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ABSTRACT 

Geothermal energy has received global attention for being a clean, sustainable and 
cheap energy source. Numerical modeling is currently an integral part of all the stages 
of geothermal processes such as exploration and development. In this 3D simulation 
study, a low-temperature geothermal doublet has been considered. In such system, hot 
water is produced from one well (producer) and cooled water whose heat content has 
been depleted by a surface heat exchanger is re-injected underground through another 
well (injector). 

This work tests the practicality of employing the Finite-Volume based Dumux 
simulator for modeling the development of the cooled-water thermal front over the 
years. Dumux is a relatively new multipurpose open-source simulator that is based on 
the C++ programming language. The Dumux simulation outcome has been validated by 
a comparison against that of the Finite-Difference based commercial reservoir simulator 
ECLIPSE. The computational performances of both simulators have also been analyzed. 

Two major scenarios were adopted: a convection-dominated scenario in which only 
the geothermal aquifer layer was modeled and a convection plus conduction scenario in 
which the caprock and bedrock layers were also modeled. The inclusion of the caprock 
and bedrock layers into the model geometry accounts for the added thermal conduction 
effects across those layers. The outlining of two non-isothermal scenarios was meant to 
evaluate whether the added computational cost of modeling the caprock and bedrock 
layers was justified. 

The consistency of the Dumux solution for a varying maximum allowed time step 
size was investigated. Furthermore, the sensitivity of the simulation variables to 
different injection and production rate schemes was examined. The studied simulation 
variables are pressure and temperature as primary variables in addition to water 
viscosity as a secondary variable. Both temporal and spatial variations of variables were 
inspected according to the modeled scenario. 
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1 INTRODUCTION 

Non-isothermal fluid flow characterizes geothermal aquifers which are used for 
energy extraction through heat exchange from the produced geothermal fluid. 
Geothermal energy originates from the Earth’s interior where heat flows towards the 

surface and is retained by sub-surface aquifers (Limberger et al., 2018). Geothermal 
energy is a sustainable source of energy that is free of carbon and has a reduced 
environmental impact (Beaude et al., 2019). Another main advantage of geothermal 
energy is its low cost which grants geothermal systems the capacity to eventually be the 
world’s cheapest source of clean thermal fuel (Goldstein et al., 2013). Geothermal heat 
was first successfully exploited to generate electricity used for lighting purposes in 
Tuscany, Italy (Limberger et al., 2018). Geothermal systems may be classified into 
high-temperature (higher than 150 °C), intermediate-temperature (from 90 °C to 150 
°C) and low-temperature  (from 25 °C to less than 90 °C) resources (Dai & Chen, 
2008).  Low-temperature geothermal systems are mostly used for direct applications 
such as district heating and fish farming (Ouali et al., 2015). In this numerical study, a 
low-temperature 3D geothermal doublet has been considered. A geothermal doublet is a 
geothermal system consisting of two wells (producer and injector) where hot water is 
produced from one well (producer) and cooled water is re-injected underground through 
the other well (injector) after transferring its energy via a surface heat exchanger 
(Mahbaz et al., 2021). A 3D schematic from Ganguly et al., (2017) for the geothermal 
doublet system can be seen in Figure 1.1 The injected water has a double benefit of 
maintaining the reservoir pressure and depleting the heat of the reservoir rock as the 
cooled front propagates through the reservoir and thus not only the heat content of the 
geothermal fluid is extracted but also that of the reservoir rock (Elemér, 2014).  

Numerical simulation has become crucial for all the stages of geothermal processes 
such as the exploration stage for evaluating the geothermal potential and the 
development phase for optimizing the use of the geothermal resource (Beaude et al., 
2019). Dumux is a relatively new Finite-Volume and Finite-Element based simulator 
that is intended for the simulation of multi-phase or multi-component or multi-physics 
or even multi-domain flow and transport processes in porous media. Dumux is a free 
and open-source software developed by the University of Stuttgart since January 2007 
for research purposes (Koch, Gläser, et al., 2020). It is based on the widely used C++ 
programming language which provides flexibility to implement different kinds of 
Equations of State, constitutive equations, boundary conditions, etc. Furthermore, this 
flexibility also allows the Dumux users to implement new features such as modified 
physical or chemical behaviors. Source code adjustments can be shared within the 
Dumux community. It should be highlighted here that Dumux is a simulator not 
focalized on oil and gas reservoir problems like the industrial simulators like ECLIPSE 
(by Schlumberger) but instead it can be regarded as a multipurpose simulator that can 
be used for numerical modeling within various fields of application. For instance, 
Dumux can be used for modeling natural phenomena such as soil water evaporation due 
to solar radiation (Heck et al., 2020) or environmental problems such as disposal of 
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radioactive waste (Ahusborde et al., 2015) or biomedical engineering problems such as 
brain tissue perfusion (Koch, Flemisch, et al., 2020) and, of course, modeling oil and 
gas reservoir engineering problems such as simulation of oil production (Koch, Gläser, 
et al., 2020). Dumux has also been applied to geothermal applications like modeling the 
temperature distribution resulting from the injection-extraction operation for a confined 
layered geothermal reservoir (Ganguly et al., 2017a) and analysis of the impact of heat 
dissipated from a geothermal aquifer on temperature distribution (Ganguly et al., 
2017b). 

This work investigates the feasibility of using the Finite-Volume based research 
simulator Dumux to simulate the thermal front development of a low-temperature 
geothermal doublet over the years. To this end, comparison with the results and 
computational performance of ECLIPSE are also provided. The ECLIPSE software, 
commercialized by Schlumberger company, is one of the most widely used commercial 
reservoir simulators within the Oil & Gas industry. ECLIPSE is a Finite-Difference 
based simulator. It has a package intended for black oil simulation (ECLIPSE 100) and 
another package intended for compositional simulation (ECLIPSE 300). The package 
employed in this work is the ECLIPSE 100 and will always be referred to throughout 
the whole work as “ECLIPSE”. Since Dumux is a multipurpose open-source code, 
many features available in ECLIPSE have to be manually coded in the C++ language to 
make the modeled scenarios in Dumux and ECLIPSE consistent with each other. This 
was the main challenge of the work. 
 

Figure 1.1: 3D schematic of a geothermal doublet system (Ganguly et al., 2017) 

Two main scenarios were considered: in scenario A, only the geothermal aquifer 
layer was modeled and thus heat transfer occurred mainly by convection; in scenario B, 
caprock and bedrock layers were also modeled to account for the additional effect of 
heat transport by solid conduction through those layers. The definition of two non-
isothermal scenarios was mainly aimed at understanding whether accounting for the 
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effect of conduction is worth the additional computational cost due to the larger number 
of cells used in the corresponding numerical model. Another reason is to inspect 
whether the comparison between Dumux and ECLIPSE may show some pronounced 
differences when modeling the convection-dominated scenario with respect to 
convection plus conduction through caprock and bedrock. For both scenarios, we 
investigated the variation of pressure with time at both the injection and production 
wells and the spatial variation of pressure, temperature and water viscosity along certain 
cross-sections in the computational domain. As for scenario B, we additionally 
investigated the temporal variation of temperature in the boundary cell above the 
injection well to check the temperature behavior due to pure conduction. 

This thesis is comprised of a total of seven chapters. Chapter 2 is a problem 
formulation chapter that addresses the mathematical equations which depict the physics 
of the problem in addition to the imposed initial and boundary conditions necessary to 
render the problem well-posed. Chapter 3 details the characteristics of the 
computational domain such as the domain dimensions, well locations and the applied 
meshing in addition to the fluid and solid properties. Chapter 4 gives a general overview 
of the Dumux simulator with regard to its development stages, the applications it has 
been applied to, benchmark studies and comparisons against other simulators it has been 
involved in, fundamental files that form any Dumux problem as well as the available 
models, discretization schemes and distinguishing features. Chapter 5 illustrates how 
the main aspects of the problem are implemented in the Dumux code such as the 
selection of the model and the discretization schemes while elaborating the 
corresponding ECLIPSE implementation. The simulation results are presented and 
discussed in chapter 6 which also provides the comparison between the results and the 
involved computational cost of Dumux against those of ECLIPSE. Finally, the main 
conclusions of the work are drawn in chapter 7. 
  



Mahmoud Aboelseoud   8 
_____________________________________________________________________________________ 

 

2 PROBLEM FORMULATION 

Our problem consists of two main physical phenomena: single-phase liquid water 
flow in a porous medium within the Darcy domain and heat transport through the 
porous medium by convection and conduction. To make our problem well-posed, initial 
and boundary conditions had to be assigned to each of our two scenarios: scenario A 
and scenario B. For each of the two scenarios, the same initial conditions were assumed 
for the geothermal aquifer layer but different boundary conditions were used due to 
differences in the model geometry of the two scenarios.  

2.1 Single-Phase Liquid Water Flow Subproblem  

The first governing equation for this subproblem is a mass balance/conservation 
equation that can be expressed as follows: 

 

 

where ρw  is the water density at reservoir conditions in Kg/mrc
3 , u is the Darcy 

velocity in m/s, ϕ  is the porosity (unitless) and q  is the source or sink term in 
Kg/(mrc

3 .s). Equation (2.1) is comprised of 3 main terms as follows: 
1. A transport term: −∇ ∙ (ρwu) 

2. A cumulative term: ∂(ρwϕ)

∂t
 

3. A source/sink term: q 
The physical meaning of equation (2.1) is that the variation of water mass per unit 

volume per unit time inside a specified domain which is given by the cumulative term is 
equal to the difference between the inflow mass flow rate of water per unit volume 
going into the domain and the outflow mass flow rate of water per unit volume coming 
out of the domain where this difference is given by the transport term but taking into 
account that this temporal variation is increased by an additional mass per unit volume 
per unit time in case of a source term or decreased by a certain mass per unit volume per 
unit time in case of a sink term.   

The second governing equation of this single-phase fluid flow subproblem is Darcy’s 

law which is given by: 

where K is the absolute permeability in m2, μw is the water viscosity in Pa.s, ∇P is 
the pressure gradient in Pa/m, ∇Z is the elevation gradient (unitless) and γw is the water 
specific gravity in Kg/(m2.s2) 

−∇ ∙ (ρwu) =
∂(ρwϕ)

∂t
− q (2.1) 

u = −
K

μw
(∇P − γw∇Z) (2.2) 
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By substituting the Darcy flow equation (2.2) in equation (2.1), we get the following 
pressure equation: 

 
In reservoir engineering, it is a common practice to introduce the volume factors 

which represent the ratio between the subsurface volume of a fluid to its volume at 
standard or stock tank conditions. Moreover, the source/sink term has a positive sign in 
case of production and a negative sign in case of injection. However, it should be noted 
that the concept of volume factors is not used in Dumux and that the reservoir 
engineering convention for the sign of the source/sink term is actually opposite to the 
one in Dumux. Consequently, the following equations (2.4) and (2.5) may be valid only 
for ECLIPSE and are reported here just for a more common representation of the 
pressure equation within the reservoir engineering domain. 

Remembering that 

where Bw is the water formation volume factor representing the ratio of the volume 
of a certain mass of water at reservoir conditions to its volume at stock tank conditions. 

By substituting equation (2.4) in equation (2.3) and then eliminating ρwst from all 
terms, we get the following equation: 

where the units of all terms in the differential equation (2.5) is s-1 

 

2.2 Heat Transport Subproblem 

Energy transfer through the porous medium can occur either by convection or 
conduction where the solid portion propagates energy only by conduction while the 
fluid portion can transport energy by both convection and conduction (Bringedal, 2015). 
Both convective and conductive heat transfer involve the transport of heat from one 
molecule to another and thus boosting the molecular energy; however, conduction does 
not result in the translation of molecules due to the high strength of the intermolecular 
bonds while convection allows molecular translation due to the weak bonds between 
molecules (English, 2001). That’s why conduction is more common in solids compared 

to fluids as the close contact between the solid molecules allows the transfer of thermal 
energy due to molecular vibration while in liquids -aside from liquid metals- and gases, 
the molecules are far apart from each other which diminishes the possibility for 
molecular collision and the consequent thermal energy transfer (Sahu et al., 2018).  

∇ ∙ (ρw

K

μw
(∇P −  γw∇Z)) =

∂(ρwϕ)

∂t
− q (2.3) 

ρw =  
ρwst

Bw
 (2.4) 

∇ ∙ (
K

Bw ∗  μw
∙ (∇P − γw∇Z) ) =

∂ (
ϕ

Bw
)

∂t
− q′ 

 

(2.5) 
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Bringedal, (2015) states that for a porous medium within a representative elementary 
volume, considering a fluid temperature Tw and a solid (rock matrix) temperature Ts 
leads to the development of equations (2.6) and (2.7) for the conservation of energy as 
follows. 
 

Energy conservation equation for the fluid: 

Energy conservation equation for the solid (rock matrix): 

where Uw is the specific internal energy of the fluid phase in J/Kg, hw is the specific 
enthalpy of the fluid phase in J/Kg, ∇Tw and ∇Ts are the temperature gradients of the 
fluid and the solid respectively in °K/m,  λw and λs are the  thermal conductivities of the 
fluid and the solid respectively in J/(s.m.°K), cs is the specific heat capacity of the solid 
in J/ (Kg.°K), qh  is the heat source/sink term in J/(s.m3) and H is the heat transfer 
coefficient between the fluid and the solid in J/(s.m2.°K). 

In equations (2.6) and (2.7) above, we can find the following main terms. 

1. The convective term or advective heat transfer term: (ρwhw
K

μw
(∇P − ρwg)) 

2. The conductive heat transfer terms for the fluid and solid respectively: (ϕλw∇Tw) 
and ((1 − ϕ)λs∇Ts) 

3. The thermal energy cumulative terms for the fluid and solid respectively: 
∂(ϕρwUw)

∂t
 and ∂((1−ϕ)ρscsTs)

∂t
 

  Assuming a condition of local thermal equilibrium inside each representative 
elementary volume such that Ts = Tw = T  due to the fine size of the matrix grains and 
low fluid flow velocity results in the formulation of a single energy conservation 
equation that applies to both the fluid and the solid rock matrix (Bringedal, 2015; El-
Amin, 2019). The resulting equation  (2.8) comes from the summing up of the two 
equations (2.6) and (2.7) as follows. 

where λpm = ϕ λw + (1 − ϕ)λs is the porosity averaged thermal conductivity of the 
porous medium. The unit for all the left-hand-side terms in equation (2.8) is J/(s.m3) 

Finally, it should be noted that for equations (2.3) and (2.8) in Dumux, the porosity is 
taken out of the derivative and the porous medium is considered incompressible. 

 
∂(ϕρwUw)

∂t
−  ∇ ∙ (ρwhw

K

μw

(∇P − ρwg)) = ∇ ∙ (ϕλw∇Tw) + ∇ ∙ (H(Ts − Tw)) + qh (2.6) 

∂((1 − ϕ)ρscsTs)

∂t
= ∇ ∙ ((1 − ϕ)λs∇Ts) + ∇ ∙ (H(Ts − Tw)) (2.7) 

∂(ϕρwUw)

∂t
+

∂((1 − ϕ)ρscsT)

∂t
− ∇ ∙ (ρwhw

K

μw

(∇P − ρwg)) − ∇ ∙ (λpm∇ T) − qh = 0 (2.8) 
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2.3 Initial and Boundary Conditions 

Our numerical model that depicts the geothermal aquifer is a symmetrical 
rectangular domain whose specific parameters are to be discussed in detail in chapter 3. 
Scenario A models the geothermal system with only one vertical layer for the aquifer, 
thus neglecting any conduction between the aquifer and the surrounding layers.  For 
scenario B, additional caprock and bedrock were introduced to the model to monitor the 
temperature behavior for the case of heat transfer by pure conduction. The larger 
number of cells used in scenario B compared to scenario A due to the modeling of the 
caprock and bedrock layers caused the computational time to be impractically long. 
Dumux, which is based on a Finite Volume scheme, is characterized by an already 
higher computational cost compared to the Finite Difference scheme used in ECLIPSE. 
For this reason, in Dumux simulation of scenario B, a half-domain was considered, 
exploiting symmetry conditions along the X-direction. 3D schematic representations of 
the full domain employed in scenario A and the half-domain employed in scenario B are 
shown in Figure 2.1 and Figure 2.2 respectively.  

 It’s worth noting that the primary variables for which the initial and boundary 
conditions are set are pressure and temperature. Pressure is involved in both equations 
(2.3) and (2.8) while temperature is involved only in equation (2.8). 

 
Figure 2.1: 3D full domain schematic used in both Dumux and ECLIPSE for 

scenario A 

 

 
Figure 2.2: 3D half-domain schematic used in Dumux only for scenario B 
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2.3.1 Initial Conditions 

2.3.1.1 Initial pressure 

The aquifer layer was modeled with a thickness of 30 m. A hydrostatic pressure 
gradient of 9.7119 KPa/m or 0.097119 bar/m has been set for the initial pressure 
condition of the model. The reference pressure is equal to 101.456785 barsa at the 
center of the aquifer layer which corresponds to a depth of 1015 m. The top of the 
domain corresponds to a depth of 1000 m in case of scenario A and to a depth of 985 m 
in case of scenario B due to the presence of a 15 m thick caprock which has the same 
thickness as the bedrock in that scenario. The pressure on top of the domain is thus 100 
barsa in case of scenario A and equal to 98.543215 barsa for scenario B.  

2.3.1.2 Initial Temperature 

A single initial temperature value of 50.45 °C has been assigned to the whole 
computational domain in both scenarios. Figure 2.3 and Figure 2.4 show a simplified 
2D representation of the initial conditions for the two scenarios investigated within this 
study. 

 

 
Figure 2.3: 2D schematic for the initial conditions of scenario A 
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Figure 2.4: 2D schematic for the initial conditions of scenario B 

2.3.2 Boundary Conditions for Scenario A 

In this scenario, the main focus is modeling the effect of heat transfer by convection, 
and thus heat transported mainly due to fluid motion. The heat conduction is neglected.  
As a result, only the aquifer layer was modeled and no caprock or bedrock layers were 
considered. For the top and bottom boundaries, Neumann no-flow boundary conditions  
were used for both pressure and temperature such that no fluid flow or heat transport is 
allowed across those boundaries. Instead, for the lateral boundaries, Dirichlet boundary 
conditions were used which were assumed to be the same as the initial conditions for 
pressure and temperature to mimic physically undisturbed boundaries. Figure 2.5 shows 
a schematic for the boundary conditions applied within scenario A in Dumux. It should 
be noted that the convention for the Z-direction in the Dumux code is positive upwards 
unlike ECLIPSE, however, this does not have any effect on any aspect of the work. In 
Figure 2.5, the red color of the arrows refers to Neumann no-flow boundary conditions 
while the blue one refers to Dirichlet boundary conditions. 
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Figure 2.5: Schematic for the boundary conditions of scenario A in Dumux 

 

2.3.3 Boundary Conditions for Scenario B 

 
In this scenario, the phenomenon of heat transfer by conduction is monitored through 

the introduction of caprock and bedrock to the geothermal aquifer layer. It would make 
sense physically to set a Neumann no-flow boundary condition for pressure and a 
Dirichlet boundary condition for temperature for the top and bottom boundaries. 
However, for the cell-centered Finite Volume scheme that was used for spatial 
discretization in the Dumux code of this study, Dumux does not allow setting different 
kinds of boundary conditions for the different equations on the same boundary. As a 
result, Dirichlet boundary conditions were used for both pressure and temperature on 
the top and bottom boundaries. The Dirichlet boundary conditions were set to be 
identical to the initial conditions. In this concern, it was taken into account that the 
gridding applied to the caprock and bedrock layers ensures undisturbed top and bottom 
boundaries. This is to be discussed in detail in chapter 3. Regarding the lateral 
boundaries, Dirichlet boundary conditions exactly the same as the initial pressure, and 
temperature conditions were set for all boundaries except one. This one lateral boundary 
is the symmetry plane along which the computational domain was cut in half along the 
X-direction. Symmetry conditions were approximated by assigning Neumann no-flow 
boundary conditions for both pressure and temperature across that symmetry plane. The 
main purpose of applying symmetry conditions and using a half-domain for the Dumux 
simulation of scenario B is reducing the computational time which will be impractically 
long after the caprock and bedrock are taken into account due to the high number of 
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cells. The computational cost is an issue that has to be carefully considered in Dumux 
since the Dumux code is based on a Finite Volume scheme which is more costly than 
the Finite Difference approach used in ECLIPSE from the computational point of view. 

