
	

POLITECNICO DI TORINO

	

Dipartimento di Elettronica e Telecomunicazioni
Communications and computer network engineering

Tesi di Laurea Specialistica
	

	

Social networks deanonymization
On the performance of the Percolation Graph Matching algorithm

 over synthetic graphs with community structure
	

	

	

	

	

	

	

Relatore
Emilio LEONARDI

	

Candidato
Fabio GENNARI

	

	

Ottobre 2018
	

	

	

	

	 	

	

	

	

	

	

	

	

	

	

	

	

Dedico questo lavoro ai miei genitori per il loro
instancabile sostegno e ai miei amici più cari
che sono sempre stati vicini e partecipi.

Un ringraziamento vada ai miei colleghi
universitari con i quali ho collaborato e con cui
mi sono confrontato in questi anni.

In ultimo, la mia gratitudine giunga alle
persone che, con la loro gentilezza e premurosa
presenza, hanno reso indimenticabile questo
mio periodo torinese.

Index of pages

Introduction pag. 3

	

1. Percolation Graph Matching algorithm pag. 6

	

2. Deferred matching variant pag. 9

	

3. Model pag. 10

	

4. Performance of PGM over Erdӧs-Rényi random graphs pag. 12

	

5. Performance of PGM over stochastic block model graphs pag. 14

	

6. Performance of the degree similarity matching variant pag. 23

	

7. Conclusion pag. 32
	

Bibliography pag. 33
	

Appendix pag. 35

	

	 3

Introduction

Introduction
Social interactions increasingly take place by means of social networks and other online
services. Friendship ties and, more broadly, all kinds of activities performed by users such
as communications, chats and information sharing inherently and inevitably leave
electronic traces that represent sensitive information.
Such traces are indeed able to help in reconstructing one’s personality and interests,
therefore representing extremely valuable sources of information for governments,
advertisers, data miners and many other entities. Moreover, such kind of reconstruction
can become more accurate and complete if the targeted users belong to different networks
and the corresponding extracted data are combined together.
Typically, that is the case, with many individuals belonging to more than one social
networks, even though their identity in each of them might be different or inaccessible. In
fact, very often network owners and operators release anonymized and possibly sanitized
network graphs to commercial partners and academic researchers, in order to facilitate
their work and, at the same time, protect the privacy of their users as much as possible.
However, many studies have by now proved that such a condition is not an
insurmountable obstacle.
In fact, we can represent the traces of the activities carried out by the network users by
means of a graph in which nodes represent users, whereas edges show that a certain kind
of activity has been performed by some user (a node) with another one. Of course, such
traces can be more or less complete, providing information with different levels of detail
that could be represented through the use of edge weights or other means. In the simplest
and worst case, i.e., without the help of any side information and with the nodes labelled in
a different way, also random, it’s immediate to realize that the whole problem reduces to a
graph matching one. Graph matching is the problem of finding a similarity between two
graphs, which consists in finding a one-to-one correspondence or mapping between the
vertex sets of such graphs, with only information about their topological structure.

More formally, given two graphs !! = !!,!! and !! = !!,!! , where !!,! are the vertex
sets and !!,! are the edge sets of the two graphs respectively, with !! = !! , exact graph
matching is the problem of finding a one-to-one mapping !:!! → !! such that an edge
!, ! ∈ !! between two nodes !, ! ∈ !! iff ! ! , ! ! ∈ !!. If such a mapping ! exists,

this is called an isomorphism. In most of the real cases, it is not possible to find it, since
the two graphs could be obtained using different and partial information, and the graph
matching problem should consist in finding the best matching between the vertex sets of
the two graphs, or at least a subset of them, not an exact one. This type of problem is said
to be inexact graph matching.
Graph matching has important applications also in other fields. For example, it can be
used to recognize different scenes of the same image or similar images if the images are
represented through graphs: regions in an image can be seen as vertices of a graph, and
the adjacency relations between them can be seen as edges. In bioinformatics, gene
sequences can be modeled as graphs, therefore graph matching is applied for
gene/protein networks alignment [7, 9, 15]. In ontology alignment, it is used to match sets
of labels describing data [16].
Previous work does show that it’s possible to develop and design graph-matching
algorithms that are able to find such a matching by using only the topological structures of
graphs. In [12] Narayanan and Shmatikov act as an attacker intending to extract sensitive
information from an accessible large-scale anonymized network graph through its de-

	

	 4

Introduction

anonymization. The attacker is assumed to have also access to an auxiliary network
serving as side information. Such an assumption is quite realistic: for example, parts of
some online networks can be automatically crawled, or the attacker may have colluded
with an operator of another network whose membership overlaps with the original one.

