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Sommario 
 

 

Questo lavoro di tesi è focalizzato sull’analisi di sistemi rotanti complessi, soggetti a 

condizioni operative plausibili nella realtà pratica delle applicazioni aeronautiche. Vengono 

valutati gli effetti rotordinamici introdotti dalla forza centrifuga; in particolare, l’analisi verrà 

portata avanti considerando dischi con spessore costante e variabile, che vengono assunti 

incastrati all’hub o supportati da un albero deformabile e quindi flessibile, non rigido. 

 

I contributi del pre-stress sono stati ottenuti attraverso l’integrazione di uno stato di tensione 

tridimensionale, che viene generato prevalentemente dai carichi centrifughi, moltiplicati dai 

termini non lineari del campo di deformazione. La forma debole delle equazioni di governo è 

stata risolta usando il metodo degli elementi finiti. 

 

Una serie di elementi 1D ad alta fedeltà sono stati sviluppati in accordo con la teoria CUF, che 

permette di oltrepassare le assunzioni cinematiche delle teorie classiche delle travi. Seguendo 

l’approccio component-wise (CW), sono stati adottate espansioni polinomiali alla Lagrange 

per sviluppare delle teorie agli spostamenti più raffinate. 

 

Gli elementi LE permettono di modellare ogni elemento strutturale del rotore con un grado 

arbitrario di accuratezza usando differenti teorie per gli spostamenti o delle mesh con 

raffinazione locale. 

 

Per fare ciò, durante questo lavoro di tesi è stato utilizzato il codice MUL2, sviluppato 

dall’omonimo gruppo di ricerca all’interno del dipartimento e basato sulla Formulazione 

Unificata proposta dal professor Carrera (CUF). Tale software presenta infatti la potenzialità 

di eseguire analisi linearizzate e geometricamente non lineari, che verranno qui applicate a 

numerosi modelli di strutture di comune applicazione aeronautica. 
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Abstract 
 

 

This master thesis work is focused on the analysis of complex rotating systems, subjected to 

plausible operating conditions in the practical reality of aeronautical applications. The 

rotordynamic effects introduced by the centrifugal force are here evaluated; in particular, the 

analysis will be carried out considering discs with constant and variable thickness, which are 

assumed to be keyed to the hub or supported by a flexible, deformable shaft. 

The contributions of the pre-stress are obtained through the integration of a three-

dimensional state of tension, which is mainly generated by the centrifugal loads, multiplied by 

the non-linear terms of the deformation field. The weak form of the governing equations is 

solved using the finite element method. 

 

A series of high fidelity 1D elements have been developed in accordance with the CUF theory, 

which allows to go beyond the kinematic assumptions of classical beam theories. Following 

the component-wise (CW) approach, Lagrange-like polynomial expansions have been adopted 

to develop more refined displacement theories. 

 

Lagrange-expansions LE elements allow the user to model each structural element of the 

rotor with an arbitrary degree of accuracy using different displacement theories or meshes 

with local refinement. This allows to obtain very reliable results, with a much lower 

computational cost than traditional FEM codes. 

 

In order to do this, during this thesis work the MUL2 code has been used, developed by the 

homonymous research group within the department and based on the Carrera Unified 

Formulation (CUF). In fact, this software has the potential to perform linearized and 

geometrically non-linear analyzes, which will be applied here to numerous models of 

structures of common aeronautical application. 
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Chapter I 
 

Reference framework 
 
 
Air traffic has experienced a truly sudden development in recent decades. Indeed, the 

International Air Transport Association (IATA) noted that between the 1970s and the late 

1990s air traffic doubled in numbers approximately every 15 years, and it was expected that 

this market would continue to grow annually  at rates of 4% - 5% for next twenty years. These 

forecasts inevitably had to collide with the heavy price of the COVID-19 pandemic, both in 

terms of health and human lives, as well as in terms of the possibility of travel and movement 

of the population. 
 

The limitations on international connections, the more or less generalized "lockdowns" at a 

global level (Fig. 1.1), the absence of tourism for almost the entire year of 2020 and a good 

part of 2021, pending herd immunity acquired through vaccinations, resulted in a very violent 

contraction of GDP in all nations and caused, among other things, serious financial problems 

for the airlines. It is well known that this economic activity is one of the most difficult, as it 

organizes and mobilizes some of the most complex systems that man has ever developed: first 

of all it is based on aerospace engineering technology, which for regulations requires very 

high standards of reliability and safety (1 ∙ 10−9); secondly, air traffic interfaces for the most 

part with different nations and is therefore very susceptible to possible diplomatic incidents 

and/or problems. Last but not least, air traffic is an activity that is highly dependent on the 

market trend of some fixed expenses, among all the cost of fuel, which is by far the most 

decisive. 
 

 

Figure 1.1 : Virus Lag, courtesy of LIMES – Rivista Italiana di Geopolitica [1] 
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If in a normal year the cash-flow margin of a standard airline is around 3% -5% of its revenue          

(Fig. 1.2), it is easy to understand how during these pandemic months many airlines suffered 

enormous financial losses or even bankruptcy, requiring and almost always obtaining state 

aid by virtue of the national interest. 

 
 

 
Figure 1.2 : Ticket Price Breakdown 

 
The ability to move people and goods, to connect different parts of the planet, but above all 

the ability of the aeronautical and aerospace sector to invest in technological research and 

innovation has always been recognized by nations with ambition for power, because it still 

represents one of the most advanced sectors of human activity. Despite this, the aeronautical 

field is always developing and is nowadays facing new challenges, among which the most 

relevant are certainly the attempt at an energy transition or at least the fight against global 

warming and the reduction of pollutant emissions and greenhouse gases. 

 

The needs of the final consumer (passenger) and these new environmental protection 

requirements for next generation aircraft translate into the study of new components of 

improved reliability and efficiency. Bearings and rotor systems are certainly two of the 

components that most significantly determine the reliability and effective mechanical 

performance of aerospace applications such as propulsion systems (turbine jet engines) and 

transmission systems (gearbox). 

These systems must withstand very severe and demanding operating conditions: the main 

shaft bearings of a modern aircraft engine experience very high levels of temperature and 

rotational speeds, while they must meet the highest safety and reliability standards trying to 

minimize weight. Such operating conditions and requirements represent an ongoing challenge 

to find improvements in all fields of rotor technology.  
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The so-called “Bearing speed index”, that is the product of the bearing diameter and the 

rotation speed, 𝐷 × 𝑁  represents a very useful parameter in providing information about the 

centrifugal forces, the speed of the system and in general the operating conditions of the 

rotor. Since there has always been the need to increase the specific thrust ("thrust-weigth-

ratio") and at the same time to reduce fuel consumption as much as possible, the rotation 

speed of the shafts and the temperatures of the gases have constantly increased since when 

jet engines were first introduced. Today, for example, the main shaft bearing operates at a 

speed index of up to  𝐷𝑁 = 3.5 ∙ 106  
𝑚𝑚

𝑚𝑖𝑛
.    

 

To get an idea of the development of these components, it is possible to refer to this image 

(Fig. 1.3) taken from reference [2], which presents the "speed index" trend of some 

significant aircraft engines over the years. 

 

 
Figure 1.3 : Speed index for main shaft aircraft engine bearings.  [2] 

 

However, the more the speed index rises, the more problems related to rotor-dynamics begin 

to arise: the higher rotational speeds produce greater centrifugal forces and the weight 

limitation of the mechanical components and rotors lowers their stiffness, causing vibrations 

which, if not checked, could lead to resonance and destruction of the machine. 
 

Resonance describes the phenomenon of increased amplitude that occurs when the frequency 

of a periodically applied force is equal or close to a natural frequency of the system on which 

it acts. When an oscillating force is applied at a resonant frequency of a dynamic system, this 

system will oscillate at a higher amplitude than when the same force is applied at other, non-

resonant frequencies, potentially reaching a critical level, beyond which the structure could 

break. 

This was the case with the Tacoma Narrows bridge, a suspension bridge built in 1940 in the 

state of Washington on the Pacific coast.  Problems related to vibrations immediately emerged 
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and became more visible especially during the particularly windy days, so much so that the 

population began to nickname him "Galloping Gertie (Fig 1.4). 

Unfortunately around ten o'clock on the morning of November 7, 1940, just over four months 

after its inauguration, the bridge began to sway and twist fearfully due to strong gusts of 

wind: about two hours later, following the showy twists of the central span which reached 70° 

of inclination, some tie rods broke, the structure reached the breaking point and the central 

span collapsed, falling into the water. This was the first evidence of that would be later called 

aero-elastic flatter, which is also related to resonance. 
 

 

Figure 1.4 : Tacoma Narrows Bridge – 1940 – Washington State - USA 

 

The simplest system we can think of dynamically is the undamped 1 degree of freedom (1 

DOF) system, which is shown in the next image (Fig 1.5). In this simple case, every physics 

book states that the resonant frequency (or natural frequency) is given by the following 

formula, where 𝑚 represents the oscillating mass, while 𝑘 represents the stiffness of the 

spring. Remember that we are considering an undamped system, so 𝑐 = 0. 
 

𝜔𝑛 = √
𝑘

𝑚
 

 
Figure 1.5 : Single degree of freedom vibrational model (1 DOF) 

 

It is therefore easy to understand how the reduction in stiffness can lower the resonance 

frequency to values that can be reached in today's rotating machines: Rotordynamics must be 

considered.  
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Chapter II 
 

History of Rotordynamics 
 

 

“Human history may be built on the development of technology”     J.S. Rao  [3] 

 

Although the invention of the wheel dates back to prehistoric times and the use of rotating 

systems has accompanied humanity since the dawn of time, it was only during the 19th 

century, thanks to the industrial revolution, that the first accurate studies on rotors were 

conducted  (Fig 2.1). 

Only then, in fact, thanks to the invention of the steam engine and then the internal 

combustion engine, it was possible to reach speeds that caused breakdowns to the rotating 

machines, to the point of pushing scientists and engineers of that time to study the causes in 

depth. As stated by J. Vance in his book  [4] , “most rotordynamic investigations have been 

motivated by machine problems or failures”. 

 

 

Figura 2.1 : History of Rotordynamics [5] 
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The development of vibration theory, as a subdivision of mechanics, came as a natural result 

of the development of the basic sciences it draws from, mathematics and mechanics. The 

vibration phenomenon was identified already at Aeschylos times, and indeed Pythagoras of 

Samos (ca. 570-497 BC) conducted several vibration experiments with hammers, pipes and 

strings, of which he analyzed the harmonics. He was even able to prove with his experiments 

that natural frequencies are system properties and do not depend at all on the magnitude of 

the excitation. This proves that in the ancient world there was some kind of progress about 

vibration theory and a basic understanding of the principles of natural frequency, vibration 

isolation and their measurements. However, this original body of  knowledge had very limited 

use in engineering and innovation, due to the low level of production technology and 

machinery speeds, as well as a substantial lack in all the other subjects involved. 

For example, calculus and mechanics, which are the basis for the analytical treatment of the 

problem, began to be developed only during the 1600s and 1700s, with the discoveries of 

Galileo, Newton and Leibniz. The early stages of mechanization and the first industrial 

revolution, together with the utilization of chemical energy with the associated high-power 

machinery (Fig 2.2), introduced numerous vibration problems, and the rapid development of 

calculus and continuous mechanics led to rapid development of the vibration theories by the 

mid-19th century. 

 

Figura 2.2 : James Watt and its Steam Engine 

The wave equation was first introduced by D’Alambert in a memoir to the Berlin Academy in 

1750 and the solution of the string equation is due to Daniel Bernoulli. The first mathematical 

solution to the problem of the vibrating string was obtained by Lagrange in 1759, considering 

it as sequence of small masses: an approach still used today. Euler and James Bernoulli tried 

to solve the vibrating plate and shell problem analytically, obtaining the differential equations 

considering them as consisting of two system of beams perpendicular to each other. Further 

major improvement was made by Poisson and Kirchhoff, but it was eventually Navier who 

gave a rigorous theory describing the bending vibrations of plates. 

