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Abstract 

“Safety, energy saving and environmental protection” is the eternal theme of 
automotive technology development. In today's global energy crisis and 
environmental problems are becoming increasingly serious, new energy vehicles, 
represented by electric vehicles, have become the future development trend of 
automobiles. As one of the key technologies of electric vehicles, the safe and efficient 
use of batteries depends on the accurate estimation of battery status. The state of the 
battery can be divided into two categories, one can be directly measured, such as 
voltage, current, temperature, etc. The other category cannot be directly measured, but 
can only be estimated by certain methods, such as the state of charge SOC, state of 
health SOH and so on. These state quantities are critical in the process of battery use. 

There are many methods for estimating SOC, and most of them are based on the 
basic principle of ampere-time integration. Although the integration method is simple 
and easy to implement, there are two important problems: (1) the initial value of SOC 
cannot be estimated; (2) the inaccuracy of current measurement will cause cumulative 
errors. To solve these problems, the Kalman filtering method can be used. For our 
battery, we build two models, EKF and UKF, to predict its SOC variation and 
compare them respectively. 

In this paper, the third-order Thevenin model was chosen to describe the 
dynamic behavior of the battery after comparing various equivalent circuit models 
and considering the accuracy and complexity of the model. The model is used to 
identify the parameters of the battery through pulse current charging and discharging 
tests. The results show that the Thevenin model can better describe the dynamic 
behavior of the battery, and its structure is simple and easy to identify the parameters. 
Then, the battery SOC is estimated based on the traceless Kalman filter (UKF) 
algorithm in Matlab environment. The accuracy and convergence speed of the 
algorithm are verified by artificially creating initial value errors and input noise by 
using WTP3 conditions to verify the effectiveness of the algorithm in a single 
working cycle. The simulation results show that the algorithm can gradually converge 
to the true value of SOC and follow it when the initial value is inaccurate and the 
input contains noise, and the estimation error does not exceed 4% in the middle and 
late stages of the working condition test.  
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CHAPTER  1  

Introduction 

  1.1 Background and significance of the selected topic 

Since the world's first car was introduced, after more than 100 years of 
development, the car has entered thousands of households, from a luxury product to a 
necessity in people's lives now. "Safety, energy saving and environmental protection" 
is the eternal theme of automobile technology development. Since the 21st century, 
with the rising oil prices and the aggravation of environmental pollution problems 
such as "haze", new energy vehicles represented by pure electric vehicles have 
gradually become the focus of attention in the industry by virtue of their energy-
saving and environmental advantages. 

At present, the research hotspots of new energy vehicles mainly focus on the 
three directions of pure electric vehicles, hybrid vehicles and fuel cell vehicles. As the 
core component of these three new energy vehicles, the development of battery 
technology is the key to the industrialization of new energy vehicles. 

Although all major automakers are trying to promote new energy models, 
people's concern about the range of electric vehicles has hindered the promotion of 
pure electric vehicles, and the frequent incidents of spontaneous combustion of 
electric vehicles in recent years have made people pay extra attention to the safety of 
electric vehicles. For the power battery in electric vehicles, its safe and efficient use 
depends on the accurate estimation of the battery status. 

The state of the battery can be divided into two categories, one can be directly 
measured, such as voltage, current, temperature, etc.; the other category can not be 
directly measured[1], but can only be estimated by certain methods, such as the state of 
charge (SOC) and the state of health (SOH) of the battery. 

SOC is used to reflect the remaining capacity of the battery, which is related to 
the history of battery use. SOC is generally defined numerically as the ratio of the 
remaining capacity of the battery to its total dischargeable capacity, and is usually 
expressed as a percentage.  

SOC is an important parameter in the course of battery use. The significance of 
SOC for a pure electric vehicle is similar to the fuel gauge on a traditional internal 
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combustion engine vehicle. Overcharging or over-discharging can cause irreversible 
damage to the battery, resulting in battery capacity decay, shortened life, and even 
danger[2]. 

On the other hand, for pure electric vehicles, an accurate display of the battery's 
SOC can help dispel the user's concerns about range. 

Therefore, in order to fully utilize the performance of the battery and improve the 
safety of the battery, an accurate estimation of the SOC is required. However, unlike 
general electronic products, the operating conditions of automotive power batteries 
are very complex (large temperature range, high current fluctuation, frequent charging 
and discharging), resulting in strong nonlinearity of automotive power batteries, 
which makes it difficult to apply some previous SOC estimation algorithms to electric 
vehicles. Therefore, new SOC estimation algorithms for EV power batteries are being 
investigated. 

SOH is used to represent the change in performance of a battery after a period of 
use compared to its initial performance. During use or storage, the battery will 
experience irreversible internal changes resulting in a decrease in capacity and an 
increase in internal resistance, resulting in a decrease in battery performance. This 
phenomenon is known as the aging of the battery. When the battery is aged, not only 
the performance deteriorates, but also the safety will deteriorate. 

There is no uniform and precise definition of SOH. The SOH of a battery can be 
defined based on the changes of these performance parameters when considering 
different problems. When designing a Battery Management System (BMS), if the 
factors affecting the SOH and the variation of the SOH of the battery can be 
considered, it can help to estimate the SOC of the battery in each life stage more 
accurately, and then optimize the control strategy to prolong the life of the battery[3]. 
In addition, in recent years, the concept of automotive battery laddering has been 
proposed. Ladder utilization refers to the continued application of power batteries in 
other fields when their application in electric vehicles cannot meet the power and 
energy demand, so as to give full play to their application value and reduce the whole-
life cycle cost of power batteries. If we want to realize the ladder utilization of 
batteries, it also depends on the accurate assessment of the relevant status of old 
batteries, especially the health status. 

In conclusion, how to accurately estimate the non-directly observable state 
through the directly observable physical quantities in the battery is an important part 
of the battery application research work and a prerequisite to ensure the safe and 
efficient use of the battery. 
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1.2  Knowledge Base 

1.2.1  Common SOC estimation methods 

SOC is used to describe the remaining state of the battery. It is an abstract state 
concept, and cannot be measured directly like ordinary physical quantities, but can 
only be estimated by some methods. There are many methods to estimate the SOC, 
which can be roughly divided into two categories. The other type of methods need to 
use the battery model, use the pre-identified or trained model, and use the external 
parameters (such as voltage, current, temperature) of the battery as input to achieve 
the estimation of SOC according to certain algorithms[4]. The common SOC 
estimation methods are summarized below. 

Discharge test method: the battery is subjected to a constant-current discharge 
test until it is emptied, and the integral of the discharge current over time is the 
remaining charge of the battery. Combined with the capacity information of the 
battery, the SOC of the battery is obtained. The discharge test method is accurate and 
reliable [3], it is applicable to all types of batteries and is commonly used for 
laboratory calibration. However, since discharge experiments take a lot of time and 
can only be performed offline, they are not applicable to running electric vehicles. In 
addition, the method is also not suitable for routine testing of electric vehicles because 
large depth discharges can significantly shorten the battery life. 

Amperometric method: amperometric method is the most commonly used SOC 
estimation method. If the SOC of the initial state of the battery is SOC(0) , then the 
SOC of the battery at time t is : 

t

0

1
( ) (0) ( ( )) ( )i

N

SOC t SOC i d
C

                                       (1-1) 

where NC is the rated capacity of the battery; ( )i   is the current, which is usually 

specified as positive when discharging and negative when charging; ( ( ))i  is the 
Coulomb efficiency, which is related to ( )i  . The Coulomb efficiency of  Li-ion 

batteries is generally very high, so it is often approximated as 1 in general studies. 
This equation is often used as the principle formula for other SOC estimation 
methods[5]. 

Although the ampere-time metering method is simple and easy to implement, 
there are three problems as follows. 
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(1) High requirements for current measurement accuracy, otherwise the 
inaccuracy of current measurement during long time use will cause cumulative errors. 

(2) To consider the influence of battery charging and discharging efficiency, 
which is itself a difficult parameter to determine and requires a large amount of 
experimental data accumulation[6]. 

If the current can be accurately measured and the initial SOC can be accurately 
determined, then the ampere-time metering method can get good results. 