It should also be noted here that no fluid flow is allowed from the geothermal aquifer 
layer into the caprock and bedrock layers and thus heat can only be transported by 
conduction. This was implemented easily in ECLIPSE by setting zero transmissibility 
along the Z-direction at the layer interfaces while in Dumux, it was not an easy task as it 
required the modification of the Darcy law C++ class in the Dumux core where the 
procedure will be discussed in detail in chapter 5. Figure 2.6 shows a schematic for the 
boundary conditions applied within scenario B in Dumux. 

 
Figure 2.6: Schematic for the boundary conditions of the half-domain used for 

scenario B in Dumux 
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3 SYNTHETIC CASE 

For the purpose of conducting this study in which non-isothermal fluid flow in a 
geothermal aquifer is simulated using Dumux, a synthetic case was formulated such that 
a simplified model geometry was defined for the computational domain. The domain 
was subdivided into a number of cells to generate a structured grid. The mesh cells were 
then characterized with physical and thermal properties for both the solid (rock matrix) 
and the fluid (liquid water).  

3.1 The Computational Domain and Well Locations 

The geothermal reservoir is modeled as a right-angled parallelepiped whose 
dimensions are shown in Table 3.1 for each of the scenarios investigated within this 
study. Production and injection wells are 120 m apart, located along the X-direction, so 
the injection well is at X=1342 m and the production well is at X=1462 m. They are 
located at the middle of the Y-direction in the full domain and at the lateral boundary in 
the half-domain as shown in the schematics of Figure 2.1 and Figure 2.2 respectively. 
 

Table 3.1: Dimensions of the computational domain 

Parameter 
Modeled scenario 

Scenario A Scenario B 

Length [m] 2804 

Width [m] 2804 1402 

Aquifer thickness [m] 30 30 

Caprock thickness [m] No caprock and bedrock 

layers 

15 

Bedrock thickness [m] 15 

Total thickness [m] 30 60 

 

3.2 The Grid 

The same grid discretization was used for both Dumux and ECLIPSE. The aquifer 
layer was modeled with only one vertical numerical layer in both scenarios, neglecting 
gravity effects. Instead, each of the caprock and bedrock layers of scenario B is 
represented by three numerical vertical layers of thickness 5 m. The use of three 
numerical layers is aimed at maintaining undisturbed top and bottom boundaries within 
that scenario to respect the imposed Dirichlet boundary conditions of pressure and 
temperature.  



Mahmoud Aboelseoud   17 
_____________________________________________________________________________________ 

 

For all numerical layers, a gradual spatial grid refinement along both X and Y 
directions from the outer lateral boundary to the inner well area was achieved by using 
three grid zones such that the outermost zone has the largest cell dimension (200 m x 
200 m) and the innermost zone has the finest cell dimension (4 m x 4 m) while the 
middle zone has a cell dimension that is in between (20 m x 20 m). Grid refinement 
around the wells is meant to achieve a better simulation accuracy due to the large 
expected variations of the pressure and temperature gradients within a limited spatial 
scale (Mehl et al., 2006). On the contrary, grid coarsening is applied to the outermost 
zone because no significant variations of pressure and temperature are expected. The 
grid size and cell dimensions are shown in detail in Table 3.2 for both scenarios. 

Figure 3.1 shows a schematic of the 3D grid used for scenario A while Figure 3.2 
shows a schematic of the 3D grid used for scenario B.  

 

 
Figure 3.1: 3D grid used for scenario A 
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Figure 3.2: 3D grid used for scenario B 

 
In Figure 3.3, a side view from the Y-direction shows the only vertical numerical 

layer representing the geothermal aquifer for scenario A while in Figure 3.4, the same 
view reveals the 7 vertical numerical layers for scenario B where each of the caprock 
and bedrock is represented by 3 vertical numerical layers. 
 

 
Figure 3.3: Side view from the Y-direction for the grid of scenario A 

 

 
Figure 3.4: Side view from the Y-direction for the grid of scenario B 
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Table 3.2: Grid size and spatial discretization for both scenarios 

Parameter 
Modeled scenario 

Scenario A Scenario B 

Grid size 281x281x1 281x141x7 

Discretization in X-direction 

Aquifer layer 

2 cells of 200 m 

28 cells of 20 m 

221 cells of 4 m 

28 cells of 20 m 

2 cells of 200 m 

2 cells of 200 m 

28 cells of 20 m 

221 cells of 4 m 

28 cells of 20 m 

2 cells of 200 m 

Caprock layer 
- 

Same as the 

aquifer layer Bedrock layer 

Discretization in Y-direction 

Aquifer layer 

2 cells of 200 m 

28 cells of 20 m 

221 cells of 4 m 

28 cells of 20 m 

2 cells of 200 m 

1 cell of 2 m 

110 cells of 4 m 

28 cells of 20 m 

2 cells of 200 m 

Caprock layer 
- 

Same as the 

aquifer layer Bedrock layer 

Discretization in Z-direction 

Aquifer layer 1 cell of 30 m 1 cell of 30 m 

Caprock layer 
- 3 cells of 5 m 

Bedrock layer 

 

3.3 Physical and Thermal Properties of Rock and Water 

The initial water density has been set equal to 990 Kg/m3 based on the value used by 
Aboulela et al., (2020). All water properties are evaluated in Dumux at each time step 
according to the pressure and temperature of the control volume at that specific time 
step based on the IAPWS Industrial Formulation 1997 for the Thermodynamic 
Properties of Water and Steam (The DuMux developers, 2020c). 

For ECLIPSE, instead, a table of water viscosity as a function of temperature was 
introduced to the ECLIPSE input file in the PROPS section where the viscosity values 
were calculated for a temperature range of 16 °C to 56 °C at the initial aquifer reference 
pressure of 101.456785 barsa using an online water and steam property calculator 
employing the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties 
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of Water and Steam for the sake of consistency between both simulators (Kretzschmar 
et al., 2018). Table 3.3 shows the water viscosity values used in the ECLIPSE input 
table as a function of temperature. The temperature range for viscosity calculation was 
chosen so as to include the values of the maximum initial aquifer temperature of 50.45 
°C and the minimum temperature of 20 °C of the injected cooled water. Furthermore, 
the water thermal conductivity and specific heat values used in ECLIPSE were also 
evaluated using the same online calculator. The water specific heat capacity computed 
with the online calculator at the initial aquifer reference pressure of 101.456785 barsa 
varies slightly from a value of 4.15713 KJ/Kg.°K at the initial geothermal system 
temperature of 50.45 °C to a value of 4.15471 KJ/Kg.°K at 20 °C. Due to the slight 
variation, a constant value of 4.15713 KJ/Kg.°K was assigned for the water specific 
heat capacity in the ECLIPSE input file. Regarding water thermal conductivity, it’s 

interesting to note that it’s not entered into the ECLIPSE input file as an independent 
value, but it’s rather used as part of the porosity weighted average of rock and water 

thermal conductivities under the keyword THCONR. In any case, a value of 55.828 
KJ/m.day.°K was calculated for the water thermal conductivity at the aquifer’s initial 

reference pressure and temperature of 101.456785 barsa and 50.45 °C respectively. 
Physical and thermal properties of solid rock are reported in Table 3.4. The values of 

rock density and aquifer porosity were taken from  Aboulela et al., (2020). The rock 
thermal conductivity value was taken a little above the average value of Hammam 
Faroun geothermal aquifer in the same paper which is equal to 2.63 [W/m.°K]. The 
value of the aquifer’s specific heat capacity is the same as the value used by Ganguly et 
al., (2017). It is pointed out that even if the same thermal properties are imposed for 
rock in both scenarios A and B, thermal exchange between water and rock becomes 
significant only in the Scenario B because of the interaction with the caprock and 
bedrock. 
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Table 3.3: Water viscosity vs temperature ECLIPSE input table 

Temperature [°C] Water viscosity [cp] 
16 1.10343 
18 1.04899 
20 0.998741 
22 0.952261 
24 0.909171 
26 0.869142 
28 0.831883 
30 0.797139 
32 0.764684 
34 0.734318 
36 0.70586 
38 0.679153 
40 0.654052 
42 0.630429 
44 0.608168 
46 0.587167 
48 0.567329 
50 0.54857 
52 0.530811 
54 0.513984 
56 0.498022 

 
It’s evident from Table 3.4 that due to the negligible porosity value of the caprock 

and bedrock layers, the calculated water thermal conductivity will almost have no 
impact on the porosity weighted average value of thermal conductivity of those layers 
especially that the rock thermal conductivity which is equal to 2.8 W/m.°K or 241.92 
KJ/m.day.°K is one order of magnitude higher than that of water which is equal to 
55.828 KJ/m.day.°K at the aquifer’s initial pressure and temperature. The values used in 

ECLIPSE for the porosity weighted average thermal conductivity for each layer can be 
seen in Table 3.5  
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Table 3.4: Physical and thermal properties of rock 

Parameter Value 

Porosity [-] 
Aquifer layer 0.1 
Caprock layer 

0.01 
Bedrock layer 

Lateral permeability 
 [mD] Aquifer layer 

249.26 

Vertical permeability 
[mD] 100 

Permeability [mD] 
Caprock layer 

0.1 
Bedrock layer 

Density [Kg/m3] 
Aquifer layer 

2750 Caprock layer 
Bedrock layer 

Thermal conductivity 
[W/m.°K] 

Aquifer layer 
2.8 Caprock layer 

Bedrock layer 

Specific heat capacity  
[J/Kg. °K] 

Aquifer layer 
800 Caprock layer 

Bedrock layer 
 

 
Table 3.5: Porosity weighted average thermal conductivity values used in 

ECLIPSE for each layer 

Layer Porosity weighted average thermal 
conductivity [KJ/m.day.°K] 

Aquifer layer 223.312 
Caprock layer 240.05808 
Bedrock layer 240.0624 

 

3.4 Production/Injection History 

A volumetric rate of 100 m3/day is used for both water injection and extraction from 
the geothermal aquifer. The injection temperature of the cooled water is set to 20 °C.  
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4 DUMUX OVERVIEW 

4.1 Dumux History 

Dumux is part of a wider framework called DUNE which stands for Distributed 
Unified Numerics Environment (Koch, Gläser, et al., 2020). The development of DUNE  
was initiated in 2003 by Peter Bastian from Heidelberg University in Germany where 
other individuals made contributions later on till the project became distribued -as its 
name states- among a wide audience (Sander, 2020). DUNE is a free open-source 
modular software used for solving partial differential equations by employing methods 
based on grids such as Finite Differences, Finite Volumes, and Finite Elements (Bastian 
et al., 2021). It’s composed of some libraries where each of those libraries is called a 
module and provides part of the software functionality (Sander, 2020). Dumux was 
developed as a DUNE module for the simulation of multi-phase or multi-component or 
multi-physics or even multi-domain flow and transport processes in porous media. It 
depends on the DUNE core modules (Koch, Gläser, et al., 2020).  

After the first release of Dumux 1.0 in July 2009, according to Koch, Gläser, et al., 
(2020), the code base has undergone several enhancements to improve the modularity 
and usability of the code and thus its sustainability. Koch, Gläser, et al., (2020) state 
that the enhancements that were applied to the 2.X release series were in the form of 
improving the modeling capabilities of the software and providing it with several 
discretization schemes. The authors mentioned that Dumux 3.0 was then released in 
December 2018 followed by Dumux 3.1 in October 2019. Finally, Dumux 3.3 which 
was released in November 2020 and which was used for this numerical study has some 
advantages such as encompassing a rich library of multi-component and multi-phase 
models for flow and transport processes in porous media, having a modular framework 
for constitutive equations for materials and fluids, and having the ability to couple 
between different computational domains such as Darcy and Navier-Stokes domains 
(Koch, Gläser, et al., 2020).  

 

4.2 Dumux Literature Applications 

Due to its multipurpose nature, Koch, Gläser, et al., (2020) state that Dumux has 
been successfully applied to a wide variety of applications including gas storage 
(Hagemann et al., 2016; Nordbotten et al., 2012; Walter et al., 2012), 
intercommunication between soil and root systems (Koch et al., 2018; Mai et al., 2019), 
fluid flow through fractured porous media (Andrianov & Nick, 2019; Fourno et al., 
2019; Gläser et al., 2017; Schwenck et al., 2015; Stadler et al., 2012), coupling between 
subsurface and atmosphere domains (Fetzer et al., 2016; Mosthaf et al., 2011), 
biochemically driven mineral precipitation (Cunningham et al., 2019; Hommel et al., 
2015) and transport of curative agents through living tissues (Erbertseder et al., 2012; 
Støverud et al., 2012). 

http://www.uni-heidelberg.de/index_e.html
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Dumux was also employed in numerical studies which aimed at evaluating the 
efficiency of CO2 storage in the North German Basin and it was also part of CO2 
storage simulation studies performed on the Ketzin pilot site in Brandenburg, Eastern 
Germany which has been the longest in operation compared to other European onshore 
CO2 storage locations (Tatomir et al., 2019). Kempka et al., (2013) explain in detail the 
results of the numerical study that was done on the Stuttgart formation which is the 
saline aquifer at the Ketzin pilot site into which CO2 is injected. 

Weishaupt et al., (2016) used Dumux to investigate the extent of the thermal 
influence radius, the volume of the steam chamber, and the breakthrough time of the 
steam through the groundwater table in case of pre-heating the saturated zone that is 
polluted by NAPL (Non-Aqueous Phase Liquid) prior to steam injection. 

Furthermore, many of the Dumux example applications can be found in the dumux-
lecture module which is used for academic purposes at the Department of 
Hydromechanics and Modeling of Hydrosystems at Stuttgart University where this 
module is subdivided into 3 types of problems: Multiphase Modeling, Modeling of 
Hydrosystems, and Environmental Fluid Mechanics (The DuMux developers, 2021). 

4.3 Dumux Models, Features and Discretization Schemes 

 
The fact that Dumux is based on the modular system DUNE grants the capability of 

using various grid implementations and linear solvers through the DUNE core modules 
with no need to worry about the private data structures of each single implementation 
(Flemisch, 2013). It’s further elaborated by Flemisch, (2013) that this allowed Dumux 
to be more focused on the realization of physical and mathematical models and to have 
capabilities like grid adaptivity and parallel simulation at a minimum extra 
programming expense.  

Dumux offers a variety of models which can be subdivided into four categories: 
porous medium flow models, free flow models, geomechanics models and the 
multidomain module (Flemisch & Class, 2019). The porous medium flow models 
encompass mainly the single and multi-phase Darcy flow models in porous media 
besides other models such as Richards flow models, a non-isothermal model, a 
mineralization model, a model for the storage of supercritical CO2 and others (The 
DuMux developers, 2020j). The free flow models according to The DuMux developers, 
(2020f)  are mainly concerned with single-phase Navier-Stokes flow.  Geomechanics 
models consider the solid deformity with the possibility to account for or ignore the 
fluid pressure as illustrated by The DuMux developers, (2020g). Finally, the multi-
domain module provides three different modes for coupling typical Dumux problems 
(The DuMux developers, 2020h). 

The Dumux support for the simulation of coupled models is one of its key features 
and one of the main motives for its development (Koch, Gläser, et al., 2020). The 
purpose of such capability as explained by Koch, Gläser, et al., (2020) is to solve a 
coupled system of partial differential equations such that a subset of this system belongs 
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to a domain with unsimilar dimensionality or a domain for which an unsimilar mesh or 
spatial discretization scheme is defined. Another advantage provided by Dumux is the 
possibility to run a parallel simulation. This capability exploits multicore systems such 
that the simulation domain is partitioned into sub-domains where each sub-domain has 
its own local problem and all local problems are solved in parallel (The DuMux 
developers, 2021). However, parallelization in Dumux is only possible because of the 
DUNE support for the Message Passing Interface (MPI) which sends and receives data 
between sub-domains where parallelization can be applied only if the parallel linear 
solver Dumux::AMGBiCGSTABBackend is selected as explained by The DuMux 
developers, (2021). Moreover, Dumux offers the capability of grid adaptivity in time 
(Flemisch & Class, 2019). This capability can be attractive as it can save the 
computational cost especially in the case of large simulation domains with long 
simulation time spans. However, grid adaptivity is not supported by all DUNE grids 
such as the Yasp grid which has been implemented in the Dumux code of this study 
(Koch & Schneider, 2015). Finally, an interesting feature of Dumux is that it allows 
realistic grids to be used for Dumux applications through its support for corner-point 
grids which are typically adopted by the industrial simulator ECLIPSE (The DuMux 
developers, 2021). The use of the Eclipse Grid Format (GRDECL), however,  requires 
the installation of an additional module which is the opm-grid module along with its 
dependencies as outlined by The DuMux developers, (2021). 

Dumux offers three main approaches for spatial discretization which are the box 
method, cell-centered finite volume methods and the staggered grid scheme (The 
DuMux developers, 2021). The box method exploits the benefits of both Finite Element 
and Finite Volume methods such that a primary unstructured Finite Element grid can be 
used along with a secondary mass conservative Finite Volume grid (Flemisch & Class, 
2019). In cell-centered Finite Volume methods, each element/cell of the mesh acts as a 
control volume (The DuMux developers, 2021). These methods include a two-point flux 
approximation method (TPFA) and a multi-point flux approximation method (MPFA) 
(The DuMux developers, 2020a). The staggered grid method is a Finite Volume method 
which assigns the velocity components control volumes which are shifted from those 
assigned for the scalar quantities and it’s used only for free flow models (Navier-Stokes 
flow) in Dumux (Flemisch & Class, 2019). It’s worth mentioning that only the cell-
centered Finite Volume and the box methods support the grid adaptivity feature (The 
DuMux developers, 2021). 

4.4 Dumux Code Structure 

The fundamental elements of any simulation in Dumux are in the form of C++ 
classes aside from the main function of the code (Koch, Gläser, et al., 2020). The 
authors illustrate that those classes are: 

• The Problem class (problem.hh): it contains the imposed initial and boundary 
conditions besides the source/sink terms. The properties of the system such as 
the mathematical model, spatial discretization scheme, grid type and fluid 
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type are also usually merged inside the problem file instead of being defined 
in a separate file. 

• The SpatialParams class (spatialparams.hh): it identifies the parameters of the 
porous medium that vary spatially, but not temporally, such as porosity and 
permeability. 

Additional files can be created to introduce user-defined classes for particular needs. 
This is the main added value of an open-source code, which allows a significant 
flexibility with respect to a compiled specialized software designed for oil & gas 
reservoir simulation, like ECLIPSE. For instance, it allows the implementation of user-
defined boundary conditions or equations of state. On the other hand, the multipurpose 
nature of Dumux often requires some personalization to meet the user requirements, 
since several options already taken into account in a specialized software like Eclipse 
are not available. Such options include the definition of zero transmissibility barriers, 
well bottom hole pressure calculation, well head pressure calculation and well control 
mode. 

The main function of the program (main.cc file) is an essential component of any 
Dumux application as it’s responsible for solving the system of partial differential 

equations by calling the assembler and solvers besides that it exports the simulation 
results to the output files which are of VTK format by initializing the VTK output 
module (Scholz et al., 2018; The DuMux developers, 2021). 

