

ACKNOWLEDGMENTS

I would like to express special appreciation to Professor Roberto Paoli, who constantly proved to be

exceptionallly kind and available towards me, weekly keeping up-to-date and suggesting new solu-

tions for the thesis work.

My thankfulness extends to Professor Alessandro Ferrari, whose dedication and accentuated curiosity

towards research and innovation encouraged hard work.

Furthermore, I wish to thank my girfliend Isabella, who constantly stood by me in all difficult mo-

ments during these five years and during the thesis development.

Finally, I wish to express deep gratitude to my family, my father Lucio, my mother Elvira and sister

Chiara, who in innumerable occasions in the last five years supported my commitment and hopes.

i

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION 1

1.1 Motivations . 1

1.2 Incompressible Reynolds-averaged Navier–Stokes equations 3

1.2.1 Reynolds Decomposition and Derivation of Mean Flow Equations 4

1.3 The closure problem . 6

1.3.1 Turbulent-viscosity models . 7

1.3.2 General eddy-viscosity model . 11

1.4 Data Driven Turbulence Modeling . 14

1.4.1 Neural Networks . 14

1.4.2 Training of a Neural Network . 16

1.4.3 The Tensor-Basis neural network . 18

1.4.4 Description of the proposed approach . 20

2 IMPLEMENTATION OF THE METHOD 25

2.1 Development of a RANS CFD Solver . 25

2.1.1 Nondimensionalization of the governing equations 28

2.1.2 The Marker and Cell (MAC) method . 32

2.1.3 Discretization of the equations . 33

2.1.4 X momentum equation . 34

2.1.5 Y momentum equation . 36

2.1.6 k transport equation . 38

2.1.7 ε transport equation . 40

2.1.8 Poisson Equation . 42

2.1.9 Poisson Equation Solver . 45

2.2 Turbulent fully-developed channel flow . 46

2.2.1 Mesh . 48

ii

TABLE OF CONTENTS (continued)

2.2.2 Boundary Conditions . 50

2.2.3 Validation of the solver . 62

2.3 Artificial Neural Network . 65

2.3.1 High-Fidelity datasets . 67

2.3.2 Input layers’ normalizations . 68

2.3.3 Network’s hyperparameters and architecture 71

2.3.4 Training phase and a priori result . 75

2.3.5 Embedment of the neural network into the CFD solver 78

3 RESULTS AND CONCLUSIONS 80

3.1 Application to the turbulent channel flow case 80

3.2 Effect on the mean velocity . 87

3.3 Conclusions . 91

CITED LITERATURE 93

iii

LIST OF FIGURES

FIGURE PAGE

1 Reynolds decomposition . 4

2 Diagram of a fully-connected feed-forward network with two hidden layers 14

3 Schematic of the TBNN architecture . 19

4 Comparison of a standard RANS solver with the proposed approach 23

5 Standard data driven turbulence modelling approach (a) and proposed method (b) . . 24

6 Structured meshes . 26

7 Grid resolutions for wall-functions and near-wall modeling approaches 27

8 Staggered Arrangment . 33

9 Centered approximation of the first derivative . 34

10 Control volume for the x-momentum equation . 35

11 Control volume for the y-momentum equation . 37

12 Control volume for the k-transport equation . 39

13 Control volume for the ε-transport equation . 41

14 Control volume for the continuity equation . 43

15 Geometry of the channel flow . 47

16 Mesh for the turbulent channel flow . 48

17 Magnification of the mesh for the turbulent channel flow, near-wall resolution 49

18 Channel flow boundary conditions . 51

19 Ghost cells . 52

20 Ghost cells for bottom wall boundary condition . 55

21 Ghost cells for top symmetry boundary condition 57

22 Ghost cells for left zero-gradient boundary condition 60

23 Ghost cells for left zero-gradient boundary condition 61

24 Solver validation: Channel flow u+(y+) profile . 63

25 Solver validation: Channel flow u+(y/δ) profile . 64

iv

LIST OF FIGURES (continued)

26 Solver validation: Channel flow k+(y+) and 〈uv(y+) profiles 64

27 Solver validation: von Karman constant . 65

28 Train and validation RMSE . 75

29 A priori Predictions of Reynolds stress anisotropy tensor on the Duct Flow case . . . 76

30 Baseline LEVM Predictions of Reynolds stress anisotropy tensor on the Duct Flow case 77

31 Embedment of the neural network into the CFD solver 78

32 Turbulent Channel Flow: Reynolds stresses profiles with LEVM 81

33 Turbulent Channel Flow: DNS Reynolds stresses profiles 82

34 Turbulent Channel Flow: DNS, LEVM and TBNN Reynolds Stresses profiles’ com-

parison . 83

35 Turbulent Channel Flow: TBNN Reynolds stresses profiles 84

36 Coefficient g(1) predicted by TBNN at first solver iteration 85

37 Coefficients g(n) predicted by TBNN at first solver iteration 86

38 Mean velocity field resulting from enforcing true DNS anisotropy tensor 88

39 Mean velocity field resulting from the TBNN approach 89

40 Turbulent Channel Flow: TBNN 〈uv〉 predicted profile 90

v

LIST OF TABLES

TABLE PAGE

I NEURAL NETWORKS’ KEY TERMINOLOGY 66

II NEURAL NETWORK’S TRAINING AND VALIDATION DATASET 67

III NEURAL NETWORK’S ARCHITECTURE . 73

IV MODEL’S CHARACTERISTICS . 74

vi

SUMMARY

Numerical simulations based on Reynolds-averaged Navier Stokes (RANS) models are still the work-

horse tool in engineering design involving turbulent flows.Two decades ago, when LES started gain-

ing popularity thanks to the increasing availability of computational resources, it was widely expected

that it would have gradually replaced RANS methods in industrial CFD for decades to come. In the

past two decades, however, while LES-based methods gained widespread applications and the ear-

lier hope did not diminish, the predicted time when LES would replace RANS has been significantly

delayed.Most industrial users are probably decades away from any routine use of scale resolving sim-

ulations, not to mention the cost, time and user skill it take to run these computations. In brief, RANS

solvers, particularly those based on standard eddy viscosity models (e.g k-ε,k-ω,S-A and k-ω SST) are

expected to remain the workhorse in the CFD of high Reynolds number flows for decades.However,

predictions from RANS simulations are known to have large discrepancies in many flows of engi-

neering relevance, including those with swirl, pressure gradients, or mean streamline curvature. It is a

consensus that the dominant cause for such discrepancies is the RANS-modeled Reynolds stresses. In

light of the long stagnation in traditional turbulence modeling, researchers explored machine learning

as an alternative to improve RANS modeling by leveraging data from high- fidelity simulations. The

goal is to make use of vast amounts of turbulent flows data, machine learning techniques and current

understanding of turbulence physics to develop models with better predictive capabilities in the con-

text of RANS simulations. Recently, in a seminal work, Ling et al (2016) developed a neural network

architecture capable of embedding invariance properties into the Reynolds stressor predicted in out-

put. Such a network, named the tensor basis neural network (TBNN), was applied to a variety of flow

fields with encouraging results compared to both classical turbulence models and neural networks that

do not preserve Galilean invariance. Yet, as in most data driven turbulence modelling approaches, the

TBNN was used as a post-processing tool to correct the Reynolds stress tensor field predicted by

a RANS simulation run with standard closure models. This means that, theoretically, the network

can be applied only to correct the Reynolds stress tensor for the same RANS model on which it has

been trained since, in general, different turbulence models yield different results depending on the

flow type. Moreover, there is no phyisical insight that suggests a relation between the RANS velocity

gradients - used as inputs of the machine learning model - and the true Reynolds stress tensor.

vii

SUMMARY (continued)

Differently, in this work a network with a similar architecture to the Ling’s one was be trained and

tested on a database of high-fidelity data of eight different flows to learn a functional mapping be-

tween the inputs of Pope’s General Eddy Viscosity Model and the anisotropic part of the Reynolds

stress tensor. Then the network was embedded into a CFD RANS solver as a replacement of the

standard closure model - and therefore called at every solver’s iteration. Lasty, the RANS solver with

embedded TBNN was be tested on a canonical flow case - turbulent channel flow - to evaluate its

performances. As for the organization of this work: in Chapter 1 further details on the data driven

turbulence modelling will be given, RANS models and equations will be introduced and also an in-

troduction to Neural Networks will be presented. In Chapter 2, it will be given a detailed explanation

of the RANS CFD solver and the neural network’s implementation. Finally, in Chapter 3, the method

will be tested on a turbulent channel flow case and the results will be discussed.¡

viii

Chapter 1

INTRODUCTION

1.1 Motivations

Turbulence is a common physical characteristic of many industrial fluid flows.

For example, in wind turbine design, the knowledge of turbulent quantities in the incoming flow and

in the blade boundary layers is important for performance. In internal combustion engines, vigorous

turbulence increases fuel/air mixing, thus improving overall efficiency and reducing emissions. In air-

plane design, delaying the occurrence of turbulence in boundary layers over the wing surfaces leads

to reduced fuel consumption [16].

These examples, and a vast number of other applications, demonstrate the importance of determining

the effect of turbulence on the performance of engineering devices and justify the continous interest

in developing more accurate techniques to simulate and predict turbulent flows.

Nowadays, two techniques are at the industry’s computational power’s reach for the numerical simu-

lation of turbulence flows: RANS (Reynolds Averaged Naviers Stokes) Simulations and LES (Large

Eddy Simulations). DNS use (Direct Numerical Simulations), despite proving to be the most accurate

method for all turbulent flows’ simulation, is still limited to research purposes and canonical flows’

applications, since the computational power required is well beyond industry capabilities.

Two decades ago, when LES started gaining popularity thanks to the increasing availability of com-

putational resources, it was widely expected that it would have gradually replaced RANS methods

in industrial CFD for decades to come. In the past two decades, however, while LES-based methods

such as wall-modeled LES and hybrid LES/RANS methods gained widespread applications and the

earlier hope did not diminish, the predicted time when LES would replace RANS has been signifi-

cantly delayed[15].

1

1.1. Motivations 2

It is under these premises that, in July 2017, a three day Turbulence Modeling Symposium sponsored

by the University of Michigan and NASA, was held in Ann Arbor,Michigan [12]. The meeting gath-

ered nearly 90 experts from academia, government and industry in order to discuss the state of the

art in turbulence modeling and to wrestle with questions surrounding its future. One message came

through very clearly from the participants of the symposium: industry still need RANS, all the time.

Most industrial users are probably decades away from any routine use of scale resolving simulations,

not to mention the cost, time and user skill it take to run these computations. In brief, RANS solvers,

particularly those based on standard eddy viscosity models (e.g k-ε,k-ω,S-A and k-ω SST) are ex-

pected to remain the workhorse in the computation of high Reynolds number CFD for decades. This

is likely to be ture even in mission critical desing applications such as aircraft desing. Interestingly,

even the advanced RANS models (such as Reynolds stress transport models and Explicit Algebraic

Reynolds stress models) have not seen much development in the past few decades; these methods

are indeed more computationally expensive and less robust than the standard eddy viscosity RANS

models [14]. As a consequence, the need for standard RANS model improvements remains a key

issue in CFD reaserch not just in the near-term.

In today’s CFD landscape, RANS is widely used, mostly in a steady mode, although the known weak-

nesses of this approach in predicting many classes of flows can be very problematic. In particular,

RANS is considered less adequate or even unacceptable for classes of flows involving massive sepa-

rations or severe streamlines curvatures [12].

Indeed, even the most sophysticated RANS models invoke radically symplifying assumptions about

the structure of the underlying turbulence. As a result, even if a model is based on phisically and

mathematically appealing ideas, the model formulation typically devolves into the calibration of a

large number of free parameters or functions using a small set of canonical problems. Even after

decades of effors in the furbulence modeling community, universally applicable RANS models with

predictive capabilities are the main source that limits the predictive accuracty of RANS models [13].

Large discrepancies in the RANS-modeled Reynolds Stresses are the main source that limits the pre-

dictive accuracy of RANS models.

For example, at the present time of this work, the most popular standard two-equation RANS models

rely on the Linear Eddy Viscosity Model (LEVM) for their Reynolds stress closure [9]. This LEVM

postulates a linear relationship between the Reynolds stresses and the mean strain rate tensor. How-

ever, this model does not provide satisfactory predictive accuracy in many engineering-relevant flows

such as those with curvature, impingment and separation and simple shear flows [38]. More advanced

nonlinear eddy viscosity models have also been proposed which rely on higher-order products of the

1.2. Incompressible Reynolds-averaged Navier–Stokes equations 3

mean strain rate and rotation rate tensors. These nonlinear models have not gained widespread us-

age because they do not give consistent performance improvement over the LEVM and often lead to

worsened convergence properties [9].

It is however clear that a significative improvement of the eddy viscosity models in standard RANS

methods would mitigate a very important source of discrepancy in Reynolds stress modeling. While

traditional development of turbulence models has focused on incorporating more physics to imporve

predictive capabilities, an alternative approach is to use data [14]. Indeed, given the recent rise of data

science, it is fair to ask ourselves: can we use vast amounts of turbulent flows data, machine learning

technicques and current understanding of the phyisics of turbulence to setup a framework that can

lead to develop models with better predictive capabilities in the context of RANS simulations [13]?

The goal of the present work is to address this question by attempting to develop an alternative and

more accurate Reynolds stress closure model using available turbulent datasets and machine learning

techniques. In particular, deep neural networks are chosen as the tool to extract improved models

from large sets of data due to the possibility of exploitining the flexibility of their architecture in order

to embed invariance tensor properties into the machine learning model [9].

1.2 Incompressible Reynolds-averaged Navier–Stokes equations

Scientists and engineers seek to predict and understand the velocity U and pressure fields p of a variety

of fluid flows. For low-Mach flows with negligible gravity effects, the challenge facing scientists and

engineers is to solve the incompressible Navier-Stokes equations:

∇ ·U =0 (1.1)

∂U
∂t

+∇ · (U ⊗ U) =−
1
ρ
∇p + ν∇2U (1.2)

for the three-dimensional velocity field (U) = (u;v;w) and the pressure field p, which are in general

functions of space and time [37]. Equation (1.1) is called continuity equation and corresponds to the

conservation of mass, whereas (1.2) corresponds to the conservation of momentum equation.

The parameters ν and ρ are the kinematic viscosity and density of the fluid, respectively. The key

dimensionless parameter in incompressible fluid mechanics, the Reynolds number Re, is formed by

a velocity scale U and a length scale L and is given by Re = UL/ν. As a global rule, a large Re

indicates that the fluid flow is turbulent whereas a small Re suggests a laminar flow field. Many

flows of scientific and engineering interest are in a turbulent regime, which is characterized by many

simultaneously active temporal and spatial scales. Analytical approaches to solving the Navier-Stokes

1.2. Incompressible Reynolds-averaged Navier–Stokes equations 4

equations have succeeded for only the simplest flow fields, hence the need to solve equations (1.1)

and (1.2) numerically.

Equations (1.1) and (1.2) can be written in a useful form using Einstein notation:

∂Ui

∂xi
=0 (1.3)

∂U j

∂t
+

∂

∂xi
(UiU j) =−

1
ρ

∂p
∂x j

+
∂

∂xi

[
ν

(
∂Ui

∂x j
+
∂U j

∂xx

)]
(1.4)

1.2.1 Reynolds Decomposition and Derivation of Mean Flow Equations

The earliest rigorous mathematical attempt at resolving the turbulence problem was due to Osborn

Reynolds. Reynolds’ idea is to decompose the fields into its mean and fluctuating part:

U(x, t) = 〈U(x, t)〉+ u(x, t) (1.5)

where:

〈U(x, t)〉 = lim
T→∞

1
T

∫ t+T

t
U(x, t′) dt′ (1.6)

corresponds to the application of the averaging operator to the flow field U(x, t). Equation (1.6) is

referred to as the Reynolds decomposition.

Figure 1: Reynolds decomposition

In most engineering applications, only the average components of the flow field are relevant. One

could therefore think of applying the 〈·〉 averaging operator to equations (1.3) and (1.4) in order to

obtain equations for the mean flow. In doing so,it is fristly crucial to observe that 〈·〉 averaging oper-

ator commutes with spatial and time derivatives.

1.2. Incompressible Reynolds-averaged Navier–Stokes equations 5

By applying 〈·〉 averaging operator to continuity equation (1.3) one has:〈
∂Ui

∂xi

〉
=
∂〈Ui〉

∂xi
= 0

The derivation of the mean momentum equation is slightly longer. First of all, it is crucial to notice

that the mean of a fluctuation is null:

〈u〉 = 〈(U−〈U〉)〉 = 〈U〉− 〈〈U〉〉 = 〈U〉− 〈U〉 = 0

since the mean of a mean of a quantity is the mean of the quantity itself (〈〈 f 〉〉 = 〈 f 〉). We can now

derive each term of the mean momentum equation separately :

1. 〈∂U j

∂t

〉
=
∂〈U j〉

∂t

2. 〈
∂

∂xi

(
UiU j

)〉
=

∂

∂xi

(
〈UiU j〉

)
=

∂

∂xi

(
〈(〈Ui〉+ ui) · (〈U j〉+ u j)〉

)
=

∂

∂xi

(
〈〈Ui〉〈U j〉+ ui〈U j〉+ u j〈Ui〉+ uiu j〉

)
=

∂

∂xi

(
〈〈Ui〉〈U j〉〉+ 〈ui〉〈U j〉+ 〈u j〉〈Ui〉+ 〈uiu j〉

)
=

∂

∂xi

(
〈Ui〉〈U j〉+ 〈uiu j〉

)
3. 〈1

ρ

∂p
∂x j

〉
=

1
ρ

∂〈p〉
∂x j

4. 〈
∂

∂xi

[
ν

(
∂Ui

∂x j
+
∂U j

∂xx

)]〉
=

∂

∂xi

[
ν

(
∂〈Ui〉

∂x j
+
∂〈U j〉

∂xx

)]
Collecting the time-averaged continuity and momentum equations one has:

∂〈Ui〉

∂xi
=0 (1.7)

∂〈U j〉

∂t
+

∂

∂xi
(〈Ui〉〈U j〉) =−

1
ρ

∂〈p〉
∂x j

+
∂

∂xi

[
ν

(
∂〈Ui〉

∂x j
+
∂〈U j〉

∂xx

)]
−
∂〈uiu j〉

∂xi
(1.8)

which corrrespond to the Reynolds-averaged Navier–Stokes equations (or RANS equations) of mo-

tion for fluid flow. Equation (1.8) can be rewritten the substantial mean derivative in conservative

form:
D〈U j〉

Dt
=

∂

∂xi

[
ν

(
∂〈Ui〉

∂x j
+
∂〈U j〉

∂xx

)
−

1
ρ
〈p〉δi j−〈uiu j〉

]
(1.9)

1.3. The closure problem 6

where the mean subsantial derivative is:

D〈U j〉

Dt
=
∂〈U j〉

∂t
+

∂

∂xi
(〈Ui〉〈U j〉)

Equation (1.9) is the general form of a momentum conservation equation with the term in the square

brackets representing the sum of three specific stresses: the viscous specific stress, the isotropic spe-

cific stress −〈p〉/δi jρ and the apparent stress arising from the fluctuating velocity field −〈uiu j〉.

The term −〈uiu j〉 is usually referred to as Reynolds Stress Tensor and, in general, corresponds to a

second order 3x3 tensor:

〈uiu j〉 =


〈u2

1〉 〈u1u2〉 〈u1u3〉

〈u2u1〉 〈u2
2〉 〈u2u3〉

〈u3u1〉 〈u3u2〉 〈u2
3〉

 (1.10)

where 1,2,3 correspond to the three directions of the System Reference Frame (such as x,y,z). The

single terms of the tensor are referred to as Reynolds stresses.

The Reynolds Stress Tensor (1.10) is obviously symmetric, since 〈uiu j〉 = 〈u jui〉. The diagonal com-

ponents 〈u2
1〉 = 〈u1u1〉, 〈u2

2〉 and 〈u2
3〉 are called normal stresses while the off-diagonal components are

called shear stresses. A crucial turbulence statistic linked to the Reynolds stresses is the turbulent

kinetic energy k(x, t) (TKE), which is defined to be half of the trace of Reynolds stress tensor:

k =
1
2
〈uiui〉 (1.11)

It is a scalar and corresponds to the mean kinetic energy per unit of mass in the fluctuating velocity

field. The distinction between shear stresses and normal stresses is dependent on the choice of coordi-

nate system. An intrinsic distinction can be made between isotropic stresses and anisotropic stresses.

The isotropic stress is
2
3

kδi j and then the deviatoric anisotropic part is:

ai j = 〈uiu j〉−
2
3

kδi j (1.12)

Lastly, the normalized anisotropy tensor - which will be used extensively in this work - is defined as:

bi j =
ai j

2k
=
〈uiu j〉

2k
−

1
3
δi j (1.13)

1.3 The closure problem

With the notable exception of the Reynolds stress tensor, the RANS equations are identical to the

Navier-Stokes equations. However, the presence of this addition single term poses a key issue in the

1.3. The closure problem 7

solution of mean flow equations. Indeed, for a general statistically three-dimensional flow, there are

four indipendent equations governing the mean velocity field: namely three components of the mo-

mentum equation (1.6) and the continuity equation (1.5). However, differently from the istantaneous

Navier Stokes equations (1.1) and (1.2), they contain more than four unknowns. In addition to the

three components of 〈U〉 and to 〈p〉, there are also the Reynolds stresses.

Such a system, with more unknowns than equations, is said to be unclosed and therefore cannot be

solved. Additional relations must be specified to determine 〈uiu j〉 and close the system of equations.

Although exact transport equations can be derived for the Reynolds stresses from the Navier-Stokes

equations , these involve third-order moments of the velocity field. Indeed, attempting to close the

RANS equations results in an infinite cascade of unclosed terms which have to be modeled again.

Not to mention that the solution of six additional transport equations - one for each component of the

Reynolds stress tensor- requires a considereable computational cost. Efforts have therefore focused

primarily on modeling the effects of the Reynolds stress tensor on the mean flow field. The goal of

turbulence modeling is to propose useful and tractable models for 〈uiu j〉. This entails the attempt to

relate it to mean flow quantities and other turbulence statistic whose transport equation can be solved,

in order to provide a closure to the set of equations (1.5), (1.6). Note that the Navier-Stokes equations

have a variety of transformation properties. Of particular consequence in the present work is Galilean

invariance. That is, the Navier-Stokes equations are the same in an inertial reference frame that is

translating with a constant velocity V. Hence, replacing the spatial coordinate with (x−Vt) and the

velocity with U−V does not change the form of the Navier-Stokes equations. This fact remains true

even for the RANS equations. Therefore, any turbulence model for the Reynolds stress tensor must

also preserve Galilean invariance.