Open-circuit voltage method: after a long enough period of resting, the open-
circuit voltage of the battery (will be stable and approximately equal to the electric 
potential of the battery. However, this method requires the battery to be left for a long 
time (several hours), and is generally only applicable to the parked state, and can only 
provide the initial SOC value, but not continuously provide the SOC estimate. 
estimate. A simple SOC estimation method can be obtained by combining this method 
with the ampere-time integration method. However, since the discharge voltage 
plateau of Li-ion batteries is relatively flat, a small voltage measurement error may 
result in a large SOC estimation error, so the open circuit voltage method is not 
suitable for this type of battery system[7]. 

The load voltage method: under the constant load current, the polarization 
phenomenon inside the battery tends to be stable, and the variation law of the load 
voltage with SOC is similar to the variation law of the open circuit voltage OCV with 
SOC, so it can be used to estimate the SOC of the battery in real time. For electric 
vehicles, this method is not suitable for electric vehicles because of the large 
fluctuation of the load current during the actual application. 

Internal resistance method: according to the different measurement methods, the 
internal resistance of the battery can be divided into two categories: AC impedance 
and DC internal resistance, and both of them are related to SOC. Some parameters in 
the AC impedance of the battery vary significantly with SOC and can be used to 
estimate the SOC in theory, but the AC impedance is affected by the experimental 
conditions, and the measurement requires specialized instruments and equipment, and 
sometimes the regularity of the parameter variation with SOC is not common, so it is 
seldom used for SOC estimation in real vehicles. The measurement result of DC 
internal resistance is affected by time, and the DC internal resistance of different types 
of batteries varies, so the application scope is also limited[8]. 

Kalman filter: the core idea of Kalman filter theory is to use the observed signal 
contaminated by noise to make an optimal estimate of the state of the dynamic system 
in the sense of minimum variance. The Kalman filter algorithm was earlier applied to 
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radar tracking, target navigation, and other fields. Since SOC is the state of a cell, the 
SOC estimation problem can be viewed as a state estimation problem in a noisy 
environment, and thus can be handled by Kalman filtering methods. Since 2002, 
Gregory L. Plett has published several papers on the estimation of SOC of Li-polymer 
batteries by Kalman filter method, which was introduced into the SOC estimation of 
Li-base batteries. In recent years, many researchers have used different battery models 
and different Kalman filter-derived methods for SOC estimation and obtained good 
results. Later, the dual Kalman filter method considering the battery aging process 
also appeared. 

Compared with other SOC estimation methods, the Kalman filter method is more 
suitable for electric vehicle operating conditions where the current fluctuation is more 
drastic. By writing the SOC into the state variable, the Kalman filter method can give 
both the estimated value of SOC and the estimated error. In addition, the method can 
gradually converge to the true value, so it can overcome the problem of inaccurate 
initial estimation of SOC by the Anschluss method. However, the Kalman filter 
method also has some problems: 

(1) the accuracy of the cell model and noise statistics seriously affects the 
accuracy of the calculation results, and an inaccurate model or noise statistics can 
easily cause the filtering instability or even divergence, which makes the algorithm 
lose its meaning;  

(2) the convergence speed of the algorithm under large initial errors is slow 

(3) The algorithm requires a large number of matrix operations, and if we want 
to improve the algorithm's ability to adapt to noise information, we need to integrate 
the adaptive algorithm, which will have a larger amount of operations and therefore 
the algorithm requires a higher computing speed of the processor[9].  

The Kalman filtering algorithm will be described in detail in the subsequent 
sections. 

 

1.2.2  Battery aging and health status 

In the process of battery use, people want to know the SOH of the battery at any 
time, so that they can take timely measures to ensure the reliable operation of the 
battery. The SOH of the battery is related to various factors, such as temperature, 
charge/discharge multiplier, charge/discharge cut-off voltage, discharge depth, etc. 
Battery life refers to the battery in the process of use, the performance to meet certain 
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requirements of the use of time or use times. The research on battery life started in the 
early 1990s. Initially, it was mainly qualitative research, starting from the change of 
charge/discharge curve of lead-acid battery with the cycle of the battery to study the 
law of battery performance decay. The research on the life of nickel-based and 
lithium-based batteries started around 1995, and the applied methods were basically 
similar to those of lead-acid batteries. Around 1998, the concept of SOH was 
introduced in the research of lead-acid and nickel-hydrogen batteries. Since the 
emergence of lithium-ion batteries, people have gradually turned to the exploration of 
the aging mechanism of lithium-ion batteries, and many research results have 
emerged[10]. 

However, it can be seen from the previous studies that the performance 
degradation of Li-ion batteries is generally the result of a combination of factors. 
Starting from the essential causes of battery aging, Dr. Peng Bai from Tsinghua 
University has classified the causes of battery aging into three categories, i.e., stress 
effects, thermal mechanisms and chemical mechanisms. Peng Bai outlined the various 
factors affecting the use of batteries, the corresponding internal changes of batteries 
and the resulting aging failure modes. 

The battery is defined as the starting point of its life when it leaves the factory, 
and reaches the end of its life when its performance no longer meets the needs. In 
actual use, the definition of the end of life of the battery varies according to the 
purpose of use. For applications requiring higher battery capacity, such as in pure 
electric vehicles, end-of-life is generally defined as when the battery capacity decays 
to 20% of the new battery capacity, i.e., when the usable capacity of the battery is 80% 
of the new battery. For such applications, when SOH estimation of batteries is 
performed, a capacity-based SOH definition is generally used, such as; 

aged

new

Q
SOH

Q
                                                 (1-2) 

where agedQ is the nominal capacity of the current battery and newQ is the nominal 

capacity of the new battery. 

For convenience, SOH is generally defined between 0 and 100%, SOH of 100% 
means the battery is at the beginning of life, SOH of 0 means the battery reaches the 
end of life. A higher SOH indicates a longer usable life and more usable cycles[11]. 
Therefore, the SOH based on capacity decay has also been given as is defined as 
follows; 
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EOL

BOL EOL

C C
SOH

C C





                      (1-3) 

Where C is the current maximum available capacity of the battery, EOLC is the 

maximum available capacity at the beginning of the battery life, and BOLC is the 

maximum available capacity at the end of the battery life. 

In some cases, even if the battery capacity decays to 80% of the initial capacity, 
the battery can still meet the usage requirements and continue to be used for some 
time. For example, in hybrid vehicles, batteries used as auxiliary power sources 
generally have high requirements for battery power and relatively low requirements 
for battery capacity. For this application, the end-of-life of the battery can also be 
defined from the perspective of power. When the battery power decay reaches a 
certain level, the battery life is considered to be over. Since the internal resistance of 
the battery directly affects the power characteristics of the battery, a definition of 
SOH based on internal resistance is generally used for SOH estimation of the battery, 
such as the definition proposed by Jonghoon Kim : 

Diff

current aged
Diff Diff

fresh aged
Diff

R R
SOH

R R





                                             (1-4)  

where current
DiffR , aged

DiffR and fresh
DiffR  are the diffuse internal resistance of the cell at the 

current, end-of-life and beginning-of-life times, respectively. 

Electrochemical Impedance Spectroscopy (EIS) is a method that analyzes the AC 
impedance spectrum of a battery at different frequencies to understand the internal 
chemical state of the battery and to evaluate the external characteristics of the battery. 
The advantage of EIS is the high accuracy of the model, but the disadvantage is that 
the acquisition of internal battery parameters requires special equipment, which is 
expensive, and the process of parameter analysis is complicated. Matteo Galeotti et al. 
at the University of Rome II, Italy, used electrochemical impedance spectroscopy to 
establish the relationship between internal battery parameters and SOC by studying 
the variation of chemical substances in the battery with SOC, and to estimate the 
battery SOC based on the measured parameter variations. By studying and analyzing 
the electrochemical impedance spectroscopy, the changes in physical and chemical 
properties of the battery due to aging can also be obtained, i.e., the analysis of the 
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changes in capacity decay. Through the analysis of capacity decay change, the decay 
change of battery SOH can be obtained. 

Artificial neural network method: Artificial neural network consists of a large 
number of interconnected neurons, each neuron observes the output of other neurons 
for calculation, and then chooses to trigger or not to trigger. Artificial neural networks 
help to learn automatically from a large amount of data by training the data with 
appropriate structures and samples. Researchers at the University of Illinois proposed 
a general data-driven approach that combines artificial neural networks with a double 
extended Kalman filter algorithm in order to eliminate the dependence of SOC and 
SOH estimation on the physical model of the battery. The artificial neural network is 
first trained offline to simulate the variation of the battery terminal voltage, and then 
the dual Kalman filter algorithm is used online to estimate the SOC and SOH of the 
battery. 

