wi+ 1
2
− ε(4)

i+ 1
2

(
∆Wi+ 3

2
+ 2∆Wi+ 1

2
+ ∆Wi− 1

2

)
(2.63)

and ∆Wi+ 1
2

is a vector with components:

∆Wi+ 1
2

=


ρi+1 − ρi

(ρu)i+1 − (ρu)i
Ei+1 − Ei

 (2.64)

The spectral radius9 of the Jacobian matrix for the i -th cell is ri = |u|+ c where c
is the local speed of sound [34].

The dissipative coefficients ε
(2)

i+ 1
2

and ε
(4)

i+ 1
2

are switched on and off by a ’pressure

sensor’:

si =

∣∣∣∣pi+1 − 2pi + pi−1

pi+1 + 2pi + pi−1

∣∣∣∣ (2.65)

8Named after Bernhard Riemann [64], solving a Riemann problem means to evaluate the
evolution in time of a initial discontinuity.

9The spectral radius of a square matrix is the largest absolute value of its eigenvalues [29]

38

Theoretical analysis: Computational Fluid Dynamics

At the cell interfaces the spectral radius and the sensor are defined as:

ri+ 1
2

= max (ri+1, ri) and si+ 1
2

= max (si+1, si)

It’s now possible to evaluate the dissipative coefficients ε
(2)

i+ 1
2

and ε
(4)

i+ 1
2

:

ε
(2)

i+ 1
2

= k2si+ 1
2
ri+ 1

2
(2.66)

ε
(4)

i+ 1
2

= max
(

0, k4ri+ 1
2
− c4ε

(2)

i+ 1
2

)
(2.67)

The constants in (2.66) and (2.67), for a transonic flow simulation, can be assumed
to be equal to:

k2 = 1 k4 =
1

32
c4 = 2

In any case, as a general rule, k2 should be chosen to give enough lower order
dissipation to prevent unstable oscillations in the vicinity of shock waves, while c4

should be large enough to make sure that the higher order terms are turned off
when the lower order dissipation is active [34].
Summarizing, the JST Scheme offers a good compromise between accuracy and ro-
bustness as the 2-nd and 4-th order dissipation coefficients can be turned off, by the
pressure sensor, in presence of strong discontinuities (like shock-waves) that could
introduce unwanted oscillatory behaviours. The main drawback of this method is
that the additional artificial diffusion could lead to an over prediction of the viscous
drag contributions in low Reynolds flows.

39

Chapter 3

The Multi-Layer Perceptron

This chapter contains an overview of the second generation of Artificial Neural
Networks (ANNs), which are also called Multi-Layer Perceptrons (MLPs). In the
next pages the architecture of this type of Neural Networks (NNs), their features,
the algorithms on which they are based and the theory behind the training process
are going to be discussed and analyzed.
The MultiLayer Perceptron is a supervised learning algorithm that learns a function
(3.1), after training on a Dataset [53].

f(x) : RI → RO with I = Input dimension , O = Output dimension (3.1)

The database consists in samples of Input features x = x1, x2, x3, · · · , xI and
corresponding Targets y = y1, y2, y3, · · · , yO.

INPUT FEATURES TARGETS
[x1, x2, x3, · · · , xI]1 [y1, y2, y3, · · · , yI]1
[x1, x2, x3, · · · , xI]2 [y1, y2, y3, · · · , yI]2

...
...

[x1, x2, x3, · · · , xI]N [y1, y2, y3, · · · , yI]N
Table 3.1. Structure of a Database with N samples of input features and targets

Giving to the MLP a sample of input features and targets, it can learn an approx-
imation of the function f(x) by regression or classification.
As already mentioned in section 1.2, the basic unit of a neural network is the Arti-
ficial Neuron which is basically a mathematical function defined as a model of the
biological neuron [8]. For the second generation of ANN the function behind the
output of a k -th artificial neurons, which receives I input signals xi is:

yk = g

(
I∑
i=0

wkixi + bk

)
(3.2)

40

The Multi-Layer Perceptron

The term in (3.2) in brackets is called weighted input and it depends on the weights
w that connects the two neurons, which can be considered similar to the coeffi-
cients of a linear regression, and on a constant signal b called ’bias’. The function
g(x) : R→ R that takes as arguments the weighted input is the activation function
(or transfer function) which gives the final output, also called neuron activation, of
the artificial neuron [21].

x1

x2

xI

x3 Neuron

Bias bk

y = g(sum(wjk xj))

w jk

Figure 3.1. Artificial Neuron

The neurons are organized in layers, in a fully connected architecture every neu-
ron of the layer receives the signal from every feature of the input and produces
an output that becomes the input of the next layer. A common structure of a
MLP consists of 3 layers: the Input layer which contains the input values, an
hidden layer which has an arbitrary dimension, depending on the complexity of
the function that has to be learned, and acts as intermediate elaboration layer, and
the Output layer which contains the neurons that return the final output of the
network. Considering, as example, the aforementioned MLP with 3 layers (Fig.
3.2):

1) Input layer with dimension I (index: i)

2) Hidden layer with dimension H (index: h)

3) Output layer with dimension O (index: j)

The sequence of the elaboration process from the input to the output (’Forward’
step, or ’Inference’), for the j -th output neuron will be:

yh = ghid

(
I∑
i=1

whixi + bh

)
Input→ Hidden (3.3)

41

The Multi-Layer Perceptron

x1

x2

x3

xI

y1
h

yH-1
h

y2
h

y3
h

yH
h

y1
o

yO
o

y2
o

Figure 3.2. MLP architecture representation

yj = gout

(
H∑
k=1

wjkyh + bj

)
Hidden→ Output (3.4)

Putting together the equations (3.3) and (3.4) the overall sequence is:

yj = gout

[
H∑
k=0

wjk ghid

(
I∑
i=0

wkixi + bk

)
+ bj

]
Input→ Output (3.5)

It’s easy to observe that the activation of a neuron is a function of the activation
of the neuron in the previous layer.
In the Multi-Layer Perceptron the hidden layers can be more than one, increasing
the depth of the architecture and leading to the capability to learn more complex
functions. For a MLP with L layers, the equation (3.5) can be expressed as:

yj = gL

 HL∑
kL=1

wLjk g
L−1

 HL−1∑
kL−1=1

wL−1
jk · · · g1

(
I∑
i=1

w1
ki xi + b1

k

)
· · · + bL−1

k

+ bLk


(3.6)

where wljk is the weight that connects the k -th neuron of the (l− 1)-th layer to the
j -th neuron of the l-th layer.
To relief the notations is possible to write the previous equation using a vector
formulation [44]. We indicate with al the activation vector of the neurons inside
the l-th layer:

al = gl
(
wlal−1 + bl

)
(3.7)

where wl ∈ Rj×k is the weight matrix for the l-th layer, the components of this
matrix are the weight connections wljk between the k-th neurons of the layer and the

42

The Multi-Layer Perceptron

the j-th neurons of the successive layer, and bl which is the bias vector containing
all the bias blj of the considered layer.
It’s also worth treating the weighted input as a standalone term [44], calling zl the
weighted input vector containing the weighted input of the neurons in the layer
l and defined as:

zl = wlal−1 + bl (3.8)

Using this vector notation it’s possible to write the more compact version for the
(3.6):

aL = gL
(
wL gL−1

(
wL−1 · · · g1

(
w1xin + b1

)
· · · bL−1

)
bL
)

(3.9)

3.1 Activation function

As mentioned at the beginning of this chapter, the activation function g(x) is a
function that receives as input the weighted input zlj of the j-th neuron in the l-th
layer and returns the activation state of the neuron alj. The task of the activation
function is to introduce non-linearity inside the neural network, without the acti-
vation function the activation of the neuron is decided only by the weighted input,
which is a linear function of the input set xj (3.8). In this case the neural network
can only perform linear regression task, even with a network made of several hidden
layers, the output activation aL will still be a linear function of the input layer xin
[63]:

aL = wL
(
wL−1 · · ·

(
w1xin + b1

)
· · · + bL−1

)
+ bL−1 (3.10)

This happens because the inference is a linear combination of the neuron activation
and a linear combination of linear functions is still a linear function. This means
that any additional hidden layer is useless and the network can be replaced by a
single layer network that achieves the same task [54].
Enabling non-linear regression is not the only task of the activation function, with-
out it if we look at the error in the neurons of the output layer δLj , computed with
eq. (3.21):

δLj =
∂Ci
∂aLj

g′
(
zLj
)

the derivative of the activation function (which in this case is a linear function) is a
constant, this means that the gradient of the cost function is independent from the
input and it’s also constant. If there is an error in prediction, the changes made by
backpropagation is constant and doesn’t depend on the change in input [54].
The choice of a certain activation function mainly depends on the task that the
NN has to perform, some the most common activation functions used in machine
learning are [55]:

43

The Multi-Layer Perceptron

- Sigmoid function: also called Logistic function, is a monotonic differen-
tiable function:

f(x)sigmoid =
1

1 + e−x
f ′(x)sigmoid = f(x) [1− f(x)] (3.11)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

f(x) = 1
1 e x

Figure 3.3. Sigmoid activation function

One of the best features of this function as activation function is that its
image is [0, 1], which makes it particularly suitable for networks that predict
probability [55]. Another important feature is that is very steep in the range
x ∈ [−2, 2] and then flattens out outside this range, this means that this
function tends to return only values close to 0 or 1 making a clear distinctions
in the output, which is a key feature for binary classifier networks [54].
The main drawback of the sigmoid activation function is that it’s almost
’flat’ at the tail ends of the curve, this mean that the gradient associated to
this areas is very low, this is called ’Vanishing gradient’ phenomena. If the
activation of the neuron falls in this range of values the gradients of the cost
function (which is related to the gradient of the activation function) will be
very low and the weights and biases won’t be further updated and basically
the network will stop learning (or becomes very slow) [54].

- Hyperbolic tangent function:

f(x)tanh = tanhx =
2

1 + e−2x
− 1 f ′(x)tanh = 1− f(x)2 (3.12)

The Hyperbolic tangent function is a rescaled sigmoid function, the activa-
tion range goes from -1 to 1 and, with respect to the sigmoid, has a steeper
gradient in the range x ∈ [−2, 2] but presents the same ’Vanishing gradi-
ent’ problem. The Hyperbolic tangent activation function is mainly used for
binary classification tasks.

