
POLITECNICO DI TORINO
Department of Electronics and Telecommunications

Communications and Computer Networks Engineering

Degree of Master of Science in

Design of Low Power Gateway for LoRaWAN Applications in
Remote Areas

supervisors:
Dr. Daniele Trinchero

Co-supervisor:
Dr. Giovanni Colucci

Author: 

Behnaz Asadollahseraj

December 2018

Abstract

Nowadays, the demand for connecting to the internet for exchanging information

everywhere, every time and anyhow is noticeable. Thanks to Information communication

technologies (ICT) services, through The Internet of Things commonly abbreviated “IoT”

that focuses on inert-connecting of devices or things to each other and to the users. the

main descriptive term of vision in IoT is shift the connections from “users to things” to

“things to things”. Today the size of IoT has been increasing swiftly and more and more

devices are being introduced into the IoT networks every day; also is expected to grow

appreciably in the immediate future.

The main aim of this thesis is to design a Low-Power Gateway and implement IoT

system based on Low-Power Wide-Area Networks (LPWANs) and in this project focuses

on specific LPWAN, namely, “LoRaWAN” protocol. LoRaWAN is able to communicate

and transmit messages between devices and gateways. The LoRaWAN specification

provides seamless interoperability among smart things without the need of complex local

installations, enabling the rollout of IoT applications, according to the association.

In this thesis, to further familiarize the reader with the foundations of LPWAN

technology, a completely open-source LoRaWAN server is set up on a Raspberry Pi Linux-

operated device and communications between the Network server and Gateways are

discussed.

The project had two phases. The first used The Things Network and Lora server for

designing and implementing of network server for LoRaWAN Application. In these

methods the connection between network-server and gateway must be continual and

essential Which is the main cause of energy consumption. The second phase investigated

about eliminate the power-line for connection between network-server and gateway by

building a Low-Power Gateway on Raspberry Pi.

Keywords: IoT, LoraWAN, LoRa, Lora Server, TTN

Acknowledgments

First of all, I would like to thank Prof. Dr. Daniele Trinchero for giving me the

opportunity to write my Master thesis on the very current and fascinating topic of Low

Power Wide Area Network at his laboratory ‘IXEM’ and Group at the Department of

Electronics and Telecommunications at the Politecnico di Torino University.

I would also like to thank Dr. Giovanni Colucci, who fulfilled his role as advisor

for this thesis with great enthusiasm. also for his guidance and advise on many issues

including the technical correctness of this thesis. his valuable feedback helped to improve

both the solution as well as this written document. Also, his positive attitude encouraged

me throughout the process to do my best for this thesis. Furthermore, I would like to thank

IXem team Dr.Mattia Poletti and Mr.Paolo Cielo, for their valuable insights into

LoRaWAN and helped me to further improve the object tracking device and which I am

very thankful for.

Finally,I acknowledge the people who mean a lot to me, my parents, for showing

faith in me and giving me liberty to choose what I desired. I salute you all for the selfless

love, care, pain and sacrifice you did to shape my life. Although you hardly understood

what I researched on, you were willing to support any decision I made. I would never be

able to pay back the love and affection showered upon by my parents.

Table of Contents

Acknowledgments ... ii	

List of Figures ... vi	

Chapter 1. Internet Of Things ..8	

1-1	 Internet of Things Overview ..8	

1-2	 IoT Building Block ..9	

1-3	 Conclusion: Why IoT? ...11	

Chapter 2. Solution For IoT Connectivity ...13	

2-1	 LPWANs Low-Power Wide-Area Networks ...13	

2-2	 LoRaTM PHY layer ...13	

2-2-1	 LoRa Characteristics ...14	

2-3	 LoRaWANTM ...15	

2-3-1	 LoRaWANTM MAC Layer ..15	

2-3-2	 LoRaWAN Frequency Bands ..16	

2-3-3	 LoRaWANTM Network Architecture ..17	

2-3-4	 LoRaWAN Endpoint Classes ..19	

2-3-5	 MAC Message Formats ...24	

2-3-6	 Encryption and Device Activation ..29	

Chapter 3. The Things Network ...32	

3-1	 Network Architecture ...32	

3-2	 TTN Packet Forwarder ..36	

3-3	 Setting up a Private TTN ...37	

Chapter 4. LoRaServer ...39	

4-1	 LoRaServer Architecture ...39	

4-1-1	 Gateway ..41	

4-1-2	 End-Node ...42	

4-2	 LoRaServer Installation and setup ..42	

4-2-1	 Requirements ...43	

4-3	 setting up the gateway: ...48	

4-4	 Installing the LoRa Server project ..48	

4-4-1	 installing LoRa-Gateway-Bridge ..49	

4-4-2	 installing LoRa Server ...50	

4-4-3	 installing LoRa App Server ...51	

Chapter 4. The Architecture of Gateway ...64	

4-1	 LoRa Gateway Architecture ..65	

4-1-1 Hardware ..65	

4-2-2	 Software ..65	

Chapter 5. Experiments on the Network and Programming ..67	

5-1	 A Python script to automatically send data to the end- nodes68	

Chapter 6. Conclusion ..70	

5-1	 Technical Conclusion ...70	

Appendix 1. Setting Up LoRAServer Using the Docker ...72	

Appendix 2. A Code to subscribe to MQTT and send data to the end-nodes73	

Bibliography ..75	

List of Figures

Figure 1. IoT Building Block. ..9	

Figure 2. Internet of Things. ..12	

Figure 3. LoRaWAN Protocol Stack. ..16	

Figure 4. LoRaWAN Architecture. ..19	

Figure 5. Class A Receive Windows. ..20	

Figure 6. Class B Receive Windows. ...21	

Figure 7. Class C Receive Windows. ...22	

Figure 8. LoRaWANTM classes comparative ..23	

Figure 9. LoRa Message Format ..23	

Figure 10. PHY payload. ...25	

Figure 11. LoRa Message Type. ..25	

Figure 12. Encryption Format. ...31	

Figure 13. TTN Architecture. ..33	

Figure 14. Uplink and Downlink Message Process. ..35	

Figure 15. Packet Forwarder. ...36	

Figure 16. LoRa	Server	Architecture. ..40	

Figure 17. End-node. ...42	

Figure 18. MQTT Sub/Pub. ...43	

Figure 19. MQTT Sub/Pub Example. ..44	

Figure 20. Broker Example ..45	

Figure 21. LoRa-App-Server Web Interface ...53	

Figure 22. Low-Power Gateway Architecture. ..65	

Figure 23. Mosquitto Subscribe topic. ...67	

Figure 24. Python script at work. ...68	

 8

Chapter 1.

Internet Of Things

The internet of things “IoT” is the new concept in Information and communications

technology or (ICT) though we can say it is an old term; since it was presented by Kevin

Ashton in 1999 at Proctor & Gamble. he Linked the new idea of RFID (radio frequency

identification) hot topic of the Internet was a good way to get executive attention [1].

1-1 Internet of Things Overview

Nowadays, IoT is growing at an exponential rate. Vehicles, wearable gadgets, RFID

sensors and software, are advancing past basic function and the network is growing to

include even more. In 2008, it was noted that the number of objects connected to the

internet was more than the number of people connected.

The IoT can be viewed from different prospects, we can consider communication

and connection prospects. from these perspective anything from everywhere in anytime

can connect to network of interconnected things. Hence IoT refers to a recent paradigm

supports transfer and analytics of data generated by smart devices (e.g. sensors).

The IoT provides objects to connect, communicate together and be controlled

remotely through applications by existing internet infrastructures. With IoT, users can

share both information provided by humans that contained in databases and also

information provided by things in physical world therefore it enables a direct integration

and communication between the physical and the digital worlds.

9

 By connecting the devices to each other and the internet, are some of the top

uses of IoT such as smart homes, smart city, IoT in agriculture, Smart Retail, Healthcare,

Farming and etc.