Their algorithm consists of two phases. In the preliminary one, the attacker must identify a
set of “seed” nodes which belong to both graphs and map them. In the main phase, a
propagation algorithm takes as input the two graphs and the seed mapping between them,
returning a final, more extended mapping as output. The algorithm is called a propagation
one since it finds new mappings exploiting the feedback from previously formed ones, in
addition to the topological structure of the graphs. Specifically, at each iteration, the
algorithm picks an arbitrary, still unmatched node ! from one of the graphs !! = !!,!!
and, for each unmatched node ! of the other graph !! = !!,!! , computes a matching
score equal to the number of neighbors of ! that have already been matched to neighbors
of ! . Various heuristics are then proposed to compare different pairs !, ! that are
candidates for being added to the mapping as a valid match.

The most peculiar one that is used in this algorithm is the eccentricity which is defined in
[11] in the context of de-anonymizing databases. It is defined as

max ! −max! !
! !

where max and max! denote the highest and second highest values in a set ! ,
respectively, and ! denotes the standard deviation. It intuitively measures how much the
maximum value in the set X “stands out” from the rest. The algorithm measures the
eccentricity of the set of matching scores (between the single node ! in !! and each
unmatched node ! in !!) and rejects the match with the highest matching score if the
eccentricity (representing the strength of the match) is below a certain threshold. If it is
above the threshold, the mapping between ! and ! is added to the list, and the next
iteration starts.

Narayanan and Shmatikov were the first to succeed in de-anonymizing two real, large
social networks, using only their topological structures. In the more generic field of privacy
protection, there have been several reported successes in matching and/or inferring social
network data from different domains [18, 10] and all the large-scale attack methods that
have been proposed are mostly heuristic in nature. In the more specific area of the graph
matching problem, the majority of algorithms proposed so far are characterized by the
same basic mechanism: they start from an initial set of seed nodes given as input and then
progressively expand it into a larger set of matched or mapped nodes, trying to identify all
of the other ones [8, 9, 12, 14, 17].

Moreover, also the fundamental feasibility of network de-anonymization through graph
matching has been investigated. In [13], it has been shown that two social networks, if
modeled as Erdӧs-Rényi random graphs, can be matched perfectly by an attacker with
unlimited computational power under rather benign conditions, even without seeds.

More specifically, the authors adopted a model which assumes that the two observed
networks !!,! are partial manifestations of a true underlying network ! = !,! . This
ground-truth network graph ! was modeled as an Erdӧs-Rényi random graph ! !,! with
! nodes and where an edge exists between every pair of nodes with identical probability !,
independently of all the other edges. The two observed graphs !!,! = !,!!,! are
generated by sampling the edge set ! with probability !: in other words, each edge ! ∈ !
is also in any of the two edge sets !!,! with probability !, independently of each other and

	

	 5

Introduction

of everything else. As a result, the sampled graphs !!,! are themselves Erdӧs-Rényi
random graphs ! !,!" .

In this work, a very simple and intuitive error function was also defined, able to measure to
what extent the graph structures of !!,! resemble each other, given a certain mapping
between the two graphs. The authors managed to prove that if the sampling probability ! is
beyond some threshold, as ! grows large, a perfect mapping between the graphs is the
one that minimizes the error function. They did not deal with algorithmic aspects or the
computational complexity of evaluating the error of all the possible mappings; instead, they
showed that, under the above-mentioned hypotheses and conditions, de-anonymization is
feasible.

It’s rather clear from this whole body of work, that node anonymization can be overcome
and therefore cannot guarantee privacy protection.

Another valuable contribution was given in [19] by Yartseva and Grossglauser who
proposed a very simple graph matching algorithm named Percolation Graph Matching
algorithm (PGM), based on bootstrap percolation [6] and with a single tuning parameter.
Basically, any pair of nodes ! ∈ !!, ! ∈ !! that have at least ! neighbors already matched
to each other, are added as a valid match to the mapping, in this way the algorithm can
propagate.