44

The Multi-Layer Perceptron

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

f(x) = tanh (x)

Figure 3.4. Hyperbolic tangent activation function

- Rectified Linear Unit (ReLU): ReLU is the most widely used activation
function for Machine Learning, it is defined as:

f(x)ReLU =

{
0 if x < 0

x if x ≥ 0
(3.13)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

10 f(x) =max(0, x)

Figure 3.5. ReLU activation function

The ReLU function is non-linear and it’s particularly suitable for regression
models, every function can be approximated with a combination of ReLU-
activated neurons [54]. The main feature that makes this activation function
so popular is the fact that negative inputs in the neuron are returned as a zero
by the ReLU, this cause a sparse activation1 of the neurons in the network,

1Sigmoid causes a dense activation which means that all the neurons activate in the almost
same way, which is computationally costly [54]

45

The Multi-Layer Perceptron

so that only a part of the neurons are active during the inference step, this
makes this activation function very efficient.
This feature of the ReLU has a major downside: setting to zero the nega-
tive inputs causes the gradient of the cost function to go to zero instantly,
this means that the neurons that go on this state don’t respond anymore to
variations in error or input. This issue is called ’dying ReLU’, where several
neurons in the network acts as a passive part of the NN.
To fix this issue is possible to use a variation of the ReLU activation func-
tion called Leaky ReLU where the negative part of the function is no more
horizontal but has a linear behaviour with a very low slope:

f(x)Leaky ReLU =

{
ax if x < 0

x if x ≥ 0
(3.14)

where a is the slope of the negative part and has to be sufficiently low to
guarantee the sparse activation feature of the ReLU (the default value is
often a = 0.01).

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

10 f(x) =max(ax, x)

Figure 3.6. Leaky ReLU activation function

46

The Multi-Layer Perceptron

3.2 The Learning Process: Backpropagation Al-

gorithm

Since now the focus was on the ‘Forward’ step of a neural network, from the input
to the approximation of the output of a function, but nothing has been said on how
the neural network learns how to properly approximate this output. The algorithm
that allows the ANNs to learn the pattern behind the relations between Inputs and
Outputs is called Backpropagation algorithm.
The concept behind the Backpropagation algorithm was first introduced in 1970,
but its relevance was noted only in 1986, after the publication of the paper [52].
In the paper was described how the backpropagation algorithm was far faster than
the previous learning algorithm used, making it possible to use neural nets to solve
problems which had previously been insoluble [44]. The focus of this algorithm is
to compute the partial derivative of the ’Cost function’ (or ’Loss function’) C(w)
with respect of the weights and the biases of the neural network:

∂C(w)

∂w
and

∂C(w)

∂b

This mathematical expression links how the cost changes when the weights and the
biases change in the network.
The cost function used depends on the application of the neural network. For
example, for classification tasks the cost function is usually a Cross-Entropy loss
function defined as [18]:

CCE =
1

N

N∑
class

(
− log

[
exp (xclass)∑
j exp (xj)

])
(3.15)

Where xclass is the output with the target class index which is normalized with
respect to the sum of the outputs, the results of the logarithm of this fraction is
then averaged over the number of classes N .
If the task is a regression of a function y = f(x) a suitable cost function is the
Mean Squared Error [19]:

CMSE =
1

N

N∑
i

(
aL − y(x)

)2
(3.16)

Where aL is the activation of the output layer and y(x) is the target, N is the
number of training sets of the database.
In general, the overall cost function can be seen as the average of all the cost
functions of the single training sample Ci, with:

Ci =
(
aL − y(x)

)2
(3.17)

47

The Multi-Layer Perceptron

This observation is important because the backpropagation algorithm allows to
evaluate the derivative of the cost function of the single training sample with respect
to the weights and biases, the overall derivative of the cost function is then obtained
averaging over all the training sets [44].
Another useful observation is that the cost function is a function of the activation
of the last layer (output activation):

Ci = Ci
(
aL
)

(3.18)

Note that, even if Ci is also function of the target output y(x), this dependency is
irrelevant from the point of view of the derivative with respect to the weights and
the biases because, if they change, only the output activation aL changes.
Before deriving the expression of ∂Ci

∂w
and ∂Ci

∂b
is necessary to introduce an interme-

diate quantity that represents the ’error’ inside the neurons of the l-th layer [44].
This quantity is named δl and it’s a vector quantity where its components are
defined as:

δlj =
∂Ci
∂zlj

(3.19)

where zlj is the weighted input, eq. (3.8), of the j-th neuron inside the l-th layer.
The reason why this quantity is representative of the neuron’s error is because, if a
small change ∆zlj is introduced in the weighted input of the j-th neuron in the l-th

layer, the final output of the neuron will be gl
(
zlj + ∆zlj

)
. This error will propagate

through the successive layers and finally, affects the output activation, thus the cost
function will change by a quantity:

∆Ci =
∂Ci
∂zlj

∆zlj = δlj∆z
l
j (3.20)

The equations behind the backpropagation algorithm are basically four, which
together allow to evaluate the gradient of the cost function ∇C, which has the
derivatives of the cost function with respect to all the weights and all the biases as
components [44].

1) The equation for the error in the Output Layer:

δLj =
∂Ci
∂aLj

g′
(
zLj
)

(3.21)

The first term of the eq. (3.21) is the rate of change of the cost function with
respect of the activation of the j-th neuron, the second term g′

(
zLj
)

measures

how the activation function changes at zLj . Note that g′
(
zLj
)

depends on the
particular cost function chosen for the neurons. The (3.21) can be expressed
in a vector formulation as:

δL = ∇aCi � g′
(
zL
)

(3.22)

48

The Multi-Layer Perceptron

where the symbol � stands for the Hadamard product2 and ∇aCi is the
gradient of the cost function with respect to the neurons activation, which is
a vector with components ∂Ci

∂aLj
.

2) The equation that relates the error δl to the error in the next layer
δl+1:

δl =
[(

wl+1
)T

δl+1
]
� g′

(
zL
)

(3.23)

where
(
wl+1

)T
is the transposed weight matrix of the (l + 1)-th layer.

This equation represents the backpropagation of the error from the (l+ 1)-th
layer towards the l-th layer [44]. Using the (3.22) to compute the error in the
output layer, with the (3.23) is then possible to determine the error of the
neurons in every layer of the network.

3) The equation for the rate of change of the cost function with respect
to the biases:

∂Ci
∂blj

(3.24)

Since the relation between the cost function and the biases is not explicit, to
determine the derivative it’s possible to use the Chain-rule for the derivatives3

[38]:

∂Ci
∂blj

=
∂Ci
∂zlj

∂zlj
∂blj

=
∂Ci
∂zlj

∂
(
wljka

l−1
j + blj

)
∂blj

=
∂Ci
∂zlj
· 1 (3.25)

where, as previously mentioned in (3.19), ∂Ci

∂zlj
is the error δlj. Thus, the rate of

change of the error with respect to the biases is just the error of the neurons

2The hadamard product is the elementwise product between two matrices [33]. Given A, B ∈
Rn×m two matrices with elements aij and bij the Hadamart product between A and B is:

C = A�B =


a11b11 a12b12 · · · a1mb1m
a21b21 a22b22 · · · a2mb2m

...
...

. . .
...

an1bn1 an2bn2 · · · anmbnm



3The Chain-rule is a mathematical formula used to compute the derivative of composite func-
tions.
The Leibniz’s formulation for this rule states that: given f a function of the dependant variable
y, which is in turn a function of the dependant variable x, the derivative of f with respect to x
can be computed as [14]:

∂f

∂x
=
∂f

∂y

∂y

∂x

49

The Multi-Layer Perceptron

in the l-th layer of the network:

∂Ci
∂blj

= δlj (3.26)

4) The equation for the rate of change of the cost function with respect
to the weights in the network:

∂Ci
∂wljk

= al−1
k δlj (3.27)

The equation (3.27) relates the changes of the cost function with respect to
the weights with the activation of the neuron input of the weight wjk and the
error from the neuron output of wjk [44], which are both quantities that can
be evaluated with the available equations.

Known the basic equations behind the backpropagation of the error, the step-by-
step process of the backpropagation algorithm is [44]:

(0) The input layer x corresponds to the activation a1.

(1) For each layer l = 2, 3, , · · · , L− 1, L the weighted input zl, eq. (3.8), and
the activation vector al, eq. (3.7), are computed (inference step).

(2) At the end of the inference is evaluated the error of the neurons in the output
layer δL with the eq. (3.22).

(3) The error is then backpropagated, for each l = L− 1, L− 2, , · · · , 3, 2, the
quantity δl is computed, eq. (3.23).

(4) The final step consists in the evaluation of the gradients of the cost function
with respect to the weights, eq. (3.27) and the biases, eq. (3.26):

∂Ci
∂wljk

and
∂Ci
∂blj

By their own these two quantities don’t affect the learning of the NN, they need
to be coupled with a learning algorithm that changes the weights and the biases of
the network according to the values of these derivatives, in order to decrease the
cost function and obtain a more accurate output from the network.

50

The Multi-Layer Perceptron

Gradient Descent (GD) algorithm

The gradient descent training algorithm is based on the concept of reaching the
minimum of the cost function by updating the weights and the biases of the network
iteratively, by a ∆wljk and ∆blj, depending on the value of the gradient of the
cost function, which represents the slope of the function [28]. In figure 3.7 the
cost function C (z -direction) with respect to the weights and the biases (x and y
directions) is represented, to achieve gradient descent the cost function needs to be
a convex function [28].

Figure 3.7. Cost function C(wljk, b
l
j) representation [37]

After the backpropagation of the error, and the computation of the derivatives of
the cost function, the weights and the biases of the neurons in the network are
updated with the following equations:

(
wljk
)e

=
(
wljk
)e−1 − η

(
∂C

∂wljk

)e−1 (
blj
)e

=
(
blj
)e−1 − η

(
∂C

∂blj

)e−1

(3.28)

where the apex e represents the iteration of the algorithm (also called ’Epoch’). The
term η is the Learning Rate of the algorithm and it’s a key factor for the training
process, because it dictates how large are the ’steps’ undertaken by the algorithm
in the gradient descent. If the learning rate is too small, despite the algorithm will
be more accurate in reaching the minimum of the cost function it will also be very
slow. On the other hand, using a high learning rate leads to a faster convergence
but this choice will makes the algorithm to converge to a sub-optimal solution or
can even leads to a divergent behaviour (Fig. 3.8) as the algorithm begins to ’climb’
the cost function instead of descending to the global minimum.
In order to always use the optimal learning rate is possible to define an ’adaptive’
learning rate that starts with a high value at the beginning of the training (early
epochs) when the algorithm is far away from the minimum, and once the loss stops

51

The Multi-Layer Perceptron

Figure 3.8. High learning rate VS Low learning rate [30]

decreasing it lowers to avoid the ’bouncing’ of the algorithm and allowing it to
reaches the global minimum.
There are different implementations for the gradient descent algorithm in neural
networks applications, some of them are:

- Batch Gradient Descent (BGD) [28]: Also called ’Vanilla’ Gradient De-
scent, is the basic implementation of this algorithm for a neural network. The
cost function is evaluated for every training sample but only after the infer-
ence of every sample in the training database has been made the overall cost
function is evaluated, the error backpropagated and the weights and biases
are being updated (as previously mentioned, this is called ’training epoch’).
The advantages of the BGD is that it’s highly efficient and produce a smooth
decrease of the cost function but it can also converge too early to a sub-
optimal solution without reaching the actual global minimum of the cost
function, resulting in a less accurate training.

- Stochastic Gradient Descent (SGD) [62]: with this method the update
of weights and biases is made for every training sample of the database one-
by-one.

Figure 3.9. Fluctuation of the cost function with SGD algorithm [23]

This approach gives the SGD a higher rate of improvement in the decrease

52

The Multi-Layer Perceptron

of the cost function, on the other hand the high frequency of the updates is
computationally more expensive and results in noisy gradients with the cost
function that oscillates instead of steadily decrease (Fig. 3.9.