1.3.1 Turbulent-viscosity models

Significant modelling efforts have been devoted to finding closures for the Reynolds stresses. The

majority of the most popular approaches fall into the class of turbulent-viscosity models, which are

based on the turbulent-viscosity hypothesis [38]. This was introduced in 1877 by Boussinesq and is

mathematically analogous to the stress-rate-of-strain relation for a Newtonian fluid. The turbulent-

viscosity hypothesis can be viewed in two parts. First, there is the intrinsic assumption that, at each

point and time, the Reynolds stress anisotropy tensor ai j is a function of the mean velocity gradients

∂〈Ui〉/∂x j at the same point and time. Second, there is the specific assumption that the relationship

1.3. The closure problem 8

between ai j and ∂〈Ui〉/∂x j is:

ai j = −νT

(
∂〈Ui〉

∂x j
+
∂〈U j〉

∂xi

)
= −2νT 〈S i j〉 (1.14)

where 〈S i j〉 is the mean rate-of-strain tensor and νT is a scalar called turbulent eddy viscosity.The

model given by (30) is called the linear eddy viscosity model (LEVM) because the Reynolds stresses

are a linear function of the mean velocity gradients.The eddy viscosity model is motivated via analogy

with the molecular theory of gases. The turbulent flow is thought of as consisting of multiple interact-

ing eddies. The eddies exchange momentum giving rise to an eddy viscosity. Although convenient,

the eddy viscosity hypothesis is known to be incorrect for many flow fields. The intrinsic assumption

that the Reynolds stresses only depend on local mean velocity gradients is incorrect; turbulence is

a temporally and spatially non-local phenomenon. Moreover, the specific form proposed in analogy

with the molecular theory of gases (30) is also flawed because the turbulence timescales are at odds

with the timescales in the molecular theory of gases. Nevertheless, the eddy viscosity model is ap-

pealing due to its simplicity and ease of numerical implementation. This is the main reason why most

of the popular standard RANS models rely on such a closure [9].

If the turbulent-viscosity hypothesis is accepted as an adequate approximation, all that remains to

determine is an appropriate specification of the turbulent viscosity νT (x, t). In the most popular low

equations RANS models, it is expressed as a function of one or two turbulent quantities.

One of the most commonly used forms for the eddy viscosity is the k−ε model:

νT = Cµ
k2

ε
(1.15)

where:

ε = ν
〈
∂ui

∂x j

∂u j

∂xi

〉
(1.16)

is the dissipation rate of turbulent kinetic energy; it coincides with the dissipation term in the turbulent

kinetic energy transport equation. In general, the model constant Cµ must be calibrated for different

flows. A common choice is Cµ = 0.09 which has been observed in channel flow and in the temporal

mixing layer.

From (1.15), it is clear that, the computation of νT (x, t) requires to determine first the k(x, t) and

ε(x, t) fields. The idea of the k − ε model is to derive them by solving the transport equations for

the two turbulent statistics, along with the solution of the mean Navier-Stokes equations. From the

definition (1.11) of the turbulent kinetic energy, it is possible to derive its exact transport equation

from the istantaneuos Navier-Stokes system of equations. By using the Reynolds decomposition and

1.3. The closure problem 9

by applying the averaging operator 〈·〉, equations (1.3) and (1.4) can be usefully manipulated to obtain:

∂k
∂t

+ 〈U〉 ·∇k =
Dk

Dt
= −∇ ·T’ + P−ε (1.17)

where:

• T ′i = 1
2〈uiu ju j〉+ 〈ui p′〉 − ν ∂k

∂x j
is the turbulent kinetic energy flux, with p′ = p− 〈p〉 being the

pressure fluctuation.

• P = −〈uiu j〉
∂〈Ui〉
∂x j

is the production of turbulent kinetic energy.

• ε is the dissipation rate, defined by equation (1.16).

In Eq.(1.17),any term that is completely determined by the knowns of the RANS equation with the

closure model (30) - namely the mean velocity and pressure fields and the Reynolds stress tensor - is

said to be in closed form. It is clear that the terms ε and −∇ ·T’ are unknowns and, in order to obtain

a closed set of equations, these terms must be modeled. In the standard k− ε model, the turbulent

kinetic energy flux is modelled with a gradient-diffusion hypothesis as:

T′ = −
νT

σk
∇k (1.18)

where the turbulent Prandtl number for kinetic energy is generally taken to be σk = 1. Mathematically,

the term ensures that the resulting model transport equation for k yields smooth solutions and that a

boundary condition can be imposed on k everywhere on the boundary of the solution domain. By

substituting (1.18) into (1.17), one obtains the model transport equation for k:

∂k
∂t

+ 〈U〉 ·∇k =
Dk

Dt
= ∇ ·

(
νT

σk
∇k

)
+ P−ε (1.19)

In order to close the set of equations, it remains to specify a transpor equation for ε. An exact equation

can be derived, but it is not a useful starting point for a model equation. Consequently, rather than

being based on the exact equation, the standard model equation for ε is best viewed as being entirely

empirical. It is:
∂ε

∂t
+ 〈U〉 ·∇ε =

Dε

Dt
= ∇ ·

(
νT

σε
∇ε

)
+Cε1

Pε
k
−Cε2

ε2

k
(1.20)

The standar values of all the model constants in the k−ε equations due to Launder and Sharma are:

Cµ = 0.09 Cε1 = 1.44 Cε2 = 1.92 σk = 1 σε = 1.3 (1.21)

In general, the model constanst should be calibrated case by case for different flows, since the values

(1.21) are obtained from physical insights derived from only a small sets of canonical flows. Alto-

gether, the mean flow equations (1.5) and (1.6), the transport equations for k and ε and the turbulent

1.3. The closure problem 10

viscosity hypothesis (30) represent a closed set of equations that can be solved to obtain the mean

velocity and pressure fields. The k−ε model is called a two - equation model because two additional

transport equations are solved for the two turbulent quantities k and ε The two equation models are

nowadays the most frequently employed in the industry since they represent a good compromise be-

tween the computational effort required and the solution accuracy obtained [31].

It is however clear that, due to all the assumptions and semplifications used in their derivation, the

solution of these equations will not have several limits to its applications.

Historically, many two equation models have been proposed. In most of these, k is taken as one of

the two turbulent statistics to determine νT but there are different choiches for the second variable.

Another class of very popular two-equation models are the k−ω ones, where ω = ε/k is taken as the

second turbulent variables. In its original form due to Wilcox, the following model equation for ω is

solved:
∂ω

∂t
+ 〈U〉 ·∇ω =

Dω

Dt
= ∇ ·

(
νT

σω
∇ω

)
+Cω1

Pω
k
−Cω2ω

2 (1.22)

and the turbulent viscosity is computed analogously to the k−εmodel as (1.15) by simply substituting

ε = ωk. The constants of (1.22) are calibrated analogously to the k−ε. It is important to observe that

(1.22) differs from the ω equation implied by the k−ε model and by the definition of ω = ε/k. Indeed,

even if one calibrates the model constants to make the models identical in some specific cases - such

as homogeneuous turbulence - the equation for ω implied by by the k−ε model:

∂ω

∂t
+ 〈U〉 ·∇ω =

Dω

Dt
= ∇ ·

(
νT

σω
∇ω

)
+ (Cε1−1)

Pω
k
− (Cε2−1)ω2 +

2νT

kσω
∇ω · ∇k (1.23)

contains an additional term compared to (1.22), in particular the last one.

As described by Wilcox (1993), for boundary layers flows the k −ω model yields superior results

compared to k− ε model, both in the treatment of the viscous near-wall region and in its accounting

for the effects of streamwise pressure gradient. However, the treatment of non-turbulent free-stream

boundaries is problematic.

Menter (1994) proposed a two equation model designed to yield the best behavior of the k− ε and

k−ω models. In this model, the transport equation employed for ω is in the form (1.23) but with the

final term multiplied by a blending function. Close to the walls, the bending fucntion is zero (leading

to the standard Wilcox ω equation) whereas remote frome the wall the blending functions tend to 1 (

thus producing the standard ε equation).

In 1994 Spalart and Allmaras introduced a one-equation model developed for aerodynamic applica-

tions, in which a single model transport equation is solved for the turbulent viscosity νT . The model

1.3. The closure problem 11

equation is of the form:
∂νT

∂t
+ 〈U〉 ·∇νT =

DνT

Dt
= ∇ ·

(
νT

σν
∇νT

)
+ S ν (1.24)

where the source term S ν depends on the laminar and turbulen viscosities, on the mean rate or ro-

tation tensor 〈R〉, on the turbulent viscosity gradient and on the distance from the nearest wall. In

applications to the aerodynamic flows for which it is intended, the model has proved quite successful.

However, it has a clear limitation as a general model.

It is indeed important to realize that the choice of the turbulent model to use is always a compromise.

If accuracy were the only criterion in the selection of the model, then the choice would naturally tend

toward models with higher level of description of turbulence and hence with more transport equations

involved. However, cost and ease of use are also important criteria that favor the simpler models.

This may justify why, from an informal survey of single phase RANS model usage based on papers

published in the Journal of Fluids Engineering during 2009 – 2011 it, emerged that over 2/3 of all

simulations reported used some variation of 1 or 2 equation models (S-A, k−ε family and k−ω fam-

ily) [31].

This fact should also motivate the attempt to improve those models at all levels by trying to mitigate

their various sources of errors , yet keeping their simiplicity and advantageous properties.

1.3.2 General eddy-viscosity model

In a two-equation model, the scaling turbulent parameters - such as ε and k, can be used to normalize

the mean rate of strain 〈S〉 and rate of rotation 〈R〉 tensors as suggested by Pope [11]:

〈si j〉 =
1
2

k
ε

(
∂〈Ui〉

∂x j
+
∂〈U j〉

∂xi

)
=

k
ε
〈S i j〉 (1.25)

〈ri j〉 =
1
2

k
ε

(
∂〈Ui〉

∂x j
−
∂〈U j〉

∂xi

)
=

k
ε
〈Ri j〉 (1.26)

If we substitute the expression for nuT (1.15) into the linear eddy viscosity model (30), by using the

definition of normalized anisotropy tensor bi j (1.13) one has:

b = −2Cµ〈s〉 (1.27)

where 〈s〉 is the normalized rate of strain tensor of (1.25). The deficiencies of the kε model and

the eddy viscosity assumption have been well discussed above; namely, the inability to account for

streamline curvature,turbulence history and so on. However, if one accepts the intrinsic assumption

of the turbulent-viscosity hypothesis - namely that the Reynolds stress anisotropy tensor at each time

and space point is determined by mean velocity gradients in the same point and time - a more general

1.3. The closure problem 12

eddy viscosity model than the linear relation (1.27) can be derived.

More clearly, if one accepts the relation:

bi j = bi j(〈s〉, 〈r〉) (1.28)

where b and 〈s〉 are non-dimensional symmetric tensors with zero trace -due to incompressibility-

and 〈r〉 is non-dimensional, antisymmetric and with zero-trace,the most general representation of the

anisotropic Reynolds stresses in terms of the mean rate of strain and rotation rate tensors is:

b =

10∑
n=1

g(n) (λ1, ...λ5)T(n) (1.29)

where T(n) are tensors depending on 〈s〉 and 〈r〉. The form (1.29) guarantees Galilean invariance. If

this were not satisfied, then the fluid behavior would be different for observers in different frames of

reference [18]. In order to achieve the desired invariance, the coefficients of the tensor basis must

depend on the tensor invariants λi.

Owing to the Cayley-Hamilton theorem, the number of independent invariants and linearly inde-

pendent second-order tensors that may be formed from 〈s〉 and 〈r〉 is finite. This means that the

coefficients g(n) in (1.29) are functions of a finite number of invariants. Since a si symmetric and has

zero trace, all the indipendent tensors T(n) must satisfy the same property.

In the general three-dimensional case there are 10 indipendent tensors and 5 invariants. The basis

tensors are known functions of the normalized mean rate of strain and rate of rotation tensors 〈s〉 and

〈r〉 respectively, and are given by:

T(1) =〈s〉

T(2) =〈s〉〈r〉− 〈r〉〈s〉

T(3) =〈s〉2−
1
3

I ·Tr
(
〈s〉2

)
T(4) =〈r〉2−

1
3

I ·Tr
(
〈r〉2

)
T(5) =〈r〉〈s〉2−〈s〉2〈r〉

T(6) =〈r〉2〈s〉+ 〈r〉〈s〉2−
2
3

I ·Tr
(
〈s〉〈r〉2

)
T(7) =〈r〉〈s〉〈r〉2−〈r〉2〈s〉〈r〉

T(8) =〈s〉〈r〉〈s〉2−〈s〉2〈r〉〈s〉

T(9) =〈r〉2〈s〉2−〈s〉2〈r〉2−
2
3

I ·Tr
(
〈s〉2〈r〉2

)
T(10) =〈r〉〈s〉2〈r〉2−〈r〉2〈s〉2〈r〉 (1.30)

1.3. The closure problem 13

where I is the three-dimensional identity tensor and Tr(A) corresponds to the operation of taking the

trace of tensor A. The five invariants are:

λ1 =Tr
(
〈s〉2

)
λ2 =Tr

(
〈r〉2

)
λ3 =Tr

(
〈s〉3

)
λ4 =Tr

(
〈r〉2〈s〉

)
λ5 =Tr

(
〈r〉2〈s〉2

)
(1.31)

Note that the linear eddy viscosity model is recovered when g(1) = Cµ and g(n) = 0 for n > 1.

Finding the coefficients of (1.29) is extremely diffcult for general three-dimensional turbulent flows,with

the aggravation that there is no obvious hierarchy of the basis components [11]. There are additional

shortcomings of the representation of b via (1.29) beyond its obvious complexity. For example, the

Reynolds stresses are not necessarily functions solely of the mean rate of strain and rotation. Build-

ing on this point, the Reynolds stresses are nonlocal objects and representing them as functions of

local quantities is insuffcient. Nevertheless, the representation (1.29) for the eddy viscosity is ap-

pealing because the tensor basis is an integrity bases which guarantees that b will satisfy Galilean

invariance and remain a symmetric, anisotropic tensor. Although (1.29) is very general, it is also

extremely complicated to treat. Pope itself, when proposing formulation (1.29), tuned the coefficients

only for a particular two-dimensional flow case and declared the three-dimensional form is so analit-

ically intractable as to be of no value. Indeed, for two dimensional flows there are only three linearly

independent basis tensors T and two non-zero independent invariants and therefore (1.29) is much

easier to treat.

When in a certain eddy viscosity model g(n) , 0 for n > 1, the model is said to be nonlinear, since it

entails the product of two or more second-order tensors.

Nonlinear eddy viscosity models, although more computationally expensive, have the potential to

represent additional flow physics, such as secondary flows and flows with mean streamline curvature.

Many nonlinear models have been developed, including quadratic eddy viscosity models, yet in all

of them only few -usually one more - of the g(n) coefficients are tuned due to the difficulty of treating

(1.29) analitically.

1.4. Data Driven Turbulence Modeling 14

1.4 Data Driven Turbulence Modeling

The term ’Data driven Turbulence Moddelling’ usually refers to the attempt to deal with the RANS

models closure problem using machine learning techniques. In the following paragraphs, the neural

networks basics will be introduced and it will be explained as well how in this work it was applied to

turbulence modelling.

1.4.1 Neural Networks

Neural networks are a class of machine learning algorithms that have found applications in a wide va-

riety of fields, including computer vision, natural language processing and gaming. Neural networks

have shown to be particularly powerful in dealing with high dimensional have shown to be particularly

powerful in dealing with high-dimensional data and modeling nonlinear and complex relationships

[18]. Mathematically, a neural network defines a mapping f : x→ y where x is the input variable and

y is the output variable. The function f is defined as a composition of many different functions, which

can be represented through a network structure. As an example, Figure 2 depicts a basic depicts a

basic fully-connected feed-forward network that defines a mapping f : R4 → R3 between the input

layer (R4) and the output layer (R3) through two hidden layers.

Figure 2: Diagram of a fully-connected feed-forward network with two hidden layers

1.4. Data Driven Turbulence Modeling 15

The essential idea of the Neural Network can be summarized as follows for the one in Figure 2 :

1. The input layer here represents a 4-dimensional vector input x = [x1, x2, x3, x4]T with each node

in the layer standing for each component of the vector.

2. At the first hidden layer, the input x gets transformed into a 5-dimensional output.

This is done in two steps:

• First, an affine transformation is performed at each node j in the hidden layer:

z(1)
j = b(1)

j +

3∑
i=1

w(1)
i j xi j = 1,2,3,4,5 (1.32)

where b(1)
j is the bias value for node j and w(1)

i j is the weight value associated with the

arrow linking node i in the input layer to node j in the first hidden layer.

• Second, a nonlinear transformation is performed according to a pre-specified activation

function, φ as:

f (1)
j = φ

(
z(1)

j

)
(1.33)

An example of an activation function is the ReLU function φ(z) = max (0,z)

The two equations 1.33 and 1.32 can be represented altogether in vector notation as:

f(1) = φ
(
W(1)x + b(1)

)
(1.34)

where φ operates element-wise and the weight matrix W(1) and the bias vector b(1) of the first

hidden layer are defined by:

W(1) =



w(1)
11 w(1)

12 w(1)
13 w(1)

14 w(1)
15

w(1)
21 w(1)

22 w(1)
23 w(1)

24 w(1)
25

w(1)
31 w(1)

32 w(1)
33 w(1)

34 w(1)
35

w(1)
41 w(1)

42 w(1)
43 w(1)

44 w(1)
45



T

(1.35)

b(1) =
[
b(1)

1 b(1)
2 b(1)

3 b(1)
4 b(1)

5

]T
(1.36)

3. Similarly, the second hidden layer takes f(1) as input and produces a 7-dimensional output

f(2) = φ
(
W(2) f(1) + b(2)

)
(1.37)

1.4. Data Driven Turbulence Modeling 16

4. Finally, the output layer returns the 2-dimensional output of the network:

y = φout
(
W(out) f(2) + b(out)

)
(1.38)

The transformation φout is generally different from the nonlinear activations in the hidden layers.

The choice of φout is guided by the output type and output distribution. For continuous outputs,

φout can simply be the identity in which case the output is a linear combination of the final

hidden layer.

The network just described is an example of a fully-connected, feed-forward network. It is fully-

connected because every node in a hidden layer is connected with all the nodes in the previous and

the following layers. It is feed-forward because the information flows in a forward direction from

input to output; there is no feedback connection where the output of any layer is fed back into itself.

A fully-connected, feed-forward network is the most basic type of neural network and is commonly

referred to as a multilayer perceptron (MLP). Interestingly, it has been mathematically proven that

MLPs are universal function approximators. The complexity of such a neural network increases with

the number of hidden layers (depth of the network) and the number of nodes per hidden layer (width

of the network).

Networks with more than one hidden layer are called deep neural networks.

1.4.2 Training of a Neural Network

The neural network expresses a functional form f NN which is completely defined by a set of weights

and biases denoted by W. This functional form is in general an approximation to the true function

f between the input and the output data. To find the best function approximation, one has to solve

an optimization problem that minimizes the overall difference between f (x) and f NN(x) for all x in

the input dataset to obtain the model parameters. The process of finding the best model parameters

(weights and biases) is called model training or learning. Once the model is trained, its performance is

assessed on the validation dataset. Training and validation datasets are generated from the full dataset

by splitting it into validation and training portions. Often, the split is done with 20% of the dataset

used for validation and 80% used for training.

The overall difference between the true function and the approximation f NN is quantified by a loss

function. Typically, the choice of loss function is dependent on the particular problem. A general

form of the total loss function is:

L(W) =
1
N

N∑
n=1

Ln(W) (1.39)

1.4. Data Driven Turbulence Modeling 17

where N is the total number of data points used for training and Ln is the loss function defined for a

single data point. A commonly used loss function is the mean squared error (MSE) loss:

L(W) =
1
N

N∑
n=1

[(
f (xn)− f NN(xn)

)
·
(

f (xn)− f NN(xn)
)]

(1.40)

The stochastic gradient descent method(SGD) and its variants are used to iteratively find parameters

W that minimize the loss function (1.39). In standard Gradient Descent, the model parameters W are

updated according to:

Wk = Wk−1−η∇L(Wk) = Wk−1−η

 1
N

N∑
n=1

∇Ln(Wk)

 (1.41)

where Wk are the model parameters at step k and η is the learning rate. This step repeats until conver-

gence is achieved to within a user-specified tolerance.

Although neural networks have impressive approximation properties, training them requires the so-

lution of a non-convex optimization problem. The classical gradient descent algorithm (GD) has

significant trouble in finding a global minimum and can often get stuck in a shallow local minimum.

The stochastic gradient descent algorithm provides a way of escaping from local minima in an effort

to get closer to a global minimum. In each iteration of the stochastic gradient decsent, the gradient

∇L(W) is approximated by the gradient at a single data point ∇Ln(W).

Wk = Wk−1−η∇Ln(Wk) (1.42)

The algorithm sweeps through the training data until convergence to a local minimum is achieved.

One full pass over the training data is called an epoch. Note that, generally, the training data is

randomly shuffleed at the beginning of each epoch. This algorithm is stochastic in the sense that the

estimated gradient using a random data point is noisy whereas the gradient calculated on the entire

training data is exact. In practice, Mini-Batch Stochastic Gradient Descent is employed, in which

multiple data points are used in each iteration to approximate the gradient. The batch size M controls

the number of random data points used per iteration. Hence at each iteration the model parameters

are updated as:

Wk = Wk−1−η∇Lm(Wk) = Wk−1−η

 1
M

M∑
n=1

∇Ln(Wk)

 (1.43)

The Mini-Batch Stochastic Gradient Descent is widely used since it combines the advantages of Gra-

dient Descent and Stochastic Gradient Descent mehtods : it proves indeed less noisy than SGD and

is more prone to overcome shallow local minimum compared to GD.

For parameter initialization, in most cases the initial weights are randomly sampled from a uniform

1.4. Data Driven Turbulence Modeling 18

or normal distribution and the initial biases are set to 0.

Besides model parameters, the performance of a neural network changes with the external configura-

tion of the network model and the training process. The external configuration refers to the number

of hidden layers, the number of nodes per layer, the activation functions and the learning rate. These

are called the hyperparameters of a model. The search for the best values of hyperparameters is called

hyperparameter tuning. A grid search can be performed to search combinations of values on a grid

of parameters in the hyperparameter space. A separate validation set that is different from the test set

is used for model evaluation during the tuning process. Alternatively, a Bayesian optimization of the

hyperparameters may also be performed.

1.4.3 The Tensor-Basis neural network

One possible way of applying machine learning techniques to turbulence modeling consists in using

them to determine a suitable function that satisfies (1.28). In case neural networks are chosen, the

most straightforward idea would be to use the nine distinct components of 〈s〉 and 〈r〉 as inputs of the

network for many points of the physical space in order to obtain the corresponding b components in

output. Yet, in this case, it is not trivial for the neural network to learn some known physical properties

of the nondimensional anisotropy tensor, such as the Galileian and rotational invariances. Indeed,

when the coordinate frame is rotated, the input components of the mean strain rate and rotation rate

tensors change and the anisotropy tensor in output is also rotated by the same angle. A ’physically

correct’ neural network, given the same input tensors at different rotation angles of the coordinates

frames, should be able to predict in output the same anisotropy tensor rotated by the same angles. This

result is not trivial to obtain with the intuitive network architecture described above. One possible way

of achieving it would consist in training the network on a set of observations including the same input

and output tensors rotated at different angles. In any case, however, the neural network would have to

learn the invariance properties of the output tensor on herself.