1-2 IoT Building Block

clearly this is an interesting point that IoT is not a single technology; this is an

aggregation of technology that work together in an organization. Internet of Things evolves

the network of physical objects with sensors and actuators, software and network

connectivity that enable these objects to gather and transmit data and user’s tasks.

Figure 1. IoT Building Block.

• Sensors and Actuator: Sensors are the key components in IoT. this technology is

impossible without sensors because iot is context awareness. one or more sensors

collect real data from environment and convert that data into the machine

understandable codes. IoT sensors are mostly small in size, have low cost, and

consume less power. There are available specific purposes of sensors, such as

measuring temperature, humidity, motion, light, pressure, altitude and color. These

sensors are used in almost all the IoT applications.

10

in simple word an actuator is a device that acts inverse of sensors. It takes an

electrical input and turns it into physical action. As an example, we can consider a

smart home system, which consists of many sensors and actuators. The actuators

are used to lock/unlock the doors, switch on/off the lights or other electrical

appliances, alert users of any threats through alarms or notifications, and control

the temperature of a home.

• Networking: This is the main aim of my project. physical objects called things,

sensors, actuates, human are connected together by networks, by using various

wireless technologies, standards and protocols.in fact network is responsible for

connecting to other smart things, network devices, and servers. Its features are also

used for transmitting and processing sensor data. IoT network technologies to be

aware of toward the bottom of the protocol stack include cellular, wifi, and

Ethernet, as well as more specialized solutions such as LPWAN, Bluetooth Low

Energy (BLE), ZigBee, NFC, and RFID. We explain about LPWAN solution

complete in next chapters in detailed.

• Data storage and processing: The storage and processing of data can be done on

the edge of the network itself or in a remote server. If any preprocessing of data is

possible, then it is typically done at either the sensor or some other proximate

device. The processed data is then typically sent to a remote server. The storage

and processing capabilities of an IoT object are also restricted by the resources

available, which are often very constrained due to limitations of size, energy,

power, and computational capability. As a result, the main research challenge is to

ensure that we get the right kind of data at the desired level of accuracy. Along with

11

the challenges of data collection, and handling, there are challenges in

communication as well. The communication between IoT devices is mainly

wireless because they are generally installed at geographically dispersed locations.

• Application: The IoT has huge potential for developing new intelligent

applications in nearly every domain, such as personal, social, societal, medical,

environmental and logistics aspects. The number of application domains has been

also increasing due to its ability to perform contextual sensing. It allows, for

instance, to collect information of environment, natural phenomena, medical

parameters and user habits and then can offer tailored services based on information

received. Such phenomenon should enhance the quality of everyday life, and should

have a reflective impact on the society and economy irrespective of the application

domain. Globally, various applications domains can be categorized in three major

areas: smart city domain, industrial domain, and health and well-being domain. In

fact, each domain is partially or completely overlapped but is not isolated from the

others since most of the applications are common and share the same resources.

1-3 Conclusion: Why IoT?

Nowadays, information and communication technologies are become one of the

essential elements of today’s life and society. Both public and private parts across the world

are transforming their countries and businesses with ICT programs ranging from research

and innovation, infrastructure building, and skills development. internet of Things (IoT) as

one of the ICT innovations has attracted attention of companies across the world in the past

decade. It describes a world where anything can be connected and can interact in an

12

intelligent fashion. Therefore, it is popular to realize where internet connectivity and

computing capability extends to a variety of connecting things.

Figure 2. Internet of Things.

13

Chapter 2.

Solution For IoT Connectivity

In this project we implement an IoT system using a LoRaWAN private network. so

we provide a preliminary technical overview to LPWAN, LoRa and LoRaWAN. Low

Power, Wide-Area Networks (LPWAN) are projected to support a major portion of the

billions of devices forecasted for the IoT.

2-1 LPWANs Low-Power Wide-Area Networks

 The IoT movement creates the need for new wireless technologies, capable of

supporting the large numbers of devices found in the IoT space. A low-power wide-area

networks are wireless wide area networks designed to allow long range communications

with a low bit rates. The great benefit brought by LPWANs is an increased power

efficiency. Particularly, they proved effective in typical IoT applications such as

environmental monitoring and smart metering.

2-2 LoRaTM PHY layer

LoRaTM is the physical layer or the wireless modulation utilized to create the long

range communication link. LoRaTM is based on Chirp Spread Spectrum (CSS) modulation,

which maintains the same low power characteristics as FSK modulation but significantly

increases the communication range [2]. Chirp Spread Spectrum has been used in military

and space communication for decades due to the long communication distances that can be

achieved and due to its robustness to interferences. Nevertheless, LoRaTM arrives as the

14

first low cost implementation for commercial usage [3]. With LoRaTM, the communication

between end-devices and gateways is spread out on different frequency channels and data

rates.

The advantage of LoRaTM is in the technology’s long range capability. A single

gateway can cover entire cities or hundreds of square kilometers. Range highly depends on

the environment or obstructions in a given location, but LoRaTM has a link budget greater

than any other standardized communication technology.

With LoRaTM, the communication between end-devices and gateways is spread out

on different frequency channels and data rates. The selection of the data rate is a trade-off

between communication range and message duration, communications with different data

rates do not interfere with each other. LoRa data rates range from 0.3 kbps to 20 kbps [4].

Table 1. Spreading Factors Attributes.

2-2-1 LoRa Characteristics

aspects of using a LoRa radio in in a sensor networks are:

first aspect is range, since range is large about hundreds meters’ network can span large

areas without routing over many hops. Second aspect, if transmission is on the same carrier

frequency but spreading factor are different are orthogonal.

15

2-3 LoRaWANTM

LoRaWAN is a low power wide area network (LPWAN) specification intended for

wireless battery operated things in a regional, national or global network. The LoRaWAN

specification provides seamless interoperability among smart things without the need of

complex local installations, enabling the rollout of IoT applications, according to the

association.

2-3-1 LoRaWANTM MAC Layer

LoRaWANTM defines Media Access Control (MAC) layer protocol and system

architecture for the network while the LoRaTM physical layer (PHY) enables the long-range

communication link. The protocol and network architecture have the most influence in

determining the battery lifetime of a node, the network capacity, the quality of service, the

security, and the variety of applications served by the network. LoRaWANTM is open-

source and it is assembled by the LoRaTM Alliance.

The LoRaWAN protocol stack is presented in Figure 2. The stack consists of an application

layer, a MAC layer and a PHY layer. Data from the application is mapped into the MAC

Payload, then the MAC layer constructs the MAC frame using MAC payload. Finally, the

PHY layer uses MAC frame as PHY payload and constructs the PHY frame after inserting

preamble, PHY header, CRC and entire frame CRC. This final frame is transmitted into

the air on the required RF carrier. The RF parameters including frequencies, bands, power

levels, modulation and the basic RF protocols are all encapsulated in the LoRaTM RF or

physical layer attributes.

16

Figure 3. LoRaWAN Protocol Stack.

2-3-2 LoRaWAN Frequency Bands

LoRaWAN operates in unlicensed radio spectrum. The fact that frequencies have a longer

range also comes with more restrictions that are often country-specific. This poses a

challenge for LoRaWAN, that tries to be as uniform as possible in all different regions of

the world. As a result, LoRaWAN is specified for a number of bands for these regions.

These bands are similar enough to support a region-agnostic protocol, but have a number

of consequences for the implementation of the backend systems.

Using lower frequencies than those of the 2.4 or 5.8 GHz ISM bands enables much better

coverage to be achieved by the LoRa wireless modules and devices, especially when the

nodes are within buildings.

Although the sub-1GHz ISM bands are normally used, the technology is essentially

frequency agnostic and can be used on most frequencies without fundamental adjustment.

17

Table 2: LoRaWAN Protocol Stack

These LoRaWAN regional specifications do not specify everything either. They only cover

a region by specifying the common denominator. For example, the LoRaWAN regional

parameters for Asia only specify a common subset of channels - but there are variations

between regulations in Asian countries. Furthermore, each network server operator is free

to select additional parameters, such as additional emission channels.