- Adaptive Moment Estimation (Adam) [36]: this is an improvement of
the SGD algorithm that uses the first order moment (mean) and second order
moments (variance) of the gradient to updates the weights and the biases.
The algorithm is quite different from the previous ones, in the beginning, the
first and second order moment vectors (m and v) are initialized to 0, for every
training iteration t they are updated following the equations:

mt+1 = β1m
t + (1− β1)∇wC(w) (3.29)

vt+1 = β2v
t + (1− β2) (∇wC(w))2 (3.30)

where β1 and β2 are called ’forgiving’ factors and represent the exponential
decay rates for the moment estimates, common values for these factors are
β1 = 0.9 and β2 = 0.999. Note that in this case, in the notation of ∇wC(w),
the vector w contains all the internal parameters of the network that need to
be updated, both the weights and the biases.
The initialization of m and v to vectors of 0 leads to moment estimates that
are biased towards zero, especially during the initial time steps [36], for this
reason is necessary to introduce correction for this initialization bias:

m̂t+1 =
mt+1

1− (β1)t+1 v̂t+1 =
vt+1

1− (β2)t+1 (3.31)

where in this case (β1)t+1 and (β2)t+1 are the forgiving factors to the power
t + 1. The new first and second order momentum obtained are called ’bias-
corrected’ momentum.
The weights and biases can now be updated with the equation [36]:

wt+1 = wt − η m̂t+1

√
v̂t+1 + ε

(3.32)

where ε is a small scalar term (a common value assumed is ε = 10−8), used
to prevent dividing by 0.

Note that often to increase the efficiency and the training velocity in the SGD
and Adam algorithms the gradient of the cost function is not computed for every
single training samples but after a ’mini-batch’ (from now only called ’batch’) of
training samples, this is an important hyperparameter that can heavily influence
the training process.

53

Chapter 4

Description of the Solution
Techniques

In the first part of this chapter some details are presented and discussed related
to the configuration and setup of the 2D airfoil transonic CFD simulations used to
produce the Dataset on which the NNs were trained. The second part involves the
analysis of the setup, features and architecture of the NNs developed in this project:
first, the MLP that predicts the two aerodynamic coefficient CL (Lift Coefficient)
and CD (Drag Coefficient) and then the MLP that predicts the flow field near the
airfoil in terms of local Mach Number.

4.1 The CFD Simulations: Creating the Dataset

Before going into details with the configuration of the CFD simulations, it’s worth
briefly introducing the two main software used to run the simulations and creating
the mesh.

The CFD Software

SU2

The software chosen for running the simulations is SU2, an open-source collection
of C++ based software tools for performing Partial Differential Equation (PDE)
solution and solving PDE-constrained optimization problems [6].
The toolset of SU2 is designed with Computational Fluid Dynamics (CFD) and
aerodynamic shape optimization in mind but can be expanded to treat arbitrary
sets of governing equations such as potential flow, elasticity, electrodynamics, chemically-
reacting flows, and many others [6]. In particular, we will use the SU2 CFD tool,
which is a code specifically designed for solving direct, adjoint, and linearized prob-
lems for the Euler, Navier-Stokes, and Reynolds-Averaged Navier-Stokes (RANS)

54

Description of the Solution Techniques

equation sets. It uses a Finite Volume Method (FVM); explicit and implicit time
integration methods are available with Centered or Upwinding spatial integration
schemes, it also has several advanced features to improve robustness and conver-
gence, including residual smoothing, preconditioners, and agglomeration multigrid.
For running a simulation with this tool the following 2 files are needed:

1) A configuration file (.cfg) which contains the parameters of the simulation.

2) A mesh file that contains the computational grid on which the simulation will
be performed. Unfortunately, SU2 has not a dedicated mesher, so another
software to produce the mesh is needed. Hence, Gmsh has been used, an
open-source software that will be described in the next paragraph.

The simulation is run on the command line interface, and it produces different
outputs as results:

1) A .csv file containing the convergence history of different parameters specified
in the configuration file.

2) A .vtu file containing all the images and graphic visualization of the compu-
tational domain.

3) A second .vtu file containing only the graphic visualization of the flow around
a specific surface (that has to be specified in the configuration file).

By default, SU2 is installed for serial computing, which means that only 1 core of
the CPU is used to perform all the calculations, for very extensive and complex
simulations this could lead to extremely long computational times. To prevent this
issue there’s the possibility to install additional tools for parallel computing which
permit the distribution of the computational effort on different cores, reducing in
this way the time needed to perform the simulation.

Gmsh

Gmsh is an open-source 3D finite element mesh generator with a built-in CAD en-
gine and post-processor, its design goal is to provide a fast, light and user-friendly
meshing tool with parametric input and advanced visualization capabilities [1].
Gmsh is built around four modules: geometry, mesh, solver and post-processing,
the specification of any input to these modules is done either interactively using
the graphical user interface, in ASCII text files using Gmsh’s native scripting lan-
guage (.geo file), or using the C++, C, Python or Julia Application Programming
Interface (API) [1].
The main reason behind this choice is that Gmsh gives the possibility to export
the .geo file, containing the mesh written the quite simple Gmsh native scripting
language, to different formats, including the .su2 extension that is used by SU2.

55

Description of the Solution Techniques

Analysis of the Fluid Dynamic Problem

The first step to correctly define a CFD simulation is the analysis of the fluid dy-
namic problem that has to be numerically solved.
In order to have comparative results, a common test case used for validation of
transonic CFD codes has been chosen: the ”Airfoil RAE 2822 - Pressure Distribu-
tion, and Boundary Layer and Wake Measurements” from the AGARD Advisory
Report 138 [67].
The AGARD Advisory Report 138 is a collection of different fluid dynamic exper-
imental tests written to aid in the development and refinement of computational
methods and to improve their applicability and compatibility. The report presents
selected test results and detailed geometric descriptions of representative airfoil,
wing, wing-body and body-alone configurations [67].
Section 6 of this report contains examples of experiments made in a wind tunnel on
a RAE 2822 airfoil, presented to give a range of conditions from wholly subcritical
flow to conditions where a comparatively strong shock wave exists in the flow above
the upper surface of the aerofoil (supercritical flow) [25].
For the preliminary discussion of the fluid dynamic problem let’s consider the free-
stream conditions (which are the flow conditions far from the airfoil) described in
Test Case 6:

M∞ = 0.725

Re∞ = 6.5 · 106

α = 2.92 [◦] (which is the angle of attack of the flow with respect to the
airfoil)

The conditions above define a transonic flow field (transonic regime starts around
M∞ = 0.7 ÷ 0.8, the exact value depends on the object’s critical Mach number),
which is also certainly turbulent (very high Reynolds number). With this free-
stream condition and with an incidence of 2.92◦ we should also expect the presence
of a shock wave on the upper part of the airfoil.
This happens because the air flowing around the upper side of the airfoil, where
the slope is positive, increases its velocity (because pressure decreases) until the
max camber point, where the slope changes in sign, after this point the pressure
begins to increase and the air velocity decreases, so a compression happens. If
the free-stream velocity is high enough (generally around M∞ = 0.7), the flow on
the upper part of the airfoil becomes locally supersonic (the so-called ”supersonic
pocket” where locally M ≥ 1, Fig. 4.1) and when the compression occurs a shock
wave is generated.
The airfoil used in the simulation is the RAE 2822 super-critical airfoil. Super-
critical airfoils are specifically designed to better perform in the transonic regime.
The reason why the supercritical airfoils are optimized for this specific flight regime

56

Description of the Solution Techniques

Figure 4.1. Visualization of the ”supersonic pocket” on the airfoil at M∞ = 0.729

Figure 4.2. RAE 2822 Transonic Airfoil [65]

is mainly their high critical Mach number (Mcr), that is the free-stream Mach num-
ber (M∞) for which a shock wave appears on the upper side of the airfoil, where
the camber is at its max. In general shock waves on the airfoil lead to higher drag
due to the high dissipative nature of this phenomenon, so for aircraft that are de-
signed to have a cruise speed in this regime, these types of airfoils that mitigate
this effect are fundamental. Another issue related to this regime is that the shock
wave could lead to an anticipated separation of the boundary layer downstream,
causing asymmetries and unsteadiness of the flow around the airfoil.
As previously mentioned, the mitigation is reached by increasing the critical Mach
number and this is achieved by designing the airfoil with a low camber in the upper
side that causes a lower increase in velocity of the airflow leading to a delay in
the formation of the shock wave. The downside of this particular design is that
the lower camber on the upper part of the airfoil causes an increase in the angular
momentum of the airfoil, this means that in an aircraft designed with this type of
airfoil there’s the need to compensate for this stronger momentum with the hori-
zontal stabilizer, leading in an overall decrease of the lift generated.
As already mentioned, this analysis is referred to the test case 6 of the AGARD re-
port, but for this project it’s necessary to define several simulations all distinguished
by the aerodynamic incidence (the angle α) and the free stream conditions (Mach

57

Description of the Solution Techniques

number, M∞, and Reynolds number, Re∞). Therefore it’s necessary to define the
range of variation for these 3 parameters in order to define an appropriate number
of simulations but all with the same kind of fluid dynamic problem to maintain the
same ’core’ for all the simulations.
The range of values chosen for α, M∞ and Re∞ for defining the different simulations
are:

1) α = 0÷3.0 [deg] with steps of ∆α = 0.2 [deg], the value of the aerodynamic
incidence has been chosen always positive (to prevent possible issues with the
flow field in the lower part of the airfoil for negative α) and with a max
value of α = 3 [deg] in order to always stay in the linear range of the curve
CL = CL(α) of the RAE2822 Airfoil, see Fig. 4.3:

Figure 4.3. CL = CL(α) curve at M∞ = 0.0 and Re∞ = 105 for the
RAE2822 Airfoil [66]

From Fig. 4.3 it’s possible to notice that the linear relation between CL and
α extends from α ' −1.5 ÷ 4.5 [deg] but, since the CL = CL(α) curve is
obtained at fixed values of M∞ and Re∞, in order to have room for possible
variation of the curve at different M∞ and Re∞, the value on α = 3 [deg]
has been used.

2) M∞ = 0.60 ÷ 0.80 with steps of ∆M∞ = 0.01, these values of Mach number
ensures the flow to be in the compressible regime (that starts around M∞ '
0.3) and are sufficiently high to develop a transonic flow around the airfoil.

3) Re∞ = 105÷ 107 with steps of ∆Re∞ = 4.95 · 105 this range for the Reynolds
number should ensure that the flow around the airfoil is always fully turbulent,
in order to use the RANS set of governing equations for all the simulations.

58

Description of the Solution Techniques

Summarizing, we have 16 values for α, 21 values for M∞ and 21 values for Re∞;
in order to fully capture the influence of these three input parameters on the CFD
simulations results it’s necessary use all the possible combinations, therefore the
final database will contain 16× 21× 21 = 7056.