This was meant to be just a fast recap of some of the major development in the sciences that 

are at the base of rotordynamics. There are countless other scientists and scholars worthy of 

having made great developments in this field, but to list them all would have been impossible 

in these few pages.  
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Rotating machines began to be manufactured in what we can call mass production 

concurrently with the development of waterwheels for hydraulic power in the early 1800s 

and steam turbines in the late 1800s. One of the first dynamic problems which was 

encountered was the critical speed: in this situation, a vibration caused by the rotor imbalance 

is amplified by the resonance with the natural frequency of the system, causing the rotor axis 

to deflect. 

Research on rotordynamics spans at least a 140-year period, starting with Rankine’s paper 

about the whirling motions of a rotor, which dated back to 1869. The famous Scottish 

engineer and physicist discussed the relationship between centrifugal forces and restoring 

forces, concluding that any kind  of operations above a certain rotational speed would be 

impossible to achieve. 

Much progress in this area was achieved by the end of the nineteenth century, mainly thanks 

to the contribution of De Laval and Stodola. The first was a Swedish engineer who invented a 

one-stage steam turbine and succeeded in its operation, first with a rigid and then with a 

flexible rotor. His greatest achievement was to show that it was possible to operate in 

supercritical field by operating at a rotational speed which was about seven times larger than 

the critical speed, as can be gleaned from Stodola's 1924 publication [6]. He was the first to 

notice that he could accelerate through the critical speed, and that the operation at 

supercritical speeds, way above the critical one, was very smooth. 

In 1916 Stodola introduced for the first time the concept of bearing damping in 

rotordynamics, proving that the presence of damping limits the amplitude due to the 

unbalance at the critical speed. He also observed the decrease of the critical speed due to 

damping and was able to compute the phase angle with bearing damping. 

As we can imagine, in the early days the major 

concerns for researchers and designers was to try 

to predict the value of the critical speed, because 

their major concern in designing rotating 

machinery was to avoid resonance. 

The first recorder fundamental theory of 

rotordynamics can be found in a scientific paper 

published by Jeffcott in 1919: because of his study 

and theory, we now call Jeffcott Rotor the system 

consisting of a shaft with a disk positioned at its 

midspan (Fig 2.3). 

He obtained a correct analysis of the critical speed inversion with damping included, and, as a 

consequence, the predominant design philosophy changed and accepted the practice of 

turbomachinery supercritical operations. During the same years, also the dynamics of elastic 

shafts with disks, the dynamics of continuous rotors and the balancing of rigid rotors were 

analyzed, alongside with the approximate determination of critical speeds of rotors with 

variable cross sections.  

Figure 2.3 : Jeffcott Rotor 
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Thereafter, the center of research and scientific world shifted from Europe, that was emerging 

from the tragedy of the First World War, to the United States , and the scope of rotordynamics 

expanded to consider many other phenomena. Wilfred Campbell investigated the vibrations 

in steam turbines in detail, while working at General Electric in the 1920s: he came up with 

the idea of plotting a diagram, representing critical speed in relation to the cross points of 

natural frequency curves and the straight lines proportional to the rotational speed. This 

concept is now widely used and we call it Campbell diagram, after the name of his developer 

(Fig 2.4). 

 

 

 

 

 

 

 

 

As the rotational speed increases above the first critical speed, the occurrence of self-excited 

vibration became a serious problem. Newkirk and Kimball recognized the phenomenon 

according to which the internal friction of shaft materials could cause an unstable whirling 

motion: they investigated a whirl instability called oil whip, caused by the oil film in the small 

clearance of journal bearings (Fig 2.5) which occurs at about two times the critical speed [7]. 

 

 

 

 

 

 

 

 

 

 

Rotor instability due to thermal strains caused by rubbing was observed by Newkirk in 1926: 

he spotted a forward whirl induced by a hot spot on the rotor surface, generated in the same 

point where contact between the rotor and the surroundings happens. This hot-spot 

instability is therefore called Newkirk effect. 

Figure 2.4 : Wilfred Campbell and an example of his diagram 

Figure 2.5 : Oil-whip phenomenon 
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During and after the 2nd World War there was a rapid progress in increasing the size and the 

power density of turbomachinery, in search of technological supremacy and  for issues related 

to the more developed arms race, especially in military aviation. 

The theory that explains most fundamental rotordynamics problems had been already 

published by this time, but the new sophisticated applications brought new and complex 

challenges in using these theorems to produce practical design analysis. 

As an example, the arrival of high-speed rotating machines made it necessary to develop a 

balancing technique for flexible rotors. In 1945 Prohl published a new method for calculating 

critical speeds of flexible rotors with many “stations”, consisting of wheels or lumped masses 

along the rotor shaft. His method is now known as Transfer Matrix method. Moreover, up until 

the fourth decade of the 20th century, most analytical models of critical speeds and whirling 

eigenvalues had neglected gyroscopic effects of the spinning wheels. With the low-speed 

machines of the past, the errors in results were generally small and negligible, but now the 

continuous growth of  turbomachinery operating speed requested that the gyroscopic effects 

to be taken into account. This breakthrough was accomplished by Greene in 1948. 

After Frank Whittle and Hans von Ohain developed the jet engine independently of each other, 

the study of rotordynamics gained even greater momentum, in the search for the 

development of an engine capable of pushing an aircraft beyond the sound barrier. Success 

was finally achieved in 1947, when Chuck Yeager pushed his Bell X-1 past Mach 1 over the 

desert areas of California (Fig 2.6). 

 

 

 

 

 

 

 

 

 

In the 1950s it was found that sub-synchronous whirling in steam turbines was somehow 

related to the steam force on the turbine wheels: a thorough investigation performed by 

Thomas in Germany showed that a variation of tip clearance around the blades could create a 

resultant follower force on the whirl orbit, which can unbalance the rotor. This particular kind 

of instability in steam turbines became known as steam whirl. 
 

The design requirements for speed and specific power of turbomachinery equipment have 

been rapidly increasing since the 1960s, coinciding with the space rush and the race to the 

moon.  

Figure 2.6 : Chuck Yeager and the Bell X-1 
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A striking example is the rocket engine turbopumps: the Space Shuttle Main Engine High 

Pressure Fuel Turbo-Pump (SSME HPFTP) reached speeds of over 35.000 rpm [8], driven by 

70.000-hp turbines about the size of a frisbee (Fig 2.7). 

 

 

  
 

These kind of performance result in machines that are likely and easily to be unstable in sub-

synchronous whirl. Designing multiple stages on one single shaft result in long, flexible shafts 

with accentuated bending modes, which makes difficult the suppression of any instability. 

Because these machines must always be lightweight, the rotors are consequently even more 

flexible, making balancing more difficult. 

The presence of many stages on one shaft produce multiple critical speeds, which in theory 

can be balanced by having a number of balance planes which is identical to the number of 

critical speed traversed. In practice, however, is often difficult to realize a large number of 

balance planes, so some methods have been developed to achieve excellent results with fewer 

of these planes. The most popular is the least-square balancing method published by Goodman 

at General Electric in 1964, as an extension of the influent coefficient method, developed  

only a few years earlier in the US thanks to the progress of the computers. 

In the latter half of the last century, various vibrations due to fluid were studied, but these 

arguments are well beyond the scope of this work. A more recently developed topic is the 

study of the non-linear field. 

As rotors became lighter and their operational speeds continue to grow higher, the 

occurrence of nonlinear resonances became a serious problem. Yamamoto studied various 

kinds of nonlinear resonances after reported on subharmonic resonances due to ball bearings 

in 1955. He also discussed systems with weak nonlinearity that can be expressed by a power 

series of low order. In general, it turned out that the most frequent cause of strong 

nonlinearity in aircraft gas turbines is the radial clearance of squeeze-film damper bearings. 

Much more recent is the study of rotordynamics in the non-linear deformation field of the 

material, which can deform beyond its elastic range given the enormous forces and stresses 

involved in today’s turbomachinery.  

Figure 2.7 : Space Shuttle Main Engine (RS-25) and the powerful HPFTP 
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This thesis work will be carried out in this precise context, exploiting the potential of the finite 

element method to perform the calculations of natural frequencies. 

During the practical design of rotating machinery it is in fact compulsory to know accurately 

the values of the natural frequencies, modes, and forced responses to unbalances in complex-

shaped rotor systems. The representative techniques used for this purpose are the transfer 

matrix method and, nowadays, the finite-element method. 

The latter was first developed in structural dynamics and then used in almost all fields of 

modern engineering: the very first application of this method to a rotordynamic problem, a 

rotor system in particular, was made by Ruhl and Booker in 1972. Since then, the use of FEM 

in rotordynamics has taken off, and it was generalized by considering rotating inertia, 

gyroscopic moment and axial forces. 

In this chapter, we have tried to briefly summarize the history of rotordynamics: from 

antiquity, passing through the Renaissance, the industrial revolution, wars and until today, 

numerous other pages still remain to be written in this exciting field of engineering. 
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Part  II 
 

UNIFIED FORMULATION THEORY 
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Chapter III 
 

Theoretical References and CUF 
 

 

We now consider a beam structure with an 

Ω cross section which lays on the 𝑥𝑧  plane 

of a Cartesian reference system (Fig 3.1). As 

a consequence, for the right-hand-rule, the 

beam axis is placed along the Cartesian 𝑦 

and  it measures 𝐿 [11]. 

 
 

The transposed displacement vector is 

therefore given by the following expression: 

 
𝐮(𝑥, 𝑦, 𝑧) = {𝑢𝑥 𝑢𝑦 𝑢𝑧}𝑇 

 

where   𝑢𝑥 𝑢𝑦 𝑢𝑧    are the displacement 
components along the 3 main directions. 
 
 
The stress, 𝛔, and engineering strain, 𝛜, components are expressed in vectorial form in the 

same way,  with no loss of generality: 
 

𝛔 = {𝜎𝑥𝑥 𝜎𝑦𝑦 𝜎𝑧𝑧 𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑥𝑦}𝑇 
 

𝛜 = {𝜖𝑥𝑥 𝜖𝑦𝑦 𝜖𝑧𝑧 𝜖𝑥𝑧 𝜖𝑦𝑧 𝜖𝑥𝑦}𝑇 
 
In this thesis project, linear elastic metallic beam structures will considered initially. Hence, 

the Hooke’s law provides these constitutive relations: 
 

𝛔 = 𝐂𝛜 
 

The characters used in this formula are deliberately in bold and not in italics, to indicate the 

operation between vectors, where the material matrix 𝐂  is given by the following: 
 
 

𝐂 =

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13

𝐶12 𝐶22 𝐶23

𝐶13 𝐶23 𝐶33

0     0    0 
0     0    0 
0     0    0 

0   0   0
0   0   0
0   0   0

𝐶44 0 0
0  𝐶55 0
0   0 𝐶66]

 
 
 
 
 

 

  

Figure 3.1 : Omega cross sectioned beam 
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The coefficients of the stiffness matrix depend only on the Young modulus 𝐸  and the Poisson 
ratio 𝜈, in these forms: 
 

𝐶11 = 𝐶22 = 𝐶33 =
(1 − 𝜈)𝐸

(1 + 𝜈)(1 − 𝜈)
 

 

𝐶12 = 𝐶13 = 𝐶23 =
𝜈𝐸

(1 + 𝜈)(1 − 𝜈)
 

 

𝐶44 = 𝐶55 = 𝐶66 =
𝐸

2(1 + 𝜈)
              

 
 

As far as the geometrical relations are concerned, the Green-Lagrange nonlinear strain 
components are considered. For this reason, the displacement-strain relations are expressed 
as: 