Still in [19] the authors investigated the performance of the PGM algorithm in function of
the size of the seed set given as input. In [12] Narayanan and Shmatikov already noticed
the presence of a sharp phase transition in the seed set size: below a certain threshold
their algorithm failed almost completely, whereas mainly succeeded when the seed set
size was above the threshold. In [19] Yartseva and Grossglauser, exclusively considering
sampled Erdӧs-Rényi graphs as input ones, formally proved the presence of the phase
transition and also determined the corresponding critical value for the seed set size.

Lastly, significant research has been carried out to tackle the graph matching problem
when the considered networks cannot be modeled as Erdӧs-Rényi random graphs.
Specifically, in [3] the authors have addressed the problem when accounting for scale-free
relationships between users, proposing a novel degree-driven graph matching algorithm
(DDM) designed to perform successfully when applied to graphs with power-law node
degree. In [4] the same authors have investigated how to mitigate the matching errors
occurring when the PGM algorithm from [19] is directly applied to networks characterized
by dense clusters. To do so, they have developed an improved matching algorithm still
based on bootstrap percolation.

This thesis addresses an experimental investigation into the effectiveness and practical
problems of applying the PGM algorithm to stochastic block model graphs. The work is
organized as follows. Firstly, a brief description of the PGM algorithm, its deferred
matching variant and how they work is given. Then, a definition of the model used in this
study is provided. Lastly, the performance of the PGM algorithm over stochastic block
model graphs is investigated, together with its deferred matching variant and a personal
one based on a degree similarity metric. In the Appendix is given the source code of the
program developed to test the performance of the different variants.

	

	

	 6

1. Percolation Graph Matching algorithm

1. Percolation Graph Matching algorithm
Here is given a description of how the PGM algorithm works, since the investigation of
its performance when applied to Block Model graphs is the basis of this study.
Two graphs !! = !!,!! and !! = !!,!! are given with the two sets of vertices !!
and !! that are assumed to be equal, !! = !! = !. However, the equivalence between
the nodes of the two graphs is assumed to be hidden since only the structure of the
two graphs is available to the PGM algorithm: in other terms, the algorithm sees
unlabeled versions of !!,!. The edge sets !! and !! are in general different with some
correlation between them: intuitively, this means that, if an edge !,! exists in !!
between nodes !,! ∈ !! , it is likely that an edge also exists in !! between the
corresponding nodes in !! (see Figure 1).

	
Figure 1: Typical example of two graphs to be given as input to the PGM algorithm,
highlighting the correlation between the corresponding edge sets.
The algorithm returns a map as output, i.e., a set of ordered pairs ! ⊂ !!×!! such that
each node belonging to !! or !! appears at most in one pair. The map is obtained
starting from a known seed set !! of mapped pairs given as input, and then the
algorithm iteratively expands it by finding new matches, i.e., by identifying new suitable
pairs !, ! in the “vicinity” of the already matched ones to be added to the map. A pair
!, ! is added as a match if there are at least ! already mapped pairs that are

neighbors of !, ! , where two pairs !!, !! and !!!, !!! are defined to be neighbors iff
!!, !!! ∈ !! and !!, !!! ∈ !!. The process continues until no more suitable pairs can be

found. The size of the final map, that is its cardinality ! , isn’t necessarily equal to ! .
Elements of ! in the form !, ! are good or correct matches, whereas all the others are
of course wrong matches. The error rate is given by !, ! ∶ ! ≠ !, !, ! ∈ ! ∕ ! .

	

	 7

1. Percolation Graph Matching algorithm

The algorithm can also be described in the following way, which is easier to implement
and emphasizes the iterative nature of the process. Any pair !, ! is added as a match
if it has at least ! neighboring pairs that are already mapped as already said.
Equivalently, a count of marks !!,! can be associated to every pair ! ∈ !!, ! ∈ !! . At
each iteration, the algorithm selects a pair among those that have already been
mapped but haven’t been visited yet. This pair adds one mark to all its neighboring
pairs. As soon as any pair gets at least ! marks, it is added to the map. If there are
several candidate pairs that have reached ! marks but are conflicting, the algorithm
selects one of them uniformly at random and adds it to the map. Two pairs are defined
as conflicting when they are in the form !!, !! and !!, !!! , or !!, !! and !!!, !!
respectively. The process iterates until all matched pairs have been visited.