2-3-3 LoRaWANTM Network Architecture

Most of the modern IoT LAN technologies use mesh network architecture. By using mesh

network, the system can increase the communication range and cell size of the network.

But, nodes in a mesh network has additional responsibility of forwarding messages to other

nodes, typically irrelevant to them. This affect the device battery life significantly.

18

LoRaWAN uses star topology as it increases battery lifetime when long-range connectivity

is used. A LoRa network consists of several elements:

End points: The endpoints are the elements of the LoRa network where the sensing or

control is undertaken. They are normally remotely located.

LoRa gateway: The gateway receives the communications from the LoRa endpoints and

then transfers them onto the backhaul system. This part of the LoRa network can be

Ethernet, cellular or any other telecommunications link wired or wireless. The gateways

are connected to the network server using standard IP connections. On this way the data

uses a standard protocol, but can be connected to any telecommunications network,

whether public or private. In view of the similarity of a LoRa network to that of a cellular

one, LoRaWAN gateways may often be co-located with a cellular base station. In this way

they are able to use spare capacity on the backhaul network.

LoRa Network Server: The LoRa network server manages the network and as part of its

function it acts to eliminate duplicate packets, schedules acknowledgement, and adapts

data rates. In view of the way in which it can be deployed and connected, makes it very

easy to deploy a LoRa network.

Remote computer: a remote computer can then control the actions of the endpoints or

collect data from them - the LoRa network being almost transparent.

In terms of the actual architecture for the LoRa network, the nodes are typically in a star-

of-stars topology with gateways forming a transparent bridge. These relay messages

between end-devices and a central network server in the backend.

19

Figure 4. LoRaWAN Architecture.

2-3-4 LoRaWAN Endpoint Classes

Like other networks, where end devices can have different capabilities depending on

devices classes, end nodes in LoRaWAN network can have different device classes. Each

device class is a trade-off between network downlink communication latency verses

battery-life.

This three classes serve different applications and have different requirements in order to

optimize a variety of end applications. The device classes trade off network downlink

communication latency versus battery lifetime. In a control or actuator-type application,

the downlink communication latency is an important factor.

• Class A: LoRaWAN class A endpoint devices provide bidirectional

communications. To achieve this, each endpoint transmission is followed by two

short downlink receive windows. The transmission slot scheduled by the particular

20

endpoint is based upon the needs of the end point and also there is a small variation

determined using a random time basis.

LoRa Class A operation provides the lowest power option for end points that only

require downlink communication from the server shortly after the end-device has

sent an uplink transmission. Downlink communications from the server at any other

time wait until the next scheduled uplink time.

Figure 5. Class A Receive Windows.

• Class B: Class B: End-devices of class B allow for more receive slots. In addition

to the class A random receive windows, class B devices open extra receive windows

at scheduled times. In order for the end-device to open its receive window at the

scheduled time it receives a time synchronized beacon from the gateway. This

allows the server to know when the end-device is listening.

This class can be useful for battery powered devices where bidirectional sensors

links are applicable, such as, reading a sensor with occasional

control/configuration, alarm sensors with guaranteed alarm delivery.

21

Figure 6. Class B Receive Windows.

1- All gateways synchronously by the network server must broadcast a beacon providing a

timing reference to the end-devices. 

2- End-devices open periodically receive windows called ”ping slots”, which can be used

by the network infrastructure to initiate a downlink communication.

• Class c: devices extend Class A by keeping the receive windows open unless they

are transmitting, as shown in the figure below. This allows for low-latency

communication but is many times more energy consuming than Class A devices.

This class can be useful for powered devices where a downlink communication is

required at any moment: industrial control, real time control of pumps/valves,

residential gateways, lighting control, car engine status, car tracking....

22

Figure 7. Class C Receive Windows.

1- Class C implements the same two receive windows as class A, with the difference that

they do not close the second reception window until the next packet needs to be send. A

short listening window is open between the end of the transmission and the beginning of

the reception slot 1. 

2- Gateway can communicate with the end-devices at any time.

This three classes serve different applications and have different requirements in order to

optimize a variety of end applications. The device classes trade off network downlink

communication latency versus battery lifetime. In a control or actuator-type application,

the downlink communication latency is an important factor. Figure 7 compares latency of

these classes with battery life.

23

Figure 8. LoRaWANTM classes comparative

LoRaTM messages are divided to uplink and downlink messages. Uplink messages are sent

by end-devices to the network server relayed by one or many gateways, a downlink

message is sent by the network server to only one end-device and is relayed by a single

gateway. 

Figure 9. LoRa Message Format

24

Depending upon the chosen mode of operation two types of header are available.

In Explicit mode, header is the default mode of operation and provides information on the

payload, namely: the payload length in bytes, the forward error correction code rate and

the presence of an optional 2 Bytes CRC of the payload. In this case the header is

transmitted with maximum error correction code. It also has its own CRC to allow the

receiver to discard invalid headers.

In Implicit mode, where the payload, coding rate and CRC presence are fixed or known in

advance, it may be advantageous to reduce transmission time by invoking implicit header

mode. In this mode the header is removed from the packet. In this case the payload length,

error coding rate and presence of the payload CRC must be manually configured on both

sides of the radio link.

Uplink and downlink messages use the LoRa radio packet explicit mode in which the LoRa

physical header (PHDR) plus a header CRC (PHDR_CRC) are included.

Table 3. LoRa Physical Layer Format.

2-3-5 MAC Message Formats

All LoRa uplink and downlink messages carry a PHY payload (Payload) starting with a

single- octet MAC header (MHDR), followed by a MAC payload (MAC Payload), and

ending with a 4-octet message integrity code (MIC).

25

Figure 10. PHY payload.

• Join packets are the first packet that is sent by a device attempting to enter a

network.  

• Data messages can be either uplink or downlink. Additionally, it is stated whether

the message requires an acknowledgement or not. A confirmed-data message

must be acknowledged by the receiver, whereas an unconfirmed-data message

does not require an acknowledgment.

• Proprietary messages can be used to implement non-standard message for- mats

that can be used between devices having a common understanding of some

proprietary extensions.

Figure 11. LoRa Message Type.

26

MAC Payload

The MAC payload of the data messages, also-called” data frame”, contains a frame

header (FHDR) followed by an optional port field (FPort) and an optional frame payload

field (FRMPayload).

FHDR (Frame header) The FHDR contains the short device address of the end-device

(DevAddr), a frame control octet (FCtrl), a 2 Bytes frame counter (FCnt), and up to 15

Bytes of frame options (FOpts) used to transport MAC commands.

Table 4. Frame Header.

• FCtrl: The Frame Control byte. The value of FCtrl changes when  issuing an

uplink or a downlink message.

Table 5. Control Field Structure for Uplink frames.

Table 6. Control Field Structure for Downlink frames.

27

• DevAddr: consists of 32 bits and identifies the end-device within the current

network. DevAddr is allocated by the Network Server of the end-device.

• ADR and ADRACKReq: Two bits that control the Adaptive Data Rate operation,

enabling the server to control  the flow of data of an end-node by issuing MAC

commands. ADR bit being set allows the server to control the data rate. The

Acknowledge request bit is set when the new data rate, set by the server, is not

functional and no message is received within a specific amount of time. The end-

node will keep on dropping the data rate until it could transmit data to the server

[5].

• ACK: When receiving a confirmed data message, the receiver shall respond with a

data frame that has the acknowledgment bit (ACK) set. If the sender is an end-

device, the network will send the acknowledgement using one of the receive

windows opened by the end-device after the send operation. If the sender is a

gateway, the end-device transmits an ACK at its own discretion.

• FPending: The frame pending bit is only used in downlink communication,

indicating that the gateway has more data pending to be sent and therefore asking

the end-device to open another receive window as soon as possible by sending

another uplink message.

• FOptsLen: The frame-options length field denotes the actual length of the frame

options field (FOpts) included in the frame.