𝛜 = 𝛜𝑙 + 𝛜𝑛𝑙 = (𝐛𝑙 + 𝐛𝑛𝑙)𝐮 
 

where clearly the  𝑙 and  𝑛𝑙   subscripts stand for “linear” and “non-linear”, so 𝐛𝑙  and 𝐛𝑛𝑙 are 

the linear and nonlinear differential operators, respectively. For the sake of completeness, 

these differential matrix operators are given below: 

 

𝐛𝑙 =

[
 
 
 
 
 
 
𝜕𝑥 0 0
0 𝜕𝑦 0

0 0 𝜕𝑧

𝜕𝑧 0 𝜕𝑥

0 𝜕𝑧 𝜕𝑦

𝜕𝑦 𝜕𝑥 0 ]
 
 
 
 
 
 

              𝐛𝑛𝑙 =

[
 
 
 
 
 
 
 
1

2
(𝜕𝑥)

2 1

2
(𝜕𝑥)

2 1

2
(𝜕𝑥)

2

1

2
(𝜕𝑦)

2 1

2
(𝜕𝑦)

2 1

2
(𝜕𝑦)

2

1

2
(𝜕𝑧)

2 1

2
(𝜕𝑧)

2 1

2
(𝜕𝑧)

2

𝜕𝑥𝜕𝑧     𝜕𝑥𝜕𝑧      𝜕𝑥𝜕𝑧

𝜕𝑦𝜕𝑧    𝜕𝑦𝜕𝑧     𝜕𝑦𝜕𝑧

𝜕𝑥𝜕𝑦    𝜕𝑥𝜕𝑦     𝜕𝑥𝜕𝑦 ]
 
 
 
 
 
 
 

 

 

Obviously, the notation used is that   𝜕𝑥 =
𝜕(.)

𝜕𝑥
          𝜕𝑦 =

𝜕(.)

𝜕𝑦
         𝜕𝑧 =

𝜕(.)

𝜕𝑧
 

 

Matrix  𝐛𝑙  and   𝐛𝑛𝑙  are also used to define the equilibrium conditions and equations, which 

can be written in vectorial form invoking a loading vector 𝒈 : 

 

(𝐛𝑙 + 𝐛𝑛𝑙)𝐮 =  𝐛𝐓𝝈 = 𝒈                 𝒈𝑻 = {𝑔𝑥 𝑔𝑦 𝑔𝑧} 

 

Mechanical boundary conditions must be fulfilled on 𝑆𝑚 which represents the portion of the 

body surface where the mechanical conditions on the loading are given, with normal  𝐧  

vector. 

{

𝜎𝑥𝑥𝑛𝑥 + 𝜎𝑦𝑥𝑛𝑦 + 𝜎𝑧𝑥𝑛𝑧 = 𝑝𝑥

𝜎𝑥𝑦𝑛𝑥 + 𝜎𝑦𝑦𝑛𝑦 + 𝜎𝑧𝑦𝑛𝑧 = 𝑝𝑦

𝜎𝑥𝑧𝑛𝑥 + 𝜎𝑦𝑧𝑛𝑦 + 𝜎𝑧𝑧𝑛𝑧 = 𝑝𝑧

 

 

In this formula   𝒑 = {𝑝𝑥 𝑝𝑦 𝑝𝑧}    is the applied loading vector per unit area on the 

aforementioned surface   𝑆𝑚.   
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As stated in reference [9], the mechanical and geometrical boundary conditions must be fully 

defined to complete the set of equations related to the displacement formulation of the 3D 

problems: these can be obtained  by merging Hooke’s Law and the strain-displacement 

relation, obtaining a vectorial formula which represents the boundary-value problem of the 

3D elasticity problem, whose solution then leads to the calculation of the deformed 

configuration, as well as the calculation of the unknown displacements   𝑢𝑥 𝑢𝑦 𝑢𝑧 . 
 

This equation of elasticity and the related displacement approach can conveniently be 

formulated by means of the PVW (Principle of Virtual Work) or the PVD (Principle of Virtual 

Displacement). This variational approach is a very powerful and effective method, which can 

deal with weak forms and the derivation of Finite-Element (FE) matrices, easily processable 

by a calculator. 
 

Some multi-dimensional models of aerospace rotordynamic-related structures will be 

developed using the formalism from the Carrera Unified Formulation (CUF) [9].  The CUF 

provides one-dimensional (beam) and two-dimensional (plates and shells) theories that can 

extend well beyond the classical theories (Euler, Kirchhoff, Reissner, Mindlin), exploiting a 

condensed notation. The latter works by expressing the displacement fields in 

correspondence of the cross section (when we consider a beam) and along the thickness (in 

the case of plate and shell) in terms of basic functions, whose forms and orders are arbitrary 

and can be chosen by the user itself. The use of a unified notation leads to the definition of the 

so-called fundamental nucleus (FN) of all the matrices and FEM vectors involved. 

The FNs consist of just a few mathematical statements, whose forms are totally independent 

from the theory of structures (TOS) employed. The FNs derive from the 3D elasticity 

equations by the application of the principle of virtual displacements (PVD) and can be easily 

obtained for many cases, in every number of dimensions considered (1D, 2D or 3D). 

Generally, the 1D and 2D Finite-Elements obtained with the CUF present some advanced 

functionalities, as they are able to achieve results which are usually provided only by 3D 

elements, but with a much higher computational costs. Moreover, the 1D elements are 

particularly advantageous as they can deal with 2D and 3D problems in a proper and exact 

way. 

In this master thesis work the 1D elements will be mostly utilized, since the various structures 

which will be analyzed can be effectively studied using a combination of these simple 

elements.  

The CUF can be defined as a hierarchical formulation, which considers the order of the theory 

as an input of the analysis: it enables one, at least theoretically, to derive an infinite number of 

sophisticated displacement models [10]. This particularity makes it able to deal with a wide 

variety of structural problems without the need to introduce specifically designed 

formulations for each one of them, and right here lies the powerful potential of this theory.  
 

The so-called non-classical effects, such as warping, planar deformations, shear effects, 

flexural-torsional coupling, are taken in consideration simply increasing the order of the 

theory in an appropriate manner.  
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In the first stages of its development, the CUF theory was founded on the use of Taylor-like 

polynomials to define the range of displacements on the beam cross-section. Static analyzes 

carried out in the past showed the effectiveness of the theory when dealing with warping 

phenomena, deformations in the plane and when dealing with effects due to the Shear loading. 

Taylor Expansion (TE) models proved to be very efficient when considering prismatic 

structures, but they also showed some limitations when the rotor components presented 

different deformability. For this reason the use of Taylor polynomials has some intrinsic 

limitations, mainly due to the fact that the terms of the expansion of the displacement range 

do not have always a physical meaning.  

In order to overcome these problems it has recently been implemented a new beam theory, 

which describe the displacement field of the cross section with Lagrange-like polynomials. 

The choice of these kind of expansions leads us to have only variables of displacements. The 

component-wise (CW) approach has therefore been extended, within the CUF framework, to 

the rotordynamics problem, and Lagrange-like polynomial expansions have been adopted to 

develop the refined displacement theories. 

The choice of Lagrange polynomials, besides bringing numerous benefits in terms of 

versatility of the structural models, allows the user to find even more accurate results than 

Taylor's expansion-based polynomials models. This permits us to consider many phenomena 

that otherwise would only be identifiable via 2D or 3D models, with their higher time-

consuming and computational cost. In addition, the LE elements allows us to model each 

structural component of the rotor with an arbitrary degree of accuracy [10], giving us the 

chance to focus the analysis in pre-established areas, where we think the core of the problem 

lies and where we can adopt some localized mesh refinements. 

 

Derivation of solid beam finite elements by Carrera unified formulation  

In the 1D-CUF framework, the tridimensional displacement field u(𝑥, 𝑦, 𝑧, 𝑡) = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) is 

approximated with an expansion of generic cross-sectional functions  𝐹𝜏  which allow us to 

isolate the effect of the axial coordinate 𝑦 to the shape functions only: 

                    3𝐷 𝐹𝐸:            u(𝑥, 𝑦, 𝑧, 𝑡) = u𝑖𝜏(𝑡) ∙ 𝑁𝑖(𝑥, 𝑦, 𝑧) ∙ 1                 𝑖 = 1…𝑁𝑛
3𝐷 

                    1𝐷 𝐹𝐸:            u(𝑥, 𝑦, 𝑧, 𝑡) = u𝑖𝜏(𝑡) ∙ 𝑁𝑖(𝑦) ∙ 𝐹𝜏(𝑥, 𝑧)             𝑖 = 1…𝑁𝑛
1𝐷;        𝜏 = 1…𝑀    

𝑁𝑖  is the 1D shape function, u𝑖𝜏  is the vector of the generalized displacements, 𝑀  represents 

the number of terms of the expansion, which is an input by the user, and the index  𝑖   refers to 

the FE discretization, varying from 1 to the maximum number of nodes in the finite-element. 

In accordance with the generalized Einstein’s notation, 𝜏  indicates summation, while the 

𝐹𝜏(𝑥, 𝑧)  are the cross-sectional Lagrange polynomials used to deal with the arbitrary shape 

geometry. As mentioned before, even if we can use every type of  𝐹𝜏 functions, the connection 

between the elements becomes very simple when we use Lagrange-type expansions. 
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In this case, the beam kinematics is obtained as a combination of Lagrange polynomials, which 

are defined within sub-regions (or elements) delimited by an arbitrary number of points. This 

number of points determines the order of the polynomial. For the nine-point element L9 

shown in the figure below (Fig 3.2)  the interpolation functions are the following: 

 

Figure 3.2 : L9 element in the natural coordinate system [10] 

 

                    𝐹𝜏 =
1

4
(𝑟2 + 𝑟 𝑟𝜏)(𝑠

2 + 𝑠 𝑠𝜏)                                                                     𝜏 = 1,3,5,7 

                    𝐹𝜏 =
1

2
𝑠𝜏

2(𝑠2 − 𝑠 𝑠𝜏)(1 − 𝑟2) +
1

2
𝑟𝜏

2(𝑟2 − 𝑟 𝑟𝜏)(1 − 𝑠2)                   𝜏 = 2,4,6,8 

                    𝐹𝜏 = (1 − 𝑟2)(1 − 𝑠2)                                                                                 𝜏 = 9 

 

Here,  𝑟 and  𝑠  vary from −1  to  +1, whereas  𝑟𝜏  and  𝑠𝜏   are the coordinates of the nine 

points of the element, whose locations in the natural coordinate frame are shown in Fig 3.2. 

As a consequence, the displacement field of the L9 element is: 

 

𝑢𝑥 = 𝐹1𝑢𝑥1 + 𝐹2𝑢𝑥2 + 𝐹3𝑢𝑥3 + ⋯+ 𝐹9𝑢𝑥9 

𝑢𝑦 = 𝐹1𝑢𝑦1 + 𝐹2𝑢𝑦2 + 𝐹3𝑢𝑦3 + ⋯+ 𝐹9𝑢𝑦9 

𝑢𝑧 = 𝐹1𝑢𝑧1 + 𝐹2𝑢𝑧2 + 𝐹3𝑢𝑧3 + ⋯+ 𝐹9𝑢𝑧9 

 

In these equations all the unknowns (𝑢𝑥1, … , 𝑢𝑥9)  have the same dimension: they are the 

displacement variables of the problem and represent the translational displacement of each of 

the nine points used to define the L9 element of the cross-section. these formulas can now be 

used to derive the expressions of the normal and tangential strains and stresses: together 

with Hooke's Law and the application of the classical finite element technique, this leads to 

the following expression for the generalized (𝐮) and nodal (𝐪) displacement vector. 