Some of the simulation parameters can be analyzed by the software at run time 
instead of compilation time if they’re defined in an input/parameters file (params.input) 

where those parameters can be easily changed and the code can be re-run without the 
need for code re-compilation (The DuMux developers, 2021). A table for this set of 
parameters is provided by the Dumux code documentation (The DuMux developers, 
2020i). The table structure clearly shows that the set of available parameters is further 
subdivided into subsets such that each subset of parameters should be defined in the 
input file below a certain group/keyword. 

Finally, to build the model, a configuration file (CMakeLists.txt) which uses the 
CMake language is required to exist in the same directory as the previously mentioned 
files where CMake is a tool dedicated for software building tasks (Scholz et al., 2018). 

The pre-mentioned files (problem.hh, spatialparams.hh, params.input, main.cc and 
CMakeLists.txt) represent the total list of files that have to be compiled in order to run a 
Dumux simulation. 

4.5 Dumux vs Other Simulators 

Benchmarking studies which hold intercomparisons between different simulators for 
well-known problems are very important for the validation of numerical simulators 
(Tatomir et al., 2019). Dumux has taken part in some of these studies and comparisons 
where its performance in three of them is to be discussed briefly in this section.  
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Figure 4.1: Model setup used for the first problem (Class et al., 2009) 

4.5.1 The Benchmark Study by Class et al., (2009) 

  In this large study, the authors addressed three benchmark problems related to CO2 
injection and storage in geological formations. However, we focus our attention on the 
first problem only in which Dumux was used as Dumux was still being developed and 
didn’t have the features required to model the other problems. The problem targets the 
quantification of the leakage rate of CO2 that is spreading due to advection after being 
injected into a bottom aquifer where the leakage takes place through a leaky well that is 
connecting the bottom aquifer to a top aquifer such that the two aquifers are separated 
by an aquitard. A 2D schematic of the problem obtained from Class et al., (2009) is 
shown in Figure 4.1. 

 
 
 
 
 
 
 
 
 
 

  

 
 
 

 

 
According to Class et al., (2009), the numerical domain for this first problem is 3D 

with 1000 m x 1000 m lateral dimensions and with vertical thicknesses as elaborated in 
Figure 4.1 where the leaky well was modeled as a porous medium with a permeability 
that is higher compared to that of the surrounding porous medium. Nine different 
simulators were involved in the comparison against Dumux. The participating 
simulators are CO2 Reservoir Environmental Simulator, ECLIPSE, Estimating Leakage 
Semi-Analytically, Finite Element Heat and Mass Transfer Simulator, IPARS-CO2, 
MUFTE, RockFlow, TOUGH2, and Vertical Equilibrium with Sub-scale Analytical. 
For Dumux, a 2-phase model with a fully implicit solution scheme was used to address 
the problem. Class et al., (2009) point out that Dumux was compared against the other 
simulators under simplified conditions where the fluid properties were assumed to be 
constant, non-isothermal effects were neglected and capillary effects were ignored. The 
results are reported by Class et al., (2009) as shown in Figure 4.2 in terms of the 
percentage ratio of the leaked to the injected CO2 
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Figure 4.2: Computed CO2 leakage ratios from Class et al., (2009) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
It can be seen that the curve predicted by Dumux shows a good match with the 

curves of the other simulators and Class et al., (2009) confirm the agreement of the 
results by all simulators and that the observable deviations are small. 

 

4.5.2 Dumux vs COMSOL Multiphysics 

Zhou et al., (2020) conducted a benchmark study to compare the hydro-mechanical 
effects simulated by both Dumux and the commercial simulator COMSOL Multiphysics 
due to isothermal single-phase water injection into a multi-layered geological domain. 
The model is composed of 5 layers which are: the upper aquifer, the caprock, the 
reservoir layer, the bottom confining layer, and finally the bottom aquifer where all 
layers are considered perfectly horizontal and also isotropic and homogeneous 
regarding their mechanical and hydraulic characterization with water injection taking 
place at the left boundary of the domain into the reservoir layer. Four observation points 
were set by Zhou et al., (2020) as indicated by Figure 4.3 to monitor mainly the 
variation of overpressure due to injection as a function of time. Figure 4.3 also shows 
the different boundary conditions where a constant vertical stress of 24 MPa was 
applied at the upper boundary which is equal to the lithostatic pressure on top of the 
domain assuming a constant rock density of 2400 Kg/m3 resulting in a gradient for the 
effective vertical stress equal to 24 MPa/Km that was used to assign initial stress 
conditions with a value for the effective horizontal stress that is half the vertical one.     
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Figure 4.4: Comparison between Dumux and COMSOL Multiphysics for the 

overpressure variation at observation points 1 and 2 (Zhou et al., 2020) 

Figure 4.3: Schematic of the geometry of the model, initial and 

boundary conditions from Zhou et al., (2020) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
A very good match of the overpressure variation with time calculated by the two 

simulators at the observation points was reported by Zhou et al., (2020) as shown in 
Figure 4.4 and Figure 4.5 
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Figure 4.6: Comparison between Dumux and COMSOL Multiphysics for the     

vertical displacement over the reservoir-caprock interface (Zhou et al., 2020) 

Figure 4.5: Comparison between Dumux and  COMSOL Multiphysics for 

the overpressure variation at observation points 3 and 4 (Zhou et al., 2020) 

 
 
 
 
 
 

 
 
 
 
 

 
 

 
 
The reported results also included the vertical displacement quantification over the 

interface between the reservoir and the caprock and the interface between the caprock 
and the upper aquifer as shown in Figure 4.6 and Figure 4.7 
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Figure 4.7: Comparison between Dumux and COMSOL Multiphysics for the     

vertical displacement over the caprock-upper aquifer interface (Zhou et al., 

2020) 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
Again, the authors report that the vertical displacement results of both simulators 

match very well highlighting that deviations are more pronounced in the near-wellbore 
area and at earlier times. It’s worth noting that the two simulators used different spatial 
discretization schemes where a Finite Element scheme was implemented in COMSOL 
while Dumux used the Box method for that specific study which is a mixture between 
Finite Element and Finite Volume methods (D. Zhou et al., 2020). 

 

4.5.3 Dumux vs ECLIPSE 100 and TOUGH2  

 
Kempka et al., (2013) did a numerical study on the Stuttgart formation which is the 

saline aquifer at the Ketzin pilot site into which CO2 is injected. Three workgroups 
have been formed to make an intercomparison between the results obtained by 
ECLIPSE 100, TOUGH2, and Dumux. According to Kempka et al., (2013), the 
workgroup from Stuttgart university used an isothermal Dumux model including 
compositional effects. The authors conclude that the simulation results obtained by 
Dumux exhibit a good to excellent matching between simulated and observed pressures 
at the injection and monitoring wells. However, the results showed a deviation of the 
calculated free gas phase by Dumux that is 10% higher compared to ECLIPSE and 
TOUGH2 results after around four years of simulation time as indicated in Figure 4.8 
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Figure 4.8: CO2 mass balance calculated with ECLIPSE, TOUGH2, and Dumux 

simulators (Kempka et al., 2013) 
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5 SIMULATION SET-UP WITH DUMUX 

This chapter highlights the necessary elements for setting up the Dumux simulation 
of the considered case studies. As previously mentioned, Dumux is a multipurpose 
open-source software based on the C++ language, whose simulation setup goes through 
the modification/implementation of: 

• the main function (main.cc) which is responsible of calling the assembler, the 
solvers, setting the temporal discretization scheme, and exporting the simulation results. 

• the input file (params.input) which defines simulation parameters used at 
runtime, i.e. that can be changed without compiling the code again, such as grid 
discretization, timestep size, total simulation time, linear and non-linear solver 
parameters in addition to rock/solid properties. 

• the problem file (problem.hh) which defines the mathematical model, the 
spatial discretization scheme, the grid type, initial and boundary conditions as well as 
the source/sink terms. 

• the spatial parameters file (spatialparams.hh) which characterizes the porous 
medium. 

• the compilation file (CMakeLists.txt), where the name of the executable is 
defined and this file must be located in the same directory as the previous files so that 
the compiler can access them. 

• additional user-defined classes for particular needs. 
The first five aforementioned files were modified for the Dumux code of scenario A 

while for scenario B, an additional file was also introduced (modifieddarcy.hh) to allow 
the introduction of transmissibility barriers between the aquifer and both the caprock 
and bedrock. Such barrier ensures no mass flux of water from the geothermal aquifer 
into the caprock or bedrock but allows heat transfer due to conduction. This was 
achieved by introducing a modification to the Darcy law class in the Dumux core. 

In what follows, details on simulation set-up and the corresponding file 
modification/implementation are given. The main differences between Dumux and 
ECLIPSE regarding the model implementation are also outlined. Overview of basic 
C++ concepts and nomenclature is given in the appendix for reader’s convenience. 

5.1 Mathematical Model 

The non-isothermal single-phase model (OnePNI) in Dumux is selected as the 
mathematical model that represents the modeled physical phenomena previously stated 
in chapter 2. This model employs the previously discussed equations (2.3) and (2.8) 
since it inherits the properties of the isothermal single phase model (1p) in Dumux plus 
the additional energy balance equation (2.8) from the non-isothermal model (The 
DuMux developers, 2020e). The selection of the OnePNI model is done by defining a 
new type tag within the TTag namespace in the problem file (problem.hh) under the 



Mahmoud Aboelseoud   34 
_____________________________________________________________________________________ 

 

name OnePNITypeTag which inherits the properties of the OnePNI model as shown 
below. 

5.2 Spatial Discretization 

In this study, we adopted the cell-centered Finite Volume scheme called multi-point 
flux approximation (MPFA) for the spatial discretization of the two governing equations 
(2.3) and (2.8) of the model.  

The MPFA scheme has been utilized in the oil sector since the mid-1990s 
(Nordbotten & Eigestad, 2005). This scheme was developed to attain a sound 
discretization of the flow equations for the case of non-perpendicular grids with a 
general alignment of the principal axes of the permeability tensor and thus it was 
considered suitable to be applied for practical flow problems in actual reservoirs 
(Aavatsmark, 2002; Nordbotten & Eigestad, 2005).  

Being a Finite-Volume based discretization method, MPFA ensures local 
conservation of the physical quantities such as mass and energy in a way that is 
analogous to how the equations of reservoir simulation are developed with no numerical 
sources/sinks created for such quantities (Ambrus et al., 2010; Moog, 2013). This is 
achieved by imposing flux continuity between the cells of the grid (Starnoni et al., 
2019). Moreover, the solution over the control volume is averaged and the result is 
assigned as the value of the variable at the center of the control volume (Fontes, 2018). 
The cell-centered Finite Volume schemes are thus different from the simple Finite 
Difference approach implemented in the industrial simulator ECLIPSE in which there is 
no continuity between the cells neither in terms of flux nor in terms of variables. It also 
differs from finite Elements where the continuity of a variable across a cell can be 
imposed by means of a shape function (P. Zhou, 1993). 

To use MPFA in the Dumux simulation, a new type tag called OnePNICCMpfa had 
to be defined in the problem file (problem.hh) to inherit the properties of the newly 
created OnePNITypeTag plus those of the cell-centered multi-point flux approximation 
model (CCMpfaModel) as follows. 

In cell-centered Finite Volume methods, the elements/cells of the grid are used as 
control volumes; each control volume is subdivided into sub-control volumes (Koch, 
Gläser, et al., 2020; The DuMux developers, 2021). The sub-control volumes are 
generated by connecting the center of each cell in the grid to the midpoints of its faces 
resulting in a dual grid (Starnoni et al., 2019). Figure 5.1 shows the schematic in 2D of 
the original grid (solid line) and the dual grid (dashed line). Each cell of the original 
grid represents a control volume, while each cell in the dual grid is termed interaction 
region (Nordbotten & Eigestad, 2005). It can be seen from Figure 5.1 that all the inner 

namespace TTag { 

struct OnePNITypeTag { using InheritsFrom = std::tuple<OnePNI>; }; 
(C5.1) 

struct OnePNICCMpfa { using InheritsFrom = std::tuple<OnePNITypeTag, 
CCMpfaModel>; }; 

} // end namespace TTag 

(C5.2) 
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Figure 5.1: A 2D schematic of the original grid of control volumes (solid lines) 

and the dual grid (dashed lines) (Nordbotten & Eigestad, 2005) 

and boundary faces of the control volumes are split by the dual grid into two sub-
control-volume faces for this 2D case (Koch, Gläser, et al., 2020; Nordbotten & 
Eigestad, 2005).  This is illustrated in the figure by the solid line representing one of the 
four sides of a cell/control volume cut in half by the dashed line of the dual grid. 

 
 
 
 
 
 
 
 
 
 
 
 
For each interaction region, the local intercommunication between the sub-control 

volumes leads to the evaluation of the transmissibility coefficients of the sub-control 
volume faces inside that region (Aavatsmark, 2002). The interaction between the sub-
control volumes is governed by certain regulations as explained by Starnoni et al., 
(2019). Firstly, flux continuity is imposed across the sub-control volume faces. 
Secondly, the pressure is considered to be linear in each sub-control volume. Finally, 
pressure continuity is imposed at the midpoints of the control volume faces which 
correspond to the points of intersection of the dual grid with the original grid. 

Following the MPFA approach, Nordbotten & Eigestad, (2005) show that the 
continuous flux across a sub-control volume face can be approximated by the following 
expression in terms of velocity. 

where T𝑖j  are the transmissibility coefficients which accommodate permeability, 
viscosity and grid dimension (Negara et al., 2014), pj is the pressure at the center of cell 
j and π is composed of 6 cells in a 2D scheme as shown in Figure 5.2 while it’s 

composed of 18 cells in case of a 3D problem (Negara et al., 2014). In Figure 5.2, the 6-
point stencil of the MPFA method in a 2D problem is shown: the numbers represent the 
cell centers, and the long arrow represents the flux from cell 12 to cell 22. As shown in 
the figure, the pressures of the 6 cells will all influence the calculation of the flux across 
the interface of cells 12 and 22. In fact, each of the two interaction regions delimited by 
vertices 12 22 23 13 and 12 22 21 11 respectively, will have a flux contribution across 
its own half of the interface of cells 12 and 22 denoted by the two small arrows and 
those contributions have to be summed up to get the requested flux as per equation 

u𝑖  =  ∑ T𝑖j pj

j∈π

 (5.1) 
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Figure 5.3: A single interaction region in the MPFA 

method for a 2D case (Negara et al., 2014) 

(5.1). In case of a 3D problem, four interaction regions will contribute to the flux 
calculation (Aavatsmark, 2002). 

 
Figure 5.2: The 6-point stencil of the MPFA method in a 2D problem   

Considering the single interaction region shown in Figure 5.3 and taking into account 
the pre-mentioned principles of the MPFA method (pressure and flux continuity and the 
linear approximation of pressure inside each sub-control volume), the velocity ux

− for 
instance can be approximated as follows (Negara et al., 2014):  

 

 
 
  
 
 
 
 
         

     

 

 

ux
− =  −T11

x (Px
− −  P11) − T11

x (Py
− −  P11) (5.2) 

ux
− =  −T21

x (P21 −  Px
−) − T21

x (Py
+ −  P21) (5.3) 
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Due to the enforced flux continuity, equations (5.2) and (5.3) can be equalized and 
the same can be done for ux

+, uy
− and uy

+ (Aavatsmark, 2002) resulting in a system of 
equations that can be represented in the following matrix form (Nordbotten & Eigestad, 
2005) 

 where pσ refers to the vector of pressures of the continuity points, p refers to the 
vector of cell center pressures and both A and B are 4 x 4 matrices for a 2D case. Due to 
the matrix A being invertible, the interface pressures (pressures of the continuity points) 
can be removed by expressing them in terms of the cell center pressures as follows 
(Nordbotten & Eigestad, 2005): 

Considering only one of the two equations (5.2) and (5.3) for ux
− and similarly for 

ux
+, uy

− and uy
+, the velocities can be expressed as (Aavatsmark, 2002): 

 such that each of C and D is a 4 x 4 matrix for 2D problems. By substituting 
equation (5.5) in equation (5.6), the following expression for velocities is obtained 
(Aavatsmark, 2002; Nordbotten & Eigestad, 2005).  

By considering equation (5.1) in the following matrix form. 

and by relating the two equations (5.7) and (5.8), the transmissibility coefficients of the 
sub-control volume faces within a single interaction region are expressed as follows 
(Aavatsmark, 2002): 

The elements of each row of the resulting transmissibility matrix given by equation 
(5.9) represent the weighting factors of the cell center pressures contributing to the 
approximation of the flux across the corresponding sub-control volume face 
(Nordbotten & Eigestad, 2005). For a 3D problem as in the case of this study, the 
interaction region will consist of eight sub-control volumes and 12 sub-control volume 
faces as shown in Figure 5.4 (Aavatsmark, 2002). As a result, each of A and C will be a 
12 x 12 matrix while each of T, B and D will be a 12 x 8 matrix. 

Apσ = Bp (5.4) 

pσ = A−1Bp (5.5) 

u = Cpσ − Dp (5.6) 

u = (CA−1B − D)p (5.7) 

u = Tp (5.8) 

T = (CA−1B − D) (5.9) 
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Figure 5.4: A single interaction region in the MPFA method for a 3D case 

(Aavatsmark, 2002) 

5.3 Temporal Discretization 

The simple approach of first order difference quotient is used in Dumux for the 
discretization of the storage/cumulative terms. Considering a general storage term ∂S(L)

∂t
 

where S is storage and L is the unknown quantity as per The DuMux developers, 
(2021), the temporal derivative can be expressed as follows. 

where n+1 refers to the current time step while n refers to the previous time step.  
The default mode for temporal discretization in Dumux and which has also been 

used in this study is a backward difference (implicit Euler). The mode can be changed 
to forward difference (explicit Euler) through the third template argument of the class 
FVAssembler in the main function of the code as it can be set to true or false. However, 
in the code snippet (C5.3), it can be seen that only two template arguments were used 
for the FVAssembler class because the default mode (implicit Euler) was desired and 
thus there was no need to input a third argument. 

Using the implicit Euler method for temporal discretization means that by 
substituting equation (5.10) in the following general balance equation from (Flemisch & 
Class, 2019) 

where F is the flux and Q is the source, the equation becomes: 

It should be pointed out here that Dumux uses an adaptive time stepping based on the 
difficulty of solution convergence where the user can set in the parameters/input file 
(params.input) the maximum time step and the maximum number of times the time step 

∂S(L)

∂t
=  

1

∆t
 [ S(Ln+1) −  S(Ln) ] (5.10) 

using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>; (C5.3) 

∂S(L)

∂t
+ ∇. F(L) + Q(L) = 0 (5.11) 

1

∆t
 [ S(Ln+1) −  S(Ln) ] + ∇. F(Ln+1) + Q(Ln+1) = 0 (5.12) 
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size is halved in case of unachieved convergence under the keywords [TimeLoop] and 
[Newton] respectively. 

5.4 Grid 

The grid adopted in this study is a structured cube grid called Yasp, (Yet Another 
Structured Parallel), which is made available by DUNE besides other possible grid 
implementations (Sander, 2020). The Yasp grid is available in two different versions: a 
simple one and a more feature-rich one that allows, among others, splitting the grid into 
a number of zones, controlling the number of cells in each of those zones, grading the 
cell dimensions within a certain zone according to a factor assigned in the 
input/parameters file (Coltman et al., 2021).  

The second version was used in this study. It was set in the Dumux code in the 
problem file (problem.hh) by assigning the corresponding grid type to the node 
TTag::OnePNITypeTag that has been created previously as shown in the code snippet 
below. 

