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Abstract

Buildings account about a third of the total global final energy use and it is expected

to grow further in the next 30 years due to the growth in population, higher indoor

comfort level demand, and longer time spent inside buildings. Heating, Ventilation

and Air Conditioning (HVAC) systems constitute the major source of energy

consumption, thus researchers are trying to develop more efficient control strategies

to manage their operation. At the time of this work, the research efforts have been

focused on Model Predictive Control (MPC), but the highly diversified building

stock and the need of accurate model have slowed down the advancement. New

buildings are embracing more advanced enabling technologies for Building Energy

Management Systems such as Internet of Things and Cloud Computing, allowing

the upstream of information. The so-called Big Data are generated every day and

stand for the opportunity to enhance local and supervisory management of the

energy systems. Soft-control relies on that data to make predictions, reveal patterns

in energy consumption, cluster buildings and for building control, thanks to the

computational power given by present-day technologies. Reinforcement Learning

(RL) is a promising technique for solving complex non-linear problems, and together

with MPC can potentially establish as the state-of-art technologies in the building

control field. In this work, Deep Reinforcement Learning is used to manage thermal

energy storage in a multi-energy building in Turin during the cooling season. The

algorithm is a Soft Actor-Critic. The energy system comprises of a cooling system
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with cold-water storage tank, and a Photovoltaic field with Li-ion battery. This

work aims at describing how an advanced control strategy affects the design of

the thermal and electrical storage. The RL agent schedules the tank operation to

minimize the energy cost and it is compared to a benchmark which charges the

tank when price is low and discharges it during high price hours. The environment

is simulated for several configurations of different Thermal Energy Storage and

Battery Energy Storage Systems (BESS) sizes. The results clearly indicate that

the RL performs better than the benchmark both in terms of energy consumption

and energy cost. Moreover, it guarantees much higher level of self-sufficiency and

self-consumption, hence it can be considered that RL is a viable alternative to the

sizing up of the energy storage when it comes to nearly Zero Energy Buildings

design. As a result, large BESS with unbearable cost can be avoided, even if

Variable Renewable Energy Sources are considered. By making use of RL, the

grid is less involved in building operation, which is also desirable when seeking for

building flexibility. RL has also revealed the pattern to follow for optimal daily

scheduling of the storage tank, leading to the identification of Rule-Based control

more efficient than the one used as benchmark.
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Chapter 1

Introduction

The energy sector has always been crucial for centuries, providing the basis for

the economic and technological development, as seen during different industrial

revolutions throughout history. The XX century highlighted how the economic

growth is strictly related to the energy availability and how energy crisis can

generate recessions, inequalities and contentions; indeed, the rapidly growing world

energy use has already raised concerns over supply difficulties, exhaustion of energy

resources and heavy environmental impacts like ozone layer depletion and climate

changes. Nowadays, it is understood that energy production must be sustainable,

to ensure stability in the long run and encourage prosperity to the human life.

The current fossil fuel reserves give enough time to think about alternatives but

it is not same for their impact on the global climate, which shows a much sooner

deadline. The path has been revealed by many international organizations in the

last decades, from the first United Nations Framework Convention on Climate

Change in 1992 to the Paris Agreement in 2015 where the Parties committed to

limit the temperature increase well below 2°C; also, the Climate-Energy Framework

2020 sets three key targets to cut 20% in greenhouse gas emissions (compared to

1990 levels), increase the EU renewables share by 20% and improve energy efficiency
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Introduction

by 20%, and lately, Europe has stated to be already on track to meet its greenhouse

gas emissions reduction target for 2020, and has put forward a plan to further cut

emissions by at least 55% by 2030. By 2050, Europe aims to become the world’s

first climate-neutral continent[1]. Also, with the Agenda 2030, the Sustainable

Development Goals are defined for the energy sector, where it is expressed the

needs for everyone to access to clean and affordable energy. Despite these efforts in

Europe, nothing has really changed wordlwide, the atmospheric CO2 concentration

is still increasing and the targets set in 2015 seems out of reach unless a steep

reversal of trend occurs [2].

The International Energy Agency has gathered frightening data on energy con-

sumption trends. From 1990 to 2018, the growth of annual primary energy supply

and CO2 emissions is around 60%, at an average annual increase of 1.7% [3]. The

trend of energy consumption over the past years helps forecasting how it will

behave in the future and shows that new and more stringent policies must be

issued by government and intergovernmental organizations, by intervening on the

penetration of sustainable production, more efficient management strategies and

technical improvements for distribution, storage and consumption technologies,

along with CCS and carbon sinks, allowing negative CO2 emissions. In any other

case it will not be possible to achieve good performance in terms of global efficiency

and so energy intensity, which is a major key indicator to understand effectiveness

of strategies at macro-scale and to study the dependency between economy and

energy consumption, that is growing at an astonishing pace. The U.S. Energy

Information Administration provides energy forecasting in its International Energy

Outlook 2019, where the reference case reports the growth of the world energy

consumption to be nearly 50% by the end of 2050 with non-OECD countries ac-

counting for around 87% of the increased amount, and among them, Asian countries

are those contributing the most[4]. China and India have been among the world’s
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Introduction

fastest-growing economies during much of the past decade, and they will remain

primary contributors to future growth in world energy demand. Moreover, the IEO

2019 shows that the forecasting for non-OECD countries have higher uncertainties.

Peréz-Lombard et al.[5] carried out the analysis of the trend of main world energy

indicators between 1973 and 2004. The rate of population growth is well below the

GDP, resulting in a considerable rise of per capita personal income, global wealth

and energy consumption over the last 30 years. Electrical energy consumption has

seen a dramatic increases of over two and a half times and scored a percentage

increase of 18% in the final energy consumption in 2004 and this can be seen as

important factor for final and primary energy intensities, which dropped because

of the higher rate of growth of the GDP over the energy consumption increasing,

resulting in an overall improvement of the global energy efficiency[5].

In this context, the present work is dedicated to the energy use in the building

sector, which is gaining importance according to the historical trends. In 2010,

buildings accounted for 32% of total global final energy use, divided in 24% for

residential buildings and 8% for commercial ones[6][7]. In residential buildings,

space heating dominated the consumption with a quote of 32% of the global con-

sumption, followed by 29% for cooking, 24% for water heating, 9% for appliances,

4% for lighting, and 2% for cooling. Also in commercial buildings, space heating

dominated the consumption with a quote of 33% of the total consumption, followed

by 16% for lighting, 12% for water heating, 7% for cooling, and 32% for other

equipment[6]. Moreover, the energy consumption in buildings is very heterogeneous

across regions, differentiating by income levels, climate, and behaviour. This results

in developed countries scoring up to 42 GJ/cap/yr, half of which used for space

heating and fuelled for 73% by electricity and gas, while developing countries come

up with 11 GJ/cap/yr, used primarily for cooking (47%) and fuelled with biomass

(53%)[8]. The IPCC stated that GHG emissions from the building sector more
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Introduction

than doubled between 1970 and 2010, reaching a value around 10 GtCO2,eq./y

nowadays[9]. Also, the general believe is that building energy use will continue

growing in the next 20 years, sustained by growth in population, increasing de-

mand for building services and comfort levels, together with the rise in time spent

inside buildings[3], and electricity is the fastest-growing source of energy use in

the commercial sector, mostly due to space conditioning. An important driver is

the global building floor area which is increasing at an annual average rate around

2.3%, supported by the growing population and increasing floor area per person[10].

The EIA analyses and forecasts future trends in building energy consumption.

Energy use in the built environment will grow by 50% in the next 30 years, at an

average rate of 1.3%. Many drivers such as economic and population growth in

emerging economies will intensify needs for education and health, as well as public

and private services, resulting in a strong energy consumption increase. Again,

building energy consumption in non-OECD countries will increases at about 2%

per year, about five times faster than in OECD countries, and non-OECD building

energy consumption will surpass that of OECD countries by 2025.[4]. Heating,

Ventilation and Air Conditioning (HVAC) systems constitute the major energy

consumption in buildings with the percentage up to 60%[11]. In the USA, these

systems represent more than 50% of the energy consumption in residential buildings,

and in China, a sample of 30 buildings exposed a 68% of residential consumption

in average[5][12]. Also, retro commissioning of existing building HVAC systems

discovered the deficiency problems are mainly caused by control and operation[13].

Chiller plants are largest energy end-users in HVAC system, taking up more than

60% of the system whole energy consumption[14] and raise the problem of finding

the Optimal Chiller Loading to enhance buildings energy efficiency. In Europe, data

produced by the administration at national, regional or local levels is insufficient

to efficiently plan future energy policies for buildings and to coordinate measures
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to address each of the end uses. However, many sources show a significant increase

in the use of air conditioning, especially in southern countries, probably due to

the global warming, creating serious supply difficulties during peak load periods.

Analysis by sectors, as those produced by the EIA for residential and commercial

buildings should be funded by governments, so that a comprehensive database of

the building stock and energy parameters can be the basis for future planning. For

these reasons, energy efficiency in buildings is now a prime objective for energy

policies at regional, national and international levels. Since 2013, government

and regulators are developing strategies at a large scale concerning either home

appliances, water, and space heating in residential buildings and space heating and

other miscellaneous equipment in non-residential buildings[15]. It is only recently

that BRICS countries have issued more stringent efficiency standards for appliances

and equipment, as well as stricter building codes. The building envelope has gained

attention as well. In 2013, IEA published a report stating that US, EU, and Russia

should primarily intervene on high performance envelopes in the cold areas, where

the building energy demand could be potentially reduced by 33%[6]. Behavioral

changes should be taken into account, but it is difficult to carry out any accurate

analysis. It is generally assumed that behavioral changes could save between 10%

and 30% in heating, up to 50% in cooling and up to 70% in lighting [9].

At this time, many achievements have been made to fulfill the energy-efficiency

requirements for equipment in buildings, by guaranteeing the operative needs and

being environmentally friendly, but further policies are required to drop equipment

costs down[16]. One of the main instrument issued in Europe in the building

sector is the Energy Performance of Building Directive (EPBD), which sets sets

the standards for new and renovated buildings for each EU Member States (MS).

The measure is is expressed by the Directive 2010/31/EU at Art. 9 where it is

indicated that EU Member States (MS) must ensure that by 2021 all new buildings,
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and already by 2019 all new public buildings, are nearly Zero Energy Buildings

(nZEB), and also, it encourage MS to draft plans and best practices as regards the

cost-effective transition from existing stock to highly efficient buildings[17], but the

pace of renovation is much slower than needed, and yet, the developed countries are

going to face more than an hurdle in replacing the old existing building stock. For

instance, the US and EU have an average replacing pace of 2% and 3%, respectively,

which means that the energy consumption must be reduced by promoting both

high-performance buildings and retrofitting practice[18].

Recently, Building Energy Management Systems (BEMS) are developing and are

being empowered more and more thanks to the implementation of Internet of Things

(IoT) and Cloud Computing for Big Data gathering to support building managers

and proprietors and to improve capacity, cost-viability, adaptability, accessibility,

effectiveness, toughness, and dependability, in new and existing buildings, both

residential buildings and non-residential[19][20]. IoT enables smart things to com-

municate with each other, and incorporate real-world data and knowledge into the

digital world. Smart devices with sensing and interaction capabilities, as well as

recognition technologies, make it possible to collect far more knowledge about the

real world than ever before. This wireless communication has broadened thanks to

sensors for various applications like smart buildings, smart cities, smart healthcare,

and the smart industry[21]. Big Data technology is referred to the huge amount of

data collected by these sensors which is also allowing to have into operable insights

and more accurate predictions[22]. This new concept has expanded the possibility

for maintenance and efficient management of building energy systems. In this new

context, consumers play an active role in balancing the grid operation by changing

and possibly compromising on their current consumption patterns to enhance the

building flexibility. Consumers will be able to have insight and control of their

Electric and Electronic Equipment (EEE) in an effective and efficient manner.
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DSR services are so enabled and potentially provided to system operators, who

need information on supply of flexibility available when the whole energy system

is undergoing high electricity generation, peak load or generally the system is

off balance[16]. However, the incremental initial costs of green (energy efficient)

buildings has been reported as a significant barriers to high-performance buildings

with the ultimate goal of achieving net-zero energy by design teams and building

owners[23][24].

Deep research is on going for the systematic characterization of energy use in

buildings. Different building end-use have different energy use profiles, and charac-

terization of the major contributors and their energy use is needed. Residential and

commercial buildings features mainly energy consumption associated to the comfort

level of the occupants, while industrial buildings consumption is primarily due to

the operation of industrial machinery and infrastructures dedicated to production

processes[21]. Based on the type of building, different management strategies can

be used to achieve energy savings, and there are uncountable types of building

across different final end-uses and configurations, so that buildings clustering is

typically used for aggregations based on load pattern, end-use energy and occupancy

schedule rather than technical parameters. Buildings such as residential, education,

office, healthcare, and industrial are emerging as critical consumers in energy

consumption[19], thus making energy flexibility the key point for smart buildings,

that need to be able to manage high-complexity dynamic system considering occu-

pants behaviour, storage systems, renewable on-site generation, electric vehicles

and Demand Response programs through a continuous information exchange[25].

As buildings energy system becomes more complex, more sophisticated control

strategies have to be implemented for managing energy fluxes, and computational

cost for modeling increases as well. Literature provides examples of smart control

for lighting, heating, cooling and electrical appliances. This work is focused on the
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cooling system control.

In the field of HVAC systems, the most common techniques are ON/OFF control,

P, PI or PID control, and for this reason, they are typically referred to as classical

control strategies. The rule-based prescriptive approach guarantees occupant com-

fort by maintaining a comfort range. Additionally, it is possible to reduce energy

consumption and carbon emissions by adjusting the setpoints based on heuristic

rules. ASHRAE Guideline 36 summarized those rules , which could represent the

state of the art of this approach adopted by industry[26]. An on/off controller

regulates the ON/OFF state of a component in order to keep a certain value within

a threshold, but they can not deal with dynamic systems[25]. P, PI and PID

controllers modulate a controlled variable by using error dynamics as long as the

operating conditions do not vary from the tuning conditions[27]. They also require

a laborious tuning of parameters. These control strategies are very simple and

effective, but not optimal. Mainly due to the lack of predictive information; indeed,

it is not possible to take into account the day-after prediction and anticipate the

behaviour of the system. Also, the control sequence is fixed and predetermined,

thus it is not customized to a specific building and climate condition[26].

To overcome classical control limitations, Model Predictive Control has established

in the building control research community and it is proven that this control method

can achieve energy savings while maintaining or even improving thermal comfort

in buildings. This techniques relies on the modeling of the energy system, the

prediction of disturbances and finally solves the control problem. Since it was

initially proposed in the 1970s in the chemical and petrochemical industries, MPC

has been successfully applied in many fields[28].

As regarding to building control, MPC has been applied to radiant ceiling and

floor heating [29][30], intermittent heating [31] and ventilation [32], and to op-

timize cold water thermal storage systems[33]. Eventually, MPC proved to be
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effective not only during simulation, but also in real-time[34]. MPC deals very well

with non-linear time-varying disturbances and are able to predict future evolution

therefore they find many application in HVAC operation. According to Afram

and Janabi-Sharifi[27] MPC can explicitly handle disturbances, uncertainties and

constraints and include predictions of occupant behaviour, equipment use and

weather forecasting. Moreover, it is possible to consider a multi-objective cost

function as well as deploing MPC both at supervisory and local control. Neverthe-

less, the model complexity can become unsustainable in terms of computational

power and effort to build the model, also, they are very sensitive to any changes in

the environment. Again, Afram and Janabi-Sharifi stated that the integration in

HVAC systems may be difficult or impractical, due to the specification of many

parameters, resulting in a labor-intensive process and required expertise to use.

In the building sector, this results in a very low flexibility given the diversity of the

existing stock, where building and its energy systems are unique, so it is difficult to

generalize a standard building energy model for various buildings. For this reason,

the spread of MPC has recently slowed down despite the promising results and

allowed soft control being considered as a possible solution[35].

Soft control systems are based on fuzzy logic, neural networks or genetic algorithms

and are usually applied for supervisory control[25]. Soft controllers are not very

common in real building applications since their accuracy often relies on the quan-

tity and quality of available data points, hence Big Data is an enabling technology

for this kind of controller. ANN-based control systems are trained thanks to sets

of historical data, which must be not only large enough to cover a wide range of

operating conditions but also they must ensure quality in terms of accuracy and

time sparsity. Similarly, fuzzy logic controllers require an extensive knowledge

of the building operation under different conditions, but the control strategy is

represented by a set of rules which defines the operational phases according to the
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information fed to the controller. Among soft control, Reinforcement Learning is

gaining attention, although research in the building control field has seen MPC

as main focus, Reinforcement Learning based controllers have shown remarkable

progress in many difficult and previously unsolvable domains[36][37][38]. RL be-

longs to the Machine Learning framework which has demonstrated its potential to

enhance building performance at many stages of the building lifecycle[39], thanks

to BG, more powerful computing and algorithm advancement. As follow, it is

introduced the general framework of RL, then in the next chapter, it is provided a

detailed description of the algorithm and the modification of its main component.

RL based control can be classified into two further subclasses, each one with its

peculiarity: model-free and model-based RL. Model-free RL can be seen as the

counter-part of MPC ; indeed, model free RL does not have any knowledge of

the environment, rather it learns the behaviour by directly interacting with it.

Its working principle can be summarized as follows: it observes the system state,

choose an actions and observes the next state and the reward it obtains from the

environment. Its task is to maximize this reward stream over time which includes

also future rewards. Real world control problems often are trying to achieve multiple

objectives like energy consumption, energy cost or users comfort, which means that

defining the controller’s reward function must take into account the competitiveness

of these objectives by properly weighting. The main advantage of Model-free RL

controllers is their lower computational cost compared to MPC, due to the absence

of a model; infact it is data-driven, and it helps avoiding the work of developing

and calibrating a detailed model, as it is for MPC. During operation, the RL agent

not only executes the optimal control action but also updates its policy which

can make it robust under dynamically changing environment. The robustness and

the smaller computation cost as well as the lower efforts in building a model can

make RL better suited to many practical implementation when compared with
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classical MPC controllers, given that enough data are available for training. On the

other hand, model-free controllers have significant limitations at the current stage.

Mainly the curse of dimensionality, the need for a huge amount of data, that are

lacking for the most of the case, before it can discover a nearly optimal policy, and

also the ‘sample complexity’, which is usually much lower than their model-based

counterparts. Furthermore, during the training phase, exploratory actions are

taken by the RL agent to discover the goodness of different trajectories, but such

actions can directly lead to occupant discomfort or to excessively high energy cost

that need to be accounted as cost of implementation. These last issues could be

worked around by constructing virtual simulation environment and using it to train

the agent, but this solution increases the computational cost, brings in the efforts

of model implementation and the associated loss of accuracy. The Open AI Gym

is an online library that allows to build training environment for RL algorithm.