1.3 The main content of this article 

This paper takes the Samsung 50Ah battery pack as the research object and the 
PandaEV car as the battery operation carrier, and the core content is to design the 
real-time estimation algorithm of SOC and SOH of this battery pack during the 
operation of the car. The main part includes XXX chapters, and the content of each 
chapter is arranged as follows. 

Chapter 1 introduces the important status and prospect of current new energy 
vehicles, briefly describes the current estimation methods and definitions of battery 
SOC and SOH, and presents the research content of this paper. 

Chapter 2 introduces the basic parameters of the battery used in the experiment 
are introduced. The equivalent model of the third-order RC circuit used in our 
experiments is also selected. And the relevant parameters are fitted. 

Chapter 3 describes the basic principles of the UKF EKF. Their recursive 
formulas are described. The theory and knowledge of UT transformations are 
introduced. 

Chapter 4 designs a SIMULINK model for predicting SOC based on UKF and 
EKF, and integrates the module into our vehicle simulation model. The designed 
model performs the simulation task better with good accuracy and response speed. 

Chapter 5 is a summary of the full work and an outlook on possible subsequent 
work.        
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CHAPTER 2 

Battery model and its parameter 

identification 

2.1  Selection of battery model 

2.1.1 Classification of battery models 

Building a battery model means to apply mathematical theory to describe the 
response characteristics and internal characteristics of the actual battery as 
comprehensively as possible. The response characteristics refer to the correspondence 
between the current and voltage of the battery; the internal characteristics refer to the 
relationship between the internal resistance, polarization voltage, temperature, SOC 
and other internal variables of the battery. If an accurate model of the battery is 
established, it means that the estimation of the internal state SOC of the battery can be 
achieved by applying relevant algorithms based on this model. At this stage of 
development, battery models can be divided into the following types according to the 
modeling mechanism: electrochemical mechanism model, equivalent circuit model, 
neural network model, etc. 

The electrochemical mechanism model is a model built from the perspective of 
battery electrochemical reaction mechanism, which is mainly used in the development 
process of solid batteries and has a high degree of model complexity[12]. The neural 
network model is based on the theory of artificial neural network, and collects a large 
amount of effective experimental data by designing experiments on the battery, and 
then describes the internal and external characteristics of the battery. 

The equivalent circuit model is based on the most basic circuit principles, and 
describes the response characteristics and internal characteristics of the battery 
through the combination of actual circuit components[13] (such as resistance, 
capacitance, inductance). Therefore, to build an accurate equivalent circuit model for 
a real battery, the following points should be achieved. 

(1) Understand the reaction mechanism of the battery, accurately define the 
internal states of the battery such as SOC and polarization voltage, and accurately 
model the equation of state of the equivalent circuit model. 
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(2) To achieve the description of the battery response characteristics through the 
combination of circuit elements and to establish accurate measurement equations[14]. 

(3) Minimizing the number of circuit elements, thus increasing the actual 
engineering characteristics of the model. 

The classical equivalent circuit models for battery SOC estimation are as follows: 
Rint model, PNGV model, Thevenin model, GNL model and so on. 

In this paper, we choose a third-order battery model based on the Thevenin 
model. 

The equivalent circuit model and its parameters, especially the parameters in the 
above section, are essential for the subsequent real-time simulation of the SOC 
algorithm. At the same time, however, a data-based battery model has been integrated 
in SIMULINK. The advantage of this model is that we do not need to simulate the 
parameters of the battery and can input the battery characteristics through the original 
parameter table of the battery. This allows the battery to simulate the real input and 
output of the battery pack very well when intervening in the vehicle model, without 
worrying about the impact of errors due to parameter identification. 

2.1.2  Basic battery data 

The battery we used for simulation is a 50Ah battery from Samsung, and by 
checking the relevant information, we were able to get some basic data of the battery. 

 

Figure 2-1 Mechanical Data  
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Figure 2-2 Technical Data 

By reading the above data, we conclude that the standard capacity of this battery 
is 50Ah, and the nominal voltage is 3.68V. Our solution is to use this battery to build 
a 2 parallel 28 series (2P28S) battery pack. 

Also we know the internal resistance of the battery at -25 degrees, -10 degrees, 0 
degrees, 10 degrees, 25 degrees and 40 degrees, according to the DC discharge for 30 
seconds. As shown in the table 2-1 below. 

Meanwhile, we know the internal resistance of the battery at -25 degrees, -10 
degrees, 0 degrees, 10 degrees, 25 degrees and 40 degrees, according to the DC 
discharge for 30 seconds. As shown in the table 2-2 below. 

At the same time, we have the relationship between OCV and SOC of this 
battery at 25 degrees Celsius. This will help us to get the SOC breakpoints and the 
corresponding terminal voltages of our battery model. This is very useful for us to 
obtain the relevant parameters of the equivalent circuit through simulation. Please see 
Figure 2-3 and Table 2-2 for the specific data. 
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Table 2-1 Internal resistance of DC discharge at different temperatures 

 

 

Figure 2-3  OCV versus SOC at 25°C 

SOC % 

Temp 
90 80 70 60 50 40 30 20 10 

40 1.57  1.55  1.54  1.49  1.40  1.52  1.53  1.77  2.47  

25 1.91 1.88  1.86  1.85  1.77  1.78  1.94  2.73  3.68  

10 2.60 2.50  2.54  2.55  2.46  2.51  2.73  3.91  6.59  

0 3.40 3.35  3.36  3.41  3.31  3.42  3.73  5.67  12.46  

-10 4.90  4.84  4.85  4.92  4.90  5.06  5.53  9.23  22.72  

-25 9.43  9.29  9.30  9.45  9.34  9.70  11.06  20.28  53.49  
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25°C Discharge Charge 

100% 4.238 4.218 

95% 4.146 4.142 

90% 4.083 4.082 

85% 4.024 4.025 

80% 3.968 3.97 

75% 3.917 3.92 

70% 3.869 3.873 

65% 3.823 3.826 

60% 3.778 3.781 

55% 3.736 3.740 

50% 3.687 3.689 

45% 3.649 3.658 

40% 3.628 3.638 

35% 3.611 3.620 

30% 3.593 3.602 

25% 3.574 3.582 

20% 3.542 3.556 

15% 3.496 3.507 

10% 3.438 3.448 

5% 3.401 3.409 

0% 3.266 3.231 
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Table 2-2 OCV data under different SOC 

2.2  SIMULINK Data-based battery pack model 

With the use of the battery models that come with MATLAB-simulink, we can 
obtain a battery model that meets our different needs. These battery models can be 
built as a single cell or as a battery pack, depending on our experimental purpose and 
experimental needs. Here, based on the battery data we have at hand, we choose the 
DATA-BASED pack model, in which we can build a 2p28s battery pack by entering a 
series of parameters. The relevant parameters are selected as shown below. 

 

Figure 2-4 Datasheet Battery Block 

 

Figure 2-5 Data setting interface 
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Nominal Capacity 
50Ah 

Em 
[4.238 4.146 4.083 4.024 3.968 

3.917 3.869 3.823 3.778 3.736 3.687 
3.649 3.628 3.611 3.593 3.574 3.542 

3.496 3.438 3.401 3.266] 
SOC breakpoints (0:0.05:1)' 

R-battery 
discharging 

From Table 2-1 

T-lookup table [-25 -10 0 10 25 40]+273.15 

SOC resistance 
breakpoints 

[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
0.9] 

Ns 28 

Np 2 

Initial Capacity 50Ah 

Table 2-3 Parameter input table 

After building this model, we input a pulse current with an amplitude of 100 to 
perform a simple test on the battery model, and we can obtain the following voltage 
image. 

 

Figure 2-6  Input current, output voltage and its corresponding SOC 
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2.3  Third-order equivalent circuit model 

2.3.1  Designing equivalent circuits 

The equivalent circuit model of the battery is an external characteristic model, 
which is essentially an estimate of the dynamic characteristics of the battery using 
directly measured voltammetric parameters. The third-order RC network equivalent 
circuit model consists of a resistor and three first-order RC networks connected in 
series, as shown in Figure 2-7. 