In Alg. 1 is given the formal description of the PGM algorithm, where:
− ! ! is the set of pairs that have been mapped until time !;
− ! ! ⊂ ! ! is the set of mapped pairs that have been visited until !;
− !! ! is the set of nodes that are neighbors of ! ∈ !!;
− !! ! is the set of nodes that are neighbors of ! ∈ !!;
− !! ! ×!! ! is therefore the set of all the pairs that are neighbors of !, ! .

In Figure 2 are shown the first three iterations of the algorithm applied to a very simple
couple of input graphs, as an example.

It is clear that the parameter ! plays a critical role, since it represents the amount of
evidence, in favor of a pair of nodes, needed to add the pair as a permanent match. If
! is chosen too low, the probability of a false match increases. If it is chosen too high,
the algorithm may stop propagating early for lack of candidates with enough marks.

Algorithm 1: The PGM algorithm

1: !(0) = !!, !! = ∅, ! = 0

2: while !(!) ∖ !(!) ≠ ∅ do

3: ! = ! + 1

4: Randomly select a pair (!! , !!) ∈ !(! − 1) ∖ !(! − 1) and add one mark to
all pairs (!!, !!) ∈ !!(!!)×!!(!!).

5: Let !(!) be the set of all pairs (!!, !!) whose mark counter !!!,!! has
reached threshold ! at time !.

6: while !(!) ≠ ∅ do

7: Select a pair (!!, !!) from !(!) uniformly at random and insert it in the
map !(!).

8: All other conflicting candidates (!!!, !!) and (!!, !!!) are permanently
removed both from !(!) and from consideration in future iterations.

9: Remove the pair (!!, !!) from !(!).
10: Let ∆!(!) be the set of pairs which have been added to the map !(!) at

time !. Then !(!) = !(! − 1) ∪ ∆!(!) and !(!) = !(! − 1) ∪ {(!! , !!)}. Note
that |!(!)| ≥ |!(!)| = !.

11: return ! = !, !(!) = !(!), where !(!) is the final map and |!(!)| = !.

	

	 8

1. Percolation Graph Matching algorithm

	
Figure 2: Example of application of the PGM algorithm, with ! = 2. Red nodes are the
seeds, orange nodes are the set of matched pairs after the first three iterations.

!!	 !!	

!!	 !!	

!!	 !!	

!!	 !!	

!!	 !!	

!!	 !!	

	

	 9

2. Deferred matching variant

2. Deferred matching variant
The basic PGM algorithm as defined above is not optimal in most cases, since it
greedily matches any candidate pair as soon as its number of marks gets greater or
equal to !. If ! ! ∖ ! ! ≠ ∅, it means that there are mapped pairs that haven’t been
visited yet and can add more marks, possibly improving the !!,! counters and avoid
false matches.
The variant described here is a simple way to fix this problem, allowing the algorithm
to be more conservative. Whenever ! ! ∖ ! ! ≠ ∅ , the algorithm simply keeps
visiting new matched pairs and attributing new credits to candidate pairs, without
forming any new matches. Once there are no more matched pairs to visit, i.e.,
! ! ∖ ! ! = ∅, exactly one pair is selected, the one with the maximum !!,! of all
candidates. If the mark counter is above the threshold !, the pair is added to the map
! ! as a new match and the algorithm can keep propagating; if it is not, the algorithm
stops.
This variant is clearly conservative about forming new matches: it first exploits all the
available evidence that can be collected by visiting all the unused matched pairs
before irreversibly choose a candidate pair as a valid match. Moreover, the role played
by the parameter ! is less important: if chosen too low, the variant ensures that only
the best candidate pairs, according to all the possible evidence that can be gathered at
each iteration, are matched.
In Alg. 2 is given the formal description of the variant.

The simulation results obtained in [19] by the authors clearly show that this variant
exhibits similar threshold behavior in the seed set size !! as the basic version, but
decreases the error rate in the considered scenarios.	