In the code snippet (C5.4), the number 3 indicates that the grid is three-dimensional; 
double refers to the data type of the grid coordinates; TensorProductCoordinates 
represents a specific coordinate system provided by DUNE used by the more feature-
rich version of the Yasp grid (Coltman et al., 2021). 

The grid discretization is provided to Dumux in the input file (params.input) under 
the [Grid] keyword as shown in the code snippets (C5.5) and (C5.6) for the full domain 
of scenario A and the half-domain of scenario B respectively.  

 

template<class TypeTag> 

struct Grid<TypeTag, TTag::OnePNITypeTag> { using type = Dune::YaspGrid<3, 
Dune::TensorProductCoordinates<double, 3> >; }; 

(C5.4) 

[Grid] 
Positions0 = 0 400 960 1844 2404 2804 
Positions1 = 0 400 960 1844 2404 2804 
Positions2 = 0 30 
Cells0 = 2 28 221 28 2 
Cells1 = 2 28 221 28 2 

Cells2 = 1 

(C5.5) 

[Grid] 
Positions0 = 0 400 960 1844 2404 2804 
Positions1 = 0 2 442 1002 1402 
Positions2 = 0 15 45 60 
Cells0 = 2 28 221 28 2 
Cells1 = 1 110 28 2 

Cells2 = 3 1 3 

(C5.6) 
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Keyword Positions allows to subdivide the domain in zones, which are discretized 
each according to its corresponding keyword Cells (Coltman et al., 2021). Subdivisions 
are specified for each coordinate direction: for the applied coordinate system, 0 refers to 
the X-direction, 1 refers to the Y-direction and 2 refers to the Z-direction. 

For example, in the code snippet (C5.5), corresponding to scenario A, a single 
numerical layer of 30 m is defined (Positions2 = 0 30, Cells2 = 1). It is discretized in X 
and Y directions with a non-uniform grid: very fine in the near well zone (from 960 m 
to 1844 m, 221 cells are required), fine in the intermediate zones (from 400 m to 960 m 
as well as from 1844 m to 2404 m, 28 cells are required) and coarse near to the 
boundaries (from 0 to 400 m as well as from 2404 to 2804 m, only two cells are 
required). 

Conversely, in the code snippet (C5.6), corresponding to scenario B, the vertical 
domain is subdivided in three zones (from 0 to 15 m, from 15 to 45 m, from 45 to 60 m; 
Positions2 = 0 15 45 60); the central zone has a single numerical layer but the upper and 
lower zones are discretized with three layers each (Cells2 = 3 1 3).  

ECLIPSE -on the other side- uses the corner-point grid which is widely employed by 
commercial reservoir simulators for its ability to describe reservoirs with complex 
geometry (Menezes Farias et al., 2019). However, the cell configuration for the 
ECLIPSE model of this study was specified using the simple block center description 
using the keywords DX, DY and DZ due to the simplicity of the model geometry. 

5.5 Reservoir and Fluid Properties 

Parameters for rock/solid physical and thermal properties are defined under the 
group/keyword [Component] of the input file as shown in the code snippet (C5.7). 

Both porosity and permeability are defined in the spatial parameters file 
(spatialparams.hh). To assign the porosity and permeability values for scenario B, it is 
required to recognize where a certain location is with respect to the 3 layers: aquifer 
layer, caprock layer and bedrock layer. This is because the caprock and bedrock layers 
will have different porosity and permeability from those of the aquifer layer. For this 
purpose, two functions have been defined in the spatial parameters file: the function 
isInBottom() which distinguishes whether the location is inside the bedrock layer and 
the function isInTop() which distinguishes whether the location is inside the caprock 
layer where the two functions are given in the code snippet (C5.8). 

[Component] 
SolidDensity = 2750 # [Kg/m^3] 
SolidThermalConductivity = 2.8 # [Watt/m.°K] 

SolidHeatCapacity = 800 # [Joule/Kg.°K] 

(C5.7) 

bool isInBottom(const GlobalPosition &globalPos) const 
    {  
        return globalPos[2] < aquiferBottom_ + eps_; 
    } 
bool isInTop(const GlobalPosition &globalPos) const 

(C5.8) 
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In the code snippet (C5.8), globalPos[2] refers to the position along the Z-direction, 
the epsilon variable eps_ has a value of 1e-6, the variable aquiferBottom_ has a value 
of 15.0 while the variable aquiferTop_ has a value of 45.0 Each of the two functions 
returns “true” if the inequality condition inside the body of the function is satisfied, 

otherwise, it returns “false”.  
Permeability is then defined as the return value of the function permeabilityAtPos() 

and porosity is defined as the return value of the function porosityAtPos() as illustrated 
in the code snippets (C5.9) and (C5.10)  respectively. The globalPos parameter in both 
functions refers to the position inside the grid. Both functions work in the same way. 
Considering the permeabilityAtPos() function for instance; if the value of the globalPos 
parameter renders the isInBottom() function true, the bedrock permeability value  
(bottomlayerK_) is returned. If the isInBottom() function turns out to be false, the 
isInTop() function is checked next where the caprock permeability value (toplayerK_) is 
returned if it turns out to be true. If both isInBottom() and isInTop() functions are false, 
the permeabilityAtPos() function will return the aquifer permeability (aquiferK_). 

 

The aquifer permeability based on the direction is defined as follows in the spatial 
parameters file. 

such that aquiferK_[0][0], aquiferK_[1][1] and aquiferK_[2][2] correspond to Kxx, Kyy 

and Kzz respectively which means they are the values of the main diagonal of the 
permeability tensor. The caprock and bedrock permeabilities are defined in a similar 

    { 
        return globalPos[2] > aquiferTop_ - eps_; 
    } 

PermeabilityType permeabilityAtPos(const GlobalPosition& globalPos) const 
 
    { 
        if (isInBottom(globalPos)) {return bottomlayerK_;} 
        else if (isInTop(globalPos)) {return toplayerK_;} 
        else   {return aquiferK_;} 
           
    } 

(C5.9) 

Scalar porosityAtPos(const GlobalPosition& globalPos) const 
    { 
         if (isInBottom(globalPos)) {return bottomlayerPorosity_;} 
        else if (isInTop(globalPos)) {return toplayerPorosity_;} 
        else   {return aquiferPorosity_;} 
         
    } 

(C5.10) 

// intrinsic permeabilities 
        aquiferK_[0][0] = 2.46e-13;  // Permeability along X = 249.26 mD 
        aquiferK_[1][1] = 2.46e-13;  // Permeability along Y = 249.26 mD 
        aquiferK_[2][2] = 9.87e-14;  // Permeability along Z = 100 mD 

(C5.11) 
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way with the only difference of having the same permeability value in all directions 
(isotropic layers). The porosities for the 3 layers are defined as follows where all of 
them are homogeneous. 

The assignment of porosity and permeability values in scenario A is much easier 
compared to scenario B as there is only one layer which is the aquifer layer and thus 
there is no need to define the isInBottom() and isInTop() functions. In this case, only the 
aquifer permeability (aquiferK_) is returned by the permeabilityAtPos() function and the 
aquifer porosity (aquiferPorosity_) is returned by the porosityAtPos() function. 

The fluid system is set to a single liquid phase comprised of only one component 
which is pure water. This is done by defining the property FluidSystem for the node 
TTag::OnePNITypeTag in the problem file by a partial template specialization for that 
property. The type of the property is set inside the struct body to the single liquid phase-
single component class template called FluidSystems::OnePLiquid (The DuMux 
developers, 2020d). The component type is selected as a template argument of that class 
template and is set to the pure water class named Components::H2O which employs the 
IAWPS relations to compute the water properties (The DuMux developers, 2020c). This 
is illustrated in the code snippet (C5.13). 
 

 

5.6 Boundary Conditions 

The types of boundary conditions are first set using the boundaryTypesAtPos() 
function which is defined inside the problem file based on the globalPos parameter 
which indicates the position inside the grid. For the full domain, A Neumann boundary 
condition is assigned for both the top and bottom boundaries while a Dirichlet boundary 
condition is assigned for the other boundaries. This is illustrated in the code snippet 
(C5.14). The epsilon variable eps_ in that code snippet has a value of 1e-6, globalPos[2] 
refers to the position along the Z-direction and  this->gridGeometry().bBoxMax()[2] 
refers to the Z-coordinate with the maximum value which in this case is 30.0 An if..else 
statement has been used such that if the value of the globalPos parameter is less than 1e-
6 (corresponding to the lower boundary) or higher than 29.999999 (corresponding to the 

// porosities 
        toplayerPorosity_ = 0.01; 
        bottomlayerPorosity_ = 0.01; 
        aquiferPorosity_ = 0.1; 

(C5.12) 

template<class TypeTag> 
struct FluidSystem<TypeTag, TTag::OnePNITypeTag> 
{ 
    using type = FluidSystems::OnePLiquid<GetPropType<TypeTag, 
Properties::Scalar>, 
                                          Components::H2O<GetPropType<TypeTag, 
Properties::Scalar>> >; 
}; 

(C5.13) 
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top boundary), a Neumann boundary condition is assigned; otherwise, a Dirichlet 
boundary condition is assigned. Holding a floating-point comparison using the epsilon 
variable is just a more efficient way than writing an equality which might fail. 

The same methodology has been applied to set a Neumann boundary condition at the 
symmetry plane in the half-domain and a Dirichlet boundary condition elsewhere as 
illustrated in the code snippet (C5.15) where globalPos[1] refers to the position along Y-
direction. 

For both the full domain and half-domain, the Dirichlet boundary condition is set 
using the function dirichletAtPos() inside the problem file to be the same as the initial 
condition for both pressure and temperature. This is shown in the code snippet (C5.16) 
in which the dirichletAtPos() function returns the same output as the initialAtPos() 
function inside which the initial conditions are defined. 

The Neumann boundary condition is also the same for both the full and half domains 
given as a no-flow boundary condition. It is set using the function neumannAtPos() in 
the problem file  as shown in the code snippet (C5.17). 

BoundaryTypes boundaryTypesAtPos(const GlobalPosition &globalPos) const 
    { 
          BoundaryTypes bcTypes; 
        if (globalPos[2] < eps_ || globalPos[2] > this-
>gridGeometry().bBoxMax()[2] - eps_) 
            bcTypes.setAllNeumann(); 
        else 
            bcTypes.setAllDirichlet(); 
 
        return bcTypes; 
    } 

(C5.14) 

BoundaryTypes boundaryTypesAtPos(const GlobalPosition &globalPos) const 
    { 
      BoundaryTypes bcTypes; 
          if (globalPos[1] < eps_)  
      bcTypes.setAllNeumann(); 
         else 
      bcTypes.setAllDirichlet(); 
        
        return bcTypes; 
    } 

(C5.15) 

PrimaryVariables dirichletAtPos(const GlobalPosition &globalPos) const 
    { 
        return initialAtPos(globalPos); 

} 

(C5.16) 

NumEqVector neumannAtPos(const GlobalPosition &globalPos) const 
    { 
        NumEqVector values(0.0); 

(C5.17) 
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5.7 Initial Conditions 

Both the half and full domains were assigned the same initial hydrostatic pressure 
gradient of 9.7119 KPa/m or 0.097119 bar/m and the same initial single temperature of 
50.45 °C (323.6 °K). The imposed hydrostatic pressure gradient corresponds to a water 
density of 990 Kg/m3 for a gravitational acceleration of 9.81 m/s2. Initial conditions for 
pressure and temperature were set using the initialAtPos() function which is defined 
inside the problem file as presented in the code snippet (C5.18) illustrating the defined 
initial conditions for the half-domain. The only difference for the full domain is that the 
pressure on top of the domain is assigned a value of 100e5 Pascal instead of 
98.543215e5 Pascal due to the absence of the 15-meter-thick caprock in the full domain 
model geometry which makes the top boundary deeper where the aquifer pressure of 
101.456785 barsa is the reference pressure. The reason the pressure on top of the 
domain is followed by a negative sign in the hydrostatic pressure calculation is because 
the expression this->spatialParams().gravity(globalPos)[2] returns a negative value for 
the gravitational acceleration. 

5.8 The Well Model 

Being a multipurpose simulator, Dumux does not offer the large set of features 
provided by ECLIPSE for modeling a well. It can be said that well modeling is much 
easier in ECLIPSE than Dumux due to the fact that ECLIPSE is a very popular 
simulator which is particularly tailored for oil and gas reservoir simulation problems 
and has already been in operation by the petroleum industry for several years. ECLIPSE 
almost mimics physical wells by allowing the user to set various well specifications 
such as wellhead position, wellbore diameter, bottom-hole intervals open to flow, skin 
factor, well status, well control mode, flow rate or pressure targets and many others. On 

        
        return values; 
    } 

PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const 
    { 
           PrimaryVariables values(0.0); 
           Scalar densityW = 990;  // Kg/m^3 
           Scalar depth = this->gridGeometry().bBoxMax()[2] - globalPos[2]; 
           // Hydrostatic Pressure 
           values[pressureIdx] = 98.543215e5 - densityW*this-
>spatialParams().gravity(globalPos)[2]*depth;  //Pascal    
           // Temperature 
           values[temperatureIdx] = 323.6;  //Kelvin = 50.45 degree celsius 
            
           return values; 
    } 

(C5.18) 
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the contrary, Dumux does not consider a true well model but instead point sources are 
used to model wells. This necessarily means that Dumux doesn’t employ the Peaceman 

well model which is used in ECLIPSE to relate the downhole volumetric flow rate to 
the difference between the grid block pressure and the bottom-hole flowing pressure. 
For this reason, the Dumux pressure results in this study were compared against the 
well-block pressure (WBP) in ECLIPSE and not against the well bottom-hole pressure 
(WBHP). It should be noted however that the Peaceman well model can be programmed 
inside the Dumux code if needed thanks to the flexibility deriving from the open-source 
and C++ code-based nature of Dumux. 

In the Dumux model, solution-dependent point sources located at the center of the 
aquifer vertical thickness were used to depict the production and injection wells. The X, 
Y and Z coordinates of the point sources in meters were first entered inside the 
addPointSources() function in the problem file (problem.hh) as shown in the code 
snippets (C5.19) and (C5.20) representing scenario A and scenario B respectively 

 

After that, the volumetric production and injection rates (volumeSource) were 
provided in m3/s inside the pointSource() function such that the rates imposed in 
scenario B are always half of those imposed in scenario A due to the applied symmetry 
condition in scenario B. Inside the same function, the mass rate (massSource) is then 
calculated via multiplying the pre-defined volumetric rate by the water density of the 
control volume at a specific time step based on the pressure and temperature of the 
control volume. It’s clear that the temperature is only known in the case of injection 
since an injection temperature of 20 °C (293.15 °K) is imposed but it will be solution-
dependent in the case of production. On the other hand, the pressure of each of the 

void addPointSources(std::vector<PointSource>& pointSources) const  

    {     

           // The injection well (source term) 

          pointSources.push_back(PointSource({1342, 1402, 15})); 

 

          // The production well (sink term) 

          pointSources.push_back(PointSource({1462, 1402, 15})); 

    } 

(C5.19) 

void addPointSources(std::vector<PointSource>& pointSources) const  

    {     

           // The injection well (source term) 

          pointSources.push_back(PointSource({1342, 0, 30})); 

 

          // The production well (sink term) 

          pointSources.push_back(PointSource({1462, 0, 30}));       

    } 

(C5.20) 
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injection and production cells/control volumes will be dependent on the imposed well 
rate and thus solution-dependent. The mass rate in Kg/s is then multiplied by the water 
enthalpy in J/Kg evaluated by Dumux at the existing pressure and temperature of the 
control volume to obtain the energy source/sink terms (energySource) in J/s. Hence in 
Dumux, heat is provided or removed from the aquifer through the water enthalpy of the 
control volume which is evaluated in time. It’s worth noting that the 

injection/production rates provided inside the pointSource() function in Dumux are 
essentially downhole rates because the point sources are already located inside the 
aquifer layer. As a result, the water compressibility in the ECLIPSE model was set 
equal to zero and the water formation volume factor was assigned a value of 1 in order 
to guarantee that the surface rates applied in the ECLIPSE model will yield the same 
downhole rates as those of Dumux. The code snippet below shows the pointSource() 
function used in the Dumux code of scenario A for a simulation run with 100 m3/day for 
both injection and production rates. 
template<class ElementVolumeVariables> 
 
    void pointSource(PointSource& source, 
                     const Element &element, 
                     const FVElementGeometry& fvGeometry, 
                     const ElementVolumeVariables& elemVolVars, 
                     const SubControlVolume &scv) const 
{ 
        const auto& pos = source.position(); 
        const auto& volVars = elemVolVars[scv]; 
        if (pos[0] < 1350.0)  // Injection 
        { 
          const Scalar volumeSource = 1.157407407e-3; // Injection rate is positive 
& in m^3/s  
          const Scalar massSource = 
volumeSource*IapwsH2O::liquidDensity(293.15, volVars.pressure(0)); 
 
          const Scalar energySource = 
massSource*IapwsH2O::liquidEnthalpy(293.15, volVars.pressure(0)); 
 
          source = NumEqVector({ massSource, energySource }); 
        } 
 
        else // production 
        { 
           const Scalar volumeSource = -1.157407407e-3; // Production rate is 
negative and in m^3/s  
            const Scalar massSource = volumeSource*volVars.density(0); // using 
existing water density of the control volume 
           const Scalar energySource = massSource*volVars.enthalpy(0); // using 
existing water enthalpy of the control volume 

(C5.21) 
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It can be observed from the code snippet (C5.21) that distinction is made between the 

injection point source and the production point source according to their positions along 
the X-direction by using the if…else statement. It is also pointed out that according to 
the Dumux convention, the production rate assumes a negative value while the injection 
rate assumes a positive value.  

In order to calculate the point sources, the function computePointSourceMap() must 
be called inside the main function of the program in the (main.cc) file as shown in the 
code snippet (C5.22) 

5.9 Solution Strategy and Solvers 

A fully implicit solution scheme is employed in Dumux as the solution strategy for 
the non-isothermal flow problem of this study. This results in a coupled system of non-
linear equations which has to be solved simultaneously and iteratively. It can be noticed 
here that the non-linearity is not that high in the pressure equation (2.3) since water 
density and viscosity are not strong functions of pressure. However, the coupling 
between the two governing equations (2.3) and (2.8) is mainly due to the presence of 
water viscosity in the pressure equation (2.3), which is strongly affected by temperature, 
and the presence of pressure itself as a primary variable in the heat transport equation 
(2.8). This explains why the monolithic solution of this coupled system of non-linear 
equations may be favored. Fully implicit methods are generally preferred in the oil 
industry for their unconditional stability which permits the possibility of larger time 
stepping (Moortgat, 2017). However, they are not completely advantageous since they 
cause a higher memory drainage and are more costly from the computational point of 
view especially in the case of several coupled unknowns (Moortgat, 2017). 

ECLIPSE -on the contrary- does not solve the heat transport equation simultaneously 
with the pressure equation but instead, the heat transport equation is solved after the 
convergence of a timestep has already been reached where the mesh cell temperatures 
are then updated (Schlumberger, 2017). 

5.9.1 Non-linear Solver 

Newton’s iterative method is used in Dumux to solve the non-linear system of 
equations. The method was suggested by Newton in 1669 and it is based on the concept 
of linearization (Polyak, 2007). Considering the balance equation (5.11), an initial guess 
is made of the solution L after which the residual R(L) which is equal to the output of 
the left hand side of equation (5.11) is calculated. To reduce the error, the Jacobian 
matrix J(L) which corresponds to the derivative of the residual with respect to the 

           source = NumEqVector({ massSource, energySource }); 
        } 

}    

problem->computePointSourceMap(); (C5.22) 
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solution is then computed (The DuMux developers, 2021). In Dumux, numeric 
differentiation was used for the calculation of the Jacobian matrix as observed in the 
second argument of the FVAssembler class in the code snippet (C5.3). The following 
equation adapted from (Flemisch & Class, 2019) is then used to obtain the solution for 
the new iteration Lk+1 

where k + 1 refers to the current Newton iteration while k refers to the previous 
Newton iteration. 