The mesh

Once the fluid dynamic problem has been discussed and analyzed the next step is
to define a proper mesh for the simulations, this step is essential because the quality
of the mesh, as already mentioned in section 2.3, dictates how fast the solution will
converge and the quality of the results obtained. Since it’s impossible to define
a tailored mesh for each one of the 7056 CFD simulations that will be run it’s
necessary to design a generic mesh suitable for all the simulations, the key aspects
of the thought process behind the definition of this mesh were:

1) Simplicity: Due to the very large number of simulations, checking all the
results of the simulations one by one will be impossible, for this reason, it’s
necessary to have a simple mesh that ensures robustness to the solutions in
order to achieve almost certain convergence for all the simulations run.

2) Convergence velocity: Since the software SU2 was installed for serial com-
puting, in order to obtain the results of the simulations within an acceptable
computational time, the mesh was designed to be not extremely refined where
is not strictly necessary.

In the next paragraphs will be discussed the different aspects and features of the
2-dimensional mesh used for the simulations.

Geometrical Domain

The first aspect for the creation of a mesh is the Geometrical domain, which consists
in the definition of the external boundary and all the geometrical entities within it.
In this case the geometrical domain consists of a C-shaped external domain with
the RAE2822 Airfoil in its center, Fig. 4.4 and 4.5.
The external domain has dimensions x ∈ [−150, 150] and y ∈ [−150, 150] while
the airfoil has dimensions x ∈ [0, 1] and y ∈ [−0.1, 0.1] (all dimensions given in
meters [m]). We can notice that the external domain is way larger than the airfoil,
this is an important aspect because, in the subsonic regime, the flow conditions in
a certain point of the domain also influence the flow conditions upstream, so the
presence of the airfoil in the center of the domain will influence the flow upstream.
Therefore it’s very important to have a sufficiently large external domain where
is plausible to consider the flow in the free-stream condition in order to correctly
apply the free-stream boundary conditions.

59

Description of the Solution Techniques

Figure 4.4. External Boundaries Figure 4.5. RAE2822 Airfoil

Physical Domain

The physical domain consists of the definition of the various physical entities on
which is possible to apply the boundary conditions. The physical entities for this
mesh are: the external boundary of the geometrical domain, also called ”Farfield”,
where the free-stream boundary conditions are applied (M∞, Re∞ and T∞) and the
airfoil where the adiabatic wall boundary condition is applied (adherence condition
at the wall, vw = 0, and no heat exchanges between the wall and the fluid). The
actual physical domain, where the mesh will be generated, consists in the space
between the Farfield and the airfoil.

Boundary Layer

Since the simulations involve viscous flow there’s the necessity to carefully dis-
cretize the region of the boundary layer (close to the airfoil’s wall) which is the
region where the viscous effects are dominant. As previously mentioned in section
2.3, the most effective way to discretize the boundary layer is through a structured
quadrilateral mesh with very thin elements near the wall, the elements have to be
as much perpendicular as possible to the walls in order to fully capture the high
gradients that characterize this region, see Fig. 4.6.
The boundary layer in the mesh has a constant thickness of 0.01 [m], the first ele-
ment in the outer portion of the boundary layer has a y-dimension of 2.5 ·10−3 [m],
the size of the elements decrease exponentially with a factor of 1.2, reaching a y-
dimension for the first cell near the wall of 10−5 [m]. With these dimensions the
cells near the wall have an average value of normalized wall distance of y+ = 2.03,
for turbulence models with no law of the wall (like the Spalart-Allmaras model)
the ideal value would be y+

id = 1 but the previous value should give a good level of
accuracy for the flow in the boundary layer despite not being ideal.

60

Description of the Solution Techniques

Figure 4.6. Boundary layer structured mesh near the RAE2822 airfoil’s wall

Outer Grid

Outside the boundary layer, where the viscous effects become negligible, the mesh
is unstructured and made of triangular elements created with a Delaunay triangu-
lation1 algorithm, which is the simplest meshing algorithm for triangular elements.
The unstructured grid increases the numerical robustness by adding artificial dif-
fusion (Section 2.3), the triangular elements, despite not being optimal for CFD
simulations, are the most simple to define and solve.

Figure 4.7. Mesh outside the bound-
ary layer Figure 4.8. Overall view of the mesh

The elements have a characteristic dimension of 10 [m] near the external boundary
of the computational domain (in this region the flow is uniform, therefore there’s
no need for particular accuracy), the size of the cells decrease linearly up to a
characteristic dimension of 5 · 10−3 [m] near the airfoil.

1Named after Boris Delaunay in 1934, a Delaunay triangulation, for a given set P of discrete
points, is a triangulation DT(P) such that no point in P is inside the circumscribed circle of any
triangle in DT(P) [27]

61

Description of the Solution Techniques

Statistics

The elements of the grid have an average aspect ratio γ = 0.9421 (the optimal value
is γid = 1); the exact distribution of the aspect ratio for all the elements of the grid
is reported in Fig. 4.9.

Figure 4.9. γ distribution between the elements of the grid

The average SICN (Signed Inverse Condition Number) is SICN = 0.8589 (the
optimal value is SICNid = 1), with the global distribution reported in Fig. 4.10:

Figure 4.10. SICN distribution between the elements of the grid

62

Description of the Solution Techniques

In conclusion, the mesh presents good values of the quality indicators (γ, SICN
and y+), despite the approach was aimed towards robustness and simplicity, and
it’s formed by 101182 triangular elements and 12589 quadrilateral elements (in the
boundary layer), for a total of 113771 elements.

Simulation Setup

Once the mesh is completed, the next step is to set the simulation parameters
in the CFD software: Fluid properties, Governing equations, Turbulence model,
Convergence criteria, etc. As already mentioned these settings and parameters
are contained in the configuration file (.cfg file) that has to be given to the tool
SU2 CFD as input.

Governing Equations

From the preliminary analysis made in Section 4.1, it’s clear that the problem
involves a fully turbulent flow, therefore we choose the RANS set of equations
(Section 2.1).
The closure problem of the RANS set of equations is solved using a turbulence
model and, for the simulations, the choice is the one-equation model of Spalart-
Allmaras (Section 2.2).

Fluid Properties

The first properties that have to be set are the free-stream conditions, these param-
eters define the condition of the fluid in the Farfield, where the flow field is uniform
and steady.
As already anticipated the various simulations of the database differ from each other
for the free-stream conditions, dictated by the three parameters α, M∞ and Re∞.
These three parameters are not enough to fully compute all the fluid properties
in the free-stream, we need to assume the value of an additional thermodynamic
variable to fully determine the free-stream condition, in this case, the choice is the
free-stream static temperature for which the value of T∞ = 460 [R] ≡ 255.556 [K]
has been assumed, this value will remain constant between all the simulations. Once
the values of M∞, Re∞ and T∞ are known the software can define all the other
thermodynamic variables like static pressure, density, total pressure, etc. using the
definition of Mach number, Reynolds number and the gas law.
Since the fluid problem involves viscosity, it’s also necessary to define a viscosity
model, it’s possible to use a constant viscosity model that keeps the same value
for all the flow field but it would be an inaccurate method since in reality viscos-
ity depends on the local temperature of the fluid and, for an airfoil simulation in
the transonic regime, near the airfoil the temperatures changes rapidly, especially
near the stagnation point on the leading edge. For this reason the viscosity model

63

Description of the Solution Techniques

adopted is the Sutherland’s law viscosity model [70] which relates the local value
for dynamic viscosity to the value of the local static temperature of the fluid:

µ = µref

(
T

Tref

) 3
2 Tref + S

T + S
(4.1)

where Tref is an arbitrary reference temperature and µref is the corresponding dy-
namic viscosity, S is the Sutherland’s coefficient and T is the local static temper-
ature. For the simulation were chosen the following values for the references and
the coefficient:

Quantity Value
Tref 288.15 [K]
µref 1.789 · 10−5 [Pa s]
S 110.4 [K]

Table 4.1. Sutherland’s law coefficient and reference values

Boundary Conditions

It’s necessary to specify to the software which physical entity of the mesh has a
boundary condition and which kind of boundary condition is.
The boundary condition of the simulations are:

- Farfield condition in all the external domain: in the outer boundary of
the physical domain the flow is considered in its free-stream condition.

- Adiabatic wall condition for the airfoil: for all the surfaces of the airfoil
the no-slip condition (vw = 0) is imposed, together with and the condition of
no heat exchanges between fluid and wall.

Parameters for the numerical approximation

In this paragraph the choices behind the definition of the numerical solution method
for the simulations are described and discussed.

- Convective discretization scheme: For the approximation of the con-
vective term of the governing equation the Jameson-Schmidt-Turkel (JST)
central scheme has been chosen, already mentioned in Section 2.3. The val-
ues for the 2-nd and 4-th order artificial dissipation coefficients are ε(2) = 0.00
and ε(4) = 0.02 (which are the default values assumed by the software).

- Turbulent convective discretization scheme: The software only allows
the option for a 1-st order Scalar-Upwind scheme for the turbulent convective
term.

64

Description of the Solution Techniques

- Time-stepping scheme: The time-advancing scheme for the iteration adopted
(this is a steady simulation, so the solution is not time-dependant, the time
scheme is used to define how to advance in the iteration) is the Implicit Euler
scheme because it allows a higher CFL number, which has been chosen equal
to CFL = 45, after some investigations aimed to determine the max CFL
number that would give a stable solution.

- Linear solver: For the solution of the linear system obtained after the
discretization of the governing equations the Flexible Generalized Minimal
Residual (FGMRES) linear solver is used (which is the default option for
the software), it is a common iterative method for solving indefinite non-
symmetric system of linear equations [47].

- Stopping criteria: To stop the simulations 2 possible stopping-criteria were
chosen, as soon as one of them is satisfied the simulation will end.

1) Convergence criteria: Since the simulations are focused on computing
the aerodynamic coefficient CL and CD the convergence criteria adopted
is the Cauchy residual approach applied to the two aerodynamic co-
efficients. This approach determines the relative difference between the
values of the coefficients between two consecutive iterations (this is called
Cauchy element), the convergence criteria is satisfied when the average
over a certain number of Cauchy elements (for which the default value
of 100 elements has been set) is smaller than the criteria imposed (which
has been set equal to ε = 10−4)

2) Max iteration criteria: To prevent the simulations to run for an in-
finite time if the solution doesn’t converge, the simulation is forced to
stop if the solver reaches 3000 iterations.

4.2 Prediction of the Aerodynamic Coefficients

Once the results of the 7056 CFD simulations are obtained the next step is to imple-
ment a Multi-Layer Perceptron that will predict the two Aerodynamic coefficients
computed for every set of input parameters α, M∞ and Re∞.
All the neural networks made during this thesis project were developed using
Python 3.9.2 with prevalent usage of the libraries NumPy [31], which is a library
that implements numerical tools and functions for scientific computing, particularly
suitable to work with arrays, and PyTorch [48], which is a library that introduces
tools to develop and work with Machine Learning.
The focus of this first MLP is to learn the relations between the free-stream condi-
tions of the flow and the aerodynamic coefficients CL and CD by interpolation.
The database for this Neural Network has the structure reported in Table 4.2.