Algorithm 2: The Deferred Matching Variant of PGM algorithm
1: !(0) = !!, !! = ∅, ! = 0
2: while !(!) ∖ !(!) ≠ ∅ do
3: while !(!) ∖ !(!) ≠ ∅ do
4: ! = ! + 1
5: Randomly select a pair (!! , !!) ∈ !(! − 1) ∖ !(! − 1) and add one mark to all

pairs (!!, !!) ∈ !!(!!)×!!(!!).
6: !(!) = !(! − 1) and !(!) = !(! − 1) ∪ {(!! , !!)}.
7: Let !(!) be the set of all pairs (!!, !!) whose mark counter !!!,!! is maximal and

at least ! at time !.
8: if !(!) ≠ ∅ then
9: Select a pair (!!, !!) from !(!) uniformly at random and insert it in the map

!(!).
10: All other conflicting candidates (!!!, !!) and (!!, !!!) are permanently removed

from consideration in future iterations.
11: !(!) = !(!) ∪ {(!!, !!)}.
12: return ! = !, !(!) = !(!), where !(!) is the final map and |!(!)| = !.

	

	 10

3. Model

3. Model
The model used for this study is defined in the following. The ground-truth network
graph ! = !,! is assumed to be a stochastic block model one, characterized by the
following parameters:
− the number ! of vertices;
− a partition of the vertex set ! into disjoint subsets !!,… ,!! called communities;
− a symmetric !×! matrix ! = !!" , where !!" is the probability that any two vertices
! ∈ !! and ! ∈ !! are connected by an edge and !!" ∈ 0,1 .

Denoting by !!" the number of edges that connect a vertex belonging to !! to any
vertex belonging to !! and by !! the overall degree of a vertex belonging to !!:

Pr !!" = ! = !!
! !!"! 1− !!"

!! !! for ! = 0,1,… , !! and ! ≠ !

!!"~Bi !! ,!!" , ! !!" = !! !!" , for ! ≠ !

Pr !!! = ! = !! − 1
! !!!! 1− ! !! !!!! for ! = 0,1,… , !! − 1

!!!~Bi !! − 1 ,!!! , ! !!! = !! − 1 !!! ≃ !! !!!

!! = !!"
!

!!!

! !! = ! !!"
!

!!!
= ! !!"

!

!!!
≃ !! !!"

!

!!!

Figure 3: Typical example of a stochastic block model random graph with
three communities. Nodes with the same color belong to the same
community.

	

	 11

3. Model

The model is called strongly assortative if !!,! > !!,! whenever ! ≠ !, i.e., when all
diagonal entries of ! are greater than all off-diagonal ones. The model is called weakly
assortative if !!,! > !!,! whenever ! ≠ !, i.e., each diagonal entry is only required to be
greater than the other entries of its own row or column. Similarly, the model is called
strongly dissortative if !!,! < !!,! whenever ! ≠ !, and weakly dissortative if !!,! > !!,!
whenever ! ≠ !.
If the probability matrix ! is a constant, i.e., !!,! = ! for all !, !, then the model becomes
equivalent to the Erdӧs-Rényi one ! !,! . In this degenerate case, the partition into
communities becomes irrelevant but shows the close relationship between the two
models.	

	

	 12

4. Performance of PGM over Erdӧs-Rényi random graphs

4. Performance of PGM over Erdӧs-Rényi random graphs
In this chapter, my implemented version of the PGM algorithm is tested over Erdӧs-
Rényi random graphs ! !,! , in order to check if the obtained simulation results
comply with those obtained in [19].

The metric used to evaluate the performance of the algorithm is the size of the final
map, i.e., the total number of mapped nodes, which says how far the algorithm
manages to propagate.

Both the basic version and the deferred matching version of the algorithm are run, with
! = 2. For the input graphs, the edge sampling model is used: therefore, starting from
a ground-truth network graph ! !,! , each edge appears in the observed network with
probability !.
Figures 4, 5 show the dependence of the metric on the size of the seed set !! and
each of them displays three curves for different values of the sampling parameter !.
The generator graph ! !,! has ! = 10000 and ! = 20 ! as parameters. All the
results are averaged over 15 realizations.

Figure 4: Average total number of mapped nodes vs number of seeds for the
basic version of PGM over !(!, !) with ! = 10000 and ! = 20 !⁄ .

