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Summary

This work has the aim of performance evaluation of the optimized K-LRU caching system: in
particul we will refer to 2-LRU and 3-LRU policies. Such improvement is usuful to Content Deliver
Networks (CDN) provider, in order to increase the performance satisfying large users request. We
will show, furthermore, that our optimization works under different traffic model, e.., IRM and
SNM, different network scenarios, e.g., single cache and cache networks, and with different content
popularity distributions.

II



Acknowledgements

A special thanks to my supervisor Prof. Emilio Leonardi and to Dott. Michele Tortelli, who helped
me to develop and implement such optimization in caching systems scenario.
A special thanks to my family and to Silvia who supported me during the development of this
work.

III



Contents

Summary II

Acknowledgements III

1 Background 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 System Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Traffic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Content popularity: Zipf’s law . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Replacement Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 2-LRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Decision Strategies for cache networks . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 The Che Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.7 ccnSim: Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7.1 ccnsim Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7.2 Omnet++ Engine and ccnSim workflow . . . . . . . . . . . . . . . . . . . . 6

1.7.3 ccnSim Structure and Simuation techniques . . . . . . . . . . . . . . . . . . 7

1.7.4 Downloading, installing and compiling ccnSim . . . . . . . . . . . . . . . . 7

1.7.5 Statistics and Resuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Very-Large Scale Scenario for different policies: IRM vs SNM 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 IRM Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 SNM Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 IRM vs SNM Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Performance evaluation of “cache-decoupled” 2-LRU vs k-LRU, under IRM 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 2-LRU “cache-decoupled” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 2-LRU “cache-decoupled” implementation . . . . . . . . . . . . . . . . . . . 18

3.3 Validation of 2-LRU “cache-decoupled”, under IRM . . . . . . . . . . . . . . . . . 21

IV



3.4 K-LRU “cache-decoupled” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 K-LRU “cache-decoupled” implementation . . . . . . . . . . . . . . . . . . 27

3.5 Validation of k-LRU “cache-decoupled”, under IRM . . . . . . . . . . . . . . . . . 29

3.5.1 3-LRU vs 2-LRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.2 Small cache sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.3 Large cache sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Performance evaluation of “cache-decoupled” 2-LRU vs k-LRU, under SNM 35

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Single cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 First SNM scenario: Ton1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.2 Second SNM scenario: Ton2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Cache networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Traffic Model for SNM cache networks . . . . . . . . . . . . . . . . . . . . . 49

4.3.2 First SNM scenario: Ton1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.3 Second SNM scenario: Ton2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Performance evaluation of “cache-decoupled” 2-LRU vs k-LRU, under SNM
and Pareto distribution 62

5.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.1 Implementation of Pareto distribution . . . . . . . . . . . . . . . . . . . . . 63

5.2 Validation of k-LRU “cache-decoupled”, under SNM and Pareto distribution . . . 64

5.3 Results Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Conclusions 75

A Implementation of optimized 2-LRU class 76

B Implementation of optimized k-LRU class 78

Bibliography 81

V



Chapter 1

Background

1.1 Introduction

In the past few years the performance of caching systems, one of the most traditional and widely
investigated topic in computer science, has received a wide interest by the networking research
community. Because the crucial role played by caching in new content distribution systems emerg-
ing within the impact of Internet. Content Delivery Networks (CDN) represent today the standard
solution adopted by content providers to serve large populations geographically distributed in order
to satisfy spread users[1]. Thanks to caching contents close to the users, network traffic is reduced
by improving user-perceived experience.
The fundamental role played by caching systems in the Internet exceed the existing content de-
livery networks, by changing the communication model in host-to-content paradigm. Indeed, the
Information-Centric Networking (ICN) architecture has been proposed for the future Internet to
better answer to the today and future traffic request[2]. In this architecture, caching becomes
functionality available at each router thanks to its characteristics.
Evaluating the performance of cache networks is hard, considering that the computational cost
needed to analyse just a single LRU (Least Recently Used) cache, grows exponentially with both
the cache size and the number of contents.[3], [4] Nevertheless, several approximations have been
proposed over the years [5], [6], [7], [8], [9] which can accurately predict cache performance at a
reasonable computational cost.
The main drawback of existing analytical techniques consist in the approximation due the sim-
plified traffic conditions for several caching policies (mainly LRU)[10]. This work refer to the
applicability of the main approximation (the so called Che’s approximation) specifically used for a
different caching policies under IRM traffic and a particular type of ON-OFF traffic, called SNM.
The aim consists to provide performance results of a variety of caching systems through simulations
done with a scalable chunk-level simulator for CCN environments, called ccnSim[27].

In particular, this work is based to the evaluation of “optimized” multi-stage LRU scheme
(essentially 2-LRU and k-LRU) under traditional traffic model IRM, and a type of ON-OFF traffic
called SNM, cosidering the effects of temporal locality in the requests arrival process (in particular,
we refer to a standard Poisson traffic model for all the above-mentioned caching policies). Such
cache decision policies have been investigated with different networks scenarios: single cache and
network of LRU caches having a binary-tree topology of interconnected caches with four layers (15
caches).
In the case of IRM traffic, Zipf-like law is used to describe content popularity, whereas in the
case of SNM traffic in order to garantee a major stabilization the average number of requests are
characterized by both Zipf’s law and Pareto probability distribution, (at each ingress cache in the
case of binary-tree network topology).
Hence, the aim of this work, is providing results of performance analysis of caching systems under
the Che’s approximation, however all plots are obtained through simulations enabling to evaluate
the hit probability of several caching policies and “optimized” ones, at variation of caching size.
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1 – Background

1.2 System Assumption

1.2.1 Traffic Model

The traffic model adopted in the literature to characterize the pattern of object requests arriving
at a cache is the so-called Independent Reference Model (IRM)[10]. The IRM is based on the
following fundamental assumptions: i) users request items from a fixed catalogue of M object;
ii) the probability pm that a request is for object m, 1 ≤ m ≤ M is constant (i.e., the object
popularity does not vary over time) and independent of all previous requests, generating an i.i.d.
sequence of requests[10].

By construction, the IRM does not take into account temporal correlations in the sequence of
requests. In particular, makes negligible the principle of temporal locality: requests for a given
content become denser over short periods of time. However in the real contest request is often
observed, indeed temporal locality play an important role on cache performance, is well known
even in the context of computer memory architecture[10] and web traffic[10]. Several approaches
referring to IRM have been proposed to reproduce content temporal locality[12],[13],[14]. The
majority of proposed approaches, based on IRM, have the following two assumptions: i) the
content catalog consists of a fixed number of objects, which does not change over time; ii) the
request process for each content is stationary (typically it is assumed to be either a renewal process
or a semi-Markov-modulated Poisson process with average rate equal to λ)[13],[15].

Recently a new traffic model, named Shot Noise Model (SNM), has been proposed as a adap-
tive alternative to traditional traffic models able to capture the effects of content popularity
dynamics[14], it means that allows to simulate scenarios where content popularities changes and
evolves over time, where the temporal locality of requests is modeled through an ON-OFF process
that models the request patterns of different classes of contents.[27]

The basic idea of the SNM is to represent the overall request process as overlap of a potentially
infinite population of independent inhomogeneous Poisson processes (shots), whose instantaneous
rate at time t is given by Vmλm(t − τm)[14] and each request referring to an individual content
m.[11]
We represents with τm the time instant at which the content enters in the system (i.e., when it can
be requested by the users and becomes available to the users), Vm denotes the average number of
requests generated by the content and λm(t) is the popularity profile, describing how the request
rate for content m evolves over time.[14][43]

Computing its analytical models for the evaluation of cache performance under the SNM[14],[16],
however, is significantly challenging[15], especially when non-LRU caches and networks of caches
are analyzed.
For the sake of semplicity we will refer to SNM traffic model where inter-arrival request times are
independently, exponentially distributed, so that requests for contents m are generated according
to a homogeneous Poisson process of constant rate λm[11] .

1.2.2 Content popularity: Zipf’s law

Traffic models like the IRM (and its generalizations) are commonly used in combination with a Zipf-
like distribution of content popularity, which is often observed in traffic measurements and widely
adopted in performance evaluation studies[17],[18]. In its simplest form, Zipf’s law states that the
probability to request the i-th most popular item is proportional to 1/iα where the exponent α
depends on the considered system (especially on the type of objects), and plays a crucial role on
the resulting cache performance[6].
In particular, Zipf’s distributed random numbers are generated without allocating memory space
to store the Cumulative Distribution Function (CDF) vector, which for large scenarios, represents
a main cause for memory request[27]. Estimates of α reported in the literature for various kinds of
systems range between 0.65 and 1[19]. This work will consider a simple Zipf’s distribution as the
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object popularity law, although results obtained hold for any given distribution of object request
probabilities.

1.3 Replacement Policies

There exists a huge number of different policies to manage the insertion/eviction cache objects,
which differ either for the insertion or for the eviction rule. We will consider the following algo-
rithms, as a set of most used existing policies taken from [11]:

• LFU: the Least Frequently Used policy statically stores in the cache the C most popular
contents (assuming their popularity is known a-priori); LFU is known to provide optimal
performance under IRM.

• LRU: upon arrival of a request, an object not already stored in the cache is inserted into it.
If the cache is full, to make room for a new object the Least Recently Used item is evicted,
i.e., the object which has not been requested for the longest time.

• q-LRU: it differs from LRU for the insertion policy: upon arrival of a request, an object not
already stored in the cache is inserted into it with probability q. The eviction policy is the
same as LRU.

• FIFO: it differs from LRU for the eviction policy: to make room for a new object, the item
inserted the longest time ago is evicted. Notice that this scheme differs from LRU in this
respect: requests finding an object in the cache do not “refresh” the arrival time associated
to it.

• RANDOM: it differs from LRU for the eviction policy: to make room for a new object, a
random item stored in the cache is evicted.

• k-LRU: this strategy provides a clever insertion policy by exploiting the following idea:
before arriving at the (physical) cache which is storing actual objects, indexed by k, requests
have to advance through a chain of k − 1 (virtual) caches put in front of it, acting as filters,
which store only object pointers performing caching operations on them.
Specifically, upon arrival of a request, a content/pointer can be stored in cache i > 1 only
if its pointer is already stored in cache i − 1 (i.e. the arrival request has produced a hit in
cache i− 1)[11]. The eviction policy at all caches is LRU. We remark that this policy can be
seen as a generalization of the two-stages policy proposed in[20], called there LRU-2Q.[11]
Let T i

C be the eviction time of cache i, let the hit probability of object m in cache i, phit
(i, m), to the hit probability phit (i - 1, m) of object m in the previous cache, under the
independence assamption between caches and IRM traffic, we obtain:

phit(m) = pin(m) ≈ (1− e−λmT i
C )[phit(i,m)(phit(i− 1,m))(1− phit(m))][11] (1.1)

• k-RANDOM: it works exactly like k-LRU, with the only difference that the eviction policy
at each cache is RANDOM.

1.4 2-LRU

As I introduced in the previous section (i.e., Sec. 1.3), in this work is usuful to describe
the implementation of a particular case of k-LRU cache decision policy and proposed in [11],
namely 2-LRU. For this system, by starting from a single LRU cache, an additional LRU
cache (known as Name Cache) where names of requested contents are stored is put in front
of the main one.[27] When a request is received, a first lookup is performed on the Name
Cache: in case of a positive outcome, the correspondent fetched content will be later stored
inside the main cache (the second stage cache), otherwise only the ID content name of the
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Figure 1.1. DTMC describing the dynamics of an object in 2-LRU, sampled
at request arrival times.[11]

requested content will be inserted inside the Name Cache (the first stage cache) without
effectively caching the retrieved object.[27]
The aim of the 2-LRU cache decision policy is to reduce unpopular contents (i.e., contents
that are requested very rarely) in order to increase the hit probability. The 2-LRU policy
provides, also, good performance in the presence of temporal locality, meaning that it can
locally adapt to content popularity changes over short-term time caused by temporal locality
[27].
Let T i

C be the eviction time of cache i. Under IRM, pin(m) and phit(m) (which are identical
by PASTA) can be approximately derived by the following constraint: object m is found in
cache 2 at time t if and only if the last request arrived in τ within interval [t − T 2

C , t] and
either object m was already stored in cache 2 at time τ− or it was not in cache 2 at time τ−

but its ID was already stored in meta-cache 1[11],[14],[43].
Under the additional approximation that the states of meta-cache 1 and cache 2 are inde-
pendent at time τ−, from the extended eq 1.1, we obtain:

phit(m) = pin(m) ≈ (1− e−λmT 2
C )[phit(m)(1− e−λmT 1

C )(1− phit(m))][11] (1.2)

Dynamics of object m in the system, sampled at request arrivals, can be described by the
four states Discrete Time Markov Chain (DTMC) (rappresented in Fig. 1.1) where each
state is denoted by two binary variables indicating the presence of object m in cache 1 or
cache 2, respectively[11].