𝐮(𝑦, 𝑡) = 𝑁𝑖(𝑦)𝐪𝜏𝑖(𝑡)              𝐪𝜏𝑖(𝑡) = {𝑞𝑢𝑥𝜏𝑖
𝑞𝑢𝑦𝜏𝑖

𝑞𝑢𝑧𝜏𝑖}
𝑇                         𝑬𝒒. 𝟏 
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At this point, it should be underlined that the choice of the cross-section polynomials sets for 

the Lagrange-Expansion kinematics is completely independent of the choice of the beam finite 

element to be used along the beam axis. 

This means that the selection of the type, the number and the distribution of cross-sectional 

polynomials does not affect the discretization along the 𝑦  axis: the 1D CW approach has in 

fact allowed us to greatly simplify the problem, as we can choose whatever elements we find 

appropriate to describe the kinematics in this axial direction. In this thesis work classical 1D 

finite elements with four nodes (B4) are adopted, so a cubic approximation along the 𝑦-axis is 

generally assumed. 

 

Geometrically Nonlinear analysis of a structure 

Structural analyses are commonly carried out in the linear elastic field, where the following 

hypothesis are assumed: 

 the material is elastic-linear, and its mechanical properties are invariable with respect 

to the level of stress applied to the structure; 

 the equilibrium equations are formulated in the undeformed configuration or, in the 

case of structures subject to a state of pre-stress, in an initial reference state; 

 the deformations to which the structure is subjected are considered “small” and do not 

significantly influence the structural response. 

These hypotheses allow considerable and very often valid simplifications in the structural 

analysis, while the removal of one or more of them leads to the introduction of elements of 

non-linearity in the analysis. In general, a structural analysis can take into account two types 

of non-linearity. 

The first one is the physical non-linearity of the material, which arises when it presents a non-

linear constitutive bond, entering the plastic field once the elastic limit has been exceeded. 

This effect can be seen on the stress-strain curve (Fig 3.3) for a specific material, that gives the 

relationship which holds between the stress applied to it and the strain with it responds. 

  

Figure 3.3 : Stress-strain curve of a sample material 
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These diagram is obtained by gradually applying a load to a test coupon and measuring the 

deformation: from this two data the stress and strain can be determined and plotted on a 

graph as a curve, which reveal many of the properties of the material, such as the Young’s 

modulus, the yield strength and the ultimate tensile strength. 

The second typology of non-linear effects are those that will be treated in this thesis, namely 

geometric non-linearity. The before mentioned hypothesis of small displacements is here 

abandoned, as first order deformations produce a non-negligible displacement of the load 

application point. It follows that the stresses and displacements of the model need to be 

recalculated considering the loads applied to the deformed configuration and following an 

iterative procedure. This phenomenology can occur in the following cases: 

 in presence of large displacements, when there is a big difference between the  

undeformed and the deformed configuration of the structure; 

 when the so-called follower forces arises and the deformation changes the direction of 

the load with respect to the undeformed configuration; 

 In general, the stress-state of the structure always 

introduces a side effect, which can be defined as stress 

stiffening or stress softening. For example, from 

previous studies we know that the rotation and the 

consequent centrifugal forces that derive from it tend 

to stiffen the structure, increasing the value of the 

natural frequencies. 

We therefore expect to find this trend in the analysis 

of the Campbell diagrams that will be carried out in 

the following chapters. On the other hand, stress 

softening can manifest itself, for example, with elastic 

instability and buckling (Fig 3.4) produced by the 

compression-state. 

In most cases, the structural analyses are limited to the study of small displacement field. 

However, today's engineering applications, especially in rotor components, have reached 

rotational speeds and applied forces so high that they can deform the structure substantially,  

radically changing its dynamic properties.  

A geometrically non-linear FEM analysis allows us to consider the increase or reduction in 

stiffness due to the stress-state related to large displacement, and it is therefore very 

important to have suitable tools to analyze this situation as well, as it implies a much more in-

depth and complex mathematical treatment. 

This type of analysis leads to results that are strictly dependent on the basic hypotheses from 

which we started and consequently it will be necessary to pay particular attention to their 

validation: as we said, the geometrically non-linear analysis provides looser assumptions only 

regarding the deformations magnitude, while it predicts that the material always remains in 

the linear-elastic range, where the stress-strain graph takes the form of a straight line.   

Figure 3.4 : Geometrical Nonlinearity 
example =Buckling 
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Nonlinear Governing Equations of Vibrating Structures  

Consider now an elastic system which is in equilibrium under a set of applied forces and some 

prescribed geometrical constraints. The principle of virtual work (PVW) establishes the well-

known equilibrium condition between the virtual variations of works done by the 

deformations 𝛿𝐿𝑖𝑛𝑡, inertia   𝛿𝐿𝑖𝑛𝑒  and external forces  𝛿𝐿𝑒𝑥𝑡. In particular, the PVW states 

that [12]: 

                             𝛿𝐿𝑖𝑛𝑡 = 𝛿𝐿𝑖𝑛𝑒 + 𝛿𝐿𝑒𝑥𝑡                                                          𝑬𝒒. 𝟐 

 

In this case, the strain energy is defined as the body volume integral of the virtual strains 

multiplied by the stress vector, according to the following formulation: 

𝛿𝐿𝑖𝑛𝑡 = ⟨𝛿𝜀𝑇𝜎⟩            𝑤ℎ𝑒𝑟𝑒          ⟨(… )⟩ = ∫(… )𝑑𝑉

𝑉

  

If we apply the hypothesis of small deformations, using the Green-Lagrange nonlinear strain 

components already mentioned in the previous pages the displacement-strain relation 

becomes 

𝛆 = ε𝑙 + ε𝑛𝑙 = (b𝑙 + b𝑛𝑙)𝐮 = (𝑩𝑙
𝜏𝑖 + 𝑩𝑛𝑙

𝜏𝑖 )𝐪𝜏𝑖  

 

While the 3D constitutive equation is still given by the well-known Hooke’s Law formula: 
 

𝜎 = 𝑪𝜀 
 

In this case,  𝑩𝑙
𝜏𝑖   and  𝑩𝑛𝑙

𝜏𝑖   are the linear and nonlinear matrices obtained within the CUF finite 

element method framework as described above, while 𝑪  is the 6 × 6  matrix of linear elastic 

material coefficients. Substituting these equations into the 𝐸𝑞. 2 and using the 𝑠 and 𝑗  indexes 

for the terms related to the virtual variation, we obtain that: 
 

                𝛿𝐿𝑖𝑛𝑡 = ⟨𝛿𝜀𝑇𝜎⟩ = 𝛿𝐪𝑠𝑗
𝑇 ⟨(𝑩𝑙

𝑠𝑗
+ 2𝑩𝑛𝑙

𝑠𝑗
)
𝑇
𝑪(𝑩𝑙

𝜏𝑖 + 𝑩𝑛𝑙
𝜏𝑖 )⟩ 𝐪𝜏𝑖 

                           = 𝛿𝐪𝑠𝑗
𝑇  𝐊0

𝑖𝑗𝜏𝑠
𝐪𝜏𝑖 +  𝛿𝐪𝑠𝑗

𝑇  𝐊𝒍𝒏𝒍
𝑖𝑗𝜏𝑠

𝐪𝜏𝑖 + 𝛿𝐪𝑠𝑗
𝑇  𝐊𝑛𝑙𝑙

𝑖𝑗𝜏𝑠
𝐪𝜏𝑖 + 𝛿𝐪𝑠𝑗

𝑇  𝐊𝑛𝑙𝑛𝑙
𝑖𝑗𝜏𝑠

𝐪𝜏𝑖                     𝑬𝒒. 𝟑  

                           =  𝛿𝐪𝑠𝑗
𝑇  𝐊𝑆

𝑖𝑗𝜏𝑠
𝐪𝜏𝑖                

 

In this last equation several K matrices appear, which will now be analyzed in detail: the 

secant stiffness matrix  𝐊𝑆
𝑖𝑗𝜏𝑠

  includes the linear terms 𝐊0
𝑖𝑗𝜏𝑠

, the two first-order nonlinear 

contributions 𝐊𝒍𝒏𝒍
𝑖𝑗𝜏𝑠

  and  𝐊𝑛𝑙𝑙
𝑖𝑗𝜏𝑠

, and the second-order nonlinear matrix, given by 𝐊𝑛𝑙𝑛𝑙
𝑖𝑗𝜏𝑠

. These 

are 3 × 3 arrays, called Fundamental nuclei (FN) and their expressions are not affected by the 

type or the number of functions which we decided to use for the kinematic expansion. As a 

consequence, every type of beam theories can be automatically implemented by exploiting the 

indicial notation of this unified formulation. 
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If we are looking for a non-linear solution, we must necessarily identify the equilibrium point 

reached by the structure, and then consider the oscillations around this point. In fact, similarly 

to that of the internal forces, the virtual work done by the inertial forces  𝑭𝑰 is defined as the 

body volume of the small perturbations vector around a steady nonlinear equilibrium 

position  �̂�𝑇 = [𝑢�̂� 𝑢�̂� 𝑢�̂�] , multiplied by the expression of the inertial forces itself: 

𝛿𝐿𝑖𝑛𝑒 = ⟨𝛿�̂�𝑇𝑭𝑰⟩ = ∫(𝛿�̂�𝑇𝑭𝑰)𝑑𝑉

𝑉

                                             𝑬𝒒. 𝟒 

All these terms are expressed with respect to a coordinate reference frame attached to the 

rotor that rotates at constant speed Ω about its 𝑦-axis. According to that, the inertial forces are 

given by: 

 

𝑭𝑰 = −𝜌 (

𝑢�̈̂�

𝑢�̈̂�

𝑢�̈̂�

) − 2𝜌Ω(
−𝑢�̇̂�

0
𝑢�̇̂�

) + 𝜌Ω2 (
𝑢�̂�

0
𝑢�̂�

) + 𝜌Ω2 (

𝑥𝑒

0
𝑧𝑒

)                          𝑬𝒒. 𝟓 

 

Combining and merging 𝐸𝑞. 1, 4 and 5  the FN of the mass matrix  𝑴𝑖𝑗𝜏𝑠 is readily obtained, as 

well as  the Coriolis matrix  𝑮𝑖𝑗𝜏𝑠 , the centrifugal matrix  𝑲𝛀
𝑖𝑗𝜏𝑠

 and the vector of centrifugal 

forces  𝑭𝛀
𝑗𝑠

.  

 

We now have all the ingredients needed to carry out our goal: the non-linear analysis. If any 

external loads  𝑭ext
𝑗𝑠

  are applied to the structure, the nonlinear equation to be solved becomes: 
 

𝑲𝑆𝐪𝑒 = 𝑭𝑒𝑥𝑡 + 𝑭Ω  
 

However, this formulation is still too complex to be solved analytically, as we explained how 

the 𝐊𝑆 matrix  still contains all the non-linear terms: the solution  𝐪𝑒  needs to be determined 

through a Newton-Raphson incremental scheme, which requires the linearization of  𝐸𝑞. 3: 

 

                                            𝛿(𝛿𝐿𝑖𝑛𝑡) =  ⟨𝛿𝜺𝑇𝛿𝝈⟩  + ⟨𝛿(𝛿𝜺𝑇)𝝈⟩ 

                                                             =  𝛿𝐪𝑠𝑗
𝑇  (𝐊0

𝑖𝑗𝜏𝑠
+ 𝐊𝑇1

𝑖𝑗𝜏𝑠
+ 𝐊𝜎

𝑖𝑗𝜏𝑠
)𝛿𝐪𝜏𝑖                                            𝑬𝒒. 𝟔 

                                                             =  𝛿𝐪𝑠𝑗
𝑇  𝐊𝑇

𝑖𝑗𝜏𝑠
𝛿𝐪𝜏𝑖 

 

Here we introduced the tangent stiffness matrix, 𝐊𝑇
𝑖𝑗𝜏𝑠

 , whose fundamental  nucleus includes 

the before mentioned nonlinear contribution of the Hooke’s law, the linear stiffness matrix 

𝐊0
𝑖𝑗𝜏𝑠

  and the geometric stiffness matrix  𝐊𝜎
𝑖𝑗𝜏𝑠

. 
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The analysis of this thesis is aimed at the calculation of the natural frequencies of some 

structural models. These natural frequencies  𝜔 and mode shapes �̅�  associated with small-

amplitude vibrations are significantly affected by the equilibrium point they oscillate about, 

and can be obtained assuming a harmonic solution for the following dynamic equation: 
 

             𝑴�̈̂� + 𝑮�̇̂� + (𝑲𝑻(𝐪e) + 𝑲𝛀)�̂� = 𝟎                �̂� = �̅� 𝑒𝑖𝜔𝑡                             𝑬𝒒. 𝟕 

  

This formulation holds for large displacements and large rotations of the structure until 

reaching its equilibrium state, around which only small vibrations are allowed. 