 

 

Figure 2-7  Third-order equivalent circuit diagram 

 

In Figure 2-7, ocU  is the open-circuit voltage of the battery; bU is the terminal 

voltage of the battery[15]; 0R  is the ohmic internal resistance of fixed resistance inside 

the battery; 1R is the ohmic polarization resistance; 2R is the electrochemical 

polarization resistance; 3R is the concentration difference polarization resistance; 1C is 

the ohmic polarization capacitance ; 2C is the electrochemical polarization 

capacitance; 3C is the concentration difference polarization capacitance. and 1U , 2U
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and 3U are the voltages across capacitors 1C , 2C  and 3C , respectively; I is the 

current inside the model. 

We can obtain the expressions for the voltage and current of each part of the 
equivalent impedance. 

 0 1 2 3b ocU U IR U U U                                   (2-1) 

1 1
1

1

dU U
I C

dt R
                                             (2-2) 

2 2
2

2

dU U
I C

dt R
                                             (2-3) 

3 3
3

3

dU U
I C

dt R
                                             (2-4) 

After we have learned the principle of the third-order RC circuit cell model, we 
can easily construct an equivalent circuit cell by using the Table-BASED cell model 
in SIMULINK. 

Figure 2-8  Parameter Setting 
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Since we do not know the exact value of R0,R1,R2,R3,C1,C2,C3 here, we take an 
estimated value and set it as the initial condition. The specific numerical matrix will 
be calculated in the subsequent parameter estimation experiments. 

 

2.3.2  Battery characteristic curve analysis 

In order to better demonstrate the changes in voltage during the discharge-rest 
process and the basis for the identification of model parameters, the cycle section 
curves in Figure 2-6 were analyzed and the relevant measured data were recorded, and 
one of the curves (shown in the figure) was used to illustrate. 

 

 

 

 

 

 

 

 

Figure 2-8 Static voltage recovery curve 

Point D is the voltage at the beginning of discharge, section D - A is the 
discharge area, section A - E is the resting area, section A - C is the open-circuit 
voltage change of the battery due to ohmic internal resistance, section C - E is the 
open-circuit voltage change of the battery due to polarization impedance, because the 
resting time is long enough, the open-circuit voltage at point E is considered to be the 
equilibrium potential of the battery[17]. The open-circuit voltage at point E is 
considered to be the equilibrium potential of the battery due to the long standing time. 

According to the rebound mechanism of voltage, when the battery stops 
discharging, the current flowing inside the battery suddenly becomes zero, and the 

D 

A 

C 

E 

Discharge 

Rest 
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Li+ inside the battery will not be replenished in time to return to the equilibrium state 
through the diffusion stage and phase transition stage[18], which will show the open-
circuit voltage of the battery rising sharply first, then rising slowly, and finally 
reaching the equilibrium state. From the experimental data and the reaction 
mechanism, it can be seen that both the impedance and capacitive resistance of the 
cell have an effect on the open-circuit voltage of the Li-ion battery. 

 

2.4  Parameter Identification 

2.4.1  Parameter estimation of ohmic internal resistance 

As can be seen from Figure 2-8, each RC network in the model has a zero-state 
response in the D - A section[19]. Based on the circuit knowledge, the zero-state 
response function of the RC network is : 

( ) ( ) (1 )
t

CRU t I t R e


                        (2-5) 

In Eq.( 2-5): ( )U t is the terminal voltage of the RC network; ( )I t  is the real time 

current; t  is the time, s. 

Combining with the equivalent circuit model of a third-order RC network battery, 
starting from D (tD = 0), the terminal voltage of the cell at any time in the region D - 
A is: 

0 1 2 3( )   - - ( ) - ( ) - ( )U t Uoc IR U t U t U t  

 3 31 1 2 2
0 1 2 3(1 (1 1) (

tt t

C RC R C R
ocU IR IR e IR e IR e

 

       ） ）     （2-6） 

According to the "lithium-ion battery industry specifications 

According to the "Lithium-ion Battery Industry Specification"  and the internal 
resistance characteristics of large-capacity lithium-ion batteries , the resistances R1, 
R2 and R3 are generally in the range of a few milliohms to several tens of milliohms. 
and the values of capacitors C1, C2 and C3 are about103~105F. Therefore, the values 

of 
1 1

t

C R
，

2 2

t

C R
 and 

3 3

t

C R
can be calculated to be about 0.  Therefore  according to 
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equation (2-6), the expression for the voltage at point A at the end of discharge can be 
written. 

1 2 3A OCU U IR IR IR                                     (2-7)  

The terminal voltages of the 3 RC networks at point A can be obtained. 

1 1( )U A IR                                               (2-8) 

2 2( )U A IR                                               (2-9) 

3 3( )U A IR                                            (2-10) 

From Fig. 2-8, it can be seen that the current flowing outside the battery jumps to 
0 when the battery discharge circuit is disconnected in section A-C. The state of the 
battery is changed and the open-circuit voltage suddenly rises, mainly due to the 
ohmic internal resistance of the fixed resistance inside the battery. Combined with the 
established third-order RC equivalent circuit model[19], this phenomenon is realized 
by the series resistance R0 in the equivalent circuit model, that is, A → C (A, C time 
interval is very short, can be regarded as the same time) there is an ohmic voltage 
drop, R0 can be calculated by equation ( 2-11) 

 0 /c aR U U I                                            (2-11) 

With the data in Fig. 2-6, the open-circuit voltages cU , aU and rebound voltages 

at points A and C at the instant after the battery is disconnected can be calculated. The 
ohmic internal resistance R0 is calculated for different SOC values. 

2.4.2  Parameter identification of polarization impedance 

When the battery enters the resting stage from point C, the internal polarization 
characteristics of the battery, such as impedance and capacitive resistance 
characteristics, are affected, and chemical reactions are still carried out inside the 
battery until the final dynamic equilibrium is reached[20]. In the case of zero external 
current, the RC network analysis shows that the RC network is equivalent to zero 
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input response, if point C is the initial timing moment (tc = 0), then the expression of 
RC network is: 

 ( ) ( )
t

CRU t U C e


                                       (2-12)  

As can be seen from Figure 2-8, since the expression for the C-E section cannot 
be written intuitively, the values of the polarization impedances R1, R2 and R3 and the 
polarization capacitances C1, C2 and C3 need to be determined by means of a least 
squares fit. At the moment of disconnection (the time interval is very small and can be 
considered as the same moment), the voltage change of each RC network is very 
small and can be considered as U1 (A) = U1 (C) = IR1, U2 (A) = U2 (C) = IR2 and U3 
(A) = U3 (C) = IR3. The open-circuit voltage of the cell at any point in the C-E section 
is : 

 1 2 3( )  - ( ) - ( ) - ( )U t Uoc U t U t U t   

3 31 1 2 2
1 2 3( ) ( ) ( )

tt t

C RC R C R
ocU U C e U C e U C e

 

      

 3 31 1 2 2
1 2 3

tt t

C RC R C R
ocU IR e IR e IR e

 

                                                    (2-13) 

Since the resting time is long, we can consider 1 1

t

C Re


, 2 2

t

C Re


and 3 3

t

C Re


as 0,so the 

voltage at point E is : 

 1 2 3( ) ( ) ( ) ( )E oc E E EU t U U t U t U t                             (2-14) 

The real-time voltage expression for the C - E section is : 

3 31 1 2 2
1 2 3( ) ( )

tt t

C RC R C R
EU t U t IR e IR e IR e

 

                    (2-15) 

The fit was performed with the following equation, and the fitting process was 
done in MATLAB. 

31 2
1 2 3( ) ( ) tt t

EU t U t a e a e a e                              (2-16)  
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Comparing equations 2-15 16, we get 

1 1

2 2

3 3

/

/

/

R a I

R a I

R a I





   
1 1 1

2 2 2

3 3 3

/ ( )

/ ( )

/ ( )

C I a

C I a

C I a









                                   (2-17) 

By using the least squares method, we can obtain the value of the above equation. 

2.4.3  Results of parameter estimation 

Bringing the above equation into MATLAB, the process of parameter estimation 
can be completed. Here is the specific settings screen . 

 

Figure 2-9 Initial starting points before estimation 
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Figure 2-10 Parameter estimation initial state 

This is the parameter estimation initial state image. We can see the huge 
difference between the voltage output due to our random initial parameters and the 
real voltage output when we did not perform parameter fitting. This difference will 
gradually decrease as we proceed with the parameter fitting. Until the two curves 
coincide almost perfectly, we will have the specific parameters of the third-order 
equivalent circuit of the pack. 