The procedure proceeds till convergence between two subsequent iterations is 
reached and thus the solution is obtained for the new time step. In Dumux, one can 
choose between a maximum relative shift or an absolute residual criterion for 
convergence where the shift criterion represents the maximum allowable difference 
between the values of a primary variable for two subsequent iterations whereas the 
residual criterion sets a minimum threshold that the absolute residual has to be below 
for convergence to be declared (The DuMux developers, 2020k). The user can also ask 
for both criteria to be met. In this study, a maximum relative shift criterion was used 
and was set equal to 1e-5 in all the simulation runs as seen in the code snippet (C5.23) 
from the parameters file (params.input) under the group [Newton]. 

 

The Newton method is the approach also used by ECLIPSE for linearizing and 
solving the system of non-linear equations. Additionally, ECLIPSE applies a 
convergence criterion that is dependent on a maximum residual (Schlumberger, 2017) 

5.9.2 Linear Solver 

Solving a linear system may take a lot of time and thus the performance of the non-
linear solver may be judged based on the speed of the linear solver (Chen et al., 2009). 
It is further pointed out by  Chen et al., (2009) that an ideal situation occurs when a non-
linear solver which exhibits fast convergence is used along with a linear solver which 
consumes less CPU time. The solver Dumux::AMGBiCGSTABBackend was selected 
in this study to solve the linearized simultaneous equations as shown in the code snippet 
(C5.24) from the main function (main.cc file).  

This solver is based on the biconjugate gradient stabilized method (BiCGSTAB) and 
the AMG preconditioner (The DuMux developers, 2020b). BiCGSTAB is an iterative 
algorithm used to solve large asymmetric linear systems (Ocłoń et al., 2013). However, 
preconditioning techniques are needed by iterative solvers to enhance their effectiveness 
(Ocłoń et al., 2013); preconditioning converts the initial linear system into a new one 
which can be solved more efficiently. The AMG preconditioner is based on the 

J(Lk)(Lk+1 − Lk) =  −R(Lk) (5.13) 

[Newton] 

MaxRelativeShift = 1e-5 
(C5.23) 

using LinearSolver = 
AMGBiCGSTABBackend<LinearSolverTraits<GridGeometry>>; 

(C5.24) 
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algebraic multigrid method which is originally an iterative method used to solve large-
scale linear systems (Boyle et al., 2010). 

ECLIPSE -on the other side- uses the ORTHOMIN solver which is an iterative 
method developed mainly for solving sparse linear systems within the domain of 
reservoir simulation (Schlumberger, 2017; Vinsome, 1976). Furthermore, 
preconditioning in ECLIPSE is performed by Nested Factorization (Schlumberger, 
2017). 

5.10 Barriers 

The main purpose of introducing the caprock and bedrock in scenario B was to 
investigate whether the heat conduction owing to the presence of the caprock and 
bedrock layers will have a significant impact on the temperature distribution in the 
geothermal aquifer and to check if the heat conduction phenomenon will be modeled 
similarly by both simulators Dumux and ECLIPSE. As a result, it can be identified 
whether the added computational cost of modeling the caprock and bedrock due to the 
use of a larger mesh size is justified or can simply be avoided without seriously 
affecting the simulation results. Heat conduction effect is also present in scenario A due 
to the contact between the geothermal water and the solid matrix inside the porous 
aquifer. However, in this case, the effects of convection and conduction cannot be split 
from one another. Moreover, the heat convection effect will be more dominant for 
scenario A especially over short durations. For this reason, it was of interest to 
introduce the two scenarios A and B such that in scenario B, pure solid conduction can 
be monitored and the effect of incremented solid conduction due to the 
intercommunication between the water and the caprock and bedrock layers can be well-
judged. 

Among the aquifer and the caprock and bedrock layers, only heat exchange is 
allowed. Consequently, mass flux has to be inhibited. This was simply applied in 
ECLIPSE by setting zero transmissibility values in the Z-direction at the interfaces 
separating the aquifer layer from the caprock and bedrock layers. The value of the Z-
direction transmissibility is controlled in ECLIPSE via the keyword TRANZ after 
defining a box for the numerical layer just above the requested interface. The 
implementation in ECLIPSE is illustrated in the snippet (C5.25) from the EDIT section 
in the ECLIPSE input file for scenario B. 

EDIT 
 
BOX 
1 281 1 281 3 3/  
 
TRANZ 
78961*0/  
 

(C5.25) 
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Dumux -on the other hand- does not offer such easy implementation for imposing 
zero mass flux of water across the layer interfaces as in ECLIPSE. However, Dumux is 
based on the concept of modularity which allows the substitution of a simulation 
element with another without major changes applied to the application code (Koch, 
Gläser, et al., 2020). The modularity feature thus provides further flexibility for the 
modeler to tailor a Dumux problem/application according to the desired needs. The 
open-source nature of Dumux together with its modular-based structure were exploited 
in order to make the Dumux problem comparable to the ECLIPSE one in terms of mass 
flux restriction across the interfaces. This was executed by modifying the Darcy law 
C++ class implemented in the Dumux core. The procedure was to copy the original 
Darcy law file into the directory of the Dumux problem for scenario B, rename it to 
modifieddarcy.hh, change the name of the Darcy law class inside the file to 
ModifiedDarcy, introduce a transmissibility factor in the problem file to hold a zero 
value at the aquifer interfaces with the caprock and bedrock and a value of one 
elsewhere, multiply the flux in the modified Darcy file (modifieddarcy.hh) by the 
introduced transmissibility factor and finally change the AdvectionType property in the 
problem file by setting it to the new modified Darcy class. 

The main idea behind the modification is to define a transmissibility factor inside the 
problem class (OnePNIProblem) such that the value of this factor depends on the 
position inside the grid. The transmissibility factor will assume a value of zero when the 
Z-coordinate of the center of a sub-control volume face is equal to 15 or 45 which are 
the Z-coordinates for the lower and upper interfaces respectively. Otherwise, the 
transmissibility factor will assume a value of 1. Within the scope of our problem, the 
condition resulting in a zero value of the transmissibility factor will be true for the 
horizontal sub-control volume faces located at the interface between the aquifer and 
each of the caprock and bedrock layers. The code snippet (C5.26) shows the definition 
of the pre-discussed transmissibility factor as a function called transmissibilityFactor(). 

After that, the value returned by the transmissibilityFactor() function based on the 
position will be accessed inside the ModifiedDarcy class and assigned to a variable 

BOX 
1 281 1 281 4 4/  
 
TRANZ 

     78961*0/ 

Scalar transmissibilityFactor(SubControlVolumeFace scvf) const 
    { 
     
    if (Dune::FloatCmp::eq(scvf.center()[2], 45.0))  {return 0.0;} 
    else if (Dune::FloatCmp::eq(scvf.center()[2], 15.0))  {return 0.0;} 
    else  {return 1.0;} 
     

    } 

(C5.26) 
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called tFactor where this variable will be multiplied by the flux across a sub-control 
volume face. This will result in a zero flux across the horizontal sub-control volume 
faces coinciding with the interfaces between the aquifer and the caprock and bedrock 
layers. Consequently, no mass flux of water is allowed to pass from the aquifer layer 
into the caprock or bedrock. The code snippet (C5.27) illustrates the modification inside 
the flux function in the ModifiedDarcy class where an object of the problem class is used 
to access the value of the transmissibilityFactor() function. 

 
As a final step, the AdvectionType property in the (problem.hh) file is set to the 

modified Darcy class (ModifiedDarcy) as shown in the code snippet (C5.28) 

A preliminary comparison was made between two cases for scenario B in Dumux 
where in the first case no modification of the Darcy law class was done while in the 
second case, the modified Darcy law class was employed in the code. The purpose was 
to check whether such a modification is necessary or the limited advective flux from the 
aquifer into the caprock and bedrock layers due to the permeability contrast will not 
affect the simulation outcomes. The results are presented in Figure 5.5 in the form of 
pressure color maps for a zoomed front view along the X-direction at Y=0 m where the 
simulated duration was only 15 days with production and injection rates of 50 m3/day. 

 

 

        const auto tFactor = problem.transmissibilityFactor(scvf); 
         
        if (fluxVarsCache.usesSecondaryIv()) 
            return flux_(problem, fluxVarsCache, 
fluxVarsCache.advectionSecondaryDataHandle(), phaseIdx)*tFactor ; 
        else 
            return flux_(problem, fluxVarsCache, 
fluxVarsCache.advectionPrimaryDataHandle(), phaseIdx)*tFactor ; 

    } 

(C5.27) 

// Set Advection type 
template<class TypeTag> 

struct AdvectionType<TypeTag, TTag::OnePNITypeTag> { using type = 
ModifiedDarcy<TypeTag, DiscretizationMethod::ccmpfa>; }; 

(C5.28) 

Figure 5.5: Pressure color maps for a zoomed front view along X-direction at Y=0 

m for scenario B for (a) modified Darcy law class implemented and (b) no 

modification of Darcy law class 

    250 m 
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It can be observed from Figure 5.5b that for the case where no modification was 
considered for the Darcy law class in the Dumux core, a small pressure change can be 
observed in the numerical boundary layer just above the aquifer layer, which can be 
attributed to a not null advective fluid flux from the geothermal aquifer into the 
caprock/bedrock. Conversely, after the modified Darcy law implementation (Figure 
5.5a), the pressure change is no longer seen and thus the Dumux problem for scenario B 
in this case becomes comparable to the one implemented in ECLIPSE. Consequently, 
the modification of the Darcy class in the Dumux core for scenario B was necessary to 
isolate the pure heat conduction component and be able to compare it against the one 
simulated by ECLIPSE.  
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6 RESULTS AND DISCUSSION 

Three different simulation runs have been performed for both scenarios A and B in 
the two simulators Dumux and ECLIPSE. The details of those runs are stated in Table 
6.1 

 
Table 6.1: Details of the performed simulations 

Simulation ID Scenario Duration, days 

Imposed 
maximum 
time step, 

days 

Injection and 
Production 

Rates, m3/day 

1-A Scenario A 
180 

(~ 6 months) 1 100 
1-B Scenario B 

2-A Scenario A 
3600 

(~ 10 years) 

30 
100 

2-B Scenario B 90 

3-A Scenario A 
3600 

(~ 10 years) 

30 
1000 

3-B Scenario B 90 

 
The simulation 2-A can be considered as the base case run. The simulation 2-B 

introduces the caprock and bedrock to the model geometry of the base case to study the 
sensitivity of the simulation variables to the caprock and bedrock inclusion into the 
model. The main purpose of the two runs 1-A and 1-B is to investigate the effect of 
changing the maximum allowed time stepping on the simulation outcome of Dumux. It 
should be pointed out here that Dumux will always start with a small time step of 10000 
seconds for all the runs due to the higher variability of variables in the first time steps 
and then the time step increases as the convergence becomes easier till the time step 
reaches its imposed maximum value. The two runs 3-A and 3-B were performed in 
order to examine whether using a much higher rate (10 times the base case) would 
induce noticeable differences between the simulation results of Dumux and ECLIPSE. 
Another reason for performing the high rate run was to examine the impact of high 
injection and production rates on the behavior of the simulation variables. The two runs 
2-B and 3-B were assigned a maximum time stepping that is a little higher (90 days) in 
comparison to the corresponding runs 2-A and 3-A (30 days) so as to save the 
computational time in the Finite-Volume-based Dumux due to the larger number of 
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cells (277347 cells) in the mesh of the half-domain of scenario B compared to the mesh 
of the full domain of scenario A (78961 cells). 

The variables addressed in the simulation results are pressure and temperature in 
addition to water viscosity as a secondary variable. The 3D visualization software 
FloViz created by Schlumberger oilfield services company was used to extract the 
spatial distribution of the ECLIPSE results. As for the Dumux results, all the post-
processing workflow was carried out using the open-source visualization software 
ParaView (ParaView, 2021). Paraview  was mainly developed by Kitware company 
specialized in software solutions in addition to other collaborating governmental and 
academic bodies (Kitware, 2021; ParaView, 2021). ParaView was employed to 
visualize the Dumux results both temporally and spatially and extract them. Several 
ParaView filters were utilized in the post-processing phase including: 

• Calculator filter: it was used to convert the Dumux units to the equivalent 
units used in ECLIPSE such as from Pa.s to cp for water viscosity. 

• Transform filter: it was used to stretch the Z-direction by 10 times for an 
enhanced visualization of cross-sections due to the much smaller vertical 
extent of both the full and half domains compared to the lateral one. 

• Text filter: it was used for labeling the production and injection wells. 
• Slice filter: it was used for taking cross-sections at different positions in the 

computational domain. 
• Extract Selection filter: it was needed for extracting the aquifer layer and 

removing the caprock and bedrock from the cross-sections applied to the 
half-domain so that only the cells of the aquifer layer can be selected. This is 
a required step for the spatial plotting of variables along the considered cross-
section of the aquifer layer at a selected time step. 

• Plot Data filter: it was used for the spatial plotting of variables along the 
cross-section of the aquifer layer at a certain time step after the cells of the 
aquifer layer have been selected. This also allows the extraction of such data 
through the SpreadSheet View capability in ParaView. 

• Plot Selection Over Time filter: It was used for the temporal plotting of a 
certain variable for a certain cell such as plotting the injection pressure of the 
injection cell over time. 

6.1 Base Case Simulation – Aquifer Only (Run 2-A) 

This is the base case simulation run which means that neither caprock nor bedrock 
were considered; so only the aquifer layer was modeled. As a result, the effect of 
additional thermal conduction due to the interaction between the geothermal water and 
both the caprock and bedrock was completely neglected.  

A top view of the computational domain reveals the progression of the cooled-water 
thermal front in time as shown in Figure 6.1 where the status of the thermal front is 
visually checked after (a) 1 year and (b) 10 years from the start of injection. 
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Figure 6.1: Top view for temperature distribution after (a) 1 year and (b) 10 years 

Corresponding to the cooled zone that forms around the injection well and grows in 
time, a high-water-viscosity zone can be observed as illustrated in Figure 6.2 

 
Figure 6.2: Top view for viscosity distribution after (a) 1 year and (b) 10 years 

The color maps for pressure distribution on top of the domain clearly depict the 
production well with its drainage area and the injection well with its area of influence as 
illustrated in Figure 6.3.   

 
Figure 6.3: Top view for pressure distribution after (a) 1 year and (b) 10 years 

A top view zoom-in on the thermal front position with respect to the wells after (a) 1 
year and (b) 10 years can be seen in Figure 6.4. Furthermore, for an enhanced 

1 km 

 

1 km 

 

1 km 
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visualization of the behavior of the different variables relative to well locations, a cross-
section is taken along the X-direction at the middle of the Y-direction (Y=1402 m) 
where the wells are situated. Color maps for temperature, pressure and viscosity 
distributions over the considered cross-section are shown in Figure 6.5, Figure 6.6 and 
Figure 6.7 respectively considering (a) 1 year and (b) 10 years of the operation of the 
geothermal doublet. 

 
 
 
 
 
 
 
 
 
 

 
Figure 6.5: Color map for temperature distribution over the cross-section along 

the X-direction at the plane joining the two wells (Y=1402 m) for the run 2-A after 

(a) 1 year and (b) 10 years 

Figure 6.4: Zoomed top view for thermal front position relative to the wells for the 

run 2-A after (a) 1 year and (b) 10 years. 

250 m 

 
 250 m 
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Figure 6.6: Color map for pressure distribution over the cross-section along the X-

direction at the plane joining the two wells (Y=1402 m) for the run 2-A after (a) 1 

year and (b) 10 years 

 
Figure 6.7: Color map for viscosity distribution over the cross-section along the X-

direction at the plane joining the two wells (Y=1402 m) for the run 2-A after (a) 1 

year and (b) 10 years 
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It is seen from Figure 6.5 how the cooled-water thermal front has advanced through 
the geothermal aquifer layer over time. However, it can be noted from Figure 6.4b and 
Figure 6.5b that the thermal front has exhibited a slightly asymmetrical distribution 
around the injector well where it has migrated faster on the side where the production 
well is located. This is mostly due to the depletion effect of the production well which 
arises from the pressure difference between the producing pressure and the reservoir 
pressure. The depletion effect induced by the production well leads to a higher Darcy 
velocity of geothermal water in the vicinity of the production well as proposed by the 
Darcy law in equation (2.2). This in turn leads to higher advective heat transfer as 
suggested by the advective/convective heat transfer term in equation (2.6). As a result, 
the cold thermal energy is transmitted faster on the side of the injection well where the 
extraction well is acting. However, it can be observed from the color grades in Figure 
6.5b that even after 10 years of the simulated operation of the geothermal system, the 
cooled-water thermal front itself, i.e. the front characterized by a temperature equal to 
the injected value, has not reached the production well yet. In any case, the production 
well is clearly affected by the front-influenced zone of reduced temperature that is about 
to be swept by the thermal front. 

Figure 6.7 presents the viscosity color maps that are in full agreement with the 
corresponding temperature color maps in Figure 6.5 such that the reduced temperature 
corresponds to a higher water viscosity. This is because of viscosity being a strong 
function of temperature. The asymmetry of the front is minimum in the beginning of the 
simulation and increases with time as realized by visually comparing Figure 6.4a to  
Figure 6.4b or Figure 6.5a to Figure 6.5b. or even Figure 6.7a to Figure 6.7b. As a 
result, further studies will be needed to verify if a well test monitoring could yield a 
reasonable average value of the distance of the thermal front from the injection well. In 
fact, a well test interpretation would assume a radial composite model, considering an 
inner zone of high water viscosity (worse mobility) and an outer zone of low water 
viscosity (enhanced mobility). However, such an approach may be hindered by the 
asymmetric distribution of the thermal front with respect to the injection well due to the 
presence of the water producer. 

In Figure 6.6, it can be observed that the two pressure color maps (a) and (b) do not 
exhibit significant differences. The similarity suggests that the steady state for pressure 
distribution in the geothermal aquifer has already been reached before the 1-year time 
point considered in Figure 6.6a. This means that the pressure disturbance propagates 
much faster than the thermal disturbance. Considering the current simulation run (2-A), 
it was found out that steady state was reached before the first 30-day time step printed 
out by Dumux. This was verified by observing a pressure change at the coarse boundary 
cells in X and Y directions, followed by a constant pressure value till the end of the 
simulation time. 

6.2 Sensitivity to Maximum Time Step Size 

An investigation was carried out to verify whether using a different imposed 
maximum time step will have a significant impact on the outcome of Dumux 
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simulations. For this purpose, a comparison was held between the output of the 
simulation run 2-A employing an imposed maximum time step of 30 days and that of 
the simulation run 1-A employing an imposed maximum time step of only 1 day. It 
should be stressed here that Dumux will have the same initial time step size of 10000 
seconds for both simulations where this value can be set by the user in the input file 
through the parameter DtInitial under the group [TimeLoop]. Dumux thus starts with a 
time step size for both simulation runs that is relatively small. The time step progression 
afterwards will show a gradual automatic increase of the time step size such that both 
simulation runs 2-A and 1-A will have equal time step sizes during the initial time steps. 
The increase of the time step size will continue till the imposed maximum value is 
reached. Smaller time step sizes are used in the beginning of the simulation because of 
the large variation threshold of the simulation variables during the first few time steps. 
It can be understood that despite the different imposed maximum time step sizes for 
both simulation runs 2-A and 1-A, the initial time steps characterized by a significant 
changeability of the variables will be treated by the simulator similarly in both cases. 