65

Description of the Solution Techniques

INPUT FEATURES TARGETS
[α, M∞, Re∞]1 [CL, CD]1
[α, M∞, Re∞]2 [CL, CD]2

...
...

[α, M∞, Re∞]N [CL, CD]N

Table 4.2. Database for the aerodynamic coefficients, N = 7056 samples

The first step for the implementation of the neural network is splitting the overall
database into 3 sets of samples: Training set, Validation set and Test set.

Preparation of the Database

The 3 subsets of the database achieve different tasks:

- Training set: This set contains all the samples that will be used for the
actual training of the NN.

- Validation set: This set is used to obtain an evaluation of the model during
the training, in order to visualize, for example, possible increase of the loss
due to overfitting2 which can’t be seen in the training process.

- Test set: This set is used after the training to visualize the results of the
final model.

A common subdivision for the 3 subsets, as percentage of the overall dataset, is:
Training 70%, Validation 20% and Test 10%.

Overall Training Validation Test
7056 4939 1270 847

Table 4.3. Number of samples for the different subsets (prediction of the
aerodynamic coefficients)

Another necessary process that has to be made on the database is Standardization,
looking at the magnitude of the input features we find out that α ' 10−1÷100 and

2Overfitting happens when the training set has too many samples, or the network architecture
is too complex, for the actual complexity of the function that has to be learned.
This problem can lead to the interpretation of the noise in the training samples by the network’s
model as actual training data, affecting the performance of the NN and its ability to correctly
generalize [12]

66

Description of the Solution Techniques

M∞ ' 10−1 have a similar order magnitude, but Re∞ ' 105÷107 has several orders
of magnitude more than the other two parameters. This will cause the network to
overestimate the importance of Re∞ as input feature and basically neglecting the
other two, leading to bad results in the training. To prevent this problem it’s
necessary to standardize the training, validation and test input features in order to
have the same order of magnitude for all the input features.
Having a n number of samples, the normalized value for the i-th sample is:

xistand =
xi − xmean

xstd

(4.2)

where xi is the non-standardized sample, xmean is the mean value of the n samples
and xstd is the standard deviation of the n samples, which is given by:

xstd =

√√√√ 1

n

n∑
i=1

(xi − xmean)2

The standardization of the 3 subsets is made with respect to the mean value and
the standard deviation of the Training set only. This because it’s the training set
that contains the samples on which the networks learns the pattern that relates the
input to the output.

Cost Function

As already mentioned in Section 3.2, the function chosen for the evaluation of the
Cost (or Loss) during the training process depends on the specific task of the NN,
since this is a regression task the cost function adopted is the Mean Squared Error
(MSE), see equation (3.16), which is a common choice for this kind of networks:

CMSE =
1

N

N∑
i

(
aL − y(x)

)2

Training Algorithm

The training algorithm adopted in this first MLP is the Adam Algorithm (see
Section 3.2) with an adaptive learning rate η that starts from a value of ηstart = 10−2

and if the Loss doesn’t decrease for a total of 10 iterations (this parameter is called
Patience [20]) the learning rate is reduced by a factor k = 0.1.

67

Description of the Solution Techniques

Hyperparameters

The hyperparameters are the network’s not-trainable features that can be tuned to
increase the ANN’s performances. They can be different from task to task, for this
Multi-Layer Perceptron the set of hyperparameters chosen is:

- Network Architecture: Number of layers and number of nodes (neurons)
for each layer, type of activation function.

- Batch size: Number of samples of the training set taken for each weights and
biases update iteration, a larger batch size leads to faster but less accurate
training, a smaller one leads to more accuracy but the cost function decreases
with a more oscillatory behaviour and it’s computationally more expensive.

- Number of Epochs: Number of training iterations, all the training made
for testing the hyperparameters’ influence have been run on a fixed number
of 500 epochs.

Before trying to predict the two aerodynamic coefficients simultaneously, in order
to use a ”step-by-step” approach, we tried to predict the two coefficients separately
on two different MLPs with the same features and algorithm described before and
then use a third MLP to predict the two coefficient together.
To explore the influence of the hyperparameters on the performance of the 3 neural
networks, a grid search made on different values of the batch size and different
architectures has been performed. In order to have a statistical basis that ensures
the reliability of the results obtained, 10 training sessions have been performed for
every combination of batch size and network architecture.

Batch size

To test the influence of the batch size 4 values were chosen:

Batch Size 25 50 100 150

Table 4.4. Batch size values used for the grid search

The expectation is to achieve the highest accuracy with a batch size of 25 but
with a longer training time, on the other hand with a batch size of 150 we expect
the lowest accuracy and the lowest training time. The focus is to find a trade-off
between accuracy a computational cost in order to determine the optimal value for
the batch size.

68

Description of the Solution Techniques

Network Architecture

All the 3 MLPs have the same input layer with 3 neurons (α, M∞ and Re∞) and
the same structure for the hidden layers, the only difference between the networks
that predict the value of the single aerodynamic coefficient and the network that
predicts the values of both CL and CD is the dimension of the output layer, for the
single-coefficient MLPs the output layer has a dimension of 1 (CL or CD), for the
double-coefficient MLP the dimension of the output layer is 2 (both CL and CD).
All the hidden layers have ReLU activated neurons, the output layer has only linear
activated neurons, which means that the activation function for the last layer is
linear and doesn’t change the output of the neuron. We tested different possible
architectures with a different number of hidden layers and size, in order to find the
best model to approximate the aerodynamic coefficients.

- Single Hidden Layer Architecture: This is the simplest architecture
tested, it consists of the input layer, a single hidden layer and the output
layer.

Hidden Layer
with size H

Figure 4.11. Single Hidden Layer Architecture

For this type of architecture two possible dimensions H for the hidden layer
have been tested, 40 neurons and 100 neurons.

- Funnel Architecture: With this kind of architecture the structure resem-
bles the shape of a funnel, the first hidden layer has the highest number of
neurons and the layers shrink up to the dimension of the output, this is a
common architecture for regression MLP.
For this architecture different sizes of the layers and different numbers of hid-
den layers have been tested: 2 hidden layers with 40 and 20 neurons, 2 hidden

69

Description of the Solution Techniques

Hidden Layer
with size H1

Hidden Layer
with size H2

Hidden Layer
with size H3

Figure 4.12. Funnel Architecture, where the hidden layers dimension are
H1 > H2 > H3

layers with 100 and 10 neurons, 3 hidden layers with 80, 40 and 20 neurons
and the last one with 4 hidden layers with 160, 80, 40 and 20 neurons.

- Rhombus Architecture: The concept behind this network architecture is
to gradually increase the complexity of the model before shrinking to the
output dimension as in the Funnel Architecture.

Hidden Layer
with size H1

Hidden Layer
with size H2

Hidden Layer
with size H3

Figure 4.13. Rhombus Architecture, where the hidden layers dimension are
H2 > H1 and H2 > H3

The architectures tested in the grid search are: 3 hidden layers with 20, 40
and 20 neurons, 5 hidden layers with 20, 40, 80, 40 and 20 neurons and the

70

Description of the Solution Techniques

most complex model tested in the grid search, with 7 hidden layers with 20,
40, 80, 160, 80, 40 and 20 neurons.

As a summary, network architectures explored for this first type of Multi-Layer
Perceptron are reported in Table 4.5.

Hidden Layers
H1 H2 H3 H4 H5 H6 H7

40
100

40 20
100 10
80 40 20
160 80 40 20

20 40 20
20 40 80 40 20
20 40 80 160 80 40 20

Table 4.5. Architectures for the Aerodynamic Coefficients MLP

With 4 batch sizes and 9 architectures, there are 36 combinations of the 2 hyper-
parameters, every combination is trained 10 times for statistical purposes, so for
each one of the three grid searches performed (two for the single coefficient MLPs
and one for the double coefficient MLP) 360 training processes have been performed.

4.3 Prediction of the Flow Field

For the MLP that predicts the flow field around the airfoil, the database consists
of the same 3 input free-stream conditions (α, M∞ and Re∞) but the targets are
the images of the flow field near the RAE2822 in terms of local Mach number of
the flow.
The images are a product of the CFD simulations as .vtu files, these files contain
all the flow variables for each cell-center in the computational domain. In order to
reduce the size of the problem we decided to take a ’snapshot’ (which produces an
image of the solution) only of the region around the airfoil, where its influence on
the velocity field of the flow is stronger. The reason behind this choice is that, as
previously mentioned in Section 4.1, the mesh is constituted by a total of 113771
cells where the major part is in the region near the airfoil. Therefore if the actual
solutions of the CFD simulations near the airfoil are used as output for the MLP
the resulting number of neurons in the output layer could lead to an unsustainable

71

Description of the Solution Techniques

increase of computational cost. On the other hand, converting the actual solutions
into images can give us control on the number of neurons in the output by increas-
ing or decreasing the resolution of the images. This approach gives quite reliable
results, despite loosing some accuracy of the CFD solutions in the conversion.

Figure 4.14. Target sample (.png image with resolution 50× 50)

The images used are .png files with a resolution of 50 × 50 pixels (Fig. 4.14
(coloured), the reason for this low resolution is that, for predicting the images with
a Multy-Layer Perceptron, every pixel becomes a variable of the output layer; this
means that, considering a coloured image of 50 × 50 pixels, the dimension of the
output layer is 50 × 50 × 3 = 7500 neurons. Therefore, the network architecture
necessary to this kind of output dimensions is thousands of times larger than the
one needed for the aerodynamic coefficients where the output had only 2 neurons,
so to avoid having computational power issues, we decided to use low resolution
images as output.
The task for this neural network is to find the relation between the free-stream
conditions and the value of the pixels of the relative image of the flow field. The
database on which this MLP will be trained has the following structure: where the

INPUT FEATURES TARGETS
[α, M∞, Re∞]1

[
px(1,1,1), px(1,2,1), · · · , px(50,50,3)

]
1

[α, M∞, Re∞]2
[
px(1,1,1), px(1,2,1), · · · , px(50,50,3)

]
2

...
...

[α, M∞, Re∞]N
[
px(1,1,1), px(1,2,1), · · · , px(50,50,3)

]
N

Table 4.6. Database for the flow field (in terms of local Mach number),
N = 7056 samples

first two indices of the pixels indicate the pixel position in x and y and the third

72

Description of the Solution Techniques

index indicates the color of the pixel in the RGB format (1 for the red, 2 for the
green and 3 for the blue).
The overall database is split in training, validation and test sets in the same per-
centages of the aerodynamic coefficients one: Training 70%, Validation 20% and
Test 10%. So the corresponding number of samples are the same of Table 4.2. The
three subsets are then standardized with respect to the training set mean value
and standard deviation in order to have the same order of magnitude for the three
inputs.

Cost Function

The function chosen for the evaluation of the Cost (or Loss) during the training
process is the Mean Squared Error (MSE), equation (3.16), since this is a regression-
kind network and this is a suitable cost function for this task.

CMSE =
1

N

N∑
i

(
aL − y(x)

)2

Training Algorithm

The training algorithm used for this neural network is the Stochastic Gradient
Descent (SGD) algorithm (Section 3.2) with an adaptive learning rate η that starts
from a value of ηstart = 100 and gets updated, after 10 iteration with no-decreases
in the loss, by a multiplying factor of k = 0.1.