We remark that LRU has been widely adopted, since it provides good performance while
being reasonably simple to implement. RANDOM and FIFO have been considered as viable
alternative to LRU in the context of ICN, as their hardware implementation in high-speed
routers is even simpler[11]. The q-LRU policy and multi-stage caching systems similar to
k-LRU have been proposed in the past to improve the performance of LRU by means of a
better insertion policy. Regarding q-LRU, in its simplicity, gives an immediate interpretation
in terms of probabilistic content replication for cache networks. The main power of k-LRU,
instead, consists in the fact that it requires just one traffic-independent parameter (the
number of caches k), providing significant improvements over LRU even for very small k
(much of the possible gain is already achieved by k = 2)[11].

4
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1.5 Decision Strategies for cache networks

In a system of interconnected caches, requests producing a miss at one cache are typically forwarded
along one or more cache chain-connected toward repositories storing all objects. After the request
eventually hits the target object, we need to specify how such object gets replicated back in the
network, in particular along the path traversed by the request[11]. There are a series of mechanisms
(or meta-caching algorithm) that decide if the incoming Data should be stored or not in the local
cache. We will consider the following strategies taken from[22][27]:

• leave-copy-everywhere (LCE): the object is sent to all caches of the backward path,
meaning that each incoming contents is always stored within the cache.

• leave-copy-probabilistically (LCP): the object is sent with probability q to each cache
of the backward path.

• leave-copy-down (LCD: the object is sent only to the cache preceding the one in which
the object is found (unless the object is found in the first visited cache), meaning that the
incoming content is stored in the local cache only if it has been originally fetched from a
node one hop away from the current node.

Notice that LCP, combined with standard LRU at all caches, is the same as LCE combined
with q-LRU at all caches.[11]

1.6 The Che Approximation

We briefly recall Che’s approximation for LRU under the classical IRM[5]. Consider a cache capable
of storing C objects. Let TC(m) be the time needed before C distinct objects (not including m)
are requested by users. Therefore, TC(m) is the cache eviction time or content m, i.e., the time
since the last request after which object m will be evicted from the cache (if the object is not again
requested in the meantime), in other words the interval of time after which a new inserted content
m will be evicted from the cache.[11] Che’s approximation assumes TC(m) to be a deterministic
constant, independent of the selected content m. This assumption has been taken from [6] as
a theoritical assumption, where it is shown that, under a Zipf-like popularity distribution, the
coefficient of variation of the random variable representing TC(m) tends to converge as the cache
size grows. Furthermore, the dependence of the eviction time on m becomes negligible when the
catalogue size is sufficiently large. Che’s approximation is asymptotic validate for α > 1. as
provided in [23] More in detail, thanks to Che’s approximation, we can claim that an object m is
in the cache at time t, if and only if a time smaller than TC(m), has elapsed since the last request
for object m, i.e., if at least one request for m has arrived in the interval [t − TC , t][11]. Under
the assumption that requests for object m arrive according to a Poisson process of rate λm, the
time-average probability pin(m) that object m is in the cache is then given by:

pin(m) = 1− e−λmTC [11]

As immediate consequence of PASTA property for Poisson arrivals, observe that pin(m) represents,
by construction, also the hit probability phit(m), i.e., the probability that a request for object m
finds object m in the cache. The only unknown quantity in the above equality is TC , which can be
obtained with arbitrary precision by a fixed point procedure. The average hit probability of the
cache is:

phit =

m

pmphit(m)[11]

Both equations for pin(m) and phit are taken from [11] which are usuful just for the purpose of
better understanding the behaviour of the average probability for object m in function of λm and
cache eviction time TC under the Che’s approximation.
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1.7 ccnSim: Simulation Environment

1.7.1 ccnsim Overview

CcnSim is a simulator for Content Centric Networks (CCN) [27], whose development started in
the context of the Connect ANR Project. Written in C++, it is developed upon the Omnet++
framework, which provides all the APIs used to simulate Key Performance Indicators (KPI) of
CCN networks, i.e., forwarding and caching replicement policies, cache decision strategies, content
request (R), Catalog cardinality (M), Cache size(C) and so on[27]. CcnSim allows to perform
classic event-driven (ED) simulations of large-scale CCN networks, i.e., up to M = 109 contents,
with moderate memory occupancy and CPU time[27]. The last v0.4 version (distributed as free and
open source software at [27]) provides, also, a new downscaling technique based on TTL caches
Modelgraft [10],[29], which provide better performance in terms of memory occupancy and CPU
time, thus enabling the simulation of growing CCN networks (i.e., up to M = 1012 contents).

1.7.2 Omnet++ Engine and ccnSim workflow

Omnet++ is a C++ based event-driven framework used in networking simulation. It is character-
ized by: i) a set of core C++ classes, which can be extended in order to customize the simulated
environment; ii) a simple network description language (ned) used to describe the interactions
between modules; iii) a msg language defining messages exchanged between network nodes.
CcnSim includes a set of custom modules and classes that extend the Omnet++ core in order to
simulate a CCN network[27]. A classic workflow for ccnSim is depicted in Fig. 1.2 and consists in:

• Compiling ccnSim source files, and linking them with the Omnet++ core.

• Writing .ned files which describe network topologies (it comprisis in creating connections
between CCN nodes).

• Initializing the parameters of each module. This can be done either directly from the .ned
files, or from the .omnetpp.ini initialization file.
By varying the values of parameters,(i.e., cache size, user request, catalog cardinality, Zipf’s
α, average request rete λ, cache policies and decision strategies) it is possible to create several
different CCN network topologies[27].

• Launching the simulation[27].

Figure 1.2. ccnSim workflow [27].
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Figure 1.3. ccnSim-v.04 overview [27].

1.7.3 ccnSim Structure and Simuation techniques

CcnSim-v0.4 (the last version) provides users with the possibility of selecting the most suitable
simulation technique, as reported in Fig. 1.3(a). Starting from a unique scenario description, users
can analyze the performance of cache networks via either an analytical model (when available, left),
a classic event-driven simulation engine (right), or via the ModelGraft [22], [23] engine (middle),
where MonteCarlo simulations after being opportunely downscaled, systems are performed by
replacing LRU caches by their Che’s approximated version, implemented in practice as TTL caches.

CcnSim-0.4 now offers users a simulation framework through which they can select the simula-
tion technique that according with their need.
In particular, users can select between:

• Event-driven (ED)

• ModelGraft

This work refers to Event-driven simulations, which is suitble for our purpose.

1.7.4 Downloading, installing and compiling ccnSim

ccnSim-v0.4 can be freely downloaded from [27]

Prerequisites

• Omnet++: (version ≥ 4.1) downloaded from [30].

For this work has been used Omnet++ v5.0.

• Boost libraries: installed either by using the standard packet manager of your system (e.g.,
apt-get install, or downloading them from [44])

Installing

In order to install ccnSim-v0.4, it is necessary to patch Omnet++ before. CcnSim-v4.0 comes with
two different set of patches, each correspondent to the installed version of Omnet++ (e.g., v4.x or
v5.x).

The opeating system should be a Linux distribution; for compatibility of libraries has been
choosed Linux Fedora 64 bit.

7
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Compiling

The respective ccnSim compilation commands are:

pint:~$ cd $CCNSIM_DIR

pint:CCNSIM_DIR$ cp ./patch/omnet-5.0/ctopology.h $OMNET_DIR/include/omnetpp

pint:CCNSIM_DIR$ cp ./patch/omnet-5.0/ctopology.cc $OMNET_DIR/src/sim

pint:CCNSIM_DIR$ cd $OMNET_DIR && make && cd $CCNSIM_DIR

pint:CCNSIM_DIR$ ./scripts/makemake.sh

pint:CCNSIM_DIR$ make

where $OMNET DIR and $CCNSIM DIR are respectively Omnet-5.0 path and ccnSim
path.

1.7.5 Statistics and Resuts

The key point of a simulation is that of collecting statistics and results. The dimensioning of
the warm-up phase plays a relevant role when the aim is to collect statistics which are actually
computed at steady-state during the transient period of the first MonteCarlo-TTL simulation cycle
(with initial guesses for TC that can not be necessarly correct because the feedback-loop control
automatically converge to a correct TC) in the case of TTL Modelgraft based on MonteCarlo simu-
lative approach[22]; in real cases, the length of the transient can be affected by several parameters,
like forwarding strategy (e.g., shorter paths under ideal NRR can reduce the transient with re-
spect to shortest path [31]), or cache decision policy (e.g., Leave Copy Probabilistically (LCP)[31],
where the content acceptance ratio is reduced with respect to Leave Copy Everywhere (LCE), is
expected to achieve longer transient durations). In particular, the convergence of a single node
i is effectively monitored using the Coefficient of Variation (CV) of the measured hit probability
ratio, phit(i), computed via a batch means approach[22][27]. The node i is considered to enter a
steady-state regime when:

CVi =


1

W−1

W
j=1(phit(j,i)− phit(i))2

1
W


phit(j,i)

≤ ϵCV [27] (1.3)

where W is the size of the sample window, and ϵCV is a user-defined convergence threshold

and denoting phit(j,i) with the j-th sample and phit(i) =
#hit(i)+#miss(i)

#hit(i)
[27].

The eq. 1.1 is taken from [27] with the only purpose of better understand how is stringent for a
node i enter to a self-stabilitation phase by respecting convergence constraints. The drowbacks for
batch means are bias. To avoid biases, new samples are collected only if the cache has received a
positive number of requests since the last request, and its state has changed, i.e., at least a new
content had been inserted in the cache since the last insertion[27]. Eq. 1.1 must be extended ror
all node in the cache to avoid unnecessarily slow down convergence of the whole network, often due
to particular routing protocols and/or topologies. Therefore whole system to enter steady-state
when[27]

CVi ≤ ϵCV [27] ∀i ∈ Y (1.4)

where Y is the set of the first YN
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Chapter 2

Very-Large Scale Scenario for
different policies: IRM vs SNM

2.1 Introduction

In this chapter I considered the largest scenario and in such case I investigated via event-driven
simulation gathered via ccnSim[27]. The aim consists to evaluate the same network topology, first
by injecting the traffic model in the simulation engine in the classical IRM when inter-arrival request
times are independently, exponentially distributed, so that requests for object m are generated
according to a homogeneous Poisson process[15] of rate λm, then, the same traffic modeled under
SNM tecnique, since the IRM completely ignores all temporal correlations in the sequence of
requests and does not take into account the characteristics of real traffic referred to as temporal
locality, which means that if a content is requested at a given time, then it is more probably that
the same content will be requested again in the near time after[45][49]. It is well-known that
the temporal locality has a beneficial effects on the cache performance, since it increases the hit
probability. [49]

Figure 2.1. Network Topology. (a) 4-level binary tree, (b) CDN-like.[29]

9



2 – Very-Large Scale Scenario for different policies: IRM vs SNM

2.2 IRM Validation

The considered scenario represents an ICN-access tree network[29], where the topology is a N = 15
nodes 4-level binary tree depicted in Fig. 2.1. A single repository, connected to the root node,
stores a M = 109 objects catalog, where objects follow a Zipf popularity distribution with exponent
α. In particular we vary the Zipf popularity distribution by changing the exponent α ∈ {0.8, 1},
and the cache size of each node C = {100, 1000, 10000, 100000}. An overall R = 109 requests are
injected at each leaf nodes with aggregate request rate for each client of λ = 20 req/s per leaf[29].