The results generated by Dumux for simulation runs 2-A and 1-A were compared in 
terms of temperature and pressure distributions along the X-direction over the plane 
joining the two wells (Y=1402 m) at 3 and 6-month simulation times as shown in the 
line plots in Figure 6.8 and Figure 6.9 respectively. A very good match was obtained 
between the simulation results of both runs as noted from the two figures. Analogous 
results were also obtained by comparing the B scenario simulation runs (1-B and 2-B). 
This clearly indicates that the use of a different maximum time step size did not affect 
the integrity of the results modeled by Dumux. 

A possible factor contributing to the consistency of the Dumux results in spite of the 
different time stepping employed for the largest part of the simulation duration for both 
cases (1-A vs. 2-A) and (1-B vs. 2-B) is the fully implicit solution scheme selected for 
the Dumux model of this study. The unconditional stability of this scheme enables the 
use of a larger time stepping without affecting the solution convergence. 

 

 
Figure 6.8: Dumux line plot comparison between the simulation runs 2-A and 1-A 

of temperature distribution along the X-direction over the plane joining the two 

wells (Y=1402 m) 
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Figure 6.9: Dumux line plot comparison between the simulation runs 2-A and 1-A 

of pressure distribution along the X-direction over the plane joining the two wells 

(Y=1402 m) 

6.3 High Rate Impact 

The response of the simulation variables was checked for the case when markedly 
higher injection and production rates were imposed for the geothermal doublet. The 
same volumetric flow rate of 1000 m3/day (10 times the base case) was used for both 
injection and production. 

A comparison is made between (a) run 3-A and (b) run 2-A (base case) in terms of 
the color map depicting temperature distribution on the top of the domain after a 10-
year simulation duration as presented in Figure 6.10. The high rate impact on the 
temperature behavior is further analyzed by two more comparisons: comparison of the 
color maps of the same runs for temperature distribution over the plane joining the two 
wells (Y=1402 m) after a 10-year simulation as shown in Figure 6.11 and comparison of 
zoomed top views of both runs for the thermal front position relative to the wells after 
the same duration as illustrated in Figure 6.12. 

Top views of Figure 6.10 and Figure 6.12 as well as the cross sections of Figure 6.11 
clearly show that after a 10-year simulation, the cooled zone around the injection well 
of the run 3-A has a much larger lateral extension compared to the corresponding zone 
of the base case run 2-A. This is due to the considerably higher injection rate employed 
in the run 3-A which in turn corresponds to a higher Darcy velocity of the injected 
water and consequently a higher advective heat transfer as implied by the convective 
term in the heat transport equation (2.8). As a result, the cooled-water thermal front 
travels much faster through the geothermal aquifer so that at a certain point in time after 
the start of injection, the area covered by the thermal front of the run 3-A will be larger 
than that covered by the front of the run 2-A. 
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Figure 6.10: Top view for temperature distribution for (a) run 2-A and (b) run 3-A 

after a 10-year simulation. 

Figure 6.11: Color maps for temperature distribution over the plane joining the 

two wells for (a) run 2-A and (b) run 3-A after a 10-year simulation duration. 

Figure 6.12: Zoomed top view for thermal front position relative to the wells for (a) 

run 2-A and (b) run 3-A for a 10-year simulation. 

  1 km 

 

  250 m 
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It can be realized from both Figure 6.11b and Figure 6.12b that the thermal 
breakthrough has already taken place thanks to the faster propagation of the cooled-
water thermal front through the aquifer due to the higher imposed injection and 
production rates. The higher production rate assists the faster occurrence of the thermal 
breakthrough by creating a higher depletion effect due to the much lower production 
pressure compared to that of the base case 2-A which in turn means a higher pressure 
difference between the producing pressure and the aquifer pressure. Since the 
production well acts as a sink for both the mass and cold energy of the geothermal 
water, the thermal front cannot propagate beyond the production well as observed from 
both Figure 6.11b and Figure 6.12b. However, the thermal front continues to propagate 
on the other side of the injection well where no sinks exist such that it reaches a lateral 
extent notably larger than that of the base case run 2-A. As a consequence, run 3-A after 
10 years still shows a slightly asymmetric thermal front (Figure 6.12b), but the shape 
differs from the one obtained for run 2-A (Figure 6.12a).  

The pressure response to the higher injection and production rates was also 
investigated by holding a line plot comparison between the two runs 3-A and 2-A in 
terms of the pressure distribution over the plane joining the two wells after a 10-year 
simulation. The results are presented in Figure 6.13 where it is evident that the higher 
flow rate (1000 m3/day) used for both injection and production in the 3-A run results in 
an injection pressure that is significantly higher than the corresponding pressure in the 
2-A case and a production pressure that is significantly lower. As a result, the pressure 
variation range has become wider than that of the 2-A case. 

 
 

 
 
 
 
 
 
 
 
 

 
 
. 
 

Figure 6.13: Line plot comparison between run 3-A and run 2-A in terms of 

pressure distribution over the plane joining the two wells (Y=1402 m) after a 10-

year simulation 
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6.4 Effect of Caprock and Bedrock Conduction  

It is of interest to analyze the impact of caprock and bedrock thermal conduction on 
the simulation outcome. To this end, caprock and bedrock were included into the 
geometry of the numerical model for runs 1-B, 2-B and 3-B. 

In order to verify the impact of caprock and bedrock thermal conduction on the 
asymmetry of the cooled-water thermal front, a comparison was held between the two 
simulation runs (a) 2-A and (b) 2-B as well as the two runs (a) 3-A and (b) 3-B in terms 
of zoomed top view of the thermal front position relative to well locations after 10 years 
as illustrated in Figure 6.14 and Figure 6.15 respectively. For a general understanding of 
the influence of caprock and bedrock conduction on the temperature behavior and 
distribution in the geothermal aquifer, another comparison was considered: Figure 6.16 
and Figure 6.17 show a comparison between the simulation runs (a) 2-A (aquifer only), 
(b) 2-B (aquifer plus caprock and bedrock) and (c) 3-B (aquifer plus caprock and 
bedrock with higher injection and production rates) in terms of the color maps for 
temperature distribution over the plane joining the two wells after 1 year and 10 years 
respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.14: Zoomed top view for thermal front position relative to well locations 

for (a) run 2-A and (b) run 2-B after 10 years. 

Figure 6.15: Zoomed top view for thermal front position relative to well locations 

for (a) run 3-A and (b) run 3-B after 10 years. 

  250 m 

  250 m 
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Figure 6.16: Color maps for temperature distribution over the plane joining the 

two wells after 1 year for (a) run 2-A (aquifer only), (b) run 2-B (aquifer plus 

caprock and bedrock) and (c) run 3-B (aquifer plus caprock and bedrock with 

higher injection and production rates) 
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Figure 6.17: Color maps for temperature distribution over the plane joining the 

two wells after 10 years for (a) run 2-A (aquifer only), (b) run 2-B (aquifer plus 

caprock and bedrock) and (c) run 3-B (aquifer plus caprock and bedrock with 

higher injection and production rates) 
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It is quite clear that the interaction between the cooled injection water and the 
caprock\bedrock results in conductive heat transfer which in turn leads to the reduction 
of temperature of the boundary cell just above\below the injection cell and some of the 
surrounding cells in the same numerical layer. Afterwards, conductive heat transfer 
continues to alter the temperature of the next upper\lower numerical boundary layer. By 
comparing Figure 6.16b to Figure 6.17b and Figure 6.16c to Figure 6.17c, it can be 
noted that the zones influenced by the temperature reduction in the caprock/bedrock 
expand in time as the cooled-water thermal front becomes more distant from the 
injection well. This signifies that more and more of the heat content of those boundary 
rocks is being drained in time by the thermal front traveling in the aquifer via thermal 
conduction. 

It can be observed from Figure 6.16a and Figure 6.16b that both simulation runs 2-A 
and 2-B result in almost similar temperature distributions over the considered plane 
after a 1-year simulation duration. It can also be seen that the cooled-water thermal front 
for both runs is almost symmetric around the injection well despite the depletion effect 
on the side where the water producer is situated. On the contrary, Figure 6.17a and 
Figure 6.17b show different temperature distributions produced by the two simulation 
runs considering a 10-year simulation time span where it is obvious that the thermal 
front of the run 2-A is steeper than that of the run 2-B which appears to be smoother 
with a more gradual change of the amplitudes. Moreover, it is noted from Figure 6.17a 
and Figure 6.14a that the thermal front is asymmetric with respect to the injection well 
while the asymmetricity of the front is less pronounced in both Figure 6.17b and Figure 
6.14b although it still does exist. The reduced asymmetry of the front was again 
observed for the run 3-B (Figure 6.15b) compared to the run 3-A (Figure 6.15a). 
Furthermore, Figure 6.15b shows a smoother front with a larger transition zone between 
the injected temperature and the aquifer temperature compared to Figure 6.15a in which 
the front is sharper. The previous observations demonstrate that both runs 2-B and 3-B, 
which account for caprock and bedrock conduction, have exhibited the same behavior 
of a smoother front of reduced asymmetry compared to the corresponding runs 2-A and 
3-A in which caprock and bedrock conduction is ignored. 

The main reason for the deviation between the behaviors of the two thermal fronts of 
the runs 2-A and 2-B over time is the thermal conduction effect caused by the 
intercommunication between the cooled injected water and both of the caprock and 
bedrock modeled in scenario B. The thermal conduction in the run 2-B leads to the loss 
of a part of the cold energy contained in the cooled injected water to cool down the 
bounding rocks and drain their heat content. As a result, the progression of the cooled-
water thermal front through the aquifer will be retarded. On the opposite side, no 
caprock or bedrock are modeled in scenario A and thus no energy is lost by the cooled 
injected water to the confining rocks which allows the thermal front of the run 2-A to 
progress faster through the aquifer. Furthermore, the added caprock and bedrock 
thermal conduction in the run 2-B acts as a counteracting effect to the higher advective 
heat transfer on the side where water is being extracted. This is because a part of the 
cold thermal energy of the injected water is lost to the caprock and bedrock by 
conduction instead of being transmitted by convection due to the motion of the injected 
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water through the porous geothermal aquifer. This in turn results in the reduced 
asymmetricity of the thermal front in case of the run 2-B since the thermal front cannot 
propagate towards the production well as fast as in the case of the run 2-A owing to the 
reduced advective heat transfer by caprock and bedrock conduction. To summarize, the 
incorporation of the caprock and bedrock into the geometric model of the geothermal 
aquifer leads to the slowing down of the cooled-water thermal front due to the added 
caprock and bedrock thermal conduction resulting in a smoother front with reduced 
asymmetry.  

It should be pointed out that the thermal front retardation due to caprock and bedrock 
conduction will be more significant for long simulation durations. This is because for 
short simulation durations, the amount of cold energy lost from the injected cooled 
water to the bounding rocks will not be large enough to cause a delay of the thermal 
front of the run 2-B with respect to the corresponding front of the run 2-A. This is 
clearly demonstrated by the approximate similarity of the temperature distributions 
resulting from both runs which are presented in Figure 6.16a and Figure 6.16b 
considering a 1-year simulation duration. Consequently, the front retardation by 
boundary thermal conduction is a cumulative effect just like the asymmetricity of the 
front due to increased advective heat transfer. 

Conversely, for the simulation run 3-B, the conduction effect is already significant 
after 1 year as shown in Figure 6.16c. It can also be seen in Figure 6.17c how thermal 
conduction has affected a large portion of the caprock and bedrock after 10 years. This 
is obviously attributed to the higher injection rate in the run 3-B that results in a faster 
propagation of the cooled-water thermal front. This in turn translates to a more laterally 
extended aquifer cooled zone exhibiting conductive heat transfer with the caprock and 
bedrock.  

To evaluate the sensitivity of the pressure behavior to the modeled caprock and 
bedrock in scenario B, a line plot comparison was made between the two runs 2-A and 
2-B in terms of pressure distribution over the plane joining the two wells (Y=0 m in the 
half domain and Y=1402 m in the full domain) after 1 and 10 years of the operation of 
the geothermal doublet. The results are presented in Figure 6.18 

Both simulation runs 2-A and 2-B exhibit a very similar pressure distribution over 
the considered plane for both the 1 and 10-year simulation cases (Figure 6.18); a slight 
separation could be observed for the 10-year case at the positions of the wells. 
Analogous results were found out by comparing the pressure distributions of the 3-A 
and 3-B runs. This similarity of the simulated pressure distributions for both the A and 
B scenarios clearly demonstrates that pressure is almost unaffected by the inclusion of 
the bedrock and caprock into the geometry of the numerical model. 
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For a more in-depth investigation of the influence of the thermal conduction 
phenomenon across the caprock and the bedrock on the temperature distribution in the 
geothermal aquifer and the consequent effects on the temperature-dependent water 
viscosity, a line plot comparison was made between  the two runs 2-A and 2-B in terms 
of temperature and viscosity distributions over the plane joining the two wells as 
illustrated in Figure 6.19 and Figure 6.20 respectively considering simulation durations 
of 1, 5 and 10 years. 

 
 

 
 
 
 
 
 

 
 
 

 
 
 
 

  

Figure 6.19: Line plot comparison between the runs 2-A and 2-B in terms of 

temperature distribution over the plane joining the two wells after 1, 5 and 10 

years of simulation time 

Figure 6.18: Line plot comparison between the runs 2-A and 2-B in terms of 

pressure distribution over the plane joining the two wells after 1 and 10 years of 

simulation time 
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It can be noted from Figure 6.19 how the thermal front of the run 2-A will be ahead 

of the corresponding front of the run 2-B considering the 5 and 10-year simulations and 
how the 2-B front retardation becomes less pronounced as the simulation duration 
shortens where a negligible separation between the two fronts can be seen for the 1-year 
simulation case. Furthermore, it can also be noted how the asymmetricity of the front 
increases in time with a reduced asymmetricity for scenario B with respect to scenario 
A because the increased advective heat transfer caused by depletion is being opposed by 
boundary thermal conduction. 

It is observed from Figure 6.20 how the viscosity distribution curves at the different 
simulation times exhibit a mirrored reflection of the corresponding temperature 
distribution curves such that they show an increase where temperature decreases and 
vice versa. For longer simulation times, the lateral extent of the high viscosity zone 
around the injection well becomes larger for the run 2-A with respect to that of the run 
2-B. This is due to the more laterally extended cooled zone of the run 2-A as no cold 
energy is lost to the bounding layers. Moreover, the asymmetricity of the high viscosity 
zone is more evident at longer simulation times and is more pronounced for scenario A 
compared to scenario B in which caprock and bedrock thermal conduction lessens the 
effect of increased convective thermal transfer towards the production well. 

Figure 6.19 was used to quantify the maximum percent error for the predicted 
temperature distribution of the run 2-A with respect to that of the run 2-B at the 
simulation durations of 1, 5 and 10 years. A similar analysis was performed for the 
high-rate runs 3-A and 3-B. The aim was to evaluate the impact of caprock and bedrock 
thermal conduction by numerically quantifying the maximum error that could result 
from ignoring the incorporation of such phenomenon into the numerical model. The 
error was calculated by applying equation (6.1) for each cell along the considered plane 
in Figure 6.19 and then picking the maximum value. 

Error(%) =  
|Temperaturescenario B − Temperaturescenario A|

Temperaturescenario B
 x 100 (6.1) 

Figure 6.20: Line plot comparison between the runs 2-A and 2-B in terms of 

viscosity distribution over the plane joining the two wells after 1, 5 and 10 years of 

simulation time 
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 The results are presented in Table 6.2. It can be seen that the maximum percent error 
of temperature distribution prediction resulting from ignoring the thermal conduction 
across the boundaries in a geothermal system may reach up to 29.39% for a 10-year 
simulation period. This error may even increase up to 35.44% for the same simulation 
duration if significantly high rates are employed in the operation of the geothermal 
doublet as in the case of run 3. This clearly shows that ignoring caprock and bedrock 
conduction will be more critical in terms of the accuracy of the simulation outcome in 
case of long simulation periods and considerably high injection and production rates. 
 

Table 6.2: Maximum error for the predicted temperature distribution in case of 

ignored caprock and bedrock thermal conduction 

 Scenarios 1-year 
simulation 

5-year 
simulation 

10-year 
simulation 

Maximum 
percent error 

[%] 

2-A vs. 2-B 7.36 19.95 29.39 

3-A vs. 3-B 12.88 25.96 35.44 

 

6.5 Dumux vs. ECLIPSE 

  All of the six simulation runs considered within the scope of this study, listed in 
Table 6.1, have been performed by both Dumux and ECLIPSE simulators. It was 
desired to check the comparability between the simulation results produced by both 
softwares taking also into account how they compare to each other from the 
computational cost aspect. For scenario B half-domain was simulated in Dumux to 
reduce the computational cost. Conversely, full domain was simulated with Eclipse, to 
validate the symmetry boundary condition imposed in Dumux. 

For all simulation runs, Dumux-ECLIPSE comparisons were made in terms of line 
plot comparisons for: 

• Spatial variation of pressure, temperature and viscosity along the X-direction 
over the plane joining the two wells considering simulation durations of 3 and 
6 months for run 1 and simulation durations of 1, 5 and 10 years for runs 2 
and 3. 

• Temporal variation of injection and production pressures.  
However, for the runs of scenario B, additional comparisons were made in terms of: 

• Temporal variation of the temperature of the boundary cell just above the 
injection cell. 

• Spatial variation of pressure, temperature and viscosity along the Y-direction 
over the plane having the X-coordinate of the injection well (X=1342 m). 

• Spatial variation of pressure along the Y-direction over the plane having the 
X-coordinate of the production well (X=1462 m). 
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Starting with the base case (run 2-A), a perfect match was obtained between the 
Dumux and ECLIPSE results. As proof, the temperature, pressure and viscosity 
distributions over the plane joining the two wells which have been predicted by both 
simulators are presented in Figure 6.21, Figure 6.22 and Figure 6.23 respectively.  

 

 
Figure 6.21: Comparison between Dumux and ECLIPSE in terms of temperature 

distribution over the plane joining the two wells (Y=1402 m) for the run 2-A 

 

 
Figure 6.22: Comparison between Dumux and ECLIPSE in terms of pressure 

distribution over the plane joining the two wells (Y=1402 m) for the run 2-A 
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The perfect matching of the viscosity distributions predicted by Dumux and 

ECLIPSE as illustrated in Figure 6.23 demonstrates that the viscosity table implemented 
in ECLIPSE (Table 3.3) is sufficiently accurate as it allowed ECLIPSE to successfully 
reproduce the equation of state (IAWPS relations) implemented in Dumux. 

A perfect agreement of results was demonstrated also by comparing the simulation 
outputs of Dumux and ECLIPSE for the runs 1-A and 1-B in which the value of the 
maximum allowed time step size was reduced to 1 day. This clearly showed that smaller 
time stepping did not affect the quality of result match between Dumux and ECLIPSE. 

Increasing the rate (case 3-A), the results produced by Dumux and ECLIPSE are still 
showing a very good match. Only very slight deviations could be observed by 
comparing the temperature distribution curves of the two simulators over the plane 
joining the two wells for the 5-year and 10-year simulations as seen in Figure 6.24. The 
maximum percent difference of the Dumux curve with respect to the ECLIPSE curve 
had a value of 3.79% for the 10-year simulation and 2.9% for the 5-year simulation. 
Such minimal deviations which did not occur in the base case (run 2-A) comparison of 
the two simulators may thus be attributed to the high injection and production rates 
employed in the run 3-A. However, they certainly do not influence the comparability of 
the results. 

Conversely, when accounting for thermal exchange between the aquifer and the 
caprock/bedrock, some differences arise. Different trends were generated by the two 
simulators for the temporal trend of the temperature of the boundary cell just above the 
injection cell which accounts for pure thermal conduction effect as shown in Figure 
6.25a. 
  