• FCnt: Each end-device has two “Frame Counters” to keep track of the number of

data frames sent uplink to the network server (FCntUp), incremented by the end-

28

device and received by the end-device downlink from the network server

(FCntDown), which is incremented by the network server.

The network server tracks the uplink frame counter and generates the downlink

counter for each end-device. After a join accept, the frame counters on the end-

device and the frame counters on the network server for that end-device are reset

to 0. Subsequently FCntUp and FCntDown are incremented at the sender side by 1

for each data frame sent in the respective direction.

• FOpts: The Frame Options part of FHDR transports MAC commands of a

maximum length of 15 bytes that are piggybacked onto data frames. If FOptsLen

is 0, the FOpts field is absent. If FOptsLen is different from 0, i.e. if MAC

commands are present in the FOpts field, the port 0 cannot be used (FPort must be

either not present or different from 0). MAC commands cannot be simultaneously

present in the payload field and the frame options field.

• FPort (Port Field): If the frame payload field is not empty, the port field must be

present. If present, an FPort value of 0 indicates that the FRMPayload contains

MAC commands only. FPort values 1 to 223 (0x01..0xDF) are application-specific.

FPort values 224 to 255 (0xE0..0xFF) are reserved for future standardized

application extensions.

• FRMPayload (MAC Frame Payload Encryption): If a data frame carries a

payload, FRMPayload must be encrypted before the message integrity code (MIC)

is calculated. The encryption scheme used is based on the generic algorithm

described in IEEE 802.15.4/2006 Annex B [IEEE802154] using AES with a key

length of 128 bits.

29

2-3-6 Encryption and Device Activation

Security: LoRaWAN security is designed satisfying the general LoRaWAN design

criteria: low power consumption, low cost and high scalability. This technology uses AES

(Advanced Encryption Standard) algorithm. to share secret keys and allow the fundamental

properties of mutual authentication, integrity protection and confidentiality.

LoRaWAN’s security protocol is based on the IEEE 802.15.4 standard. the end-device and

the backend receivers share symmetric keys. LoRaWAN specifies a number of security

keys, unique per each end-device: NwkSKey, AppSKey and AppKey, all of them with a

length of 128 bit.

The NwkSKey: is a 128-bit AES encryption key, which is unique per device. It provides

communication security as it is used to validate the integrity of each message using the

message’s Message Integrity Code (MIC). The MIC prevents attackers from intentionally

tampering with a message.

The AppSKey is a 128-bit AES encryption key, which is unique per device. The payload

of each message is end-to-end encrypted between the application and the end-device (and

vice-versa) using the AppSKey. 	

Device Activation: This mechanism is to control the access from unrecognized end-

devices to a LoRaWAN network server and prevent these devices from participating in

communications. From the LoRaWAN specification, there are two activation methods for

end devices: Activation by Personalization (ABP) and Over-the- Air Activation (OTAA).

• Over-The-Air Activation (OTAA): allows a device to be activated by exchanging

a series of messages with the network server in order to obtain a Network key over

30

the air in a secure way. globally unique identifiers to derive the three keys for

activation: Device Extended Unique Identifier (DevEUI), Application Extended

Unique Identifier (AppEUI), and Application Key (AppKey). In an over-the-air

message handshaking process consisting of six steps, the end device is able to

obtain DevAddr, NwkSKey and AppSKey. First, the end-device transmits a “Join

Re- quest” containing DevEUI, AppEUI, and AppKey. The end-device then

receives a “Join Accept” from the network if the credentials are correct. It then

authenticates this Join Accept and decrypts it. From the decrypted Join Accept, the

DevAddr is extracted and stored. The two security keys – NwkSKey and AppSKey

– can then be derived using the AppKey.

• Activation by Personalization (ABP): implies that the device comes

preconfigured with an address and both the Network and the Application keys, thus

being able to directly accessing a predefined network without exchanging data with

the network server in join procedures. offers the three required keys directly, by

hard coding DevAddr, NwkSKey and AppSKey into the end device’s software.

This can be useful for developing as no downlink messages are needed to start

sending uplink messages to the network. For production, the use of ABP is

discouraged because the device’s activation remains unconfirmed. Also, both

session keys stay the same over time, which limits the security of the LoRaWAN

transmission.

31

Figure 12. Encryption Format.

32

Chapter 3.

The Things Network

The Things Network is about to enable low-power devices to use long-distance

Gateways to connect to an open-source, decentralized Network to exchange data with

Applications [6]. The Things Network is the network that is responsible for routing the

broadcast of LoRaWAN messages by the node over the LoRa radio protocol. Moreover, it

works as application server simultaneous.

The things network is very flexible in deployment options. connecting to the public

community that hosted by foundation of TTN is one of these options. Furthermore, it is

able to deploy private network in a private environment. Hybrid deployments and

exchanging date between private and public (vice versa) TTN network are other options of

TT deployment.

3-1 Network Architecture

The Things Network consists of components which are making TTN platform.

Each component has a number of duties for processing downlink and uplink messages

which sent from end-nodes to applications and vice versa. These components are shown in

figure 13.

33

Figure 13. TTN Architecture.

Considering the end-nodes broadcast the messages, the first hardware that received

these messages are gateways. Each gateway must connect to one router. The router of TTN

architecture is connected to one or more than one broker. the broker is the central part of

the TTN network. In addition to the router, the Broker connects to another three

components: Network server, Discovery, and Handler. The handling of application data is

done by handler and this is the last part of this community.

• Router/Bridge: the main responsibility of this is translating the protocol of

gateways. When a gateway received the data, it uses internet to transmit messages.

The reference and structure of gateway protocol are same but TTN has its own

protocol that is more appropriate than other reference. TTN is developed it in order

34

to security and control access. Since the gateways are from different vendors and

protocol so translate protocols to internal protocol used in the backend of TTN.

• Router: status of the gateway, uplink message metadata, configuration of downlink

and also device address extraction are router duties.

• Broker: the broker plays the main role in the TTN. It has a number of

responsibilities in the network. De-duplication, looking up the device and

application, checking the frame counter, collecting the metadata and selecting the

best downlink option are the broker tasks.

• Network Server: first of all, uplink messages are sent to the network server and

after that forward to handler. The downlink template is added to a message by the

network server, handler uses this template to send a downlink message to device.

• Handler: handler decodes and converts the message payload and pass it up to

application.

• Discovery Server: The Discovery Server is the key to the decentralized

architecture of The Things Network. This is where routers, brokers and handlers

announce themselves and where you can look them up.

Processing Flow of Uplink and Downlink Messages:

First of all, gateway received messages from nodes and transfer it to the router, router

translate gateway protocol and after preparing the downlink configuration, it extracts the

device address and sends uplink to the broker. Broker guarantees if there will be de-

duplicated messages, they will be sent once to the application hence the payload of these

duplicated messages are same. since the device address, it is non-unique, the broker

35

checks the MIC of each device that has the same device address in the network session

key case and if not matched, it will drop the message. After validating the MIC, broker

Checks the frame counter for avoiding the reply attacks. After these checking steps,

broker continues transmitting process. Broker sorts the options of downlink response and

choose the best one. Then, the message sends to the network server and it adds Mac

commands and downlink template to message then send to handler. Handler decrypts the

message then decode the payload by JavaScript function and then convert in format that

accessible for applications easily. By sending the message to the application, the uplink

transmitting process is finishing. Now application must reply to device with downlink

message when it has an available payload, confirmation uplink message or when network

server needs to send MAC command to device. The handler takes a message from

application and after encryption and conversion of downlink message send to a network

server and then broker. broker forwards this message to the router. Router put the

schedule message in the buffer then send the message just in time to the gateway and

finally, end-nodes will receive downlink message.

Figure 14. Uplink and Downlink Message Process.

36

3-2 TTN Packet Forwarder

Packet forwarder is a program on LoRa gateway and forwards packets to the server.