The parameter fitting curve after iteration is shown here 

 

Figure 2-11 Fitting curve after estimation 



Politecnico di Torino 

24 

 

After iteration, we can obtain the specific parameters as shown in the following 
table. 

SOC(%) Em R0 R1 R2 R3 C1 C2 C3 

100 118 0.01 0.0005 0.0005 0.00051809 10 100 500 

95 118 0.01 0.0005 0.0005 0.00056203 10 100 500 

90 96.626 0.066927 0.00070223 0.00058717 0.00052487 9.9656 98.284 491.65 

85 95.054 0.025482 0.00057616 0.000651 0.00052962 9.9524 97.581 485.75 

80 99.796 0.04858 0.00063282 0.00056574 0.00051077 9.8746 98.121 490.82 

75 98.617 0.021924 0.0005496 0.00057674 0.00052022 9.9653 98.043 492.58 

70 101.27 0.036364 0.00059439 0.00054688 0.00050097 9.9379 98.226 495.09 

65 101.33 0.031041 0.00058101 0.00056949 0.00050621 9.9436 96.861 493.41 

60 101.27 0.024036 0.00055142 0.00052598 0.00049748 9.968 98.735 498.3 

55 102.36 0.029391 0.00056989 0.00053791 0.00050112 9.8894 97.444 496.49 

50 101.84 0.01286 0.0005098 0.00050615 0.0005036 9.9839 99.717 500.19 

45 104.65 0.028296 0.00056267 0.00052115 0.00050366 9.891 98.52 497.83 

40 104.36 0.01388 0.00051427 0.0005169 0.00051415 9.9795 99.545 498.89 

35 107.32 0.030967 0.0005731 0.00052778 0.00050424 9.9189 98.654 497.16 

30 108.1 0.025981 0.00056028 0.00055005 0.00051565 9.9567 97.948 495.21 

25 109.87 0.02997 0.00057311 0.00053624 0.00050086 9.954 98.563 496.95 

20 111.34 0.030838 0.00057836 0.000559 0.00051084 9.9397 97.156 494.3 

15 112.36 0.025229 0.00055556 0.00052734 0.00049618 9.9635 98.763 498.09 

10 114.71 0.03295 0.00058529 0.0005518 0.00050499 9.9098 96.897 495.2 

5 115.16 0.019326 0.00053122 0.0005113 0.00051809 9.9611 99.104 499.76 
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0 118.68 0.030678 0.00057282 0.0005304 0.00056203 9.8312 98.01 498.66 

Table 2-4  Parameter Value 

2.5  Battery pack operating platform 

As previously described, the application scenario for our battery is the EV model 
of the classic Panda, which has an electrical SIMULINK simulation platform built by 
Professor Mr. Stefano. The specific SIMULINK image is shown in the figure 2-. 

 

 

Figure 2-12 Simulated driver section 

This is the part where we pre-enter the loop we want. and "force" the simulated 
driver system to produce a pedal behavior appropriate to this cycle. In a purely 
electric vehicle, the change in pedal behavior can be seen as a change in current. 
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Figure 2-13 Traction Management Unit 

The role played by this part is to simulate the generation of traction by the car. 
After following the path followed in the previous module, we can get the traction 
force we need to generate and the current flowing through the vehicle circuit and 
output the signal here. 

 

 

 

Figure 2-14 Road load section 

This part serves to simulate the feedback given to the vehicle by the road surface. 
It also simulates the intervention of the vehicle's brake pedal. The hydraulic braking 
module here can also carry a kinetic energy recovery role, which means that our 
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vehicle can generate a current to charge the battery pack when braking in the opposite 
direction to the forward direction. This will be reflected in the subsequent energy 
consumption analysis. 

 

Figure 2-15 Data monitoring module 

The purpose of this module is to collect data from the previous boards for us to 
analyze. Data is maintained for subsequent work. 

The complete vehicle modeling block diagram will be given in the appendix. 

 

2.6  Summary of this chapter 

In this chapter, we focus on the current mainstream battery simulation models. 
For our simulation object, we construct a third-order RC equivalent circuit model for 
the Thevenin battery model, which is too simple in structure and not high in accuracy. 
The model has a moderate complexity and high accuracy, which can reflect the 
dynamic polarization impedance of the battery well and simulate the real-time 
operating characteristics of the battery. 

The relationship between the equilibrium electric potential and SOC is obtained 
through the battery charging and discharging performance test, and the rebound 
voltage experiment is designed to obtain the relationship between the battery 
impedance and SOC, and the internal polarization impedance of the battery is 
accurately estimated by the least squares method in SIMULNK based on the 
experimental data.
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CHAPTER  3 

Estimation of SOC based on Kalman 

filtering 

3.1  Classical Kalman filtering 

In 1960, R.E. Kalman proposed a recursive approach to solving the problem of 
linear filtering of discrete data in his Ph.D. thesis. Subsequently, this method was 
developed and extended to cases such as nonlinear filtering and is widely used in 
applications such as navigation and localization[21]. In recent years, the Kalman filter 
algorithm has been applied to battery SOC estimation, resulting in a significant 
improvement in estimation accuracy. 

The Kalman filter method is a time-domain method. It introduces the concept of 
state variables, describes the dynamic system with state equations, describes the 
observed information with measurement equations, and replaces the transfer function 
model used in the previous Wiener filtering method with a state-space model. Among 
them, the accuracy of the state equation and the measurement equation will directly 
affect the filtering results. 

The schematic diagram of the Kalman filter is shown in Figure 3-1. Considering 
a linear discrete-time constant stochastic system. 

( 1) ( ) ( )x k x k w k                                             (3-1) 

( ) ( ) ( )y k Hx k v k                                                  (3-2) 

where ( ) nx k R , denotes the state vector of the system at time k . ( ) my k R , is 

the observation at time k . , ,    is the constant array, ( ) rw k R and ( ) mv k R , 

characterize the process noise and measurement noise of the system, respectively. 

Suppose ( )w k  and ( )v k are independent white noise with zero mean and variance 
array of Q and R each, and the initial state state  x(0) independent of ( )w k  and ( )v k  , 

then the Kalman filter algorithm is computed as follows. 
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Initialization calculation 

00, (0 | 0) ( (0))k x E x                                         (3-3) 

0 0 0(0 | 0) ( (0) )( (0) )TP E x x P                                (3-4)  

( ( ) ( ) ), ( ( ) ( ) )T TQ E w k w k R E k v k                               (3-5) 

Recursive calculation  

ˆ ˆ( 1| ) ( | )x k k x k k                                           (3-6) 

ˆ( 1) ( 1) ( 1| )k y k Hx k k                                      (3-7)  

( 1| ) ( | ) T TP k k P k k Q                                      (3-8) 

1
( 1) ( 1| ) ( 1| )T TK k P k k H HP k k H R


                           (3-9) 

 ( 1| 1) ( 1) ( 1| )nP k k I K k H P k k                             (3-10) 

ˆ ˆ( 1| 1) ( 1| ) ( 1) ( 1)x k k x k k K k k                             (3-11) 

where nI is the nth order unit matrix and E  is the mathematical expectation. 

 

3.2  Extended Kalman filtering 

The Extended Kalman Filter (EKF) is a more widely used nonlinear filtering 
algorithm. As mentioned in the previous section, the classical Kalman filter algorithm 
can only be applied to linear systems. In order to apply the ideas of the Kalman filter 
algorithm to nonlinear systems, the EKF algorithm uses the Taylor expansion and 
omits the higher order terms to approximate the nonlinear model to a linear model, 
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and then follows the process of the classical Kalman filter algorithm to complete the 
filtering form.  

The EKF algorithm can be widely applied to a variety of nonlinear systems, and 
can achieve good state estimation for systems with weak nonlinearity. The EKF 
algorithm can be applied to a wide range of nonlinear systems, and can achieve good 
state estimation for systems that are not strongly nonlinear[22]. 

For a typical nonlinear system, the model equation can be written as: 

( , )k k kx f x u                                         (3-12) 

( , )k k ky g y u                                               (3-13) 

kx is the system state variable, ky is the system observed variable, ku is the input 

variable to the system, ( , )k kf x u  is a nonlinear function related to the state of the 

system; ( , )k kg y u is a nonlinear function related to the state variable kx  and the 

observed quantity ky  . 