 

 

In the following chapters comparative analyses between non-linear theory and linearized 

theory will often be carried out. In fact, in order to reduce the computational effort and the 

mathematical complexity, this last 𝐸𝑞. 7  can be linearized, considering only the linear part of 

the geometric stiffness matrix 𝐊𝜎.  
 

                                                         𝐊𝑇 = 𝐊0 + 𝐊𝑇1
+ 𝐊𝜎         𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 

                                                         𝐊𝑇 ≈ 𝐊0 + 𝐊𝜎
∗                      𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑  

 

This new geometric stiffness matrix 𝐊𝜎
∗   derives from the geometric strain energy, obtained by 

the product between the nonlinear component of strains  𝜺𝑛𝑙  and the initial stress vector  𝝈0. 

The computation of the rotation-induced stresses is performed by a static linear analysis in 

which the rotation force 𝐹Ω appears. 
 

(𝐊0 + 𝐊Ω)|Ω=1�̂� = 𝑭Ω|Ω=1  

 

It is important to specify that the newly obtained  𝐊𝜎
∗   matrix differs from the previous one  

(𝐊𝜎)  because in this particular case the stress field is computed only considering the linear 

part of the strain field, since the problem is being linearized. The dynamic system therefore 

becomes linearized, which means that it is analytically solvable, and requires much less 

computational effort: 

 

             𝑴�̈̂� + 𝑮�̇̂� + (𝐊0 + Ω2𝐊𝜎
∗ + 𝑲𝛀)�̂� = 𝟎                �̂� = �̅� 𝑒𝑖𝜔𝑡                            𝑬𝒒. 𝟖 
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The Assembly Procedure  

The structural configuration of Fig 3.5 is now used to explain the assembly procedure of the 

various matrix involved in the previous dynamic systems. Theoretically speaking, a prismatic 

structure can be modeled with beam or solid elements: in this example one Lagrange element 

with 4 nodes (L4) is used on the cross-section, while 2 beam elements with two nodes are 

used to model our structures along its longitudinal axis. The image shows that the every beam 

model has four nodes in each transversal section.  The unknown displacements are, therefore, 

given by: 
 

𝑢𝑖 = (𝑢𝑥 𝑢𝑦 𝑢𝑧)𝑖𝜏           𝑖 = 1,2,3,4      𝜏 = 1,2,3,4 
 

 

Figure 3.5 : Example of a 1D Lagrange Expansion FEM model 

 

Otherwise, we also could have modeled the structure with a generic number of 3D elements, 

with 8 nodes each. The latter is usually the strategy of commercial FEM codes, which 

automatically generate a very dense mesh with a huge number of elements, that  

determines an increase in the computational cost. 

For this reason, now we want to focus on the numerical procedure that allows us to derive 

and assemble the stiffness and mass matrices of the entire structure, starting from the 1D and 

Lagrange elements, that will be used in the course of this thesis. 

As both beam models have the same unknowns, the imposition of the compatibility condition 

between shared nodes is very simple, considering that nodes 2 and 4 coincides in the final 

assembled model: 

𝑢21 = 𝑢41        𝑢22 = 𝑢42       𝑢23 = 𝑢43      𝑢24 = 𝑢44 
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These conditions can be used during the assembly procedure to identify the nodes to be 

connected (Fig 3.6). As usually done in finite element solution schemes, the matrices of the 

two elements can be used to build the global matrix of the entire structure simply adding the 

contributions of the shared nodes. 

 
Figure 3.6 : Assembly procedure for the 1D Lagrange Expansion FEM model 

 

Since the assembled mathematical model of this simple example has twelve structural nodes 

(SN), the total number of degrees of freedom will be: 

𝐷𝑜𝐹 = 𝑆𝑁 × 3 = 12 × 3 = 36 
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Part  III 
 

STATIC AND DYNAMIC ANALYSES 
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Chapter IV 
 

Validation 
 

In this chapter many analyses will be carried out in order to obtain the natural frequencies of 

some structures with particularly simple geometries. Some reference results, obtained from 

previous papers by Filippi, Carrera, Entezari and others [13], [14], are available in the 

bibliography, and will be used to compare and validate the new code, initially still in its linear 

analysis configuration. 

During these first steps, particular attention will be paid to describing the construction 

processes of the FEM model and the mesh of the section used, crucial for the good functioning 

of the Mul2 code. 

This code allows to perform structural and free-vibrations analysis through the application of 

the CUF (Carrera Unified Formulation), which, as we said, is a very powerful and capable tool, 

which can drastically reduce the computational cost of these calculations. 

As we are working with 3D structures, models with Lagrange series expansions were chosen, 

which showed good adherence with the results obtained with commercial FEM software such 

as Ansys or Femap. 

 

Free vibration analysis of a longeron 

Following the first example of the CUF book [9],  we start our validation with the free 

vibration analysis of a longeron with three longitudinal stiffeners. The geometry of the 

structure is shown in the following picture (Fig 4.1), and it has been modelled as a beam, only 

clamped at its end at  𝑦 = 0. The geometrical characteristics are: 
 

 Axial length    𝐿 = 3 𝑚 
 Cross sectional height  ℎ = 1 𝑚  
 Area of the stringers  𝐴𝑆 = 1,6 ∙ 10−3 𝑚2 
 Thickness of the panels 𝑡 = 2 ∙ 10−3 𝑚 
 Distance 𝑏   𝑏 = 0.18 𝑚 

 

The whole structure is made of an Aluminum Alloy, which is an isotropic material, endowed 

with these  properties: 
 

𝐸 = 75 𝐺𝑃𝑎,       𝜈 = 0.33,      𝜌 = 2700
𝐾𝑔

𝑚3
 

 
It should be remembered that this structure was analyzed as a first test, only to learn how to 

use the code provided by the university department. The component-wise CW model was 

obtained by discretizing the cross section with 5 L9 elements one for each spar component 

(stringers and webs) following the model of the book. This results in 41 points for each 

station of the beam.  
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A 10 B4 mesh (31 nodes) is adopted along the y-axis, since it leads to convergent results in 

terms of natural frequencies, when a free-vibration analysis is performed. 

After some simple calculations necessary to obtain the unspecified dimensions, it was 

possible to define the mesh and the coordinates of each node of the structure. The 

discretization used leads to having a quite large number of degrees of freedom (DOFs), which 

is calculated in this way: 

 

41
𝑝𝑜𝑖𝑛𝑡𝑠

𝑛𝑜𝑑𝑒
∗ 31 𝑛𝑜𝑑𝑒𝑠 ∗ 3

𝐷𝑂𝐹

𝑝𝑜𝑖𝑛𝑡
= 3813  𝐷𝑂𝐹𝑠 

 
Performing the analysis using the Mul2 code, among other results, a paraview file is also 

generated with the natural modes, which can be displayed using the software of the same 

name (Fig 4.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.1 = Three-stringer spar 

Figure 4.2 = Natural modes in Paraview: mode 6 (17.67 Hz) and mode 10 (25.1 Hz) 
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The first 15 natural frequencies of this structure have been calculated with the Mul2 code and 

compared with the results reported in Fig 4.3, taken from reference [9]. It shows the values of 

different modes (b: bending modes; t: torsional mode; s: shell-like mode; e: extensional 

mode). 

 
Figure 5.3 : First 15 natural frequencies (Hz) of the three-stringer spar [9]  

 

A summary of these results and the relative error is shown in the table below (Tab 4.1): 

 
 

Frequency RESULTS REFERENCE [9] ERROR [%] 

1 3.16804 3.46 -8.43829 

2 3.83044 3.76 1.87333 

3 3.56010 3.52 1.13918 

4 14.26918 14.27 -0.00574 

5 16.73470 16.73 0.02809 

6 17.67062 17.67 0.00353 

7 21.16814 21.17 -0.00880 

8 21.69645 21.71 -0.06240 

9 22.94795 22.95 -0.00895 

10 25.09775 25.11 -0.04877 

11 25.74817 25.73 0.07061 

12 31.20558 31.21 -0.01415 

13 37.91634 37.92 -0.00966 

14 45.78556 45.79 -0.00970 

15 54.84760 54.86 -0.02261 

 
Table 4.1 : Free vibration analysis of the three-stringer longeron  

 

Except for the value of the first natural frequency, all the others have a limited and perfectly 

acceptable percentage error, probably due to the different hardware architecture of the 

computers on which the code was run.  
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Structural analysis of a Thin and Thick-walled Cylinder 
 

A thin-walled cylinder is considered with the cross-section 

geometry shown in the figure on the right (Fig 4.4) taken from 

ref. [9], where the diameter, 𝑑, is equal to 2 𝑚, and the thickness,  

𝑡, is equal to 0.02 𝑚.  The length of the  cylinder, 𝐿, is equal to 

20 𝑚. The structure has been modelled as a clamped-clamped 

beam made of an aluminum alloy, which is an isotropic material: 
 

𝐸 = 75 𝐺𝑃𝑎,       𝜈 = 0.33,      𝜌 = 2700
𝐾𝑔

𝑚3
 

 

As a reference, the same free-vibration analysis has been 

performed over a thick-walled cylinder, which has the same 

diameter and length as the previous, while the thickness, 𝑡, is now 

equal to 0.3 𝑚. 

 
FEM model and MESH construction: 
 

The co-rotating reference system allows the analysis of axisymmetric structures, therefore a 

Cartesian system has been adopted, placing the y-axis in coincidence with the longitudinal 

axis of the beam, while the x and z-axes define the circular cross section. 

A 10 B4 mesh (31 nodes) is adopted along the y-axis, since it leads to convergent results in 

terms of natural frequencies, when a free-vibration analysis is performed. Given the geometry 

of the structure, a null value of the x and z coordinates has been attributed to each node, 

making only the longitudinal coordinate vary. 

For the cross section   8 × 1   L16  elements were used in the circumferential and radial 

direction respectively, each formed by 16 nodes, defined by a corresponding number of 

coordinate triples (Fig 4.5). Using MATLAB, a software has been created to generate the mesh 

of the section by acting only on a few parameters, which will be used several times also in 

subsequent analyzes. 

 
Figure 4.5 :  8 X 1 L16 Mesh   

     Figure 4.4 : Thin-walled cylinder         
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It is also very important to accurately define the connectivity matrix among the elements, in 

order to correctly describe the section to be analyzed. Most of the pre-processing time is 

spent in this phase, and the effort is shown in the following table (Tab 4.2). 