The goal of these simulations is showing the hit probability achieved by four different cache
decision strategies, under IRM traffic, considered for the comparison: (i)LRU, (ii) LCE, where
fetched contents are always cached in every traversed node; (iii) LCD, where the contents are
cached only in the cache preceding the one when the fetching contents occur; (vi) 2-LRU, where
pollution cache generated by unused contents is reduced by using an additional cache in front of
the main one, with the purpose of caching only the requested contents: the fetched contents will
be stored in the main cache only in case of a hit event in the Name cache, however the cache
preceding the main one [11]. (v) (a) q-LRU, q = (1/10), that probabilistically admits contents in
the cache (configured so that one over ten fetched contents are cached on average); and (b) q-LRU,
q = (1/100) (where one over hundred fetched content are cached on average);

We note that LCD significantly outperforms LCE, thanks to an improved filtering effect since
LCD can be view as the dual of k-LRU for cache networks. However LCE replication policy does
not exploit, as it better, the comprehensive storage capacity in the network trying to avoid the
concurrent placement of the content within all cache in case of tree-like network topology[11]. This
is the reason why is preferible engage LCP policy fed by incoming requests uniformly distributed,
(e.g., with either q = 0.5 or q = 0.25).
A single meta-cache (2-LRU policy) achieves very high benefits, providing performance very close
to optimal. It significantly outperforms LRU and its probabilistic version (q-LRU) thanks to the
fact that the meta-cache behaves as a filter, since the insertion policy plays a crucial role in cache
performance, especially when we deal with small size cache networks[11]. We observe, also, that
q-LRU with q = 0.01 performs better then q-LRU with q = 0.1, this beacause when q = 0.01,
there is more probability to find an object present in the cache node, since the insertion policy of
new objects is more stringent, this means that an objects already stored in the cache stays longer
time, however the probability to find it (i.e., hit event) bacomes higher with respect to q = 0.1.

In small-cache regime, defferences among different caching of policies become significants, in
this case, we observe that insertion policies providing some protection against unpopular objects
largely outperform policies which do not filter any request [11]. Performance comparisons among
caching strategies for different α, under IRM traffic model, are shown in Fig. 2.2 and Fig. 2.3.

10



2 – Very-Large Scale Scenario for different policies: IRM vs SNM

Figure 2.2. Hit probability vs cache size, for various poicies, under IRM, in the case of α = 0.8.

Figure 2.3. Hit probability vs cache size, for various poicies, under IRM, in the case of α = 1.
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2 – Very-Large Scale Scenario for different policies: IRM vs SNM

2.3 SNM Validation

Figure 2.4. SNM modulated Poisson process of requests for a given content m. [15].

The basic idea is to capture the impact of dynamic contents (i.e., contents start to be available
in the system at a given time, and their popularity evolves according to a certain profile), by
using a stationary, ON-OFF traffic model associated to a fixed catalogue of M contents.[15] For
the sake of simplicity, we assume that new contents become available in the system according to
a homogeneous Poisson process of rate λm. We refer to this model as Shot Noise Model (SNM),
since the overall process of requests arrival is known as a Poisson shot noise process[14] as depicted
in Fig. 2.4 which shows the SNM modulated homogeneous Poisson process describing the arrival
process of requests for a given content m of a chosen fixed catalogue[15].
Contents are divided into classes characterized by a set of parameters.
First of all, a life-span (Ton) is associated to each class, indicating the time during which the
respective objects are active and can be retrieved. At the same time, each class has its own period
of inactivity (Tof f ), during which the respective objects cannot be fetched.[27] We assume that
both ON and OFF are exponentially distributed with mean duration of Ton and Tof f . During
an ON period, requests arrive with constant intensisty λm and each class is, then, characterized
by an average total request rate (E[V ]), which expresses the total number of requests per seconds
generated for that class during the ON period, and is given by E[V ] = λmTon[15][14]. The
contents placed inside each class are also characterized by a popularity distribution that influences
the generation of content requests λ. Another crucial parameter is k, intrinsecally connected to
the ON-OFF process and the actitivity/inactivity period, indeed Tof f = k × Ton.
The investigated network scenario is the same used for IRM model: 4-level binary tree (see Sec.
2.2). I simulated 109 content requests, average total request rate per second E[V ] = 20, and
probability distribution with Zipf’s exponent α = 1 to generate content requests. For the sake of
semplicity I evaluated all policies performance with just one class, by varying Ton and Tof f periods
with fixed number of contents; this means that for each period Ton, I varied Tof f period by acting
on the moltiplicator factor k, within the equation Tof f = k × Ton.
Values of Tof f and Ton with the corresponding number of contents are provided in Tab. 2.5 and
Tab 2.6.

12



2 – Very-Large Scale Scenario for different policies: IRM vs SNM

Figure 2.5. Settings for SNM scenario with Ton1.

Figure 2.6. Settings for SNM scenario with Ton2.

Under SNM traffic, as IRM model, 2-LRU strategy performs very good, also in the presence of
strong temporal locality. This because, 2-LRU, filter out unpopolar content thus its insertion pol-
icy is able to adapt fast to popularity variations introduced by short-term temporal locality[11]. In
this case, the eviction policy, (in contrast to insertion policy), is not significant. When the caches
are too small with respect to catolog size, the eviction policy becames pratically negligible[15].
Hence, 2-LRU performs, dramatically better than q-LRU, since its filtering action is more effective
and selective, especially against small q (i.e. q = 0.01); this fact goes in contrast to what we have
seen under IRM, where small q performed better then larger q (i.e. q = 0.1): q-LRU with very
small q tends to behave like LFU, hence does not get advantage from the temporal locality when
a process is requested[11]. 2-LRU and q-LRU outperforms LRU, in presence of dynamic variation
of content, for small cache sizes, because their filter action cut unpopular contents, by exploiting
the limited portion of cache. Whereas, for increasing values of sizes, the presence of filter limits
the objects insertion, by leading to a worse hit probability performance with respect to a single
LRU.[15]
Furthermore we observe that the gain achieved by q-LRU with respect to LRU is significantly
higher, this beacause q-LRU policy at each cache is equivalent to use the LCP (Leave Copy Proba-
bilistic) strategy in an network of LRU caches, hence, probabilistic insertion policy allows to better
exploit the aggregate storage capacity of the system, by avoiding the simultaneous placement of a
given content in all caches along the network route[15][19].
At last we can even observe that by incresing Tof f period (through the k moltiplicator factor),
decrease the number of concurrent number of active content at the same time, thus the hit perfor-
mance results better, as showed in Fig. 2.7 and Fig. 2.8 reporting the hit probabilities for various
policies in case of Ton1 and different Tof f periods, under SNM traffic model.

Then, we performed the same analysis with Ton2 grater than Ton1, computed as Ton2 = 50 ×
Ton1. We note that for Ton2 the performance are worse than those one simulated with Ton1 because
the activity period Ton, where simultaneous contents can be requested at same time, become larger.
Performance for various policies, in case of Ton2, and different Tof f periods, under SNM traffic
model, are shown in Fig. 2.9 and Fig. 2.10.
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Figure 2.7. Hit probability vs cache size, for various policies, under SNM, for Tof f = Ton1.

Figure 2.8. Hit probability vs cache size, for various policies, under SNM, for Tof f = 8× Ton1.
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Figure 2.9. Hit probability vs cache size, for various policies, under SNM, for different Tof f = Ton2.

Figure 2.10. Hit probability vs cache size, for various policies, under SNM, for different
Tof f = 8× Ton2

.

2.4 IRM vs SNM Validation

Despite in SNM dynamic content scenario, is hard to estimate cache hit probability of policies,
especially for policies different from LRU and, in particular, for cache network is very challanging
to predict results close to real scenarios, IRM models which do not take into account the temporal
locality of contents, performance are more pessimistic (i.e hit ratio). About SNM traffic model we
achieve very good performance with Tof f≫Ton, indeed if we set too large Ton life-span we achieve
performance very close to IRM traffic model.
Performance comparison for various policies, under IRM vs SNM, in case of large Tof f

1 and α = 1,
are plotted in Fig. 2.11 for Ton1 and in Fig. 2.12 for Ton2.

1The choice of large Tof f has the aim of better exploit the benefits of SNM traffic against IRM traffic.
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Figure 2.11. Hit probability vs cache size, for various poicies, under IRM vs SNM, in
the case of Tof f = 8× Ton1.

Figure 2.12. Hit probability vs cache size, for various poicies, under IRM vs SNM, in
the case of Tof f = 8× Ton2.
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Chapter 3

Performance evaluation of
“cache-decoupled” 2-LRU vs
k-LRU, under IRM

Figure 3.1. An illustration of k-LRU “cache-decoupled” policy.[11]

3.1 Introduction

So far we have worked with 2-LRU having both second stage (meta-cache) and first stage (Name
Cache) the same cache size, this is a limit within ccnSim[27] implementation of 2-LRU policy. In
this chapter I modified the ccnSim C++ program in order to simulate 2-LRU strategy with main
cache and Name Cache decoupled, meaning that the two cache can have different size values. This
is an optimization that leads to obtain better performance without placing other Name Cache in
tail. A list of simulations reported in section 3.3 highlight this fact. Later I implemented k-LRU,
not present among the ccnSim policies, directly in a way you can assign different sizes to all k-1
caches (see Fig. 3.1).
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3.2 2-LRU “cache-decoupled”

First of all we observe that the cache-decoupling breaks the independence assumption between
cache 2 and meta-cache 1 considered in Sec 1.4, where in the case when the two caches have the
same size the eviction time of the second cache (T 2

C) is significantly larger than the eviction time of
meta-cache (T 1

C), since the ID is discarded by the meta-cache 1 before the correspondent content
is evicted by the cache 2, making it possible to find the content in cache 2, and not in cache 1[11].
Therefore we should guarantee that T 1

C ≥T2
C does not occur,

I provided the main C++ parts of ccnSim program, added in order to develop such optimization
of 2-LRU, in particular all functions, variables and pointers acting on the first stage Name Cache,
furthermore I provided the part of program realizing 2-LRU class called “Two Lru” inside the
“two lru policy.h” header, necessary to create a new LRU acting as a Name Cache able to set its
own size; 2-LRU indeed requires node to allocate a second cache, Name Cache, (always with LRU
replacement), in order to keep track of the IDs of the received interest packets. In case of HIT
inside the Name Cache, the retrieved Data packet will be cached in the normal cache (i.e. the one
that contains real contents); otherwise, it will be just forwarded back.

3.2.1 2-LRU “cache-decoupled” implementation

In “base cache.cc” source file:
inside “base cache::initialize()” I add, for 2-LRU, an else-if branch to set the size of the Name
Cache (NC):

else if (decision_policy.compare("two_lru")==0)

{

name_cache_size = par("NC");

decisor = new Two_Lru(name_cache_size);

}

Functions

I created two functions for storing and lookup content id for 2-LRU Name Cache.

• Storage handling of the recivied content ID inside the name cache for 2-LRU meta-caching:

void base_cache::store_name(chunk_t elem)

{

if (cache_size == 0)

std:: stringstream ermsg; // The size of name cache

is set to 0!

severe_error(_FILE_,_LINE_,ermsg.str().c_str() );

}

data_store(elem); // Store the content ID inside Name Cache.

• Lookup function to lookup content ID inside the Name Cache.

bool base_cache::lookup_name(chunk_t chunk)

{

bool found = false;

if (data_lookup(chunk)) // The content ID is present inside the

Name Cache.

found = true;
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else

found = false;

return found;

}

In “core layer.cc” source file:
inside “base cache::initialize()” function I added a pointer for 2-LRU class and a flag for cacheble
if the ID content is present inside Name Cache:

if (decision_policy.compare("two_lru")==0) // 2-LRU

{

Two_Lru* tLruPointer = dynamic_cast<Two_Lru *>

(ContentStore->get_decisor());

if(!(tLruPointer->name_to_cache(chunk))) // The id is not present

inside name cache

cacheble = false; // cacheble flag will be set to ’0’.

}

In “base cache.h” source file:
I defined storing and lookup functions for Name Cache and an integer variable for its size:

functions:

void store_name(chunk_t);

bool lookup_name(chunk_t);

variable:

int name_cache_size;

In “two lru policy.h” source file:
I add in “Two Lru” class a pointer to Name Cache allowing to set its own size since “Two Lru”
class is in charge to take cache decision of the 2-LRU. The “data to cache” function checks the
presence of the content ID inside the Name Cache, and eventually stores it. Since the flag that
indicates the decision (cache or not) is present inside the entry, already been set by the core layer,
such function returns always true.
The rest of “Two Lru” class makes the hit/miss operations for Name Cache, by inserting/ereasing
elements inside map.
The complete program implementing “Two Lru” class can be consulted in Appendix A.