	

	 13

4. Performance of PGM over Erdӧs-Rényi random graphs

The obtained results show the same behavior as the one described in [19] and are
qualitatively similar for both the variants of the algorithm. The graphs in the figures
exhibit the presence of the phase transition in correspondence with the critical seed
set size. As the sampling parameter ! decreases, the critical value for the seed set
size gets larger. Intuitively, starting from the seeds, the larger the size of the seed set,
the more neighboring pairs there are and can be visited and the farther the algorithm is
likely to propagate. Moreover, the higher the sampling parameter, the more likely that
a certain edge exists in one of the two input graphs, given that it exists in the other:
considering the propagation mechanism of the PGM algorithm, this also means that
fewer seeds, thus fewer initial neighboring pairs to be visited are needed.

	

Figure 5: Average total number of mapped nodes vs number of seeds for the
basic version of PGM over !(!, !) with ! = 10000 and ! = 20 !⁄ .

	

	 14

5. Performance of PGM over stochastic block model graphs

5. Performance of PGM over stochastic block model graphs
In this chapter, my implemented version of the PGM algorithm is tested over stochastic
block model graphs, to investigate the performance of the algorithm on this kind of
networks.
This can be considered an interesting study, since this type of random graphs is useful
to model real networks with a dominant community structure.

The metrics used to evaluate the performance of the algorithm are the size of the final
map and the error rate, i.e., the fraction of wrong pairs in the map.

Both the basic version and the deferred matching version of the algorithm are run, with
! = 2. For the input graphs, the edge sampling model is used as in the previous
chapter: starting from a ground-truth stochastic block model network graph, each edge
appears in the observed network with probability ! = 0.7.

I limited the study to a ground-truth graph that always consists of three communities
for simplicity, with a total number of nodes ! = 10000. Each of the following figures
shows the obtained simulation results for different edge probability matrices ! = !!"
and for different sizes of the community sets. Within each graph, different curves are
displayed, one for each different way the seed set was built. In particular, the
probability that a seed to be chosen belongs to community set ! is denoted by !!, so
that ! is the vector of such probabilities. Given that the seed to be chosen belongs to a
certain community !, the seed is then picked uniformly at random among its vertices.

Figures 6-10 show the dependence of the size of the final map on the size of the seed
set !!. The curves show the same qualitative behavior as the one described in the
previous chapter, which is similar for both the variants of the algorithm: they are
characterized by a phase transition in correspondence with the critical seed set size.
This critical size clearly depends on the particular ! adopted to build the seed set. The
results show that, as expected, the more seeds belong to a community ! in which the
average degree of the nodes ! !! is high, the easier it is for the algorithm to
propagate, thus fewer seeds are needed. This is always true, independently of
whether the ground-truth block model is assortative or dissortative, even though the
curves have a tendency to show phase transitions that are closer to each other when
the model is dissortative. The relations between the sizes of the different community
sets don’t seem to have an impact on the curve behavior at all. Finally, in each figure
are also included two curves corresponding to Erdӧs-Rényi random graphs ! !,!
with the parameter ! set equal to the maximum and the minimum !!" values
respectively. As it could be intuitively expected, the curve relative to the maximum
value represents an upper bound for all the other curves, whereas the one relative to
the minimum value represents a lower bound.

Figures 11-13 show the behavior of the error rate as a function of the size of the seed
set. In this case, it’s difficult to make any kind of considerations depending on the
changes in the values of the parameters, but a general behavior is evident: after an
initial peak, all the curves tend to a lower asymptotic value as the number of seeds
exceeds the corresponding critical seed set size and then increases. An important
observation is the fact that the deferred matching variant of the PGM algorithm
performs considerably better than the basic version with regard to the error rate,
whereas the curves relative to the first metric don’t show any improvement between
the two versions.

All the obtained results and curves are averaged over 15 realizations.	