 
 

TYPE N° Number of the 16 Nodes which define the element 

Q16 1 1 2 3 4 28 52 76 75 74 73 49 25 26 27 51 50 

Q16 2 4 5 6 7 31 55 79 78 77 76 52 28 29 30 54 53 

Q16 3 7 8 9 10 34 58 82 81 80 79 55 31 32 33 57 56 

Q16 4 10 11 12 13 37 61 85 84 83 82 58 34 35 36 60 59 

Q16 5 13 14 15 16 40 64 88 87 86 85 61 37 38 39 63 62 

Q16 6 16 17 18 19 43 67 91 90 89 88 64 40 41 42 66 65 

Q16 7 19 20 21 22 46 70 94 93 92 91 67 43 44 45 69 68 

Q16 8 22 23 24 1 25 49 73 96 95 94 70 46 47 48 72 71 

 
Table 4.2 : Connectivity Matrix (Thin and Thick walled Cylinder) 

 
The first 30 natural modes and natural frequencies have been evaluated and are reported 

below for the two case studies: since in this case no paper with previously obtained results 

was available, an ANSYS parallel analysis was performed to compare the frequencies and the 

approximation introduced by the MUL2 code (Fig 4.6). 

In doing this, it was noted the absolute importance of defining an axisymmetric mesh in 

ANSYS in order to obtain natural modes with multiplicity equal to 2. 

 
 

 
Figure 4.6 : Thin-walled Cylinder Natural Frequency Chart [Hz] 
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From the previous graph we can see that there is a significant difference between the two 

codes. Analyzing and identifying in detail the natural modes we can obtain the following 

result: 

 

Natural Mode Identification Wave number MUL 2 ANSYS Rel. Error [%] 

1 Shell I 18.828 17.331 8.64 

2 Bending I 28.747 28.583 0.57 

3 Shell II 31.197 30.206 3.28 

4 3 Lobe Shell I 51.165 40.119 27.53 

5 Shell III 52.547 51.8 1.44 

6 3 Lobe Shell II 52.842 42.234 25.12 

7 3 Lobe Shell III 57.359 47.784 20.04 

8 3 Lobe Shell IV 65.896 57.811 13.99 

9 Bending II 69.4 69.125 0.40 

10 3 Lobe Shell V 78.721 72.187 9.05 

11 Shell IV 79.925 79.263 0.84 

12 Torsion I 80.788 80.788 0.00 

  NODES 2976 30780  

  DOFs 8928 92340  

 

Table 4.3 : Natural Frequency results for the Thin-walled Cylinder [Hz] 

 

Within the table (Tab 4.3), the rows related to bending and torsional modes have been 

highlighted to underline the very limited relative error obtained between the two FEM codes, 

despite the large differences in computational cost, presented through the number of degrees 

of freedom (DOFs) in the bottom right corner. 
 

Thanks to this analysis it can be seen that the shell-like modes need a specific treatment, since 

they aren’t captured precisely by this particular application of the Lagrange-expansion based 

Mul2 software. However, the magnitude of this error behaves in a way which is inversely 

proportional to the number of half waves, as confirmed, for example, by the frequency values 

of the Shell IV mode. For the sake of completeness, some vibrational modes of the analyzed 

structure are shown on the next page (Fig 4.7).  
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Shell mode:  I and II 

 

 
Bending mode:  I and II 

 

 

 
3 Lobe Shell mode (with sections):  I and II  &  Torsional mode (below) 

 

 
 

Figure 4.7 : Thin-walled Cylinder modes (ANSYS)  
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The same analysis was performed on the thick-walled cylinder described above. Looking at 

the graph of the results (Fig 4.8), one can immediately notice an increase in natural 

frequencies values caused by the greater thickness and therefore by the greater stiffness of 

the structure. As a very first approximation it is in fact possible to consider this beam as a 1-

DOF dynamic system, whose next formulation for the natural frequency is well known: 

 

𝜔 = √
𝑘

𝑚
 

 

We also notice a minor difference between the results of the two codes, and this occurs 

because the shell modes, which we have seen to be the most problematic, tend to occur at 

higher frequencies, while they were dominant in the thin-walled cylinder dynamics (Tab 4.4) 

 
 

 

Natural Mode Identification Wave number MUL 2 ANSYS Rel. Error [%] 

1 Bending I 26.12 26.015 0.40 

2 Bending II 64.86 64.645 0.33 

3 Torsion I 80.79 80.785 0.01 

4 Bending III 114.18 113.89 0.25 

5 Torsion II 161.58 161.57 0.01 

6 Bending IV 169.7 169.35 0.21 

7 Bending V 229 228.61 0.17 

8 Torsion III 242.37 242.36 0.00 

9 Shear I 264.27 263.68 0.22 

10 Shell I 272.42 270.87 0.57 

11 Shell II 276.37 274.84 0.56 

12 Shell III 284.22 282.72 0.53 

13 Bending VI 290.4 289.93 0.16 

14 Shell IV 297.18 295.71 0.50 

15 Shell V 316.07 314.61 0.47 

16 Torsion IV 323.16 323.14 0.01 

17 Shell VI 341.16 339.67 0.44 

 
 NODES 2976 26884 

 

 
 DOF 8928 80652 

 
 

Table 4.4 : Natural Frequency results for the Thick-walled Cylinder [Hz] 
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Figure 4.8 : Thick-walled Cylinder Natural Frequency Chart [Hz]  

 

In this case we notice a perfect fit between the results of the two codes, which allows us to 

confirm the power of the Mul2 code and its reliability in finding exact results with 

significantly reduced computational effort compared to FEM analysis with 3D solid elements 

such as ANSYS. 
 

The following images show the deformed configurations of some significant vibration modes: 

under each pair of graphs the type of mode and the associated number of half-waves are 

indicated (Fig 4.9 - Fig 4.10). 

 

Figure 4.9 : Thick-walled Cylinder modes: Bending IV and Shell IV (Paraview)   
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Shear Mode     Dilatation II mode 

 
 

 
Shell mode:  II and  IV 

 
 

 
Bending mode:  IV and  VI 

 
Figure 4.10 : Thick-walled Cylinder modes (ANSYS)  
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Thin disk with constant thickness 
 

In this section we tried to prepare the geometry of some very important structures for the 

purpose of this thesis focused on the rotordynamic field: the first example of a rotating body 

that will be analyzed will in fact be the disk with constant thickness, already investigated by 

Entezari, Filippi and Carrera in their paper. [13] 

The disk is forged in steel, an isotropic material with the following properties: 
 

𝐸 = 210 𝐺𝑃𝑎,       𝜈 = 0.3,      𝜌 = 7800
𝑘𝑔

𝑚3
 

 

The inner and outer radii and the thickness of the disk are assumed to be  0.1016,

0.2032   and  1.016 ∙ 10−3 𝑚 respectively, and the disk is considered as mounted on a rigid 

shaft, with its inner boundary  fully fixed at the hub. 

In contrast, the outside boundary is assumed to be traction free, as rotation and centrifugal 

effects will be introduced later in this work. This structure is meant to be analyzed using the 

1D-CUF theory, where the capabilities of Lagrange-type elements will be evaluated. 

 

 
Figure 4.11 : Constant thickness disk mesh: (a) 1B3 along the axis;  (b) 2 X 16 L16 

 

As we can see in the Fig. 4.11 image taken from the paper [13], the mathematical model used 

for the simulation consists of a single 3-node beam element along the y-axis, and  2 ×  16 

cross-sectional mesh of L16 elements. In fact, from a convergence analysis performed 

previously, it emerged that this model already provides accurate results for the considered 

structure. 

 

The same Matlab code was used to define the coordinates of the mesh points and to display 

them on a Cartesian plane: they were numbered to facilitate the construction of the 

connectivity matrix, formed, as we said, by 32 L16 elements that connect 336 points for each 

node of the structure (Fig 4.12): 
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Figure 4.12 : MUL2 mesh for the constant thickness disk 

 

 

 

 

 

 

 

 

 

 

The results obtained from the simulation (Fig. 4.13) are completely identical to those present 

in the paper, so we now proceed to complicate the geometry of the structure, to make it more 

realistic.   

Figure 4.13 : Mode 4 (91.7 Hz) and Mode 7 (115.5 Hz) in Paraview 
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Disk with variable thickness 
 

It is rare for the rotors for real aeronautical applications to have a regular shape like the one 

analyzed above: often the rotors are machined from solid material and, for weight reduction 

needs (reduction of vibration and mass in flight to be transported, reduction of fuel 

consumption) they are usually tapered at their extremity, towards the external radius. 

For this reason, the case of the variable thickness disk present in the same reference paper 

[13] was considered: although it presented a hyperbolic thickness profile, the disk was 

modeled through a 4 sections discretization, in order to be able to analyze it through the Mul2 

code. 

Among the various possible types of cross-section discretization, the one with 4 × 8 L16 

elements has been here implemented, as shown in the Fig. 4.14.  

 

 
 

Figure 4.14 : 1D-CUF model of the variable thickness disk,  (𝟏/𝟐/𝟑/𝟒) ×  𝟖  𝐋𝟏𝟔   

 
The results obtained from the first 20 natural frequencies show good adherence with the 

results of the paper and with the references of the bibliography (Fig. 4.15). 

 

 
 

Figure 4.15 : Mode comparison between ANSYS and Paraview (Disk)  
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Complex rotor: 
 

To extend our analysis to the most realistic case possible, the structure of the paper by 

Entezari, Kouchakzadeh, Carrera and Filippi [14] is now considered. The structure is an 

axisymmetric rotor, consisting of a main shaft on which a single turbine (with the same shape 

and size as the variable thickness disk considered previously) is keyed as well as two identical 

discs that simulate the compressor stages. It is assumed that the main shaft is hollow and 

flexible, and that it is fixed at both of its ends. 

As in the previous case, the hyperbolic profile of the compressor and turbine discs was 

approximated by a discretization in 4 sections: we notice that the two compressor stages have 

a smaller radius than the turbine, as it usually happens in aircraft engines. The material of this 

complex rotor is assumed to be steel with: 
 

𝐸 = 207 𝐺𝑃𝑎,       𝜈 = 0.28,       𝜌 = 7860
𝑘𝑔

𝑚3
,      𝛼 = 13 ∙ 10−6 °𝐶−1 

 

The model has been created for both 

Mul2 and ANSYS software: in the first 

case was chosen a discretization model 

with 32 elements B2 along the y-axis 

and with  4 × 8  L16 elements for the 

cross section, schematized in the 

picture (Fig. 4.16). 

On the other hand, the model for the 

commercial FEM software was first 

created in Solidworks environment and 

then imported in ANSYS Workbench for 

modal analysis. 
 

The dimensioned blueprint of the rotor is shown in the following image (Fig. 4.17): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 : Complex rotor Mesh schematization 

Figure 4.17 : Complex rotor Blueprint 
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Carrying out the analysis we obtained the frequencies reported in this summary table (Tab 4.5): 

comparisons with a converged 3D ANSYS solution revealed a good correspondence of the first 15 

natural frequencies considered. 
 

 

𝝎𝒏 17820 DOF Rel. Error [%] 17820 DOF Rel. Error [%] 37293  DOF Relative Error 

N° 
Present 
Model 

Present Model 
vs Paper [8] 

Paper [8] Mul2 
Paper [8]  vs 

Ansys 
ANSYS 

Present Model 
vs Ansys 

1 634.58 0.086 634.03 -0.95 640.12 -0.87 

2 659.87 0.008 659.82 -3.34 682.6 -3.33 

3 767.03 0.038 766.74 1.75 753.57 1.79 

4 1012.12 0.051 1011.6 -2.19 1034.2 -2.14 

5 1370.28 0.063 1369.42 1.03 1355.4 1.10 

6 1607.85 0.073 1606.68 2.91 1561.2 2.99 

7 1624.97 0.030 1624.49 3.74 1565.9 3.77 

8 1679.54 0.056 1678.59 3.43 1623 3.48 

9 1743.58 0.090 1742.01 2.21 1704.3 2.30 

10 1766.58 0.057 1765.57 2.05 1730.1 2.11 

11 1784.85 -0.104 1786.7 2.24 1747.5 2.14 

12 1791.35 -0.017 1791.65 2.43 1749.2 2.41 

13 1847.19 0.088 1845.57 2.72 1796.7 2.81 

14 1857.51 0.016 1857.21 1.10 1837 1.12 

15 2317.16 0.024 2316.6 0.59 2303.1 0.61 
 

Table 4.5 : Natural frequencies obtained for the Complex rotor [Hz] 

 

The deformed configuration of the  11𝑡ℎ   natural mode is shown below as an example (Fig. 