Hyperparameters

As already done for the aerodynamic coefficients MLPs, we used a ”step-by-step”
approach for this second type of MLP: before trying to predict the coloured images
we took a preliminary step and tried to predict the grey-scale version of the images,
converting an RGB image in the grey scale means reducing the color layers from 3
to only 1, the results is an output layer with only 50× 50 = 2500 neurons instead
of the 7500 neurons of the coloured one, as represented in Fig. 4.15. The effect is
a slightly reduced size of the hidden layers, leading to an overall decrease in the
computational effort.
The only hyperparameter chosen for the test is the Network Architecture, this
because the increased complexity of these networks led longer training times. A
single training for this kind of networks can take from one to two hours (depending
on the complexity of the model and the number of training epochs performed), but
since in the grid-search several training sessions are performed the overall computa-
tional time needed grows rapidly, a single grid-search can takes days of computing
on the HPC server using one Nvidia Tesla V100 GPU as computing device. Trying

73

Description of the Solution Techniques

Hidden Layer
with size H1

Hidden Layer
with size H2

Hidden Layer
with size H3

px(1,1,1)

px(1,1,1)

px(50,50,3)

Output Layer with size
7500 (for coloured

images)

Figure 4.15. Representation of the network architecture of the MLP use for the
reconstruction of the coloured images

to explore more hyperparameters with all the possible combinations would lead to
unsustainable computational times on the server.
To test the influence of the network architecture on the two MLPs (grey-scale and
coloured images) a grid search has been performed, all the training sessions were
made with a batch size of 100 and for a total number of 2500 epochs. For every
architecture 10 training sessions have been performed to have a statistical basis to
evaluate the network performance.

Network Architecture

For both the grey-scale MLP and the color images MLP, all the hidden layers have
ReLU activated neurons and the output layer has only linear activated neurons.
For the grey-scale MLP the architecture tested are:

- Funnel Architecture: Five different architecture for this kind of structure
have been tested: 3 hidden layers with 5000, 5000 and 2500 neurons, 5 hidden
layers with 5000, 5000, 5000, 2500 and 2500 neurons, 5 hidden layers with
10000, 10000, 5000, 5000 and 2500 neurons, 8 hidden layers with 10000, 10000,
10000, 5000, 5000, 5000, 2500 and 2500 neurons and the last one with 6 hidden
layers with 15000, 12000, 10000, 7500, 5000 and 2500 neurons.

- Rhombus Architecture: For this kind of structure only two architectures
have been tested: 5 hidden layers with 2500, 5000, 5000, 3000 and 2500 neu-
rons and 6 hidden layers with 500, 1000, 2500, 5000, 3000 and 2500 neurons.

It’s immediate to observe how the network architectures have more layers and more
neurons with respect to the aerodynamic coefficients MLPs, this is a consequence

74

Description of the Solution Techniques

of the larger output dimensions.
The architectures tested in the grid search relative to the gray-scale MLP are sum-
marized in Table 4.7

Hidden Layers
H1 H2 H3 H4 H5 H6 H7 H8

5000 5000 2500
5000 5000 5000 2500 2500
10000 10000 5000 5000 2500
10000 10000 10000 5000 5000 5000 5000 2500
15000 12000 10000 7500 5000 2500

2500 5000 5000 3000 2500
500 1000 2500 5000 3000 2500

Table 4.7. Architectures for the grey-scale MLP

For the color images MLP the architecture tested in the grid search are:

- Funnel Architecture: Three network architectures with this kind of struc-
ture have been explored: 3 hidden layer with 10000, 10000 and 7500 neurons,
5 hidden layers with 15000, 15000, 10000, 10000 and 7500 neurons and the
last one with 8 hidden layers with 15000, 15000, 15000, 10000, 10000, 10000,
7500 and 7500 neurons.

- Rhombus Architecture: For this kind of structure only two architectures
have been tested: 5 hidden layers with 7500, 10000, 10000, 8000 and 7500
neurons and 6 hidden layers with 1000, 2500, 7500, 10000, 8000 and 7500
neurons.

To summarize, the architectures tested in the grid search relative to the color images
MLP are represented in Table 4.8.

Hidden Layers
H1 H2 H3 H4 H5 H6 H7 H8

10000 10000 7500
15000 15000 10000 1000 7500
15000 15000 15000 10000 10000 10000 7500 7500

7500 10000 10000 8000 7500
1000 2500 7500 10000 8000 7500

Table 4.8. Architectures for the color images MLP

75

Chapter 5

Results & Conclusions

In this conclusive Chapter, the results obtained during this thesis project are pre-
sented and discussed. The first Section contains the comparison between the results
of the CFD simulation and the reference Test Case, the second Section consists in
the display and analysis of the results of the grid search performed to explore the
hyperparameters influence on the different NNs implemented in this project.

5.1 CFD Simulation: comparison with the refer-

ence Test Case

To analyze the quality of the CFD simulations, let’s compare the simulation with
the free-stream conditions of the reference Test Case 6, from AGARD Advisory
Report AR138 [25], with the comparison results obtained from the NASA’s NPARC
(National Program for Application-oriented Research in CFD) validation program
[57] on the RAE2822 airfoil, which is a collection of five studies on the RAE2822
airfoil, aimed to the validation of the WIND-US CFD code [72].
The free-stream conditions of the flow are:

- α = 2.31 [deg]

- M∞ = 0.729

- Re∞ = 6.5 · 106

with a free-stream static temperature of T∞ = 255.556 [K].

76

Results & Conclusions

Figure 5.1. Pressure coefficient distribution around the airfoil, comparison be-
tween the results of the CFD simulation (left) and the reference [58] (right)

Figure 5.2. Pressure field around the airfoil, comparison between the results of
the CFD simulation (left) and the reference [58] (right)

In Fig. 5.1 the pressure coefficient Cp distribution around the airfoil is repre-
sented, the upper curve is the Cp distribution on the upper part of the airfoil and is
clearly visible, near x/c ' 0.5, the sudden increase of pressure due to the presence
of the compression shock. Fig. 5.2 shows the distribution of the iso-pressure lines
near the airfoil, in the zone where the iso-pressure lines stacks together we can see
the value of the absolute pressure increasing suddenly for the effect of the shock.
The comparison shows almost identical results, again ensuring the reliability of the
results obtained from the CFD simulations performed.

77

Results & Conclusions

0 200 400 600 800
Iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CL

CL convergence history

Figure 5.3. Convergence history of the lift coefficient CL

Fig. 5.3 shows the convergence history of the lift coefficient CL, the simulation
has satisfied the convergence criteria in 945 iterations and the lift coefficient con-
verged to a value of CL = 0.69.

0 200 400 600 800
Iterations

0.05

0.10

0.15

0.20

0.25

CD

CD convergence history

Figure 5.4. Convergence history of the Drag coefficient CD

In Fig. 5.4 the convergence history of the drag coefficient CD is represented, which
has converged to the value CD = 0.0128.

78

Results & Conclusions

0 200 400 600 800
Iterations

10 5

10 4

10 3

10 2

10 1

100

lo
g(

Re
sid

ua
ls)

Residuals History
CD Residuals
CL Residuals

Figure 5.5. Residuals history of the two aerodynamic coefficients

Fig. 5.5 represents the residuals history for CL and CD, we can notice how
the drag coefficient was the last to satisfy the convergence criteria for the Cauchy
residual ε = 10−4 and it’s convergence history is much more unstable compared
to the CL one, even after the initial transitory. This is due to the complexity of
the several effects that influence the drag, such as the wave drag, the viscous drag
related to the turbulent flow, etc.
The next figures represents the flow field around the airfoil, in term of local Mach
number, for 6 CFD simulations with different free-stream conditions.

Figure 5.6. Low aerodynamic incidence α = 0.0 [deg] (left) and High aerodynamic
incidence α = 3.0 [deg] (right) comparison

79

Results & Conclusions

Figure 5.7. Low Mach number M∞ = 0.60 (left) and High Mach number
M∞ = 0.80 (right) comparison

Figure 5.8. Low Reynolds number Re∞ = 105 (left) and High Reynolds number
Re∞ = 107 (right) comparison

As we can see with low values of α, M∞ and Re∞ the flow doesn’t reach the
supersonic state on the upper-side of the airfoil, therefore the compression shock
doesn’t appear and the pressure steadily increases after the max camber point.
On the other hand, for high values of α, M∞ and Re∞ we can see that the shock
presents different configurations and, most important, it falls in different positions
of the upper-part of the airfoil.

80

Results & Conclusions

5.2 Results of the Aerodynamic Coefficients Multi-

Layer-Perceptrons

The results of the various grid searches performed to explore the influence of the
hyperparameters are summarized in box-plots that represent the statistical results,
in terms of Mean Squared Error (MSE) Loss, for every combination of architecture
and batch size explored.

Single Coefficient MLP - CD

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Trials

10 7

10 6

10 5

Lo
ss

 (M
SE

)

Hyperparameters Search

Figure 5.9. Grid Search results (not filtered), logarithmic scale - Single
coefficient MLP (CD)

Fig. 5.9 shows the box-plot that summarizes the results for the Single coefficient
MLP for the drag coefficient, with the Loss axis in logarithmic scale. This plot is
used as preliminary-check for results that present outliers with different order of
magnitude for the Loss (like the trials 16, 25 and 34 in Fig 5.9) from the other ones,
in order to delete these results in the final box-plot for clarity purpose.
After having filtered the unreliable results, Fig. 5.10 shows the final results for the
first grid search performed on the MLP trained on the drag coefficient. The results
are grouped by the batch size values and every box-plot color represents a different
network architecture.
As we can see the results presents very low values of Loss (order of magnitude of
10−7 ÷ 10−6). As expected the best results in terms of Loss function are obtained
with low batch size and, as we can see, the simple single hidden layer architecture
(red and grey boxes) gave the worst results. In general, all the results obtained in
this first grid search can be considered reliable and very accurate. The model with
architecture 3, 80, 40, 20, 1 (green boxes in Fig. 5.10) and with a batch size of

81

Results & Conclusions

25 50 100 150
Batchsize - Architecture

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

 (M
SE

)

1e 6 Hyperparameters Search
40
40 20
80 40 20
160 80 40 20
20 40 20
20 40 80 40 20
20 40 80 160 80 40 20
100 10
100

Figure 5.10. Grid Search results - Single coefficient MLP (CD)

100 samples can be considered the ’best’ trade off between computational cost and
accuracy of the results. The following plots represent the detailed results of one of
the 10 training sessions performed with this combination of hyperparameters.

Figure 5.11. Accuracy of the Test prediction (left) and Loss vs Epochs (right)

The left plot in Fig. 5.11 represents the accuracy of the Test set predictions (pre-
dicted values vs target values), the closer the points are to the bisecting line, the
more accurate the prediction is. The right plot represents the Loss decrease during
the training (blue line) and the validation (orange line) for every epoch, the Loss
axis is in logarithmic scale for clarity purpose.