A special network architecture, which will be referred to as the tensor basis neural network (TBNN),

was proposed in 2016 by Julia Ling [9], in order to directly enforce invariance properties on the

output anisotropy tensor. The key was to design a network architecture to match equation (1.29). In

this network, two input layers are present: the invariants input layer and the tensor basis input layer.

The invariants input layer is formed by the five invariants λ1...λ5 and is followed by a series of hidden

layers. The final hidden layer has 10 nodes and represents the coefficients g(n) for n=1,..10 of (1.29).

The tensor basis input layer is composed by the 10 invariant tensors T(n) for n=1,..10 of (1.29). The

1.4. Data Driven Turbulence Modeling 19

merge output layer takes the element-wise products f the final hidden layer and the basis tensors input

layer and sums the results to give the final prediction for b - which is the same as taking the dot

product between the two layers. This innovative architecture ensures that (1.29) is satisfied, thereby

guaranteering the Galileian invariance of the network predictions. Indeed, since b is expressed as

a linear combination of 10 isotropic basis tensors, any tensor b in output that satisfies (1.29) will

automatically satisfy Galileian invariance.

Figure 3: Schematic of the TBNN architecture

In brief, the key idea is to employ the network to predict the coefficients g(n) from the five invariants

λ1...λ5 and to compute b accordingly as a linear combination of the tensor invariants basis derived

from 〈s〉 and 〈r〉, rather then directly deriving b from the two tensors’ components. When Ling, Jones

and Templeton used neural networks to predict the Reynolds stress anisotropy eigenvalues in 2016

[10], they reported a significant performance gain when a rotationally invariant input feature set was

used. These results showed that embedding invariance properties into the machine learning model,

as the network architecture described in Fig.(3) allows, is critical for achieving high performance

predictions.

1.4. Data Driven Turbulence Modeling 20

1.4.4 Description of the proposed approach

The procedure followed by Ling for employing the TBNN to improve Reynolds stresses prediction in

RANS simulations can be summarized as follows:

1. First of all, a neural network with the architecture described in Fig.(3) is trained, validated and

tested on a database of nine different flows for which hight fidelity (DNS or well-resolved LES)

as well as RANS results were available. The RANS data, obtained using the k− ε model with

the the LEVM (30) for the Reynolds stresses, were used as the input to the Neural Newrok.

Therefore, each input observation consisted of the quantities (invariants and tensors basis) de-

rived from 〈s〉 and 〈r〉 at a particular point in the space of the RANS solution. Hence each

RANS simulations provides several observations (the x in input to the network), theoretically

one for each cell at which the numerical solution of the flow field is available. The high-fidelity

data were used to provide the truth labels for the Reynolds stress anisotropy (the y that the net-

work tries to replicate) during model training and evaluation.

In brief, the network is trained to learn a function f : x(x, t)RANS → y(x, t)DNS -where x is the

set of neural network inputs - in this case the 5 invariants and the 10 basis tensors at a particular

point in the space - and y is the output of the network - namely the nondimensional anisotropy

stress tensor b at the corresponding point in space.

2. Once the neural network is trained, a desired RANS simualation is performed using a standard

model - such as the k− ε model withe the LEVM - as one would normally do. The simulation

can either be on a flow similar to one of the nine flows in the training database -which should

theoretically yield better results - or on a completely different class of flow - in order to test the

network model’s generality.

3. When the RANS simulation has converged, the invariants λi and the basis tensors T(n) are com-

puted at each point of the numerical solution using the tensors 〈s〉RANS and 〈r〉RANS computed

from the RANS solution flow fields 〈U〉RANS , kRANS , εRANS . Here the suffix RANS refers to

any quantity in output of the simulation run with the standard RANS model chosen.

4. For each point in the space of the numerical solution, the the invariants λi and the basis tensors

T(n) are fed to the previously trained network. The output will be the predicted anisotropy

tensor bT BNN at the same point. The result will be an anisotropy stress tensor field bT BNN(x, t).

5. Starting from the previous RANS solution, a new RANS simulation is run by imposing the

Reynolds stress anisotropy tensor field bT BNN(x, t) predicted by the TBNN as a constant in the

1.4. Data Driven Turbulence Modeling 21

momentum equations and in the turbulent kinetic energy equation production term. Since the

Reynolds stresses are prescribed in the simulation, there will be no need for a closure model

like the LEVM.

6. The simulation is allowed to re-converge. At the end, the anisotropy stress tensor field will be

the same as the one predicted from the neural network, since bT BNN(x, t) is held constant during

the simulation. However the pressure and velocity fiels will be different from the ones computed

in the first simulation, since the LEVM model has been replaced by an imposed known field

of the anisotropy tensor. It is fair to assume that, if bT BNN(x, t) proves a better approximation

than bRANS (x, t) of the correct anisotropy stress tensor field, then the new pressure and velocity

fields will be closer to the correct ones.

According to Ling’s procedure, the neural network is used as a ’post-processing’ tool to correct the

anisotropy stress tensor field predicted by the standard RANS simulation. Once the corrected field

is computed, it is injected in the RANS equations as a replacement of the LEVM model and the

simulation is allowed to re-converge.

The idea of using machine learning techniques as a post-processing correction tool of a converged

RANS solution has been applied in the majority of data driven turbulence modelling approaches

[9],[10], [14], [15], [13]. From a very general perspective, these approaches differ in the machine

learning method applied, in the quantity to predict - for example it can be the full anisotropy stress

tensor, its eigenvalues, a constant of the standard model to tune.. - or on the inputs of the machine

learning model. This entails that, since the neural network will be fed with quantities computed from

a RANS simulation, it has to be trained on a database of RANS solutions.

The ’post-processing’ approach, however, may present two key issues:

• Since the neural network is trained with quantities - the 5 invariants and the 10 basis tensors in

the case of Ling approach - derived from a RANS simulation performed with a certain model

X - such as k−ε, k−ω, S-A and so on - theoretically the same network could not be applied to

correct a simulation performed with a different model Y. Indeed, due to the inaccuracies of these

models, the result of a RANS solution will be generally different when using different models,

even though in most cases the difference is not huge. However, if the network is trained to learn

a function f : x(x, t)RANS ,X → y(x, t)DNS - where X is the RANS model used to compute the

solution of the flows in the training database - it is not clear why the same function should yield

good performances when correcting the fields computed with a different RANS model Y. This

1.4. Data Driven Turbulence Modeling 22

entails that , theoretically, a different neural network should be trained for each RANS model

and for each of its variants.

• In the case of Ling’s article, a neural network is trained to learn a function f : Q
(
〈s〉RANS , 〈r〉RANS

)
→

b(x, t)DNS where Q is the set of procedures to transfrom 〈s〉RANS and 〈r〉RANS into the correct

inputs of the neural network. This attempts to reproduce the function bi j = bi j(〈s〉, 〈r〉) whose

validity is assumed in every eddy-viscosity model. However, this realation holds for the ’true’

or ’correct’ fields, like the ones computed with an high-fidelity DNS simulation.

In other words, relation (1.28) could be rewritten as : bDNS
i j = f

(
〈s〉DNS , 〈r〉)DNS

)
and this

relations, despite the limitations of its validity, has been taken as the starting point for the de-

veloping of the most popular RANS closure models. However, there is no physical hint that the

nondimensional stress anisotropy tensor should depend on the velocity gradients computed via

a RANS model which, in most cases, differ from the ’real’ DNS ones. Hence a neural network

trained to learn a function f : Q
(
〈s〉RANS , 〈r〉RANS

)
→ b(x, t)DNS will not only have to learn how

to relate b to velocity gradients but also how to correct the RANS inputs.

In this work, a different approach is followed in the attempt to overcome the previous two issues. It

can be summarized as follows:

1. First of all, a tensor basis neural network with the same architecture of the one described by

Ling, will be validated and tested on a database of eight different flows for which hight fidelity

data(DNS or well-resolved LES) are available. The DNS 〈s〉 and 〈r〉 data -not the RANS ones-

will be used as the input to the Neural Network for each cell at which the DNS solution of the

flow field is available. The high-fidelity data will again be used to provide the truth labels for

the Reynolds stress anisotropy (the y that the network tries to replicate) during model training

and evaluation.

Hence, the network will be trained to learn a function f : x(x, t)DNS → y(x, t)DNS -where x is the

set of neural network inputs - in this case the 5 invariants and the 10 basis tensors at a particular

point in the space - and y is the output of the network - namely the nondimensional anisotropy

stress tensor b at the corresponding point in space.

2. A RANS simulation with a chosen model - for example the k − ε one - will be run, but the

LEVM closure (30) will be replaced by the pre-trained neural network. Hence, instead of using

the network as a post-processing tool called at the end of a RANS simulation to correct the

obtained anisotropy stress tensor field, it will be called at each iteration of the CFD solver to

1.4. Data Driven Turbulence Modeling 23

relate b to velocity gradients. Thererefore, theoretically, at the end of the simulation the velocity

gradients and the anisotropy stress tensor will satisfy the network function learned from DNS

data. A scheme of the idea is described in the following Fig.(4b) for a general k− ε explicit

RANS solver.

Figure 4: Comparison of a standard RANS solver with the proposed approach

It is interesting to notice that this approach addresses both the issues pointed above. Firstly, the

neural network is trained to learn a relationship between the ’true’ velocity gradients and the ’true’

anisotropy stress tensor f : Q
(
〈s〉DNS , 〈r〉DNS

)
→ b(x, t)DNS as (1.29) and therefore it is trained to

replicate exactly (1.29). Secondly, since the network is trained using DNS data, it could theoretically

be used in all RANS models as a replacement to the LEVM. As a consequence, there will be no need

to train a different neural network for each different RANS method and for each of its variants, thus

improving considerably the generality of the method.

Lastly, it is crucial to notice that the replacement of the LEVM with the neural network would not

entail a significant increase in the computational power when performing the simulation. Indeed,

1.4. Data Driven Turbulence Modeling 24

the prediction time of the trained-network is negligible and comparable to the application of the

LEVM - it mostly consists of matrix multiplications in cascade as explained in (1.34)- and also the

additional task of computing the inputs of the network from the mean strain rate and rotation rate

tensors basically consist a series of matrices multiplications. Another interesting aspect to keep into

consideration is that the simulation procedure described in Fig.(4b) could be started from a previously

converged RANS solution to speed the convergence of the method.

Figure 5: Standard data driven turbulence modelling approach (a) and proposed method (b)

Chapter 2

IMPLEMENTATION OF THE METHOD

2.1 Development of a RANS CFD Solver

In order to test the data driven turbulence modelling method described in the previous section, it is

firstly necessary to develop a standard RANS solver. Once validated, it will be possible to modify

the solver to embed the pre-trained neural network as a replacement of the LEVM. Hence, in the

following sections, a detailed explanation of the steps employed to code the solver will be given. The

goal of the code it to solve the set of RANS partial differential equations governing the evolution of

turbulent flows, which will be later listed.

When writing a CFD solver, three main approaches are possible: finite difference method (FDM),

finite elements method (FEM) and finite volume method (FVM) [37]. They all consists of different

methods to solve a set of partial or ordinary differential equations on a discretized geometry of the

chosen problem. Here, the finite volume method is chosen. The choice is motivated by the fact that

the solver will be applied to cartesian, structured 2D geometries, for which the FVM proves to be the

easisest one to implement. With the term structured mesh or structured grid , we refer to discretization

of the physical space of the problem into geometrical entities characterized by regular connectivity,

so that the inner nodes have the same number of elements around them and the mesh geometry can

always be mapped into an ’equivalent’ rectanguar one. This is shown in the following Fig(6).The

possible element choices are quadrilateral in 2D and hexahedra in 3D.

In the FVM, the values of the unknown variables are calculated at discrete places on a meshed geom-

etry. ”Finite volume” refers to the small volume surrounding each node point on a mesh. In the finite

volume method, volume integrals in a partial differential equation that contain a divergence term are

converted to surface integrals, using the divergence theorem. These terms are then evaluated as fluxes

25

2.1. Development of a RANS CFD Solver 26

Figure 6: Structured meshes

at the surfaces of each finite volume. Because the flux entering a given volume is identical to that

leaving the adjacent volume, these methods are conservative. Another advantage of the finite volume

method is that it is easily formulated to allow for unstructured meshes. The method is used in many

computational fluid dynamics packages [39].

As for the RANS turbulence model, a k − ε with LEVM model is chosen. Hence, along with the

average Navier-Stokes equations, two additional partial differental transport equations - for ε and k -

will have to be solved. One of the main issues with the k− ε family of models is that, when used for

wall-bounded turbulent flows- they are not valid all the way to the pyhisical walls. To work around

this, three possible approaches can be followed [38]

• Wall functions approach : One approach consists in modelling the boundary layer using the

renowned log-law correlation between the u component of the mean velocity field and the

viscous distance y+ from the wall- later defined - in the first cell adjacent to the wall. In practice,

the RANS equations are not solved within the buffer layer and viscous sublayers - the regions

of the flow closest to the wall - , yet rather a known relation is directly enforced in the first cell

of the mesh covering this whole near-wall region. This approach is suitable for cases where

wall-bounded effects are secondary, or the flow undergoes geometry-induced separation [29].

2.1. Development of a RANS CFD Solver 27

The benefit is that wall functions allow the use of a relatively coarse mesh in the near-wall

region.

• Enhanced wall treatments This option combines a blended law-of-the wall and a two-layer

zonal model. This case involves the full numerical resolution of the boundary layer in the vis-

cous sublayer and in the buffer layer [30]. This approach is suitable for low-Reynolds flows or

for flows in which wall-bounded effects are of high priority (adverse pressure gradients, aero-

dynamic drag, pressure drop, heat transfer, etc.) since it provides a more accurate description

of the near wall region. This method requires a fine-near wall mesh capable of resolving the

viscous sub-layer.

• low-Reynolds models: As in the Enhanced wall treatmen approach, the boundary layer is nu-

merically resolved up to the viscous sublayer. However, instead of using a two-layer zonal

model, low-Reynolds models make use of different blending functions applied to the standard

RANS equations. Those functions ensure that, far from the wall, the low-Re model is equivalent

to the standard RANS model while ,near the wall, the solution of the blended equations leads

to the correct wall relations [26]. This method as well requires a fine-near wall mesh capable

of resolving the viscous sub-layer.

An example of the typical grid resolutions required by the different approaches is shown in the fol-

lowing Fig.(7):

Figure 7: Grid resolutions for wall-functions and near-wall modeling approaches

Quantitatively, when a wall-functions approach is chosen the first cell adjacent to the wall must be

placed at y+ > 30 - namely beyond the buffer layer - , whereas when a wall-resolved method is used

2.1. Development of a RANS CFD Solver 28

the first cell must be placed well within the viscous sublayer - usually at y+ ' 1. Since the flows

for which the RANS solver will be used are at relatively small Reynolds number, a wall-functions

approach would impose the definition of an excessively big first cell - since y+ = 30 would be a non

negligible fraction of the total size of the flow geometry. Therefore, a low-Reynolds turbulence model

will be used; in particular the Abe-Kondoh-Nagano model [23] has been chosen since it yields good

results in the case of the channel flow, to whom the RANS solver will be applied [27],[24].

Another relevant aspect to mention is that the RANS solver will applied to steady turbulent flows,

namely to flows in which the quantities do not vary with time. Notwithstanding, the solver will be

built to solve the unsteady RANS equations - where the term ∂
∂t is present.

Indeed, a common practice for CFD steady solvers consists in solving the flow in time and in taking

the solution at steady state - when the temporal change of the variables falls below a certain treshold

value. This approach is analogue to the one that will be used to solve the discrete Poisson Equation

for the effective pressure, as explained in the following sections.

2.1.1 Nondimensionalization of the governing equations

For a 2D RANS Abe-Kondoh-Nagano low-Re k−ε model solver for incompressible flows, the set of

governing equations in conservative form to solve is the following [37]:

∂u
∂x

+
∂v
∂y

= 0

∂u
∂t

+
∂(u2)
∂x

+
∂(uv)
∂y

+
1
ρ

∂p
∂x

+
2
3
∂k
∂x

= ν

(
∂2u
∂x2 +

∂2u
∂y2

)
−

(
∂axx

∂x
+
∂axy

∂y

)
∂v
∂t

+
∂(uv)
∂x

+
∂(v2)
∂y

+
1
ρ

∂p
∂y

+
2
3
∂k
∂y

= ν

(
∂2v
∂x2 +

∂2v
∂y2

)
−

(
∂axy

∂x
+
∂ayy

∂y

)
∂k
∂t

+
∂(uk)
∂x

+
∂(vk)
∂y

=
∂

∂x

[(
ν+

νT

σk

)
∂k
∂x

]
+
∂

∂y

[(
ν+

νT

σk

)
∂k
∂y

]
+ P−ε

∂ε

∂t
+
∂(uε)
∂x

+
∂(vε)
∂y

=
∂

∂x

[(
ν+

νT

σε

)
∂ε

∂x

]
+
∂

∂y

[(
ν+

νT

σε

)
∂ε

∂y

]
+ f1Cε1

Pε
k
− f2Cε2

ε2

k

axx = −2Cµ fµ
k2

ε

∂u
∂x

axy = −Cµ fµ
k2

ε

(
∂u
∂y

+
∂v
∂x

)
ayy = −2Cµ fµ

k2

ε

∂v
∂y

(2.1)

where:

2.1. Development of a RANS CFD Solver 29

• The first equation corresponds to the conservation of mass, or continuity equation.

• The second and third equations correspond respectively to the x and y momentum equations.

• The fourth equation corresponds to the transport equation for the turbulent kinetic energy k.

• The fifth equation corresponds to the transport equation for the turbulent kinetic energy dissi-

pation rate ε.

• The last three equations correspond to the Linear Eddy Viscosity Model applied for each non-

zero component of the anisotropy stress tensor.

• The correction factors of the Abe-Kondoh-Nagano low-Re k−ε model are [25]:

f1 = 1 f2 =

1− e
−

yk

3.1


1−0.3 e

−

 RT

6.5

2 fµ =

1− e
−

yk

14


2 1 +

5

Re3/4
T

e
−

ReT

200

2
with:

ReT =
k2

νε
yk =

yε1/4

ν3/4

where y is the distance to the nearest wall.

• The model constants are [25]:

Cµ = 0.09 Cε1 = 1.5 Cε2 = 1.9 σk = 1.4 σε = 1.4

• The terms u and v in (2.1) correspond the x and y component of the mean flow field 〈U〉. The

averaging operator 〈〉 has been omitted for the sake of brevity in all the equations.

Now,the system (2.1) is expressed in dimensional form and therefore the solution depends on the

specific problem parameters - like the fluid viscosity or the geometry size . In order to obtain a

general form for the solution of the flow, it is necessary to nondimensionalize the variables of the

equations in (2.1).

As a consequence, the following dimensionless parameters are introduced:

u∗ =
u
U

v∗ =
v
U

p∗ =
p

ρU2 k∗ =
k

U2 a∗i j =
ai j

U2 P∗ =
PL
U3

x∗ =
x
L

y∗ =
y
L

t∗ = t
U
L

ε∗ =
εL
U3 ν∗T =

νT

ν

(2.2)

2.1. Development of a RANS CFD Solver 30

where L is a characteristic length and U is a characteristic velocity of the specific problem considered.

By substituting (2.2) in the continuity equation of (2.1) one obtains:

∂u∗

∂x∗
U
L

+
∂v∗

∂y∗
U
L

= 0

from which it follows immediately:
∂u∗

∂x∗
+
∂v∗

∂y∗
= 0 (2.3)

which corresponds to the non-dimensional continuity equation.

Instead, by substituting (2.2) in the momentum equation along x of (2.1) one obtains:

U2

L
∂u∗

∂t∗
+

U2

L
∂(u∗2)
∂x∗

+
U2

L
∂(u∗v∗)
∂y∗

+
ρU2

L
1
ρ

∂p∗

∂x∗
+

2
3

U2

L
∂k∗

∂x∗
= ν

(
U
L2
∂2u∗

∂x∗2
+

U
L2
∂2u∗

∂y∗2

)
−

U2

L

(
∂a∗xx

∂x
+
∂a∗xy

∂y

)
(2.4)

Recalling that the Reynolds number is defined as:

Re =
UL
ν

(2.5)

if we divide (2.4) by U2/L and substitute the expression (2.5) we obtain:

∂u∗

∂t∗
+
∂(u∗2)
∂x∗

+
∂(u∗v∗)
∂y∗

+
∂p∗

∂x∗
+

2
3
∂k∗

∂x∗
=

1
Re

(
∂2u∗

∂x∗2
+
∂2u∗

∂y∗2

)
−

(
∂a∗xx

∂x
+
∂a∗xy

∂y

)
(2.6)

which corresponds to the non-dimensional momentum equation along x.

An analogous method is followed in order to nondimensionalize the momentum equation along y.

Indeed, by substituting (2.2) in the y momentum equation of (2.1) one obtains:

U2

L
∂v∗

∂t∗
+

U2

L
∂(u∗v∗)
∂x∗

+
U2

L
∂(v∗2)
∂y∗

+
ρU2

L
1
ρ

∂p∗

∂y∗
+

2
3

U2

L
∂k∗

∂y∗
= ν

(
U
L2
∂2v∗

∂x∗2
+

U
L2
∂2v∗

∂y∗2

)
−

U2

L

(
∂a∗xy

∂x
+
∂a∗yy

∂y

)
(2.7)

By diving (2.7) by U2/L and substituting the expression (2.5) we obtain:

∂v∗

∂t∗
+
∂(u∗v∗)
∂x∗

+
∂(v∗2)
∂y∗

+
∂p∗

∂y∗
+

2
3
∂k∗

∂y∗
=

1
Re

(
∂2v∗

∂x∗2
+
∂2v∗

∂y∗2

)
−

(
∂a∗xy

∂x
+
∂a∗yy

∂y

)
(2.8)

which corresponds to the non-dimensional Momentum Equation along y.