	

	 15

5. Performance of PGM over stochastic block model graphs

 Figure 6

	

	 16

5. Performance of PGM over stochastic block model graphs

Figure 7

	

	 17

5. Performance of PGM over stochastic block model graphs

 Figure 8

	

	 18

5. Performance of PGM over stochastic block model graphs

 Figure 9

	

	 19

5. Performance of PGM over stochastic block model graphs

 Figure 10

	

	 20

5. Performance of PGM over stochastic block model graphs

 Figure 11

	

	 21

5. Performance of PGM over stochastic block model graphs

 Figure 12

	

	 22

5. Performance of PGM over stochastic block model graphs

Figure 13

	

	 23

6. Performance of the degree similarity matching variant

6. Performance of the degree similarity matching variant
As observed in the previous chapter, the capability of the algorithm to propagate
doesn’t seem to depend on the particular variant used. In fact, it depends only on the
topological structure of the graph and the characteristics of the seed set used as input.
A personal variant to the PGM algorithm is now introduced and analyzed, designed to
minimize, if possible, the error rate of the final maps built.

According to the stochastic block model, the ground-truth network graph ! = !,! is
characterized by a certain number of communities and an edge probability matrix
! = !!" . In each community, nodes show a peculiar average degree which, in the
most general case, is different from that of nodes belonging to other communities,
since it depends on the entries of the edge probability matrix ! and the sizes of the
communities. Hence, the idea of selecting pairs to be added to the map ! ! according
to a degree similarity metric designed to exploit this characteristic, instead of selecting
those with the maximum mark counter !!,! of all candidates.

Two possible definitions of such a metric were considered, under the hypothesis that
the input graphs are sampled from the ground-truth one with the same sampling
parameter ! and thus have similar graph density values. Firstly, the metric could be
simply defined as the absolute value of the difference between the degrees !! and !!
of the nodes of a pair !, ! :

!!,! = !! − !!

Lastly, the metric could also be defined in the following way. Considering a pair !, ! ,
the arithmetic mean of the degrees of all the nodes belonging to !! ! is calculated,
being !! ! the set of nodes that are neighbors of ! ∈ !! . After that, the same is
performed with the degrees of all the nodes belonging to !! ! , being !! ! the set of
nodes that are neighbors of ! ∈ !!. The final metric is defined as the absolute value of
the difference between the two means.

!!,! =
!!!!!∈!! !

!!
− !!!!!∈!! !

!!

A linear combination of the two definitions can also be considered:

!!,! ! = 1− ! !!,! + !!!,!
The final variant of the algorithm is identical to the deferred matching variant, except
for the fact that, every time a pair is selected, it selects the one with the minimum
!!,! ! of all candidates with a mark counter above the threshold ! and adds it to the
map ! ! as a new match. If there are no candidates with a mark counter above the
threshold, the algorithm stops.
In Alg. 3 is given the formal description of the variant.

	

	 24

6. Performance of the degree similarity matching variant

As already done for the previously considered ones, this variant of the PGM algorithm
is now tested over stochastic block model graphs, to investigate and compare its
performance on this kind of networks to that of the other variants.
The metrics used to evaluate the performance of the variant are again the size of the
final map and the error rate.
The variant is run over input graphs sampled from ground-truth stochastic block model
network graphs with the same parameters listed in Figures 6, 7. For each case, three
different values for the weight parameter ! are considered: ! = 0, ! = 1, ! = 0.5.
Figures 14-19 show the simulation results obtained for different ! vectors, the same
ones adopted to build the seed sets in the testing of the previous chapter. With regard
to the dependence of the size of the final map on the size of the seed set !!, the
displayed curves are consistent with the ones described in Figures 6, 7, independently
on the particular value of the parameter ! that is used. The curves are characterized
by a phase transition in correspondence with the critical seed set size which, again,
clearly depends on the particular ! adopted to build the seed set. The critical seed set
sizes have approximately the same values as the corresponding ones in Figures 6, 7.
Thus, the conclusion that the more seeds belong to a community ! in which the
average degree of the nodes ! !! is high, the fewer seeds are needed, is confirmed.
However, as the number of seeds increases, the total number of mapped pairs, with
sampled block model graphs as input, tend to a maximum value which is lower than
the one reached in the curve relative to Erdӧs-Rényi random graphs ! !,! with the
parameter ! set equal to the maximum !!" value.