At each point in time, ( , )k kf x u and ( , )k kg y u  are linearized using a first-order 

Taylor expansion. at each point in time. Setting ( , )k kf x u and ( , )k kg y u  to be 

differentiable at each selected sampling point, we have； 

( , )
( , ) ( , ) | ( )

k k

k k
k k k k x x k k

k

f x u
f x u f x u x x

x 


  


                       (3-14) 

( , )
( , ) ( , ) | ( )

k k

k k
k k k k x x k k

k

g x u
g x u g x u x x

x 


  


                        (3-15) 

Set  
( , )

|
k k

k k
k x x

k

f x u
A

x 





 , 

( , )
|

k k

k k
k x x

k

g x u
C

x 





   
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Then the expression for the linearization of a nonlinear system related only to the 
state vector is derived as: 

1 ( , )k k k k k k k kx A x f x u A x w      
                             (3-16) 

( , )k k k k k k k ky C x g x u C x v     
                               (3-17) 

kw , kv are the state equation noise and measurement equation noise[23], 

respectively, and are mutually independent Gaussian white noise with zero mean of 

Gaussian white noise,so (0, )kkw N Q and (0, )k kNv R , Qk is the state equation 

noise covariance, and ( , )T
k k kQ E w w , and Rk is the measurement equation noise 

covariance, ( , )T
k k kR E v v . 

The specific steps of the extended Kalman filter are shown below. 

a) Initialization: at the moment k - 1, the 

(3-18) 

b) Prediction 

State prediction equation:              

1( , )k k kx f x u
                                       (3-19) 

State covariance prediction equation: 

1 1 1 1
T

k k k k kP A P A Q
                                 (3-20) 

c) Calibration 

Feedback gain equation: 

1( )T T
k k k k k k kK P C C P C R                                    (3-21) 

 1 1 1 1 1 1 1, ( )( )T
k k k k k k kx E x P E x x x x             
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The filtering equation: 

( ( , ))k k k k k kx x k y g x u                                        (3-22) 

Error covariance matrix update equation  

( )k k k kP I K H P                                       (3-23) 

The EKF algorithm is very similar to the KF filter algorithm as shown in 
equations (3.18) to (3.23) above. The difference is that the nonlinear state equation is 
used to calculate the time update of the state variables[24]. The nonlinear observation 

equation is used to calculate the vector estimate of the output ( , )k k ky g x u  , and the 

model linearization approximation determines Ak and Ck . 

However, for strongly nonlinear systems, the performance of the EKF algorithm 
is extremely unstable and even generates divergence. 

(2) The EKF algorithm requires the calculation of Jacobian matrix, which is 
complicated and prone to 

(2) The computation of Jacobian matrix in the EKF algorithm is complicated and 
error-prone . 

3.3 Unscented Kalman Filter 

Due to the shortcomings of the extended Kalman filtering technique in 
processing nonlinear systems, the EKF is not negligible in the filtering process. The 
impact of errors in the filtering process cannot be neglected, so there is a need to find 
better ways to solve the problems encountered in the state estimation of nonlinear 
systems. The problems encountered in the state estimation of nonlinear systems. The 
Unscented Kalman filter is a nonlinear system estimation method that has gradually 
emerged in recent years. Unlike the linearized approximation of nonlinear systems by 
the traditional EKF method[25], the UKF algorithm uses a probability distribution 
approach to deal with nonlinear problems. It is the most promising nonlinear 
estimation method. 

3.3.1 UT Transformation 
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The Unscented Kalman filter algorithm UKF is a derivative of the Kalman filter 
KF algorithm, which is known as the UKF algorithm when the UT transform is used 
to handle the nonlinear transfer of mean and covariance for a one-step prediction 
equation. The Unscented Transform is the core of the UKF algorithm, a method of 
varying a nonlinear function by computing the statistical values of nonlinear random 
variables.  

The basic principle of the UT variation is to approximate the probability density 
distribution of the nonlinear function on the premise of obtaining the optimal value at 
the previous moment. In this case, a set of Sigma points is selected, ensuring that this 
point set has the same sampling mean and covariance, and the nonlinear variation is 
performed for each Sigma point in the point set, and the final point set and variance 
after the nonlinear variation are obtained.  As shown in Figure 3-1, the difference 
between UKF and EKF for nonlinear problems is illustrated in the figure. 

 

Figure 3-1 The difference between UKF and EKF 

Determining the sampling strategy of Sigma points is the core of the UT 
transformation process, and the strategy is to determine the number of Sigma points, 
their positions, and the calculation of the corresponding weights. At present, the more 
mature Sigma point sampling strategies include monomorphic sampling, symmetric 
sampling, 3rd order moment skewness sampling, and Gaussian distribution 4th order 
moment symmetric sampling, etc., but the most commonly used in practical 
applications is still symmetric sampling. 

The computational flow of the UT transform is as follows: 
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(1) For the input random variable x, the Sigma point sampling strategy is selected 

and its statistics are used to construct the Sigma point set   , 1...ix i L , and the 

corresponding weights m
iW and c

iW . where L is the number of sampled Sigma points, 

m
iW is the weight used for mean weighting, and c

iW  is the weight used for covariance 

weighting. which are determined by the sampling strategy. 

(2) The Sigma points in the Sigma point set  ix constructed in (1) are 

transformed nonlinearly to obtain the transformed point set.  , ( )i i iy y f x   

(3) For the point set iy , the statistical information of the output variables (mean 

y and variance yyP ) are obtained with the weights  m
iW and c

iW , respectively. 

1

L
m

i i
i

y W y


                                              (3-24) 

1

( )( )
L

c T
yy i i i

i

P W y y y y


                                   (3-25)  

 

3.3.2  Unscented Kalman filtering algorithm 

Based on the UT transformation, the detailed steps of the UKF algorithm 
are. 

a) Given the initial state. 

 0 0 0 0 0 0 0ˆ ˆ ˆ, ( )( )Tx E x P E x x x x                               (3-26) 

b) State dilation: As the interfering term needs to be estimated during the 
process, it should be doped. 
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   0 0 0 0 0 0 0 0a ax E x E x v n x                           (3-27) 
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                   (3-28) 

c) Calculation of sampling points. 

0, 1 1
a

k kx                                               (3-29) 

  , 1 1 1( ( ) ) , 1, ,a
i k k k ix N P i L                              (3-30) 

, 1 1 1( ( ) ) , 1, , 2a
i k k k ix N P i L L                       (3-31) 

( )
0 / ( )mW L                                    (3-32) 

( ) 2
0 / ( ) (1 )cW L                              (3-33) 

   ( ) ( ) 1/ 2( ) , 1, , 2 .m c
i iW W L i L                      (3-34) 

1 1 1 1 1 1, ( ( ) ), ( ( ) )a a a a
k k k k k kx x N P x N P       

                   (3-35) 

2 ( )L k L                                     (3-36) 

 is used to set the distance of these point sets to the mean, which is usually 
set to a small positive number. The distance to the mean can be controlled by the 
scalar k, which is usually set to 0 or 3-n, where n is the system is the order of the 
system. β is used to incorporate the prior information of the random variable x. 
For a Gaussian distribution, β = 2 is optimal[25]. Therefore, the parameters in the 
above equation are defined as: α=1e-3, β=0, k=0, and they are applicable in 
most cases. 
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d) Time update: propagates Sigma points backwards 

| 1 1( ), 0, , 2x i
k k kF i L                                 (3-37)  

The predicted values of the states and their variances are then calculated by 
combining the weights of the Sigma points 
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e) Measurement update 

Calculate the predicted value of the output and its variance 

| 1 1 | 1( , )x x n
k k klk k ky H                                         (3-40) 
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                          (3-43) 

Calculate a posteriori estimates using actual output corrections: 

 1k k k ky z z                                             (3-44) 

1

k k k kx y y xP P                                              (3-45) 
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( )k k k kx x y y                                          (3-46) 

k k

T
k k y yP P P                                          (3-47) 

Through analysis, the UKF algorithm has the following advantages: for the state 
estimation of nonlinear systems, the mean accuracy of UKF estimation is higher than 
that of EKF, which can provide more accurate estimates of the state mean and state 
covariance[26,27]. Since the distribution of states in the UKF is not an approximation to 
a nonlinear function, the expansion of state levels is not a truncation to a specific 
order, so the UKF can better preserve higher order information and obtain higher 
computational accuracy than the EKF. 