Below is provided the part of “Two Lru” class allowing the Name Cache pointer to set its own
size:

public:

Two_Lru(uint32_t cSize):ncSize(cSize){

base_cache* bcPointer = new lru_cache(); // Create a new LRU

cache that will act as a Name Cache.

name_cache = dynamic_cast<lru_cache *> (bcPointer);

name_cache->set_size(ncSize);} // Set the size of the Name

Cache.
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virtual bool data_to_cache(ccn_data *)

{return true;}

In order to add the Name Cache size within “.ini” file, inside “core layer.ned” file I inserted an
NC variable as integer:

moduleinterface cache

{

parameters:

int C;

int NC;

gates:

inout cache_port;

}
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3.3 Validation of 2-LRU “cache-decoupled”, under IRM

In this section I validated, according event-driven technique, the 2-LRU “cache-decoupled” through
a list of simulations, under IRM traffic. The validation scenario is an ICN-access tree network where
the topolgy is a N = 15 nodes 4-level binary tree depicted in Fig. 2.1 1. This version is an opti-
mization of 2-LRU policy where both second stage (meta-cache) and first stage (Name Cache) can
have its own size. In order to validate that version of 2-LRU strategy, I fixed the size of second
stage, by varying the size of the first stage from a minimum of 10% to a maximum of 500% of the
second stage meta-cache, for two values of Zipf’s exponent: α = {0.8, 1}.

Small cache sizes

In the case of very small cache sizes ,i.e., 103, we achieved a poor gain, as we expected, since the
policy didn’t obtain good perfermance in terms of hit, indeed by tuning the Name Cache to larger
sizes we exceded 11.4% with α = 0.8 as showed in Fig. 3.2, and we didn’t reach 30% with α =
1 as showed in Fig. 3.3. With respect to the “original” 2-LRU2policy we obtained a pratically
negligible gain, (i.e, less than 1%) with α = 0.8, and slightly better with α = 1, (i.e, > 1.5%); so
the cache-decoupling didn’t lead significant benefits.
In the case of small cache sizes, i.e., 104, we obtained results similar to the case wh second stage
had size equal to 103, by confirming that working with small sizes 2-LRU performs not at its better,
although compared with other policies, performs very well. In terms of hit, we achieved maximum
values over 20% with α = 0.8 as plotted in Fig. 3.4 and just a little over 39% with α = 1 as plotted
in Fig. 3.5. In terms of gain we obtained overall only 2%, because Name Cache sizes too small
didn’t influence significantly the full performance of such policy.

1see Chapter 2, Sec. 2.2, for all parameters specification
2...it means that the 2 caches have the same size
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Figure 3.2. Hit probability vs very small cache size for 2-LRU “cache-decoupled”, under
IRM and α = 0.8.

Figure 3.3. Hit probability vs very small cache size for 2-LRU “cache-decoupled”,
under IRM and α = 1.
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Figure 3.4. Hit probability vs small cache size for 2-LRU “cache-decoupled”, under IRM and α = 0.8.

Figure 3.5. Hit probability vs small cache size for 2-LRU “cache-decoupled”, under IRM and α = 1.
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Large cache sizes

Now we analyze the case of large size values of second stage known even as meta-cache or main
cache, i.e., 105 and we evaluated our optimizited 2-LRU in terms of hit and gain. Here we obtained
good performance due to an increased size of the main cache, which is able to store more objects,
in case of miss in the Name Cache.
In this case such policy achieved a total gain of about 10% for α = 0.8 and lesser for α = 1, hence,
our optimization worked very well beacuse for large cache size the presence of the Name Cache
influenced significantly on the overall performance impact. In terms of hit, we got acceptable
results in phase of simulation, by verify that for values of α < 1 (i.e., α = 0.8 in our case of study),
the maximum hit achieved is between 30% and 40%, whereas with α ≥ 1, the maximum hit is ≈
50%, thus 1/2 of the ideal hit. Fig. 3.6 and Fig. 3.7 show the performance got for large cache size
with different Zipf’s exponent α.
By increasing the size of the main cache to a power of 10, i.e, 106, we obtained optimal performance,
however our optimization introduced dramatic benefits on the overall gain, but for cache sizes too
large, the cache-decoupling optimization didn’t provide significant gain from the “original” 2-
LRU, since such policy is already designed to achieve optimal performance in a very large cache
size scenarios.
In this case the content popularity profile plays a crucial role, indeed high values of α, (e.g., α = 1),
allow to reach the maximum performance that 2-LRU strategy can achieve as showed in Fig 3.9,
(the curve stabilized to 51.77%). Although large values of α leaded to better performance in terms
of hit, they didn’t produce huge advantages in terms of gain, since in our examinated case we
perceived a total hit gain of about 3% with α = 1, with respect to about 10% in the case of smaller
value of α, as depicted in Fig. 3.8, in which we simulated the behavior with alpha = 0.8.
This result tell us that the our improvement of the cache-decoupling works better with smaller
values of α, exactly α < 1, whereas higher α values lead the better performance, thus requiring a
trade-off, between cache size and α in order to exploit, at its best, such optimization, trying to get
optimal performance at the same time.
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Figure 3.6. Hit probability vs large cache size for 2-LRU “cache-decoupled”, under IRM, and α = 0.8.

Figure 3.7. Hit probability vs large cache size for 2-LRU “cache-decoupled”, under IRM, and α = 1.
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Figure 3.8. Hit probability vs very large cache size for 2-LRU “cache-decoupled”, under
IRM, and α = 0.8.

Figure 3.9. Hit probability vs very large cache size for 2-LRU “cache-decoupled”,
under IRM, and α = 1.
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3.4 K-LRU “cache-decoupled”

As for 2-LRU “cache-decoupled” case, we observe that the cache-decoupling breaks the indepen-
dence assumption between cache k and k-1 considered in Sec 1.3 3, where in the case when the k
caches have the same size the eviction time of the k-th cache (T k

C) is significantly larger than the
eviction time of k-1 caches (T k−1

C ), since the ID is discarded by the k-1 cache before the correspon-
dent content is evicted by the k-th cache, making it possible to find the content in the k-th cache,
and not in k-1 cache [11]. Therefore we should guarantee that T k−1

C ≥Tk
C does not occur.

Regarding k-LRU, as 2-LRU, I provided the main C++ parts of ccnSim program, implementing
the policy as an extention of 2-LRU “cache-decoupled”. Here the basic idea consists to create a
unque cass called “k LRU”, inside “k lru policy.h” header, that defines, according to k levels, the
numbers of new LRU cache to instantiate (k-LRU differs to 2-LRU just for the number of Name
Cache placed before the main cache, where contents are stored). The eviction policy is therefore
the same of 2-LRU.

3.4.1 K-LRU “cache-decoupled” implementation

In “base cache.cc” source file:
inside “base cache::initialize() I add for k-LRU an else-if branch to set the size of the k-1 Name
Caches (NC,NC2,...,NCk):

else if (decision_policy.compare("k_lru")==0)

{

name_cache_size = par("NC");

decisor = new k_Lru(name_cache_size);

}

In “core layer.cc” source file:
inside “base cache::initialize()” function I implemented a new interest lookup according to k levels,
I set a flag that allows to abilitate/disabilitate the caching of retrieved content:

if (decision_policy.compare("k_lru")==0) // k-LRU

{

K_Lru* tLruPointer = dynamic_cast<K_Lru *>

(ContentStore->get_decisor());

if(!(tLruPointer->name_to_cache(chunk))) // The id is not present

inside Name Cache

// It has to be implemented for the k-1 levels

cacheble = false; // cacheble flag will be set to ’0’.

}

In “k lru policy.h” source file: I created a new “K Lru” class where cache decision of the k-LRU
are taken. For this purpose k-1 pointers to k-1 Name Caches have to be implemented in added to
the pointer reserved to 2-LRU.
Below is provided the part of “K Lru” class where the k Name Cache pointers (inclused 2-LRU)
set their own size. The rest of K Lru class makes the hit/miss operations for Name Cache, by
inserting/ereasing elements inside map.
The complete program of K Lru class can be consulted in Appendix B.

3See k-LRU as replacement policy
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public:

K_Lru(uint32_t cSize):ncSize(cSize){

base_cache* bcPointer = new lru_cache(); // Create a new LRU

cache that will act as a Name Cache.

name_cache = dynamic_cast<lru_cache *> (bcPointer);

name_cache->set_size(ncSize);} // Set the size of the Name

Cache.

// This have to be implemented for k-1 levels of Name Cache

base_cache* bckPointer = new lru_cache(); // Create k-1 new LRU

cache that will act as a k-1 Name Cache.

namek_cache = dynamic_cast<lru_cache *> (bcPointer);

namek_cache->set_size(ncSize);} // Set the size of the k-th

Name Cache.

virtual bool data_to_cache(ccn_data *)

{return true;}

As a conseguence even the part in charge to check the presence of content ID inside the k Name
Caches, by storing it eventually, changes according to “namek cache” pointer.

All the functions and variables created for 2-LRU, are still valid for k-LRU, and the new policy
does not change the the access way to single nodes.
In order to add the k Name Cache sizes within “.ini” file, inside “core layer.ned” file I added a
new kNC integer variable able to set the value of k NC caches:

moduleinterface cache

{

parameters:

int C;

int kNC; // It will contain k Name Cache (included 2-LRU)

gates:

inout cache_port;

}
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3.5 Validation of k-LRU “cache-decoupled”, under IRM

3.5.1 3-LRU vs 2-LRU

In this section I validated the k-LRU policy implemented in ccnSim, according event-driven te-
chinique, through a list of simulations, under IRM traffic. The validation scenario is an ICN-access
tree network where the topolgy is a N = 15 nodes 4-level binary tree depicted in Fig. 2.1. 4 For
the sake of simplicity I evaluated only the performance of 3-LRU (i.e. k-LRU, with k = 3), against
2-LRU “cache-decoupled” optimized, described in Sec. 3.2, with the same criterion of 2-LRU, thus
by varying the size of each Name Cache of both policies, from a minimum of 10% to a maximum
of 500% of the main cache and for α = {0.8, 1}. We note that in this case main cache is no longer
the second stage, but becomes the third stage, since a new LRU acting as Name Cache has been
added in tail.

3.5.2 Small cache sizes

In the case of very small cache size our improvement of 3-LRU provided a significant increase of
gain, with respect to optimized 2-LRU, especially with small values of α, but it didn’t achieve
better performance than the maximum hit already obtained by 2-LRU, because the impact of the
added LRU Name Cache is probabilistically low as showed in Fig. 3.10. Hence, in terms of hit,
better performance was achieved with α = 1, and the maximum gain obtained by 3-LRU against
2-LRU, is verified when both Name Caches were evaluated between 10% and 50% of main cache,
by reaching a gain of 0.7% in case when Name Cache 1 and Name Cache 2 were 50% of the main
cache size as showed in Fig. 3.11.
When the power size of main cache was increased by a factor of 10, i.e., 104, we can see how the
performance of 3-LRU were improved in terms of hits, by showing an hit gain similar to the case of
smaller size. By analyzing the case of α < 1 (Fig. 3.12), we can appreciate that the gain obtained
by 3-LRU vs 2-LRU is larger than the one obtained by α = 1 (Fig 3.13). This results are compliant
to what we have seen under 2-LRU.
Furthermore I would emphasize that small cache sizes got a good, but not optimal performance in
terms of hit probability, stabilizing under 40% when α = 1, however the percentege gain between
3-LRU and 2-LRU results more evident, thus 3-LRU performs significantly better than 2-LRU in
small cache size scenarios. The major advantage of adding a new LRU when we work with small
cache sizes is that 3-LRU policy, with respect to 2-LRU, obtains the maximum hit percentage at
least when both Name Caches have the same size, referred in the case of “orginal” policy.

4see Chapter 2, Sec. 2.2, for all parameters specification
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Figure 3.10. Hit probability vs very small cache size for 3-LRU vs 2-LRU “cache-
decoupled”, under IRM and α = 0.8.