Now, if we substitute (2.2) in the k transport equation of (2.1) one obtains:

U3

L
∂k∗

∂t∗
+

U3

L
∂(u∗k∗)
∂x∗

+
U3

L
∂(v∗k∗)
∂y∗

=
νU2

L2
∂

∂x

[(
1 +

ν∗T
σk

)
∂k∗

∂x∗

]
+
νU2

L2
∂

∂y

[(
1 +

ν∗T
σk

)
∂k∗

∂y∗

]
+

U3

L
(P∗−ε∗)

(2.9)

If we divide (2.9) by U3/L and substitute the expression (2.5) we obtain:

∂k∗

∂t∗
+
∂(u∗k∗)
∂x∗

+
∂(v∗k∗)
∂y∗

=
1

Re
∂

∂x

[(
1 +

ν∗T
σk

)
∂k∗

∂x∗

]
+

1
Re

∂

∂y

[(
1 +

ν∗T
σk

)
∂k∗

∂y∗

]
+ P∗−ε∗ (2.10)

2.1. Development of a RANS CFD Solver 31

An analogous method is followed in to nondimensionalize the ε transport equation in (2.1). Indeed,

by substituting (2.2) in ε transport equation of (2.1) and dividing by U4/L2 one obtains:

∂ε∗

∂t∗
+
∂(u∗ε∗)
∂x∗

+
∂(v∗ε∗)
∂y∗

=
1

Re
∂

∂x

[(
1 +

ν∗T
σε

)
∂ε∗

∂x∗

]
+

1
Re

∂

∂y

[(
1 +

ν∗T
σε

)
∂ε∗

∂y∗

]
+Cε1

P∗ε∗

k∗
−Cε2

ε∗2

k∗
(2.11)

Finally, by by substituting (2.2) in the LEVM model of (2.1) one obtains:

U2a∗i j = −Cµ
k∗2

ε∗
U4

U3/L

(
∂ui

∂x j
+
∂u j

∂xi

)
U
L

(2.12)

and by dividing (2.12) by U2 we get to:

a∗i j = −Cµ
k∗2

ε∗

(
∂ui

∂x j
+
∂u j

∂xi

)
(2.13)

The last step consists in expressing ReT and yk of the Abe-Kondoh-Nagano model as a function of the

nondimensional variables:

ReT =
1
ν

k2∗

ε∗
U4

U3/L
= Re

k2∗

ε∗
yk∗ =

yk

L
=

(
y∗ε∗1/4

)
L
(
U3

L

)1/4

ν3/4 =
(
y∗ε∗1/4

)
Re3/4

Hence, the conservative nondimensional form of the governing equations of the 2D RANS Abe-

Kondoh-Nagano low-Re k−ε model are:

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0

∂u∗

∂t∗
+
∂(u∗2)
∂x∗

+
∂(u∗v∗)
∂y∗

+
∂p∗

∂x∗
+

2
3
∂k∗

∂x∗
=

1
Re

(
∂2u∗

∂x∗2
+
∂2u∗

∂y∗2

)
−

(
∂a∗xx

∂x
+
∂a∗xy

∂y

)
∂v∗

∂t∗
+
∂(u∗v∗)
∂x∗

+
∂(v∗2)
∂y∗

+
∂p∗

∂y∗
+

2
3
∂k∗

∂y∗
=

1
Re

(
∂2v∗

∂x∗2
+
∂2v∗

∂y∗2

)
−

(
∂a∗xy

∂x
+
∂a∗yy

∂y

)
∂k∗

∂t∗
+
∂(u∗k∗)
∂x∗

+
∂(v∗k∗)
∂y∗

=
1

Re
∂

∂x

[(
1 +

ν∗T
σk

)
∂k∗

∂x∗

]
+

1
Re

∂

∂y

[(
1 +

ν∗T
σk

)
∂k∗

∂y∗

]
+ P∗−ε∗

∂ε∗

∂t∗
+
∂(u∗ε∗)
∂x∗

+
∂(v∗ε∗)
∂y∗

=
1

Re
∂

∂x

[(
1 +

ν∗T
σε

)
∂ε∗

∂x∗

]
+

1
Re

∂

∂y

[(
1 +

ν∗T
σε

)
∂ε∗

∂y∗

]
+Cε1

P∗ε∗

k∗
−Cε2

ε∗2

k∗

a∗xx = −2Cµ fµ
k∗2

ε∗
∂u∗

∂x∗

a∗xy = −Cµ fµ
k∗2

ε∗

(
∂u∗

∂y∗
+
∂v∗

∂x∗

)
a∗yy = −2Cµ fµ

k∗2

ε∗
∂v∗

∂y∗
(2.14)

2.1. Development of a RANS CFD Solver 32

2.1.2 The Marker and Cell (MAC) method

In order to solve numerically the equations governing the Initial and Boundary value problem de-

scribed above, the unsteady explicit MAC (Marker in Cell) method is used. The method was firstly

introduced by Harlow and Welch in in order to numerically solve the time-dependent flow of an in-

compressible liquid whose boundary is partly confined and partly free [21].

A staggered arrangment is chosen for the computation of the variables on the grid [37]. In this grid’s

arrangment the pressure,the velocity components and the turbulence quantities are not stored on the

same grid points: in this case, the pressure is computed at the center of the cells, v is computed in

correspondence of the upper edge of the cell, u in correspondece of the right edge and the turbulence

quantities, -such as k, ε- are stored at the cell vertex [28]. The production terms in k and ε transport

equations are evaluated at the same locations of k, ε, namely the cell vertices, where the strain and

rotation rate tensors are computed and the eddy viscosity calculated from k and ε at these cell vertices

are directly used to calculate the turbulent stress tensor. In this way, the Navier-Stokes equations and

the k and ε transport equations are coupled as closely as possible, as mentioned in [28].

Whenever the value of a variable is required in a grid location different from the one where the vari-

able is computed and stored, simple interpolation is used as it will be later shown. The main advantage

of such an arrangment is that it helps avoiding some types of convergence and oscillation problems

in the velocity and pressure fiels [39] and guarantees a strong coupling between the Navier-Stokes

equations and the k and ε transport equations [28].

In the following, when referring to quantities computed at the edges of the Control Volumes, frac-

tional indices are used. Hower, when writing the code, the velocity and turbulent quantities’ values

will be stored with indices corresponding to the poisition of the center of the cell. Since when plotting

the solution both the pressure and velocity field must be referred to the same grid locations, the value

of u and v at the center of each cell is computed by interpolation between consecutive edges. The

following Fig. (8) shows how the staggered arrangment is implemented.

In the following, we will refer only to nondimensional quantities for pressure and velocity. In order

to ease the writing, the superscript * will be omitted.

In the following discussion, we will refer to the column index as i and to the row index as j. The center

of each cell corresponds to an indices pair (i,j), so that we will refer to the pressure at the center of the

(j,i) cell as p ji. For the velocity components and the turbulent quantities, the fractional index notation

will nbe used, as shown in Fig (8a). The MAC method is explicit [20] this means that the velocity

field at time tn+1 is a function of variables already computed at time tn. The method makes use of

2.1. Development of a RANS CFD Solver 33

Figure 8: Staggered Arrangment

finite volumes approximations applied to the full Navier-Stokes equations and the numerical scheme

is Forward-in-Time Central-in-Space [21].

2.1.3 Discretization of the equations

In this section, the Navier-stokes momentum equations and the k and ε transport equations are dis-

cretized according to the Finite Volume Method. The discretization procedure will be carried out

on cartesian, non uniform grid. This means that the grid is composed of adjacent rectangles which

may have differnt dimesions ∆x and ∆y. For the continuity equation, a special treatment is required.

This will be examined in the following section. Before starting with the discretization, it is useful to

remind the expression for the centered discretizaion of the first derivative on a non-uniform grid:(
∂φ

∂x

)
i
' φi+1

∆xi

(∆xi +∆xi+1)(∆xi)
+φi

∆xi+1−∆xi

∆xi+1∆xi
−φi−1

∆xi+1

(∆xi +∆xi+1)(∆xi+1)
(2.15)

where ∆xi = xi− xi−1 , ∆xi+1 = xi+1− xi and φi corresponds to the numerical approximation of variable

φ at position xi of the discretization grid, as shown in the following Fig (9)

In case of uniform grid ∆xi = ∆xi+1 = ∆x, equation (2.16) is reduced to :(
∂φ

∂x

)
i
'
φi+1−φi−1

2∆x
(2.16)

Another important aspect to explain is the linear interpolation. Indeed, since a staggered arrangment

is used, wit is poissible that the value of a variable is needed at a position in the grid at which it

is not defined. For example, it may happen that the discreteization procedure requires the value of

velocity components a the cell centere, whereas they are defined at the cell faces. In all these cases, a

2.1. Development of a RANS CFD Solver 34

Figure 9: Centered approximation of the first derivative

linear interpolation will be applied to determine the value of the variable at the desired position. For

example,referring to Fig (9), if we imagine that the variable φ is defined only at the grid points xi1 and

xi+1 yet its value is needed at position xi, the value φi can be approximated as:

φi ' φi+1
∆xi

(∆xi +∆xi+1)
+φi−1

∆xi+1

(∆xi +∆xi+1)
(2.17)

Lastly, a relevant aspect to notice is that, due to the staggered arrangment, the control volumes of the

different variables are generally different. This will be shown in the following sections.

2.1.4 X momentum equation

The nondimensional Navier-Stokes momentum equation in x direction, already derived in (2.14), is :

∂u
∂t

+
∂(u2)
∂x

+
∂(uv)
∂y

+
∂p
∂x

+
2
3
∂k
∂x

=
1

Re

(
∂2u
∂x2 +

∂2u
∂y2

)
−

(
∂axx

∂x
+
∂axy

∂y

)
(2.18)

where, in order to ease the writing, the superscript * has been omitted.

Integrating (2.18) over the u-control volume shown in Fig.(10) one has [20]:

"
∂u
∂t

dxdy+

"
∂

∂x

(
u2 + axx−

1
Re

∂u
∂x

)
dxdy+

"
∂

∂y

(
uv + axy−

1
Re

∂u
∂y

)
dxdy+

"
∂pe f f

∂x
dxdy = 0

(2.19)

where we have substituted pe f f = p + 2k/3.

Application of the Green theorem to the above expression and use of MAC method for the time

discretization leads to:

∆x∆y
∆t

(un+1
j,i+ 1

2
−un) +

(
Ex

j,i+1−Ex
j,i

)
∆y +

(
Fx

j+ 1
2 ,i+

1
2
−Fx

j− 1
2 ,i+

1
2

)
∆x +

(
pn+1

e f f , j,i+1− pn+1
e f f , j,i

)
∆y = 0 (2.20)

2.1. Development of a RANS CFD Solver 35

Figure 10: Control volume for the x-momentum equation

or equivalenty :

(un+1
j,i+ 1

2
−un

j,i+ 1
2
)

∆t
+

(
Ex

j,i+1−Ex
j,i

)
∆x

+

(
Fx

j+ 1
2 ,i+

1
2
−Fx

j− 1
2 ,i+

1
2

)
∆y

+

(
pn+1

e f f , j,i+1− pn+1
e f f , j,i

)
∆x

= 0 (2.21)

where ∆x = x j,i+1− x j,i and ∆y = y j+ 1
2 ,i+

1
2
−y j− 1

2 ,i+
1
2

are the dimensions of the (j,i) x-momentum Control

Volume , ∆t = tn+1− tn, Ex and Fx are the axial and transversal fluxes of x-momentum defined as:

Ex = u2 + axx−
1

Re
∂u
∂x

Fx = uv + axy−
1

Re
∂u
∂y

(2.22)

2.1. Development of a RANS CFD Solver 36

whose discretized forms for (2.20) can be obtained using linear interpolations (2.17) and the expres-

sion for the first derivative (2.16):

Ex
j,i+1 =

un
j,i+ 3

2
+ un

j,i+ 1
2

2


2

+

an
xx, j+ 1

2 ,i+
1
2

+ an
xx, j− 1

2 ,i+
1
2

+ an
xx, j+ 1

2 ,i+
3
2

+ an
xx, j− 1

2 ,i+
3
2

4

− 1
Re

un
j,i+ 3

2
−un

j,i+ 1
2

x j,i+ 3
2
− x j,i+ 1

2


Ex

j,i =

un
j,i+ 1

2
+ un

j,i− 1
2

2


2

+

an
xx, j+ 1

2 ,i+
1
2

+ an
xx, j− 1

2 ,i+
1
2

+ an
xx, j+ 1

2 ,i−
1
2

+ an
xx, j− 1

2 ,i−
1
2

4

− 1
Re

un
j,i+ 1

2
−un

j,i− 1
2

x j,i+ 1
2
− x j,i− 1

2


Fx

j+ 1
2 ,i+

1
2

=


un

j+1,i+ 1
2

(
y j+ 1

2 ,i+
1
2
− y j,i+ 1

2

)
+ un

j,i+ 1
2

(
y j+1,i+ 1

2
− y j+ 1

2 ,i+
1
2

)
y j+1,i+ 1

2
− y j,i+ 1

2

 · ...
.. ·


vn

j+ 1
2 ,i+1

(
x j+ 1

2 ,i+
1
2
− x j+ 1

2 ,i

)
+ vn

j+ 1
2 ,i

(
x j+ 1

2 ,i+1− x j+ 1
2 ,i+

1
2

)
x j+ 1

2 ,i+1− x j+ 1
2 ,i

− 1
Re

un
j+1,i+ 1

2
−un

j,i+ 1
2

y j+1,i+ 1
2
− y j,i+ 1

2

+ an
xy, j+ 1

2 ,i+
1
2

Fx
j− 1

2 ,i+
1
2

=


un

j,i+ 1
2

(
y j− 1

2 ,i+
1
2
− y j−1,i+ 1

2

)
+ un

j−1,i+ 1
2

(
y j,i+ 1

2
− y j− 1

2 ,i+
1
2

)
y j,i+ 1

2
− y j−1,i+ 1

2

 · ...
.. ·


vn

j− 1
2 ,i+1

(
x j− 1

2 ,i+
1
2
− x j− 1

2 ,i

)
+ vn

j− 1
2 ,i

(
x j− 1

2 ,i+1− x j− 1
2 ,i+

1
2

)
x j− 1

2 ,i+1− x j− 1
2 ,i

− 1
Re

un
j,i+ 1

2
−un

j−1,i+ 1
2

y j,i+ 1
2
− y j−1,i+ 1

2

+ an
xy, j− 1

2 ,i+
1
2

2.1.5 Y momentum equation

The nondimensional Navier-Stokes momentum equation in y direction, already derived in (2.14), is :

∂v
∂t

+
∂(uv)
∂x

+
∂(v2)
∂y

+
∂p
∂y

+
2
3
∂k
∂y

=
1

Re

(
∂2v
∂x2 +

∂2v
∂y2

)
−

(
∂axy

∂x
+
∂ayy

∂y

)
(2.23)

where, in order to ease the writing, the superscript * has been omitted.

Integrating (2.23) over the v-control volume shown in Fig.(11) one has [20]:

"
∂v
∂t

dxdy+

"
∂

∂x

(
uv + axy−

1
Re

∂v
∂x

)
dxdy+

"
∂

∂y

(
v2 + ayy−

1
Re

∂v
∂y

)
dxdy+

"
∂pe f f

∂y
dxdy = 0

(2.24)

where we have substituted pe f f = p + 2k/3.

Application of the Green theorem to the above expression and use of MAC method for the time

2.1. Development of a RANS CFD Solver 37

Figure 11: Control volume for the y-momentum equation

discretization leads to:

∆x∆y
∆t

(vn+1
j+ 1

2 ,i
− vn

j+ 1
2 ,i

) +
(
Ey

j,i+1−Ey
j,i

)
∆y +

(
Fy

j+ 1
2 ,i+

1
2
−Fy

j− 1
2 ,i+

1
2

)
∆x +

(
pn+1

e f f , j+1,i− pn+1
e f f , j,i

)
∆x = 0

(2.25)

or equivalenty :

(vn+1
j+ 1

2 ,i
− vn

j+ 1
2 ,i

)

∆t
+

(
Ex

j,i+1−Ex
j,i

)
∆x

+

(
Fx

j+ 1
2 ,i+

1
2
−Fx

j− 1
2 ,i+

1
2

)
∆y

+

(
pn+1

e f f , j+1,i− pn+1
e f f , j,i

)
∆y

= 0 (2.26)

where ∆x = x j+ 1
2 ,i+

1
2
− x j+ 1

2 ,i−
1
2

and ∆y = y j+1,i−y j,i are the x and y dimension of the (j,i) y-momentum

Control Volume ,∆t = tn+1− tn, Ey and Fy are the axial and transversal fluxes of y-momentum defined

as:

Ey = uv + axy−
1

Re
∂v
∂x

Fy = v2 + ayy−
1

Re
∂v
∂y

(2.27)

2.1. Development of a RANS CFD Solver 38

whose discretized forms for (2.25) can be obtained using linear interpolations (2.17) and the expres-

sion for the first derivative (2.16):

Fy
j+1,i =

vn
j+ 3

2 ,i
+ vn

j+ 1
2 ,i

2


2

+

an
yy, j+ 1

2 ,i+
1
2

+ an
yy, j+ 1

2 ,i−
1
2

+ an
yy, j+ 3

2 ,i+
1
2

+ an
yy, j+ 3

2 ,i−
1
2

4

− 1
Re

 vn
j+ 3

2 ,i
− vn

j+ 1
2 ,i

y j+ 3
2 ,i
− y j+ 1

2
, i


Fy

j,i =

vn
j+ 1

2 ,i
+ vn

j− 1
2 ,i

2


2

+

an
yy, j− 1

2 ,i+
1
2

+ an
yy, j− 1

2 ,i−
1
2

+ an
yy, j+ 1

2 ,i+
1
2

+ an
yy, j+ 1

2 ,i−
1
2

4

− 1
Re

 vn
j+ 1

2 ,i
− vn

j− 1
2 ,i

y j+ 1
2 ,i
− y j− 1

2
, i


Ey

j+ 1
2 ,i+

1
2

=


un

j+1,i+ 1
2

(
y j+ 1

2 ,i+
1
2
− y j,i+ 1

2

)
+ un

j,i+ 1
2

(
y j+1,i+ 1

2
− y j+ 1

2 ,i+
1
2

)
y j+1,i+ 1

2
− y j,i+ 1

2

 · ...
.. ·


vn

j+ 1
2 ,i+1

(
x j+ 1

2 ,i+
1
2
− x j+ 1

2 ,i

)
+ vn

j+ 1
2 ,i

(
x j+ 1

2 ,i+1− x j+ 1
2 ,i+

1
2

)
x j+ 1

2 ,i+1− x j+ 1
2 ,i

− 1
Re

 vn
j+ 1

2 ,i+1
− vn

j+ 1
2 ,i

x j+ 1
2 ,i+1− x j+ 1

2 ,i

+ an
xy, j+ 1

2 ,i+
1
2

Ey
j+ 1

2 ,i−
1
2

=


un

j+1,i− 1
2

(
y j+ 1

2 ,i−
1
2
− y j,i− 1

2

)
+ un

j,i− 1
2

(
y j+1,i− 1

2
− y j+ 1

2 ,i−
1
2

)
y j+1,i− 1

2
− y j,i− 1

2

 · ...
.. ·


vn

j+ 1
2 ,i

(
x j+ 1

2 ,i−
1
2
− x j+ 1

2 ,i−1

)
+ vn

j+ 1
2 ,i−1

(
x j+ 1

2 ,i
− x j+ 1

2 ,i−
1
2

)
x j+ 1

2 ,i
− x j+ 1

2 ,i−1

− 1
Re

 vn
j+ 1

2 ,i
− vn

j+ 1
2 ,i−1

x j+ 1
2 ,i
− x j+ 1

2 ,i−1

+ an
xy, j+ 1

2 ,i−
1
2

2.1.6 k transport equation

The nondimensional k transport equation, already derived in (2.14), is :

∂k
∂t

+
∂(uk)
∂x

+
∂(vk)
∂y

=
1

Re
∂

∂x

[(
1 +

νT

σk

)
∂k
∂x

]
+

1
Re

∂

∂y

[(
1 +

νT

σk

)
∂k
∂y

]
+ P−ε (2.28)

where, in order to ease the writing, the superscript * has been omitted.

Integrating (2.23) over the k-control volume shown in Fig.(12):

"
∂k
∂t

dxdy+

"
∂

∂x

[
uk−

(
1 +

νT

σk

)
∂k
∂x

]
dxdy+

"
∂

∂y

[
vk−

(
1 +

νT

σk

)
∂k
∂y

]
dxdy+

"
(P−ε)dxdy = 0

(2.29)

2.1. Development of a RANS CFD Solver 39

one has:

Figure 12: Control volume for the k-transport equation

Application of the Green theorem to the above expression and use of MAC method for the time

discretization leads to:

∆x∆y
∆t

(kn+1
j+ 1

2 ,i+
1
2
−kn

j+ 1
2 ,i+

1
2
)+

(
Ek

j+ 1
2 ,i+1
−Ek

j+ 1
2 ,i

)
∆y+

(
Fk

j+1,i+ 1
2
−Fk

j,i+ 1
2

)
∆x+∆x∆y(Pn

j+ 1
2 ,i+

1
2
−εn

j+ 1
2 ,i+

1
2
) = 0

(2.30)

or equivalenty :

(kn+1
j+ 1

2 ,i+
1
2
− kn

j+ 1
2 ,i+

1
2
)

∆t
+

(
Ek

j+ 1
2 ,i+1
−Ek

j+ 1
2 ,i

)
∆x

+

(
Fk

j+1,i+ 1
2
−Fk

j,i+ 1
2

)
∆y

+ Pn
j+ 1

2 ,i+
1
2
−εn

j+ 1
2 ,i+

1
2

= 0 (2.31)

where ∆x = x j+ 1
2 ,i+1 − x j+ 1

2 ,i
and ∆y = y j+ 1

2 ,i+
1
2
− y j− 1

2 ,i+
1
2

are the x and y dimension of the (j,i) k-

transport Control Volume ,∆t = tn+1 − tn, Ek and Fk are the axial and transversal fluxes of k defined

as:

Ek = uk−
(
1 +

νT

σk

)
∂k
∂x

Fk = vk−
(
1 +

νT

σk

)
∂k
∂y

(2.32)

2.1. Development of a RANS CFD Solver 40

whose discretized forms for (2.30) can be obtained using linear interpolations (2.17) and the expres-

sion for the first derivative (2.16):

Ek
j+ 1

2 ,i+1
=


un

j,i+ 1
2

+ un
j,i+ 3

2

2


(y j+1,i+1− y j+ 1

2 ,i+1

y j+1,i+1− y j,i+1

)
+

un
j+1,i+ 1

2
+ un

j+1,i+ 3
2

2


(y j+ 1

2 ,i+1− y j,i+1

y j+1,i+1− y j,i+1

)
kn

j+ 1
2 ,i+

3
2

+ kn
j+ 1

2 ,i+
1
2

2

 ...
...−

1 +

νn
T, j+ 1

2 ,i+
3
2

+ νn
T, j+ 1

2 ,i+
1
2

2σk


 kn

j+ 1
2 ,i+

3
2
− kn

j+ 1
2 ,i+

1
2

x j+ 1
2 ,i+

3
2
− x j+ 1

2 ,i+
1
2


Ek

j+ 1
2 ,i

=


un

j,i− 1
2

+ un
j,i+ 1

2

2


(y j+1,i− y j+ 1

2 ,i

y j+1,i− y j,i

)
+

un
j+1,i− 1

2
+ un

j+1,i+ 1
2

2


(y j+ 1

2 ,i
− y j,i

y j+1,i− y j,i

)
kn

j+ 1
2 ,i+

1
2

+ kn
j+ 1

2 ,i−
1
2

2

 ...
...−

1 +

νn
T, j+ 1

2 ,i+
1
2

+ νn
T, j+ 1

2 ,i−
1
2

2σk


 kn

j+ 1
2 ,i+

1
2
− kn

j+ 1
2 ,i−

1
2

x j+ 1
2 ,i+

1
2
− x j+ 1

2 ,i−
1
2


Fk

j+1,i+ 1
2

=


vn

j+ 3
2 ,i+1

+ vn
j+ 1

2 ,i+1

2


(x j+1,i+ 1

2
− x j+1,i

x j+1,i+1− x j+1,i

)
+

vn
j+ 3

2 ,i
+ vn

j+ 1
2 ,i

2


(x j+1,i+1− x j+1,i+ 1

2

x j+1,i+1− x j+1,i

)
kn

j+ 3
2 ,i+

1
2

+ kn
j+ 1

2 ,i+
1
2

2

 ...
...−

1 +

νn
T, j+ 3

2 ,i+
1
2

+ νn
T, j+ 1

2 ,i+
1
2

2σk


kn

j+ 3
2 ,i+

1
2
− kn

j+ 1
2 ,i+

1
2

y j+ 3
2 ,i+

1
2
− y j+ 1

2 ,i+
1
2


Fk

j,i+ 1
2

=


vn

j+ 1
2 ,i+1

+ vn
j− 1

2 ,i+1

2


(x j,i+ 1

2
− x j,i

x j,i+1− x j,i

)
+

vn
j+ 1

2 ,i
+ vn

j− 1
2 ,i

2


(x j,i+1− x j,i+ 1

2

x j,i+1− x j,i

)
kn

j+ 1
2 ,i+

1
2

+ kn
j− 1

2 ,i+
1
2

2

 ...
...−

1 +

νn
T, j+ 1

2 ,i+
1
2

+ νn
T, j− 1

2 ,i+
1
2

2σk


kn

j+ 1
2 ,i+

1
2
− kn

j− 1
2 ,i+

1
2

y j+ 1
2 ,i+

1
2
− y j− 1

2 ,i+
1
2



2.1.7 ε transport equation

The nondimensional ε transport equation, already derived in (2.14), is :

∂ε

∂t
+
∂(uε)
∂x

+
∂(vε)
∂y

=
1

Re
∂

∂x

[(
1 +

νT

σε

)
∂ε

∂x

]
+

1
Re

∂

∂y

[(
1 +

νT

σε

)
∂ε

∂y

]
+Cε1

Pε
k
−Cε2

ε2

k
(2.33)

where, in order to ease the writing, the superscript * has been omitted.