82

Results & Conclusions

Single Coefficient MLP - CL

25 50 100 150
Batchsize - Architecture

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

Lo
ss

 (M
SE

)

Hyperparameters Search
40
40 20
80 40 20
160 80 40 20
20 40 20
20 40 80 40 20
20 40 80 160 80 40 20
100 10
100

Figure 5.12. Grid Search results - Single coefficient MLP (CL)

Fig. 5.12 summarizes the results of the grid search performed on the MLP
trained on the single aerodynamic coefficient CL, in this case the preliminary rep-
resentation in logarithmic scale is not necessary since the aren’t results with outliers
that have different order of magnitude of the Loss.
We can easily note the different order of magnitude for the loss from the previous
results (for this MLP the order of magniture for the los is 10−5 ÷ 10−4), this is
due to the fact that the Mean Squared Error is an absolute difference, so its value
depends on the order of magnitude of the aerodynamic coefficient predicted. As
already done in Section 5.2, the model with architecture 3, 80, 40, 20, 1 (green
boxes in Fig. 5.12) and with a batch size of 100 samples can be chosen as ’best’
trade off between computational cost and result accuracy.

83

Results & Conclusions

The detailed results for this configuration of the single coefficient MLP (CL) for
one of the training sessions performed are represented in Fig. 5.13.

Figure 5.13. Accuracy of the Test prediction (left) and Loss vs Epochs (right)

Double Coefficient MLP - CL and CD

25 50 100 150
Batchsize - Architecture

2

4

6

8

Lo
ss

 (M
SE

)

1e 5 Hyperparameters Search
40
40 20
80 40 20
160 80 40 20
20 40 20
20 40 80 40 20
20 40 80 160 80 40 20
100 10
100

Figure 5.14. Grid Search results - Double coefficient MLP (CL and CD)

The first aspect to notice is the order of magnitude of the loss, which is the same
of the single coefficient MLP for CL. This is due to the fact that the overall Loss
of the double coefficient MLP is the sum of the Losses of the two output neurons
(one for CL and one for CD), since the Loss of the CL is one order of magnitude
larger than the CD one, the contribute of the Loss of the CD is basically neglected.

84

Results & Conclusions

For this type of MLP we can choose as best model, in term of performances and
computational cost, the architecture with 6 layers of 3, 160, 80, 40, 20 and 2 neurons
(purple boxes in Fig. 5.14) with a batch size of 100 samples.
The detailed results for this network configuration are:

Figure 5.15. Accuracy of the Test prediction for CD (left) and for CL (right)

Figure 5.16. Loss vs Epochs, double coefficient MLP

It can be noted that the accuracy of the CD is lower compared to the CL one, this
is related to the aforementioned difference of order of magnitude for the Losses of
the two coefficients. Since the Loss of CD is much lower compared to the CL one,
the network ’focuses’ the training to improve the prediction of the CL and ignores
the CD.

85

Results & Conclusions

5.3 Results of the Flow Field Prediction Multi-

Layer-Perceptrons

As already mentioned in Section 4.3, the grid searches performed for the flow field
prediction MLPs count only the network architecture as variable parameter. The
results for this kind of MLP are summarized in box-plots where every box represents
a network architecture.

Flow Field Prediction MLP - Grey-Scale

Architecture
0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

0.00009

0.00010

0.00011

Lo
ss

 (M
SE

)

Achitecture Performance
5000 5000 2500
5000 5000 5000 2500 2500
2500 5000 5000 3000 2500
10000 10000 5000 5000 2500
10000 10000 10000 5000 5000 5000 2500 2500
15000 12000 10000 7500 5000 2500
500 1000 2500 5000 3000 2500

Figure 5.17. Grid Search results - Grey-Scale MLP

The order of magnitude of the loss for this first MLP is 10−5 ÷ 10−4. The most
notable feature of Fig. 5.17 is that, contrary to expectations, the simplest model
tested, made of 5 layers with 3, 5000, 5000, 2500 and 2500 neurons (red box in
the Fig. 5.17), has achieved the best results in terms of accuracy and, since it’s
the simplest architecture, it’s also the cheapest one in terms of computational cost.
This means that an over-complicated architecture, like the one represented by the
orange box, can leads to overfitting of the training data, therefore the performance
of the network gets worse.
Fig. 5.18 and Fig. 5.19 show the test prediction of the simplest network architec-
ture, computed and saved at different epochs, in order to show the learning process
of the network, the last figure shows the target image as reference.
As we can see the model learns very fast, the prediction after only 500 epochs is
already very accurate and doesn’t change significantly at the end of the training
(2000 epochs). This trend is also detectable in Fig. 5.20. This means that, to
obtain the very accurate result showed in Fig. 5.19, 2000 epochs of training are

86

Results & Conclusions

Figure 5.18. Test prediction at the beginning of the training (left) and
after 500 epochs (right)

Figure 5.19. Test prediction after the training (left) and target (right)

unnecessary, we can set a number of epochs equal to 500÷1000 to obtain the same
result but halving the training time.

0 500 1000 1500 2000 2500
Epochs

10 4

10 3

10 2

Lo
ss

 (M
SE

)

Loss vs Epochs

Figure 5.20. Loss vs Epochs - Grey-Scale MLP

87

Results & Conclusions

Flow Field Prediction MLP - Colored

Architecture
0.000100

0.000125

0.000150

0.000175

0.000200

0.000225

0.000250

0.000275

Lo
ss

 (M
SE

)

Achitecture Performance
10000 10000 7500
7500 10000 10000 8000 7500
15000 15000 10000 10000 7500
15000 15000 15000 10000 10000 10000 7500 7500
1000 2500 7500 10000 8000 7500

Figure 5.21. Grid Search results - color MLP

Looking at Fig. 5.21 we can see that the order of magnitude of the Loss for
this type of MLP is 10−4, the higher order of magnitude is due to the increased
complexity of the output that has to be learned. We can see that, as in Section
5.3, the best result is obtained with the simplest architecture (red box in fig 5.21),
which consists of 5 layers with 3, 10000, 10000, 7500 and 7500 neurons. The more
complex architectures lead to overfitting, therefore their performance gets worse.
The learning history, at the beginning of the training, after 500 epochs and at the
end of the training, for the previously described architecture is described in Fig.
5.22 and 5.23.

Figure 5.22. Test prediction at the beginning of the training (left) and
after 500 epochs (right)

Fig. 5.22 and Fig. 5.23 show the same behaviour of the previous grey-scale MLP,
after 500 epochs the model is almost fully trained and the difference between the

88

Results & Conclusions

Figure 5.23. Test prediction after the training (left) and target (right)

test prediction at 500 epochs and the test prediction at the end of the training
(after 2000 epochs) is negligible. Looking at Fig. 5.24, it shows that the Loss
steeply decreases up to 500 epochs and, after ∼ 1000 epochs, the slope of the Loss
becomes suddenly almost flat.
We can now compare the actual training time necessary for this model with the
estimated one in Section 4.3. Previously it was said that a single training of this
kind of network could take from one to two hours of computational time; in reality,
considering the results obtained, a single epoch of the best model for the colored
images MLP takes 2 seconds to be performed (on HPC using one GPU as computing
device), if the training lasts 1000 epochs the actual computational time needed to
train this network is around 33 minutes.

0 500 1000 1500 2000 2500
Epochs

10 3

10 2

10 1

Lo
ss

 (M
SE

)

Loss vs Epochs

Figure 5.24. Loss vs Epochs - color MLP

Finally, comparing the results of the grey-scale and color MLPs (Fig. 5.19 and
Fig. 5.23), we can notice that for the grey-scale model the prediction, outside the
supersonic pocket on the upper part of the airfoil, is almost ’flat’ and difficult to
recognize. On the other hand, the higher contrast and saturation of the colored
predictions led to a clearer representation of the flow field.

89

Results & Conclusions

5.4 Conclusions & Open tasks

All the results presented since now show that the pattern behind the relation be-
tween the free stream conditions and the solutions of the CFD simulations, in the
form of aerodynamic coefficients or even in the form of the flow field around the air-
foil, can be easily learned from a Multi-Layer Perceptron. Moreover we found that
the network architectures needed to learn these patterns are quite simple and don’t
involve overwhelming computational costs. Once the influence of the hyperparam-
eters has been explored and the optimal configuration for the Neural Network has
been found, we can use the trained model to compute the inference for the desired
set of input features and obtain the prediction of a CFD solution in a few seconds.
This leaves a lot of room for improvement for the model, which can be extended to
more generalized applications, such as using different airfoils for the simulation and
giving as input parameter the airfoil used in order to train the model to recognize
the type of airfoil and then to predict the solution of CFD simulation around it.
The fluid dynamic problem can also be extended to the 3D domain, for example to
predict the pressure distribution over a wing or a fuselage in different flow condi-
tions.
Considering the results obtained for the prediction of the flow field near the RAE2822
airfoil, if we train the model on higher resolution images, or directly on the actual
solution in terms of cell-center values, we can obtain a detailed prediction of it.
Using this prediction as preliminary result we can compute the gradient of the so-
lution and define a mesh refinement function which can produce a detailed adaptive
mesh for the fluid dynamic problem.
Going much deeper, we can try to directly predict the mesh refinement function,
using the solution of the CFD simulations as input parameter, and use the ’tai-
lored’ refined mesh to extrapolate a more accurate solution by interpolation of the
solution on the coarse grid on the refined one.

In conclusion, Machine Learning is an incredible source of applications and as the
technology advances and the computation power available increases, the capabil-
ities and possibilities to implement the Neural Networks on large scale problems
grows significantly and becomes more and more accessible.

90

Bibliography

[1] Gmsh website main page. https://https://gmsh.info/.

[2] November 2020 — top500. https://www.top500.org/lists/top500/2020/

11/. [Online; accessed 11-May-2021].

[3] Perceptron. https://deepai.org/machine-learning-glossary-and-terms/
perceptron. [Online; accessed 13-May-2021].

[4] Siemens simcenter star-ccm+ product main webpage. https:

//www.plm.automation.siemens.com/global/it/products/simcenter/

STAR-CCM.html.

[5] The spalart-allmaras turbulence model — comsol documentation.
https://doc.comsol.com/5.6/docserver/\#!/com.comsol.help.cfd/

cfd_ug_fluidflow_single.06.093.html?highlight\=spalart\%25E2\

%2590\%25A4allmaras. [Online; accessed 27-May-2021].

[6] Su2 website main page. https://su2code.github.io.

[7] S. R. Allmaras, F. T. Johnson, and Spalart P. R. Modifications and clarifica-
tions for the implementation of the spalart-allmaras turbulence model. In 7th
International Conference on Computational Fluid Dynamics. ICCFD, 2012.

[8] Rami A. Alzahrani and A. Parker. Neuromorphic circuits with neural mod-
ulation enhancing the information content of neural signaling. International
Conference on Neuromorphic Systems 2020, 2020.

[9] B. Aupoix and P. R. Spalart. Extensions of the spalart-allmaras turbulence
model to account for wall roughness. International Journal of Heat and Fluid
Flow, pages 454–462, Vol. 24, 2003.

[10] Christopher M. Bishop. Pattern recognition and machine learning. Springer,
2006.