It communicates with LoRa Chip and network. after receiving packets from Lora chip it

transmits them to applications. TTN works with two types of packet forwarders: Semtech

UDP Packet Forwarder and TTN Packet Forwarder.

Figure 15. Packet Forwarder.

Semtech UDP Packet Forwarder will be explained in detail in next chapter. but about the

TTN packet forwarder, this a new packet forwarder that developed by TTN team. The

programming language of this packet forwarder is GO. Its features are as below:

• Built in Golang and open-source

• Connects with the Gateway Connector protocol: authenticfied, reliable and

encrypted

• Pre-built for multiple gateways, and build instructions available for all SPI LoRa

gateways.

37

TTN team prepared installation documents for Multitech Conduit, Kerlink IoT Station and

Raspberry Pi + iC880a. but if you have different gateways from these, it put installation

document to build packet forwarder for your own gateway.

TTN Packet forwarder is configured by a configuration file that is located in

$HOME/.pktfwd.yml. you should edit this file with your gateway values: gateway ID,

gateway KEY and…. If you have a private network, you must set hostname of your private

network, discovery server port and also URL of your account server. If you have a specific

router, you must put this router ID in the configuration file.

3-3 Setting up a Private TTN

Setting up the components for running the TTN is complex. Because as mentioned

before TTN has much more components. For running TTN network server in your local

machine, you need the account server account.thethingsnetwork.org. if you want to use

individual account server you can implement your account server with the Account Server

API Specification.

There are five steps for installing the TTN network server. It requires Redis

database and MQTT broker client server as Mosquitto which will be explained in next

chapter with details. After installing both of them, for each component it needs to make a

directory and put configuration and authentication information. One directory for Routers,

Brokers, Handlers, Network Server, Bridge and Discovery server.

It requires to download two executing program ttn and gateway-connector-bridge and and

by run the exec file of ttn, the network server run if everything will work well.

38

Routers, Brokers and Handlers authenticate with the discovery server using "access

tokens".

The configuration for each component will be stored in ~/ttn/component

name/ttn.yml. note that the discovery-address for Broker, Router and Handler is local

address with port 1900. When you configure all components configuration files and do

authenticate step, you can start everything together as shown below and Network Server is

being run.

ttn discovery --config discovery/ttn.yml

ttn router --config router/ttn.yml

ttn networkserver --config networkserver/ttn.yml

ttn broker --config broker/ttn.yml

ttn handler --config handler/ttn.yml

gateway-connector-bridge --root-ca-file "bridge/ca.cert" --ttn-router
"localhost:1900/mynetwork-router"

for managing and administering of your network server and application server instead of

TTN console, you must configure ttnctl and it needs to have a discovery server certificate.

Now you can register application and join your device to application with ttnctl commands.

39

Chapter 4.

LoRaServer

in terms of actual architecture of LoRaWan networks, gateways work as a bridge

between network server and end nodes and network server. This network server has main

duty of managing the LoRa networks. it has intelligence information. One of the its tasks

is the duplicated packets from gateways are eliminated by network server. it does security

checking, also sending acknowledge to the gateways and adjusts date rates. In the end, the

network server sends packet to the specific application server if it predestinates for an

application server. Hence network server makes to deploy a LoRaWan network very easy.

The server that I chose for this thesis is “LoraServer”. It is qualified for doing all of the

responsibilities said above.

“LoraServer” has open source components for building LoRaWAN networks.

LoRaServer supports LoRaWAN 1.0 and LoRaWAN 1.1 devices, including all regional

parameter and bands. All A, B and C End-nodes classes are supported by LoraServer.

4-1 LoRaServer Architecture

LoRaServer contains multiple components. In addition to LoRaWan devices,

gateways and application which are common in other architectures, there are 3 main

components and one optional component. Lora Server, LoRa Gateway Bridge, LoRa App

Server and LoRa Geo Server (optional).

40

Figure 16. LoRa	Server	Architecture.

The server is written in Go or golang language that created at Google. its

compilation time is very fast and it is very concise, simple and safe.

As can be seen in figure 12, the first component of LoraServer which connects with

gateways is the LoRa Gateway Bridge so this component is responsible for the

communication with gateways. When gateways send their packets thought UDP protocol,

the bridge gateway converts these packet to mqtt, so these data could be understood and

manipulated by LoRa Server. The LoRa Server is responsible for managing the state of

network. LoRa Server provides an API which can be used when implementing your own

41

application-server. If we want to provide geolocations services for our devices, we can use

LoRa Geo Server.

 Lora App Server is the core of LoRaServer architecture. it handles data and stores

them in database and communicates with other applications. Two different databases are

utilized for storing data which are Redis and PostgreSQL. Redis uses for non-persistence

And session-related date such as errors, logs, cryptography, times of sent and arrival

data while persistence date like application key, device addresses and generally end-nodes

data are stored in PostgreSQL.

4-1-1 Gateway

One of the hardware capable of acting as a LoRa gateway is SX1301 Semtech that company

holds the license to the LoRa technology.

The SX1301 digital baseband chip is a massive digital signal processing engine specifically

designed to offer breakthrough gateway capabilities in the ISM bands worldwide. It

integrates the LoRa concentrator IP [7]. By using this module, manufacturers are provided

to build their customized hardware. The SX1301 is targeted at smart metering fixed

networks and Internet of Things applications. The control of the SX1301 by the host system

is made using a Hardware Abstraction Layer (HAL). The Hardware Abstraction Layer

source code is provided by Semtech and can be adapted by the host system developers [8].
To use this hardware, plugging the chip and combining with other module as a gateway. In

this project, the chip is main concentrator that assembled on other module and directly

connected to Raspberry pi.

42

4-1-2 End-Node

In LoRaWAN system the end devices are sensors that are located remotely. the device is

shown in figure 17 is used in Lora server project in this thesis and serves as the end-device

in the LoRaWAN network infrastructure.

Figure 17. End-node.

4-2 LoRaServer Installation and setup

 The LoRa Server components can be setup in multiple ways which are manual or setup

by docker. In this project both of them were used. First of all, manual setup will be

explained. Before getting started, there are a couple of requirements such as MQTT broker,

Redis and PostgreSQL databases which will be explained.

43

4-2-1 Requirements

MQTT

MQTT “Message Queuing Telemetry Transport” is a Client Server MQTT

publish/subscribe messaging transport protocol.

MQTT is a machine to machine (M2M) internet of things connectivity protocol. MQTT

handle messaging between network server and applications. It was designed as lightweight

publish/subscribe messaging transport. MQTT is based on TCP/IP. It allows you to send

commands to control outputs, read and publish data from sensor nodes and much more.

 Figure 18. MQTT Sub/Pub.

 MQTT Concepts

there are few basics concepts in MQTT:

• Publish/subscribe: publish and subscribe provide an alternative to traditional

client-server architecture. a device can publish a message through a topic and also

it can subscribe to particular topic to receive messages. For example device1

publish on a topic and device 2 i s subscribed to the same topic as device 1 is

publishing in. hence device 2 receive the message.

44

Figure 19. MQTT Sub/Pub Example.

• Topics: MQTT topics are UTF_8 string consisting of one or more topics level that

are separated by / character. Each slash indicates a topic level and creates hierarchy

of information for organizing topics. They are the way for registering interesting

incoming messages.

• Messages: Messages are the information that you want to exchange between your

devices. each message has a payload which contains the data to transmit in byte

format.

• Broker: The publishers and subscribers never contact together directly. Actually,

they are not even aware that the other exists. The connection between them is

handled by a broker. The broker is responsible for receiving all messages, filtering

the messages, decide who is interested in them and then publishing the message to

all subscribed clients.

45

Figure 20. Broker Example
	

MQTT	is	used	by	LoRa	Gateway	Bridge,	LoRa	Server,	and	Lora	App	Server.	

	

Mosquitto

Eclipse Mosquitto is a popular open source message broker that implements the MQTT

protocol. In this project Mosquitto is used as a MQTT protocol. it is suitable for LoRaWAN

messaging such as sensors or mobile devices.