Integrating (2.23) over the ε-control volume shown in Fig.(13):

2.1. Development of a RANS CFD Solver 41

Figure 13: Control volume for the ε-transport equation

one has:"
∂ε

∂t
dxdy+

"
∂

∂x

[
uε−

(
1 +

νT

σε

)
∂ε

∂x

]
dxdy+

"
∂

∂y

[
vε−

(
1 +

νT

σε

)
∂ε

∂y

]
dxdy+

"
ε

k
(Cε1P−Cε2ε)dxdy = 0

(2.34)

Application of the Green theorem to the above expression and use of MAC method for the time

discretization leads to:

∆x∆y
∆t

(εn+1
j+ 1

2 ,i+
1
2
−εn

j+ 1
2 ,i+

1
2
)+

(
Eε

j+ 1
2 ,i+1
−Eε

j+ 1
2 ,i

)
∆y+

(
Fε

j+1,i+ 1
2
−Fε

j,i+ 1
2

)
∆x+∆x∆y

εn
j+ 1

2 ,i+
1
2

kn
j+ 1

2 ,i+
1
2

(Cε1Pn
j+ 1

2 ,i+
1
2
−Cε2ε

n
j+ 1

2 ,i+
1
2
) = 0

(2.35)

or equivalenty :

(εn+1
j+ 1

2 ,i+
1
2
−εn

j+ 1
2 ,i+

1
2
)

∆t
+

(
Eε

j+ 1
2 ,i+1
−Eε

j+ 1
2 ,i

)
∆x

+

(
Fε

j+1,i+ 1
2
−Fε

j,i+ 1
2

)
∆y

+

εn
j+ 1

2 ,i+
1
2

kn
j+ 1

2 ,i+
1
2

(Cε1Pn
j+ 1

2 ,i+
1
2
−Cε2ε

n
j+ 1

2 ,i+
1
2
) = 0

(2.36)

where ∆x = x j+ 1
2 ,i+1 − x j+ 1

2 ,i
and ∆y = y j+ 1

2 ,i+
1
2
− y j− 1

2 ,i+
1
2

are the x and y dimension of the (j,i) ε

transport Control Volume ,∆t = tn+1 − tn, Eε and Fε are the axial and transversal fluxes of ε defined

2.1. Development of a RANS CFD Solver 42

as:

Eε = uε−
(
1 +

νT

σε

)
∂ε

∂x
Fε = vε−

(
1 +

νT

σε

)
∂ε

∂y
(2.37)

whose discretized forms for (2.35) can be obtained using linear interpolations (2.17) and the expres-

sion for the first derivative (2.16):

Eε

j+ 1
2 ,i+1

=


un

j,i+ 1
2

+ un
j,i+ 3

2

2


(y j+1,i+1− y j+ 1

2 ,i+1

y j+1,i+1− y j,i+1

)
+

un
j+1,i+ 1

2
+ un

j+1,i+ 3
2

2


(y j+ 1

2 ,i+1− y j,i+1

y j+1,i+1− y j,i+1

)
ε

n
j+ 1

2 ,i+
3
2

+εn
j+ 1

2 ,i+
1
2

2

 ...
...−

1 +

νn
T, j+ 1

2 ,i+
3
2

+ νn
T, j+ 1

2 ,i+
1
2

2σε


ε

n
j+ 1

2 ,i+
3
2
−εn

j+ 1
2 ,i+

1
2

x j+ 1
2 ,i+

3
2
− x j+ 1

2 ,i+
1
2


Eε

j+ 1
2 ,i

=


un

j,i− 1
2

+ un
j,i+ 1

2

2


(y j+1,i− y j+ 1

2 ,i

y j+1,i− y j,i

)
+

un
j+1,i− 1

2
+ un

j+1,i+ 1
2

2


(y j+ 1

2 ,i
− y j,i

y j+1,i− y j,i

)
ε

n
j+ 1

2 ,i+
1
2

+εn
j+ 1

2 ,i−
1
2

2

 ...
...−

1 +

νn
T, j+ 1

2 ,i+
1
2

+ νn
T, j+ 1

2 ,i−
1
2

2σε


ε

n
j+ 1

2 ,i+
1
2
−εn

j+ 1
2 ,i−

1
2

x j+ 1
2 ,i+

1
2
− x j+ 1

2 ,i−
1
2


Fε

j+1,i+ 1
2

=


vn

j+ 3
2 ,i+1

+ vn
j+ 1

2 ,i+1

2


(x j+1,i+ 1

2
− x j+1,i

x j+1,i+1− x j+1,i

)
+

vn
j+ 3

2 ,i
+ vn

j+ 1
2 ,i

2


(x j+1,i+1− x j+1,i+ 1

2

x j+1,i+1− x j+1,i

)
ε

n
j+ 3

2 ,i+
1
2

+εn
j+ 1

2 ,i+
1
2

2

 ...
...−

1 +

νn
T, j+ 3

2 ,i+
1
2

+ νn
T, j+ 1

2 ,i+
1
2

2σε


ε

n
j+ 3

2 ,i+
1
2
−εn

j+ 1
2 ,i+

1
2

y j+ 3
2 ,i+

1
2
− y j+ 1

2 ,i+
1
2


Fε

j,i+ 1
2

=


vn

j+ 1
2 ,i+1

+ vn
j− 1

2 ,i+1

2


(x j,i+ 1

2
− x j,i

x j,i+1− x j,i

)
+

vn
j+ 1

2 ,i
+ vn

j− 1
2 ,i

2


(x j,i+1− x j,i+ 1

2

x j,i+1− x j,i

)
ε

n
j+ 1

2 ,i+
1
2

+εn
j− 1

2 ,i+
1
2

2

 ...
...−

1 +

νn
T, j+ 1

2 ,i+
1
2

+ νn
T, j− 1

2 ,i+
1
2

2σε


ε

n
j+ 1

2 ,i+
1
2
−εn

j− 1
2 ,i+

1
2

y j+ 1
2 ,i+

1
2
− y j− 1

2 ,i+
1
2



2.1.8 Poisson Equation

It is now important to explain how to deal with the pressure field, since it is involved in the com-

putation of the components of the velocity field (2.26) and (2.21). Indeed the pressure difference

represents the natural driving force for velocity field changes. By looking at the nondimensional

Navier-Stokes system of equations (2.14), one can observe that the Continuity equation has not still

2.1. Development of a RANS CFD Solver 43

been explicitely discretized. By applying a Central-Space scheme -as for the momentum equations

and the transport equations-, continuity equation can be discretized as:

un+1
i+ 1

2 , j
−un+1

i− 1
2 , j

∆x
+

vn+1
i, j+ 1

2
− vn+1

i, j− 1
2

∆y
= 0 (2.38)

where the Control Volume for continuity equation (2.38) is shown in the following Fig.(14):

Figure 14: Control volume for the continuity equation

where ∆x = x j,i+ 1
2
− x j,i− 1

2
and ∆y = y j+ 1

2 ,i
− y j− 1

2 ,i
are the x and y dimension of the (j,i) continuity

equation Control Volume. In order to further manipulate (2.38) we can observe that (2.21) and (2.26)

can be rewritten as:

un+1
j,i+ 1

2
= un

j,i+ 1
2
−∆t


(
Ex

j,i+1−Ex
j,i

)
∆xu +

(
Fx

j+ 1
2 ,i+

1
2
−Fx

j− 1
2 ,i+

1
2

)
∆yu

− ∆t
∆xu

(
pn+1

e f f , j,i+1− pn+1
e f f , j,i

)

vn+1
j+ 1

2 ,i
= vn

j+ 1
2 ,i
−∆t


(
Ex

j,i+1−Ex
j,i

)
∆xv +

(
Fx

j+ 1
2 ,i+

1
2
−Fx

j− 1
2 ,i+

1
2

)
∆yv

− ∆t
∆yv

(
pn+1

e f f , j+1,i− pn+1
e f f , j,i

)
or equivalently:

un+1
j,i+ 1

2
= Xn

j,i+ 1
2
−

∆t
∆xu

(
pn+1

e f f , j,i+1− pn+1
e f f , j,i

)
(2.39)

vn+1
j+ 1

2 ,i
= Yn

j+ 1
2 ,i
−

∆t
∆yv

(
pn+1

e f f , j+1,i− pn+1
e f f , j,i

)
(2.40)

2.1. Development of a RANS CFD Solver 44

where:

Xn
j,i+ 1

2
= un

j,i+ 1
2
−∆t


(
Ex

j,i+1−Ex
j,i

)
∆xu +

(
Fx

j+ 1
2 ,i+

1
2
−Fx

j− 1
2 ,i+

1
2

)
∆yu

 (2.41)

Yn
j+ 1

2 ,i
= vn

j+ 1
2 ,i
−∆t


(
Ex

j,i+1−Ex
j,i

)
∆xv +

(
Fx

j+ 1
2 ,i+

1
2
−Fx

j− 1
2 ,i+

1
2

)
∆yv

 (2.42)

and where ∆xu = x j,i+1− x j,i and ∆yu = y j+ 1
2 ,i+

1
2
−y j− 1

2 ,i+
1
2

are the dimensions of the (j,i) x-momentum

Control Volume and ∆xv = x j+ 1
2 ,i+

1
2
− x j+ 1

2 ,i−
1
2

and ∆yv = y j+1,i− y j,i are the x and y dimension of the

(j,i) y-momentum Control Volume. By substituting (2.39) and (2.40) in (2.38), one has:[
pe f f , j,i−1−2pe f f , j,i + pe f f , j,i+1

∆x∆xu +
pe f f , j−1,i−2pe f f , j,i + pe f f , j+1,i

∆y∆yv

]n+1

=
1
∆t

Xn
j,i+ 1

2
−Xn

j,i− 1
2

∆x
+

Yn
j+ 1

2 ,i
−Yn

j− 1
2 ,i

∆y

 = Qn
j,i

(2.43)

which represents the discrete Poisson equation for pressure. It is interesting to notice that, by deriv-

ing the numerical formulation of the Poisson equation from the numerical formulation of the Navier

Stokes equation, we do not have to worry that the two equations are discretized with the same scheme.

It is also important to point out that, obtaining the solution of the discrete Poisson equation for pres-

sure, ensures that the incompressibility property of the velocity field is transmitted from tn to tn+1

through (2.21) and (2.26). This means that if Un is divergence free, then also Un+1 computed with

(2.21) and (2.26) will have the same property.

In equation (2.43), the values of the pressure field at tn+1 depend only on velocity field’s values com-

puted at tn and summarized in the term Qn
j,i. Hence the term Qn

j,i, which in the Poisson equation

corresponds to a source term, is know in each point of the grid when we have to compute pn+1
e f f , j,i. The

discrete equation (2.43) correspond to the discretization of the Poisson equation for pressure:

∇2 pe f f =
∂2 pe f f

∂x2 +
∂2 pe f f

∂y2 = f (x,y) (2.44)

where Qn
j,i ≡ f (xi,y j).

In order to solve the discrete Poisson equation (2.43), it is possible to transfor (2.44) into a transient

problem, as shown in the following section.

2.1. Development of a RANS CFD Solver 45

2.1.9 Poisson Equation Solver

Equation (2.43) is solved using the Gauss-Seidel iterative method. Starting from the unsteady Poisson

equation for pressure and substituting P = pe f f for ease of writing, one has:

∂2P
∂x2 +

∂2P
∂y2 = f (x,y)

one can think of transforming it into a transient problem by looking for the steady state solution of

equation
∂P
∂t

=
∂2P
∂x2 +

∂2P
∂y2 − f (x,y) (2.45)

since at steady state
∂P
∂t

= 0. Hence the steady state solution of (2.45) corresponds to the solution of

(2.44).By applying a Finite Difference, Central-in-space and Forward-in-time discretization to (2.45),

as shown above, one has:

Pn+1
j,i −Pn

j,i

∆t
=

Pn
j,i−1−2Pn

j,i + Pn
j,i+1

∆x∆xu +
Pn

j−1,i−2Pn
j,i + Pn

j+1,i

∆y∆yv −Qn
j,i (2.46)

On a uniform grid with ∆ = ∆x = ∆y and choosing ∆t = ∆/4 which corresponds to the maximum

allowed ∆t due to stability reasons, it follows:

Pn+1
i, j =

1
4

(
Pn

i−1, j + Pn
i, j−1 + Pn

i+1, j + Pn
i, j+1−∆2Qn

i, j

)
(2.47)

which is the Richarson Method. In the case of non-uniform grid -as the one here - the derivation is

similar and straightforward, hence it will not be presented here.

The Gauss-Seidel method follows a similar derivation which leads to:

Pn+1
i, j =

1
4

(
Pn+1

i−1, j + Pn+1
i, j−1 + Pn

i+1, j + Pn
i, j+1−∆2Qn

i, j

)
(2.48)

It is important to notice that (2.48) is still an explicit method. Indeed, despite the quantity Pn+1
i−1, j +

Pn+1
i, j−1 is involved, one can observe that the two values are already computed before calculating Pn+1

i, j .

Applying a successive over-relaxation one obtains:
P̃n+1

i, j = 1
4

(
Pn+1

i−1, j + Pn+1
i, j−1 + Pn

i+1, j + Pn
i, j+1−∆2Qn

i, j

)
Pn+1

i, j = Pn
i, j +ω(P̃n+1

i, j −Pn
i, j)

(2.49)

where ω is the relaxation factor. Here we chose ω = 1.6 as it is the optimal value that, for this case,

allows a fewer number of iterations to get to the steady-state solution. Again, equations in system

(2.49) are both explicit.

2.2. Turbulent fully-developed channel flow 46

Hence, in order to solve (2.43), one starts with a tentative pressure fields and applies (2.49) iteratively

until the change between the pressure fields of two consecutive iterations is below a certain tolerance.

At this point, the pressure field will correspond to the steady state solution of (2.45) and therefore to

the solution of (2.44).

Once the pressure field has been calculated, the values of pressure can be used in (2.21) and (2.26) to

compute the velocity field at the next time step. Since in general the pressure field does not change a

lot between two consecutive times steps ,as a good initial value of the pressure field one should use

the pressure distribution at the previous time step.

A final remark is that when equations (2.49) are computed in correspondence of the boundary cells,

some indices will exceed the physical domain. In this case, the pressure boundary conditions on the

four walls must be used. These Boundary Conditions will be directly enforced on the ghost cells’

layer as it will be explained in the following sections.

2.2 Turbulent fully-developed channel flow

Here we briefly review a few key concepts of the physics of turbulent channel flow, since it is a flow

case to whom the RANS solver will be applied. Turbulent channel flow is a pressure-driven flow

between two parallel planes where the fluid proceeds primarily along the x direction. The direction

normal to the wall is the y direction [18]. If we assume an infinite width of the plates, so that any edge

effect can be neglected, the flow results two-dimensional and can be analyzed in the x-y plane only,

as showed in Fig.(15).When a pressure gradient dp/dx < 0 is applied, the fluid accelerates in the x

direction and the velocity profile U(y) assumes different shapes along the plate lenght. In particular,

a velocity boundary layer develops from the channel inlet through the channel length. If the channel

is sufficiently long, the velocity boundary layer reaches the channel axis: at that point the flow is said

to be fully developed since the velocity profile remains steady and does not change anymore with x.

Therefore, a fully-developed, turbulent channel flow shows a one-dimensional structure along the y

direction. That is, after performing the averaging procedure, the flow quantities (such as average

velocity) are only functions of the distance across the channel, y.

It is natural to normalize the wall-normal distance y and to work in viscous wall units which are

denoted by:

y+ =
y
hν

(2.50)

2.2. Turbulent fully-developed channel flow 47

Figure 15: Geometry of the channel flow

where hν = ν/uτ is the viscous lengthscale and:

uτ =

√
τw

ρ
(2.51)

is called the friction velocity, with τw being the shear stress at the wall.

The dimensionless quantity:

Reτ =
uτh
ν

(2.52)

where h is half the height of the channel, is called the friction Reynolds number.

Lastly, a key turbulence nondimensionalization used in channel flows is [38] :

u+ =
u
uτ

(2.53)

Working with y+ units is a convenient normalization for wall-bounded flows, as it naturally reveals

important regions of the flow field. In channel flows, the near-wall and bulk regions exhibit distinctly

different flow features, with dissipation mostly localized within the former. Many simple eddy viscos-

ity models do not make any distinction between these regions and therefore ad-hoc damping factors

are used in low-Reynolds models - such as fµ for the Abe-Kondoh-Nagano one [23].

In this present work, the turbulent channel flow at Reτ = 544 - corresponding to a Reb = 10000 [6]

based on the bulk mean flow u - is used both as a validation case for the RANS solver and as a test-case

for the implementation of the proposed data driven approach. Indeed, the channel flow was the first

geometries for which a Direct Numerical Simulation has been performed and therefore it represents

a classical benchmark for testing CFD turbulent solvers.

In the simulations, the geometry consists only of half of the height of the channel due to simmetry

reasons. Moreover, only the fully developed region is simulated, both because most of the validation

DNS data are available for this region and in order to minimize the simulation time.

2.2. Turbulent fully-developed channel flow 48

Lastly, it is important to choose the characteristic length and velocities used to nondimensionalize the

main variables according to (2.2). Using the same notation of (2.2), for the channel flow it has been

chosen:

U = uτ L = h (2.54)

where h is half the height of the channel. It is clear that with this choice 0< y∗ < 1 where y∗ correspond

to the nondimensional distance from the wall. Moreover,with this choice one has that u∗ = u/uτ = u+

2.2.1 Mesh

The mesh used for the RANS solver is shown in the following Fig.(16):

Figure 16: Mesh for the turbulent channel flow

where in Fig.(17) it is shown a magnification of Fig.(16) near the wall (y∗ = 0) to highlight the near-

wall resolution required by a wall resolved method.

The mesh consists of Ny = 120 cells along the y direction and Nx = 10 points along the x direction.

This choice is motivated by the fact that, in the fully developed region, the quantities vary only with

y and therefore the x direction is not relevant for the description of the flow. It is also important to

mention that the horizontal size of the mesh 0 < x∗ < 1 could have been chosen differently, since the

profile of the quantities is the same along x. The size value 1 was chosen in order to obtain an easy

2.2. Turbulent fully-developed channel flow 49

Figure 17: Magnification of the mesh for the turbulent channel flow, near-wall resolution

value of ∆p∗ to compute, as later shown.

As far as the cell dimension is concerned, the following distribution has been chosen:

• ∆x is the same for all the cells, since the gradient of the quantities along the x direction is null.

• For the vertical dimension a groth-rate type of stretching is chosen. This stretching along y

satisfies:
∆yi+1

∆yi
= g = const

where ∆yi is the vertical dimension of a generic cell, ∆yi+1 is the vertical dimension of the cell

above and g=1.02 is a constant. This stretching of the cell’s vertical dimension is justified by the

attempt to reduce the numerical discretization error. Indeed, when a numerical approximation

is introduced, like the one of the first derivative (2.16), the difference between the real value

of the discretized quantity and the value of its numerical approximation is proportional to the

gradient of the quantity and to the cell size. Hence, the general idea driving a mesh realization

is to refine it in regions where the gradients of the quantities is steeper - in order to catch these

steep variations - and to make it coarser where the quantities are almost constant. Since in a a

turbulent channel flow the gradient of all quantities is very steep near the wall and null at the

channel’s centerline, it is a general practice to refine the mesh size near the wall and to have a

coarser mesh near the centerline, as the growth-rate relation above ensures.

2.2. Turbulent fully-developed channel flow 50

Since a low-Reynolds model is employed, one has to ensure that the first cell falls well into the viscous

sublayer. The usual value is y+ ' 1.

From the definition of hν = ν/uτ, one has:

h∗ν =
hν
h

=
ν

uτh
=

1
Reτ

(2.55)

from which:

y+∗ =
y∗

h∗ν
= y∗Reτ (2.56)

Hence y+ ' 1 will correspond, in nondimensional units, to:

y∗ =
1

Reτ
= 0.00184

By using g=1.02 and Ny = 120, the first cell’s height corresponds to y∗ = 0.00175 ' 0.00184 and

therefore the condition on the mesh wall resolution is satisfied.

2.2.2 Boundary Conditions

A scheme of the boundary conditions is presented in the folowing Fig.(18).

At y∗ = 0 a wall boundary condition is enforce to reproduce the presence of the physical wall. At

y∗ = 1 a simmetry boundary condition is enforce since this boundary corresponds to the channel axis

and the problem is symmetric with respect to it. At x∗ = 1 and x∗ = 0 a Zero Gradient boundary

condition is enforced because the flow is simulated in the fully-developed region, where the variation

of velocity and turbulent quantities along x is null. Yet, it is important to stress that the Zero Gradient

condition does not apply to pressure. Indeed, pressure represents the ’driving force’ of the fluid, and

to keep to fluid in motion along the channel a negative pressure gradient dp/dx is necessary - Fig.(15).