At the same time, because the EKF requires a derivable model, the UKF only 
uses vector and matrix operations to calculate the mean and variance, so it is suitable 
for arbitrary process models and does not need to calculate Jacobian matrices, which 
shows that the UKF has a broader scope of application and is relatively suitable for 
computation, and is easier to implement in hardware than the EKF. 

 

3.4 Summary of this chapter 

The main content of this chapter is to introduce the basic principles of Kalman 
filtering. The main contents of classical Kalman filtering, extended Kalman filtering 
and tasteless Kalman filtering and their computational procedures are introduced 
respectively. The principle and the role of UT transform are highlighted. A solid 
theoretical foundation is laid for establishing the relevant models in the later chapters. 
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CHAPTER  4  

Real-time SOC and SOH estimation 

analysis based on UKF and EKF 

4.1  SOC estimation through EKF Algorithm 

Having studied the theoretical foundations in the previous chapter, we can now 
proceed to build our measurement system. First we will use the EKF to estimate the 
real-time SOC and R0. 

4.1.1  Estimation of SOC logic diagram by EKF 

By understanding and implementing the equations in the previous chapter, we 
can know that to estimate the SOC of the battery pack and even the vehicle by the 
EKF method, we need to establish the following logical framework. 

 

 

 

 

 

 

 

 

 

 

Figure 4-1 EKF algorithm logic diagram 

k≤N 
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The above computational process shows that the EKF algorithm is essentially a 
recursive process of predicting and correcting the system state variables so that the 
system estimates gradually converge to near the exact values. 

During normal operation of the battery system, the load current flowing through 
the battery and the terminal voltage of the battery are finite and measurable. Therefore, 
the current is used as the input variable of the model in the EKF algorithm to drive the 
variation of the internal parameters of the model; the polarization voltage of the two 
parts of the resistive-capacitance network inside the battery equivalent circuit model 
and the battery state of charge SOC are used as the state variables of the system. 

The terminal voltage of the battery is taken as the output variable of the system, 
and the output is obtained according to the structure of the battery equivalent circuit 
model and the E-SOC relationship obtained from the identification. 

 

Figure 4-2 EKF modules 

 

In addition, the initial values of some parameters need to be set when starting the 
EKF algorithm for battery charge state SOC estimation. Although the EKF algorithm 
is robust with low initial parameter accuracy, too much deviation will affect the 
convergence speed of the algorithm when estimating the state variables, which may 
cause the estimation results to be scattered in extreme cases[28]. 
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Figure 4-3 EKF State Transition Function 

 

Figure 4-4 EKF Measurement Function 

 

Since the battery is in a static state before operation, the initial values of U is 
equal to 0. The initial values of the charge state can be obtained according to the table 
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search data in Chapter 3, and the battery is not fully charged before the experiment, 
i.e., SOC(0)=0.9; the error covariance matrix P0 is generally P0 is generally set to a 
smaller value that is not zero, which indicates the deviation of the predicted value of 
the state variable from the true value, when the value of P0 is larger, it means that the 
current predicted value deviates more from the true value, and then the filter gain 
coefficient is also larger, so that the state variable can be corrected to a larger extent. 

 In the experimental process, the measurement noise vk of the system is related to 
the accuracy of the sensor of the collected data, which is generally interspersed with 
the measurement data; similarly, the process noise ωk is mainly caused by the 
accuracy of the established model, which is unavoidable. In setting the covariance Rk 
of the measurement noise and the covariance Qk of the process noise, the tuned 
empirical values are usually taken. 

4.1.2  Monitoring results 

First, we chose WTP3 as our following simulation test mode. The speed 
requirements of this mode for our vehicle are shown in the figure below. 

 

Figure 4-5 WTP3 Speed Diagram 
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For this speed route, the current image we need is shown below. We take two 
test loops here. 

 

Figure 4-6 Battery Pack Output Current 

By importing this current signal as an input signal into our EKF module, we can 
obtain our SOC monitoring results based on the WTP3 operating conditions 

 

Figure 4-7 SOC Estimation Result 

By observing the results, we find that the algorithm is able to fit the real-time 
SOC variation of the vehicle during travel relatively well. However, we also observed 
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the presence of errors in some of the variation cases. In this regard, the error image is 
shown in the following figure. 

 

Figure 4-8  SOC error analysis 

At this point, we can see that in the case of relatively large SOC, the error 
between our monitored SOC and the real SOC is still in a relatively small interval, 
and the whole monitoring error is less than two percent. In order to observe the 
situation when the battery is almost depleted, we perform a multi-cycle discharge 
process on the battery. 

 

Figure 4-9  Continuous Discharge Image 
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We are able to see a large error in our observation mechanism when the SOC is 
less than 0.1. 

 

Figure 4-10 SOC error during continuous discharge 

Note that in this image above, the straight line at the beginning does not 
represent a SOC error of 0, but is due to an axis scale issue. The error here is small 
enough to be considered as meeting the requirements of our observation. But what we 
see here is a very large error at SOC less than 0.1, with values of 12% or more. 

It can be seen that the predicted SOC results based on the EKF algorithm 
fluctuate around the theoretical reference value of SOC, showing strong followability, 
and the maximum relative error does not exceed 0.02 throughout the experimental 
pulse current discharge condition, which is more accurate. This shows that the EKF 
algorithm can effectively predict the battery charge state even under complex current 
conditions. 

But also here is due to the strong polarization nonlinearity of the battery at the 
end of discharge, when the battery model parameters change drastically with SOC, 
resulting in a rapid increase of the difference between the output voltage of the battery 
equivalent circuit model and the actual battery terminal voltage, thus showing a large 
prediction error. Therefore, the power battery should avoid working in the low SOC 
(0~0.1) range as much as possible in use. 
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4.1.3  SOH estimation through EKF 

The SOH is an important indicator to evaluate the degradation of power battery 
performance as the user's use time grows. The aging of the battery shows a decrease 
in the total energy released and a reduction in output power externally, and a 
significant increase in the ohmic internal resistance internally, so the ohmic internal 
resistance of the battery under normal conditions can usually be used as a 
characterization of SOH.  

The internal resistance can be obtained by applying a given excitation current to 
the battery and recording the voltage difference between the terminal voltages of the 
battery instantaneously to obtain the internal resistance of the battery according to 
Ohm's theorem; or by impedance measurement with the help of electrochemical 
workstation. However, most of these methods require separate off-line testing of the 
power battery, and in practice, it is often not desirable to shut down the power 
equipment for testing[29]. Therefore, in this paper, the internal resistance R0 of the 
battery is considered as a state value that changes continuously with the system, and 
the internal resistance parameter is estimated using the EKF algorithm. 

 

Figure 4-11 R0 Estimation 



Real-time SOC and SOH estimation analysis based on UKF and EKF 

46 

 

When starting the algorithm to estimate the internal resistance of the battery, it 
can be found that the initial estimated internal resistance of the battery differs greatly 
from the reference value, but after the iterative calculation of the EKF algorithm, the 
predicted internal resistance quickly converges to fluctuate around the reference value, 
and the real-time internal resistance of the battery can be estimated more accurately. 
The simulation results also show that the EKF algorithm can effectively estimate the 
internal resistance of the battery. 

At the same time we can also see that in the SOC less than 0.1 interval, the internal resistance 

of our battery pack increases sharply, which can also be reflected in the battery in the low SOC 

when power consumption is faster, the power is more unmanageable actual. 

 

4.2  SOC estimation through UKF Algorithm 

We now apply the UKF algorithm to the detection mechanism of the SOC in 
practice as well. The process is similar to the EKF, except that the results of the real-
time simulation of the SOC will be slightly different due to the difference in 
algorithms. 

4.2.1  Estimation of SOC logic diagram by UKF 

The logic diagram of the UKF is basically the same as the EKF, here we choose 
to present it as an electrical diagram. 

 

 

 

 

 

Figure 4-12 The logic diagram of the UKF  

The covariance array of the system noise wk, the covariance array of the system 
measurement noise vk . These values are calculated in the equations in Chapter 3. 