Figure 6.23: Comparison between Dumux and ECLIPSE in terms of viscosity 

distribution over the plane joining the two wells (Y=1402 m) for the run 2-A 
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Figure 6.24: Comparison between Dumux and ECLIPSE in terms of temperature 

distribution over the plane joining the two wells (Y=1402 m) for the run 3-A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

Figure 6.25: Comparison between Dumux and ECLIPSE in terms of temporal 

variation of the temperature of the boundary cell just above the injection cell for 

(a) run 2-B and (b) run 3-B 
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ECLIPSE follows the same trend as Dumux in the beginning of the simulation up to 
a point in time where deviation starts to take place and the two curves begin to follow 
different trends. The percent deviation was calculated for the different time points 
taking the ECLIPSE value as the reference one. The calculations in case 2-B showed 
that the percent deviation up to 990 days (~2.71 years) is less than 2% while it reaches 
24.24% by the end of the whole simulation duration which is 3600 days (~10 years). 
Analogous behavior is observed in the case 3-B, where a slightly increased deviation 
between the two trends was observed (Figure 6.25b). ECLIPSE showed a further 
decrease of the boundary cell temperature down to 28.33 °C for the run 3-B compared 
to 31.21 °C for the run 2-B while Dumux showed a temperature decrease down to 38.34 
°C for the run 3-B compared to 38.78 °C for the run 2-B.  

Differences in thermal conduction effects simulated by Dumux and ECLIPSE are 
particularly significant at long simulation durations. This can be a valid reason for a 
small observed deviation for the same run 2-B between the temperature distribution 
curves modeled by both simulators over the plane joining the two wells for the 10-year 
simulation case as shown in Figure 6.26a. However, the maximum percent difference 
for the Dumux curve with respect to the ECLIPSE curve was not critical as it assumed a 
value of 5.78% at X=1386 m. Such trend is highlited in case 3-B (Figure 6.26b). The 
maximum percent difference of the Dumux curve with respect to the ECLIPSE curve 
was 7.44% at X=1422 m for the 1-year simulation and 8.26% at X=1234 m for the 10-
year simulation.  

Comparisons on the Y-axis cross-section passing through the injector showed a very 
similar behavior.  

To summarize, the simulation results of Dumux and ECLIPSE  are generally very 
comparable. However, thermal conduction phenomenon appears to propagate 
differently in the two simulators such that the modeled conduction-controlled 
temperature trends by Dumux and ECLIPSE will have a significant deviation at long 
simulation periods. Furthermore, high flow rates may seem to cause slight discrepancies 
between the temperature spatial variation curves predicted by the two simulators. The 
observed discrepancy is probably due to the different way the two simulators model the 
temperature boundary condition at the caprock and bedrock external surfaces. In fact, 
ECLIPSE assumes adiabatic conditions, i.e. no thermal exchange exists between the 
simulated domain and the extenal rock. Conversely, in Dumux, undisturbed constant 
temperature was imposed on caprock and bedrock external surfaces.  In any case, such 
slight deviations do not affect at all the good comparability of the Dumux and ECLIPSE 
results. 
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Figure 6.26: Comparison between Dumux and ECLIPSE in terms of temperature 

distribution over the plane joining the two wells (Y=0 m) for runs (a) 2-B and (b) 

3-B 
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6.5.1 Computational Cost  

A computational cost comparison is held between Dumux and ECLIPSE by 
considering the actual time taken by Dumux to perform each of the six simulation runs 
considered within the scope of this study compared to the corresponding time consumed 
by ECLIPSE. The results are shown in Table 6.3. It can be seen from the table that 
using the Finite Volume-based Dumux for numerical simulation involves a greatly 
higher computational cost compared to the Finite Difference-based ECLIPSE. By 
considering the ratio of the time consumed by Dumux to the time consumed by 
ECLIPSE to perform each of the six simulation runs as elaborated in Table 6.3 and then 
considering an average time ratio by computing the arithmetic average of all the six 
time ratios, a ratio of 595.64 is obtained. This means that within the scope of this study, 
Dumux required on average almost 600 times the computational time required by 
ECLIPSE to run the same simulation. 
 

Table 6.3: Comparison of the computational time taken by Dumux vs. ECLIPSE to 

perform the simulation runs 

 
Simulation 

Run 

Scenario A Time 

ratio  

Scenario B Time 

ratio Dumux ECLIPSE Dumux ECLIPSE 

Actual 

time 

taken 

[h] 

Run 1 13.611 0.0204 667.21 136.111 0.1313 1036.64 

Run 2 13.611 0.0304 447.73 47.222 0.094 502.36 

Run 3 14.167 0.044 321.98 86.11 0.144 597.99 
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7 CONCLUSION 

The spatial progression of the thermal front over the years in a low-temperature 
geothermal doublet was simulated using the Finite-Volume based code of the research 
simulator Dumux. The behavior of pressure and water viscosity was examined too. 
Sensitivities to caprock and bedrock thermal conduction as well as different scenarios 
for injection and production rates were analyzed.  

Thermal front shape was analyzed to verify if well test could be implied to monitor 
the thermal front distance from the injector, in order to predict the cooled front 
breakthrough at the producer. In correspondence to the cooled zone around the water 
injector, a high viscosity zone will form and grow in time based on thermal front 
progression. Thus, a radial composite model characterized by two zones of different 
viscosity can adopted for well test interpretation. However, possible asymmetry of the 
cooled front could be an obstacle to such approach. A certain front asymmetry could be 
observed during both the pre- and post-thermal breakthrough phases but with different 
front shapes being minimum at the beginning of the simulation and becoming more 
pronounced over time. Further studies are needed to evaluate the approximation degree 
of a radial composite assumption in such scenarios. 

The thermal conduction phenomenon across caprock and bedrock layers has proved 
to be particularly critical when long simulation durations or high injection and 
extraction rates are considered. In fact, it can influence the modeled temperature 
distribution and thermal front development and thus eventually affecting the predicted 
time point for thermal breakthrough occurrence. The effect of taking into account of 
caprock and bedrock conduction is a slowing down of the cooled-water thermal front. 
Moreover, it generates a smoother front with a larger transition zone between the 
injected temperature value and that of the geothermal aquifer. 

Higher injection and production rates employed in the operation of a geothermal 
doublet will provide a faster thermal breakthrough owing to the higher convective heat 
transfer attributable to the higher Darcy velocity. They will also bring significant 
caprock and bedrock conduction effects even in the case of short simulation time spans. 
Furthermore, the higher operational rates will also imply a wider operational pressure 
range in the geothermal system. 

The simulation outputs of Dumux were consistent for the different imposed 
maximum time step sizes. The validation of the simulation outcome of Dumux against 
that of ECLIPSE showed that the results of the two simulators are generally in good 
agreement. However, it was found out that the conduction-controlled temperature trends 
modeled by both simulators were different. The deviation between the two trends is 
significant when long simulation time spans are considered. The differences between 
ECLIPSE and Dumux results increase by increasing the rates. The observed 
discrepancies are probably due to the different temperature boundary conditions 
imposed at the caprock and bedrock external surfaces by the two simulators. In any 
case, such slight deviations do not affect at all the good comparability of the Dumux 
and ECLIPSE results. Nevertheless, Dumux is much more computationally costly. 
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APPENDIX 

A1. Overview of Basic C++ Concepts and Nomenclature 

Before discussing the features of the Dumux code, some basic concepts and 
nomenclature of the C++ programming language which was used to write the Dumux 
code should be clarified first. Those basic C++ concepts are listed below. 

• C++ data types: they determine the type of data that can be stored in a certain 
variable where according to Agarwal, (2021), they are subdivided into:  

1. Primitive data types: they include for instance integers (int), boolean 
values (bool), floating-point numbers (float) and double-precision 
floating-point numbers (double) which allow for more decimal places 
than floating-point numbers. 

2. Derived data types: They originate from primitive data types and 
include for instance functions and arrays. 

3. User-defined data types: They include for instance C++ classes and 
structs. 

• Variable declaration in C++: it means the introduction of the variable before 
performing further operations on it where this is done by stating the name and 
the type of the variable (Prabhu, 2019). An illustration of how variable 
declaration is performed is shown in the code snippet (C1) where type is the 
data type of the variable which could be (int) or (float) or others and any_var 
is the variable’s name. 

• C++ function: it is formed from a group of statements that perform some 
computational operations on an input and generate an output. The input is 
given through the values of the function arguments and the output depends on 
the return type of the function. The code snippet (C2) shows a simple C++ 
function that compares two input numbers and outputs the larger of the two. 
The arguments of the function are the two integers a and z and its return type 
is also of type int. 

• C++ class: it is a user-defined data type that has its own functions and 
variables inside the class body such that the variables are termed data 
members and the functions performing operations on those variables are 
called member functions (Kariya, 2021). It is further explained by Kariya, 

// Declaring a variable 
type any_var; 

(C1) 

int maximum(int a, int z) 
{ 
    if (a > z) 
      return a; 
    else 
      return z; 
}  

(C2) 
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(2021) that an object of the class has to be created to be able to access the 
members of the class and manipulate them. However, accessing the class 
members is controlled by the type of access specifier which this member 
belongs to where three types of access specifiers exist according to 
W3Schools, (n.d.)  as follows: 

1. Public: it allows class members to be accessed from outside the class. 
2. Private: it does not allow class members to be accessed externally. 
3. Protected: it does not allow access to the class members from outside 

the class but they can be accessed from derived classes. 
 The example in the code snippet (C3) illustrates the class definition while the 

example in the code snippet (C4) demonstrates how an objected of the class 
is created and used to access a class member.  

 

• C++ struct: it is similar to a C++ class with main difference that the 
programming details are not as well protected as in the case of a C++ class 
because the default setting for the class members is being private while the 
default setting for the struct members is being public (GeeksforGeeks, 
2021c). 

• C++ namespace: it is a named scope inside which a variable of a certain name 
and type can be declared avoiding mixing between this variable and another 
variable of the same name but of a different data type declared inside another 
namespace where such C++ feature is useful in case of large codes. A C++ 
namespace thus offers a narrower scope for the names of variables, functions, 
classes and structs which allows a more logical organization for those entities 
(Tiwari, 2019). An example illustrating how a namespace is defined is 
presented in the code snippet (C5) 

  

class class_name {       // The class 
  public:                         // Access specifier 
    int sum;                    //  Integer variable  
}; 

(C3) 

int main() { 
  
    // Declaring an object of class class_name 
    class_name obj; 
  
    // Accessing data member 
    obj.sum = 10; 
 } 

(C4) 
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• Inheritance in C++: it means that a class is able to access the members of 
another class because it has inherited the properties of that other class. This 
means that code duplication is avoided as the inherited functions and 
variables do not have to be written again inside the body of the inheriting 
class (Agarwal, 2021b). It is pointed out by Agarwal, (2021b) that the 
inheriting class is termed derived class while the class whose characteristics 
are passed to the derived class is termed base class. 

• Templates in C++: It is a very useful feature that is based on the idea of 
writing a generic code that is compatible with the different data types and 
thus not having to write the same piece of code for each data type where the 
feature is implemented in the form of function templates and class templates 
(GeeksforGeeks, 2021a). The declaration of both the function template or the 
class template should be preceded by the keyword template then angle 
brackets which contain the template argument preceded by the keyword class 
or typename as shown in the code snippet (C6) for the template function 
declaration and the code snippet (C7) for the template class declaration. 
According to the data type that will be passed to the template argument T in 
the program, the compiler will create another variant of anyFunction() or 
class_name for that specific data type (Programiz, n.d.) 

 

• Template specialization in C++: it means using a special version of the class 
template or the function template for a specific data type such that the code is 
different from the one used for the other data types (GeeksforGeeks, 2021b). 
The example in the code snippet (C8) shows how a class template for 

namespace new_name  
{ 
   int a, b; // variable declarations such that  
                 // a and b are declared inside  
                // new_name's scope 
} 

(C5) 

template <class T>   
T anyFunction(T arg) 
{ 
 // function body 
} 

(C6) 

template <class T> 
class class_name 
{  
public: 
 T var; 
 T anyOperation (T arg)   
}; 

(C7) 
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example may be specialized for a certain data type where the class template 
called class_name has been specialized for the data type int.  

• Partial Template Specialization in C++: It differs from the full template 
specialization as not the same data type is passed to all the template 
arguments and thus the template is not fully specialized for a specific data 
type (Sergey & W.F., 2017). This means that some of the template arguments 
may be fixed. Such a feature allows the template to handle totally diverse 
datasets, however; it is applicable only to class and struct templates and not 
function templates (Sergey & W.F., 2017). An example of a struct template 
provided by Sergey & W.F., (2017). is shown in the code snippet (C9). In this 
snippet, it is noticeable that even if the same data type is passed to the 
template arguments T and Z, the struct template will not be fully specialized 
for that data type as there is a third fixed template argument of the type int. 

 
It’s important to point out that the properties of the system/model are assigned using 

the Dumux property system which is built on the concepts of inheritance and template 
specialization in the C++ programming language (Flemisch, 2018; The DuMux 
developers, 2021). In the framework of Dumux, a property is the body of a C++ class 
where those properties are attached to the nodes of a hierarchical structure termed type 
tags such that a lower node (type tag) is inheriting the properties of the upper one (The 
DuMux developers, 2021). 
 

  

template <class T> 
class class_name 
{ 
   
public: 
   // Generic code 
   
}; 
  
template <> 
class class_name <int> 
{ 
public: 
   // Special code 
 
}; 

(C8) 

template<typename T, typename Z> 
struct A<int, T, Z> { 
     // code 
}; 

(C9) 
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A2. Dumux Installation, Compiling and Running 

To run Dumux on a Linux platform, the following pre-requisites had to be installed: 
• CMake version 3.16.3 
• gcc (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0  
• pkg-config version: 0.29.1 
• OpenMPI version:4.0.3 
• ParaView version 5.7.0  
• Python 3.8.5 
• git version 2.25. 

Dumux v3.3 was installed in January 2021 from the installation page on the Dumux 
website (https://dumux.org/installation) using the “Installation via script” option. The 

python script was downloaded and run in the terminal by typing the command shown in 
the code snippet (C10). 

The steps in the “Getting Started” section on the Dumux website 
(https://dumux.org/gettingstarted/) were followed to create a new module in the Dumux 
installation directory inside which two folders were created: one for scenario A and the 
other one for scenario B. 

After having written the Dumux code for each of the two simulation cases, the 
CMakeLists.txt file in the directory of each simulation case had to be altered in order to 
be able to compile the code of that problem. The CMakeLists.txt file is adjusted by 
adding/modifying the dune_add_test(..) command (Scholz et al., 2018) as illustrated in 
the code snippet (C11) for scenario B. 

where NAME refers to the name of the executable for that problem that will later be 
used in the terminal commands to build and run the problem/application and which in 
this case is half_final. SOURCES refers to the name of the main file (main.cc) which 
includes the main function of the code. Finally, the name of the type tag of the problem 
-which contains all the system properties- is entered which in this case is 
OnePNICCMpfa. 

Furthermore, the CMakeLists.txt file will include a shortcut to the parameters/input 
file and thus the input file name (params.input) has to be entered correctly as shown in 
the code snippet (C12). 

In addition, the CMakeLists.txt file in the new module’s directory also has to be 

altered by adding the subdirectory for each of the two added scenarios (the names of 
their folders) as shown in the code snippet (C13). 

python3 installdumux.py (C10) 

dune_add_test(NAME half_final 
              SOURCES main.cc 
              COMPILE_DEFINITIONS TYPETAG=OnePNICCMpfa) 

(C11) 

dune_symlink_to_source_files(FILES "params.input") (C12) 

add_subdirectory(convection_final) (C13) 
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After editing the CMakeLists.txt files as previously illustrated, we have to go 
through the terminal into the directory of our new module which in our case was called 
“dumux_alpha”. by typing the command shown in the code snippet (C14). 

And then we have to perform a re-configuration of the module by typing in the 
terminal window the command shown in the code snippet (C15). 

Next, to run the problem for scenario B for example, we have to go through the 
terminal into the folder/directory of that problem located inside the “build-cmake” 

folder of our module as elaborated in the code snippet (C16). It’s worth noting that the 
“build-cmake” folder will be automatically created inside our new module once we 

create it. 

After that, we should build the code using the command in the code snippet  (C17) 
where the name of the executable is used. 

Final step is to run the application by typing the command in the code snippet (C18) 
in the terminal window. The name of the problem executable is used once more. 

After the simulation run has finished and in order to visualize the simulation 
outcome on ParaView, the command in the code snippet (C19) has to be typed in the 
terminal. 

 
  

add_subdirectory(half_final) 

cd dumux/dumux_alpha (C14) 

cmake build-cmake (C15) 

cd build-cmake/half_final (C16) 

make half_final (C17) 

./half_final  (C18) 

paraview *pvd (C19) 
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A3. Dumux Code of Base Case 

Problem File (problem.hh) 
  1 #ifndef DUMUX_1PNI_PROBLEM_HH 

  2 #define DUMUX_1PNI_PROBLEM_HH 

  3 // Yet Another Structured Parallel Grid 

  4 #include <dune/grid/yaspgrid.hh> 

  5 // Discretization using MPFA 

  6 #include <dumux/discretization/ccmpfa.hh> 

  7 // Porous Medium Flow Problem 

  8 #include <dumux/porousmediumflow/1p/model.hh> 

  9 #include <dumux/porousmediumflow/problem.hh> 

 10 // Single component H2O in Liquid Phase 

 11 #include <dumux/material/components/h2o.hh> 

 12 #include <dumux/material/fluidsystems/1pliquid.hh> 

 13 // Spatial Params 

 14 #include "spatialparams.hh" 

 15  

 16 namespace Dumux { 

 17  

 18 template <class TypeTag> 

 19 // Forward Declaration 

 20 class OnePNIProblem; 

 21  

 22 namespace Properties { 

 23 // Create new type tags 

 24 namespace TTag { 

 25 struct OnePNITypeTag { using InheritsFrom = std::tuple<OnePNI>; }; 

 26 struct OnePNICCMpfa { using InheritsFrom = 

std::tuple<OnePNITypeTag, CCMpfaModel>; }; 

 27 } // end namespace TTag 

 28      

 29 // Set the grid type 

 30 template<class TypeTag> 

 31 struct Grid<TypeTag, TTag::OnePNITypeTag> { using type = 

Dune::YaspGrid<3, Dune::TensorProductCoordinates<double, 3> >; }; 

 32  

 33 // Set the problem property 

 34 template<class TypeTag> 

 35 struct Problem<TypeTag, TTag::OnePNITypeTag> { using type = 

OnePNIProblem<TypeTag>; }; 

 36  

 37 // Set the fluid system 

 38 template<class TypeTag> 

 39 struct FluidSystem<TypeTag, TTag::OnePNITypeTag> 

 40 { 
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 41     using type = FluidSystems::OnePLiquid<GetPropType<TypeTag, 

Properties::Scalar>, 

 42                                           

Components::H2O<GetPropType<TypeTag, Properties::Scalar>> >; 

 43 }; 

 44  

 45 // Set the spatial parameters 

 46 template<class TypeTag> 

 47 struct SpatialParams<TypeTag, TTag::OnePNITypeTag> 

 48 { 

 49     using GridGeometry = GetPropType<TypeTag, 

Properties::GridGeometry>; 

 50     using Scalar = GetPropType<TypeTag, Properties::Scalar>; 

 51     using type = OnePNISpatialParams<GridGeometry, Scalar>; 

 52 }; 

 53 } 

 54  

 55  

 56 template <class TypeTag> 

 57 class OnePNIProblem : public PorousMediumFlowProblem<TypeTag> 

 58 { 

 59     using ParentType = PorousMediumFlowProblem<TypeTag>; 

 60     using GridView = typename GetPropType<TypeTag, 

Properties::GridGeometry>::GridView; 

 61     using Scalar = GetPropType<TypeTag, Properties::Scalar>; 

 62     using PrimaryVariables = GetPropType<TypeTag, 

Properties::PrimaryVariables>; 

 63     using FluidSystem = GetPropType<TypeTag, 

Properties::FluidSystem>; 

 64     using BoundaryTypes = GetPropType<TypeTag, 

Properties::BoundaryTypes>; 

 65     using NumEqVector = GetPropType<TypeTag, 

Properties::NumEqVector>; 

 66     using PointSource = GetPropType<TypeTag, 

Properties::PointSource>; 

 67     using IapwsH2O = Components::H2O<Scalar>; 

 68     using ElementVolumeVariables = typename GetPropType<TypeTag, 

Properties::GridVolumeVariables>::LocalView; 

 69     using FVElementGeometry = typename GetPropType<TypeTag, 

Properties::GridGeometry>::LocalView; 

 70     using SubControlVolumeFace = typename 

FVElementGeometry::SubControlVolumeFace; 

 71     using SubControlVolume = typename 

FVElementGeometry::SubControlVolume; 

 72      

 73     enum { dimWorld = GridView::dimensionworld }; 

 74  
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 75         // copy some indices for convenience 

 76     using Indices = typename GetPropType<TypeTag, 

Properties::ModelTraits>::Indices; 

 77     enum { 

 78         // indices of the primary variables 

 79         pressureIdx = Indices::pressureIdx, 

 80         temperatureIdx = Indices::temperatureIdx, 

 81         //! Equation indices 

 82         contiWEqIdx = Indices::conti0EqIdx, 

 83         energyEqIdx = Indices::energyEqIdx, 

 84         //! Phase indices (Single Liquid Phase) 

 85         LiquidIdx = FluidSystem::comp0Idx 

 86         

 87     }; 

 88     using Element = typename GridView::template Codim<0>::Entity; 

 89     using GlobalPosition = typename 

Element::Geometry::GlobalCoordinate; 

 90     using GridGeometry = GetPropType<TypeTag, 

Properties::GridGeometry>; 

 91  

 92 public: 

 93     OnePNIProblem(std::shared_ptr<const GridGeometry> 

gridGeometry) 

 94     : ParentType(gridGeometry) 

 95     { 

 96                 //initialize fluid system 

 97                   FluidSystem::init(); 

 98         name_ = getParam<std::string>("Problem.Name"); 

 99          

100     } 

101  

102     /*! 