By manipulating the axial mean-momentum equation (2.18) under the assumptions of boundary-layer

flow, and by recalling that uτ =
√
τw/ρ one has for the channel flow:

−
dp
dx

=
τw

h
=
ρu2

τ

h
(2.57)

where one can also demonstrate that the axial pressure gradient dp/dx is uniform across the flow. By

recalling the nondimensionalization (2.2), Equation (2.57) can be rewritten as:

d
(

p
ρu2

τ

)
d(x/h)

=
dp∗

dx∗
= −1 (2.58)

and, since the mean axial pressure gradient is uniform across the flow:

∆p∗ = p∗in− p∗out =

∫
dx∗ = L∗ (2.59)

2.2. Turbulent fully-developed channel flow 51

Figure 18: Channel flow boundary conditions

where L∗ is the length of the channel portion simulated - in this case L∗ = 1.

Another important aspect to mention is the ’relative’ nature of pressure in the Marker and Cell method.

Indeed, from the passages above, it emerges clearly that the computation of the pressure field repre-

sents simply an intermediate step for the compuation of the velocity field. One can observe that

equation (2.44) yields infinite solutions when only one boundary condition is specified, all of them

differing for a constant (??). Hence, unless the value of the actual pressure field is of interest, the

solution of the Poisson equation can be regarded as a ’pseudo-pressure’ field that leads to the solution

of the real velocity field. In (2.21) and (2.26), only the gradients of the ’pseudo-pressure’ field are

involved, thus all the solutions of the Poisson equation produce the same effect on the computation

of the velocity components. As a consequence, the values of the pressure imposed at the inlet and at

the outle of the domain are not relevant, it is only their relation (2.59) that matters and that must be

satisfied.

2.2. Turbulent fully-developed channel flow 52

In order to enforce the boundary conditions sketched in Fig.(18), it is convenient to define an addi-

tional layer of cells outside the physical domain. We will refer to those control volumes as ghost cells.

The velocity components u and v, the pressure and the turbulence quantities in correspondence of the

ghost cell will be computed by directly enforcing the corresponding boundary conditions, as it will

be explained in the following section. Another possibility would consist in modifying expressions

(2.21), (2.26), (2.31) and (2.36) in correspondence of the boundary cells through the relations derived

by the boundary conditions. It is however much easier to extend the computational domain of one

layer of cells and to use the same expressions for each cell of the internal grid. A simplified scheme

-with uniform cells - of the resulting grid is sketched in the Fig.19, where the ghost cell layer is drawn

with the red color.

Figure 19: Ghost cells

In the following paragraphs, a detailed explanation of the four boundary conditions will be presented.

Since U = (u,v) is a two-dimensional vector, the boundary conditions have to be specified for: each

component of the velocity vector; the pressure; the turbulent kinetic energy; the dissipation rate; the

components of the anisotropy stress tensor.

1) Wall boundary condition y∗ = 0

First of all, we need to derive the continous boundary conditions for all the quantities involved. After

that, these expressions will be discretized so that they can be enforced numerically in the solver.

In correspondence of a wall, the velocity boundary conditions derive from the no-slip and the no-

2.2. Turbulent fully-developed channel flow 53

compenetration condition. In particular, the first one implies that, in correspondence of each wall, the

fluid velocity’s component parallel to the wall must be equal to the velocity of the wall itself (in this

case 0). The second one implies that, in correspondence of each wall, the flow velocity’s component

normal to the wall must be null, since no outgoing or ingoing mass flow rate is allowed by the solid

boundary.

From the no-slip condition and from the impermeability condition, it is also possible to demonstrate

that, in correspondence of a physical wall boundary, all the components of the Reynolds stress tensor

are null. In particular, one has that for y∗→ 0:

〈u2〉 ∼ y2

〈v2〉 ∼ y4

〈w2〉 ∼ y2

〈uv〉 ∼ y3 (2.60)

and therefore for y∗ = 0 all the anisotropy stress tensor components satisfy ai j(y∗ = 0) = 0. Moreover,

since the turbulent kinetic energy, corresponds to half of the trace of the Reynolds stress tensor, then

also k(y∗ = 0) = 0.

Lastly, from the prescriptions of the Abe-Kondoh-Nagano model, one has:

ε(y = 0) = 2ν
(
∂k
∂y

)2

y=0

which differs from the dissipation rate boundary condition that would normally derive by the k trans-

port equation:

ε(y = 0) = ν
d2k
dy2

due to the introuduction of the blending coefficients f1 and f2 in the ε transport equation, that affect

the expression near the wall.

The boundary conditions on pressure are derived from the Momentum Equations in correspondece of

the four walls and by combining the velocity boundary conditions.

The Momentum equation along y of the Navier-Stokes system written in non-conservative form is:

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+
1
ρ

∂p
∂y

+
2
3
∂k
∂y

= ν

(
∂2v
∂x2 +

∂2v
∂y2

)
−

(
∂axy

∂x
−
∂ayy

∂y

)
(2.61)

Yet, in correspondence of the horizontal bottom wall v=0,
∂v
∂x

= 0, ai j = 0, k=0. Hence (2.61) becomes

for the y=0 wall:
∂p
∂y

= ρν
∂2v
∂y2 = µ

∂2v
∂y2 (2.62)

2.2. Turbulent fully-developed channel flow 54

It is interesting to notice that the boundary condition for the pressure involves the velocity field.

Now, by recalling all the reasoning above, the bottom wall boundary condition at y∗ = 0 can be

expressed as: 

u = 0

v = 0

∂p
∂y

= µ
∂2v
∂y2

k = 0

ai j = 0

ε = 2ν
(
∂k
∂y

)2

y=0

(2.63)

By introducing the nondimensionalization parameters (2.2), the set of boudary conditions (2.63) can

be nondimensionalized as follows: 

u∗ = 0

v∗ = 0

∂p∗

∂y∗
=

1
Re

∂2v∗

∂y∗2

k∗ = 0

a∗i j = 0

ε∗ =
2

Re

(
∂k∗

∂y∗

)2

y∗=0

(2.64)

Equations (2.64) correspond to the nondimensional boundary conditions on the bottom wall. As

mentioned earlier, the boundary conditions are enforced by adding an extra layer of ghost cells. In

this way, the expressions (2.21), (2.26) and so on must not be modified for the boundary cells since

the equations will simply access the values of ghost cells. Now (2.64) must be discretized in order to

derive relations to enforce on the ghost cells of the bottom wall.

In the following Fig.(20) the cells involved in the following discussion are sketched:

For ease of writing, in the following discretizations the suffix * will be omitted. However, all the

discretization are performed on the nondimensional quantities.

The boundary condition (2.64) on v leads to:

vi, 12
= 0

From a simple interpolation, the boundary condition (2.63) on u leads to:

uwall,i+ 1
2

=
ui+ 1

2 ,0
+ ui+ 1

2 ,1

2

2.2. Turbulent fully-developed channel flow 55

Figure 20: Ghost cells for bottom wall boundary condition

from which for the ghost cell:

ui+ 1
2 ,0

= 2uwall,i+ 1
2
−ui+ 1

2 ,1
= −ui+ 1

2 ,1

For the pressure instead, by recalling the continuity equation of (2.1) one has:

∂p
∂y

=
1

Re
∂2v
∂y2 =

1
Re

∂

∂y

(
∂v
∂y

)
=

1
Re

∂

∂y

(
−
∂u
∂x

)
= −

1
Re

∂

∂x

(
∂u
∂y

)
from which: [

∂p
∂y

= −
1

Re
∂

∂x

(
∂u
∂y

)]
i, 12

By discretizing the equation above in correspondance of the wall with a Central-Space scheme one

obtains:

pi,1− pi,0

∆y
= −

1
Re

(
∂u
∂y

)
i+ 1

2 ,
1
2
−

(
∂u
∂y

)
i− 1

2 ,
1
2

∆x
= −

1
Re

(
ui+ 1

2 ,1
−ui+ 1

2 ,0

)
−

(
ui− 1

2 ,1
−ui− 1

2 ,0

)
∆x∆y

and applying the Boundary Condition on u mentioned above:

pi,1− pi,0

∆y
= −

2
Re

ui+ 1
2 ,1
−ui− 1

2 ,1

∆x∆y
+

2
Re

uwall,i+ 1
2
−uwall,i− 1

2

∆x∆y

where ∆x = x0,i+ 1
2
− x0,i− 1

2
and ∆y = y1,i− y0,i.

Now, by applyng the Continuity Equation on the cell (i,1) and the Boundary Condition on v mentioned

above:
ui+ 1

2 ,1
−ui− 1

2 ,1

∆x
= −

vi, 32
− vi, 12

∆y
= −

vi, 32

∆y

By substituting above and recalling that ∆x = ∆y one has:

pi,0 = pi,1−
2

Re

vi, 32

∆y
−

2
Re

uwall,i+ 1
2
−uwall,i− 1

2

∆y
= pi,1−

2
Re

vi, 32

∆y

Since the turbulent kinetic energy and the anisotropy stress tensor components of the ghost cell (0,i)

are defined in correpsondece of the wall - at position
(

1
2 , i + 1

2)
)
, their discretized boundary condition

follows immediately:

k 1
2 ,i+

1
2

= 0

2.2. Turbulent fully-developed channel flow 56

ai j, 12 ,i+
1
2

= 0

Lastly, for the dissipation rate one has:

ε 1
2 ,i+

1
2

=
2

Re


√

k 3
2 ,i+

1
2
−

√
k
− 1

2 ,i+
1
2

y 3
2 ,i+

1
2
− y
− 1

2 ,i+
1
2


2

where the index j = −1
2 is out of the geometric domain. However, since k is half the trace of the

Reynolds stress tensor, from (2.60) one has that k ∼ y2 for y→ 0. Hence, using a centered-difference

scheme:
k 3

2 ,i+
1
2
− k
− 1

2 ,i+
1
2

y 3
2 ,i+

1
2
− y
− 1

2 ,i+
1
2

= 0

from which:

k 3
2 ,i+

1
2

= −k
− 1

2 ,i+
1
2

and therefore:

ε 1
2 ,i+

1
2

= 0

To sum up, discretizing boundary conditions (2.64) for the bottom wall leads to the following relations

to enforce at a generic bottom cell (0,i):

ui+ 1
2 ,0

= −ui+ 1
2 ,1

vi, 12
= 0

pi,0 = pi,1−
2

Re

vi, 32

y1,i− y0,i

k 1
2 ,i+

1
2

= 0

ai j, 12 ,i+
1
2

= 0

ε 1
2 ,i+

1
2

= 0

(2.65)

2) Symmetry boundary condition y∗ = 1

As before, first the continuous boundary conditions will be derived for all the quantities and , after

that, the expressions will be discretized for the layer of ghost cells. In correspondence of the channel

axis, the profile of all the quantities are specular due to the symmetry of the problem. Mathematically,

this constraint translates into a zero-gradient condition for all the variables, except the component v

of the velocity which is normal to the channel axis. Again, due to the symmetry of the problem, the

component of velocity normal to the simmety axis -here v- must be null.

2.2. Turbulent fully-developed channel flow 57

Recalling the reasoning above, the top syvmetry boundary condition at y∗ = 1 can be expressed as:

∂u
∂y

= 0

v = 0
∂p
∂y

= 0

∂k
∂y

= 0

∂ai j

∂y
= 0

∂ε

∂y
= 0

(2.66)

By introducing the nondimensionalization parameters (2.2), the set of boudary conditions (2.63) can

be nondimensionalized as follows: 

∂u∗

∂y∗
= 0

v∗ = 0
∂p∗

∂y∗
= 0

∂k∗

∂y∗
= 0

∂a∗i j

∂y∗
= 0

∂ε∗

∂y∗
= 0

(2.67)

Now (2.67) must be discretized in order to derive relations to enforce on the ghost cells of the top

boundary of the domain.In the following Fig.(21) the cells involved in the following discussion are

sketched:

Figure 21: Ghost cells for top symmetry boundary condition

2.2. Turbulent fully-developed channel flow 58

For ease of writing, in the following discretizations the suffix * will be omitted. However, all the

discretization are performed on the nondimensional quantities.

The boundary condition (2.67) on v leads to:

vNy+ 1
2 ,i

= 0

whereas the zero-gradient condition on u is discretized as:

uNy+1,i+ 1
2
−uNy,i+ 1

2

yNy+1,i+ 1
2
− yNy,i+ 1

2

= 0

from which:

uNy+1,i+ 1
2

= uNy,i+ 1
2

Analogue zero-gradient boundary condition applied on k leads to:

kNy+ 3
2 ,i+

1
2
− kNy+ 1

2 ,i+
1
2

yNy+ 3
2 ,i+

1
2
− yNy+ 1

2 ,i+
1
2

= 0

from which it follows:

kNy+ 3
2 ,i+

1
2

= kNy+ 1
2 ,i+

1
2

A similar condition to the one above applies to ε and ai j, since like k they are defined at the cell

vertex.

Lastly, the zero-gradient condition applied to the pressure leads to:

pNy+1,i = pNy,i

To sum up, discretizing boundary conditions (2.67) for the top boundary leads to the following rela-

tions to enforce at a generic ghost cell (Ny + 1, i):

uNy+1,i+ 1
2

= uNy,i+ 1
2

vNy+ 1
2 ,i

= 0

pNy+1,i = pNy,i

kNy+ 3
2 ,i+

1
2

= kNy+ 1
2 ,i+

1
2

ai j,Ny+ 3
2 ,i+

1
2

= ai j,Ny+ 1
2 ,i+

1
2

εNy+ 3
2 ,i+

1
2

= εNy+ 1
2 ,i+

1
2

(2.68)

2.2. Turbulent fully-developed channel flow 59

3) Zero-gradient boundary condition x∗ = 0

As before, first the continuous boundary conditions will be derived for all the quantities and , after

that, the expressions will be discretized for the layer of ghost cells. In correspondence of the inlet

boundary of the domain a zero-gradient boundary condition is applied to all the variables except the

pressure. Indeed, the flow is simulated in the fully developed region in which the quantities do not

vary along the axial direction, their gradient along x being null. The pressure represents the only

variable with a non null variation along x since a negative pressure gradient dp/dx is necessary to

drive the flow in the channel. As for the inlet value of the pressure pin = px=0, the relative nature of

the pressure has already been discussed above. Since only the gradient of the pressure field affect the

computation of u and v - (2.21), (2.26) - then the actual value of the pressure pin is irrelevant. What

really matters is that the pressure at the inlet and the one at the outlet satisfy (2.59). Recalling the

reasoning above, the left zero-gradient condition at x∗ = 0 can be expressed as:

∂u
∂x

= 0

∂v
∂x

= 0

p = pin

∂k
∂x

= 0

∂ai j

∂x
= 0

∂ε

∂x
= 0

(2.69)

where the value of pin can be chosen arbitrarily.

By introducing the nondimensionalization parameters (2.2), the set of boudary conditions (2.63) can

be nondimensionalized as follows: 

∂u∗

∂x∗
= 0

∂v∗

∂x∗
= 0

p∗ = p∗in
∂k∗

∂x∗
= 0

∂a∗i j

∂x∗
= 0

∂ε∗

∂x∗
= 0

(2.70)

2.2. Turbulent fully-developed channel flow 60

Now (2.70) must be discretized in order to derive relations to enforce on the ghost cells of the left

inlet boundary of the domain.In the following Fig.(22) the cells involved in the following discussion

are sketched:

Figure 22: Ghost cells for left zero-gradient boundary condition

For ease of writing, in the following discretizations the suffix * will be omitted. However, all the

discretization are performed on the nondimensional quantities.

The boundary condition (2.70) on u leads to:

u j, 32
−u j, 12

x j, 32
− x j, 12

= 0

from which:

u j, 12
= u j, 32

Similarly, for the v component of velocity one has:

v j+ 1
2 ,0

= v j+ 1
2 ,1

Analogue zero-gradient boundary condition applied on k leads to:

k j+ 1
2 ,

3
2
− k j+ 1

2 ,
1
2

x j+ 1
2 ,

3
2
− x j+ 1

2 ,
1
2

= 0

from which it follows:

k j+ 1
2 ,

3
2

= k j+ 1
2 ,

1
2

A similar condition to the one above applies to ε and ai j, since like k they are defined at the cell

vertex.

Lastly, the inlet boundary condition applied to the pressure leads to:

pNy+1,i = pin

2.2. Turbulent fully-developed channel flow 61

To sum up, discretizing boundary conditions (2.67) for the top boundary leads to the following rela-

tions to enforce at a generic ghost cell (j,0):

u j, 12
= u j, 32

v j+ 1
2 ,0

= v j+ 1
2 ,1

pNy+1,i = pin

k j+ 1
2 ,

3
2

= k j+ 1
2 ,

1
2

ai j, j+ 1
2 ,

3
2

= ai j, j+ 1
2 ,

1
2

ε j+ 1
2 ,

3
2

= ε j+ 1
2 ,

1
2

(2.71)

4) Zero-gradient boundary condition x∗ = 1

For the right boundary of the domain at x∗ = 1, the boundary condition is analogue to the one enforced

at x∗ = 0 boundary. In correspondence of the outlet boundary of the domain a zero-gradient boundary

condition is applied to all the variables except the pressure, which must satisy (2.59). The set of

nondimensional boundary conditions is equivalent to (2.69), except for the pressure. By recalling

(2.59), one has:

p∗ = p∗out = p∗in−1 (2.72)

since the horizontal size of the domain L has been chosen L = h, where h corresponds also to the

characteristic length of the problem.

The derivation of the discrete boundary condition for the right outlet boundary is analogue to the one

already performed on the inlet boundary and therefore will be omitted.

In the following Fig.(22) the cells involved in the discretization are sketched:

Figure 23: Ghost cells for left zero-gradient boundary condition

The discretization of the continous outlet zero-gradient boundary condition on the rigth boundary of

2.2. Turbulent fully-developed channel flow 62

the domain leads to the following conditions to enforce at generic ghost cell (j,Nx + 1):

u j,Nx+ 3
2

= u j,Nx+ 1
2

v j+ 1
2 ,Nx

= v j+ 1
2 ,Nx+1

pNy+1,i = pin−1

k j+ 1
2 ,Nx+ 3

2
= k j+ 1

2 ,Nx+ 1
2

ai j, j+ 1
2 ,Nx+ 3

2
= ai j, j+ 1

2 ,Nx+ 1
2

ε 1
2 ,Nx+ 3

2
= ε j+ 1

2 ,Nx+ 1
2

(2.73)

2.2.3 Validation of the solver

Before trying to embed a neural network, it has to be ensured that the standard version of the solver

-the one using the Linear Eddy Viscosity Model- yields satisfactory results.

The validation case chosen is the turbulent channel flow at Reτ = 544 or equivalently Reδ = 10000.

The choiche was motivated by the following facts:

• The application of the neural network will be tested on the same flow, hence the code can be

reused by just replacing the LEVM with the machine learning architecture.

• The turbulent channel flow is a canonical flow which has been extensively studied numerically.

Indeed, it is the first class of flows to which DNS methods were applied. As a result, it has been

used for long time as a benchmark problem to test and validate numerical CFD solvers and a

wide literature of results is available for comparing the results obtained [6].

Most of the results for the turbulent channel flow cases available in literature derive from the appli-

cation of DNS methods [6]. Benchmark data obtained with RANS k− ε methods are quite rare. In

particular, no available data obtained with the same low-Re Abe-Kondoh-Nagano model have been

found. However, in many publications it is shown that the model yields satisfactory results - compa-

rable to a DNS - for most of the turbulent quantities and for the mean axial velocity [27], [24].

Consequently, when validating the code, the following aspects must be looked upon:

1. The mean adimensional velocity u+(y+) profile must be close to the reference DNS one.

2. The tubulent quantities 〈uv〉(y+) and k(y+) profiles must be close to the reference DNS one.

3. The value:

κ =
1
y+

(
du+

dy+

)−1

(2.74)

2.2. Turbulent fully-developed channel flow 63

mus be approximately constant in the log-law region - for y+ > 30. Such a value is called von

Karman constant [38] and it is characteristic of the log-law region of wall bounded flows where

the following expression holds for the mean axial velocity:

u+ =
1
κ

ln y+ + B (2.75)

where both κ and B are constants. In literature, there is some variation in the values ascribed

to the log-law von Karman constant, but it proves being near the value 0.41 for a broad range

of Reynolds numbers. Equation (2.75) holds for a big portion of the heigth of the channel for

low-Reynolds flows, however near the channel’s mid-plane the velocity profile deviates from

(2.75).

The results of the solver are shown in the following charts and compared with the reference DNS data

available. In Fig.(24) and Fig.(25), the mean velocity profile is analyzed, both in dependence on y+

and y/δ. The plot In Fig.(24) is logarithmic as in standard charts, in order to highlight the logarithmic

trend of velocity in the log-law region. In fig (26), the profiles of turbulent kinetic energy and of 〈uv〉

Reyonlds stress are compared to their DNS counterpart. Lastly, in (27), the computed value of (2.74)

is plotted.

Figure 24: Solver validation: Channel flow u+(y+) profile

2.2. Turbulent fully-developed channel flow 64

Figure 25: Solver validation: Channel flow u+(y/δ) profile

Figure 26: Solver validation: Channel flow k+(y+) and 〈uv(y+) profiles

2.3. Artificial Neural Network 65

Figure 27: Solver validation: von Karman constant

From the charts above, we can observe that the results obtained are fully satisfactory. Indeed:

• The solver gives an acceptable prediction of the axial velocity profile. One must also consider

that the benchmark data derive from a DNS and therefore a small discrepancy between them

and the RANS results obtained is to be expected.

• Despite a small discrepancy compared to the DNS profile, the model predicts succesfully the

peak of turbulent kinetic energy and its global trend across channel’s height. The tubulent shear

stress 〈uv〉 is accurately predicted as well.

• The value computed for (2.74) is almost constant in a broad range of the channel’s height,in

particular for y+ > 30 - the log-law region. As expected, κ deviates from the log-law value

approaching the channel’s mid-plane.

2.3 Artificial Neural Network

In this section, further details will be given about the building and training of the Tensor Basis Neural

Network used to replace the LEVM in the solver. The network introduced in Chaper 1 has been

2.3. Artificial Neural Network 66

implemented in Python, using Keras library [32] with Tensorflow backend. The choice is motivated

by the fact that the network has a very standard layers’ architecture (feed-forward, fully connected)

and Keras provides many tools to easily build canonical networks. Moreover, at the time of the work,

Tensorlow is among the most used libraries for machine learning techniques.

In the following table, the key terminology of neural networks is introduced:

TABLE I: NEURAL NETWORKS’ KEY TERMINOLOGY

TERM EXPLANATION

Layer A vector-valued variable serving as input, output,

or intermediate output in a neural network

Node Individual element of a vector represented by a layer

Fully connected network Each neuron receives input from every element of the previous layer

Feed-forward network Network wherein the connections between the nodes do not form a cycle

Activation Function Function applied to the output of a layer element-wise

Model Parameters Nodes’ weights and biases tuned during training

Loss function A scalar-valued function to be minimized during the training process

Learning rate Step size of the iterative gradient-based optimization algorithm

Epoch A full pass through all training data in stochastic algorithms

Optimizer Method used to find the model parameters that minimize the loss function

Batch size Data points used to estimate the gradient in one iteration of the optimizer

Model hyperparameters Paramters defining the configuration of a neural network and

of the training process, such as the number of hyddens layers,

the number of nodes per layers, activation functions, learning rate..