StateTransition Measurement Function 
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The input of the model is the terminal voltage and current data collected during 
the operation of the battery. In order to better compare the estimation effect, the test 
value of SOC is also used as input here, but it is not involved in the calculation. 

The model consists of two parts, one is to implement the prediction process, i.e., 
to obtain the estimated value of the state variables SOC and Up from the optimal 
value of the state variables at the previous time through the state equation, and the 
implementation module is shown in Fig. The implementation module is shown in Fig. 
The SOC estimation model based on the UKF algorithm is calculated once for each 
set of input data to obtain the SOC estimation value at that moment[30]. 

 

 

Figure 4-13 UKF-based top-level model for SOC estimation 
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Figure 4-14 Simulink model for prediction module 

 

 

Figure 4-15 Updated Simulink model of the module 
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4.2.3 Monitor result 

Similarly, here we set the initial value of SOC of our algorithm to 0.95 to 
observe the convergence rate of our algorithmic model. We can see that in a very 
short time, the SOC value calculated by the algorithm converges quickly to a value 
near the SOC value estimated by the ansatz integration method. This shows that our 
algorithm is more capable of coping with complex operating conditions. The specific 
observation results are shown in the following figure. 

 

Figure 4-16 UKF-based SOC observation results 
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We are equally interested in the computational error of the UKF-based model. 
The figure below shows the results of the error calculation. We can see that the error 
of this model is somewhat larger compared to the EKF model. The error is close to 4 
percent when the SOC value reaches 0.4. In fact, such a result can also be seen on the 
SOC plot. We can see clearly that the distance between the two lines is greater than 
the same EKF-based case. 

 

 

Figure 4-17 SOC error based on UKF 

 

And by continuously discharging the battery under this model to a charge of 0, 
we can see the results as shown in Figure 4-18. Again, at SOC values less than 0.1, 
our estimates become inaccurate. And although the estimation error generated at this 
point is smaller than the error generated in the EKF algorithm, this error becomes 
smaller without much practical application. 
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Figure 4-18 Calculated value of SOC discharged to 0 (based on UKF) 

 

Figure 4-19 SOC error value for discharge to 0 (based on UKF) 
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4.3 Comparison of the accuracy of the two algorithms 

Due to the obvious fluctuation of current in charging and discharging conditions, 
the change of battery SOC is non-linear (fluctuating) downward, and the SOC 
estimation curves of EKF and UKF can follow the reference curve of battery SOC 
more accurately and conform to the overall change of SOC. From the SOC estimation 
error in the figure, it can be seen that the EKF algorithm has a smaller SOC estimation 
error than the UKF algorithm under the same working condition. However, as the 
working condition continues, the error of SOC estimation by UKF increases gradually 
after 1000s, and the maximum error is 4%, and the maximum error of SOC estimation 
by EKF is 1.5%. Therefore, in this experiment, the EKF is more accurate than the 
UKF algorithm for SOC. 

The model parameters in the UKF algorithm are: process noise and observation 
noise v, and their variances Q, R. Process noise is the error caused by the inaccuracy 
of the system model and the noise in the input quantities, in this paper it is caused by 
the inaccuracy of the cell model and the error in the measurement of the input current; 
observation noise is the error caused by the inaccuracy or interference in the 
measurement of the observed quantities, which in this paper refers to the errors caused 
by inaccurate or disturbed measurements of the terminal voltage[31]. Q and R have a 
significant impact on the accuracy of the algorithm, and it is assumed in the paper that 
both process noise and observation noise are Gaussian white noise, if R takes a larger 
value compared with Q, which means that the observation noise fluctuates more and 
the observation measurement accuracy is not high, at this time the prediction of the 
state equation plays a dominant role, and the estimation of SOC mainly depends on 
the prediction of the state equation, if R takes a smaller value compared with Q value 
is small, it means that the observation noise fluctuation is small and the accuracy of 
the observation is high, and the correction of the observation equation plays a 
dominant role at this time. The variance of the process noise and the observation noise 
as a fixed value, if too small will make the calculation results appear biased, if too 
large may make the results scattered. 

The number of sigma points selected also has an impact, this paper is taken once. 
The sigma point is taken once, and the sigma point is taken twice. The difference 
between the two is that the UKF algorithm with one sigma point is to obtain the sigma 
point of the current moment from the optimal value of the previous moment, while the 
UKF algorithm with two sigma points is to obtain the sigma point of the middle 
moment from the optimal value of the previous moment, calculate the mean and 
variance of the middle moment from the sigma point of the middle moment, and then 
calculate the mean and variance of the current moment from this mean and variance. 
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The mean and the variance of the middle moment are used to calculate the sigma 
point of the current moment, and the subsequent calculation is exactly the same. 

 

4.4 Summary of this chapter 

The main content of this section is to establish a logic flow framework based on 
the EKF and UKF models respectively, and on this basis to establish the SIMULINK 
model for simulation. By integrating these two models into our EV simulation 
platform, we obtain real-time SOC and SOH (mainly the internal resistance R0) 
estimation results. 

As can be seen from the images, both models converge quickly to near the exact 
SOC value in real time, while the maximum estimation error under general driving 
conditions does not exceed 4 percent. This indicates that our models can be used for 
the task of monitoring SOC and SOH in real time. However, at the same time, it can 
be seen that the UKF model performs relatively poorly, which the authors also 
analyze at the end of the paper as a result of the observation noise and the selection of 
sigma points. 
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CHAPTER  5 

Full summary and outlook 

5.1  Summary 

In this paper, the SOC and SOH of the battery are estimated by using a 2p28s 
power pack of 50Ah from Samsung as the research object and a pure electric model of 
the classic car Panda as the carrier. 

(1) The basic performance parameters of the battery are described, the basic 
characteristics of the battery under study are analyzed, and a series of curves of the 
basic characteristics of the battery are obtained. At the same time, the characteristic 
parameters of the battery during charging and discharging are analyzed, and the 
voltage and current performance of the battery during charging and discharging is 
profoundly demonstrated. 

(2) After comparing several commonly used battery models, the Thevenin 
equivalent circuit model is chosen as the model for this paper, and the third-order RC 
battery model is modeled and the parameters of the Thevenin model are identified. In 
this paper, the lowest squares method is used to fit the parameters of the RC circuit. 
The fitted curves are finally fitted to achieve near agreement with the voltage signal 
generated from the pulsed current signal. 

(3) The principle of Kalman filtering algorithm is introduced, the state equation 
and observation equation for the algorithm prediction are established, and the 
estimation process of the algorithm is described. 

The UKF and EKF are applied to monitor the SOC and SOH of the vehicle 
power supply in real time during the travel process, respectively. The validity and 
accuracy of the two models are verified, and the prediction accuracy of the algorithm 
is improved. The less satisfactory experimental results are illustrated. 

5.2 Future follow-up work 

Based on this paper, the authors believe that the future can continue to improve 
and improve the work:   
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Temperature has a greater impact on the use of the battery process, the lower or 
higher the temperature, the battery capacity, internal resistance and self-discharge rate 
have a greater impact. In this paper, only the estimation accuracy of the battery model 
under a temperature condition is studied, and the temperature factor is not added to 
the algorithm prediction of the battery state, which is carried out under normal 
temperature conditions. In the subsequent research work, the temperature influence 
factor should be added to the algorithm research of battery state. 

Many scholars have tried to use temperature correction coefficients, Arrhenius 
temperature acceleration model and electrochemical model to correct and estimate the 
battery model and state parameters, but there are still some uncertainties in the 
accuracy and reliability of the temperature correction model. The temperature of the 
system is changing with use at any time, and although the temperature parameters at 
the instant of sampling moment can be measured instantaneously, the question of 
what effect the temperature parameters have on the whole life cycle of the battery, 
what system states or parameters are caused to change and the design of the 
equivalent circuit model of the battery with temperature parameters will be the 
direction and focus of this area during future research. 

On the basis of the thesis research, the online identification of battery model 
parameters can be extended to further improve the accuracy of the battery model 
output by using the battery external finite measurable to update the internal 
parameters of the model in real time through algorithmic calculation, because the 
battery parameters are also changing during use, which means that not only the 
earliest parameter estimation is also applicable in the subsequent. Implementing 
online identification of battery model parameters requires a large number of 
experiments as a basis, increased complexity of algorithms, and more efficient 
processors for computation 
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Appendix 

Full view of SIMULINK model 