4.18), to show the effectiveness of the Mul2 code: the result obtained by ANSYS is presented 

on the left, while on the right we see the representation of the same mode calculated by Mul2 

and post-processed through the Paraview 5.9.0 software. 

 

 
Figure 4.18 : Mode comparison between ANSYS and Paraview (Complex Rotor)  
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Bladed disk 
 

The most realistic case analyzed will be that of the 

bladed disc shown in the figure: here we consider 

the same constant thickness disc of the previous, but 

we added 16 identical blades, each modeled as a thin 

rectangular section beam. 
 

In this case we choose Inconel as the material, with 

the following mechanical properties: 
 

𝐸 = 174 𝐺𝑃𝑎,       𝜈 = 0.3,      𝜌 = 8200
𝑘𝑔

𝑚3
 

 

Each blade has been modelled using 4 Q9 Lagrange 

elements, and extends for a further 20 cm beyond 

the external radius of the disc, reaching a total 

diameter of 80 cm. All the blades are perfectly 

identical,; they have a width of 1.3 cm and their 

thickness is equal to that of the disc, specifically 6 cm  

(Fig. 4.19). 

 

The first 50 natural frequencies were analyzed, in 

order to investigate various mode-types of the 

blades. 

As we can expect, the blades have obviously the lowest local stiffness, so the dynamics of this 

rotor will be dominated by their vibrations: the central hub will be treated almost as a rigid 

body, which is free from any deformation. 

 
MUL2 

 
ANSYS  Rel. Error [%] 

NODES 6336 
 

24511  
 

DOFs 19008 
 

73533  
 

Frequency N° 
  

  
 

1 240.87 
 

233.23  3.27 

2 243.82 m=2 235.68  3.46 

3 243.82 '' 235.69  3.45 

4 243.49 m=8 235.76  3.28 

5 243.74 m=3 235.78  3.38 

6 243.74 '' 235.81  3.36 

7 243.66 m=4 235.82  3.32 

8 243.66 '' 235.9  3.29 

9 243.53 m=6 235.91  3.23 

10 243.53 '' 235.91  3.23 

11 243.50 m=7 235.91  3.22 

12 243.50 '' 235.94  3.20 

Figure 4.19 : Bladed Disk Model 
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13 243.61 m=1 235.98  3.23 

14 243.61 '' 236.01  3.22 

15 243.59 m=5 236.01  3.21 

16 243.59 '' 236.07  3.19 

17 639.44 Rotor Bending (m=1) 625.06  2.30 

18 639.44 '' 625.12  2.29 

19 688.05 Umbrella Mode (m=0) 672.44  2.32 

20 687.38 In phase Bending (m=2) 672.91  2.15 

21 687.38 '' 673.01  2.13 

22 815.03 In phase Bending (m=3) 791.06  3.03 

23 815.03 '' 791.07  3.03 

24 874.80 In phase Bending (m=4) 843.92  3.66 

25 874.80 '' 843.93  3.66 

26 929.01 Alternating Bending (m=8) 868.44  6.97 

27 918.84 In phase Bending (m=6) 868.45  5.80 

28 918.84 '' 880.94  4.30 

29 903.55 In phase Bending (m=5) 881.2  2.54 

30 903.55 '' 887.32  1.83 

31 926.61 In phase Bending (m=7) 887.32  4.43 

32 926.61 '' 889.23  4.20 

33 1303.43 2° Harmonic (m=0) 1259.7  3.47 

34 1528.34 Torsion (m=2) 1436  6.43 

35 1528.34 '' 1436  6.43 

36 1530.02 Torsion (m=1) 1448.9  5.60 

37 1530.02 '' 1449.6  5.55 

38 1531.50 Torsion (m=3) 1450.5  5.58 

39 1534.43 Torsion (m=0) 1450.5  5.79 

40 1534.15 Torsion (m=8) 1450.7  5.75 

41 1533.96 Torsion (m=6) 1451  5.72 

42 1533.96 '' 1451.1  5.71 

43 1534.10 Torsion (m=7) 1451.1  5.72 

44 1534.10 '' 1451.1  5.72 

45 1532.96 Torsion (m=4) 1451.8  5.59 

46 1532.96 '' 1451.8  5.59 

47 1533.63 Torsion (m=5) 1451.8  5.64 

48 1533.63 '' 1451.8  5.64 

49 1533.01 2° Harmonic (m=1) 1483.9  3.31 

50 1533.01 '' 1484.3  3.28 

 

The results shown in the previous table (Tab 4.6)  show a good correspondence between the 

MUL2 model, characterized by a lower number of degrees of freedom, and the ANSYS model. 

The relative error calculated on the first 50 natural frequencies always oscillates between 3% 

and 6%, perfectly acceptable if we consider the computational cost reduced by almost 75% 

(19.008 vs 73.533 DOFS): the tradeoff is worth the candle (Fig. 4.20). 

  

Table 4.6 : Bladed Disk results in terms of natural frequencies [Hz] 
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I Bending mode (all blades in sync)             Umbrella Mode 

 
 

  
Out of plane B mode (Alternating bending)               Torsional Mode (m=2)                         

 
 

      
 
 
 
 
 
 
 
 
 
 
       I Bending mode   Umbrella Mode (m=2)  

 

 
 
 
 
 
 
 
 
 
             Alternating bending                 Torsional Mode (m=2)                         
 

Figure 4.20 : Bladed Disk modes (ANSYS & Paraview)  
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Chapter V 
 

Campbell Diagrams 
 

 
In this chapter the effects of the rotordynamics are introduced through the possibility of 
varying the rotation speed in a range which is pre-established by the user. A MUL2 code has 
been developed by the university department to be able to perform linearized (165) and non-
linear (108) analyses solving the equations of the dynamical system previously introduced. 

The results obtained through the non-linear and linearized analysis are presented 
superimposed on the same Campbell diagram, with the aim of observing the differences 
between them, when these are applied to the cases and structural models described above. 

A Campbell diagram plot represents a system's response spectrum as a function of its 
oscillation regime. It is named for Wilfred Campbell, who introduced the concept, but it is also 
known as interference diagram. 

In rotordynamical systems, the eigen-frequencies often depend on the rotation rates due to 
the centrifugal force, the induced gyroscopic effects or variable hydrodynamic conditions 
in fluid bearings if these are investigated. It might represent the following cases: 

1. Analytically computed values of eigen-frequencies (natural frequencies) as a function 
of the shaft's rotation speed. Such chart takes also the name of "whirl speed map"and 
can be very helpful in turbine design. For example, in the numerically calculated 
Campbell diagram example shown in the Fig. 5.1, we can identify a critical speed 
whenever the rotation speed diagonal intercepts a curve. 
 

 

Figure 5.1 : Realistic example of a Campbell diagram [15] 

https://en.wikipedia.org/wiki/Rotordynamics
https://en.wikipedia.org/wiki/Gyroscopic
https://en.wikipedia.org/wiki/Fluid_bearing
https://en.wikipedia.org/wiki/Eigenfrequency
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Further analysis of this graph from reference [15] highlights that the first three critical 
speed happen at lower speed range and are very well damped. However, for this rotor, 
another critical speed at mode 4 is observed at 7810 rpm (130 Hz) in dangerous 
proximity of nominal shaft speed, but it has 30% damping, which is enough to ignore it 
by a good confidence margin regarding the operational safety of the machine. 
 

2. The second type of Campbell Diagram plot the experimentally measured vibration 
response spectrum as a function of the shaft's rotation speed (waterfall plot), the peak 
locations for each slice usually corresponding to the eigen-frequencies (Fig. 5.2). 

 

Figure 5.2 : Waterfall plot: influence of the bilinear spring effect on vibrations [4] 

 

In the Campbell diagrams shown below, the natural frequencies calculated by the non-linear 

analysis (108) will always be identified by a purple square, while the results of the linearized 

analysis (165) are represented by a solid blue line. 

 

  

https://en.wikipedia.org/wiki/Waterfall_plot
https://en.wikipedia.org/wiki/Eigenfrequency
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Constant Thickness Disk 

As a first analysis of this chapter, the results are presented for the case of the constant 
thickness disk, the model of which was described above (see page 55). 

 
The rotation speed has been made to vary between 0 and 2200 radians per second (Fig. 5.3): 
this is already a considerable speed, if we convert to Hz or rpm: 

 

2𝜋
𝑟𝑎𝑑

𝑠
=

360°

𝑠
= 1 𝐻𝑧 =

𝑟𝑝𝑚

60
      →      2200

𝑟𝑎𝑑

𝑠
≈ 350 𝐻𝑧 ≈   21000 𝑟𝑝𝑚  

 

However, we can see that both the Nonlinear (108) and linearized (165) analysis  

behave well, as both start from the correct values of the natural frequencies calculated at zero 

speed with the Structural Modal Analysis (103). 

It is possible to visualize the phenomenon of stress stiffening caused by the deformation 

generated by centrifugal forces, with the consequent increase in the value of natural 

frequencies with the increasing rotation speed. The natural modes families are well 

delineated and tend to diverge continuing to the right. 
 

More important, however, is to note that the results of the 2 types of analysis are perfectly 

consistent with each other: this was an expected event, as the shape of the disc has a sufficient 

thickness not to deform excessively in a geometrically non-linear field, which is why the 

linearized theory continues to follow the trend of the graph in a proper way even at very high 

speeds. 

 

Figure 5.3 : Campbell Diagram for the constant thickness Disk 
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Variable Thickness Disk 

 

Figure 5.4 : Campbell Diagram for the Variable thickness Disk  
 
 

This rotordynamic analysis doesn’t show much difference: the effects of the rotational speed 
does not affect the natural frequencies very much: if we observe the shape of this disk (Fig. 
4.15), which tries to resemble an axial turbine stage, we realize that it is much more rigid 
than the previous o (Fig. 4.13), since it has a higher thickness/diameter ratio. This fact is also 
confirmed by the much higher value assumed by the eigen-frequencies themselves, calculted 
with the rotor stopped (speed equal to zero).  Nevertheless, we are witnessing an intersection 
between the families of natural-modes (Fig. 5.4), which occurs at approximately  1000 rad/s 
= 9550 rpm.   
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Thin Walled Cylinder 

The focus of this thesis concerns the analysis of the differences that emerge between the two 
theories (linearized and non-linear) when these are applied to the same structure. In order to 
allow for greater differences, we will now analyze a whole series of thin-walled structures. 

The cross-section is the same as that of the 
cylinder already analyzed on page 48 (Fig. 5.5), 
taken from reference [9], just as the material is 
still an isotropic aluminum alloy with the 
following mechanical characteristics: 

𝐸 = 75 𝐺𝑃𝑎,       𝜈 = 0.33,      𝜌 = 2700
𝐾𝑔

𝑚3
 

The thickness, 𝑡, is equal to 0.02 𝑚, while the 
length of the  cylinder, 𝐿, has changed and is now 
equal to 2 𝑚. The structure has been modelled so 
that it can rotate on itself, but the points at both 
ends cannot exit from their plane. In a certain way 
this condition resembles that of a ball bearings, in 
which the only degree of freedom allowed is the 
of rotation around its own 𝑦 −axis. 