Figure 3.11. Hit probability vs very small cache size for 3-LRU vs 2-LRU “cache-
decoupled”, under IRM and α = 1.
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Figure 3.12. Hit probability vs small cache size for 3-LRU vs 2-LRU “cache-decoupled”,
under IRM and α = 0.8.

Figure 3.13. Hit probability vs small cache size for 3-LRU vs 2-LRU “cache-decoupled”,
under IRM and α = 1.
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3.5.3 Large cache sizes

When we work with large cache sizes, adding a new LRU Name Cache doesn’t lead significant
benefits, in terms of hit gain, than to 2-LRU policy, since the cache-decoupling optimization allows
to increase directly the sizes of Name Caches until the same maximum hit is reached for both
policies: this means that our improvement works very well on 2-LRU, but on 3-LRU policy doesn’t
provide huge advantages.
In this case α plays a crucial role in terms of hit, since 3-LRU evaluated with α = 1 (Fig 3.15)
performed dramatically better than to the case in which α = 0.8 (Fig. 3.14).
Handling very high cache sizes, the addition of the second Name Cache, with respect to just one, is
quite significative in terms of hit, whereas in terms of gain becames pratically negligible. We can
ivestigate for which size ranges we achieved a longer null gain. As shown in Fig. 3.17, when the
size of the third stage was 106 and α = 1, 3-LRU got a gain equal to 0 against 2-LRU, when Name
Cache 1 and Name Cache 2 were evaluated from 100% to 500% of the third stage size, thus the max
hit achieved is the same obtained by 2-LRU: 51,77%. This result, is not too much encouraging,
beacuse it’s not convenient adding a new LRU with high cache size, with respect to the costs of
placing it in chain, since much of the possible gain is already achieved by k = 2 (i.e., 2-LRU)[11].
This statement, as a consequence, can be extended to k-LRU policy.

3.6 Insights

At the end of an accurate invesigation we can claim that by increasing the cache sizes of 2-LRU
or 3-LRU, and α, we obtains very optimal performance in terms of hit probability, since our
optimization allows to reach very high performance by increasing directly the size of the Name
Caches, independently by the main cache one, but in terms of gain between 3-LRU vs 2-LRU, we
don’t have huge benefits, especially by working with large cache size beacause 2-LRU is already
designed to achieve the maximum possible gain: thus for 3-LRU, our improvement makes significant
sense when we work with small cache sizes, especially for values of α ≤ 1.
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Figure 3.14. Hit probability vs large cache size for 3-LRU vs 2-LRU “cache-decoupled”,
under IRM and α = 0.8.

Figure 3.15. Hit probability vs large cache size for 3-LRU vs 2-LRU “cache-decoupled”,
under IRM and α = 1.
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Figure 3.16. Hit probability vs very large cache size for 3-LRU vs 2-LRU “cache-
decoupled”, under IRM and α = 0.8.

Figure 3.17. Hit probability vs very large cache size for 3-LRU vs 2-LRU “cache-
decoupled”, under IRM and α = 1.
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Chapter 4

Performance evaluation of
“cache-decoupled” 2-LRU vs
k-LRU, under SNM

4.1 Introduction

In this chapter I evaluated, according event-driven technique, the performance of “cache-decoupled”
2-LRU and k-LRU policies, under Shot Noise Model (SNM) traffic model, where the temporal lo-
cality of requests is modeled through an ON-OFF process. I remember that this optimized version
of 2-LRU and k-LRU, allow to set their size to all Name Caches preceding the main one, separating,
thus, the k − 1 Name Cache stages to the kth stage, i.e., the meta-cache.
The goal of this chapter is to better understand the impact on the cache performance of a mixture
of heterogeneous contents characterized by different degrees of temporal locality, trying to emulate
traffic observed in real networks.[15] In order to validate them, I investigated their performance in
two scenarios:

• Single cache.

• Cache networks.

For both network scenarios, I evaluated the performance under different temporal locality, by
varying the activity/inactivity period Ton and Tof f . We assume that both ON and OFF are
exponentially distributed with mean duration of Ton and Tof f .[15] Even in this case requests
arriving with constant intensisty λ which are generated during an ON period. Hence the average
number of requests arriving during an ON period is given by E[V ] = λmTon [15].
I simulated 109 content requests, average total request rate per second (generated during the
ON period) E[V ] = 20, and λ distribuited according Zipf’s exponent α = 1 to generate content
requests. To reduce the complexity of networks, and to do not overload the CPU assigned to the
Virtual Machine, I performed the simulations with just one class, and 3-LRU in place of k-LRU,
by considering essentially k-LRU, with k = 3.
The periods of temporal locality Ton and Tof f associated to the number of contents simulated are
provided in Tab. 4.1 and Tab. 4.2, where is depicted that Ton2 is computed as Ton2 = 50× Ton1

and Tof f is computed as Tof f = k × Ton with k = {1, 8} for both life-span Ton1 and Ton2.
All the simulations are performed by keeping fixed the main cache (meta-cache) and by varyng the
size of the Name Cache (case 2-LRU), or of the two Name Caches (case 3-LRU) from a minimum
of 10% to a maximum of 500% of the main cache.

35



4 – Performance evaluation of “cache-decoupled” 2-LRU vs k-LRU, under SNM

Figure 4.1. Settings for the first SNM scenario.

Figure 4.2. Settings for the second SNM scenario.

4.2 Single cache

4.2.1 First SNM scenario: Ton1

Let’s start to investigate the performance with the first SNM scenario, when the simulations was
performed with life-span Ton1 and different Tof f periods.
We will note how the policies under SNM significant outperform IRM, since IRM does not con-
sider the temporal locality. Then by increasing the period of inactivity Tof f we achieved better
performance, since decrease the number of simultaneous active contents at the same time.

• Tof f = Ton1

Small cache sizes

The 2-LRU and 3-LRU, (more in general k-LRU policy), work well even in the case of very small
cache size, under SNM traffic model. Our experiments are compliant to what we expected, indeed
as showed in Fig. 4.3, by tuning up the sizes of the Name Cache 1 and Name Cache 2, we obtained
a performance in terms of hit closer to 57%, we can note that thanks to the cache-decoupling
optimization, both policies outperform the maximum hit obtained by themselves, in the case of
very large cache size, under IRM (corresponding to 51.77%).
In terms of gain, our optimization leads to mare than 1.5% (of the total 3%) for both 2-LRU
and 3-LRU, meaning that there is a good margin of improvement with respect to the “original”1

policies.
We performed the same investigation by increasing the size of main cache power to an order of 10,
i.e., 104. We can observe from Fig. 4.4, how the performance of both pocicies result dramatically
better, by reaching hit over 77%. The cache-decoupling allows to gain about 1.5% from the case
in which the Name Cache 1 and Name cache 2 have the same size to the case in which both ones
are 500% of the main cache, i.e., 5 × 104, by providing a total gain of about 4%. This outcame
tell us that our optimization allows k-LRU, in general, to improve its performance not only under
IRM, but also in SNM traffic model, meaning that it mitigates even the temporal locality.

1...it means that all the Name Caches’s policy have the same size of the main cache one.
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Figure 4.3. Hit probability vs very small cache size, 2-LRU vs 3-LRU, under SNM, single
cache, Tof f = Ton1

.

Figure 4.4. Hit probability vs small cache size, 2-LRU vs 3-LRU, under SNM, single
cache, Tof f = Ton1.
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Large cache sizes

In the case of large sizes of cache, i.e., main cache, C = 105, with 2-LRU we achieved optimal
performance, by confirming the strength of the temporal locality under SNM, indeed referring to
Fig. 4.5, we can observe that such caching strategy, reached ≈ 95% in terms of hit. Since 2-LRU
gave much of possible gain yet, 3-LRU didn’t lead significant benefits. This is the reason why the
cache-decouping optimization didn’t provide a real gain when we increased the Name Caches size
over the fixed size of the main cache, whereas the impact of cache-decouping on the overall gain is
very important, by producing high hit ranges.
When we examinated cache size larger than 105, i.e., 106, we obtained null gain: both cache
strategies stabilized to the maximum hit of 95% (depicted in Fig. 4.6), hence for very large cache
sizes our optimization becames negligible on caching performance. The employ of SNM model
seems to be a powerful solution in caching analyzing, but it requires to know the entire popularity
profile in the form of the function λm(t), that user have to specify for each given content, otherwise
is difficul estimating popularity profiles [14].
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Figure 4.5. Hit probability vs large cache size, 2-LRU vs 3-LRU, under SNM, single
cache, Tof f = Ton1

.

Figure 4.6. Hit probability vs very large cache size, 2-LRU vs 3-LRU, under SNM,
single cache, Tof f = Ton1.
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• Tof f = 8× Ton1

We performed a new analyses trying to enlarge the Tof f period of 8 times the life-span Ton1

in order to verify the performance of studied policies that should be better since decrease the
simultaneous content active at the same time. Furthermore when Tof f is significantly high and
much larger than the cache eviction time TC , at the end of the OFF period, the probability that
the cache still contains a copy of a given object m become negligible[15].

Small cache sizes

In the case of larger Tof f , as we expected, the performance of the both policies outperform these
one obtained with weak temporal locality given by Tof f = Ton1, by getting an overall gain of
about 10%, on average, more (see Fig. 4.7).
From the point of view of our optimization, we can appreciate a lower gain than larger Tof f

(i.e., ≈ 1% on 2-LRU, ≈ 0.5% on 3-LRU) from sizes over the fixed main cache: meaning that 3-
LRU outperforms 2-LRU for small sizes and the cache-decoupling works better with smaller Tof f ,
because the temporal locality already enahances the policies’s performance.
By increasing the size of the main cache to 104, we achieved even better performance in terms of
hit, e.g., the curves reached until ≈ 85% when the sizes of Name Cache 1 (2-LRU case) and Name
Cache 2 (3-LRU case) were 500% of the fixed main cache size, C (see Fig 4.8). Even in this case
both policies achieved lower gain than smaller Tof f (about 0.5% lesser) for sizes larger than the
fixed main cache, C. The positive result is that both poclicies kept unchanged the overall gain
referred to the cache-decoupling optimization.

Large cache sizes

We examinated the behavior of the 2-LRU and 3-LRU in condition of large cache sizes, in this case
we achieved very optimal performance. In Fig. 4.9 we can see that the maximum hit achieved
corresponds to ≈ 96%; this means that it’s closer to the ideal probability of 1, in other words,
there is a probability of 100% to find a given content within the first Name Cache visited. Since
this hit values are too high, they are not fully reliable, that confirms how is difficult estimating
caching performance in a realistic scenario.
In terms of gain, 3-LRU outperformed 2-LRU when the size of the two Name Caches were evaluated
between 10% to 100% of the main cache, by achieving about 8% as total gain thanks to our
optimization, whereas it achieved null gain when the size of the two Name Caches were increased
over the size equal to the main cache.
By increasing the main cache size, C > 105, (e.g., 106) we obtained constant hit greater to 96%,
with a pratically null gain, as showed in Fig 4.10. Even this result is few reliable, but it makes us
understand that 2-LRU, 3-LRU, more in general k-LRU, in a scenario with very large sizes and
high degree of temporal locality performs very optimal, however our improvement loose its efficacy.
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Figure 4.7. Hit probability vs very small cache size, 2-LRU vs 3-LRU, under SNM, single
cache, Tof f = 8× Ton1.

Figure 4.8. Hit probability vs small cache size, 2-LRU vs 3-LRU, under SNM, single
cache, Tof f = 8× Ton1.
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Figure 4.9. Hit probability vs large cache size, 2-LRU vs 3-LRU, under SNM, single
cache, Tof f = 8× Ton1

.