Model-based RL has been developed to overcome these limitations, and it is used

extensively in robotics and other disciplines where decision making needs to happen

in real-time with limited and noisy sensing data. These algorithms can perform

as well as MPC while also offering the potential to greatly reduce computational

complexity. Model-based RL learns the transition probabilities from a state given

a certain action, for each state. For this reason, they have many similarity with

data-driven MPC, but they differ in the way of optimizing the control strategy,

mainly due to the explicit exploratory strategy where the controller is encouraged

to explore the state space better to discover potentially rewarding strategies, and

the use of policy-side learning to speed-up computation. Policy-side learning means

that the model-based RL controller learns from solving these optimizations over

time and does not need to repetitively optimize when incurs in similar states.

The biggest advantage of model-based RL is its compatibility with existing MPC

controllers. By offering similar or better performance at (asymptotically) reduced
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computational loads, it can contribute to the next generation of controllers. The

main drawbacks concern the additional system complexity which can potentially

increase the likelihood of a failure. In addition, depending on the size of the

state-space, policy-side learning can be a formidable undertaking requiring sub-

stantial amounts of computational resources before convergence. Furthermore,

exploratory steps can likewise improve the asymptotic performance of the controller

while risk of lost user comfort increases, as with model-free controllers. Definitely,

data-driven models give added-value to the huge amount of data that is collected

everyday and can substitute complex physical models with pure mathematical

relations, speeding up the construction of the model, reducing computational cost

and lowering the number of input, but more data need to be collected. Today, new

enabling technologies for data management have allowed a bi-directional flow of

information, but the smart buildings involves higher investment costs that need

to be justified by a strong reduction in energy cost, which is not happening yet.

At this time, costs are the major barrier for penetration of the smart technologies,

and policies must help both companies and users to establish this new framework,

in order to increase the amount of data available and their quality. Technological

advancement should be assisted by advanced methodologies for building control,

but neither MPC, neither RL are competitive with classical control at the current

stage because of their low scalability. Once RL capabilities are going to be more

clear, as well as its application, which is the aim of this work, research should

address the problem of the length of the learning phase. This is the main barrier

preventing from real-time implementation. In this sense, a few solutions are to be

addressed more consistently in order to understand which is the path to follow.

Transfer learning seems a feasible approach, where RL agent is trained in advance

and then it is dynamically deployed on many similar buildings, thus obtaining the

scalability factor. This is achieved by developing open-source training environment
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where everyone can pre-train the RL agent. Also, the expert knowledge could be

encoded and achieve the reduction of the training phase, but this is not enabled by

some of the RL algorithms.

1.1 Previous works on RL algorithms

At the current stage, literature provide examples of various RL methodologies

but real-time applications are pretty much concentrated in the academic context.

ANN’s have massively spread in the last decade of the XX th century and estab-

lished as the basis for data-driven models in energy forecasting[40] thanks to the

more sophisticated computing technologies, whereas the reinforcement learning

has only recently become popular for managing HVAC operation and considered

as a promising technique in the energy system control research field. Hong et

al.[41] reviewed the field research where the efforts have been focused. The main

applications concern the building design, operation and control, with an increasing

number of yearly publications over the last decade. In this section, it is presented a

short review on the building control RL algorithm. The most popular RL algorithm

for building control is the Q-Learning methodology, where the agent learns the

value of each state-action pair.

The first approach considered discrete state-action space with tabular Q-value.

Liu and Henze[42] in 2006 used tabular Q-learning to control the temperature

set point and the operation of thermal storage. May and Ross[43] achieved to

control the window opening state choosing between on and off while improving

the occupant’s comfort. The same action space was considered by An et al.[44],

who proposed a RL approach to reduce indoor PM2.5 concentrations in naturally

ventilated buildings without air cleaners. A DQN algorithm was trained in a

specific naturally ventilated apartment for a one-month period, and successively

deployed. The study concluded that the RL control works better in both virtual
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and real apartment than the baseline I/O ratio algorithm. The average indoor

PM2.5 concentration was reduced by 12.80% in the course of a year for a virtual

environment and by 9.11% for the real one. Moreover, RL reduced by 7.40% the

PM2.5 concentratrion when compared with real window behavior. Qiu et al.[45]

applied the Tabular Q-Learning to improve the global COP of the cooling water

system of the HVAC system serving a underground station in Guangzhou. Then,

it was compared to three other control systems (baseline controller, local feedback

controller and model-based controller). The results showed the Model-free control

could save 11% of the energy, which is more than 7% in local feedback controller

but less than 14% of model-based.

As the number of state-action pair increases due to the dimensionality or to contin-

uous values. Yu and Dexter[46] integrated fuzzy rules and Q-learning to control an

HVAC set point, while Zhou et al. [47] achieved to manage a smart grid. Differently,

it can be used a linear function to approximate the Q-value, as in Dalamagkidis et

al.[48] to control the HVAC operation. Another way to approximate the Q-function

is to use the fitted Q-iteration approach. This is used in Leurs et al.[49], who at-

tained the peak shaving of the maximum feed-in power of a PV system into the grid

by controlling an HVAC system. Also, Ruelens et al. used this type of controller for

a heat pump’s operation [50] and De Somer et al.[51] for a domestic hot water heater.

Recently, Deep Learning has enhanced the potential of function approximators by

exploiting Deep Neural Network. An example is provided by Vázquez Canteli et

al.[52] who applied it for the control of a thermal storage operation. A different

application is proposed by Brandi et al.[53], in which an algorithm based on Deep

Q-Network has been used to control the supply water temperature of the boiler

serving the radiant heating system installed in an office building. In this work,

an online network and a target network are initialized, the first one is constantly

updated and directly used in the interaction with the environment; the second
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one, called target network, is updated after N iterations and used to predict target

values. In this context, a static and dynamic deployment of the DRL controller is

performed, and a heating energy saving ranging between 5 and 12% is obtained with

enhanced indoor temperature control with both deployment. The same approach is

used by Yoon and Moon[54] to minimize the energy consumption. A performance

based thermal comfort control using Double Deep Q-Network allowed to reduce by

32.2% and 12.4% the energy consumption associated with the Variable Refrigerant

Flow (VRF) and humidifier system, within acceptable Predicted Mean Vote limits.

The control action were the ON/OFF status of the humidifier, the temperature

set-point and the VRF airflow rate. Also, Ding et al.[55] adopted a double deep

Q-Learning named OCTOPUS, employing a novel Deep Reinforcement Learning

(DRL) framework that uses a data-driven approach to find the optimal control

sequences of all building’s subsystems, is used to minimize the energy used in

heating/cooling coils, the electricity used in the water pumps and flow fans in the

HVAC system, electricity used by the lights, and the electricity used by the motors

to adjust the blinds and windows. In addition to the minimization of energy, it

is requested maintaining the human comfort metrics within a particular range.

Through extensive simulations it is demonstrated that OCTOPUS can achieve

14.26% and 8.1% energy savings compared with the state-of-the art rule-based

method, while maintaining human comfort within a desired range. Gupta et al.[56]

simulated a multi-building scenario under different assumptions, and compared

a Deep Q-Network (DQN) with a classical thermostat control. The thermostat

control has a +/- 3°C deadband around the optimal indoor temperature, while

the DQN acts directly on the ON/OFF status of a heater. The outcome showed

the RL algorithm outperforms the thermostat-based controller by improving both

thermal comfort, as deviation from optimal indoor temperature, and heating energy

consumption. Time-varying electricity price profiles have been investigated rarely,
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Jiang et al.[57] have recently applied a DQN with action processor in order to

enable planning one or more day ahead, under Time of Use tariff and demand

charges conditions. The objective function considered energy cost and a discomfort

penalty, and it was subjected to shaping technique to overcome the issue of reward

sparsity caused by the demand charge. A single-zone building was simulated, and

it was demnostrated that the customized DQN outperforms the baseline, saving

nearly 6% with demand charges, 8% without demand charges of the total energy

cost.

A different approach is to have the policy function parameterized but high variance

and difficult convergenge make it difficult to implement in the building control[41],

even though, the literature reports some contributions. Chen et al.[58], used a

Proximal Policy Optimization (PPO) RL algorithm to control supply airflow rate of

an AHU and supply water temperature of floor heating, achieving 7%–17% energy

conservation compared with the benchmark. Azuatalam et al.[59] used a modified

version, namely PPO-Clip to ensure minor deviations between new and old policies.

The agent chooses the zone temperature set-points of a whole commercial building

for several Demand Response (DR) scenarios, where it was able to modify the power

consumption according to the DR signals and to guarantee acceptable comfort

level.

The need of encoding expert knowledge or pre-training in the actor network has

been met by developing an actor-critic network, where both Q-value and policy

are parameterized. In this way, it is allowed to store and reuse the weights stored

in the actor network, rather than initializing randomly[60]. The main drawback

is the increased computation cost[41], so that actor-critic is not very popular in

the building control field. An actor-critic neural network approach was applied

to adjust the signal of a local control for HVAC control in 2008 by Du and Fei

[61]. This study reports significant improvements from a combined PID actor-critic
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learning approach than a stand-alone PID controller. Actor-critic has been studied

again by Fuselli et al.[62] and Wei et al.[63] for energy storage control, by Al-Jabery

et al.[64] for domestic hot water control, and by Bahrami et al.[65] to optimize the

scheduling of smart home appliances. The literature provides examples on more

actor-critic algorithm, Zhang et al.[66] applied an RL control type Asynchronous

Advantage Actor-Critic (A3C) in a water-based Radiant Heating System, where

the hot water pipes are integrated into window mullions. The goal is to reduce

the energy consumption of the system while respecting the internal comfort of

the occupants. The control system, in this case, operated on the mullion system

supply water temperature set-point. The same objective was achieved by Zou et

al.[67] using a Deep Deterministic Policy Gradient algorithm trained thanks to

a Long-Short-Term-Memory (LSTM) networks approximating real-world HVAC

operations of three AHU’s system and controlling fan speed, heating valve status

and damper position. In Park and Nagy[68], it is presented a Reinforcement Learn-

ing based Occupant-Centric Controller (OCC) for thermostats, called HVACLearn.

The agent learns the unique occupant behaviour and indoor environments and

monitoring indoor air temperature, occupancy, and thermal vote. The objective is

to find the optimal trade-off between the users comfort and energy consumption,

by adjusting the thermostat set-points. Authors simulated HVACLearn control in

a single occupant office with occupant behaviour models. HVACLearn control is so

compared to the baseline, and it was able to reduce the number of button presses

(too hot) significantly, while consuming the same or less cooling energy.

Biemann et al.[69] implemented different RL algorithms, which reduced energy

consumption with respect to model-based controllers by more than 13%. Particu-

larly, SAC algorithm showed clear improvements the first year and needed up to

ten times less data. Its high data efficiency and stability was considered to favour

real world applications.
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Multi-agent algorithm have been explored as well. Yu et al.[70] presents a Multi-

Agent DRL (MADRL) called Multi-actor attention critic (MAAC), in order to

minimize HVAC energy cost in a multi-zone commercial building under dynamic

prices, with the consideration of random zone occupancy, thermal comfort and

indoor air quality comfort in the absence of building thermal dynamics models.

To be specific, air supply rate in each zone and the damper position in the air

handling unit are jointly determined to minimize the long-term HVAC energy

cost while maintaining comfortable temperature and CO2 concentration ranges.

For encouraging exploration, Soft actor-critic (SAC) method is used. The simula-

tion results showed the effectiveness, robustness, and scalability of the proposed

algorithm. Nagarathinam et al.[71] consider the optimal control problem of min-

imizing the building HVAC energy subject to meeting the comfort constraints

by dynamically setting both the building and chiller set-points. In this frame, it

is presented MARCO (Multi-Agent Reinforcement learning Control) for HVAC

system. MARCO is based on Double Deep Q-Network algorithm and uses separated

DRL agents that control both the AHU’s and chillers to jointly optimize HVAC

operations. Authors train and deploy the agent in real configurations and it is

showed that MARCO learned the optimal policy in a two-agent setting with single

AHU and single-chiller. MARCO not only improved comfort but also reduced the

energy by 17% over a baseline that used seasonal variations in set-points.

Further research have been addressing the possibility of shortening the training

phase, which is a huge hurdle for the spread of RL. R. Jia et al.[72] showed how to

implement the expert knowledge on a DRL algorithm through “experience replay”

or “expert policy guidance, in order to reduce the length of the training phase, but

also, proposed to stabilize the learning process by penalizing the erratic behavior.

Vázquez-Canteli et al.[73] built a training environment based on the OpenAI Gym

library, in order to allow researchers to implement, share, replicate, and compare
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their implementations of reinforcement learning for Demand Response applications.

It is a customizable and modular framework where researchers can implement

storage technologies, energy generation, or energy-consuming system, according

to their purposes. Pinto et al.[74] made use of this training environment for a

single-agent RL centralised controller to flatten the cluster load profile while opti-

mizing energy consumption of each building. A SAC algorithm was used to manage

8 thermal storages of a cluster of four buildings equipped with different energy

systems. The coordinated approach was compared against a manually optimised

Rule-Based control for single buildings. Operational costs dropped down about 4%,

while the peak demand was reduced by 12%. But mainly, the coordinated energy

management allowed to reduce the average daily peak and average peak-to-average

ratio by 10 and 6%, respectively.

The training phase could be reduced by means of transfer learning as well. Deng

et al.[75] built and validated an RL occupant behavior model for an office building

and transferred it to other buildings. Transfer learning was successfully carried

out between commercial buildings with different HVAC control systems, and from

office buildings to residential buildings.

1.2 Contribution from this work

Previous works have proven the RL based algorithms can provide nearly optimal

policies for energy systems control. Nevertheless, further research are required to

find advanced control strategies which have to guarantee adaptability to different

environment, flexibility to the energy system and applicability in real operation.

In this work, a DRL based on the Soft Actor-Critic algorithm is used to manage

thermal and electrical energy storage in a multi-energy building during the cooling

season. The energy system is made up by an HVAC to serve the thermal zones, an

electric chiller, a cold-water storage tank, a PV module and a Li-ion battery. The
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thermal side of the model is simulated through EnergyPlus, while the electrical side

is simulated through Python. The simulation environment is built thanks to the

OpenAI gym library. This work aims at describing how an advanced control strat-

egy affects the design of the thermal and electrical storage. The control problem is

defined by a control action which is the tank operation and a objective function,

which is the energy cost. A Time Of Use tariff with 3 fares is used to compute the

electricity price. Two control strategies are compared, the benchmark which is a

RBC for TES with temperature set-points for charging during low price hours, and

the SAC algorithm, which makes use of its agent to choose on the scheduling of the

cold-water storage tank, so that the building load can be increased or decreased,

hence the BESS operation is influenced as well. Both the strategies, manages the

BESS through the same RBC.

The idea is to use a smart strategy in order to make a better use of the storage

technologies, thus allowing lower size equipment to be effective and avoid unneces-

sary investment costs. Particularly, the analysis highlights how the definition of

the control strategy itself is part of the design of an energy system. The proposed

strategy is expected to satisfy the thermal and electrical load by means of lower

size equipment, as well as reducing the total energy cost without any further effect

on user comfort. Also, this work provides an overview of the advantage of adopting

smart control strategy in the perspective of the compelling need for enhancing

building flexibility and pushing toward nZEB. This means that RL should prove

to be very effective at managing energy storage, and improve their profitability at

each size. Mainly, BESS are crucial components for building energy systems, and it

is urgent to find a way of increasing self-consumption level without scaling up. In

this context, this work shows how RL can play a role in achieving those objectives.

The chapter 2 introduces the RL framework and its theoretical foundations, along

with the improvements that have been made during the last years. Chapter 3
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describes the case study and formulates the control problem, as well as describing

the two control strategies. In chapter 4, the RL algorithm design is presented by

defining the state space, the action space and the reward function and the hyper-

parameters. The simulation environment is described and so is the experimental

setup, which defines the configurations for the storage systems. Chapter 5 shows

the results throug plots and tables, and then, these are discussed in the next section.

Finally, chapter 6 provides the recap of the work, analyze the main implications

and open the questions on how to improve the study and on future contribution.
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Chapter 2

Fundamentals of

Reinforcement Learning

Reinforcement Learning belongs to the Machine Learning discipline, together with

supervised and unsupervised learning, as seen in Fig. 2.1. The main difference

lies in the ability to assign a score for the output, which tells how valuable a state

is[76]. The algorithm has a learning agent which chooses the actions to be carried

out in order to achieve a certain objective, by interacting with the environment

where it is implemented. Decisions are made at each control time step and depends

on the current state of the system, and the way the agent reacts to the external

disturbances defines the so called policy. RL is applied to problems that can be

divided into two categories [48]: i) Episodic problems, that have one or more

terminal states. An episode is repeated over, during which the agent is trained,

meaning it investigates all possible combinations of states and rewards. When the

agent gets to the terminal state, the episode ends, and the environment is reset

to the initial state for a new episode to start. ii) Continual problems do not end,

and they continue indefinitely. RL refers to the framework referred to the Markov
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Figure 2.1: Machine Learning typologies

Decision Process (MDP), according to which both the reward and the probability

of transition between the previous and the next state depends only on the current

state and the action chosen. MDP predicts the following state and the expected

reward exploiting the information available at the last time step and rejecting

all those information from the past experience. MDP formalizes the information

exchanged between agent and environment mathematically, and indicates the main

elements that made up the RL agent[77]):

• State space (s ∈ S), all possible states of the environment considered. The

definition of the state space may be subjected to a sensitivity analysis to

find out which are the most important variables that come into play. Also,

if an unnecessary state is chosen, the RL agent suffers from the curse of

dimensionality [26].

• Action space (a ∈ A), the set of possible actions that can be selected by the

agent at each timestep.
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• Reward (r), a scalar value that indicates how much the objective is accom-

plished and it is sent back from the environment after performing the action

chosen by the control agent.

• Policy (π), it represented by the mapping of the actions probability distribution

for each state. The agent’s objective is precisely to acquire an optimal policy.

• Transition probability distribution, which is present in model-base RL and

specifies the probability of the environment to end up in a certain state given

the current state s and the action a.

For each control time-step, the agent will perform a particular action, and the

environment issues both the scalar reward and the information about the state

to the agent. Tuples are mathematical elements representing the current control

time-step. It is a vector that contains within it four elements: state, action and

reward at the current time-step and state at the next time-step. The agent takes

advantage from two value functions to define the policy, these are the state-value

function and action-value function, which provide the goodness of states and actions.