As can be seen in Figure 12, lora server establish a contact between itself and different

client by MQTT protocol. MQTT is also used for the connection between LoRaserver and

LoRa Gateway bridge packet forwarder. Every connection makes lora app server to

subscribe to end-nodes channels.

To install Mosquitto on Ubuntu use the command as a below:

To test the Mosquitto, execute commands as below. fist of all open two terminals, on the

first one run this command:

sudo apt-get install mosquitto
sudo apt-get update
sudo apt-get install mosquitto-clients

46

And open another terminals and run this command:

this sends a simple “this is test” message to the “test” MQTT channels. More complicated

commands will be given in the next chapters.

PostgreSQL Database

The LoRa Server components are using PostgreSQL for persistent data-storage.

PostgreSQL is a powerful open-source object-relational database management system. the

server uses databases to store critical. PostgreSQL is used by LoRa Server and LoRa App

Server. PostgreSQL to save all the persistent data and Redis to save all the session-related

and non-persistent data. To install PostgreSQL on Ubuntu use:

	To create a new database, start the PostgreSQL prompt as the	Postgres user:

mosquitto -v –t "test"

mosquitto_pub -t “test” -m “This is Test”

sudo apt-get install postgresql

sudo -u postgres psql

47

Redis

 Redis is an open source (BSD licensed), in-memory data structure store, used as a

database, cache and message broker [9]F. As mentioned above, it is need as a database for

storing of non-persistence data. This Redis database is used by LoRa Server. Redis stores

not only the keys of a node, it stores also the state of the nodes (activated channels, ADR

parameters, pending mac-commands, mac-command queues.

To install Redis on Ubuntu use this command:

Python and Paho-MQTT

 Python is a powerful and object orientated programming language. It is ideal for

developing application and scripting on most platforms. The MQTT protocol has been

written by python called Paho-MQTT. The source code of this library provides a client to

connect to MQTT broker for publishing a message and subscribing to a topic. By Paho-

MQTT can write any related MQTT script easily. In this project, the python language was

used for writhing script for server to connect end-nodes through MQTT commands.

sudo apt-get install redis-server

48

4-3 setting up the gateway:

as mentioned earlier, the Raspberry pi was used in this project as a platform for

gateway hardware. After attaching the device and setting up this, the gateway software

must be installed.

While the “Lora Gateway” is the HAL library for building the gateway based on

Semtech Lora SX1301, the “packet forwarder” is a program running on the host of a Lora

gateway that forwards RF packets receive by the concentrator to a server through a IP/UDP

link, and emits RF packets that are sent by the server. It can also emit a network wide GPS

synchronous beacon signal used for coordinating all nodes of the network. [10]

“Packet Forwarder” translates data from LoRa frequency and changing format of

them to TCP/IP, finally they can be sent via Internet to the server.

Before packet forwarder will be used, we must change two configuration files: The

global_conf.json and local_conf.json. in the global configuration file, scroll down to end

of page after antenna characteristics and in gateway configuration part change amount of

the "serv_port_up and "serv_port_down" from 1680 to 1700. This is the default value that

designed for gateway UDP configuration. After that you must change gateway ID of your

concentrator, this ID should be 16-digit Hexadecimal. After global configuration changes,

we must change local parameters in local configuration file such as gateway id.

Now to run the gateway, we can execute packet forwarder easily.

4-4 Installing the LoRa Server project

 this project needs three main configuration files, each of them are responsible for

main components of Loraserver. Lora user needs to download and compile these files and

configure them for using effectively. So these components will be started as services on

49

boot on system and can be stopped and started when necessary. Notation that Lora server

is contagious and ongoing project which is being updated and changed. It is better to check

repository of documentation of lora server page for new and updated information. The first

component is lora-gateway-bridge.

4-4-1 installing LoRa-Gateway-Bridge

LoRa Gateway Bridge is a service which abstracts the packet-forwarder UDP protocol

into JSON over MQTT LoRa Gateway Bridge publishes the content of the UDP packets

as JSON over MQTT, it becomes trivial to monitor the data that is sent and received by

each gateway [11]. by using “apt” command:

 sudo apt install lora-gateway-bridge

the configuration file of lora-gateway-bridge is located at /etc/lora-gateway-bridge/lora-

gateway-bridge.toml. the default configuration file is sufficient for this service but if

you have username and password for MQTT, you must add username and password in

configuration file.

Now you can start the Lora-gateway-bridge with this command:

sudo systemctl start lora-gateway-bridge

if you need start service on boot you can run command as below

sudo systemctl start lora-gateway-bridge

restart service

sudo systemctl restart lora-gateway-bridge

50

stop service

sudo systemctl stop lora-gateway-bridge

4-4-2 installing LoRa Server

the main components of lora server project is loraserver manage all connections. it

 is set up after lora-gateway-bridge. Because it needs to connect to physical gateway for

working properly. to start installation by using apt install the package:

sudo apt install loraserver

The configuration file is located at /etc/loraserver/loraserver.toml and must be updated to

match the database and band configuration. You must check and update the frequency

region, redis and postgres url and authentication of MQTT. After updating the

configuration, you need to start loraserver service:

Start LoRaServer service:

sudo systemctl start loraserver

start on boot:

sudo systemctl enable loraserver

Restart LoRaServer service:

sudo systemctl restart loraserver

Stop LoRaServer service:

sudo systemctl stop loraserver

51

for printing the loraserver log output use the commands below and when satisfied use

Ctrl+C command.

sudo journalctl -f -n 100 -u loraserver

4-4-3 installing LoRa App Server

LoRa App Server is an open-source LoRaWAN application-server, compatible with LoRa

Server. It is responsible for the end-node "inventory" part of a LoRaWAN infrastructure,

handling of received application payloads and the downlink application payload queue. It

comes with a web-interface and API (RESTful JSON and gRPC) and supports

authorization by using JWT tokens. Received payloads are published over MQTT and

payloads can be enqueued by using MQTT or the API. [12]

To install this service first run command as below:

sudo apt install lora-app-server

lora app server configuration file is located at /etc/lora-app-server/lora-app-server.toml

and it must be updated to database configuration and also postgres authentication.

Start the LoRa App Server service:

sudo systemctl start lora-app-server

start LoRa App Server on boot:

sudo systemctl enable lora-app-server

Restart LoRa App Server service:

sudo systemctl restart loraserver

Stop LoRa App Server service:

sudo systemctl stop loraserver

52

for printing the LoRa App Server service log output use the commands below and when

satisfied use Ctrl+C command.

sudo journalctl -f -n 100 -u lora-app-server

after all components are insatalled, you can access to LoRa App Server web-interface.

To access LoRa App Server web-interface, open the browser and enter the ip address of

server by port 8080. For example:

https:// https://localhost:8080/

After setting up components and starting services, the gateway must configure so it sends

data to Lora-bridge-gateway component and as before mentioned packet forwarder was

modified then restarted and lines of logs appearing in Lora-bride-gateway component

logs.

After these steps, gateway must be added to organization of Lora-App-server web

interface. In next chapter LoRa-App-Server will be explained completely.

App-Server Configurations:

Open the web browser and enter the server IP address

https://localhost:8080

Note that the server is accessible only with https protocol, it may give you a warning about

certificate in your browser. This certificate is self-signed and allow your browser to open

this web page. Next step, you can login with default username and password which are

admin in both case. So it is better to change this password for security reasons.

53

Figure 21. LoRa-App-Server Web Interface

after login in lora-app-server web-interface, you can create and manage users for

authentication and authorization reasons. There are two different kind of users, regular

users or global admin. Regular user doesn’t have any permission but this type of user can

be aasigned to one or more than one organization.

Global admin user has permission for any action. it can create and organize applications,

users, gateways and nodes.

54

55

Network-server management:

In lora-app-server, global user can create one or multiple network servers and manage

them. Service and device profile are assigned to network server and you can not remove

network server before that eliminates those profiles.