Train dataset Data using during training to optimize model parameters

Validation dataset Data used to evaluate the performance of the model at each iteration

Overfitting The network fits the training data very well but not the validation data

Early Stopping technique that controls the training time i to prevent overfitting

2.3. Artificial Neural Network 67

2.3.1 High-Fidelity datasets

With the terminology introduced above, we are now ready to introduce the deep neural network de-

scribed in Chapter 1. The Tensor Basis Neural Network (TBNN) has two input layers: the five

invariants input layers -main input - and the ten basis tensors input layers. A series of hydden layers

is used to predicts coefficient g(n) for n=1,..10 of (1.29). The tensor basis input layer is composed

by the 10 invariant tensors T(n) for n=1,..10 of (1.29) from the five invariants λi. The merge output

layer takes the element-wise products of the final hidden layer and of the basis tensors input layer

and sums the results to give the final prediction for b - which is the same as taking the dot product

between the two layers [9]. All the quantities mentioned - the five invariants, the tensor basis, the

nondimensional anisotropy tensor - are derived from DNS or highly resolved LES datasets. Since

the relation seeked by the model has the aspiration of generality, the flows database used represents a

wide variety of different flow configurations. We are therefore testing the ability of the neural network

to domore than just interpolate between similar flow configurations at different Reynolds numbers;

we are evaluating the ability of the neural network to learn about the underlying flow regimes present

in these configurations [9].

The nine flows in the database were selected because of the availability of high-fidelity data and

because they represent canonical flow cases.All of the high-fidelity simulation results have been pre-

viously reported in the literature. The same dataset has been used both for training and validation,

with a train-validation split factor of 0.8 as is common practice. In the following table, the flows

composing the dataset are listed:

TABLE II: NEURAL NETWORK’S TRAINING AND VALIDATION DATASET

Flow type Simulation Reynolds Source

Flow in a Square Duct DNS Reτ = 600 [5]

Hot Jet in Cold Channel Crossflow DNS Re = 3333 [1]

Converging-Diverging Channel DNS Re = 12600 [4]

Periodic Hill LES Re = 10595 [2]

Curved Backward-Facing Step LES Re = 13700 [3]

Channel Flow DNS Reτ = 5200 [6]

Boundary Layer Flow DNS Reθ = 4060 [7]

Couette Flow DNS Reτ = 500 [8]

2.3. Artificial Neural Network 68

Of course, due to the different complexity of the flows, a different number of observations has been

used for each class of flows depending on the available data. For example, in the channel flow case

there is only one direction along which the quantities vary - the one normal to the plates - and there-

fore only around 750 different points with different values were available. On the other side, the Hot

Jet in Cold Channel Crossflow is a 3D simulation (actually all DNS simulations are 3D but in some

cases the variation of the statistics occurs only along one or two directions) and therefore many more

data points were included in the dataset - around 160000.

2.3.2 Input layers’ normalizations

The data listed in Table II were not directly inputed into the neural network. Indeed, it is an usual

practice in machine learning algorithms to perfom a data normalization first when features may have

different ranges of values [35].

As mentioned above,to ensure non-dimensionality of the raw inputs, the normalization scheme for the

mean rate of strain 〈S〉 (1.25) and rate of rotation 〈R〉 (1.26) tensors proposed by Pope is adopted. In

this way, all raw features are normalized by local quantities,as is preferred in the practice of traditional

turbulence modeling. In CFD simulations these would be quantities based on the same grid point as

the raw feature variable. Now, since all components of the nondimensional Reynolds stress tensor lie

in the range [−1/2,2/3], the basis tensors have been normalized in the following way:

T̃(1)
=

1
a

[〈s〉] =
1
a

T(1)

T̃(2)
=

1
ab

[〈s〉〈r〉− 〈r〉〈s〉] =
1

ab
T(2)

T̃(3)
=

1
a2

[
〈s〉2−

1
3

I ·Tr
(
〈s〉2

)]
=

1
a2 T(3)

T̃(4)
=

1
b2

[
〈r〉2−

1
3

I ·Tr
(
〈r〉2

)]
=

1
b2 T(4)

T̃(5)
=

1
a2b

[
〈r〉〈s〉2−〈s〉2〈r〉

]
=

1
a2b

T(5)

T̃(6)
=

1
ab2

[
〈r〉2〈s〉+ 〈r〉〈s〉2−

2
3

I ·Tr
(
〈s〉〈r〉2

)]
=

1
ab2 T(6)

T̃(7)
=

1
ab3

[
〈r〉〈s〉〈r〉2−〈r〉2〈s〉〈r〉

]
=

1
ab3 T(7)

T̃(8)
=

1
a3b

[
〈s〉〈r〉〈s〉2−〈s〉2〈r〉〈s〉

]
=

1
a3b

T(8)

T̃(9)
=

1
a2b2

[
〈r〉2〈s〉2−〈s〉2〈r〉2−

2
3

I ·Tr
(
〈s〉2〈r〉2

)]
=

1
a2b2 T(9)

T̃(10)
=

1
a2b3

[
〈r〉〈s〉2〈r〉2−〈r〉2〈s〉2〈r〉

]
=

1
a2b3 T(10)

where:

a =

√
|Tr(〈s〉2)|

2
b =

√
|Tr(〈r〉2)|

2
(2.76)

and where T̃(n) refers to basis tensor T(n) normalized through (2.76).

In order to justify the normalization described above, it is useful to provide an example with a generic

2.3. Artificial Neural Network 69

2D nondimensional mean strain rate tensor:

〈s〉2D =


s11 s12 0

s21 s22 0

0 0 0


where s12 = s21 due to simmetry and the zeros are due to the fact that in a 2D flow u3 = 0 and

∂

∂x3
= 0.

Now, using simple matrix multiplicaion:

〈s〉2 = 〈s〉2D〈s〉2D =


s2

11 + s2
12 s11s12 + s12s22 0

s11s12 + s12s22 s2
12 + s2

22 0

0 0 0


from which:

a =

√
|Tr(〈s〉2)|

2
=

√
s2

11 + 2s2
12 + s2

22

2

and recalling the basis tensors normalization above:

T̃(1)
=

1
a

[〈s〉] =

√
2

s2
11 + 2s2

12 + s22


s11 s12 0

s21 s22 0

0 0 0

 (2.77)

from which it emerges clearly that the components of the first basis tensor fall approximately in the

interval [-1,1]. Since the components of b - the output of the neural network - lie in the interval [−1/2,

2/3] and since b is expressed as a linear combination of the basis tensors, this seems a reasonal result

for the normalization process. Indeed, using normalization factors (2.76) for the tensor basis, the

Mean Squared Error of the nework has been almost halved compared to the case of non-normalized

inputs.

A crucial aspect to observe is that the normalization parameteres (2.76) are functions of the invariants

λ1 = Tr(〈s〉2) and λ2 = Tr(〈r〉2) introduced in (1.31). In particular:

a =

√
|λ1|

2
b =

√
|λ2|

2

As a result, the invariance properties embedded into the output tensor or the network are not lost.

Indeed, the the neural network tries to learn the between the invariants and the ten coeffiecients of

the basis tensors’ linear combination g(n) = g(n) (λi) where n=1,2...10 and i=1,2..5. Hence, one could

think of the normalization above applied to the coefficients rather than the tensor basis. This means

2.3. Artificial Neural Network 70

that the function learned by the network is g̃(n) = g̃(n) (λi) where:

g̃(1) =
g(1)

a

g̃(2) =
g(2)

ab

g̃(3) =
g(3)

a2

g̃(4) =
g(4)

b2

g̃(5) =
g(5)

a2b

g̃(6) =
g(6)

ab2

g̃(7) =
g(7)

ab3

g̃(8) =
g(8)

a3b

g̃(9) =
g(9)

a2b2

g̃(10) =
g(10)

a2b3

where coefficients g̃(n) still depend only on invariants λi (since factors a,b are functions of them).

Another normalization as well- a standard one- was applied to the invariants input layers. In partic-

ular the z-scores normalization was chosen. Standardization or z-scores is one of the most common

normalization methods. It converts all data to a common scale with an average of zero and standard

deviation of one [36]. The choice of is justified by the practice of machine learning where the in-

puts are usually normalized to the range [-1, 1] or [0, 1]. This helps avoiding clustering of training

data along certain directions within the input feature space and improves the convergence rate in the

training process. The z-scores normalization was applied invariant by invariant; namely, it has been

applied on all data points to each invariant λi separately. The standardization formula is the following:

λz
i, j =

λi, j−λi

σi
i = 1,2...5 j = 1,2....N (2.78)

where:

• N is the number of data points or observations

• λi, j is the value of invariant i of the general data point j

• λi is the mean of invariant λi over all data points j=1,2..N.

• σi is the standard deviation of the value of invariant λi

• λZ
i, j is the normalized value of invariant i of the general data point j

Again, through the application of z-score normalization to invariants layer a significant reduction of

the network’s final loss function was achieved.

2.3. Artificial Neural Network 71

2.3.3 Network’s hyperparameters and architecture

The neural network was trained using the Nadam (Nesterov-accelerated Adaptive Moment Estima-

tion) optimezer. Nadam optimizer fall within the class of gradient descent optimization algorithms.

The principles of mini-batch Stochastic Gradient Descent methods have already been explained in

Chapter 1 and are summarized by (1.43) formula. One probelm with Stochastic Gradient Descent

Methods (SGD) is that they have rouble navigating ravines, i.e. areas where the loss function’s sur-

face curves much more steeply in one dimension than in another, which are common around local

optima. In these scenarios, SGD oscillates across the slopes of the ravine while only making hesitant

progress along the bottom towards the local minima [33].Momentum is a method that helps acceler-

ate SGD in the relevant direction and dampens oscillations. It does this by adding a fraction γ of the

update vector of the past time step to the current update vector:

∆Wk = γ∆Wk−1 +η∇Lm(Wk −1)

Wk = Wk−1−∆Wk (2.79)

where the meaning of the terms in (2.79) is the same as in (1.43). The momentum term γis usually set

to a value near the [0,1] range.When γ=0 the standard mini-batch SGD expression (1.43) is recovered.

Essentially, we can think of using momentum as pushing a ball -the model’s parameters - down a hill

- the loss function curve. The ball accumulates momentum as it rolls downhill, becoming faster and

faster on the way (until it reaches its terminal velocity if there is air resistance, i.e. γ < 1) . The

same thing happens to the model parameter updates: The momentum term increases the paramter

change for dimensions whose gradients point in the same directions and reduces updates for dimen-

sions whose gradients change directions. As a result, faster convergence and reduced oscillation are

achieved.However, a ball that rolls down a hill, blindly following the slope, is highly unsatisfactory.

It would be much better to have a smarter ball that has a notion of where it is going so that it knows to

slow down before the hill slopes up again.Nesterov accelerated gradient (NAG) is a technique to give

the momentum term this kind of prescience. We know that we will use our momentum term γ∆Wk−1

to move parameters W. Computing Wk−γ∆Wk−1 thus gives us an approximation of the next position

of the parameters (the gradient is missing for the full update), a rough idea where the parameters are

going to be. We can now effectively look ahead by calculating the gradient not with respect to to our

current parameters W but with respect to the approximate future position of our parameters:

∆Wk = γ∆Wk−1 +η∇Lm(Wk−1−γ∆Wk−1)

Wk = Wk−1−∆Wk (2.80)

2.3. Artificial Neural Network 72

Nadam (Nesterov-accelerated Adaptive Moment Estimation) is a combination of Adam and NAG

methods. Adam is and adaptive learning rate method, that computes individual adaptive learning

rates for different parameters [34] . Indeed, SGD maintains a single learning rate (termed η) for all

weight updates and the learning rate does not change during training.A learning rate is maintained for

each network weight (parameter) and separately adapted as learning unfolds. gradients.The authors

describe Adam as combining the advantages of two other extensions of stochastic gradient descent.

Specifically:

• Adaptive Gradient Algorithm (AdaGrad) that maintains a per-parameter learning rate that im-

proves performance on problems with sparse gradients (e.g. natural language and computer

vision problems).

• Root Mean Square Propagation (RMSProp) that also maintains per-parameter learning rates

that are adapted based on the average of recent magnitudes of the gradients for the weight (e.g.

how quickly it is changing). This means the algorithm does well on online and non-stationary

problems (e.g. noisy)

Adam realizes the benefits of both AdaGrad and RMSProp.Instead of adapting the parameter learning

rates based on the average first moment (the mean) as in RMSProp, Adam also makes use of the

average of the second moments of the gradients (the uncentered variance) [34].

The choice of the optimizer was made after testing different possibilities: SGD, Adam, Adadelta....

from which Nadam proved the method with better results in terms of final term loss.

In order to measure the neural network predictive performace, a loss function must be chosen. As in

[9], the Root Mean Squared Error (RMSE) was chosen:

RMSE =

√√√√
1

Ndata

Ndata∑
m=1

3∑
i=1

i∑
j=1

(
bNN

i j,m−bDNS
i j,m

)2
(2.81)

where Ndata is the total number of observations, bNN
i j,m is the nondimensional anisotropy tensor pre-

dicted by the neural network from inputs of observation m and bDNS
i j,m is the DNS anisotropy stress

tensor corresponding to data point m. In order to time the training, early-stopping was used , in which

a portion of the training data are held out as validation data and the validation erroris monitored dur-

ing training. The training process terminates once the validation error begins to increase.

For the neural network, there were four main parameters to tune: the number of hydden layers, the

number of nodes per layer, the batch size and the activation function. Indeed, contrarily to Ling’s

work, a different activation function has been chosen for different layers. This choiche allowed to

2.3. Artificial Neural Network 73

achieve a reduction of the final error compared to the use of only one activation function for all lay-

ers (like ReLu). It is important to notice that, when using adaptive learning rate algorithms such as

Nadam, only initial values of learning rate and momentum must be chosen, hence they do not rep-

resents actual parameters to tune. As for them, the default Keras value were used (η = 0.001 and

γ = 0.9) as suggested in the documentation [32].

As far as the hyperparameters tuning of a neural network is concerned, two methods are commonly

followed: either one starts from a configuration already implemented for a similar problem and pro-

ceeds by trial and error or one can use Bayesian optimization, in the parameter space is sampled and

at each sample, a neural network with those hyper-parameters is constructed and trained [18]. The

network performance is then evaluated on a validation data set separate from both the training data

and the test data. However, the latter method is rather computationally expensive and therefore the

first solution was adopted. In particular, an architecture similar to the one of TBNN in [9] was cho-

sen and then changed by trial and error. After trying different configurations, the following network

structure was defined:

TABLE III: NEURAL NETWORK’S ARCHITECTURE

Layer Type Nodes Activation Funtion

Invariants λi Input 1 5 Linear

Tensor Basis T(n) Input 2 10 Linear

Hydden 1 Dense 60 Linear

Hydden 2 Dense 60 Softsign

Hydden 3 Dense 60 ReLu

Hydden 4 Dense 60 ReLu

Hydden 5 Dense 60 ReLu

Hydden 6 Dense 60 ReLu

Hydden 7 Dense 60 Linear

Hydden 8 Dense 60 Linear

Coefficients g(n) Dense 10 Linear

b components Output 6 Linear

The activation functions mentioned in Table III are defined by the following expressions:

2.3. Artificial Neural Network 74

• Linear activation function ΦL(x) = x

• ReLu activation function ΦR(x) = max(0, x)

• Softsign activation function ΦS (x) =
x

1 + |x|

where each function operates element wise on
(
Wkxk−1 + bk

)
of generic layer k. The distibution of

activation functions has been chosen by fixing the same number of hidden layers of Ling’s TBNN [9]-

namely 8 - and through trial and error. The chosen configuration is the one that allowed to achieve the

lowest final RMSE. The general principal driving the trial and error procedure was that the function

g(n)(λi) had to be highly non-linear to be able to fit a wide variety of different flows. This justify the

use of nonlinear activation functions Softsign and ReLu.

The other crucial characteristic of the model are listed and summed up in the following Table IV

TABLE IV: MODEL’S CHARACTERISTICS

Characteristic Choice

Optimizer Nadam

η0 Nadam 0.001

γ0 Nadam 0.9

Batch Size 256

Loss RMSE

Early stopping Yes

Shuffling Yes

Biases Initializer Zeros

Weight Initializer Glorot Uniform

Train-Validation split factor 0.8

where:

• Shuffling refers to the practice of shuffling validation data after each epoch of the training phase.

This technique avoids the network to learn a pattern linked to the order in which the data are

presented in batches.

• Zeros biases initialization means that all layers’ biases are initialized to 0 before training [32].

2.3. Artificial Neural Network 75

• Glorot Uniform is a standard weight initialization; draws samples from a uniform distribution

within [-limit, limit] where limit is
√

6/(in + out) where in is the number of input units in the

weight tensor and out is the number of output units in the weight tensor [32].

2.3.4 Training phase and a priori result

As in most data driven tubulence modelling approaches, the use of machine learning can be divided

into two phases:

1. The neural network or the other machine learning tool is trained offline- namely separately from

the CFD code - on a certain flows dataset. The result of the training phase are usually called

a priori results since the network has not still been used in conjunction with a CFD code to

improve its performances.

2. The network is used in some way to improve the CFD solver performances. The results of

the CFD solver in conjuction with the machine learning technique is usually referred to as a

posteriori results.

In this section, the result of the training phase will be analyzed, namely the a priori result of the neural

network in predicting anisotropy stress tensor components from the corresponding inputs.

Figure 28: Train and validation RMSE

2.3. Artificial Neural Network 76

In the above Fig.(28) the validation and training losses are shown. As one can observe, the train and

validation RMSE are close during the training. This represents a sign that overfitting did not occur.

The final RMSE is around 0.0475 both for validation and training dataset. The final RMSE is almost

half the best Ling’s model’s a priori results [9], yet this result should be expected since the model was

trained withe DNS inputs - therefore way more accurate than the RANS ones. In order to visualize

the result, the model was used to predict the anisotropy stress tensor for one flow of the dataset - the

Square Duct Flow. The outcome is showed in the following Fig.29.

Figure 29: A priori Predictions of Reynolds stress anisotropy tensor on the Duct Flow case

2.3. Artificial Neural Network 77

Only the lower left quadrant of the duct is shown, and the streamwise flow direction is out of the page.

The first column show the predictions of the TBNN and the true DNS anisotropy values are shown in

the right column for comparison.

In comparsion, the baseline LEVM completely fails to predict the anisotropy values. It predicts zero

anisotropy for b11, b22, and b12. This is due to the fact that the LEVM does not predict any secondary

flows in the duct, so the mean velocity in the x1 and x2 directions - the one sin the transverse plane

shown above-is zero, causing S 11, and S 22 to be zero. Since the flow is periodic in the x3 direction,S 33

is also zero. As a result, b components are all zeros as shown below in Fig.(30).

Figure 30: Baseline LEVM Predictions of Reynolds stress anisotropy tensor on the Duct Flow case

On the contrary, the TBNN is not only able to predict the value of the anisotropy stress tensor com-

ponents, but also to pick its trends on the transverse section of the square duct.

2.3. Artificial Neural Network 78

2.3.5 Embedment of the neural network into the CFD solver

A scheme of the approach proposed in this work has already been shown in Fig.(4). In the following

figure Fig.(31), the steps involved in the embedment of the neural network into the CFD solver (b)

are shown in comparison to the standard LEVM approach (a). All the passages have already been

explained in detail above. The steps differing from the standard LEVM model have been highlighted

in red. Basically, insted of directly applying (1.27) to the inputs listed on top of Fig.(31a), deriving

from previous computations of the solver at iteration n, a different set of inputs - top of Fig.(31a)-

are nondimensionalized,normalized and fed to the TBNN. The output is the anisotropy stress tensor

predicted by the network.

Figure 31: Embedment of the neural network into the CFD solver

It is important to stress again that the use of the neural network as described in Fig.(31) differs from the

standard application of machine learning methods in the data driven turbulence modelling approaches.

Indeed, the machine learning method is usually used as a post-processing technique to correct the

RANS anisotropy stress tensor; it receives in input the quantities of interest of the converged standard

2.3. Artificial Neural Network 79

RANS model and predicts an anisotropy stress tensor field that is imposed as fixed in the further

iteration of the RANS model. Here, instead, the machine learning is used to replace the LEVM

function correlating b to velocity gradients and turbulent quantities, and therefore it must be called

at each iteration of the solver. As for this last practical aspect, one problem that had to be faced was

that the model was trained using Python- in particular Keras library - whereas the CFD solver was

coded in Matlab. One possibility consisted in computing the network’s inputs in the Matlab solver

and pass to the Python code at each iteration. However, calling the Python script from Matlab and

reloading the Keras model proved extremely time expensive, compared to the solver’s iteration time.

As a solution, the weigths and biases of the model were extracted from the Keras network and the

matrices and vectors were imported in matlab. After that, the same model architecture was coded in

matlab - it simply consists of matrices multiplications. In this way, the LEVM iteration time and the

iteration time with the NN model proved absolutely comparable.

Chapter 3

RESULTS AND CONCLUSIONS

3.1 Application to the turbulent channel flow case

The Tensor Basis Neural Network’ performance was analyzed on the same case on which the CFD

RANS solver was validated- namely the fully developed turbulent channel flow at Reτ = 544- due to

the availability of reference DNS data for comparison [6]. Moreover, the channel flow was chosen

because, in this case, the performance of the LEVM in predicting the Reynolds stress tensor’s com-

ponents yields good result only for the shear stress 〈uv〉, as it will be later shown. This is due to the

intrinsic limits of the relation (1.27), in which the anisotropy stress tensor components are assumed

to be in a linear relation with the mean strain rate tensor. Yet, in the fully developed region of the

channel flow, such a tensor is reduced to:

〈S〉 =


0

1
2
∂〈u〉
∂y

0

1
2
∂〈u〉
∂y

0 0

0 0 0


(3.1)

since 〈v〉 = 0, 〈w〉 = 0 and the variation of the variables occurs only on the direction orthogonal to the

walls y, namely
∂

∂x
= 0 and

∂

∂z
= 0.

Now, since according to the LEVM:

aLEV M = Cµ
k2

ε
〈S〉

with aLEV M being the anisotropy stress tensor predicted with the LEVM, it is clear that the only non-

zero component of such a tensor will be a12 and that therefore tensor aLEV M will have the following

80

3.1. Application to the turbulent channel flow case 81

form:

aLEV M =


0 a12 0

a12 0 0

0 0 0

 (3.2)

As a consequence, by recalling (1.13), the Reynolds stress tensor predicted by the LEVM will be:

uiuLEV M
j =


2
3

k a12 0

a12
2
3

k 0

0 0
2
3

k

 (3.3)

Hence, when applying a RANS model using the LEVM to the turbulent channel flow case, all the

diagonal components of the Reynolds stress tensor will be predicted with the same value. In the

following Fig.(32) the Reynolds stresses’ profiles obtained with the CFD RANS solver run with the

standard LEVM are shown.