The state-value function represents the expected reward given by the agent when

starting from a state s, following a specific control policy π [48]. The following

equation expresses it:

vπ(s) = E[rt+1 + γvπ(sÍ)|St = s, St+1 = sÍ] (2.1)

The action-value function represents the expected reward given by the agent when

it chooses an action a, starting from a state s, following a specific control policy π.

The following equation expresses it:

qπ(s, a) = E[rt+1 + γqπ(sÍ, aÍ)|St = s, At = a] (2.2)
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where γ is called the discount factor, it is in the range between 0 and 1, and defines

the importance of future rewards with respect to the present reward. If γ = 0, the

agent will consider only current reward, neglecting future reward. When γ = 1,

current and future rewards have the same importance. These two functions are

updated online during the training phase of the agent, so they depend heavily on

the experience gained. The RL agent is trained through a trial-and-error approach:

this means that it explores different trajectories (i.e. policies), receive a feedback

from the environment, and it is continuously updated to improve them. This is

what is referred to as on-policy learning, i.e. the policy output of the controller

is being carried out by the environment. The agent can also learn from other

policies that have already been implemented in an environment, in this case, it

is called off-policy learning. Some value-based algorithms use this methodology,

especially for its greater flexibility than on-policy learning. However, off-policy

learning suffers from a lower inclination to explore action space, if compared to its

counterpart. To overcome this problem, a large amount of measured data should

be available, but using only measured data may be inadequate [26]. So, as in our

case, simulated virtual environments can be created and used to train the RL agent.

To do this, it is advisable to create an interface between energy simulation and

control platforms, such as EnergyPlus and Python. The function described above

can be dealt by RL in different ways, so that the algorithms are becoming more

and more complex and the range of applicability is increasing. The simplest way

to compute the Q-values is to store the expected returns in a look-up table, called

Q-table, which is updated according to the Bellman’s equation [78].

Q(s, a) = Q(s, a) + α[rt + γmaxaÍQ(s, a)−Q(sÍ, aÍ)] (2.3)
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With α [0,1] named as the learning rate and establishing how much new knowledge

overrides old knowledge. α = 1 means that new knowledge completely overrides

the old one. As the dimensionality of the space of actions or states increases, or

they have continuous values, the memory storage and computation time required

to update the Q-table increase, so Q-Learning becomes inadequate [79]. In this

case, an alternative to the tabular form of Q-Learning has been elaborated, it may

be useful to use a Deep Neural Networks (DNNs) as function approximators. The

main element of a neural system is the neuron, composed of a cellular body and an

axon that sends the output response to the next layer. The structure is a dendritic

tree that connects the neurons of different layers. The topology of a DNN is based

on multiple layers of neurons. Typically, a neuron is a non-linear transformation of

a linear sum of its inputs and it can be expressed by the following equation:

output = factivation

 Ø
#neurons

inputi + bias

 (2.4)

DNNs are composed of input and output layers, but between them are hidden layers

that take input from the previous layer and perform a mathematical operation. Fig.

2.2 shows the graphical representation of a neural network. By inserting DQNs into

the Q-Learning results Deep Q-Learning (also called as Deep Q-Network). The

Q-values will be indicated with the following formula, taken from Nair et al.[80]:

Q(s, a) = Q(s, a; θ) (2.5)

The equation represents the Q-network, where the term θ parameterizes the Q-

value function: it indicates the weights of the network. The input layer has as

many neurons as the number of variables belonging to the state space, while the

number of neurons in the output layer corresponds to the dimension of the action

26



Fundamentals of Reinforcement Learning

Figure 2.2: ANN basic structure

space. The whole network can be seen as simply a function that expresses the

relationship between states and Q-value, for each action, in order to find the

optimal policy. It is good to remember that this last parameter is not known

a priori and is obtained during the training process as already explained in the

previous paragraph on Q-Learning, and updated according to Bellman’s equation.

The literature provides example where it is shown how the use of two DQNs,

namely online network and target network, improve the performance of the learning

algorithm. The main characteristic of this technique is the ability to counteract

the overestimation of the Q-values that may lead to a non-optimal outcome when

using a single DQN. This target network is a duplicated of the other one, but it is

synchronized every τ steps (an arbitrary number), and it is used to calculate the

target Q-values for expectation [81]. Instead, the online network is the one used to

interact with the environment and updated with Bellman’s equation. The use of a

replay memory, helps storing the tuples referred to the previous experiences of the

agent: this allows, if necessary, to reuse them and go beyond the problem of related

observations. At the same time, the optimization process is carried out. This
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work makes use of a target network and a replay buffer, but with a discrete action

space to explore. Deep Reinforcement Learning algorithms face problems related

to high sample complexity, so that simple tasks could require a huge number of

data collection steps: this leads to poor sample efficiency due to on-policy learning.

It is necessary to try to switch to off-policy algorithm. Moreover, they suffer from

dependence on the chosen values of hyperparameters, like discount factor, learning

rates, exploration constants and other. These two obstacles make it challenging to

apply these control algorithms to real-cases. To try to overcome these obstacles, the

Soft Actor-Critic (SAC), an off-policy algorithm based on the maximum entropy

RL framework, was recently introduced by Haarnoja et al.[82]. While most existing

model-free works make use of discrete action space, SAC easily allows working with

a continuous one. This algorithm aims to maximize a target function composed

not only of the term expected reward but also of an entropy term. This last term,

is what expresses the attitude of our agent in the choice of random actions. It

also has dual importance, as it ensures that the agent is explicitly pushed towards

the exploration of new policies and at the same time avoids that it transposes

lousy policy. SAC uses the entropy terms to represents the trade-off between

exploration and exploitation. Exploration is defined as the phase in which the

agent is neglecting his real goal of maximizing the reward and samples actions

within a new set composed by those not yet selected. This is needed in order to

avoid trapping in local minima. By exploitation, it is intended that phase in which

the agent chooses within the previously selected actions, the one that allows him to

get the higher rewards considering the knowledge it has acquired. A right control

agent must try to optimize the compromise between these two stages. The current

state of the art sees applications like those in the field of robotics, and recently it

is increased its application in energy building context. As proposed in Haarnoja et
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al.[82], the Soft Actor-Critic algorithm incorporates three key ingredients: an Actor-

Critic architecture with separate policy and value function networks, an off-policy

formulation that enables reuse of previously collected data for sample efficiency, and

entropy maximization to encourage stability and exploration. The SAC presented

around the last months of 2018 suffered from dependence on hyperparameter

temperature, therefore in the latest version proposed in Haarnoja et al.[82], it is

devised an automatic gradient-based temperature tuning method that adjusts the

expected entropy over the visited states to match a target value. Soft actor-critic

is based on the maximum entropy reinforcement learning framework, in which the

objective is maximize both expected reward and entropy. It could be seen as an

extension of standard RL objective. The maximum entropy objective requires an

optimal policy like this:

π∗ = argmaxπ
Ø
t

γ([Est,at [r(st, at) + αH(π(·|st))]]) (2.6)

with α temperature parameter, that indicates the importance of the entropy term

compared to the reward one, it also indicates the stochasticity of the optimal

policy. Generally α is zero when considering conventional reinforcement learning

algorithms. It is convenient introducing a discount factor γ to ensure that the sum

of expected reward and entropies is finite. The SAC is derived from a variant of the

maximum entropy framework, called Soft Policy Iteration, which is not presented

here. The state-value function for SAC algorithm can be written as follow:

V (st) = Eat∼π[Q(st, at)− αlog(π(at|st))] (2.7)

When the observation space is continuous, the optimization of the soft q-function

is performed by minimizing the soft Bellman residual:

JQ(θ) = E(st,at)∼D[12(Qθ(st, at)− (r(st, at) + γEst+1∼p(st,at)[Vθ(st+1]))2] (2.8)
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where D is the replay buffer and Vθst+1 is estimated thanks to the target network

and a Monte-Carlo estimate of Eq. 2.7. Also, it is needed to reparameterize the

policy, whose losses can be expressed by Eq. 2.8:

Jπ(φ) = Est∼D,et∼N [αlog(πφ(fφ(Ôt; st)|st))−Qθ(st, fφ(Ôt; st))] (2.9)

The reparameterization trick allows overcoming the problem of backpropagating

errors in the normal way.

In the first version of SAC, the temperature parameter was fixed and then considered

as an hyper-parameter, so its choice had an important influence on the agent’s

behaviour. To avoid this problem, in the next SAC update was introduced the

possibility of making alpha as an update-able parameter. In particular, it is updated

by taking the gradient of the objective function below:

Jα = E[−α ln πt(at|st; α)− αĤ] (2.10)

where Ĥ represents the desired minimum entropy, set to a zero vector. This SAC

latest version improves both performances and the stability of the algorithm, and it

is not implemented for this thesis work. The SAC policy is expressed as a Gaussian

distribution which actions are sampled from, and optimized using approximate

dynamic programming [82]. In conclusion, this algorithm is particularly useful

under a changing environment or when agent’s knowledge of the environment

changes [83], also it becomes necessary when the action space is continuous.

In this work, a SAC for discrete action is chosen. Generally, a discrete action space

involves a faster convergence since there are less state-action pair to explore, and

mostly important, reduces the length of the training phase, which is the main

drawback of using RL algorithms.

P. Christodoulou [84] derived a discrete version of the SAC described by Haarnoja

et al.. The difference is that the policy π(at|st) is not anymore a represented by
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a probability density function but it has finite value, oppositely, the derivatives

of the loss functions still hold. The following changes are also proposed by P.

Chistodoulou:

• The soft Q-function outputs the Q-value of each possible action rather than

simply the action provided as an input, i.e. our Q function moves from Q:

S x A → R to Q: S → R|A|. This was not possible before when there were

infinitely many possible actions we could take;

• The policy can directly output the probability of an action instead of the

mean and co-variance of our action distribution. The policy therefore changes

from π: S → R2|A| to π: S → [0,1]|A| where now we are applying a soft-max

function in the final layer of the policy to ensure it outputs a valid probability

distribution;

• The soft Q-function cost JQ(θ) is minimized by calculating the expectation

directly instead of plugging in our sampled actions from the replay buffer to

form a Monte-Carlo estimate of the soft state-value function. This change

should reduce the variance involved in our estimate of the objective function

JQ(θ). Then, the state-value function can be expressed as:

V (st) = π(st)T [Q(st)− αlog(π(st))] (2.11)

• Similarly, we can make the same change to our calculation of the temperature

loss to also reduce the variance of the estimate. The temperature objective

changes from Eq. 2. to:

J(α) = πt(st)T [−α(log(πt(st)) + H)] (2.12)

• The reparameterization trick is not needed anymore to minimize Jπ(φ), now

our policy outputs the exact action distribution and it is possible to calculate
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the expectation directly. The policy losses changes to:

Jπ(φ) = Est∼D[πt(st)T [αlog(πφ(st))−Qθ(st)]] (2.13)

The algorithm for SAC with discrete actions is given by Algorithm 1.

Algorithm 1 Soft Actor-Critic with Discrete Actions
Initialise Qθ1 : S → Ù|A|, Qθ2 : S → Ù|A|, πφ : S → [0,1]|A|

ó Initialise local networks
Initialise Qθ1 : S → Ù|A|, Qθ2 : S → Ù|A|, πφ : S → [0,1]|A|

ó Initialise target networks
θ1 ← θ1, θ2 ← θ2 ó Equalise target and local network weights
D ← ∅ ó Initialise an empty replay buffer
for each iteration do

for each environment step do
at ∼ πφ(at|st) ó Sample action from the policy
st+1 ∼ p(st+1|st, at) ó Store the transition from the environment
D ← D ∪ {(st, at, r(st, at), st+1)} ó Store the transition in the replay

buffer
end for
for each gradient step do

θi ← θi − λQ∇̂θi
J(θi) for i ∈ {1,2} ó Update the Q-function parameters

φ← φ− λπ∇̂φJ(φ) ó Update policy weights
α← α− λ∇̂αJ(α) ó Update temperature
Qi ← τQi + (1− τ)Qi for i ∈ {1,2} ó Update target network weights

end for
end for
return θ1, θ2.φ ó Optimized parameters
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Case study and control

problem

In this chapter, a brief description of the control problem is provided. A multi-

energy office building with electrical and thermal load is the object of the control

policy which must define the operations scheduling of a cold water storage tank

and a Li-ion Battery Energy Storage System.

A. Amato et al.[85] already drawn the 3D model of the facility using the Open-

Studio plug-in for the design software SketchUp. Then, the SketchUp output

file was converted into an Input Data File (IDF) file, editable by the building

energy simulation program EnergyPlus. Using EnergyPlus, the building model was

completed with the definition of its envelope and all the assumptions relevant for

assessing the future energy performance of the facility in operation, also built using

eco-sustainable and innovative materials.

The thermal zones are served by an HVAC system that delivers cooled air by means

of fun coils and can be fed by an electric chiller or the thermal storage. The HVAC

system was simulated using EnergyPlus. The interaction between EnergyPlus and
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the controllers in Python was achieved using the Building Control Virtual Test Bed

(BCVTB) as a middleware. The electric chiller is implemented in the EnergyPlus

environment by defining its nominal operating conditions and the equations that

relate the cooling capacity and the COP as functions of the leaving chilled water

temperature, the entering condenser fluid temperature and the Partial Load Ratio.

The chiller can provide cooling energy to the building, to cold water storage or to

both of them. The tank can be seen as a buffer between chiller and HVAC aiming

at decoupling the chiller electricity consumption and the cooling load served to

the zones. The circulation pump is active whenever the chiller is on or the tank is

discharging.

The cooling system can operate in two modes, i) Charging mode, where the cold

water is fed to the storage tank by the chiller, and to the building in case the

cooling load is requested, ii) Discharging mode, where the demand of the building

is met only through the storage, if needed, otherwise no water is circulated and

the circulation pump is turned off. The controller chooses among these two config-

urations. The Fig. 3.1 represents the two operational modes, during the charging

phase, a three-way valve regulates the fraction of flowrate that bypasses the tank

according to the building cooling load, the remaining is sent to the tank, and it is

given by the difference between the chiller cooling capacity and the cooling load:

In discharging mode the chiller is by-passed and the building is cooled only via

the cold thermal storage. Both have a fixed flow rate. Moreover, safety constrains

are introduced in order to guarantee that the cooling demand of the building is

always met and to maintain the temperature of the storage within the prescribed

range, also the cooling capacity of the chiller limits the amount of energy trans-

ferable to the storage and, in discharging mode if the temperature of the storage

tank rises above the maximum and the building cooling demand is not zero the

system automatically switches to charging/chiller cooling mode in order to meet
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Figure 3.1: Cooling loop: Discharging mode on the left-hand side, charging mode
on the right-hand side. The blue lines represent the supply lines, the red lines
represent the return lines. Dashed lines are on idle

the demand regardless of the control action foreseen by the agent. For simplicity,

the building’s thermostatic control is not considered and its cooling demand is

considered as an external disturbance along with the price of the electricity and

the zone temperature where the storage is located.

The electrical load of the building is composed by the electric chiller and the

circulation pump and it is treated as aggregated. The test facility will be used by

students and staff in the central hours of the day, akin to a typical tertiary sector

building. Thus, a good matching between energy consumption and PV generation

power profiles is expected. For this reason, PV generators will be installed to supply

the electricity demand. The PV model is implemented into a Python class and

solar positions are imported from the pvlib library. The operation of BESS was

35



Case study and control problem

also simulated with an energy model developed in the Python environment. The

most used battery models involve the estimation of the State Of Charge (SOC),

which is a simple and easily implemented method, but it is sufficient for carrying

out a preliminary evaluation on the impact of BESS installation, even though the

degradation of the battery is not taken into account. The implemented model is

based on the calculation of the SOC at any time instant t according to the set of

equations in Eq. 3.1:



SOC(t) = SOC(t− 1)− ηrte
Pbatt(t)∆t
Cbatt

ifPbatt < 0

SOC(t) = SOC(t− 1)− Pbatt(t)∆t
Cbatt

ifPbatt > 0

(3.1)

where SOC(t−1) is the SOC at the previous time instant t−1, ηrte is the round-trip

efficiency , Pbatt is the average power exchange in the time-step ∆t between the

battery and the system (Pbatt < 0 in charge and Pbatt > 0 in discharge) and Cbatt is

the battery nominal energy capacity. Moreover, the battery has safety constraints in

order to preserve its lifetime. Charging and discharging processes have to respect two

limits |Pcharge| < Pcharge,max and |Pdischarge| < Pdischarge,max, defined in the technical

specifications and required to avoid too fast charging/discharging. Typically,

maximum charging and discharging power are different and when the power exceeds

these thresholds, the controller limits it to the maximum recommended value Pmax.

Limits on the State Of Charge must be respected and the battery SOC must

not exceed the minimum and maximum values provided by the manufacturer, i.e.

SOCmin ≤ SOC ≤ SOCmax, in order to preserve the health of the battery. The

energy surplus or deficit lead to energy exchanges between the facility and the

external electrical grid (energy injections and absorptions, respectively).

The electrical system is composed by a DC bus and an AC bus, interfaced by a mono

directional DC/AC inverter. The PV is connected to the DC bus by a DC/DC
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converter and can inject electricity to the building, to the battery and to the grid,

ordered as the descending level of priority. BESS exchanges electricity with the

DC bus through a DC/DC converter and the ratio between energy discharged and

energy charged is equal to the round-trip efficiency net of the converter efficiency,

given that there are no internal losses. Grid is not allowed to charge the battery

according to the normative of many European countries, but it is used to assist

in matching demand and generation at each instant[86], so it is assumed that the

grid is always able to balance the electrical system. The Fig. 3.2 represents the

electrical system, along with allowed directions for each flow:

Figure 3.2: Electrical layout

At each time-step, the electricity exchanged with the grid can be positive or negative,

so the energy cost is computed according to a buying price schedule and, a selling

price schedule for electricity injected to the grid. The schedule is based on the

Time of Use fare plan with low, medium and peak price hours, and it is known in

advance for the whole season. Feed-in tariffs are out of the scope of this work, thus

the selling price is fixed over the whole control period.
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The goal of the control policy is to minimize the energy cost by exploiting the

energy storage to increase the building flexibility, and perform peak shifting to

low price hours. The control policy is realized by defining the operation of the

energy storage given a set of information. This work makes use of two very different

control strategies, which are referred to as the baseline and the proposed strategy.

The baseline adopts two Rule-Based Control strategies to manage both the energy

storage, whereas the proposed strategy uses a smart agent from the SAC algorithm

to control the thermal storage and has as the same RBC as the BESS. In the

following section, these control strategies are described.