Figure 4.10. Hit probability vs very large cache size, 2-LRU vs 3-LRU, under SNM,
single cache, Tof f = 8× Ton1.
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4.2.2 Second SNM scenario: Ton2

In this section I would emphasize that increasing the Ton period leads to worse performance,
because the activity life-span Ton, where concurrent contents can be requested at same time,
become larger. Those list of simulations highlight this theoretical forecast, through another Shot
Noise Model Scenario, characterized by Ton2 > Ton1, computed as Ton2 = 50 × Ton2, (see Tab.
4.2, sec. 4.1).
Therefore we analyzed the behavior of “cache-decoupled” 2-LRU and 3-LRU with changing Tof f ,
in terms of hit and gain

• Tof f = Ton2

Small cache sizes

First of all we evaluated the case of small cache sizes, as we expected, we achieved worse per-
formance against Ton1. In such case the policy curves were in constant growth (see Fig. 4.11),
differently from what happened with shorter Ton1, where, there was an interval of changing trend
when the two Name Caches were evaluated between 50% and 100% of 103.
Then we increased the size of the main cache to 104, and even in this case we achieved worse
performance with respect to the case of smaller Ton1, by confirming the theory.
For small cache sizes the cache-decoupling optimization works very well and slightly better than
shorter life-span Ton1: it produced huge benefits, indeed as we can see from Figs. 4.11, and 4.12, we
obtained an overall gain closer to 10% and until to 2% of hit gain from sizes over than fixed main
cache. Those results are the prove that our improvement takes advantages when we handle small
cache sizes and larger ON life-spans, hence when the policies perform worse at starting conditions.

Large cache sizes

In the case of large cache sizes, since k-LRU performs already very good, the advantages produced
by our optimization was negligible. 3-LRU policy got a constant hit to about 67.5% (plotted in
Fig. 4.13), thus about 30% less than Ton1 case; 2-LRU performed as 3-LRU except in the case
when Name Cache 1 was 10% of the main cache.
With size of main cache larger than 105, (e.g., 106), the performance of both 2-LRU and 3-LRU
didn’t change, because they reached their maximum stabilization hit, yet (depicted in Fig. 4.14); in
this scenario, our optimization takes gain equal to 0 and doesn’t influence their total performance.
We can note that in the case and only in this case of big sizes and larger Ton2 life-spans, we
obtained that our optimization of cache-decoupling worked bad, so it provided better benenifts, in
terms of gain, with smaller Ton1.
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Figure 4.11. Hit probability vs very small cache size, 2-LRU vs 3-LRU, under SNM,
single cache, Tof f = Ton2.

Figure 4.12. Hit probability vs small cache size, 2-LRU vs 3-LRU, under SNM, single
cache, Tof f = Ton2.
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Figure 4.13. Hit probability vs large cache size, 2-LRU vs 3-LRU, under SNM, single
cache, Tof f = Ton2.

Figure 4.14. Hit probability vs very large cache size, 2-LRU vs 3-LRU, under SNM,
single cache, Tof f = Ton2.
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• Tof f = 8× Ton2

As the last analisys, we have evaluated the case of high Tof f period, that correspond to 8
times Ton2, by keeping unchanged the number of contents distrbuted over the single class. In this
case such high ratio Tof f/Ton2 leads to optimal performance, but however worse than shorter Ton1.

Small cache sizes

As we expected, even in this case of very small sizes, we achieved greater gain than Ton1 scenario
for k-LRU in general: around 10% overall, by perceiving a gain over 1.5% from the “original” 2

k-LRU policy, thus a little worse than the case of shorter Tof f , since our optimization works better
with weak temporal locality. In terms of hit we obtained until ≈ 64% (showed in Fig 4.15), that
under SNM, is however a good result.
Similar results were obtained by increasing the size of main cache to 104, by getting the same
overall gain of 103, but with better performance in terms of hit (see Fig. 4.16). Our purpose was
to mantain the same gain, even when the size of both the main cache and the Name Caches were
increased.

Large cache sizes

By tuning up the size of the main cache to 105, we achieved reasonable values, with an increase
of hit of ≈ 4%, by performing very well given by the high degree of temporal locality. In this
case both 2-LRU and 3-LRU reached their maximum hit by stabilizing 76.76% (showed in Fig.
4.17). From the point of view of our optimization, the cache-decoupling didn’t lead significant
improvement, since the policies performed as their best yet.
The very advantage, for large sizes, is that our cache-decoupling optimization didn’t adversely
influence on the impact of the performance when it provided no benefits, although we were not in
condition of weak temporal locality. Fig 4.18 shows the performance of 2-LRU and 3-LRU in case
of very large sizes (i.e. ≥ 106).

2...it means that the k caches have the same size
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Figure 4.15. Hit probability vs very small cache size, 2-LRU vs 3-LRU, under SNM,
single cache, Tof f = 8× Ton2.

Figure 4.16. Hit probability vs small cache size, 2-LRU vs 3-LRU, under SNM, single
cache, Tof f = 8× Ton2.
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Figure 4.17. Hit probability vs large cache size, 2-LRU vs 3-LRU, under SNM, single
cache, Tof f = 8× Ton2

.

Figure 4.18. Hit probability vs very large cache size, 2-LRU vs 3-LRU, under SNM,
single cache, Tof f = 8× Ton2.
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4.3 Cache networks

The considered scenario represents an ICN-access tree network[29], where the topology is a N = 15
nodes 4-level binary tree depicted in Fig. 2.1 of Chapter 2. A single repository, connected to the
root node, stores a M = 109 objects catalog, where objects follow a Zipf popularity distribution
with exponent α = 1. An overall R = 109 requests are injected at each leaf nodes with aggregate
request rate for each client of λ = 20 req/s per leaf.
Contents are replicated on all caches traversed by a request and in the case of a miss, requests are
forwarded to the root.
The goal is two-fold: showing the performance of cache networks under SNM traffic at the variation
of Ton and Tof f ; verifying that tree network performs worse than single cache scenario, since every
tree’s hit probability is computed through the mean of all cache nodes, thus the nodes placed along
the end of the path adversely affect the total mean hit achieved.

4.3.1 Traffic Model for SNM cache networks

We now extend the basic SNM introduced in Chapter 1 (sec 1.2), to manage the case of multiple
interconnected caches in a tree-like topology, in which edge caches receive the requests generated
by users which different interests from one ingress point to another.
The general form associates to every content m and ingress point i, a tuple (Vm,i, λm,i, τm,i),
so that, at ingress point i, requests for content m arrive according to an inhomogeneous Poisson
process, whose instantaneous rate at time t is given by Vm,iλm,i(t - τm,i)[43]. In our semplification
we assume that that the instants at which content m starts to be available in the system at the
different ingress points (τm,i) are equal, thus τm,i = τm, and as a consequence the popularity
evolution of a content is perfectly synchronized across different ingress points, by assuming that
λm,i = λm[43][14].
Finally, we denote (Vm,i) as the volumes of requests that are generated by contents at the different
ingress points. The our semplification is the following: for each content m, we assign a global
volume Vm, representing the total number of requests that are generated in the whole system[43].
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4.3.2 First SNM scenario: Ton1

As the case of single cache, we investigated the caching performance with the first SNM scenario,
when the simulations was performed with Ton1, and we varied the Tof f periods accordingly.

• Tof f = Ton1

As we expected, from the discussion had in Sec 4.3, the performance achieved by the cache
networks, on the following simulations outcame, are worse than single cache, but however better
than IRM model. We examinated where our optimization got major benefits.

Small cache sizes

In the case of very small cache size (i.e., 103) we obtained hits not too performing, about 20%, on
average, less than single cache, indeed by tuning up the size of the Name Cache 1 (2-LRU case)
and Name Cache 2 (3-LRU case), the hits didn’t exceed the 36%, as showed in Fig. 4.19, for both
policies. The surprising result given by the cache-decouping optimization, was found in terms of
gain: 2-LRU and 3-LRU gained overall 5% of hit, in particular, about 1.5% for 2-LRU and 1%
for 3-LRU from the case in which the two Name Caches did the same main cache size, to 500% of
that one.
Even in the case in which the size of the main cache was increased to 104, our improvement
perceived about 5% of overall gain of which 1% for both 2-LRU and 3-LRU from sizes over the
fixed main cache(see Fig. 4.20), by reducing ≈ 5%, on average, the gap against single cache.
The challange was to keep the same gain also in the case of increased cache sizes. Although we
succedeed, the most of the gain was achieved just when the two Name Caches sizes were evaluated
between the 10% and 100% of the main cache, for both policies.
In other words, in cache networks scenario, the cache-decouping aims to reduce the differences of
performance with respect the single cache, by increasing the overall gain, but however it didn’t
provide significative benefits with respect the “original” policies, in which both Name Caches have
the same size of the main cache one.

Large cache sizes

For large cache sizes, k-LRU in general, works very well, even in the networks of cache scenario.
Hence, when a request is forwarded to the upper level, in case of miss, the cache nodes near the
root, affect less adversely, if the caches have large sizes, because they can contain more copies of
possible content requested. In this case the cache-decoupling achieved huge benefits on the overall
gain, however from Name Cache sizes greater than the main cache, the hit gain perceived was
negligible. Fig. 4.21 shows the performance of 2-LRU and 3-LRU evaluated when the main cache
sizes, C was 105.
For very large cache sizes (i.e., ≥ 106), we achieved similar hits of large cache size scenarios, whereas
since both strategies already performed very well, our improvement didn’t provide benefits in terms
of gain. Fig. 4.22 shows the performance of 2-LRU and 3-LRU evaluated when the main cache
size, C = 106.
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Figure 4.19. Hit probability vs very small cache size, 2-LRU vs 3-LRU, under SNM, cache
networks, Tof f = Ton1.

Figure 4.20. Hit probability vs small cache size, 2-LRU vs 3-LRU, under SNM, cache
networks, Tof f = Ton1.
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Figure 4.21. Hit probability vs large cache size, 2-LRU vs 3-LRU, under SNM, cache
networks, Tof f = Ton1.

Figure 4.22. Hit probability vs very large cache size, 2-LRU vs 3-LRU, under SNM,
cache networks, Tof f = Ton1.
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• Tof f = 8× Ton1

In order to have better performance, we expanded the Tof f period 8 times life-span Ton1.

Small cache sizes

With Tof f ≫ Ton1, we obtained improved performance, in terms of hit, but worse gain than the
case given by smaller Tof f , from the point of view of our optimization. This is due by the fact
that with high degree of temporal locality, both 2-LRU and 3-LRU performed at their better, yet.
Fig. 4.23, shows the performance with main cache size, C = 103, we observed, indeed, an achieved
gain of about 3%, thus 2% less than the case of weak temporal locality given by Tof f = Ton1.
In Fig. 4.24, are plotted the performance in which the size of main cache was icreased by a power
of 10, in this case the overall gain was kept quite equal to the case of smaller cache sizes: 3%, by
obtaining a good gain even for sizes larger than the main cache (i.e., 104). This is a good result,
because, the cache-decouping optimization worked well even in a scenario already improved by the
high degree of temporal locality, by achieving about 1% and 0.5%, respectively for 2-LRU and
3-LRU, with respect to the “original” policies.

Large cache sizes

As we expected, by investigating the behavior of the poclicies where we handle large cache sizes,
we obtained an high total gain than single cache scenario, of about 8%, whereas we didn’t get
important advantages on the impact than the “original” policies, since both 2-LRU and 3-LRU
stabilized to the maximum hit of about 72% (showed in Fig. 4.25), just when Name Cache 1 and
Name Cache 2 were 50% of the main cache, C.
For size larger than 105, we can ascertain that both 2-LRU and 2-LRU reached a constant hit,
because they achieved their maximum hit, by performing very good as depicted in Fig. 4.26, thus
the cache-decoupling didn’t lead any gain in such case.
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Figure 4.23. Hit probability vs very small cache size, 2-LRU vs 3-LRU, under SNM, cache
networks, Tof f = 8× Ton1.

Figure 4.24. Hit probability vs small cache size, 2-LRU vs 3-LRU, under SNM, cache
networks, Tof f = 8× Ton1.
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Figure 4.25. Hit probability vs large cache size, 2-LRU vs 3-LRU, under SNM, cache
networks, Tof f = 8× Ton1.

Figure 4.26. Hit probability vs very large cache size, 2-LRU vs 3-LRU, under SNM,
cache networks, Tof f = 8× Ton1.
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4.3.3 Second SNM scenario: Ton2

In this section I would emphasize that even in a tree-like network, increasing the Ton life-span
leads to achieve worse performance, remainding that our simplifying assumptions, according to
which the popularity evolution of each content is “synchronized”[15] across different ingress points
(τm,i = τm, λm,i = λm), we refer to the second Shot Noise Model Scenario, characterized by
Ton2 > Ton1 period 3 that leads to results similar to IRM traffic, knowing that the degree of
synchronization increases with the content popularity referred to the life-span Ton2.
According to tree-like network, we analyzed the behavior of “cache-decoupled” 2-LRU and 3-LRU
with changing Tof f , in terms of hit rate and gain.