[11] Joseph Boussinesq. Théorie analytique de la chaleur mise en harmonic avec la
thermodynamique et avec la théorie mécanique de la lumière. Gauthier-Villars,
1909.

[12] Jason Brownlee. Master Machine Learning Algorithms – Discover how they
work and implement them from scratch. Machine Learning Mastery, 2016.

[13] Frederik Bussler. Spiking neural networks — a more brain-like ai. Bitgrit - AI
for All, 2019.

[14] Ward Cheney. Analysis for Applied Mathematics. New York: Springer, 2001.

91

Bibliography

[15] Langley Research Center Christopher Rumsey. The spalart-allmaras turbu-
lence model. https://turbmodels.larc.nasa.gov/spalart.html. [Online;
accessed 28-May-2021].

[16] CFD Online Wiki Contributors. Approximation schemes for convective
term — cfd online. https://www.cfd-online.com/Wiki/Approximation_

Schemes_for_convective_term_-_structured_grids_-_Common. [Online;
accessed 2-June-2021].

[17] CFD Online Wiki Contributors. Linear eddy viscosity models —
cfd online. https://www.cfd-online.com/Wiki/Linear_eddy_viscosity_

models. [Online; accessed 23-May-2021].

[18] Torch contributors. Cross entropy loss. https://pytorch.org/docs/

stable/generated/torch.nn.CrossEntropyLoss.html. [Online; accessed 6-
June-2021].

[19] Torch contributors. Mse loss. https://pytorch.org/docs/stable/

generated/torch.nn.MSELoss.html. [Online; accessed 6-June-2021].

[20] Torch contributors. Reduce lr on plateau. https://pytorch.org/docs/

stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.

html#torch.optim.lr_scheduler.ReduceLROnPlateau. [Online; accessed
16-June-2021].

[21] Wikipedia contributors. Activation function — wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/wiki/Activation_function. [Online;
accessed 6-June-2021].

[22] Wikipedia contributors. Spalart–allmaras turbulence model — wikipedia,
the free encyclopedia. https://en.wikipedia.org/wiki/Spalart%E2%80%

93Allmaras_turbulence_model. [Online; accessed 06-June-2021].

[23] Wikipedia contributors. Stochastic gradient descent — wikipedia, the free
encyclopedia. https://en.wikipedia.org/wiki/Stochastic_gradient_

descent. [Online; accessed 8-June-2021].

[24] Wikipedia contributors. Types of mesh — wikipedia, the free encyclope-
dia. https://en.wikipedia.org/wiki/Types_of_mesh. [Online; accessed
29-May-2021].

[25] P.H. Cook, M. A. McDonald, and M. C. P. Firmin. Aerofoil rae 2822 - pressure
distributions, and boundary layer and wake measurements. In AGARD Advi-
sory Report 138, Experimental Data Base For Computer Program Assessment
- Report of the Fluid Dynamics Panel Working Group 04, chapter 6. NATO -
Advisory Group for Aerospace Research and Development, 1979.

[26] Thomas Corke and Hasan Najib. Illinois institute of technology. https://

www.iit.edu/. [Online; accessed 02-June-2021].

[27] B. Delaunay. Sur la sphère vide. a la mémoire de georges voronöı. Bulletin de
l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et na,
No. 6:793–800, 1934.

92

Bibliography

[28] Niklas Donges. Gradient descent: An introduction to one of machine learning’s
most popular algorithms. Built in, 2019.

[29] Nelson Dunford and Jacob Schwartz. Linear operators II. Spectral Theory:
Self Adjoint Operators in Hilbert Space. Interscience Publishers, 1963.

[30] Rohith Gandhi. Introduction to machine learning algorithms: Linear regres-
sion. Towards data science, 2018.

[31] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gom-
mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebas-
tian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer,
Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Shep-
pard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):357–
362, 2020.

[32] Donald O. Hebb. The Organization Of Behavior: A Neuropsychological The-
ory. New York: John Wiley & Sons, 1949.

[33] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge Univer-
sity Press, 2012.

[34] Anthony Jameson. The Origins and Further Development of the Jameson-
Schmidt-Turkel (JST) Scheme. Department of Aeronautics and Astronautics,
Stanford University, CA, 2015.

[35] Migel Jonal. Reynolds averaged navier-stokes (rans) equations derivation and
analysis - literature review. https://skill-lync.com/student-projects/

test-15. [Online; accessed 21-May-2021].
[36] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic

optimization. In International Conference on Learning Representations. ICLR,
2015.

[37] Daniel Kobran and David Banys. Gradient descent — ai wiki. https://docs.
paperspace.com/machine-learning/wiki/gradient-descent. [Online; ac-
cessed 8-June-2021].

[38] Simeon Kostadinov. Understanding backpropagation algorithm. Towards data
science, 2019.

[39] Randall J. Leveque. Finite Volume Methods for Hyperbolic Problems. Cam-
bridge University Press, 2002.

[40] J. M. McDonough. Reynolds decomposition. In Introductory Lectures on Tur-
bulence, chapter 1, Fundamental considerations. Departments of Mechanical
Engineering and Mathematics, University of Kentucky, 2004.

[41] Boudjelal Meftah, Olivier Lézoray, Soni Chaturvedi, Aleefia A Khurshid, and
Abdelkader Benyettou. Image processing with spiking neuron networks. In
Artificial Intelligence, Evolutionary Computing and Metaheuristics, pages 525–
544. Springer, 2013.

[42] Glenn Research Center Nancy Hall. Navier-stokes equations — 3 dimensional

93

Bibliography

- unsteady. https://www.grc.nasa.gov/www/k-12/airplane/nseqs.html.
[Online; accessed 16-May-2021].

[43] S. R. Nandakumar, R. Kulkarni Shruti, V. Babu Anakha, and Rajendran
Bipin. Building brain inspired computing systems. IEEE Nanotechnology
Megazine, page 20, September, 2018.

[44] Micheal A. Nielsen. How the backpropagation algorithm works. In Neural
Networks and Deep Learning, chapter 2. Determination Press, 2015.

[45] Allard Overmeen. https://www.bronkhorst.com/int/blog-
1/what-is-the-difference-between-laminar-flow-and-turbulent-
flow/. https://www.bronkhorst.com/int/blog-1/

what-is-the-difference-between-laminar-flow-and-turbulent-flow/.
[Online; accessed 02-June-2021].

[46] Sharad N. Pachpute. Basics of cfd modeling for beginners. https:

//cfdflowengineering.com/basics-of-cfd-modeling-for-beginners/#:

~:text=Computational\%20fluid\%20dynamics\%20(CFD)\%20is\%20the\

%20science\%20of\%20predicting\%20fluid,mass\%20transfer\%20and\

%20species\%2C\%20etc. [Online; accessed 14-May-2021].

[47] C. C. Paige and M. A. Sounders. Solution of sparse indefinite systems of linear
equations, 1975.

[48] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. Automatic differentiation in pytorch. 2017.

[49] Siva prasad. Deriving the reynolds averaged navier-stokes equations - literature
review. https://skill-lync.com/projects/Deriving\-the\-Reynold\

-s\-Averaged-Navier\-Stokes-RANS-Equations\-Literature-Review\

-99705. [Online; accessed 20-May-2021].

[50] Baidurja Ray, Rajesh Bhaskaran, and Lance R Collins. Introduction to cfd
basics, 2012.

[51] Osborne Reynolds. On the dynamical theory of incompressible viscous fluids
and the determination of the criterion. Philosophical Transactions of the Royal
Society of London A., page 123–164, 1895.

[52] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, pages 533–536, No. 323,
1986.

[53] scikit-learn developers. Neural network models (supervised). https://

scikit-learn.org/stable/modules/neural_networks_supervised.html.
[Online; accessed 4-June-2021].

[54] Avinash V. Sharma. Understanding activation functions in neural networks.
The Theory of Everything, 2017.

[55] Sagar Sharma. Activation functions in neural networks. Towards data science,
2017.

94

Bibliography

[56] M. L. Shur, M. K. Strelets, A. K. Travin, and Spalart P. R. Turbulence mod-
eling in rotating and curved channels: Assessing the spalart-shur correction.
AIAA Journal, pages 454–462, Vol. 34, No. 5, 2000.

[57] John W. Slater. Rae2822 transonic airfoil. https://www.grc.nasa.gov/WWW/
wind/valid/raetaf/raetaf.html, 30 September 1998 — Updated on 17 De-
cember 2002. [Online; accessed 23-April-2021].

[58] John W. Slater. Rae2822 transonic airfoil:study #1. https://www.grc.nasa.
gov/WWW/wind/valid/raetaf/raetaf.html, 30 September 1998 — Updated
on 17 December 2002. [Online; accessed 20-June-2021].

[59] Joseph Smagorinsky. General circulation experiments with the primitive equa-
tions. Monthly Weather Review, pages 99–164, 1963.

[60] P. R. Spalart and S. R. Allmaras. A One-Equation Turbulence Model for
Aerodynamic Flows. Recherche Aerospatiale, 1994.

[61] D. B. Spalding. A novel finite-difference formulation for differential expression
involving both first and second derivatives. International Journal for Numer-
ical Methods in Engineering, 4:551–559, 1972.

[62] Sergios Theodoridis. Online learning: the stochastic gradient descent family
of algorithms. In Machine Learning (2nd edition), chapter 5, pages 179–251.
Elsevier, 2020.

[63] Sakshy Tiwar. Activation functions in neural networks. https://www.

geeksforgeeks.org/activation-functions-neural-networks/. [Online;
accessed 8-June-2021].

[64] Eleuterio F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynam-
ics. Springer-Verlag Berlin Heidelberg, 1990.

[65] Airfoil Tools users. Rae 2822 airfoil (rae2822-il) — airfoil tools. http:

//airfoiltools.com/airfoil/details?airfoil=rae2822-il. [Online; ac-
cessed 21-June-2021].

[66] Airfoil Tools users. Rae 2822 airfoil (rae2822-il) xfoil prediction polar
at re=100,000 ncrit=9 — airfoil tools. http://airfoiltools.com/polar/

details?polar=xf-rae2822-il-100000. [Online; accessed 19-June-2021].
[67] Various. AGARD Advisory Report 138, Experimental Data Base For Com-

puter Program Assessment - Report of the Fluid Dynamics Panel Working
Group 04. NATO - Advisory Group for Aerospace Research and Development,
1979.

[68] H Versteeg and W Malalasekera. An Introduction to Computational Fluid
Dynamics: The Finite Volume Method (2nd Edition). Pearson, 2007.

[69] Julius von Kügelgen. On artificial spiking neural networks: Principles, limita-
tions and potential.

[70] Sutherland William. The viscosity of gases and molecular force. Philosophical
Magazine Series 5, pages 507–531, 1893.

[71] Christian Wollblad. Your guide to meshing techniques for
efficient cfd modeling. https://www.comsol.com/blogs/

95

Bibliography

your-guide-to-meshing-techniques-for-efficient-cfd-modeling/.
[Online; accessed 30-May-2021].

[72] Dannis Yoder. Wind-us — version 4.0. https://www.grc.nasa.gov/www/

winddocs/, Last Update 30 September 2016. [Online; accessed 20-June-2021].

96