3.1 Rule-Based Control

The thermal storage follows a peak shifting strategy where it acts as a buffer

between the chiller operation and cooling load. During low price hours, the chiller

charges the tank at the maximum flow rate according to pre-defined temperature

set-points, which are set to 10°C and 12°C. When the price is the highest the tank

starts discharging until the storage temperature reaches the maximum temperature

or the building cooling demand is null. During the week-end, the building load is

zero, but the chiller keeps charging the tank in order to take advantage of the PV

production and to discharge the battery.

A classical RBC from the literature is used to manage the BESS, which is used by

the vast majority of the authors. This strategy is considered as the most simple,

but still very effective. Both Ruusu et al.[87] and A. Amato et al.[85] suggest this

straightforward approach, where battery is charged when PV production excesses

the building load otherwise it is discharged. Being more specific, during charging

the PV surplus is diverted to the battery if it is allowed by the constraints on

charging power and maximum SoC, otherwise the grid draws the remaining energy

fraction. During battery discharging, the battery works in parallel to the PV to

38



Case study and control problem

meet the demand, if the contribution from both PV and battery is not enough, the

grid guarantees that the building load is satisfied. This strategy is implemented in

both the baseline and the proposed strategy. In Fig. 3.3, the flowchart representing

the battery RBC is shown.

Figure 3.3: Rule-Based Control strategy for BESS

3.2 Reinforcement Learning control

The proposed strategy exploits an advanced control strategy for managing storage

tank operation. It aims at scheduling the chiller by choosing between the charging

and discharging phase of the thermal storage. At each control time-step, the

control agent is fed with the observed state from the environment, processes it and

returns back the chosen action to the environment. Eventually, the control action

is adjusted by the environment according to a few constraints in order to make

sure the thermal load is satisfied, the upper and lower temperature limits are not
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violated and the maximum chiller capacity is not exceeded. Finally, the control

action is performed in the simulation and repeated over until the next control

time-step. Again the charge and discharge flow rate are fixed.
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Implementation

4.1 Case study

The test facility analyzed in this work was devised within the PhotoVoltaic Zero

Energy Network (PVZEN) research project at the Politecnico di Torino, thanks

to the co-operation o fthe Department of Energy (DENERG), the Department of

Architecture and Design (DAD) and the Department of Electronics and Telecommu-

nications (DET). The goal of the project is to build an all-electric nZEB that fulfils

its energy demand through PV systems and uses BESS to be independent from the

external electrical grid [85]. It consists of two study rooms, one control room and a

technical room. The technical room is not served by the air-conditioning system

and the storage tank is placed within it. Rooms are separated by partition walls.

It is a prefabricated building with a rectangular layout. The area occupied by the

facility is 196.3 m2 (11.25 × 17.45 m), including an outdoor zone with wheelchair

ramp and steps and a shed-covered zone at the glazed entrance doors of the study

rooms and the control room. the interior air-conditioned area is around 96.8 m2.

The ceiling height is 2.8 m at the minimum and 3.7 m at the maximum above

the floor level, due to the different tilt angles of the roof, which are 13.4° on SE
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Figure 4.1: Building layout

side and 15° on NW side. In Fig. 4.1, the facility layout is presented, showing the

distribution of the rooms. The equipment and the size of the rooms are different as

they have been designed for carrying out different kind of activities. The useful area

and the function of each room are described in Tab. 4.1 and the building envelope is

characterized by the construction features listed in Tab. 4.2. The weather file used

in this work is the reference weather file (ITA TORINO-CASELLE IGDG.epw)

available in EnergyPlus for Torino, Italy which provides outdoor temperature and

solar irradiance collected by the weather station at Caselle Airport. The input data

represents the cooling season which is defined from June to August. The rooms

Rooms Area Use
Technical room 15.7 m2 Location of electronic and HVAC equipment
Study room 1 30.4 m2 Hosting students
Study room 2 30.4 m2 Hosting students
Control room 20.3 m2 Monitoring of energy systems and performance

Table 4.1: Test facility rooms

are served by an HVAC system to satisfy the cooling load, which can be fed by an
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Feature Value
Conditioned floor area 96.8 m2

Conditioned volume 501 m3

Envelope surface/conditioned volume ratio 0.85 m1

Transparent/opaque envelope surface ratio 6.6%
Opaque envelope surface 400 m2

Û op 0.16 W/m2K

Û tr 0.55 W/m2K

Table 4.2: Bulding envelope characteristics

electric chiller or a cold-water storage tank. The cooling demand was considered as

an external disturbance of the system and was calculated within EnergyPlus in

order to maintain an indoor temperature of 26 °C and a relative humidity of 55%

between 08:30 and 18:00 from Monday to Friday and the air ventilation rate for

the control room and the study rooms was based on the occupancy at 10 L/s per

person, thus resulting in 30 L/s and 100 L/s, respectively.

The chiller is chosen with a reference capacity Qcap of 12 kW and the reference COP

of 2.67. The design water mass flow rate during charging phase is 0.2 kg/s while

during discharging phase is 0.35 kg/s. This latter value correspond to the sum of

the design mass flow rates of the three air-conditioned zones. The supply water

temperature at the outlet of the chiller was set equal to 7 ℃. The tank operates

in the range between 10°C and 18°C which correspond to a State Of Charge of 1

and 0, respectively. The thermal losses are computed from the global heat transfer

coefficient and the temperature difference between the tank and the technical room

air. The value for this parameter is obtained from technical datasheets.

A commercial monocrystalline silicon photovoltaic module will be mounted, namely

BP Solar BP 585 F. The selected module has a specific power of about 140 W/m2

and an efficiency of 15%, under standard test conditions (solar irradiance GSTC =

1000 W/m2 , cell temperature TSTC = 25°C, AirMassSTC = 1.5), as described by
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Durisch et al.[88] and reported in Eq. 4.1.

η = f(G, AM, Tout) (4.1)

The PV panels tilt angle has been chosen from the world dataset provided by M.Z.

Jacobson and V. Jadhav[89] which perform the optimization for a large amount of

location. Among those location, Lyon is selected as the most suited for this case

study and the tilt is set to be as high as 33°, whereas the azimuth is constrained

by the orientation of the test facility. These inputs along with solar radiation

and incidence angle allows to compute the PV specific power at each simulation

time-step. The PV field design takes into account the total demand from the

cooling season only, in this way the nominal power of the modules is chosen in

order to match up to the peak power of the building total demand. The Tab. 4.3

recaps the parameter of the PV module.

Parameter Value
Nominal power 3 kW
Surface 22 m2

ηSTC 0.15
Tilt angle 33°
Azimuth angle 116°

Table 4.3: PV parameters

The characteristics of the BESS considered in this work were provided by the

datasheet of a modular Li-ion battery available on the market and are shown in

Tab. 4.4. Several nominal capacities are explored in the simulation. A SOCmin =

10% and a SOCmax = 80% were assumed for a total Depth of Charge of 80%, in

compliance with the typical values for the lithium-ion technology. An initial SoC

of 50% was set. Maximum charging and discharging power are set to 0.5 C and

1 C. During the opening hours, the zones were supposed to be occupied at their

maximum capacity, which means the control room and the two study rooms were
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Parameter Value
Round-Trip Efficiency 0.96
Maximum discharging power 1C
Maximum charging power 0.5C
SOC min 10%
SOC max 90%

Table 4.4: BESS characteristics

assumed to be constantly occupied by 3 and 10 people, respectively. No regular

occupation was expected for the technical room. The air infiltration rate was set

to 0.15 vol/h, a typical value for office buildings. The control time step and the

simulation step are set equal to 1 hour. Obviously, this choice reduces the accuracy

of the simulation, but the computational cost is dramatically lower. The electricity

cost is scheduled for buying and selling: across Europe there are many examples

of TimeOfUse tariffs, which have been successfully implemented, and it is at the

moment the most spread DR program available for small users. The price of the

electric energy drawn from the grid to operate the chiller unit is based on the tariff

structure commonly implemented in Italy. The simulation time is divided into low

price, medium price and high price periods. Specifically the low and medium price

values were chosen to be 1/10 and 1/2 of the higher one, respectively, corresponding

to 0.03 €/kWh, 0.165 €/kWh and 0.3 €/kWh. On week-days the price is low from

0:00 A.M. to 7:00 A.M. and from 11:00 P.M. until 0:00 A.M., the medium price

period goes from 7:00 A.M to 8:00 A.M. and from 6:00 P.M. to 11:00 P.M. and

finally, the high price period goes from 8:00 A.M to 7:00 P.M.. On saturday, the

price is medium from 7:00 A.M. to 11:00 P.M. and it is low before 7:00 A.M. and

after 11:00 P.M.. On sunday, the price is always at low fare. The price of the

electricity were assumed relatively to the maximum price, in order to discriminate

the values for the optimization application. The Fig. 4.2 visualizes the fare scheme.
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Figure 4.2: Electricity TimeOfUse tariff

Regarding the selling option, the italian GSE refers to "scambio sul posto" to

compute the revenue for production from renewables; in case of PVs, the GSE

contributes with its "Contributo in conto scambio" on a yearly basis, in this work,

since there are no data for the whole year, it is assumed it to be equal to 0.01

€/kWh[90]. The efficiency of monodirectional DC/AC is assumed to be equal to

90% and the efficiency of DC/DC converters to 95%.

4.2 Design of Reinforcement Learning

One of the most recently researched Reinforcement Learning algorithm for energy

systems is the Soft-Actor-Critic with replay buffer and target network. These two

last improvements have raised the possibility for actor-critic to play a role in the

building control field. The reinforcement learning control is used in this work to

solve a highly non-linear problem, and it is designed by defining the action space,

the reward function and the state space. Besides the formulation of the reward

function and of the state-space, the reinforcement learning frameworks requires

of a series of hyperparameters to be set as the discount factor for future rewards

γ and the structure of the neural networks employed as function approximators.

The length of the learning phase is very important to assess the applicability of RL

control and is influenced by these values and by the definition of the observation

space and the reward function as well. The values of the hyperparameters selected

for this application are summarized in Tab. 4.5.
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Hyperparameters
Discount factor 0.99
Actor network learning rate 0.0005
Critic network learning rate 0.0005
Soft-update Boltzmann Temperature coefficient 0.005
# hidden layers 3
# neurons in hidden layer 512
batch size 64
Reward scaling 10
Reward weight factor 100

Table 4.5: Hyperparameters for SAC training

This algorithm will map the optimal policy to follow given a certain state, which is

a discrete probability distribution where actions are sampled from. The training

goes on by repeating the same training episode in order to let the agent converge

to the optimal control policy. Once the agent is trained, the deployment phase

takes place to assess the performance of the policy. The deployment can be static

or dynamic, which defines whether the networks stop being updated or not while

the agent keeps sampling action from the Gaussian distribution. For the purpose of

this work, the condition of the environment are kept as the same as in the training

phase, so that the agent does not have the need to keep updating the weights and

biases of the network. In the following paragraphs, the definition of observation

space, action space and reward function are presented.

4.2.1 Observation space

The agent choose the action given a set of information provided by the observation

space, which has to be as representative as possible of the current state of the

system. Normalization is needed to process output from the simulation before

feeding to the algorithm.
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In this study the state space does not include only information about of the current

time step but also information about the recent past and future disturbances. The

storage tank State Of Charge (SOC) at the timestep k was introduced to provide

to the agent information about the amount of energy actually stored. Moreover,

past values of this variable were introduced to provide information about the

evolution of the temperature caused by the charging/discharging of the system

up to 2 hours before the current control time step. The building cooling demand

together with the price of electricity is a fundamental information to optimally

manage the controlled system. The electricity price is a key-information for the

agent in order to recognize peak price hours and correctly plan the operations

of the system. Present value is provided along with the exact values for the 24

hours ahead. The electricity price patterns were supposed to be always known,

thus no dynamic pricing is taken into consideration. Also, the values of building

cooling demand from time step k to time step k + 24 were provided to the agent.

The predictions of building cooling demand were assumed to be deterministic, but

future works could use neural networks model them, since many applications in

energy forecasting have been studied recently. The outdoor air temperature affects

the COP of the chiller unit so it is included as well. Moreover, the agent must

know the amount of on-site generation available, so that PV production and its

predictions for the next 24 hours and the State Of Charge of BESS are fed as input.

This gives the agent the ability to exploit the chiller during high irradiance periods

or when battery is fully charged.

The Tab. 4.6 shows the state variables along with their maximum and minimum

value.

All the variables included in the state-space are physical quantities directly extracted

from the simulation output with the exception of the State of Charge (SOC) of the

storage tank that was calculated according to Eq. 4.2:
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State variable Min Max Unit
Outdoor temperature 7 40 °C
Tank SOC 0 1
Tank SOC 1h lag 0 1
Tank SOC 2h lag 0 1
Battery SOC 0 1
Cooling load 0 10000 kW
Cooling load 24h prediction 0 10000 kW
PV generation 0 2000 kW
PV power 24h prediction 0 2000 kW
Electricity price 0.03 0.3 €/kWh
Electricity price 24h prediction 0.03 0.3 €/kWh

Table 4.6: Observation space

SOC(t) = 1− Ts(t)− Ts,min
Ts,max − Ts,min

(4.2)

4.2.2 Action space

At each control time step, the agent has to define the scheduling of the charging

and discharging modes. SAC algorithm can work with continuous action space,

but it involves the exploration of a very wide range of action-space pairs before

converging, hence the learning could become overly large and the applicability

in real-time operation is discouraged. Given the motivation for shorter learning

time, the action space is selected to be discontinuous. Particularly, the controller

must choose between 1 and -1, which correspond to charging mode and discharging

mode of the cold-water storage tank, respectively. This implementation reduces

the state-action pairs to be explored, without major drawbacks. The control action

must respect the safety constraints otherwise the system operation is adjusted in

order to meet them.
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4.2.3 Reward function

The reward function obtained by the agent after selecting an action at each time

step measures its control performance. The objective of the controller is to minimize

the energy cost, which is positive when energy is withdrawn from the grid, but

the use of PV allows negative costs when its production excesses the aggregated

building electricity demand and battery is already fully-charged. The reward

function is expressed by the Eq. 4.3:


r(t) = βEgrid(t) · Cbuy(t) ifEgrid(t) < 0

r(t) = βEgrid(t) · Csell(t) ifEgrid(t) > 0
(4.3)

Where Egrid(t) refers to the electricity exchange between the facility and the ex-

ternal grid at time-step t, Cbuy(t) and Csell are defined according to the schedule

price for buying and selling electricity and β is a weight factor introduced to

regulate the magnitude of the reward, namely reward scale, and it is considered an

hyperparameter of the algorithm.

4.3 Simulation environment

The system model and the control strategy are implemented in a simulation

environment which enables the information exchange between EnergyPlus v9.2.0

and Python v3.0. The Building Control Virtual Test Bed (BCVTB) and the

ExternalInterface-Ptolemy server command from EnergyPlus were used to connect

the two software. EnergyPlus is required, to perform the simulation of the energy

system, while Python is implemented with the control agent, the latter based on

OpenAI Gym. For the control phase, an external interface had to be used to
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implement the algorithm within the EnergyPlus simulation. The environment has

4 main functions in Python:

• init(), where the Python class is defined;

• step(), which receives a specific action, and then it implemented in the sim-

ulated building to return a tuple composed by the next state, reward, done

(True/False) and info;

• reset(), a function that is called at the beginning of each episode, to start over

by returning the initial state;

An episode corresponds to a whole simulation of the cooling season and it is

needed to be repeated several times during the training phase to get acceptable

results. The information exchange between the two software is as shown in the

Fig. 4.3 The process can be resumed as follow: the OpenAI gym interface object is

initiated by calling the init() function, then a server socket for the communication

between EnergyPlus and Python is created; the reset() function is called up by the

control agent immediately afterwards and an instance of EnergyPlus is immediately

created using the IDF file format and the CFG extension file that allows data

exchange. The OpenAI Gym object creates a TCP connection with EnergyPlus, in

which ExternalInterface incorporates features that are inputs from Python. The

ExternalInterface uses a BCVTB to perform as a client. The TCP connection is

used to read and return the simulation output from EnergyPlus to OpenAI Gym.

Then observations are processed by DRL agent for extracting state and reward.

The DRL agent calls the step(a) function at each control steps and sends the action

to Energyplus for each simulation step and reads the results. Generally, the control

time-step is larger than the simulation time-step, but in this work they have the

same length. Finally, the observations are returned in order to obtain new state

and reward. At each time-step, the OpenAI checks if the simulation is at the end
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of the episode: if it happens, the process moves on to the next check, otherwise,

it is repeated the above process starting from the observations obtained again by

EnergyPlus; if the processed episode is the last one, then the process ends here.

Otherwise, it starts again from the point where the reset() function is called.

Figure 4.3: Simulation environment

4.4 Experimental setup

The simulation is carried out for several configurations, in order to analyze the

impact of the different designs of the energy system. The aim is to find out how

the proposed control policy can achieve the same or better results with respect to
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a classical control while utilizing lower size equipment and thus saving economic

resources which is decisive to guarantee the spread of the storage technologies.

The variables to be investigated are the volume of the cold-water storage tank and

the nominal capacity of the BESS.

These configurations are implemented in the environment and the SAC algorithm

is trained for all of them while keeping the other variable as constant. In the

deployment phase, the trained algorithm performs the control statically and the

performance can be assessed for the discussion of the result. The thermal capacity

of the tank is a function of volume and temperature, in this case, the temperature

operation range is kept constant while the volume is subjected to changes for three

different scenarios. Also, larger tanks involve higher exchange surface, so that the

thermal loss increases. Eventually, the heat gain coefficient is scaled for different

surface. The Tab. 4.7 reports the values of the tank size implemented in the

environment.

Volume Heat gain
10 m3 12 W/K
8 m3 10.3 W/K
6 m3 8.5 W/K

Table 4.7: Cold-water tank design

The use of electrical storage is not encouraged from an economic point of view.

High investment cost and low profitability characterize the current market[91–94],

but costs are expected to drop more and more in the next year and also subsidies for

purchasing electrical storage technologies will push their penetration. Nevertheless,

BESS improves PV energy performance, by addressing the problem of the solar

energy low flexibility. Nominal capacity is explored for 2.4 kWh, 4.8 kWh and 7.2

kWh.

The configurations are named and resumed in Tab. 4.8.
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Name BESS capacity [Wh] TES volume [m3]
1 2400 10
2 4800 10
3 7200 10
4 2400 8
5 4800 8
6 7200 8
7 2400 6
8 4800 6
9 7200 6

Table 4.8: Configurations simulated for the experiment

The same episode is repeated over for 30 times at each configuration, during which,

the networks weights and biases are updated. Eventually, the parameters from the

best episode are saved and used in the deployment phase. Since the environment is

as the same as in the training phase, the deployment is static. The next chapter

shows and discusses the results of the simulation.
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Results and discussions

The results from the simulation environment are resumed by several graphs and

tables in order to depict the the different scenarios and to find out what are the

main implication of the these control strategies.