• Tof f = Ton2

Small cache sizes

In the case of larger Ton2 life-span period, and by evaluating small cache size of 2-LRU and 3−LRU ,
in such scenario of cache networks, we achieved poor performance in terms of hit, around 20%, on
average, lower than single cache, and just 2.5%, on average, less than Ton1 thanks to the cache-
decoupling optimization that in this case worked very well by leading to good percentage hits gain
than the “original” caching strategies, since it obtained an overall gain of about 7%, of which more
than 2% when the Name Caches sizes of both strategies were larger than the main cache one. The
performance of both policies are showed in Fig. 4.27, where we observed that in this case of small
sizes and larger Ton2 3-LRU outperforms 2-LRU.
By observing Fig 4.28, we can see that by incresing the size of the main cache to a power of 10,
i.e., 104, we obtained less benefits than 103 by decreasing the overall gain of about 1%, whereas
we kept the same hit gain of 2% with respect the “original” policies; furthermore we obtained
better hits performance by expoloiting, thus, at its best the improvement of the cache-decoupling,
by keeping fixed the gap, on average, with single cache and Ton1.

Large cache sizes

When we analyzed large cache sizes, 3-LRU performed slightly better than 2-LRU, but both policies
stabilized to ≈ 56% of hit, that we considered a good result as measurament of performance. This
means that the cache-decoupling optimized significantly the “original” policies, since it worked
better in condition of starting worse performance, as in such case of cache networks scenario and
enlarged Ton2. Our improvement, hence, provided an overall gain of about 10%, and a good gain
was achieved even when the two Name Caches size were larger than the main cache one (≈ 1%)
(see Fig. 4.29). The only case in which we obtained no gain from our optimization was when both
Name Cache 1 and Name Cache 2 were evaluated between 250% and 500% of the main cache size,
C.
With very large size of main cache, i.e. C = 106, we obtained a constant hit exceeding 58%, as
showed in Fig. 4.30. In this case, for too large size, we got a negligible gain from the cache-
decoupling.
For large and very large cache sizes, we obtained about 10% of hit gain, on average, lower than
single cache, (half than small cache sizes) and still 2%, on average, less than Ton1.

3see Tab. 4.2, sec. 4.1
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Figure 4.27. Hit probability vs very small cache size, 2-LRU vs 3-LRU, under SNM, cache
networks, Tof f = Ton2

.

Figure 4.28. Hit probability vs small cache size, 2-LRU vs 3-LRU, under SNM, cache
networks, Tof f = Ton2.
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Figure 4.29. Hit probability vs large cache size, 2-LRU vs 3-LRU, under SNM, cache
networks, Tof f = Ton2.

Figure 4.30. Hit probability vs very large cache size, 2-LRU vs 3-LRU, under SNM,
cache networks, Tof f = Ton2.
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• Tof f = 8× Ton2

We icreased the Tof f period 8 times Ton2, in order to achieve better performance, by keeping
unchanged the number of contents.

Small cache sizes

By considering the two policies when were evaluated with small cache sizes, i.e., 103, (see Fig. 4.31),
we obtained better performance than the case of lower content temporal locality Tof f = Ton2,
however worse than shorter Ton1 (i.e., ≈ 2% lesser, on average), and even worse than single cache
case (i.e., ≈ 25% lesser, on average). The impact of the cache-decoupling brought good benefits on
the overall gain achieved, by improving both 2-LRU and 3-LRU performance of about 5% of hit,
of which more than 1.5% when the Name Cache 1 and Name Cache 2 size were larger than the
fixed main cache one (i.e., 0.5% less than weak temporal locality Tof f = Ton2).
Even in such case of small sizes and larger Ton1 we can note that 3-LRU significantly outperforms
2-LRU.
We didn’t keep the same gain of Tof f = Ton2 when the two Name Cache sizes were larger than
the main cache one, thus from the “original” caching strategies, (i.e., ≈ 1% lesser), in the case in
which we increased the size of the main cache to 104, (see Fig. 4.32), this is due to the strong
degree of temporal locality that adversely influenced the cache-decoupling optimization, instead,
with respect to shorter Ton1 both policies achieved better overall gain.

Large cache sizes

In the case of large cache sizes, k-LRU more in general, performs however very well even in a
network of caches scenario, i.e. 4-level binary tree, and larger Ton2. By showing Fig 4.33, when
the cache size of main cache was increased to 105, we confirmed that with high degree of temporal
locality the improvements of the cache-decoupling decreased, indeed, we obtained worse gain,
exactly all the overall gain was achieved by 2-LRU and 3-LRU, when both Name Caches size were
evauated between the 10 and 50% of the main cache, meaning that for cache sizes larger than the
main cache we didn’t achieve any gain, hence, in such range, our optimization, provided null gain.
With cache sizes over than 106, both policies reached their maximum hit, by stabilizing to about
68% (showed in Fig. 4.34), even in this case our optimization didn’t produce benefits.

4.4 Insights

In this chapter we investigated the performance of 2-LRU and 3-LRU (i.e. k-LRU in general), under
SNM, under different degree of temporal locality and different scenarios. We confirm, through
such simulations, that by increasing Tof f period, both caching strategies perform better, since
decrease the number of simultaneous active contents, thus shorter Ton (i.e., Ton1) leads to better
performance, especially in presence of single cache topology.
However high degree of temporal locality provides huge benefits on caching performance, but it
limits the benefits of the cache-decoupling optimization on the cache impact in terms of gain: in
practise such improvement helps to increase the policies’s performance when we work with small
cache size, and lower contents temporal locality, since our optimization influenced also the dynamic
content changing, thus it mitigates the caching performance even under SNM traffic model.
By concluding, it needs to opportunely set the periods Ton and Tof f in order to maximize the hit
gain given by the cache-decoupling and, at the same time, ensuring high performance.
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Figure 4.31. Hit probability vs very small cache size, 2-LRU vs 3-LRU, under SNM, cache
networks, Tof f = 8× Ton2.

Figure 4.32. Hit probability vs small cache size, 2-LRU vs 3-LRU, under SNM, cache
networks, Tof f = 8× Ton2.
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Figure 4.33. Hit probability vs large cache size, 2-LRU vs 3-LRU, under SNM, cache
networks, Tof f = 8× Ton2.

Figure 4.34. Hit probability vs very large cache size, 2-LRU vs 3-LRU, under SNM,
cache networks, Tof f = 8× Ton2.
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Chapter 5

Performance evaluation of
“cache-decoupled” 2-LRU vs
k-LRU, under SNM and Pareto
distribution

5.1 Introdution

In this chapter I investigated the performance of the optimized “cache-decoupled” 2-LRU vs k-LRU,
under SNM model and under Pareto probability distribution, according event-driven technique.
In order to do it, I sustituded the Zipf’s law in place of the Pareto Cumulative Distribution Function
(CDF) within ccnSim program. The average number of request V attracted by contents follows the
Pareto distribution with probability density: f(v) = βV β

min/v
1+β [58] for v ≥ Vmin (recall that

the second moment of the Pareto distribution is finite for β ≥ 2)[15]. The value of λ associated to
contents of the fixed catalogue produced an average number of request during an ON period given
by E[V ] = λmTon which has the same distribution as the number of requests produced by SNM
shots.
The choise of a Pareto distribution for Vm is justified by the fact that Zipf-like distribution is
obtained when a large number of content requests are independently generated according to a
Pareto distribution with exponent β[15].
As in chapter 3, I evaluated 2-LRU and for the sake of semplicity 3-LRU (i.e k-LRU, with k = 3).
I investigated the basic case of single cache fed by a single-class SNM traffic model, by considering
Ton and Tof f periods associated to number of contents depicted in Fig. 5.1. Again the number of
contents belonging to the catalogue size is large enough to consider the system ergodic, even if λm

is the same for all the ON periods associated to content m[15]. For the experiments presented in
this section, I investigated the performance of 2-LRU and 3-LRU with just two Pareto’s exponents:
β = 2, β = 1.5 and we fixed the average number of requests for each content to E[V ] = 20.
All the simulations are performed by keeping fixed the main cache and by varyng the size of the
Name Cache (case 2-LRU), or of the two Name Caches (case 3-LRU) for a minimum of 10% to a
maximum of 500% of the main cache.
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Figure 5.1. Settings for Pareto SNM scenario.

5.1.1 Implementation of Pareto distribution

I initialized the Pareto’s CDF: F (v) = 1 − Vmin/v
β [58], according to the specified catalog cardi-

nality; i) the parameter x describes the content popuplarity v, and has the same access of Zipf’s;
ii) Vmin is set equal to 1; iii) the parameter Number0fElements describes the content cardinality.

void pareto_distribution::pareto_initialize(unsigned long long x, unsigned

long long NumberOfElements)

{

// Return if the cdf has been already initialized.

if (cdfPareto.size() != 0)

return;

double c = 0;

double num = 0;

cout<<"Initializing Pareto distribution of Class # "" class_num

<<""...""<< endl;

// Initialization of the Pareto’s CDF according to the specified

catalog cardinality

if (x <= 0 || x > NumberOfElements)

return 0.0;

{

c = 1.0 - (1.0/ (pow(x, beta))); // Vmin has been set equal to 1

}

}

The parameter β is retrieved by the program through the function:

unsigned int pareto_distribution::get_beta()

{

return beta;

}

We can note that in the program we have taken into account also the case of different content class,
however for the sake of semplicity we have investigated just the case of single class of contents.
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5.2 Validation of k-LRU “cache-decoupled”, under SNM
and Pareto distribution

Pareto distribition tryies to emulate the content profiles in a realistic scenario (e.g., Youtube
videos), this is the reason why achieves hit further far from 1 than Zipf’s distribution, since Zipf’s
law describes very well long-term number of requests attracted by each content[15]. Furthrmore
in order to produce significant hit differences we have to tune the β exponent larger than Zipf’s α
one.

• Tof f = Ton1

Even under Pareto distribution, cache performance are deeply impacted by the average life-span
of contents, Ton, indeed for a given cache size, the hit probability is roughly inversely proportional
to Ton[43].

Small cache sizes

To investigate 2-LRU and 3-LRU, fed by single cache under Pareto’s law, we obtained low perfor-
mance in terms of hit, especially when they were evaluated with small cache sizes. By comparing
the case of β = 2 (Fig. 5.2) and β = 1.5 (Fig. 5.3), we observed that with β = 1.5, both policies
performed better than the case of larger exponent β = 2, although they didn’t achieve high hit. In
this case the cache-decoupling optimization provided about 3% of gain in total, in both β cases.
By increasing the the main cache size to 104, we achieved the same overall gain of 3% for both
2-LRU and 3-LRU, and for both values of β; this is an important resut, because we increased the
performance’s policies, by keeping the same hit gain, as showed in the case of of β = 2 (Fig. 5.4)
and β = 1.5 (Fig. 5.5).

Large cache sizes

As expected, the distribution of the number of requests attracted by contents (V ), plays a significant
rule on the cache performance, thus large cache sizes required to achieve high hits probability. Even
β plays an important rule on the cache performance, indeed, decreasing β leads to better hit. The
comparison between the impact of β on 2-LRU and 3-LRU are showed in Fig. 5.6 and F.7 in the
case of main cache size, C = 105, and in Fig. 5.8 and Fig. 5.9 in the case of main cache size,
C = 106. Our optimization worked quite well, until cache sizes ≤ 105, especially in the case of
small β values, indeed they got ≈ 2.5% with β = 2, whereas not too well with β = 1.5, i.e., ≈ 1%,
as total gain. With cache sizes ≥ 106, the cache-decoupling impact provided negligible benefits.
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Figure 5.2. Hit probability vs very small cache size, 2-LRU vs 3-LRU, under SNM, β = 2, Tof f = Ton1.

Figure 5.3. Hit probability vs very small cache size, 2-LRU vs 3-LRU, under SNM,
β = 1.5, Tof f = Ton1.
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Figure 5.4. Hit probability vs small cache size, 2-LRU vs 3-LRU, under SNM, β = 2, Tof f = Ton1.

Figure 5.5. Hit probability vs small cache size, 2-LRU vs 3-LRU, under SNM, β = 1.5, Tof f = Ton1.
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Figure 5.6. Hit probability vs large cache size, 2-LRU vs 3-LRU, under SNM, β = 2, Tof f = Ton1.