103      * \The problem name. 

104      * Setting the prefix for simulation output files. 

105      */ 

106     const std::string& name() const 

107     { 

108         return name_; 

109     } 

110     // \} 

111  

112     /*! 

113    

114      // #### Boundary conditions 

115     // With the following function we define the __type of 

boundary conditions__ depending on the location. 
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116     // Two types of boundary conditions can be specified: 

Dirichlet or Neumann boundary conditions. On 

117     // Dirichlet boundaries, the values of the primary variables 

need to be fixed. On a Neumann boundaries, 

118     // values for derivatives need to be fixed. Mixed boundary 

conditions (different types for different 

119     // equations on the same boundary) are not accepted for cell-

centered finite volume schemes. 

120      */ 

121     BoundaryTypes boundaryTypesAtPos(const GlobalPosition 

&globalPos) const 

122     { 

123           BoundaryTypes bcTypes; 

124         if (globalPos[2] < eps_ || globalPos[2] > this-

>gridGeometry().bBoxMax()[2] - eps_) 

125             bcTypes.setAllNeumann(); 

126         else 

127             bcTypes.setAllDirichlet(); 

128  

129         return bcTypes; 

130     } 

131  

132     /*! 

133      * \Evaluating the boundary conditions for a Dirichlet 

boundary segment 

134      * 

135      * \param globalPos The position for which the bc type should 

be evaluated 

136      * 

137      */ 

138     PrimaryVariables dirichletAtPos(const GlobalPosition 

&globalPos) const 

139     { 

140          

141         return initialAtPos(globalPos); 

142     } 

143      

144    // On all Neumann boundaries, the boundary flux (whether mass 

or energy flux) is zero.  

145     NumEqVector neumannAtPos(const GlobalPosition &globalPos) 

const 

146     { 

147         NumEqVector values(0.0); 

148         

149         return values; 

150     } 

151  
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152  

153     /*! 

154      * \Evaluating the initial value for a control volume. 

155      * 

156      * \param globalPos The position for which the initial 

condition should be evaluated 

157      * 

158      * Inside this function, primary variables will be stored in 

the parameter "values" 

159      */ 

160     PrimaryVariables initialAtPos(const GlobalPosition &globalPos) 

const 

161     { 

162            PrimaryVariables values(0.0); 

163            Scalar densityW = 990; // Kg/m^3 

164            Scalar depth = this->gridGeometry().bBoxMax()[2] - 

globalPos[2]; 

165            // Hydrostatic Pressure 

166            values[pressureIdx] = 100.0e5 - densityW*this-

>spatialParams().gravity(globalPos)[2]*depth; //Pascal    

167            // Geothermal Gradient 

168            values[temperatureIdx] = 323.6; //Kelvin = 50.45 degree 

celsius 

169             

170            return values; 

171     } 

172      

173      

174    /*  

175   * Adding the point source locations 

176    */ 

177    void addPointSources(std::vector<PointSource>& pointSources) 

const  

178     {     

179            // The injection well (source term) 

180            

181           pointSources.push_back(PointSource({1342, 1402, 15})); 

182  

183           // The production well (sink term) 

184  

185           pointSources.push_back(PointSource({1462, 1402, 15})); 

186           

187     } 

188     

189    // Using solution-dependent point sources 

190   template<class ElementVolumeVariables> 

191  
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192     void pointSource(PointSource& source, 

193  

194                      const Element &element, 

195  

196                      const FVElementGeometry& fvGeometry, 

197  

198                      const ElementVolumeVariables& elemVolVars, 

199  

200                      const SubControlVolume &scv) const 

201  

202     { 

203  

204         const auto& pos = source.position(); 

205  

206         const auto& volVars = elemVolVars[scv]; 

207  

208  

209  

210         if (pos[0] < 1350.0) // injection well 

211  

212         { 

213  

214           const Scalar volumeSource = 1.157407407e-3; // 

injectionRate is positive and in m^3/s = 100 m^3/day 

215  

216           const Scalar massSource = 

volumeSource*IapwsH2O::liquidDensity(293.15, volVars.pressure(0)); 

217  

218           const Scalar energySource = 

massSource*IapwsH2O::liquidEnthalpy(293.15, volVars.pressure(0)); 

219  

220           source = NumEqVector({ massSource, energySource }); 

221          

222         } 

223  

224         else // production well 

225  

226         { 

227  

228            const Scalar volumeSource = -1.157407407e-3; // 

productionRate is negative and in m^3/s = 100 m^3/day 

229   

230            const Scalar massSource = 

volumeSource*volVars.density(0); // using current water density of the 

control volume 

231  
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232            const Scalar energySource = 

massSource*volVars.enthalpy(0); // using current water enthalpy of the 

control volumne 

233  

234            source = NumEqVector({ massSource, energySource }); 

235  

236         } 

237          

238        

239        

240  

241     } 

242       

243  

244  

245 private: 

246     

247     static constexpr Scalar eps_ = 1e-6; 

248     std::string name_; 

249    

250 }; 

251  

252 } // end namespace Dumux 

253  

254 #endif // DUMUX_1PNI_PROBLEM_HH 

 

Spatial Parameters File (spatialparams.hh) 
1 #ifndef DUMUX_1PNI_SPATIAL_PARAMS_HH 

2 #define DUMUX_1PNI_SPATIAL_PARAMS_HH 

3  

4 #include <dumux/porousmediumflow/properties.hh> 

5 #include <dumux/material/spatialparams/fv1p.hh> 

6  

7  

8 namespace Dumux { 

9  

10 template<class GridGeometry, class Scalar> 

11 class OnePNISpatialParams 

12 : public FVSpatialParamsOneP<GridGeometry, Scalar, 

13                              OnePNISpatialParams<GridGeometry, 

Scalar>> 

14                            

15 { 

16     using GridView = typename GridGeometry::GridView; 

17     using ParentType = FVSpatialParamsOneP<GridGeometry, Scalar, 
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18                                            

OnePNISpatialParams<GridGeometry, Scalar>>; 

19     // get the dimensions of the simulation domain from GridView 

20     static constexpr int dim = GridView::dimension; 

21     static constexpr int dimWorld = GridView::dimensionworld; 

22     using Element = typename GridView::template Codim<0>::Entity; 

23     using GlobalPosition = typename 

Element::Geometry::GlobalCoordinate; 

24  

25 public: 

26     // export permeability type 

27     using PermeabilityType = Dune::FieldMatrix<Scalar, dimWorld, 

dimWorld>; 

28     // The Constructor 

29     OnePNISpatialParams(std::shared_ptr<const GridGeometry> 

gridGeometry) 

30     : ParentType(gridGeometry)  

31     , aquiferK_(0) 

32     

33     { 

34       // intrinsic permeabilities 

35         aquiferK_[0][0] = 2.46e-13; // Permeability along X = 

249.26 mD 

36         aquiferK_[1][1] = 2.46e-13; // Permeability along Y = 

249.26 mD 

37         aquiferK_[2][2] = 9.87e-14; // Permeability along Z = 100 

mD 

38          

39          // porosity 

40         aquiferPorosity_ = 0.1; 

41        

42     } 

43  

44     /*! 

45      * \ Defining the intrinsic permeability  

46  

47      */ 

48     PermeabilityType permeabilityAtPos(const GlobalPosition& 

globalPos) const 

49  

50     { 

51           return aquiferK_; 

52         

53     } 

54  

55    /*! 

56      * \Defining the porosity  
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57       

58      */ 

59     Scalar porosityAtPos(const GlobalPosition& globalPos) const 

60     { 

61          return aquiferPorosity_; 

62          

63     } 

64      

65     

66      

67     private: 

68      

69     static constexpr Scalar eps_ = 1e-6; 

70  

71     Dune::FieldMatrix<Scalar, dimWorld, dimWorld> aquiferK_; 

72  

73     Scalar aquiferPorosity_; 

74 }; 

75  

76 } // end namespace Dumux 

77  

78 #endif 

 

Parameters/Input File (params.input) 
1 [TimeLoop] 

2 DtInitial = 10000 # [s] 

3 TEnd = 311040000 # [s] 

4 MaxTimeStepSize = 2592000 

5  

6 [Grid] 

7 Positions0 = 0 400 960 1844 2404 2804 

8 Positions1 = 0 400 960 1844 2404 2804 

9 Positions2 = 0 30 

10 Cells0 = 2 28 221 28 2 

11 Cells1 = 2 28 221 28 2 

12 Cells2 = 1 

13  

14 [Problem] 

15 Name = 1pnifv # name passed to the output routines 

16 EnableGravity = true # enable gravity 

17  

18 [Newton] 

19 MaxRelativeShift = 1e-5 

20 MaxTimeStepDivisions = 20 

21  

22 [Vtk] 
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23 AddVelocity = true # enable velocity output 

24  

25 [Component] 

26 SolidDensity = 2750 # [Kg/m^3] 

27 SolidThermalConductivity = 2.8 # [Watt/m.°K] 

28 SolidHeatCapacity = 800 # [Joule/Kg.°K] 

 

Main File (main.cc) 
1 #include <config.h> 

  2  

  3 #include <ctime> 

  4 #include <iostream> 

  5  

  6 #include <dune/common/parallel/mpihelper.hh> 

  7 #include <dune/common/timer.hh> 

  8 #include <dune/grid/io/file/vtk/vtksequencewriter.hh> 

  9 #include <dune/grid/io/file/dgfparser/dgfexception.hh> 

 10 #include <dune/grid/io/file/vtk.hh> 

 11 #include <dune/istl/io.hh> 

 12  

 13 #include "problem.hh" 

 14  

 15 #include <dumux/common/properties.hh> 

 16 #include <dumux/common/parameters.hh> 

 17 #include <dumux/common/valgrind.hh> 

 18 #include <dumux/common/dumuxmessage.hh> 

 19  

 20 #include <dumux/linear/seqsolverbackend.hh> 

 21 #include <dumux/linear/linearsolvertraits.hh> 

 22 #include <dumux/nonlinear/newtonsolver.hh> 

 23  

 24 #include <dumux/assembly/fvassembler.hh> 

 25 #include <dumux/assembly/diffmethod.hh> 

 26  

 27 #include <dumux/discretization/method.hh> 

 28  

 29 #include <dumux/io/vtkoutputmodule.hh> 

 30 #include <dumux/io/grid/gridmanager.hh> 

 31 #include <dumux/io/loadsolution.hh> 

 32  

 33  

 34  

 35  

 36 int main(int argc, char** argv) try 

 37 { 

 38     using namespace Dumux; 
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 39  

 40     // we define a convenience alias for the type tag of this 

problem. The type 

 41     // tags contain all the properties that are needed to define 

the model and the problem 

 42     // setup. Throughout the main file, we will obtain types 

defined for these type tags 

 43     // using the property system, i.e. with `GetPropType`. 

 44     using TypeTag = Properties::TTag::OnePNICCMpfa; 

 45  

 46     // initialization of MPI, finalization is automatically 

executed on exit 

 47     const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv); 

 48  

 49     // print dumux start message 

 50     if (mpiHelper.rank() == 0) 

 51         DumuxMessage::print(/*firstCall=*/true); 

 52  

 53     // for parsing command line arguments and input file 

 54     Parameters::init(argc, argv); 

 55  

 56  

 57     // the `GridManager` class creates the grid from data given in 

the input file. 

 58     GridManager<GetPropType<TypeTag, Properties::Grid>> 

gridManager; 

 59     gridManager.init(); 

 60  

 61  

 62     // we compute on the leaf grid view 

 63     const auto& leafGridView = gridManager.grid().leafGridView(); 

 64  

 65     // solving the single-phase problem 

 66     // first, a finite volume grid geometry is constructed from 

the grid that was created above. 

 67     // this builds the sub-control volumes (scv) and sub-control 

volume faces (scvf) for each element 

 68     // of the grid  

 69     using GridGeometry = GetPropType<TypeTag, 

Properties::GridGeometry>; 

 70     auto gridGeometry = 

std::make_shared<GridGeometry>(leafGridView); 

 71     gridGeometry->update(); 

 72     // we now instantiate the problem, in which we define the 

boundary and initial conditions. 

 73     using Problem = GetPropType<TypeTag, Properties::Problem>; 

 74     auto problem = std::make_shared<Problem>(gridGeometry); 
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 75     // we call the `computePointSourceMap` method to compute the 

point sources. 

 76     problem->computePointSourceMap(); 

 77      

 78      

 79     // get some time loop parameters 

 80     using Scalar = GetPropType<TypeTag, Properties::Scalar>; 

 81     const auto tEnd = getParam<Scalar>("TimeLoop.TEnd"); 

 82     const auto maxDt = 

getParam<Scalar>("TimeLoop.MaxTimeStepSize"); 

 83     auto dt = getParam<Scalar>("TimeLoop.DtInitial"); 

 84  

 85  

 86     // the solution vector 

 87     using SolutionVector = GetPropType<TypeTag, 

Properties::SolutionVector>; 

 88     SolutionVector x(gridGeometry->numDofs()); 

 89     problem->applyInitialSolution(x); 

 90     auto xOld = x; 

 91  

 92     // variables of the grid 

 93     using GridVariables = GetPropType<TypeTag, 

Properties::GridVariables>; 

 94     auto gridVariables = std::make_shared<GridVariables>(problem, 

gridGeometry); 

 95     gridVariables->init(x); 

 96  

 97     // intialize the vtk output module 

 98     using IOFields = GetPropType<TypeTag, Properties::IOFields>; 

 99     VtkOutputModule<GridVariables, SolutionVector> 

vtkWriter(*gridVariables, x, problem->name()); 

100     using VelocityOutput = GetPropType<TypeTag, 

Properties::VelocityOutput>; 

101     

vtkWriter.addVelocityOutput(std::make_shared<VelocityOutput>(*gridVari

ables)); 

102     vtkWriter.addVolumeVariable([] (const auto& v) { return 

v.viscosity(); }, "viscosity (Pa s)"); 

103     IOFields::initOutputModule(vtkWriter);  

104     

105      

106     // write initial solution 

107     vtkWriter.write(0.0); 

108  

109     // instantiate time loop 

110     auto timeLoop = 

std::make_shared<CheckPointTimeLoop<Scalar>>(0.0, dt, tEnd); 
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111     timeLoop->setMaxTimeStepSize(maxDt); 

112     timeLoop->setPeriodicCheckPoint(tEnd/30.0); 

113      

114     // for instationary problems, the assembler has a time loop 

115     using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>; 

116     auto assembler = std::make_shared<Assembler>(problem, 

gridGeometry, gridVariables, timeLoop, xOld); 

117  

118     // the linear solver 

119      using LinearSolver = 

AMGBiCGSTABBackend<LinearSolverTraits<GridGeometry>>; 

120     auto linearSolver = 

std::make_shared<LinearSolver>(leafGridView, gridGeometry-

>dofMapper()); 

121  

122     // the non-linear solver 

123     using NewtonSolver = Dumux::NewtonSolver<Assembler, 

LinearSolver>; 

124     NewtonSolver nonLinearSolver(assembler, linearSolver); 

125      

126     // time loop 

127     timeLoop->start(); do 

128     { 

129  

130         // linearize & solve 

131         nonLinearSolver.solve(x, *timeLoop); 

132  

133         // make the new solution the old solution 

134         xOld = x; 

135         gridVariables->advanceTimeStep(); 

136  

137         // move to the subsequent time step 

138         timeLoop->advanceTimeStep(); 

139          

140          // write the Vtk output on check points. 

141         if (timeLoop->isCheckPoint()) 

142             vtkWriter.write(timeLoop->time()); 

143  

144  

145         // report time step stats 

146         timeLoop->reportTimeStep(); 

147  

148         // set new dt as suggested by the newton solver 

149         timeLoop-

>setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop-

>timeStepSize())); 

150  
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151  

152     } while (!timeLoop->finished()); 

153  

154     timeLoop->finalize(leafGridView.comm()); 

155  

156  

157     // print dumux end message 

158     if (mpiHelper.rank() == 0) 

159     { 

160         Parameters::print(); 

161         DumuxMessage::print(/*firstCall=*/false); 

162     } 

163  

164     return 0; 

165 } // end main 

166 catch (Dumux::ParameterException &e) 

167 { 

168     std::cerr << std::endl << e << " ---> Abort!" << std::endl; 

169     return 1; 

170 } 

171 catch (Dune::DGFException & e) 

172 { 

173     std::cerr << "DGF exception thrown (" << e << 

174                  "). Most likely, the DGF file name is wrong " 

175                  "or the DGF file is corrupted, " 

176                  "e.g. missing hash at end of file or wrong number 

(dimensions) of entries." 

177                  << " ---> Abort!" << std::endl; 

178     return 2; 

179 } 

180 catch (Dune::Exception &e) 

181 { 

182     std::cerr << "Dune reported error: " << e << " ---> Abort!" << 

std::endl; 

183     return 3; 

184 } 

185 catch (...) 

186 { 

187     std::cerr << "Unknown exception thrown! ---> Abort!" << 

std::endl; 

188     return 4; 

189 } 

 

 

 

 



Mahmoud Aboelseoud   98 
_____________________________________________________________________________________ 

 

Configuration File (CMakeLists.txt) 
1 # add a new finite volume 1pni test 

2 dune_add_test(NAME convection_final 

3               SOURCES main.cc 

4               COMPILE_DEFINITIONS TYPETAG=OnePNICCMpfa) 

5  

6 # add a symlink for the input file in the build folder 

7 dune_symlink_to_source_files(FILES "params.input") 
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