5.1 Results

First, the global performance of the two strategies is assessed, which is related to

the operating cost. For case study, it is computed as the seasonal expenditure for

exchanging electricity with the distribution grid. Energy cost ranges from 4.7 € to

10.1 € when using RLC and from 12.4 € to 18.1 when using RBC. RBC operational

cost decreases as the BESS size increases, as expected. It achieves a reduction

between 26.1% and 31.5% when nominal capacity is pushed up to 7200 Wh from

2400 Wh. RL has not such behaviour due to the intrinsic randomness, but still it

achieves a reduction between 14.0% and 44.7% from 2400 Wh to 7200 Wh.

Obviously, the best performance occurs when the BESS has the highest nominal

capacity for both the control strategies. Specifically, RB cost is not influenced if

the BESS is very large, so that the worst configuration has a 2400 Wh BESS and
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a 6 m3 TES, while the best has a 7200 Wh BESS and a 6 m3 with a total cost

of 12.4 €. RL has still an anomalous behaviour, with the configuration 6 as the

optimal one with a cost of 4.7 €. These results are resumed in Fig. 5.1.

RLC always performs better than RBC as shown by Fig. 5.3, in terms of energy

cost and energy consumption. Particularly, RLC allows between 31.4% and 62.5%

cost savings with respect to RBC. The energy consumption shows a little difference,

since it is strictly related to the cooling load which depends on the fixed external

conditions. Nevetheless, RLC is able to reduce the energy consumption, even though

the energy savings are less significant than the cost savings. Energy consumption is

shown in Fig. 5.2. RBC energy consumption only varies with the tank size, and it

decreases from 1090.7 kWh to 1072.2 kWh when the volume is reduced from 10 m3

to 6 m3, with a 1.7% drop. On the other hand, the RLC energy consumption seems

more stable across all of the configurations, where values ranges from 1064.9 kWh

and 1078.1 kWh. As a consequence, the energy savings from RLC are higher at 10

m3 storage tank, but still their value ranges from 1.2% and 1.6%. Configuration 6

turns has not the least energy consumption, even though it has the least cost.

Figure 5.1: Energy cost across all configurations for RB and RL
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Figure 5.2: Energy consumption across all configurations for RB and RL

Each simulation can discussed in terms of grid interaction. As follows, Tab. 5.1

Figure 5.3: Percentage difference between RL and RB across all configurations
for energy consumption and energy cost
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and 5.2 show the results of the two different control strategies Both strategies

ID En. bought En. sold Buying cost Selling cost
kWh kWh € €

1 871.4 919.1 26.1 9.2
2 749.1 776.8 22.5 7.8
3 628.5 636.5 18.9 6.4
4 872.7 928.1 26.2 9.3
5 750.9 786.4 22.5 7.9
6 632.0 648.0 19.0 6.5
7 861.1 928.9 27.4 9.3
8 747.2 796.2 22.9 8.0
9 636.6 667.3 19.1 6.7

Table 5.1: RB results from grid operation for all configurations

reduce either the energy bought and the energy sold when BESS size is increased,

Especially, the energy requested to the grid sees an average reduction of 27.1% and

45.1% from 2400 Wh to 7200 Wh for RB and RL, respectively. This is enforced

by the ability of RL of reducing by 42.7 % on average the energy sold to grid,

against 29.7% for RBC. RBC always buys electricity during low price hours except

in configuration 7 where at the end of the opening time the system is forced to

withdraw energy from the grid to satisfy the cooling load, due to the small TES

volume. The specific purchasing cost of electricity is 26.2% on average higher in the

case of RLC, but this is compensated by reducing for 66.0% on average the amount

of energy drawn from grid and resulting in a reduction from 42.3% to 64.1% of the

buying cost.

The energy balance of the TES is resumed by the Tab. 5.3 and 5.4. The BESS

capacity is not influencing the charge/discharge of the storage tank, in the case

of RBC. As the tank size increases, the energy discharged reaches a maximum

where the cooling load is always met by the tank, while the thermal losses keep

increasing. From 8 m3 to 10 m3, the energy discharged increases by 0.1% with

thermal losses being 13.3% higher. Differently, both BESS and TES size influences
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ID En. bought En. sold Buying cost Selling cost
kWh kWh € €

1 333.7 398.5 11.1 4.0
2 236.3 288.0 13.0 2.9
3 203.3 249.1 8.0 2.5
4 353.5 415.2 12.7 4.2
5 278.1 325.3 13.0 3.3
6 162.3 206.4 6.8 2.1
7 335.2 400.2 13.1 4.0
8 232.8 286.0 8.4 2.9
9 193.7 238.6 10.2 2.4

Table 5.2: RL results from grid operation for all configurations

the tank operation when using RLC; indeed, the BESS helps reducing the need of

the storage during high price period. The results confirm that the storage operates

a lot less thanks to RL, hence the thermal losses are reduced by 11.3% on average,

but mainly, energy charged and discharged are reduced by 49.0% and 50.7%. The

Volume En. charged En. discharged Thermal losses
m3 kWh kWh kWh
10 3307.4 3132.8 177.6
8 3281.0 3129.0 153.9
6 3160.2 3046.3 126.5

Table 5.3: Storage tank thermal flows for RBC

management of the electrical flows is better explained by Fig. 5.4, Fig. 5.5 and

Fig. 5.6., where the contribution to the energy supply from grid, battery and PV is

shown. The changes for different TES volumes are not relevant, so that it is easier

to average the results. RBC performs poorly at feeding the building with PV, with

figures between 7.8% and 8.8% of the total supply, which are much lower than

those in case of RLC, ranging from 54.0% to 58.9%, but mainly, it is implied a

shift from grid to battery of the contribution to the energy supply by sizing up the

BESS. RLC and RBC shows similar values of BESS supply percentage, which are
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ID En. charged En. discharged Thermal losses
kWh kWh kWh

1 1855.2 1726.4 150.2
2 1527.1 1384.7 152.2
3 1629.1 1503.1 140.1
4 1823.2 1686.9 141.6
5 1724.8 1581.7 144.2
6 1656.2 1537.1 128.1
7 1745.0 1621.5 125.8
8 1570.7 1457.6 113.2
9 1401.3 1285.2 115.9

Table 5.4: Storage tank thermal flows for RLC

11.4%, 22.4% and 33.2%, and 13.5%, 21.1% and 27.0%, respectively. By contrast,

the average grid contribution goes down from 80.2% to 58.4% and from 31.7% to

17.4% for RBC and RLC, when battery size is increased from 2400 Wh to 7200

Wh.

Figure 5.4: Percentage energy contribution from PV, BESS and grid for 2400,
4800 and 7200 Wh with 10 m3 storage tank, dark color refers to RL and light color
to RB.

The main indicators to assess PV-BESS system operation are Self-Sufficiency and

Self-Consumption, the former expresses how much of the demand is satisfied by
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Figure 5.5: Percentage energy contribution from PV, BESS and grid for 2400,
4800 and 7200 Wh with 8 m3 storage tank, dark color refers to RL and light color
to RB.

Figure 5.6: Percentage energy contribution from PV, BESS and grid for 2400,
4800 and 7200 Wh with 6 m3 storage tank, dark color refers to RL and light color
to RB.

the local production and the latter expresses how much of the local production is

consumed in place. SC is also a good indicator of the economic viability of the PV

module which is requested to increase it as much as possible. In this sense, this is

what the battery is meant to do. Fig. 5.7, Fig. 5.8, and Fig. 5.9 show the levels of

SS and SC; again, TES volume is not affecting significantly these values, so that

61



Results and discussions

the following values are averaged. RLC remarkably gets over RBC; the use of RLC

enhances the SS from 19.7% to 68.2%, from 30.8% to 76.8% and from 41.5% to

82.6% and also, SC is pushed from 16.5% to 56.9%, from 25.8% to 64.0% and from

34.9% to 68.6% for 2400 Wh, 4800 Wh and 7200 Wh, respectively. The baseline

must have a battery size three times higher in order to reach appreciable levels of

performance, but still being far from those reached by the RLC. The difference

between the two strategies narrows down as the battery size is increased, but still,

the advantage is considerable at 7200 Wh.

Figure 5.7: SS and SC levels for RL
and RB with 6 m3 storage tank

Figure 5.8: SS and SC levels for RL
and RB with 8 m3 storage tank

Figure 5.9: SS and SC levels for RL and RB with 10 m3 storage tank

The two strategies can be investigated more in detail by analyzing them on a

daily basis to understand the operational patterns resulting from a Rule-Based
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control and a Reinforcement Learning control.

The baseline reports what has been expected, since the rules are already defined

and has not any adaptability feature. As mentioned, the chiller charges the tank

during the low price hours, in order to use it as a buffer and to efficiently achieve

the peak shifting of the building electricity load, hence, RLC does not provide any

advantage in these terms. The case study has a low price fare at night so that, as

a consequence of the peak shifting strategy, the BESS is discharged at the time

the tank is charging, while the PV production exceeds the building load during

high price hours charging the battery again. This strategy can be seen in Fig. 5.10

and Fig. 5.11 representing two consecutive week-days. The positive values refer

to the energy injected to the building, to the battery or to the grid, whereas the

negative ones refer to the energy supplied by the PV module, by the battery or by

the grid. The building load is the aggregated energy demand of the chiller and the

circulation pump.

Figure 5.10: Energy flows for all equipment and BESS SoC during two consecutive
week-days from 31/06 to 01/07 by adopting RBC at 4800 Wh battery capacity and
8 m3 storage tank

The system withdraws electricity from the grid only during low price hours, since

the storage tank is able to fully satisfies the cooling load during the opening time

but this only achieved by making use of a very large tank with respect to the
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Figure 5.11: Thermal flows for chiller and TES during two consecutive week-days
from 31/06 to 01/07 by adopting RBC at 4800 Wh battery capacity and 10 m3

storage tank

Figure 5.12: Energy flows for all equipment and BESS SoC during two consecutive
week-days from 31/06 to 01/07 by adopting RLC at 4800 Wh battery capacity and
10 m3 storage tank

average daily demand. It is also noted that the PV surplus charges the battery in

the morning while in the afternoon it is injected to the grid.

The RL algorithm is expected to try to better match PV production and chiller

operation, but also, it seeks to avoid buying expensive electricity and grid injection

as much as possible.

Fig. 5.12 and Fig. 5.13 reports the RL control strategy for the same two consecutive

days, where the difference with the baseline is highlighted. The energy sold to grid
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Figure 5.13: Thermal flows for chiller and TES during two consecutive week-days
from 31/06 to 01/07 by adopting RLC at 4800 Wh battery capacity and 10 m3

storage tank

is minimized by the RL by switching on the chiller when the battery is charged

and the PV production is still available. The battery is also discharged in order to

fill gap between the building demand and the energy supplied by the PV, hence it

is avoided to draws energy from the grid during high price hours.

Moreover,the charging phase is shortened since the control agent expects the PV

surplus to satisfy the cooling load, resulting in a lower amount of energy exchanged

with the main grid. The same control strategy can be seen for each configuration.

In terms of net average daily demand and average daily peak power, RL involves

notable reductions between 59.5% and 74.3% for the former, and between for the

latter. In the case of RB, BESS nominal capacity plays an important role at

decreasing both these two quantities, while the TES volume is not influencing the

average daily demand and helps reduce average daily peak power. RL has the

behaviour as regarding to the BESS size, but TES size has not a clear implication.

The electrical duration curve shows more in detail the behaviour of the cooling

system. Two duration curves are reported, considering the total building load

and the net building load. Concerning the total building load, there is a little

difference between RL and RB, except for the cooling system operating time which
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is reduced by RL for each configuration. Nonetheless the chiller has basically the

same operating time. Differently, the net building load undergoes a reduction of

the time the grid is feeding the building, but the net peak power is not affected

much, thus the average load power is reduced as well. Moreover, the decrease is

much larger and strictly related to the BESS capacity. On average, the grid supply

time is 29.4%, 46.1% and 58.1% lower, for 2400 Wh , 4800 Wh and 7200 Wh when

using RLC. These results are resumed by Fig. 5.14, Fig. 5.15 and Fig. 5.16.

5.2 Discussions

The previous simulation outputs are discussed in order to fully understand the

main implications. The discussion must take into account the stochasticity of the

RL algorithm, whose strategy is affected by the intrinsic randomness of the trial

and error procedure. Particularly, in some cases, RL unexpectedly decreases its

performance when the BESS size is increased, even though the cost rise has low

relevance. Nonetheless, the variance of the results does not undercut the confidence,

hence the conclusions. The main aim of this work is to assess the importance

of implementing an advanced control strategy in the optimization procedure at

the design level. Also, it is possible to understand how different sizes of storage

technologies affects the performance whichever the control strategy, as well as the

improvement by switching to an advanced control strategy, allowing scaling down

the storage technologies without affecting the energy cost.

This study focuses on the operational pattern of the case study, so that the best

practice for managing storage can be identified and more appropriate and adaptable

RBC may be found.

In terms of operating cost, RLC performs better than RBC, since the seasonal

energy cost is reduced for all of the combinations, this is also true if the total

energy consumption and net energy demand requested to the grid are considered.
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Figure 5.14: Configuration: 1, 2, 3. Duration curve of total (on the left-hand
side)and net (on the right-hand side) building load, with their average (dashed
line).

RB proved to be very sensitive to the storage size, resulting in a huge impact from

the initial design on the electricity cost and particularly from the BESS size. On

the other hand, the RL is able to achieve very high economic savings already at
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Figure 5.15: Configuration: 4, 5, 6. Duration curve of total (on the left-hand
side)and net (on the right-hand side) building load, with their average (dashed
line).

low size, but as the storage size increases, the improvement achieved by RL are

less intense than those achieved by RB. The better adaptability of RLC appears as

its strong point, and this feature is requested more and more by advanced control
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Figure 5.16: Configuration: 7, 8, 9. Duration curve of total (on the left-hand
side)and net (on the right-hand side) building load, with their average (dashed
line).

strategies.

The configuration that achieves the least operating cost is different for RL and RB.

RL has not shown a clear implication of the storage size on the energy cost, rather
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it performs very well at each configuration. Nonetheless, it can be seen that larger

tank involves higher thermal losses for both the strategies. Also, the larger BESS

helps RL reducing the tank operation, which is not affected when adopting RB.

BESS is largely considered as the best way to increase self-consumption, but the

operating cost keeps decreasing as long as the PV injects electricity to the grid,

which means there is not room of improvement left for the self-consumption level,

beyond that, any larger BESS only comes with higher investment cost. By the

time of this work, investment cost is still not sustainable. A preliminary economic

analysis shows that the cost savings from higher BESS capacity does not justify

the extra investment cost, so that the optimum BESS capacity is different once the

investment cost are considered, as it has also been stated by many research. As the

BESS capital cost keep decreasing thanks to technical innovation, RL provides a

solution to increase levels of self-sufficiency and self-consumption without increasing

the size of the battery. This is a massive achievement given that BESS capital cost

is one of the most relevant fraction of cost of the energy systems.

The last consideration on the BESS size concerns its role during the operational

phase. RL and RB remark two different situations. The capacity is not affecting

the energy consumption, hence the chiller and tank schedule, and PV share among

the electricity supply, when RB is used. The reason might be that RBC has two

distinctive set of rules which include information about either the cooling system

either the electrical system. It is supposed that this factor is limiting the ability of

the RBC to perform well; oppositely, BESS capacity does have an impact on those

quantities when RL is used. RL overcome this problem by making its decision

through a set of information comprising those about cooling and electrical system

together, and so that, it finds its own set of rules.

The absence of a building thermostatic control does not leave room of improvement

in this sense, even though the energy consumption is slightly higher in the case
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of RBC because the chiller is never feeding directly the thermal zones, rather

it charges the tank, hence the thermal losses increase and so does the electrical

demand.

It can be easily assessed that the cost savings are not related to a lower average

electricity purchasing cost, but they are due to the lower amount of electricity

requested by the grid along with the growth of the on-site consumption. The aim

of reducing the energy exchange with the local grid is at the very basis of the use

of BESS coupled with PV, which means higher profitability of storage technologies

and higher flexibility of the whole energy system. When PV is selling to the grid,

the system ends up into poor performance in terms of self-consumption. For this

reason, RLC aims at matching PV production and chiller operation as much as

possible so that, it also occurs that energy is drawn from the grid during afternoon,

thus the specific energy cost is increased. In this way, RL not only avoids that

BESS unnecessarily operates, which involves electrical losses due to the round-trip

efficiency and converter efficiency, but it reduces the need for high BESS capacity

as well, since the excess energy is lower.

The RL algorithm outperforms the baseline at managing the PV-BESS system,

even though the control action does not act directly on the charge/discharge of

the battery. The level of Self-Sufficiency and Self-Consumption makes the use of

electricity storage technologies much more desirable from the point of view of the

building flexibility at each size. Moreover, RL does not need large storage utilities

to achieve appreciable level of SS and SC when it comes to nZEB design; indeed, it

is true that the idea of low-energy building desirably would help easing the burden

on the distribution grid, in rural, semi-urban and urban network. This would

be a turning point in a system where the number of connections and pro-sumer

is drastically increasing. In these terms, advanced and smart control strategies

are needed to come into play at the operational level, as suggested by the results
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obtained in this work, and at supervisory level. In order to make one thing clear,

the adoption of feed-in tariff changes completely the scenario where the events take

place, however, this application finds relative importance in a few contexts. High

V-RES penetration in the energy system leads to unbalanced grid operation, i.e.

duck curve, so that policy makers try to encourage self-consumption or rather to

adopt more advanced DR programs like Real-Time Pricing.