Figure 5.7. Hit probabilitiy vs large cache size, 2-LRU vs 3-LRU, under SNM, β = 1.5, Tof f = Ton1.
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Figure 5.8. Hit probability vs very large cache size, 2-LRU vs 3-LRU, under SNM, β = 2, Tof f = Ton1.

Figure 5.9. Hit probability vs very large cache size, 2-LRU vs 3-LRU, under SNM,
β = 1.5, Tof f = Ton1.
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• Tof f = 8× Ton1

Definitly better results are obtained when the Tof f period was increased 8 times life-span Ton1,
but however worse than Zipf’s law content distribution.

Small cache sizes

In the case of small cache sizes, both 2-LRU and 3-LRU reached better hit than shorter Tof f ,
by confirming how decreasing β exponent leads to better performance, as showed in Fig. 10 (i.e.,
β = 2) and Fig.11 (i.e., β = 1.5).
Our improvement allowed to preserve the same gain as Tof f = Ton1, for both β exponents, with
the advantage of perceiving better hit, that was our aim.
Furthermore we observed that the policies’s curves, with β = 1.5, arised constantly, instead with
β = 2, it didn’t occur.
The same concept valids stronger in the case in which the main cache size was increased to a power
of 10, i.e., 104: by looking Fig. 12, with β = 2, we can observe that 2-LRU and more evident
3-LRU achieved as maximum hit, about 30%, due to an incresing of sizes of both Name Cache 1
and Name Cache 2, thanks to the cache-decoupling, whereas with β = 1.5, the increase of the two
Name Caches size over the main cache one, leaded to a maximum hit greater than 52%, showed in
Fig. 13.

Large cache sizes

When we manage large cache sizes, the combination of wide cache size and large Tof f allow to got
very optimal performance. Pareto distribution against Zipf’s law, guarantees more stable results,
thus in the citical case of large cache sizes, the hits obtained through simulations should more
reliable.
The performance obtained by 2-LRU and 3-LRU, in the case of main cache, C = 105, are showed
in Fig. 5.14 and 5.15, respectively with β = 2, and β = 1.5. By making a comparison, we can
emphasize, how the performance given by β = 1.5 outperform those one given by β = 2, with the
an average difference gain of about 30%. We deduced that the our optimization, in case of very
large cache sizes, worked bad, especially in scenarios of small β, as depicted in Fig. 5.16 and Fig.
5.17.
To conclude, decreasing popularity distribution β, guarantees significant benefits on the caching
systems performance, especially for systems based on LRU strategies, but the cache-decoupling
optimization works better with larger β values.
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Figure 5.10. Hit probability vs very small cache size, 2-LRU vs 3-LRU, under SNM,
β = 2, Tof f = 8× Ton1

.

Figure 5.11. Hit probability vs very small cache size, 2-LRU vs 3-LRU, under SNM,
β = 1.5, Tof f = 8× Ton1.
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Figure 5.12. Hit probability vs small cache size, 2-LRU vs 3-LRU, under SNM, β = 2, Tof f = 8× Ton1.

Figure 5.13. Hit probability vs small cache size, 2-LRU vs 3-LRU, under SNM, β = 1.5,
Tof f = 8× Ton1.
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Figure 5.14. Hit probability vs large cache size, 2-LRU vs 3-LRU, under SNM, β = 2, Tof f = 8× Ton1.

Figure 5.15. Hit probability vs large cache size, 2-LRU vs 3-LRU, under SNM, β = 1.5,
Tof f = 8× Ton1.
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Figure 5.16. Hit probability vs very large cache size, 2-LRU vs 3-LRU, under SNM,
β = 2, Tof f = 8× Ton1

.

Figure 5.17. Hit probability vs very large cache size, 2-LRU vs 3-LRU, under SNM,
β = 1.5, Tof f = 8× Ton1.
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5.3 Results Stabilization

We would garantee that results obtained through simulations are however stabile. A pratical
approach, to ensure that at a given arbitrary time t, Pt(λ

′

mON = λmON ), consists to extract a
new value for λ

′

mON at every new arriving content request everytime a given content enter in ON
period (i.e. whenever λmOFF passes to λmON ), since λmOFF is always 0.
We opportunely set Tof f much larger than the cache eviction time TC , (since is a free parameter)
such that at the end of the every OFF period, during the next ON period, the performance in
terms of hit probability produced by the object m, is exactly the same as if it was a completely new
content made available in the caching system at the beginning of the following next ON period,
by ensuring P (λ

′

mON = λmON )[15][29].

5.4 Insights

We can claim that the distribution of content request volumes plays an important role on cache
performance: the hit probability increases when the popularity distribution has a heavier tail,
hence as we decrease β exponent of Pareto, by making the popularity distribution less and even
less sloped[15]. However β = 2 behaves as threshold, because the variance of the content request
volumes is finite, indeed the impact on cache performance when β > 2 is somewhat limited[43].
This fact highlight the significant difference with respect to the classical IRM traffic model, where
the impact of the Zipf’s law exponent of content popularity is always very large over its whole
domain, this means that a small variation of α produces a high impact on cache performance[19].
The cache-decoupled optimization produces better benefits in scenarios of small cache sizes and
larger β values.
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Chapter 6

Conclusions

The main goal of this work is to show the performance of a variety of caching systems (both
isolated and interconnected caches) operating under various insertion/eviction policies and traffic
conditions, analysed within a Content Networks (CCN) simulator called ccnSim and based on
Che’s approximation[11].
We have also shown the performance of policies based on LRU decision strategy (i.e., k-LRU), in
particular 2-LRU and 3-LRU, with the cache-decoupling optimization, under IRM traffic and SNM
traffic model, by empolying different content popularity distributions (i.e. Zipf, Pareto).
Our study has revealed the superiority of the k-LRU policy, in terms of both simplicity and
performance gains, although 2-LRU achieves much of the possible gain yet.

The most part of this work is referred to Shot Noise Model because provides a simple, flexible
and accurate approach to describing the temporal and geographical locality found in Video-on-
Demand traffic, allowing us also to develop accurate analytical models of cache performance[43].
Our main insights by investigating the k-LRU performance under SNM are: i) content locality plays
also an important role in the distributed caching systems and should not be neglected; ii) larger
Tof f periods (or shorter life-span Ton) achieve better performance, since decrease the number of
concurrent active contents at the same time; iii) the overall impact on cache performance of the
distribution of the average number of requests attracted by the contents (and the corresponding
distribution) is significantly affected by temporal locality[15] with respect to traditional traffic
models (e.g., IRM) and at which life-span period λm is generated by the content distribution
(e.g., λmON ); iv) especially when caches are small, performance can be significantly improved
by reserving access into the cache only to contents which are highly cacheable[19][43]: in order
to obtain this information needs to exploit the contents popularity distribution which gives their
profile.

From the point of view of our cache-decoupling optimization, the main insigths are: i) it works
very well on 2-LRU, whereas only with small cache sizes on 3-LRU, since 2-LRU policy obtains
much of the possible gain yet; ii) it works better with not too large cache sizes (tipically ≤ 104)
and either small content popularity distribution Zipf’s α or large Pareto’s β, especially for k > 2
(e.g., 3-LRU); iii) it works better under cache network when the starting performance are worse:
when we have already high-performed scenarios, such optimization provides negligible gain; iv) it
works well under both IRM and SNM traffic model, indeed, it mitigates also the content dynamic
profiles (when content popularity change and evolve over time); v) strong temporal locality affects
adversely on the benefits introduced by such optimization.
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Appendix A

Implementation of optimized
2-LRU class

class Two_Lru: public DecisionPolicy

{

public:

Two_Lru(uint32_t cSize):ncSize(cSize){

base_cache* bcPointer = new lru_cache(); // Create a new LRU

cache that will act as a Name Cache.

name_cache = dynamic_cast<lru_cache *> (bcPointer);

name_cache->set_size(ncSize);} // Set the size of the Name

Cache.

virtual bool data_to_cache(ccn_data *)

{return true;}

bool name_to_cache(chunk))

{

if name_cache->lookup_name(chunk))

{

// The ID is already present inside the Name Cache, so update

its position and return True. As a consequence, the

’cacheable’ flag will be set to 1.

// HIT - Update the timestamp of the relative content

if(nc_stable)

{

map<chunk_t, double>::iterator itHit =

monitored_contents.find(chunk);

if (itHit == monitored_contents.end())

{

exit(1);

}

monitored_contents[chunk] = SIMTIME_DBL(simTime());

}

return true;

}

else

{
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// The ID is NOT present inside the Name Cache, so insert it

and return False.

// As a consequence, the ’cacheable fag will be set to ’0’.

// MISS - Insert the new elememt

if (nc_stable)

{

if (current_size == ncSize) // The LRU element will be

discarded

{

chunk_t k = (name_cache->get_lru())->k;

map<chunk_t, double>::iterator it =

monitored_contents.find(k);

if (it == monitored_contents.end())

{

exit(1);

}

else

{

monitored_contents.erease(k);

}

}

//insert the new element inside the map

map<chunk_t, double>::iterator it =

monitored_contents.find(chunk);

if(it == monitored_contents.end())

{

monitored_contents[chunk]= SIMTIME_DBL(simTime());

}

else

{

cout << "The entry is present despite the previous miss

event!\n"

exit(1);

}

}

if (current_size < ncSize)

current_size++;

name_cache->store_name(chunk);

return false;

}

}

lru_cache* name_cache;

map <chunk_t, double> monitored_contents;

bool nc_stable = false;

private:

uint32_t ncSize; // Size of the Name Cache in terms of number of

content IDs.

uint32_t current_size = 0;

};
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Implementation of optimized
k-LRU class

class K_Lru: public DecisionPolicy

{

public:

K_Lru(uint32_t cSize):ncSize(cSize){

base_cache* bcPointer = new lru_cache(); // Create a new LRU

cache that will act as a Name Cache.

name_cache = dynamic_cast<lru_cache *> (bcPointer);

name_cache->set_size(ncSize);} // Set the size of the Name

Cache.

// This have to be implemented for k-1 levels of Name Cache

base_cache* bckPointer = new lru_cache(); // Create k-1 new LRU

cache that will act as a k-1 Name Cache.

namek_cache = dynamic_cast<lru_cache *> (bcPointer);

namek_cache->set_size(ncSize);} // Set the size of the k-th

Name Cache.

virtual bool data_to_cache(ccn_data *)

{return true;}

bool namek_to_cache(chunk))

{

if namek_cache->lookup_name(chunk))

{

// The ID is already present inside the Name Cache, so update

its position and return True. As a consequence, the

’cacheable’ flag will be set to 1.

// HIT - Update the timestamp of the relative content

if(nc_stable)

{

map<chunk_t, double>::iterator itHit =

monitored_contents.find(chunk);

if (itHit == monitored_contents.end())

{

exit(1);

}
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monitored_contents[chunk] = SIMTIME_DBL(simTime());

}

return true;

}

else

{

// The ID is NOT present inside the Name Cache, so insert it

and return False.

// As a consequence, the ’cacheable fag will be set to ’0’.

// MISS - Insert the new elememt

if (nc_stable)

{

if (current_size == ncSize) // The LRU element will be

discarded

{

chunk_t k = (name2_cache->get_lru())->k;

map<chunk_t, double>::iterator it =

monitored_contents.find(k);

if (it == monitored_contents.end())

{

exit(1);

}

else

{

monitored_contents.erease(k);

}

}

//insert the new element inside the map

map<chunk_t, double>::iterator it =

monitored_contents.find(chunk);

if(it == monitored_contents.end())

{

monitored_contents[chunk]= SIMTIME_DBL(simTime());

}

else

{

cout << "The entry is present despite the previous miss

event!\n"

exit(1);

}

}

if (current_size < ncSize)

current_size++;

name2_cache->store_name(chunk);

return false;

}

}

lru_cache* name_cache;

// Create many lru_cache* pointer as k-1 name cache

lru_cache* namek_cache;

map <chunk_t, double> monitored_contents;

bool nc_stable = false;
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B – Implementation of optimized k-LRU class

private:

uint32_t ncSize; // Size of the Name Cache in terms of number of

content IDs.

uint32_t current_size = 0;

};
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