Figure 32: Turbulent Channel Flow: Reynolds stresses profiles with LEVM

3.1. Application to the turbulent channel flow case 82

One can observe that, as expected, the profiles of the normal Reynolds stresses are superposed. This

outcome is the result of the linearity of LEVM relation (3.3). However, as shown in the following

figure, the actual normal Reynolds stresses profiles [6] are significantly different in the channel flow

case:

Figure 33: Turbulent Channel Flow: DNS Reynolds stresses profiles

By comparing Fig.(32) with Fig.(33) it emerges clearly that, apart from the shear stress 〈uv〉, the

Reynolds stresses prediction resulting from the LEVM is unsatisfactory for all the other components

of the Reynolds stress tensor. Interestingly, an analogue result would be obtained with all fully de-

veloped flow cases in which the variation of the quantities occurs only in one direction - such as for

example the Couette Flow. In most of this cases,however, the normal stress profiles are not the same,

and therefore the prediction of LEVM proves flawed.

It is now interesting to compare the predictive performances of LEVM and TBNN in terms of Reynolds

stresses. In the following figure, the DNS and LEVM Reynolds stresses profiles are compared with

3.1. Application to the turbulent channel flow case 83

the first prediction of the TBNN, namely on the prediction of the network based on the inputs of the

converged standard RANS.

Figure 34: Turbulent Channel Flow: DNS, LEVM and TBNN Reynolds Stresses profiles’ comparison

As one can easily observe in Fig.(34) the first prediction of the TBNN significantly outperforms the

LEVM in all zones of the channel height, apart from the shear stress 〈uv〉 for a certain y+ range. In

particular,as one can observe in Fig.(35), the Reynolds normal stresses’ profiles differ from each other

and are much more accurate than the LEVM ones. This is due to the fact that the General Eddy Vis-

3.1. Application to the turbulent channel flow case 84

cosity model (1.29) involves not only the mean strain rate tensor 〈S〉= T(1) but a basis of 10 symmetric

and invariant tensors derived from second and third order products of 〈S〉 and 〈R〉. This formulation

of the Reynolds stresses model incorporates non-linear terms and therefore, even when the 〈S〉 has

only one non-zero component, the contribution of the other tensors allows to predict distinct profiles

for the Reynolds normal stresses.

Figure 35: Turbulent Channel Flow: TBNN Reynolds stresses profiles

It is yet important to stress that the General Eddy Viscosity formulation (1.29) assuming a universal

functional mapping between the anisotropy stress tensor a and 〈S〉 and 〈R〉 tensors represents a simpli-

fied model. Indeed,the turbulence is also in influenced by pressure gradients. On the other hand, the

general form (1.29) assumes equilibrium turbulence, i.e., the turbulence production balances dissipa-

tion everywhere in the field. With such an assumption, the Reynolds stress at location x only depends

on the local gradients of mean velocity at the same location ∇〈U〉(x). However, the convection and

diffusion of turbulence exist in many real applications, indicating strong non-equilibrium effects and

3.1. Application to the turbulent channel flow case 85

making this single-point-based turbulent constitutive law invalid. Hence, a certain discrepancy be-

tween the TBNN and the DNS data is justified by the limits of the assumptions leading to (1.29).

It is now interesting to observe how the different tensors T(n) contribute to the final nondimensional

anisotropy stress tensor a. It is crucial to recall that, if g(1) = −Cµ = −0.09 and g(n) = 0 for n > 1, the

General Eddy Viscosity model reduces itself to the LEVM. Hence, it is also interesting to observe the

coefficient g(1) predicted by the TBNN and compare it to the value that results in the LEVM. This is

shown in the following Fig.(36):

Figure 36: Coefficient g(1) predicted by TBNN at first solver iteration

As it can be observed, the coefficient g(1) predicted by the TBNN has a value close to the LEVM

one, yet not on the whole channel height. Indeed, the two values are particularly close in the log-

law region - approximately for y+ > 30 - where g(1)
T BNN holds an almost constant value. Instead, near

the wall and near the channel’s axis, the coefficient deviates significantly from the value −Cµ. This

result is perfectly reasonable: the value of constant Cµ for the LEVM has been calibrated to match

3.1. Application to the turbulent channel flow case 86

experimental results obtained in the log-law region of turbulent channel flows, and the LEVM proves

correct in this flow region; as a consequence, one can expect the TBNN to look for a model similar to

the LEVM .On the contrary, LEVM fails in the near-wall region and this is the reason why a low-Re

k− ε model with damping functions was adopted. The damping function fµ of Abe-Kondoh-Nagano

model depends, among other quantities, from the wall distance y+ , which is not an input in the Gen-

eral Eddy Viscosity model (1.29). It is therefore clear that, in the near wall-region, the neural network

has to find a model fairly distant from the LEVM one.

Lastly, it is interesting to analyze the contribution of the other basis tensors T(n) for n > 1. In the

following figure, the nondimensional coefficients g̃(n) explained in Chapter 2 are shown:

Figure 37: Coefficients g(n) predicted by TBNN at first solver iteration

It is interesting to observe that:

• None of the coefficient is identically null, and therefore all the basis tensors contribute to b.

Since the LEVM is outperformed by the TBNN in the Reynolds stresses prediction, it is fair to

3.2. Effect on the mean velocity 87

conclude that the linear relation of LEVM is limited and that including higher order non-linear

tensors into the prediction of b can significantly improves the CFD RANS solver performance.

This is true, even though the Reynolds stress anisotropy is not the only source of uncertainty in

the RANS equations, which also rely on approximate transport equations for k and ε.

• All the coefficients hold an approximately constant value in the log-law region, whereas near

the wall their profiles are much more noisy. This may be an indication of the fact that, in the

near wall region, an important variable is the wall distance y+, and that it should be included in

the General Eddy Viscosity model as an additional input. Indeed, for y+ < 30′ the TBNN has

to look for a less smooth function in compensation to accomodate the prediction to the DNS

values.

• Near the channel axis y = δ, all coefficients g(n)→ 0. This can be explained by the fact that:(
∂〈u〉
∂y

)
y=δ

= 0 (3.4)

and therefore, since all the velocity gradients are null at the channel axis, then T(n) = 0 for

n = 1, ..10. Hence, the prediction of b would be the same for every vector of coefficients g(n).

So far, however, only the first prediction of the TBNN has been analyzed. In order to test the proposed

approach, it is necessary to run the RANS solver with the use of the TBNN at every iteration. In

particular, it is interesting to observe whether the improved predictions of Reynolds stresses can have

a significant impact on the real quantity of interest, namely the mean velocity 〈u〉. Notwithstanding, by

anylizing the TBNN Reynolds stresses first prediciction it emerges clearly that the use of a General

Eddy Viscosity model tuned through machine learning techniques can provide a significanly more

complete model for the Reynolds stresses than the LEVM.

3.2 Effect on the mean velocity

Given the significantly improved Reynolds stress anisotropy predictions of the TBNN, it was of inter-

est to determine whether these improved anisotropy values would translate to improved mean velocity

predictions. To do so, the CFD RANS solver should be run on the same flow case using the TBNN

integration scheme described in Fig.(31). In order to speed convergence, the TBNN scheme should

be run starting from a converged RANS simulation as initial conditions.

Notably, the Reynolds stress anisotropy is not the only source of uncertainty inthe RANS equations,

which also rely on approximate transport equations for k and ε. Therefore, the true DNS anisotropy

3.2. Effect on the mean velocity 88

stress tensors were also implemented in the RANS solver as fixed fields as a point of comparison.

This DNS anisotropy model shows the flow predictions that would be achieved by using the correct

normalized anisotropy tensor b, given the other RANS model assumptions. It therefore represents

the upper performance limit of an improved Reynolds stress anisotropy model. In this case, only the

a12 component of the anisotropy stress tensor from the DNS data was enforced as a fixed field in the

RANS solver. Indeed, the component a11 has a negligible effect on 〈u〉 since in the corresponding

momentum equation the
∂

∂x
derivative cancels its effect for the fully developed flow. The other com-

ponent a22 has only effect on the 〈v〉 equation, and therefore its effect is negligible since 〈v〉 = 0 in

the fully developed region of turbulent channel flow. The result of enforcing the a12 anisotropy stress

tensor field on the RANS solver is shown in the following Fig.(38):

Figure 38: Mean velocity field resulting from enforcing true DNS anisotropy tensor

As one can observe, enforcing the true anisotropy stresses field leads only to a slight improvement

3.2. Effect on the mean velocity 89

of mean velocity prediction. The discrepancy between the DNS data and the ones obtained imposing

the DNS stresses is due to the other approximations of RANS k−ε model, in particular regarding the

model transport equations for k and ε.

Now, by running the CFD RANS solver on the turbulent channel flow case using the TBNN integra-

tion scheme described in Fig.(31), it has been obtained:

Figure 39: Mean velocity field resulting from the TBNN approach

In Fig.(39) above, the predicted mean velocity field 〈u〉 at various iterations n of the CFD RANS

solver running with the TBNN scheme is shown. Iterations n=0 correspond to the converged RANS

solution obtained with the standard LEVM. As one can observe, the mean velocity profile tend to

3.2. Effect on the mean velocity 90

diverge from the correct DNS one as the iterations increase. This result is surprisingly negative, if

one considers the improvement in the anisotropy stress tesnsor prediction showed by the TBNN in

Fig.(34) compared to the LEVM. In order to interpret the results, a magnification of the 〈uv〉 compo-

nent in Fig.(34) predicteb by TBNN at first iteration is shown below in a semilogarithmic plot - as the

mean velocity one:

Figure 40: Turbulent Channel Flow: TBNN 〈uv〉 predicted profile

This 〈uv〉 component of the Reynolds stress tensor is particularly relevant since, in this particular flow

case, it is the only one affecting the mean velocity field. By observing the comparison between the

LEVM and TBNN profiles, one can obseve that in two regions - y+ < 8 and y+ ∈ [20,90] - of the

channel’s height the TBNN performs worse than the LEVM in the prediction. Interestingly enoughh,

the TBNN outperforms the LEVM in all the flow regions for all the other tensor’s components as it

results from Fig.(34). Yet, the normal stresses do not have any effect on the x momentum equation for

〈u〉. Comparing Fig.(40) and Fig.(39) one can observe that the regions of the flow where the TBNN

and the DNS profiles diverges are the one where the 〈uv〉 prediction of the TBNN is less accurate than

the LEVM one. As a consequence one can infer that:

• The TBNN significantly outperforms the LEVM at iteration 1 in the prediction of normal

3.3. Conclusions 91

stresses but the shear Reynolds stress prediction is worse in the near wall region and in the

first part of the log-law region.

• The only Reynolds stresses component that affects the 〈u〉 field is the shear one and therefore

the 〈u〉 profile predicted with the TBNN is worsened in the regions where the predictions of

〈uv〉 are worse.

• The worsened 〈u〉 profiele brings to a worsened
∂〈u〉
∂y

profile, which is the main input to the

TBNN. Indeed, by observing the different profiles in Fig.(39), it emerges clearly that in the

viscous wall region the slope of 〈u〉 curve deviates significantly fromt the true one.

• The worsened input to the TBNN leads to an even worse prediction of the shear Reynolds stress

and, iteratively, the solver diverges from the correct profile. One should also consider, indeed,

that the TBNN can be much more unstable than an analytical function and therefore it is not

granted that the model will have relevant convergence issues.

3.3 Conclusions

A deep learning approach to RANS turbulence modelling was presented. In an attempt to improve the

standard LEVM for the closure of two-equations RANS models, a neural network with an architecture

analogue to Ling’s work [9] was trained on a large dataset of flows and then tested on the turbulent

channel flow case. The network’s architecture allows to embed Galilean invariance into the output

tensor using a higher-order multiplicative layer. This ensures that predicted anisotropy tensor lay on

a invariant tensor basis. The invariant Tensor Basis Neural Network was shown by Ling to have sig-

nificantly more accurate predictions than a generic MLP that did not have any embedded invariance

properties [18].

Yet, differently from the major approaches followed so far in the data driven turbulence modelling

field, the TBNN was not used as a post-processing corrector tool to predict the Reynolds stresses field

b(x) from the inputs of a converged standard RANS solution. Indeed, the TBNN was trained on DNS

data only, in the attempt to find a machine learning mapping between the anisotropy stress tensor and

the inputs of Pope’s General Eddy Viscosity model to replace the LEVM model at each iteration of

the CFD RANS solver. Interestingly, the LEVM can be seen as the Pope’s GEVM where only one of

the 10 coefficients have been tuned. Hence, in this approach we tested the ability of the network to

learn about the underlying flow regimes present in various flow configurations and to provide a gen-

eral, more complete model for che RANS closure problem.The accuracy of the TBNN was explored

3.3. Conclusions 92

in both an a priori and an a posteriori sense.

In the a priori results, corresponding to the training phase of the network, the TBNN showed a signif-

icant improvement in accuracy compared to [9] in terms of Root Mean Squared Error. From a visual

analysis of the prediction performance for the Square Duct Flow case, it emerged how the TBNN

model is able to predict both the qualitative and quantitative trends of the Reynolds stresses, signifi-

cantly outperforming the LEVM.

As for the a posteriori evaluation, the TBNN was used as a replacement of the LEVM in a self-

coded RANS solver using the low-Re Abe-Kondoh-Nagano version of k− ε model. The approach

was tested on a turbulent channel flow case for which DNS data were available for comparison [6].

We began our analysis by assessing the performance of the TBNN in predicting various components

of the anisotropic Reynolds stress tensor and found that,at first iteration, the TBNN outperforms the

classical LEVM except for the shear component in some flow regions. Now, it was of interest to

determine wether the improved Reynolds stresses prediction would translate into better predictions

of the mean axial velocity field 〈u〉. Unfortunately, in this flow case, the only Reynolds stress tensor

component affecting the mean velocity field is the shear one. Hence, in the flow regions where the

TBNN Reynolds stresses prediction proved worse than the LEVM ones, the 〈u〉 profiles deviates from

the true DNS one, thus leading to a global worse result in terms of mean velocity. The convergence

properties of the network resulted as well in a serious issue, with the 〈u〉 profile deviating from the

DNS one more and more as the iterations went on.

To sum up, the approach yielded very promising a priori results yet, when tested on the specific flow

case, the globally improved Reynolds stress predictions did not translate into an improved prediction

of the mean flow field. Several avenues for future exploration can however be devised. First of all, it

would be interesting to test the TBNN on a different flow configuration, maybe a more complex one,

in which all the Reynolds stress components affect the mean velocity fields. Another further aspect to

improve would be the convergence properties arising from the substitution of an analytical function

with a TBNN at each iteration of a code. Lastly, another possible way to explore would be to include

more inputs in the Pope’s GEVM that the network tries to reply, to account for example for pressure

gradient and non-locality of the Reynolds stress tensor. As far as the last solution is concerned, it

is important to mention that, adding tensors and gradients as inputs of the GEVM significantly en-

large the tensor basis [15], thus making both more complex and computationally expensive to tran the

TBNN.

CITED LITERATURE

[1] Wu, Z., Laurence, D., and Afgan, I.: Direct simulation of hot jet in cold channel crossflow with

temperature mixing. https://doi.org/10.17632/7nx4prgjzz.4 [Online; accessed 13/03/2019]

[2] Temmerman,L.,Bentaleb,Y.,and Leschziner,M.: Large Eddy Simulation of the flow over periodic

hills. https://turbmodels.larc.nasa.gov [Online; accessed 14/03/2019]

[3] Lardeau, S.: The interaction of round synthetic jets with a turbulent boundary layer separating

from a rounded ramp. https://turbmodels.larc.nasa.gov [Online; accessed 14/03/2019]

[4] Laval, J.-P..: Direct Numerical Simulations of Converging-Diverging Channel Flow.

https://turbmodels.larc.nasa.gov [Online; accessed 14/03/2019]

[5] Huser,A.: Direct Numerical Simulation of a Flow in a Square Duct. In Ph.D Thesis, University

of Colorado at boulder (1992)

[6] Lee,M.,and Moser,R.: Direct numerical simulation of turbulent channel flow up to Reτ = 5200,.

Journal of Fluid Mechanics, vol. 774, pp. 395-415 (2015)

[7] Schlatter,P.,and Orlu.,R.: Assessment of direct numerical simulation data of turbulent boundary

layers. Journal of Fluid Mechanics, vol. 842, pp. 128-145 (2018)

[8] Lee,M.,and Moser,R.: Extreme-scale motions in turbulent plane Couette flows. Journal of Fluid

Mechanics, vol. 659, pp. 116 - 126 (September 2010)

[9] Ling,J., Kurzawski, A., and Templeton, J.: Reynolds averaged turbulence modelling using deep

neural networks with embedded invariance. In J. Fluid Mech. (2016), vol. 807, pp. 155-166 (2016)

[10] Ling,J.,Templeton, J., and Reese,J.: Machine Learning Strategies for Systems with Invariance

Properties. In Journal of Computational Physics (2016)

[11] Pope,S.B.: A more general effective-viscosity hypothesis. In J. Fluid Mech. (1975), vol. 72 part

2, pp.331-340

93

CITED LITERATURE (continued) 94

[12] Duraisamy,K.: Status, Emerging Ideas and Future Directions of Turbulence Modeling Research

in Aeronautics. In NASA Technical Memorandum (November 2017)

[13] Duraisamy,K., Alonso,J., and Durbin,P.: A Framework for Turbulence Modeling using Big Data.

In Summary of Research, University of Michigan

[14] Xiao,H.,Wu,J.,and Paterson,E.,: Physics-informed machine learning approach for augmenting

turbulence models: A comprehensive framework. In Physical Review Fluids (July 2018)

[15] Wang,J.-X., Wu,J.-L., and Xiao,H.: A Physics Informed Machine Learning Approach for Re-

constructing Reynolds Stress Modeling Discrepancies Based on DNS Data. In Physical Review

Fluids (February 2017)

[16] Duraisamy,K., Iaccarino,G., and Xiao,J.: Turbulence Modeling in the Age of Data. In Annual

Review of Fluid Mechanics, vol. 51, pp. 357-377 (2019).

[17] Tracey,B.,Duraisamy,K.,Alonso,J.J.: A Machine Learning Strategy to Assist Turbulence Model

Development. In AIAA SciTech Forum (January 2015)

[18] Fang,R.,Sondak,D.Protopapas,P. and Succi,S.: Deep learning for turbulent channel flow.

https://arxiv.org/abs/1812.02241 [Online; accessed 15/04/2019]

[19] Kuzmin, D. and Mierka, O.: On the implementation of the k−ε turbulence model in incompress-

ible flow solvers based on a finite element discretization In International Journal of Computing

Science and Mathematics (January 2007)

[20] Nptel:Solution of Navier-Stokes Equations for Incompressible Flows Using SIMPLE and

MAC Algorithms. https://nptel.ac.in/courses/112104030/pdf/lecture27.pdf [Online; accessed

03/04/2019]

[21] Harlow, F.H., and Welch,J.E.: Numerical Calculation of Time-Dependent Viscous Incompress-

ible Flow of Fluid with Free Surface In Physics of Fluids, Volume 8, Issue 12, p.2182-2189,

(1965).

[22] Rechia1,A. , Naji, H., Mompean,G.,EI Marjani, A.: Numerical simulation of turbulent flow

through a straight square duct using a near wall linear k− ε model In Int. Jnl. of Multiphysics

Volume 1, Number 3 (2007)

CITED LITERATURE (continued) 95

[23] Abe,K.,Kondoh,K.Nagano,Y.: A new turbulence model for predicting fluid flow and heat trans-

fer in separating and reattaching flows-I. Flow field calculations. In Int. J. Heat and Mass Transfer

37(1), pp 138-151 (1994)

[24] Gorji,A.,Seddighi,M.,Ariyaratne,C.,Vardy,A.E.,O’Donoghue,T.,Pokrajac,D., and He,S.: A

comparative study of turbulence models in a transient channel flow. In Computer & Fluids, vol.89,

pp. 111-123 (2014)

[25] Jagadeesh,P., and Murali,K.: Application of low-Re turbulence models for flow simulations past

underwater vehicle hull forms. Journal of Naval Architecture and Marine Engineering (January

2005)

[26] Sondak,D.,Pletcher,R.H.,Vandalsem,W.R.: Wall functions for the k−ε turbulence model in gen-

eralized nonorthogonal curvilinear coordinates. https://doi.org/10.31274/rtd-180813-11746 [On-

line;accessed 06/04/2019]

[27] Suga,K.: Recent Developments in Eddy Viscosity Modelling of Turbulence. R & D Review of

Toyota CRDL, vol.33, No.1 (1998)

[28] Liu,F. and Zheng,X.: A Strongly Coupled Time-Marching Method for Solving the

Navier–Stokes and k −ω Turbulence Model Equations with Multigrid In Journal of Computa-

tional Physics, vol.128, pp. 289-300 (1996)

[29] LEAP CFD Team: Tips & Tricks: Estimating the First Cell Height for correct y+.

https://www.computationalfluiddynamics.com.au/tips-tricks-cfd-estimate-first-cell-height/ [On-

line; accessed 15/05/2019]

[30] ANSYS Theory Guide: Enhanced Wall Treatment.

https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node101.htm [Online; accessed

15/05/2019]

[31] ANSYS support - Davoudabadi P.: The Most Accurate and Advanced Turbulence Capabilities.

https://support.ansys.com/staticassets/ANSYS/Conference/Confidence/Chicago/Downloads/most-

accurate-advanced-turbulence-capabilities.pdf [Online;accessed 01/05/2019]

[32] Keras Documentation: Keras, The Python Deep Learning library. https://keras.io/ [On-

line;accessed 15/02/2019]

CITED LITERATURE (continued) 96

[33] Ruder,S: An overview of gradient descent optimization algorithms. https://ruder.io/optimizing-

gradient-descent/ [Online;accessed 15/02/2019]

[34] Bushaev,V.: Adam,latest trends in deep learning optimization. https://towardsdatascience.com/

[Online;accessed 15/02/2019]

[35] Jaitley,U.: Why Data Normalization is necessary for Machine Learning models.

https://medium.com/@urvashilluniya/why-data-normalization-is-necessary-for-machine-

learning-models-681b65a05029 [Online;accessed 15/02/2019]

[36] Almaliki,Z.A.: Standardization VS Normalization

https://medium.com/@zaidalissa/standardization-vs-normalization-da7a3a308c64[Online;

accessed 15/02/2019]

[37] Ferziger,J.H.,and Peric,M.: Computational methods for fluid dynamics Springer (2002).

[38] Pope,S.B: Turbulent Flows. Cambridge University Press (2000)

[39] Patankars,S.V.: Numerical Heat Transfer and Fluid Flow. Taylor & Francis (1980)

[40] Versteeg.H.G. and Malalasekera,W.: An Introduction to Computational Fluid Dynamics. The

Finite Volume Method. Pearson, 2nd Edition (2007)