Finally, the outlook of the control strategy by RL gives idea on how to develop

a more tailored and complex RBC. Machine learning has already been used to

find rules for classifying the elements of a given data-set. This time the rules

for managing an energy system can be derived. The problem of the RB is that

the TES control has only information about the chiller and the tank, also the

BESS control only takes into account only the net load as driven parameters. For

this reason, it seems advisable to have a single integrated RB strategy fed with

information from both the units. RL smart agent makes decision according to the

parameters in the observation state. On the basis of the daily pattern provided

by the RL agent, a rule for switching on the chiller during the afternoon can be

extrapolated. Chiller can feed the thermal zones whenever the PV excess is enough

to supply it with electricity and whatever the cost is. In this case, BESS stops

charging and eventually, feeds the chiller, which means the TES is switched off

and any PV excess can be injected to the battery. An RBC developed from an

RLC implementation encloses their advantages providing effectiveness whilst it

saves computational effort in the real-time operation, and still it can considered an

advanced control strategy, where RL is the tools used to get the smart RBC.
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Conclusions

This study proposes to analyze from the operational point-of-view a multi-energy

buildings with on-site electricity generation and storage facilities. The building is

located in Turin, and it used by students as it is made up by two study rooms with

workstations, a control room and a technical room. It is simulated the period from

1st June to 31st August, which stands for the cooling season. An HVAC system

serves the two study rooms and the control room, by means of fun coils. The cooling

load is satisfied by an electric chiller that can feed the HVAC system directly or use

a cold water storage tank as buffer. The building is connected to the distribution

grid where AC is circulating. A PV-BESS system is in charge of producing, storing

on-site and feeding electricity to the AC bus through a mono-directional DC/AC

inverter.

The weather data comprises the records for outdoor temperature and solar radiation

during the aforementioned time, which are provided by the meteorological station

of the Caselle airport.

Each room is considered fully occupied during the opening time, that goes from

8:30 a.m. to 6:00 p.m. on the week-days, as it is closed on the week-end, except

for the technical room that does not foresee any occupation.
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The electricity price follows a Time Of Use tariff scheme with 3 price classes outlin-

ing low, medium and high price periods. The selling price is considered constant in

time and with the amount of energy sold, and it is set equal to one third of the low

price.

The building envelope, along with the cooling system is implemented into Ener-

gyPlus for the simulation, by importing the geometry as a 3D model drawn on

SketchUp. The BESS is modeled according to the State Of Charge model whereas

the PV production is extrapolated thanks to an empirical model for the selected

type available in literature.

The control strategy is in charge of mapping out the operational pattern across all

of the occurring states. Two different control strategies are implemented to manage

the cold water storage tank, one is a classical Rule-Based Control and the other

takes advantage of the Reinforcement Learning methodology. The RBC is fed with

the electricity price and the SoC of the tank and returns the charge/discharge state,

so that the tank is charged during low price hours in order to maintain a minimum

level of charge and it is discharge during peak price hours. The RL control is fed

with a set of information of the system concerning both the thermal and electrical

side and utilises a smart agent to make decisions. The BESS is managed according

to the most widespread RBC available in the literature, which prescribes charging

the battery when the PV production exceeds the building electrical load, otherwise

discharges. The control problem is so defined by a discrete action space with two

options, referring to charge and discharge of the tank, and by the objective function

which is the seasonal electricity cost. The problem is also constrained by several

technical limitations and by the need of meeting thermal and electrical loads.

These control strategies are implemented for several combinations of BESS and

TES capacities to analyze how they can adapt to different situations. The energy

model and the control strategy are implemented in a simulation environment based
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on the OpenAI Gym from Python library. It is used to initialize and reset the

EnergyPlus instance during the whole process. Python is in charge of handling

PV and BESS equations as well, while the Building Control Virtual Test Bed

(BCVTB), along with the ExternalInterface-Ptolemy server command are used

to allow the information exchange between the two softwares. Two more Python

classes have been coded to define the RBC agent and the RLC agent for the tank ,

while sharing the same RBC for the battery.

The RL agent makes use of a Soft Actor-Critic algorithm with discrete action space,

implemented thanks to the PyTorch library.

The simulation output are then plotted and presented to be discussed. RLC is

affected by a certain degree of stochasticity so that it is convenient to run the

algorithm across several seeds and average the results. Nonetheless, RLC proved to

be much more efficient than RBC given the same storage capacity and to reduce the

operating cost between 5.4% and 25.7%, total energy consumption between 2.0%

and 2.6% and net energy demand requested to the grid between 26.0% and 25.2%.

RB results in being more sensitive to the storage size, giving a lot of importance

to the initial design, whereas RL achieves high economic savings already at low

size, and the advantatge with respect to RB narrows down as the size increases.

This shows the adaptability of RLC to different situations, which suggests a better

flexibility.

Given the absence of thermostatic building, it has not been possible to study the

ability of reducing the energy consumption by RLC; indeed the reduction is due to

the chiller bypassing the tank.

Once the TES is large enough to supply the cooling load during high price period,

there is no point in expand it, which means the average electricity purchasing price

can not be reduced anymore, rather the investment cost increases. BESS capacity

helps storing the excess PV production, in order to increase the self-consumption.
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At the present, high investment cost still prevents from pushing BESS capacity

up to the point where all of the excess energy is stored. In this sense, RL notably

increases levels of self-sufficiency and self-consumption given the same BESS capac-

ity, and reduces the energy exchanged with the grid as well, which means higher

building flexibility, relief to the grid in case of highly penetrated V-RES in the

energy system, and BESS capital cost cutting.

Finally, RL provides a recurrent pattern for the operation of the storage utilities.

Guidelines for defining more complex RBC can be identified by analyzing the

control strategy. First of all, RL shows the relevance of matching PV production

and chiller operation. Also, it can act on the BESS cycle by scheduling the chiller

operation by receiving information about both thermal and electrical system. These

are suggestions to build advanced RBC, where more information is implemented in

the decision process and particularly, the building load can be controlled according

to the on-site production.

In future works, cooling load prediction from ANN could substitutes the perfect

one, which is more consistent with real-time operation. Also, the RL framework

was initially meant to be model-free, but the length of the training forces to build

models for pre-training before applying on a real building. For this reason, an

investigation on the possibility of sharing the model among a cluster of buildings

should be carried out, namely transfer learning, or implementing expert knowledge

into the replay buffer. These efforts are strongly needed in order to reduce the

training phase as much as possible, which is the major barrier for the penetration

of RL in the building control state-of-art.

76



Bibliography

[1] url: https://ec.europa.eu/clima/policies/eu-climate-action_en

(cit. on p. 2).

[2] Weifeng Liu, Warwick J. McKibbin, Adele C. Morris, and Peter J. Wilcoxen.

«Global economic and environmental outcomes of the Paris Agreement». In:

Energy Economics 90 (2020), p. 104838. issn: 0140-9883. doi: https://doi.

org/10.1016/j.eneco.2020.104838. url: https://www.sciencedirect.

com/science/article/pii/S014098832030178X (cit. on p. 2).

[3] International Energy Agency. «Key World Energy Statistics». In: (2006). url:

https://www.iea.org/reports/key-world-energy-statistics-2020

(cit. on pp. 2, 4).

[4] U.S. Department of Energy. «International Energy Outlook 2006». In: Energy

Information Administration (2006). url: https://www.eia.gov/outlooks/

ieo/ (cit. on pp. 2, 4).

[5] Luis Pérez-Lombard, José Ortiz, and Christine Pout. «A review on buildings

energy consumption information». In: Energy and Buildings 40.3 (2008),

pp. 394–398. issn: 0378-7788. doi: https://doi.org/10.1016/j.enbuild.

2007.03.007. url: https://www.sciencedirect.com/science/article/

pii/S0378778807001016 (cit. on pp. 3, 4).

77

https://ec.europa.eu/clima/policies/eu-climate-action_en
https://doi.org/https://doi.org/10.1016/j.eneco.2020.104838
https://doi.org/https://doi.org/10.1016/j.eneco.2020.104838
https://www.sciencedirect.com/science/article/pii/S014098832030178X
https://www.sciencedirect.com/science/article/pii/S014098832030178X
https://www.iea.org/reports/key-world-energy-statistics-2020
https://www.eia.gov/outlooks/ieo/
https://www.eia.gov/outlooks/ieo/
https://doi.org/https://doi.org/10.1016/j.enbuild.2007.03.007
https://doi.org/https://doi.org/10.1016/j.enbuild.2007.03.007
https://www.sciencedirect.com/science/article/pii/S0378778807001016
https://www.sciencedirect.com/science/article/pii/S0378778807001016


BIBLIOGRAPHY

[6] IEA. Policy Pathway - Modernising Building Energy Codes 2013. 2013. url:

https://www.iea.org/reports/policy-pathway-modernising-buildin

g-energy-codes-2013 (cit. on pp. 3, 5).

[7] IEA. Transition to Sustainable Buildings. 2013. url: https://www.iea.org/

reports/transition-to-sustainable-buildings (cit. on p. 3).

[8] Antoine Levesque, Robert C. Pietzcker, Lavinia Baumstark, Simon De Stercke,

Arnulf Grübler, and Gunnar Luderer. «How much energy will buildings

consume in 2100? A global perspective within a scenario framework». In:

Energy 148 (2018), pp. 514–527. issn: 0360-5442. doi: https://doi.org/10.

1016/j.energy.2018.01.139. url: https://www.sciencedirect.com/

science/article/pii/S0360544218301671 (cit. on p. 3).

[9] IPCC. Intergovernmental Panel on Climate Change. Climate Change 2014:

Mitigation of Climate Change. 2014. Chap. 9: Buildings (cit. on pp. 4, 5).

[10] Xiaoyang Zhong, Mingming Hu, Sebastiaan Deetman, João F.D. Rodrigues,

Hai-Xiang Lin, Arnold Tukker, and Paul Behrens. «The evolution and future

perspectives of energy intensity in the global building sector 1971–2060».

In: Journal of Cleaner Production 305 (2021), p. 127098. issn: 0959-6526.

doi: https://doi.org/10.1016/j.jclepro.2021.127098. url: https:

//www.sciencedirect.com/science/article/pii/S0959652621013172

(cit. on p. 4).

[11] Chen Ren and Shi-Jie Cao. «Development and application of linear ventilation

and temperature models for indoor environmental prediction and HVAC

systems control». In: Sustainable Cities and Society 51 (2019), p. 101673.

issn: 2210-6707. doi: https://doi.org/10.1016/j.scs.2019.101673.

url: https://www.sciencedirect.com/science/article/pii/S2210670

71931323X (cit. on p. 4).

78

https://www.iea.org/reports/policy-pathway-modernising-building-energy-codes-2013
https://www.iea.org/reports/policy-pathway-modernising-building-energy-codes-2013
https://www.iea.org/reports/transition-to-sustainable-buildings
https://www.iea.org/reports/transition-to-sustainable-buildings
https://doi.org/https://doi.org/10.1016/j.energy.2018.01.139
https://doi.org/https://doi.org/10.1016/j.energy.2018.01.139
https://www.sciencedirect.com/science/article/pii/S0360544218301671
https://www.sciencedirect.com/science/article/pii/S0360544218301671
https://doi.org/https://doi.org/10.1016/j.jclepro.2021.127098
https://www.sciencedirect.com/science/article/pii/S0959652621013172
https://www.sciencedirect.com/science/article/pii/S0959652621013172
https://doi.org/https://doi.org/10.1016/j.scs.2019.101673
https://www.sciencedirect.com/science/article/pii/S221067071931323X
https://www.sciencedirect.com/science/article/pii/S221067071931323X


BIBLIOGRAPHY

[12] Rui Jing, Meng Wang, Ruoxi Zhang, Ning Li, and Yingru Zhao. «A study

on energy performance of 30 commercial office buildings in Hong Kong».

In: Energy and Buildings 144 (2017), pp. 117–128. issn: 0378-7788. doi:

https : / / doi . org / 10 . 1016 / j . enbuild . 2017 . 03 . 042. url: https :

//www.sciencedirect.com/science/article/pii/S0378778817301123

(cit. on p. 4).

[13] Junqi Wang, Jin Hou, Jianping Chen, Qiming Fu, and Gongsheng Huang.

«Data mining approach for improving the optimal control of HVAC systems:

An event-driven strategy». In: Journal of Building Engineering 39 (2021),

p. 102246. issn: 2352-7102. doi: https://doi.org/10.1016/j.jobe.2021.

102246. url: https://www.sciencedirect.com/science/article/pii/

S2352710221001029 (cit. on p. 4).

[14] Kui Shan, Shengwei Wang, Dian-ce Gao, and Fu Xiao. «Development and

validation of an effective and robust chiller sequence control strategy using

data-driven models». In: Automation in Construction 65 (2016), pp. 78–85.

issn: 0926-5805. doi: https://doi.org/10.1016/j.autcon.2016.01.

005. url: https://www.sciencedirect.com/science/article/pii/

S0926580516300097 (cit. on p. 4).

[15] Samuel Thomas and Jan Rosenow. «Drivers of increasing energy consumption

in Europe and policy implications». In: Energy Policy 137 (2020), p. 111108.

issn: 0301-4215. doi: https://doi.org/10.1016/j.enpol.2019.111108.

url: https://www.sciencedirect.com/science/article/pii/S0301421

519306950 (cit. on p. 5).

[16] Heyd F. Más and Dirk Kuiken. «Beyond energy savings: The necessity of

optimising smart electricity systems with resource efficiency and coherent

waste policy in Europe». In: Energy Research Social Science 70 (2020),

p. 101658. issn: 2214-6296. doi: https://doi.org/10.1016/j.erss.2020.

79

https://doi.org/https://doi.org/10.1016/j.enbuild.2017.03.042
https://www.sciencedirect.com/science/article/pii/S0378778817301123
https://www.sciencedirect.com/science/article/pii/S0378778817301123
https://doi.org/https://doi.org/10.1016/j.jobe.2021.102246
https://doi.org/https://doi.org/10.1016/j.jobe.2021.102246
https://www.sciencedirect.com/science/article/pii/S2352710221001029
https://www.sciencedirect.com/science/article/pii/S2352710221001029
https://doi.org/https://doi.org/10.1016/j.autcon.2016.01.005
https://doi.org/https://doi.org/10.1016/j.autcon.2016.01.005
https://www.sciencedirect.com/science/article/pii/S0926580516300097
https://www.sciencedirect.com/science/article/pii/S0926580516300097
https://doi.org/https://doi.org/10.1016/j.enpol.2019.111108
https://www.sciencedirect.com/science/article/pii/S0301421519306950
https://www.sciencedirect.com/science/article/pii/S0301421519306950
https://doi.org/https://doi.org/10.1016/j.erss.2020.101658
https://doi.org/https://doi.org/10.1016/j.erss.2020.101658


BIBLIOGRAPHY

101658. url: https://www.sciencedirect.com/science/article/pii/

S2214629620302334 (cit. on pp. 5, 7).

[17] Shady Attia et al. «Overview and future challenges of nearly zero energy

buildings (nZEB) design in Southern Europe». In: Energy and Buildings 155

(2017), pp. 439–458. issn: 0378-7788. doi: https://doi.org/10.1016/j.

enbuild.2017.09.043. url: https://www.sciencedirect.com/science/

article/pii/S0378778817331195 (cit. on p. 6).

[18] «Sustainability Assessment in the Construction Sector: Rating Systems and

Rated Buildings». In: Sustainable Development 20 (Oct. 2012). doi: 10.1002/

sd.532 (cit. on p. 6).

[19] D. Mariano-Hernández, L. Hernández-Callejo, A. Zorita-Lamadrid, O. Duque-

Pérez, and F. Santos García. «A review of strategies for building energy

management system: Model predictive control, demand side management,

optimization, and fault detect diagnosis». In: Journal of Building Engineering

33 (2021), p. 101692. issn: 2352-7102. doi: https://doi.org/10.1016/

j.jobe.2020.101692. url: https://www.sciencedirect.com/science/

article/pii/S2352710220310627 (cit. on pp. 6, 7).

[20] B.B. Gupta and Megha Quamara. «An overview of Internet of Things

(IoT): Architectural aspects, challenges, and protocols». In: Concurrency

and Computation: Practice and Experience 32.21 (2020). e4946 CPE-18-

0159.R1, e4946. doi: https://doi.org/10.1002/cpe.4946. eprint: https:

//onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4946. url: https:

//onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4946 (cit. on p. 6).

[21] Arun Kumar, Sharad Sharma, Nitin Goyal, Aman Singh, Xiaochun Cheng,

and Parminder Singh. «Secure and energy-efficient smart building architecture

with emerging technology IoT». In: Computer Communications 176 (2021),

pp. 207–217. issn: 0140-3664. doi: https://doi.org/10.1016/j.comcom.

80

https://doi.org/https://doi.org/10.1016/j.erss.2020.101658
https://doi.org/https://doi.org/10.1016/j.erss.2020.101658
https://www.sciencedirect.com/science/article/pii/S2214629620302334
https://www.sciencedirect.com/science/article/pii/S2214629620302334
https://doi.org/https://doi.org/10.1016/j.enbuild.2017.09.043
https://doi.org/https://doi.org/10.1016/j.enbuild.2017.09.043
https://www.sciencedirect.com/science/article/pii/S0378778817331195
https://www.sciencedirect.com/science/article/pii/S0378778817331195
https://doi.org/10.1002/sd.532
https://doi.org/10.1002/sd.532
https://doi.org/https://doi.org/10.1016/j.jobe.2020.101692
https://doi.org/https://doi.org/10.1016/j.jobe.2020.101692
https://www.sciencedirect.com/science/article/pii/S2352710220310627
https://www.sciencedirect.com/science/article/pii/S2352710220310627
https://doi.org/https://doi.org/10.1002/cpe.4946
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4946
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4946
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4946
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4946
https://doi.org/https://doi.org/10.1016/j.comcom.2021.06.003
https://doi.org/https://doi.org/10.1016/j.comcom.2021.06.003


BIBLIOGRAPHY

2021.06.003. url: https://www.sciencedirect.com/science/article/

pii/S0140366421002279 (cit. on pp. 6, 7).

[22] Arun Kumar and Sharad Sharma. «Enhanced Energy-Efficient Heterogeneous

Routing Protocols in WSNs for IoT Application». In: Volume 9 (Oct. 2019),

pp. 2249–8958. doi: 10.35940/ijeat.A1342.109119 (cit. on p. 6).

[23] Shanti Pless and Paul Torcellini. «Controlling Capital Costs in High Perfor-

mance Office Buildings: A Review of Best Practices for Overcoming Cost

Barriers». In: (May 2012). url: https://www.osti.gov/biblio/1043771

(cit. on p. 7).

[24] Paul Torcellini, Shanti Pless, and Matt Leach. «A pathway for net-zero energy

buildings: creating a case for zero cost increase». In: Building Research &

Information 43.1 (2015), pp. 25–33. doi: 10.1080/09613218.2014.960783.

eprint: https://doi.org/10.1080/09613218.2014.960783. url: https:

//doi.org/10.1080/09613218.2014.960783 (cit. on p. 7).

[25] Christian Finck, Paul Beagon, John Clauß, Thibault Péan, Pierre Vogler-

Finck, Kun Zhang, and Hussain Kazmi. «Review of applied and tested

control possibilities for energy flexibility in buildings - A technical report

from IEA EBC Annex 67 Energy Flexible Buildings». In: (May 2018). doi:

10.13140/RG.2.2.28740.73609 (cit. on pp. 7–9).