You can add network server with three features: General, Gateway Discovery and TLS

certificates. In General part, you must put a name for network server and type localhost

with default port 8000 in the network server field.

the next option is Gateway discovery. By enabling this feature, each gateway can broadcast

a periodical ping that received by gateways its neighborhood.

56

client certificate and CA must be entered for connecting LoRa Server to LoRa App Server

and vice versa. Note that, the TLS is not displayed for security reasons.

57

Gateway-Profiles:

while you are creating a network server, you can make one or more profiles for the gateway.

When you add a gateway to the server, you can select one of these profiles and be sure the

gateway configuration is matched with the channel which used by the network-server.

Enabled and Extra channels are two features for gateway profile. You can enter list of

channels that you want user for gateway-profiles under Enable channels. In the extra

channels you can add extra channels that are not defined in LoRa regional parameter.

Organization management:

Now we can organize our Lora-App-Server under organization, manage menu. This

involves service and device profiles, gateway and applications.

Organization managed part give you an ability to create a device profile which will be

chosen when you need to add a new device. It defines manufacture information of end-

device and also version of LoRaWAN used by end-device. In addition to service profile,

58

you can create a service-profile that is like a contract between network and users. This

contract indicates the features that are enabled for users of service-profile.

Note that, by activate of add meta data option under service profile, gateway meta data will

be added to packet which sent to application server.

59

Gateways:

As seen before, in the gateway profile part we created a profile with the arbitrary

configuration according to our needs. An organization is managing set of the gateways. By

using gateway or gateways, each node in our network can communicate together. This

menu is able to manage characteristics of gateway such as name, location, ID and….

moreover, live-logs and statistics can be seen under the gateways menu.

here, you choose a name for gateway and Gateway ID is the assigned gateway that you set

on the configuration file of your packet forwarder. By assigning Gateways-profile, an

updated configuration is sent to the gateway by LoRa-Server. Hence configuration of

packet-forwarder, lora-gateway-bridge, and gateways setting in lora-app-server must be

harmony and updated.

60

Application management:

The collection of devices with same aim is called application in lora-app-server. When an

application is created, we can choose service-profile that was explained in previous part.

This will be used for devices which will be created under applications menu.

if you specify a payload codec for your application, binary device payload can be encoded

and decoded by Lora-APP-Server. Here you can select two type of codec: cayenne LPP or

custom java function [13]. the raw base64 encoded payload will always be available, even

when a codec has been configured. In this project cayenne LLP was used for device payload

so Lora-App-Server decoded and encoded base on cayenne low power payload.

The Cayenne Low Power Payload (LPP) provides a convenient and easy way to send data

over LPWAN networks such as LoRaWAN. The Cayenne LPP is compliant with the

payload size restriction, which can be lowered down to 11 bytes, and allows the device to

send multiple sensor data at one time [14].

61

Additionally, the Cayenne LPP allows the device to send different sensor data in different

frames. In order to do that, each sensor data must be prefixed with two bytes:

Data Channel: Uniquely identifies each sensor in the device across frames.

Data Type: Identifies the data type in the frame.

If you would like to write your own javascript for decoding and encoding of array of bytes

to a java subject, you can use custom Custom JavaScript codec functions.

Device management:

The server supports both type of over-the-air activation (OTAA) and activation by

personalization (ABP) devices. By selecting the device-profile we can configure the new

device. Also, you can add one of three classes of device: A, B, or C. In this thesis, our

end-nodes are from class A that was described in Chapter 2.

62

We configure the loRaWAN Network by Lora server method. We have the gateway, end-

node and network server for managing everything. Now we can view the information and

only frame logs of device that is related to added end-node in device-frame logs.

In the join Tab there is an option to use the OTAA type of device, when this option is used,

device name and device EUI are need to fil. The value of device EUI must be 16

hexadecimal characters, and device name is the standard name includes the characters.

After create the device in next tab you must enter App EUI is 16 hexadecimal characters.

After generating these value, you must register your device with these values by mac

command. After join the device with this values, it is activated in Lora server. Network

Session key and Application Session key are generated automatically.

Otherwise you can choose the Class B or C.

63

You observe the device status and live frame logs after sending the uplink.

64

Chapter 4.

The Architecture of Gateway

By implementing the two methods above, LoRaServer and TTN as a network server

for LoRaWAN system, we conclude that the connection between network server and

gateway is a very critical issue. Because if it will be lost, the uplink and downlink messages

will be missed. This connection causes a lot of power consumption, since in many scenarios

we are forced to use cellular connection. Also it should be always active and not turn-off

even for few minutes. So power consuming is a big problem when network server and

gateway must connect together by power line.

Since in this thesis, the main goal is to build a low-power gateway in order to

receive data from sensors and send them to Application anytime and anywhere, through

LoRaWAN network, it is needed to change the architecture of the system, using an offline

gateway, that activate the cellular connection only to push data on a remote server

periodically.

Since the gateway will not do process a lot, the alternative architecture for the

gateway is shown in Figure 4. By integrating network server and gateway together we can

solve the power consumption problem of two previous methods.

65

Figure 22. Low-Power Gateway Architecture.

4-1 LoRa Gateway Architecture

4-1-1 Hardware

The main hardware of this system includes Raspberry pi that is a single-board computer

(SBC) used to do small computing and networking operations, it has a GSM module on its

shield for Internet connectivity. The radio front-end is provided by concentrator board is

iC880A.

But powering of Raspberry is one of the main challenges, adding a solar panel as energy

harvester is mandatory to charge the battery and allow the system to work without a power

line.

4-2-2 Software

The structure of the network server is same to TTN and LoRaServer but the location of

packet forwarder had been only changed. Packet forwarder is a software running on the

66

gateway to encapsulate data and to send it via internet. Fortunately, it didn’t need to write

a software gateway from the scratch Since in this project Semtech packet forwarder was

used. Two utilities provided on the lora_gateway repository:

• Lib_lora_gateway: driver library source code which has been adapted to use the

Raspberry Pi hardware.

• packet_forwarder: Gateway application source code

There are many ways for forwarding data to the IoT platform and vice versa. in this case,

MQTT is a machine-to-machine (M2M)/"Internet of Things" connectivity protocol. that

make use of the publish and subscribe pattern. PostgreSqL was used in this system for the

long-term storage database.

Data Forwarder is a python application that receive data from the MQTT broker and store

them into the PostgreSQL database, this application will periodically power on the cellular

connection to post the data to an application server.

Now LoRaWAN gateway is implemented by placing the network server and packet

forwarder on Raspberry directly, we designed low-power gateway that not need to power

line for creating the connection between networks server and gateway as two previous

methods.

67

Chapter 5.

Experiments on the Network and Programming

Consider LoRa Server Network Server and run it on the Docker-Compose when

logs of components were seen successfully, open web-page interface and login to the

LoRaServer console. Concurrently run packet forwarder on the gateway. Now gateway

status was shown in the console. Join the device to the application and turn on the sensor,

sensor status as seen option was shown in console. When the connection between gateway,

network server and end-node was connected, open the terminal and use mosquito command

to topic and print the message that is receive. See the Figure 23.

Figure 23. Mosquitto Subscribe topic.

The received data is in Base64 format and needs to be decoded (data is already decrypted

by the server itself) first to be understood.

68

5-1 A Python script to automatically send data to the end- nodes

Figure 24. Python script at work.

The code script facilities the subscription to different end-nodes and saves

application id to the configuration “.ini” file. This way, the problem of constant

subscription and feeding the same data every time the program is launched, is resolved.

The script uses MQTT broker package as paho-mqtt to program easy and client can import

MQTT commands inside the script directly. First purpose of this code is to send data to

each node any time that a message from these devices. It understood the MQTT message

and responded. So when the uplink message was sent, it responded when device has two

open receive windows. When the connection was made successfully, script works as a

MQTT subscriber and show the information which usually is the Base64-encoded data of

the server and store this data to the PostgreSQL database that uses from other useful python

package.