Figure 5.5 : Thin walled Cylinder (Rotordynamic analysis) 

Figure 5.6 : Campbell Diagram for the Thin walled Cylinder 
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Thick Walled Cylinder 

In order to further investigate these aspects, a 
dual structure is now investigated, which 
consists of a cylinder of the same length and 
diameter as the previous one, but with its 
thickness,  𝑡, increased to 0.3 m (Fig. 5.7). 

 

In the previous Fig. 5.6 it is possible to 
appreciate a much richer and more varied 
structural dynamics: the solid blue lines of the 
linearized analysis help the reader to 
understand the real trend of the natural 
frequencies families, their intersections and the 
mode veering zones. 

A similar good results can also be seen in the 
following  Fig. 5.8. 

The greater thickness presupposes a greater quantity of resisting material, which contributes 

to a greater rigidity of the structure and to higher values for the natural frequencies. 

Figure 5.7 : Thick walled Cylinder (Rotordynamic analysis) 

Figure 5.8 : Campbell Diagram for the Thick walled Cylinder 
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Shallow and deep Shells 

A thorough investigation has been performed 
about the natural vibration of shell structures: in 
particular, the two configurations presented in 
the figure Fig. 5.9 were tested. 

The first one is a shallow Shell, obtained from an 
arc of a circle with a radius of 1 m and thickness 
𝑡 = 0.02 𝑚. 

The second is a deep Shell, obtained from a an arc 
of a circle with a slightly smaller radius of 0.6 𝑚, 
and a reduced thickness of 𝑡 = 0.01 𝑚. 

Both shell structures were modeled using 10 B4 
1D elements along their 1𝑚  y-axis extension: 
however, the shallow Shell has only 6 L16 
Lagrange elements in its circumferential 
direction, while the greatest curvature of the deep 
shell required a more refined discretization, 
with 10 L16 Lagrange elements. 

Boundary conditions were applied to both configurations that allowed them to rotate around 
their own longitudinal y-axis, passing through the origin of the reference system. 

 

As we can observe from the following images (Fig. 5.10 and Fig. 5.11), in this case the 
combination of boundary conditions and very thin structure determined strong differences in 
the results obtained from the two types of analyses: namely 108 and 165. Both start from the 
correct values for the zero rotation speed (𝜔 = 0), also calculated through the structural 
modal analysis 103, but soon the calculated values tend to diverge, moving further and further 
away. 

It is important to underline that in this case the rotation range was limited between 0 and 400 
radians per second: this proved necessary for the correct functioning of the linearized 
analysis, which in other processing at higher speeds entered into crisis and began to return 
null values, which compromised the effectiveness of the visualization. 

This erroneous behavior could be caused by the lack of stiffness of the structure: when it is  
subjected to excessively high centrifugal loads, it can reach a deformed configuration so 
different and far from the undeformed one, that the linearization is no longer valid, as it leads 
to neglect some non-linear terms which actually have an order of magnitude very similar to 
the linear ones. 

Nevertheless, before presenting these problems, the linearized theory copies well the trends 
of the non-linear theory, presenting the same intersections and the growth of frequencies 
within the same family, at least at low speeds. 

 

  

Figura 5.9 : Shallow and Deep Shells 
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Figure 5.10 : Campbell Diagram for the Shallow Shell 

Figure 5.11 : Campbell Diagram for the Deep Shell 
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Complex Rotor 

In this section will be presented the results obtained for the complex rotor described 
previously in chapter 4, and taken from the reference [13]. 

In general, the structure is sufficiently rigid and in fact the two analyses do not differ too 
much from each other: on the other hand, we perceive here the greater richness of dynamic 
phenomena due to the interaction of the vibrating modes of the shaft, of the turbine disk and 
two disks simulating two stages of an axial compressor. 

Overall, the linearized analysis is able to follow the trend of the natural frequencies families as 
calculated by the non-linear analysis (Fig. 5.12), even if with a slight gap between the results: 
nevertheless, for the purposes of the Mul2 program, this small difference can be acceptable, if 
we consider the large time difference necessary to carry out the two analyses, which certainly 
goes to the advantage of the linearized analysis 165. Especially in the preliminary design 
phases, when the geometry of the entire rotor and all its components is not yet fully defined, it 
is absolutely convenient to have a rapid and sufficiently reliable tool for the calculation of the 
first natural frequencies, in order to direct the future changes. 

  

Figure 5.12 : Campbell Diagram for the Complex Rotor 
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Thin Ring 

Continuing the analysis of thin and particularly 
flexible structures, the Campbell diagram obtained 
for the case of a thin ring is here presented. 

This model was obtained starting from the same 
cross section already used for the case of the thin-
walled cylinder on page 67, but the length along the 
longitudinal axis has been reduced to just 0.1 𝑚, as 
shown in the Fig. 5.13. 

The results shown in the graph below (Fig. 5.14) 
are not particularly good, as the difficulty of 
linearized theory in describing these very flexible 
structures well at high speeds and with large 
deformations reoccurs. 

Nevertheless, it can be seen how at least the linearized theory is able to predict the increase of 
the natural frequencies values at higher speeds, especially for the modes that already start 
from higher values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 5.14 : Campbell Diagram for the Thin Ring 

Figure 5.13 : Thin Ring Model 
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Bladed Disk 

Our analysis continues with the study of the Bladed Disk already described in chapter 4. 

Since the bladed disk, as it was modeled, is a fairly thick and rigid structure, it is noted how 
the two analyses perform well and present almost the same results: both the non-linear (108) 
and the linearized (165) analyses were able to “capture” in the proper way the growth of 
natural frequencies, and therefore the stress stiffening, caused by the increasing centrifugal 
force with the increasing rotation speed. The 2 kinds of analysis mirror each other (Fig. 5.15): 
here we can see the growth of the natural frequencies with the rotational speed of the 
dynamic system. 

As already noted in the comments of Tab. 4.6, even in the rotordynamic analysis the 
structural dynamics of this disk is dominated by the bending modes of the 16 blades, which in 
fact have their first 16 natural frequencies all packed around the value of                       
243 𝐻𝑧 ≈  1526 𝑟𝑎𝑑/𝑠. 

These natural frequencies families correspond to the lowest continuous blue line within the 
Campbell diagram, and it will be especially here that the main differences will be noticed, once 
3 main Mistuning Patterns are analyzed.  

  

Figure 5.15 : Campbell Diagram for the Bladed Disk 
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Mistuned Bladed Disk  

In mechanical engineering, mistuning is defined as a lack of symmetry present in a real object 
that ideally is perfectly symmetric. This phenomenon is mainly studied in relation to turbine 
disks and engine rotors as, for example, it can cause a sudden increase of the forced response 
that can bring about unexpected failures due to fatigue. Mistuning is caused by manufacturer 
tolerances, non-homogeneity of the material, wear dictated by usage and many other factors, 
being for this reason unavoidable. 
 
Many studies have been carried out in this field, and it has been observed that the magnitude 
of the increase in the forced response of mistuned turbine discs strongly depends on the 
physical characteristics of the disc itself. Currently, the main efforts to limit the negative 
effects of this phenomenon on turbine discs focus on understanding how to design a disc that 
is affected as little as possible by mistuning in the design work rotation speed. 

To do this, a large number of different mistuning patterns are statistically tested, gradually 
simulating different combinations of blades that could have degraded mechanical 
characteristics due to grain defects of the material, incorrect geometric tolerances during 
production or even non-homogeneous wear compared to the neighboring blades.  
These analyzes are crucial for the good design of the components and for their reliability, but 
they are also very time-consuming, since with Mistuning it is difficult, if not impossible, to use 
cyclic symmetry to save on the number of degrees of freedom of the finite element model (Fig. 
5.16). 
 
 
 

 
Figure 5.16 : 3D solid FEM model for the analysis of Mistuning [16] 

 
In our case, the input folder of the Mul2 code turns out to be extremely convenient, as it is 
sufficient to act on the EXP_CONN.dat file, modifying the lamination index, and therefore the 
material, of the specific Lagrange element of the blade to which we want to apply a mistuning 
pattern. 
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For the purpose of this thesis, 3 simple Mistuning patterns will now be analyzed, presented in 
the  Fig. 5.17:  they provide that 1, 2 or 4 blades positioned in strategic locations have 
suffered a degradation of the mechanical characteristics of the material of 10% compared to 
the nominal value. 

This means that, if the disc considered TUNED is formed by a steel alloy with the following 
mechanical characteristics, 
 

𝐸 = 174 𝐺𝑃𝑎,       𝜈 = 0.3,      𝜌 = 8200
𝑘𝑔

𝑚3
 

 

the blades that have been modelled with defects are instead entirely made of a fictitious 
material that has these data, corresponding to 90% of those listed above: 

𝐸 = 156 𝐺𝑃𝑎,       𝜈 = 0.27,      𝜌 = 7400
𝑘𝑔

𝑚3
 

The colored blade in the image below clearly indicates the one made of degraded material:  
 

 
Figure 5.17 : Mistuned Patterns analyzed for the Bladed Disk  

 
 
 
  

Figure 5.18 : Mistuned Bladed Disk – I blade Pattern - Campbell Diagram 
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Figure 5.19 : Mistuned Bladed Disk – II blades Pattern - Campbell Diagram 

Figure 5.20 : Mistuned Bladed Disk – IV blades Pattern - Campbell Diagram 
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As expected, all 3 Campbell diagrams for the 3 mistuning cases analyzed (Fig. 5.18 – 5.19 -
5.20)show good harmony between the results of the linearized and nonlinear analysis. 
 
As announced, the differences, albeit small, between the 3 cases can be seen above all in the 
lower part of the graphs, where, for example in the case of Mistuning on 4 blades placed at 90° 
from each other, there is a further condensation of natural frequencies families. 
 
In the same graph, we can also locate some intersections between families as calculated by the 
linearized analysis, but overall it can be said that the Mul2 code has worked successfully in 
this situation as well. 
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Chapter VI 
 

Conclusions 
 
 
 
 
The innovative approach used in this thesis work was mainly given by the application of the 
Mul2 code to the rotordynamic study of axial rotors in the geometrically non-linear field. 
 

After having learned the structure of the software and the management of all its inputs, we 
first committed ourselves to validating the code in a static configuration, at zero speed, 
comparing the results obtained from the simulation with those taken from articles and papers 
in the bibliography. 
 
After having obtained sufficient confidence regarding the reliability of the results, the analysis 
was extended to the dynamic case, implementing rotation by imposing the centrifugal force as 
an external forcing. 
 

It was therefore possible to study the behavior of various structures, with different geometric 
characteristics, depending on the models used for the analysis and the material. Additional 
models were generated to investigate thin and flexible structures, where the difference 
between 108 and 165 analyzes was more evident, given the greater distance between 
deformed and undeformed configuration of the structure with low stiffness. A lot of time was 
spent analyzing the right boundary conditions to apply, in order to understand the crucial 
inputs for the fit between the results of the nonlinear and linearized analysis. 

The most interesting results, based on the considered structure, can be summarized as 
follows: 
 

 A perfect overlap was observed between the two types of analysis for the cases of discs 
with constant and variable thickness, even at very high speeds. 
 

 Some weaknesses of the linearized analysis have been identified in describing the high-
speed dynamics of particularly thin and deformable structures, such as the case of the 
thin ring and the shallow and deep shells. 
 

 A good but not perfect harmony was found between the results in the case of the 
cylinders and the complex rotor, even if the rich phenomenology that distinguishes the 
dynamics of these particular structures emerged. 

 

 A dynamic study was conducted on a bladed disk model implemented during the 
thesis, to which 3 simple mistuning patterns were also applied: the effectiveness of the 
Mul2 code and the CUF in obtaining reliable results in a short time and with 
significantly reduced computational load compared to commercial FEM codes was thus 
proven. This aspect could be fundamental for the study of mistuning and further 
developments in this sense can certainly be carried out in the future. 
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