[26] Zhe Wang and Tianzhen Hong. «Reinforcement learning for building controls:

The opportunities and challenges». In: Applied Energy 269 (2020), p. 115036.

issn: 0306-2619. doi: https://doi.org/10.1016/j.apenergy.2020.

115036. url: https://www.sciencedirect.com/science/article/pii/

S0306261920305481 (cit. on pp. 8, 23, 25).

[27] Abdul Afram and Farrokh Janabi-Sharifi. «Theory and applications of HVAC

control systems – A review of model predictive control (MPC)». In: Building

81

https://doi.org/https://doi.org/10.1016/j.comcom.2021.06.003
https://doi.org/https://doi.org/10.1016/j.comcom.2021.06.003
https://www.sciencedirect.com/science/article/pii/S0140366421002279
https://www.sciencedirect.com/science/article/pii/S0140366421002279
https://doi.org/10.35940/ijeat.A1342.109119
https://www.osti.gov/biblio/1043771
https://doi.org/10.1080/09613218.2014.960783
https://doi.org/10.1080/09613218.2014.960783
https://doi.org/10.1080/09613218.2014.960783
https://doi.org/10.1080/09613218.2014.960783
https://doi.org/10.13140/RG.2.2.28740.73609
https://doi.org/https://doi.org/10.1016/j.apenergy.2020.115036
https://doi.org/https://doi.org/10.1016/j.apenergy.2020.115036
https://www.sciencedirect.com/science/article/pii/S0306261920305481
https://www.sciencedirect.com/science/article/pii/S0306261920305481


BIBLIOGRAPHY

and Environment 72 (Feb. 2014), pp. 343–355. doi: 10.1016/j.buildenv.

2013.11.016 (cit. on pp. 8, 9).

[28] Manfred Morari and Jay H. Lee. «Model predictive control: past, present

and future». In: Computers Chemical Engineering 23.4 (1999), pp. 667–

682. issn: 0098-1354. doi: https://doi.org/10.1016/S0098-1354(98)

00301-9. url: https://www.sciencedirect.com/science/article/pii/

S0098135498003019 (cit. on p. 8).

[29] Samuel Prívara, Jan Široký, Lukáš Ferkl, and Jiří Cigler. «Model predictive

control of a building heating system: The first experience». In: Energy and

Buildings 43.2 (2011), pp. 564–572. issn: 0378-7788. doi: https://doi.org/

10.1016/j.enbuild.2010.10.022. url: https://www.sciencedirect.

com/science/article/pii/S0378778810003749 (cit. on p. 8).

[30] Henrik Karlsson and Carl-Eric Hagentoft. «Application of model based predic-

tive control for water-based floor heating in low energy residential buildings».

In: Building and Environment 46.3 (2011), pp. 556–569. issn: 0360-1323.

doi: https://doi.org/10.1016/j.buildenv.2010.08.014. url: https:

//www.sciencedirect.com/science/article/pii/S0360132310002672

(cit. on p. 8).

[31] Ion Hazyuk, Christian Ghiaus, and David Penhouet. «Optimal temperature

control of intermittently heated buildings using Model Predictive Control: Part

II – Control algorithm». In: Building and Environment 51 (2012), pp. 388–

394. issn: 0360-1323. doi: https://doi.org/10.1016/j.buildenv.2011.

11.008. url: https://www.sciencedirect.com/science/article/pii/

S0360132311003921 (cit. on p. 8).

[32] Shui Yuan and Ronald Perez. «Multiple-zone ventilation and temperature

control of a single-duct VAV system using model predictive strategy». In:

Energy and Buildings 38.10 (2006), pp. 1248–1261. issn: 0378-7788. doi:

82

https://doi.org/10.1016/j.buildenv.2013.11.016
https://doi.org/10.1016/j.buildenv.2013.11.016
https://doi.org/https://doi.org/10.1016/S0098-1354(98)00301-9
https://doi.org/https://doi.org/10.1016/S0098-1354(98)00301-9
https://www.sciencedirect.com/science/article/pii/S0098135498003019
https://www.sciencedirect.com/science/article/pii/S0098135498003019
https://doi.org/https://doi.org/10.1016/j.enbuild.2010.10.022
https://doi.org/https://doi.org/10.1016/j.enbuild.2010.10.022
https://www.sciencedirect.com/science/article/pii/S0378778810003749
https://www.sciencedirect.com/science/article/pii/S0378778810003749
https://doi.org/https://doi.org/10.1016/j.buildenv.2010.08.014
https://www.sciencedirect.com/science/article/pii/S0360132310002672
https://www.sciencedirect.com/science/article/pii/S0360132310002672
https://doi.org/https://doi.org/10.1016/j.buildenv.2011.11.008
https://doi.org/https://doi.org/10.1016/j.buildenv.2011.11.008
https://www.sciencedirect.com/science/article/pii/S0360132311003921
https://www.sciencedirect.com/science/article/pii/S0360132311003921


BIBLIOGRAPHY

https : / / doi . org / 10 . 1016 / j . enbuild . 2006 . 03 . 007. url: https :

//www.sciencedirect.com/science/article/pii/S0378778806000764

(cit. on p. 8).

[33] Yudong ma, Francesco Borrelli, Hencey B., Andrew Packard, and Scott Bortoff.

«Model Predictive Control of Thermal Energy Storage in Building Cooling

Systems». In: Proceedings of the IEEE Conference on Decision and Control

(Jan. 2010), pp. 392–397. doi: 10.1109/CDC.2009.5400677 (cit. on p. 8).

[34] Benjamin Paris, Julien Eynard, Stéphane Grieu, Thierry Talbert, and Monique

Polit. «Heating control schemes for energy management in buildings». In:

Energy and Buildings 42.10 (2010), pp. 1908–1917. issn: 0378-7788. doi:

https : / / doi . org / 10 . 1016 / j . enbuild . 2010 . 05 . 027. url: https :

//www.sciencedirect.com/science/article/pii/S0378778810001891

(cit. on p. 9).

[35] Georgios Kontes et al. «Simulation-Based Evaluation and Optimization of

Control Strategies in Buildings». In: Energies 11 (Dec. 2018), p. 3376. doi:

10.3390/en11123376 (cit. on p. 9).

[36] Matthew Lai. «Giraffe: Using Deep Reinforcement Learning to Play Chess».

In: (Sept. 2015) (cit. on p. 10).

[37] Volodymyr Mnih et al. «Human-level control through deep reinforcement

learning». In: Nature 518 (Feb. 2015), pp. 529–33. doi: 10.1038/nature14236

(cit. on p. 10).

[38] David Silver et al. «Mastering the game of Go with deep neural networks

and tree search». In: Nature 529 (Jan. 2016), pp. 484–489. doi: 10.1038/

nature16961 (cit. on p. 10).

[39] Tianzhen Hong, Zhe Wang, Xuan Luo, and Wanni Zhang. «State-of-the-

art on research and applications of machine learning in the building life

83

https://doi.org/https://doi.org/10.1016/j.enbuild.2006.03.007
https://www.sciencedirect.com/science/article/pii/S0378778806000764
https://www.sciencedirect.com/science/article/pii/S0378778806000764
https://doi.org/10.1109/CDC.2009.5400677
https://doi.org/https://doi.org/10.1016/j.enbuild.2010.05.027
https://www.sciencedirect.com/science/article/pii/S0378778810001891
https://www.sciencedirect.com/science/article/pii/S0378778810001891
https://doi.org/10.3390/en11123376
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961


BIBLIOGRAPHY

cycle». In: Energy and Buildings 212 (2020), p. 109831. issn: 0378-7788.

doi: https://doi.org/10.1016/j.enbuild.2020.109831. url: https:

//www.sciencedirect.com/science/article/pii/S0378778819337879

(cit. on p. 10).

[40] Soteris Kalogirou. «Applications of artificial neural-networks for energy sys-

tems». In: Applied Energy 67 (Sept. 2000), pp. 17–35. doi: 10.1016/B978-0-

08-043877-1.50005-X (cit. on p. 13).

[41] Tianzhen Hong, Zhe Wang, Xuan Luo, and Wanni Zhang. «State-of-the-

art on research and applications of machine learning in the building life

cycle». In: Energy and Buildings 212 (2020), p. 109831. issn: 0378-7788.

doi: https://doi.org/10.1016/j.enbuild.2020.109831. url: https:

//www.sciencedirect.com/science/article/pii/S0378778819337879

(cit. on pp. 13, 16).

[42] Simeng Liu and Gregor Henze. «Evaluation of Reinforcement Learning for

Optimal Control of Building Active and Passive Thermal Storage Inventory».

In: Journal of Solar Energy Engineering-transactions of The Asme - J SOL

ENERGY ENG 129 (May 2007). doi: 10.1115/1.2710491 (cit. on p. 13).

[43] Ross May. «The reinforcement learning method: A feasible and sustainable

control strategy for efficient occupant-centred building operation in smart

cities». PhD thesis. Oct. 2019. doi: 10.13140/RG.2.2.29921.86883 (cit. on

p. 13).

[44] Yuting An, Tongling Xia, Ruoyu You, Dayi Lai, Junjie Liu, and Chun Chen.

«A reinforcement learning approach for control of window behavior to reduce

indoor PM2.5 concentrations in naturally ventilated buildings». In: Building

and Environment 200 (2021), p. 107978. issn: 0360-1323. doi: https://doi.

org/10.1016/j.buildenv.2021.107978. url: https://www.sciencedire

ct.com/science/article/pii/S0360132321003826 (cit. on p. 13).

84

https://doi.org/https://doi.org/10.1016/j.enbuild.2020.109831
https://www.sciencedirect.com/science/article/pii/S0378778819337879
https://www.sciencedirect.com/science/article/pii/S0378778819337879
https://doi.org/10.1016/B978-0-08-043877-1.50005-X
https://doi.org/10.1016/B978-0-08-043877-1.50005-X
https://doi.org/https://doi.org/10.1016/j.enbuild.2020.109831
https://www.sciencedirect.com/science/article/pii/S0378778819337879
https://www.sciencedirect.com/science/article/pii/S0378778819337879
https://doi.org/10.1115/1.2710491
https://doi.org/10.13140/RG.2.2.29921.86883
https://doi.org/https://doi.org/10.1016/j.buildenv.2021.107978
https://doi.org/https://doi.org/10.1016/j.buildenv.2021.107978
https://www.sciencedirect.com/science/article/pii/S0360132321003826
https://www.sciencedirect.com/science/article/pii/S0360132321003826


BIBLIOGRAPHY

[45] Shunian Qiu, Zhenhai Li, Zhengwei Li, Jiajie Li, Shengping Long, and Xi-

aoping Li. «Model-free control method based on reinforcement learning for

building cooling water systems: Validation by measured data-based simu-

lation». In: Energy and Buildings 218 (2020), p. 110055. issn: 0378-7788.

doi: https://doi.org/10.1016/j.enbuild.2020.110055. url: https:

//www.sciencedirect.com/science/article/pii/S0378778819339945

(cit. on p. 14).

[46] Zhen Yu and Arthur Dexter. «Online tuning of a supervisory fuzzy controller

for low-energy building system using reinforcement learning». In: Control

Engineering Practice 18.5 (2010), pp. 532–539. issn: 0967-0661. doi: https:

//doi.org/10.1016/j.conengprac.2010.01.018. url: https://www.

sciencedirect.com/science/article/pii/S0967066110000353 (cit. on

p. 14).

[47] Sha-Xu Zhou and Xian-Fang Li. «Interfacial debonding of an orthotropic

half-plane bonded to a rigid foundation». In: International Journal of Solids

and Structures 161 (2019), pp. 1–10. issn: 0020-7683. doi: https://doi.org/

10.1016/j.ijsolstr.2018.11.003. url: https://www.sciencedirect.

com/science/article/pii/S0020768318304347 (cit. on p. 14).

[48] K. Dalamagkidis, D. Kolokotsa, K. Kalaitzakis, and G.S. Stavrakakis. «Re-

inforcement learning for energy conservation and comfort in buildings». In:

Building and Environment 42.7 (2007), pp. 2686–2698. issn: 0360-1323. doi:

https://doi.org/10.1016/j.buildenv.2006.07.010. url: https:

//www.sciencedirect.com/science/article/pii/S0360132306001880

(cit. on pp. 14, 22, 24).

[49] Tim Leurs, Bert J. Claessens, Frederik Ruelens, Sam Weckx, and Geert Decon-

inck. «Beyond theory: Experimental results of a self-learning air conditioning

85

https://doi.org/https://doi.org/10.1016/j.enbuild.2020.110055
https://www.sciencedirect.com/science/article/pii/S0378778819339945
https://www.sciencedirect.com/science/article/pii/S0378778819339945
https://doi.org/https://doi.org/10.1016/j.conengprac.2010.01.018
https://doi.org/https://doi.org/10.1016/j.conengprac.2010.01.018
https://www.sciencedirect.com/science/article/pii/S0967066110000353
https://www.sciencedirect.com/science/article/pii/S0967066110000353
https://doi.org/https://doi.org/10.1016/j.ijsolstr.2018.11.003
https://doi.org/https://doi.org/10.1016/j.ijsolstr.2018.11.003
https://www.sciencedirect.com/science/article/pii/S0020768318304347
https://www.sciencedirect.com/science/article/pii/S0020768318304347
https://doi.org/https://doi.org/10.1016/j.buildenv.2006.07.010
https://www.sciencedirect.com/science/article/pii/S0360132306001880
https://www.sciencedirect.com/science/article/pii/S0360132306001880


BIBLIOGRAPHY

unit». In: (2016), pp. 1–6. doi: 10.1109/ENERGYCON.2016.7513916 (cit. on

p. 14).

[50] Frederik Ruelens, Sandro Iacovella, Bert Claessens, and Ronnie Belmans.

«Learning Agent for a Heat-Pump Thermostat With a Set-Back Strategy

Using Model-Free Reinforcement Learning». In: Energies 8 (June 2015). doi:

10.3390/en8088300 (cit. on p. 14).

[51] Oscar De Somer, Ana Soares, Koen Vanthournout, Fred Spiessens, Tristan

Kuijpers, and Koen Vossen. «Using reinforcement learning for demand re-

sponse of domestic hot water buffers: A real-life demonstration». In: (2017),

pp. 1–7. doi: 10.1109/ISGTEurope.2017.8260152 (cit. on p. 14).

[52] José R. Vázquez-Canteli, Stepan Ulyanin, Jérôme Kämpf, and Zoltán Nagy.

«Fusing TensorFlow with building energy simulation for intelligent energy

management in smart cities». In: Sustainable Cities and Society 45 (2019),

pp. 243–257. issn: 2210-6707. doi: https://doi.org/10.1016/j.scs.2018.

11.021. url: https://www.sciencedirect.com/science/article/pii/

S2210670718314380 (cit. on p. 14).

[53] Silvio Brandi, Marco Savino Piscitelli, Marco Martellacci, and Alfonso Capoz-

zoli. «Deep reinforcement learning to optimise indoor temperature control

and heating energy consumption in buildings». In: Energy and Buildings

224 (2020), p. 110225. issn: 0378-7788. doi: https://doi.org/10.1016/j.

enbuild.2020.110225. url: https://www.sciencedirect.com/science/

article/pii/S0378778820308963 (cit. on p. 14).

[54] Young Ran Yoon and Hyeun Jun Moon. «Performance based thermal comfort

control (PTCC) using deep reinforcement learning for space cooling». In:

Energy and Buildings 203 (2019), p. 109420. issn: 0378-7788. doi: https:

/ / doi . org / 10 . 1016 / j . enbuild . 2019 . 109420. url: https : / / www .

86

https://doi.org/10.1109/ENERGYCON.2016.7513916
https://doi.org/10.3390/en8088300
https://doi.org/10.1109/ISGTEurope.2017.8260152
https://doi.org/https://doi.org/10.1016/j.scs.2018.11.021
https://doi.org/https://doi.org/10.1016/j.scs.2018.11.021
https://www.sciencedirect.com/science/article/pii/S2210670718314380
https://www.sciencedirect.com/science/article/pii/S2210670718314380
https://doi.org/https://doi.org/10.1016/j.enbuild.2020.110225
https://doi.org/https://doi.org/10.1016/j.enbuild.2020.110225
https://www.sciencedirect.com/science/article/pii/S0378778820308963
https://www.sciencedirect.com/science/article/pii/S0378778820308963
https://doi.org/https://doi.org/10.1016/j.enbuild.2019.109420
https://doi.org/https://doi.org/10.1016/j.enbuild.2019.109420
https://www.sciencedirect.com/science/article/pii/S0378778819310692
https://www.sciencedirect.com/science/article/pii/S0378778819310692


BIBLIOGRAPHY

sciencedirect.com/science/article/pii/S0378778819310692 (cit. on

p. 15).

[55] Xianzhong Ding, Wan Du, and Alberto Cerpa. «OCTOPUS: Deep Rein-

forcement Learning for Holistic Smart Building Control». In: (Nov. 2019),

pp. 326–335. doi: 10.1145/3360322.3360857 (cit. on p. 15).

[56] Anchal Gupta, Youakim Badr, Ashkan Negahban, and Robin G. Qiu. «Energy-

efficient heating control for smart buildings with deep reinforcement learning».

In: Journal of Building Engineering 34 (2021), p. 101739. issn: 2352-7102.

doi: https://doi.org/10.1016/j.jobe.2020.101739. url: https:

//www.sciencedirect.com/science/article/pii/S2352710220333726

(cit. on p. 15).

[57] Zhanhong Jiang, Michael J. Risbeck, Vish Ramamurti, Sugumar Murugesan,

Jaume Amores, Chenlu Zhang, Young M. Lee, and Kirk H. Drees. «Building

HVAC control with reinforcement learning for reduction of energy cost and

demand charge». In: Energy and Buildings 239 (2021), p. 110833. issn: 0378-

7788. doi: https://doi.org/10.1016/j.enbuild.2021.110833. url: http

s://www.sciencedirect.com/science/article/pii/S0378778821001171

(cit. on p. 16).

[58] Bingqing Chen, Zicheng Cai, and Mario Bergés. «Gnu-RL: A Precocial Rein-

forcement Learning Solution for Building HVAC Control Using a Differentiable

MPC Policy». In: BuildSys ’19: Proceedings of the 6th ACM International

Conference on Systems for Energy-Efficient Buildings, Cities, and Trans-

portation (Nov. 2019), pp. 316–325. doi: 10.1145/3360322.3360849 (cit. on

p. 16).

[59] Donald Azuatalam, Wee-Lih Lee, Frits de Nijs, and Ariel Liebman. «Rein-

forcement learning for whole-building HVAC control and demand response».