After importing required library, first step is to check existence of configuration

file, with command os.path.isfile of the OS library check a file name. if it exists, it uses the

data on the configuration file and if it doesn’t exist, it creates the configuration file with a

command like cfgfile = open() and adding the “w” letter for write-enabled.

After this step, the script starts using the paho.mqtt package and subscribes to each

end-node’s MQTT channel respectively. on_connect function is responsible for

subscibing, so this way if the connection to the server is interrupted, when they reconnect

69

the subscriptions occur again, not allowing the interruption to fail the whole script. Next

function is on_message is activated when we have an uplink. If needed the information of

message function like port number, date/time, SNR, RSSI and frame counter, it uses the

print() command by Jason.loads. the result of print store in database. using command

psycopg2.connect with server ip address and port connect to database.

Clien.connect() is the most important command in MQTT library. using the server’s

address and port number. The third number is a “keep alive” which by default is 60 seconds

and overviews the program-server connection and sends pings every 60 seconds of

inactivity to keep the connection alive. The last part of code is loop_forever() which puts

the whole connection inside a loop so that it will never disconnect. To exit the script, the

Ctrl+C is used.

The code for the script is available in Appendix 2.

70

Chapter 6.

Conclusion

Presently LoRaWAN is not known very much if compared to IoT standards like

Bluetooth or Zigbee, all around the world but the free projects such as TTN and

LoRaServer are existed for involving to show there are no bound and limitation for

LoRaWAN path.

In conclusion, this project shows how anyone can build their own gateway and start

their own project without the need for additional authority. Thanks to packet forwarder

gateway is able to connect to network server and doing transmitting process.

As seen in this thesis, the network server is needed to be on whole time. In

conclusion, the amount of energy consumed for keeping the alive connection between the

gateway and network server is much more.

5-1 Technical Conclusion

If consuming power has not been considered and the first method for connection

between network server and gateway will be chosen, in the comparison TTN and

LoRaServer, the author’s opinion is the LoRaServer is a best solution. Since the

LoraServer has a practical console and it is more visibility of what is going over the

network, you can have your own gateway. This would guarantee that you have a connection

and it would allow you to see what is actually transmitted through the gateway. This would

speed up testing and developing a lot.

71

If it is preferred to keep the network server outside of the gateway, an alternative

path would be to modify the packet forwarder in order to locally store the data inside it,

and asynchronous forward the UDP datagram. But this would end up breaking the direct

connection between end nodes and application server, which is fundamental for many

protocol features like the adaptive data rate.

72

Appendix 1.

Setting Up LoRAServer Using the Docker

First of all, you need to install Docker. Docker is a implement designed to make it

easier to create, deploy, and run applications by using containers. Containers let a

developer to pack an application with all of the parts it needs, such as libraries and other

dependencies, and ship it all out as one package. in this project each requirements and

components for setting up the LoRServer is a container. Then you must install Docker

Compose. Docker Compose makes possible to organize the configuration file of multiple

Docker conditioner; this configuration file is a docker-compose.yml file.

Installing Docker and Docker-compose

The LoRa Server project provides an example docker-compose.yml file that you

can use as a starting-point.

Clone this repository with

 git clone https://github.com/brocaar/loraserver-docker.git

 cd loraserver-docker

after updating the configuration file, you can start LoRaServer with command:

docker-compose up

73

Appendix 2.

A Code to subscribe to MQTT and send data to the end-nodes

1. import paho.mqtt.client as mqtt #used for connecting to mqtt broker
2. import json
3. import psycopg2 #used for connecting to postgresql
4. import configparser #for creating config file
5. import requests #used for post url
6. import os #used for check path file
7.
8.
9. def on_connect(client, userdata, flags, rc): #connect to mqtt broker
10.
11. print("Connected with result code "+str(rc))
12. client.subscribe("application/"+appID+"/device/+/rx") #subscribe the topic b

y using applicationID
13. print("Now the payload is printed")
14.
15.
16. def on_message(client, userdate, msg): #function for show the payloads as resul

t of subscribe
17.
18. data = json.loads(msg.payload) #convert string to json
19. print(data)
20. #for entry in data['object']:
21. cur = conn.cursor()
22. for entry in data['rxInfo']:
23. cur.execute("INSERT INTO rxinfo (\"devicename\", \"gatewayid\", \"rssi\

") VALUES (%s, %s, %s)", (data['deviceName'], entry['gatewayID'], entry['rssi'])
)

24. #add specific data in the database
25. conn.commit()
26. for obj in data['object'].iteritems():
27. for channel, value in obj[1].iteritems():
28. cur.execute("INSERT INTO data (\"devicename\", \"channel\", \"data

\") VALUES (%s, %s, %s)", (data['deviceName'], channel, value))
29. conn.commit()
30.
31. #url = "https://api.ixem.wine/post"
32. #r = requests.post(url, data)
33. #print (r.text)
34.
35. config = configparser.ConfigParser(allow_no_value=True)
36. if not os.path.isfile("config.ini"):
37. appID = raw_input("Please enter the applicaionID of your node: ")
38. url = raw_input("Please enter your url: ")
39. cfgfile = open("config.ini", "w")
40. config.add_section("Defaults")
41. config.set("Defaults","appid", appID)
42. config.set("Defaults","url", url)
43. config.write(cfgfile)
44. cfgfile.close()
45. print("configuration file created")
46. #else
47. #read the cofiguration file to put the value inside appid url...
48. else:

74

49. config.read("./config.ini")
50. appID = config["Defaults"]["appid"]
51. url = config["Defaults"]["url"]
52. try:
53. conn = psycopg2.connect(host="localhost",database="mqtt", user="postgres", pas

sword="postgres", port="5432") #connect to database
54. except:
55. print("unable to connect to the database.")
56. else:
57. print("database connected")
58. client = mqtt.Client()
59. client.on_connect = on_connect
60.
61. client.on_message = on_message
62. broker_address="localhost"
63. client.connect(broker_address, 1883, 60)
64. client.loop_forever()

75

Bibliography

[1] K. Ashton, "That 'Internet of Things'," 22 June 2009. [Online]. Available:
http://www.rfidjournal.com/articles/view?4986.

[2] LoRa® Alliance Technical Marketing Workgroup, "LoRaWAN What is it?"
November 2015.

[3] E. Ruano, "LoRaTM protocol Evaluations, limitations and practical test" 11 May
2016.

[4] M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, ?Long-Range
Communications in Unlicensed Bands: the Rising Stars in the IoT and Smart City
Scenarios, IEEE Wireless Communications, Vol. 23, Oct. 2016.
rXiv:1510.00620v2

[5] N. Sornin, M. Luis, T. Eirich, T. Kramp, and O. Hersent. Lorawan specification.
Technical report, LoRa Alliance, 2015.

[6] “The Things Network”, [Online]. Available: https://www.thethingsnetwork.org/.
Accessed: 2018-11-30.

[7] “SX1301 Datasheet”, Semtech	Corporation, May	2017.	

[8] "WiMOD iC880A Datasheet," 4100/40140/0074, IMST GmbH, Mar. 2015.

[9] “Redis”, [Online]. Available: https://redis.io. /. Accessed: 2018-11-30.

[10] Lora-net “packet_forwarder, " [Online]. Available:
https://github.com/Loranet/packet_forwarder

[11] O. Brocaar, "	LoRa Gateway Bridge”, [Online]. Available:
https://www.loraserver.io/lora-gateway-bridge/overview/

[12] O. Brocaar, "LoRa Server Documentation," [Online]. Available:
https://docs.loraserver.io/loraserver/.

[13] O. Brocaar, "	Application management," [Online]. Available:
https://www.loraserver.io/lora-app-server/use/applications/ Accessed: 2018-11-
30.

[14] M. Diez, “Secure Position Data Transmission for Object Tracking using
LoRaWAN”, 24 August, 2017