In: Energy and AI 2 (2020), p. 100020. issn: 2666-5468. doi: https://doi.

87

https://www.sciencedirect.com/science/article/pii/S0378778819310692
https://www.sciencedirect.com/science/article/pii/S0378778819310692
https://doi.org/10.1145/3360322.3360857
https://doi.org/https://doi.org/10.1016/j.jobe.2020.101739
https://www.sciencedirect.com/science/article/pii/S2352710220333726
https://www.sciencedirect.com/science/article/pii/S2352710220333726
https://doi.org/https://doi.org/10.1016/j.enbuild.2021.110833
https://www.sciencedirect.com/science/article/pii/S0378778821001171
https://www.sciencedirect.com/science/article/pii/S0378778821001171
https://doi.org/10.1145/3360322.3360849
https://doi.org/https://doi.org/10.1016/j.egyai.2020.100020
https://doi.org/https://doi.org/10.1016/j.egyai.2020.100020


BIBLIOGRAPHY

org/10.1016/j.egyai.2020.100020. url: https://www.sciencedirect.

com/science/article/pii/S2666546820300203 (cit. on p. 16).

[60] Xiaoshun Zhang, Tao Bao, Tao Yu, Bo Yang, and Chuanjia Han. «Deep

transfer Q-learning with virtual leader-follower for supply-demand Stackelberg

game of smart grid». In: Energy 133 (2017), pp. 348–365. issn: 0360-5442.

doi: https://doi.org/10.1016/j.energy.2017.05.114. url: https:

//www.sciencedirect.com/science/article/pii/S036054421730871X

(cit. on p. 16).

[61] Dajun Du and Minrui Fei. «A two-layer networked learning control system

using actor–critic neural network». In: Applied Mathematics and Computation

205 (Nov. 2008), pp. 26–36. doi: 10.1016/j.amc.2008.05.062 (cit. on

p. 16).

[62] Danilo Fuselli, Francesco De Angelis, Matteo Boaro, Stefano Squartini, Qinglai

Wei, Derong Liu, and Francesco Piazza. «Action dependent heuristic dynamic

programming for home energy resource scheduling». In: International Journal

of Electrical Power Energy Systems 48 (2013), pp. 148–160. issn: 0142-0615.

doi: https://doi.org/10.1016/j.ijepes.2012.11.023. url: https:

//www.sciencedirect.com/science/article/pii/S014206151200676X

(cit. on p. 17).

[63] Qinglai Wei, Derong Liu, and Guang Shi. «A novel dual iterative Q-learning

method for optimal battery management in smart residential environments».

In: IEEE Transactions on Industrial Electronics 62.4 (2015), pp. 2509–2518.

doi: 10.1109/TIE.2014.2361485 (cit. on p. 17).

[64] Khalid Al-jabery, Zhezhao Xu, Wenjian Yu, Donald C. Wunsch, Jinjun

Xiong, and Yiyu Shi. «Demand-Side Management of Domestic Electric Water

Heaters Using Approximate Dynamic Programming». In: IEEE Transactions

88

https://doi.org/https://doi.org/10.1016/j.egyai.2020.100020
https://doi.org/https://doi.org/10.1016/j.egyai.2020.100020
https://www.sciencedirect.com/science/article/pii/S2666546820300203
https://www.sciencedirect.com/science/article/pii/S2666546820300203
https://doi.org/https://doi.org/10.1016/j.energy.2017.05.114
https://www.sciencedirect.com/science/article/pii/S036054421730871X
https://www.sciencedirect.com/science/article/pii/S036054421730871X
https://doi.org/10.1016/j.amc.2008.05.062
https://doi.org/https://doi.org/10.1016/j.ijepes.2012.11.023
https://www.sciencedirect.com/science/article/pii/S014206151200676X
https://www.sciencedirect.com/science/article/pii/S014206151200676X
https://doi.org/10.1109/TIE.2014.2361485


BIBLIOGRAPHY

on Computer-Aided Design of Integrated Circuits and Systems 36.5 (2017),

pp. 775–788. doi: 10.1109/TCAD.2016.2598563 (cit. on p. 17).

[65] Shahab Bahrami, Vincent W. S. Wong, and Jianwei Huang. «An Online Learn-

ing Algorithm for Demand Response in Smart Grid». In: IEEE Transactions

on Smart Grid 9.5 (2018), pp. 4712–4725. doi: 10.1109/TSG.2017.2667599

(cit. on p. 17).

[66] Zhiang Zhang and Khee Lam. «Practical Implementation and Evaluation of

Deep Reinforcement Learning Control for a Radiant Heating System». In:

(Nov. 2018). doi: 10.1145/3276774.3276775 (cit. on p. 17).

[67] Zhengbo Zou, Xinran Yu, and Semiha Ergan. «Towards optimal control of

air handling units using deep reinforcement learning and recurrent neural

network». In: Building and Environment 168 (2020), p. 106535. issn: 0360-

1323. doi: https://doi.org/10.1016/j.buildenv.2019.106535. url:

https://www.sciencedirect.com/science/article/pii/S036013231930

7474 (cit. on p. 17).

[68] June Young Park and Zoltán Nagy. «HVACLearn: A reinforcement learning

based occupant-centric control for thermostat set-points». In: June 2020,

pp. 434–437. doi: 10.1145/3396851.3402364 (cit. on p. 17).

[69] Marco Biemann, Fabian Scheller, Xiufeng Liu, and Lizhen Huang. «Experimen-

tal evaluation of model-free reinforcement learning algorithms for continuous

HVAC control». In: Applied Energy 298 (2021), p. 117164. issn: 0306-2619.

doi: https://doi.org/10.1016/j.apenergy.2021.117164. url: https:

//www.sciencedirect.com/science/article/pii/S0306261921005961

(cit. on p. 17).

89

https://doi.org/10.1109/TCAD.2016.2598563
https://doi.org/10.1109/TSG.2017.2667599
https://doi.org/10.1145/3276774.3276775
https://doi.org/https://doi.org/10.1016/j.buildenv.2019.106535
https://www.sciencedirect.com/science/article/pii/S0360132319307474
https://www.sciencedirect.com/science/article/pii/S0360132319307474
https://doi.org/10.1145/3396851.3402364
https://doi.org/https://doi.org/10.1016/j.apenergy.2021.117164
https://www.sciencedirect.com/science/article/pii/S0306261921005961
https://www.sciencedirect.com/science/article/pii/S0306261921005961


BIBLIOGRAPHY

[70] Liang Yu, Yi Sun, Zhanbo Xu, Chao Shen, Dong Yue, Tao Jiang, and Xiao-

hong Guan. Multi-Agent Deep Reinforcement Learning for HVAC Control in

Commercial Buildings. June 2020 (cit. on p. 18).

[71] Srinarayana Nagarathinam, Vishnu Menon, Arunchandar Vasan, and Anand

Sivasubramaniam. «MARCO - Multi-Agent Reinforcement learning based

COntrol of building HVAC systems». In: June 2020, pp. 57–67. doi: 10.1145/

3396851.3397694 (cit. on p. 18).

[72] Ruoxi Jia, Ming Jin, Kaiyu Sun, Tianzhen Hong, and Costas Spanos. «Ad-

vanced Building Control via Deep Reinforcement Learning». In: Energy

Procedia 158 (2019). Innovative Solutions for Energy Transitions, pp. 6158–

6163. issn: 1876-6102. doi: https://doi.org/10.1016/j.egypro.2019.

01.494. url: https://www.sciencedirect.com/science/article/pii/

S187661021930517X (cit. on p. 18).

[73] José R. Vázquez-Canteli, Jérôme Kämpf, Gregor Henze, and Zoltan Nagy.

«CityLearn v1.0: An OpenAI Gym Environment for Demand Response with

Deep Reinforcement Learning». In: BuildSys ’19 (2019), pp. 356–357. doi:

10.1145/3360322.3360998. url: https://doi.org/10.1145/3360322.

3360998 (cit. on p. 18).

[74] Giuseppe Pinto, Marco Savino Piscitelli, José Ramón Vázquez-Canteli, Zoltán

Nagy, and Alfonso Capozzoli. «Coordinated energy management for a cluster

of buildings through deep reinforcement learning». In: Energy 229 (2021),

p. 120725. issn: 0360-5442. doi: https://doi.org/10.1016/j.energy.

2021.120725. url: https://www.sciencedirect.com/science/article/

pii/S0360544221009737 (cit. on p. 19).

[75] Zhipeng Deng and Qingyan Chen. «Reinforcement learning of occupant

behavior model for cross-building transfer learning to various HVAC control

systems». In: Energy and Buildings 238 (2021), p. 110860. issn: 0378-7788.

90

https://doi.org/10.1145/3396851.3397694
https://doi.org/10.1145/3396851.3397694
https://doi.org/https://doi.org/10.1016/j.egypro.2019.01.494
https://doi.org/https://doi.org/10.1016/j.egypro.2019.01.494
https://www.sciencedirect.com/science/article/pii/S187661021930517X
https://www.sciencedirect.com/science/article/pii/S187661021930517X
https://doi.org/10.1145/3360322.3360998
https://doi.org/10.1145/3360322.3360998
https://doi.org/10.1145/3360322.3360998
https://doi.org/https://doi.org/10.1016/j.energy.2021.120725
https://doi.org/https://doi.org/10.1016/j.energy.2021.120725
https://www.sciencedirect.com/science/article/pii/S0360544221009737
https://www.sciencedirect.com/science/article/pii/S0360544221009737


BIBLIOGRAPHY

doi: https://doi.org/10.1016/j.enbuild.2021.110860. url: https:

//www.sciencedirect.com/science/article/pii/S0378778821001444

(cit. on p. 19).

[76] Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning

From Data. AMLBook, 2012. isbn: 1600490069 (cit. on p. 22).

[77] Y. Wang, Kirubakaran Velswamy, and Biao Huang. «A Long-Short Term

Memory Recurrent Neural Network Based Reinforcement Learning Controller

for Office Heating Ventilation and Air Conditioning Systems». In: Processes

5 (Sept. 2017). doi: 10.3390/pr5030046 (cit. on p. 23).

[78] Ki Ahn and Cheol-Soo Park. «Application of deep Q-networks for model-free

optimal control balancing between different HVAC systems». In: Science

and Technology for the Built Environment 26 (Oct. 2019), pp. 1–16. doi:

10.1080/23744731.2019.1680234 (cit. on p. 25).

[79] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-

duction. Cambridge, MA, USA: A Bradford Book, 2018. isbn: 0262039249

(cit. on p. 26).

[80] Arun Nair et al. «Massively Parallel Methods for Deep Reinforcement Learn-

ing». In: (July 2015) (cit. on p. 26).

[81] Hado Van Hasselt, Arthur Guez, and David Silver. «Deep Reinforcement

Learning with Double Q-learning». In: (Sept. 2015) (cit. on p. 27).

[82] Tuomas Haarnoja et al. «Soft Actor-Critic Algorithms and Applications». In:

(Dec. 2018) (cit. on pp. 28–30).

[83] Giuseppe Pinto, Silvio Brandi, Alfonso Capozzoli, José Vázquez-Canteli, and

Zoltán Nagy. «Towards Coordinated Energy Management in Buildings using

Deep Reinforcement Learning». In: (Sept. 2020) (cit. on p. 30).

91

https://doi.org/https://doi.org/10.1016/j.enbuild.2021.110860
https://www.sciencedirect.com/science/article/pii/S0378778821001444
https://www.sciencedirect.com/science/article/pii/S0378778821001444
https://doi.org/10.3390/pr5030046
https://doi.org/10.1080/23744731.2019.1680234


BIBLIOGRAPHY

[84] Petros Christodoulou. Soft Actor-Critic for Discrete Action Settings. 2019.

arXiv: 1910.07207 [cs.LG] (cit. on p. 30).

[85] Angela Amato, Matteo Bilardo, Enrico Fabrizio, Valentina Serra, and F.

Spertino. «Energy Evaluation of a PV-Based Test Facility for Assessing

Future Self-Sufficient Buildings». In: Energies 14 (Jan. 2021), p. 329. doi:

10.3390/en14020329 (cit. on pp. 33, 38, 41).

[86] Tiansong Cui, Shuang Chen, Yanzhi Wang, Qi Zhu, Shahin Nazarian, and

Massoud Pedram. «An optimal energy co-scheduling framework for smart

buildings». In: Integration 58 (2017), pp. 528–537. issn: 0167-9260. doi:

https://doi.org/10.1016/j.vlsi.2016.10.009. url: https://www.

sciencedirect.com/science/article/pii/S0167926016300864 (cit. on

p. 37).

[87] Reino Ruusu, Sunliang Cao, Benjamin Manrique Delgado, and Ala Hasan.

«Direct quantification of multiple-source energy flexibility in a residential

building using a new model predictive high-level controller». In: Energy

Conversion and Management 180 (2019), pp. 1109–1128. issn: 0196-8904.

doi: https://doi.org/10.1016/j.enconman.2018.11.026. url: https:

//www.sciencedirect.com/science/article/pii/S0196890418312706

(cit. on p. 38).

[88] Wilhelm Durisch, Bernd Bitnar, Jean-C. Mayor, Helmut Kiess, King-hang

Lam, and Josie Close. «Efficiency model for photovoltaic modules and demon-

stration of its application to energy yield estimation». In: Solar Energy

Materials and Solar Cells 91.1 (2007), pp. 79–84. issn: 0927-0248. doi:

https : / / doi . org / 10 . 1016 / j . solmat . 2006 . 05 . 011. url: https :

//www.sciencedirect.com/science/article/pii/S0927024806003345

(cit. on p. 44).

92

https://arxiv.org/abs/1910.07207
https://doi.org/10.3390/en14020329
https://doi.org/https://doi.org/10.1016/j.vlsi.2016.10.009
https://www.sciencedirect.com/science/article/pii/S0167926016300864
https://www.sciencedirect.com/science/article/pii/S0167926016300864
https://doi.org/https://doi.org/10.1016/j.enconman.2018.11.026
https://www.sciencedirect.com/science/article/pii/S0196890418312706
https://www.sciencedirect.com/science/article/pii/S0196890418312706
https://doi.org/https://doi.org/10.1016/j.solmat.2006.05.011
https://www.sciencedirect.com/science/article/pii/S0927024806003345
https://www.sciencedirect.com/science/article/pii/S0927024806003345


BIBLIOGRAPHY

[89] Mark Z. Jacobson and Vijaysinh Jadhav. «World estimates of PV optimal

tilt angles and ratios of sunlight incident upon tilted and tracked PV panels

relative to horizontal panels». In: Solar Energy 169 (2018), pp. 55–66. issn:

0038-092X. doi: https://doi.org/10.1016/j.solener.2018.04.030.

url: https://www.sciencedirect.com/science/article/pii/S0038092

X1830375X (cit. on p. 44).

[90] url: https://www.gse.it/servizi-per-te/fotovoltaico/scambio-sul-

posto (cit. on p. 46).

[91] Sergio B. Sepúlveda-Mora and Steven Hegedus. «Making the case for time-of-

use electric rates to boost the value of battery storage in commercial buildings

with grid connected PV systems». In: Energy 218 (2021), p. 119447. issn:

0360-5442. doi: https://doi.org/10.1016/j.energy.2020.119447. url:

https://www.sciencedirect.com/science/article/pii/S036054422032

5548 (cit. on p. 53).

[92] Rafael Hirschburger and Anke Weidlich. «Profitability of photovoltaic and

battery systems on municipal buildings». In: Renewable Energy 153 (2020),

pp. 1163–1173. issn: 0960-1481. doi: https://doi.org/10.1016/j.renene.

2020.02.077. url: https://www.sciencedirect.com/science/article/

pii/S096014812030272X (cit. on p. 53).

[93] Pietro Elia Campana, Luca Cioccolanti, Baptiste François, Jakub Jurasz, Yang

Zhang, Maria Varini, Bengt Stridh, and Jinyue Yan. «Li-ion batteries for peak

shaving, price arbitrage, and photovoltaic self-consumption in commercial

buildings: A Monte Carlo Analysis». In: Energy Conversion and Management

234 (2021), p. 113889. issn: 0196-8904. doi: https://doi.org/10.1016/j.

enconman.2021.113889. url: https://www.sciencedirect.com/science/

article/pii/S0196890421000662 (cit. on p. 53).

93

https://doi.org/https://doi.org/10.1016/j.solener.2018.04.030
https://www.sciencedirect.com/science/article/pii/S0038092X1830375X
https://www.sciencedirect.com/science/article/pii/S0038092X1830375X
https://www.gse.it/servizi-per-te/fotovoltaico/scambio-sul-posto
https://www.gse.it/servizi-per-te/fotovoltaico/scambio-sul-posto
https://doi.org/https://doi.org/10.1016/j.energy.2020.119447
https://www.sciencedirect.com/science/article/pii/S0360544220325548
https://www.sciencedirect.com/science/article/pii/S0360544220325548
https://doi.org/https://doi.org/10.1016/j.renene.2020.02.077
https://doi.org/https://doi.org/10.1016/j.renene.2020.02.077
https://www.sciencedirect.com/science/article/pii/S096014812030272X
https://www.sciencedirect.com/science/article/pii/S096014812030272X
https://doi.org/https://doi.org/10.1016/j.enconman.2021.113889
https://doi.org/https://doi.org/10.1016/j.enconman.2021.113889
https://www.sciencedirect.com/science/article/pii/S0196890421000662
https://www.sciencedirect.com/science/article/pii/S0196890421000662


BIBLIOGRAPHY

[94] Maria M. Symeonidou, Chrysanthi Zioga, and Agis M. Papadopoulos. «Life

cycle cost optimization analysis of battery storage system for residential

photovoltaic panels». In: Journal of Cleaner Production 309 (2021), p. 127234.

issn: 0959-6526. doi: https : / / doi . org / 10 . 1016 / j . jclepro . 2021 .

127234. url: https://www.sciencedirect.com/science/article/pii/

S0959652621014530 (cit. on p. 53).

94

https://doi.org/https://doi.org/10.1016/j.jclepro.2021.127234
https://doi.org/https://doi.org/10.1016/j.jclepro.2021.127234
https://www.sciencedirect.com/science/article/pii/S0959652621014530
https://www.sciencedirect.com/science/article/pii/S0959652621014530

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Previous works on RL algorithms
	Contribution from this work

	Fundamentals of Reinforcement Learning
	Case study and control problem
	Rule-Based Control
	Reinforcement Learning control

	Implementation
	Case study
	Design of Reinforcement Learning
	Observation space
	Action space
	Reward function

	Simulation environment
	Experimental setup

	Results and discussions
	Results
	Discussions

	Conclusions
	Bibliography