With regard to the error rate, its behavior as a function of the size of the seed set is
much more regular and predictable in this case: all the curves show a phase transition
in correspondence with the critical seed set size and are very similar to the
corresponding ones relative to the size of the final map. Unfortunately, as the number
of seeds increases, the error rate tends to an asymptotic value which is much higher
than the typical error rate values obtained with basic PGM or its deferred matching

Algorithm 3: Degree similarity matching variant of PGM algorithm
1: !(0) = !!, !! = ∅, ! = 0
2: while !(!) ∖ !(!) ≠ ∅ do
3: while !(!) ∖ !(!) ≠ ∅ do
4: ! = ! + 1
5: Randomly select a pair (!!, !!) ∈ !(! − 1) ∖ !(! − 1) and add one mark

to all pairs (!!, !!) ∈ !!(!!)×!!(!!).
6: !(!) = !(! − 1) and !(!) = !(! − 1) ∪ {(!! , !!)}.
7: Let !(!) be the set of all pairs (!!, !!) whose metric value !!!,!!(!) is

minimal and whose mark counter !!!,!! is at least ! at time !.
8: if !(!) ≠ ∅ then
9: Select a pair (!!, !!) from !(!) uniformly at random and insert it in the

map !(!).
10: All other conflicting candidates (!!!, !!) and (!!, !!!) are permanently

removed from consideration in future iterations.
11: !(!) = !(!) ∪ {(!!, !!)}.
12: return ! = !, !(!) = !(!), where !(!) is the final map and |!(!)| = !.

	

	 25

6. Performance of the degree similarity matching variant

variant. Thus, this degree similarity matching variant of the algorithm seems to perform
considerably worse than the other versions. This is probably due to the fact that the
probability that the same node has similar degree values in both the input sampled
graphs is much lower than expected. This apparently is also valid for the average of
the degree values of its neighbor nodes. The edge sampling mechanism works in such
a way that good pairs are likely to have degree similarity metric values that are worse
than those of bad pairs. Therefore, the degree similarity matching variant performs so
poorly because in such a scenario the mere mark distribution mechanism based on
bootstrap percolation is better at counteracting the edge sampling effects, at least for
the random graph model adopted. The variant keeps deferring the selection of a new
match as long as possible like the deferred matching one, but, once there are no more
matched pairs to visit, it selects the pair with the minimum !!,! ! of all candidates with
a mark counter above the threshold !, instead of the one with the maximum !!,!. Even
the basic PGM performs better although it simply adds a pair to the map as soon as it
gets at least ! marks. If there are several candidate pairs that have reached ! marks
but are conflicting, the algorithm selects one of them uniformly at random and adds it
to the map.

All the obtained results and curves are again averaged over 15 realizations.
	

	

	 26

6. Performance of the degree similarity matching variant

Figure 14

	

	 27

6. Performance of the degree similarity matching variant

 Figure 15

	

	 28

6. Performance of the degree similarity matching variant

 Figure 16

	

	 29

6. Performance of the degree similarity matching variant

Figure 17

	

	 30

6. Performance of the degree similarity matching variant

 Figure 18

	

	 31

6. Performance of the degree similarity matching variant

 Figure 19

	

	 32

7. Conclusion

7. Conclusion
This thesis addresses an experimental investigation into the performance of the PGM
algorithm proposed by Yartseva and Grossglauser in [19] for large-scale graph
matching. The basic PGM algorithm and its deferred matching variant are described.
Then, a definition of the stochastic block model used in this study is provided. Lastly a
personal variant of the PGM algorithm, based on a degree similarity metric, was
proposed. This variant is identical to the deferred matching one, except for the fact that
it selects the pairs to be added to the map as new matches on the basis of a metric
!!,! ! . Such a metric was designed to measure the degree similarity between the
nodes of a pair and also among the respective neighbors. The use of the PGM mark
counter is still kept in order to perform a preliminary discrimination among candidate
pairs.

Several experiments have been run over stochastic block model random graphs, in
order to investigate the conditions on the graph parameters and the seed set size such
that all the variants of the PGM algorithm propagate and perform well over them. In all
cases, there is a phase transition of the size of the final map, depending on the size of
the initial seed set, confirming the results expressed in [19].

A separate discussion is reserved for the error rate of the final map. When the basic
PGM and its deferred matching variant are applied, the same pattern is observed: after
an initial peak, the error rate tends to a lower asymptotic value as the number of seeds
exceeds the corresponding critical seed set size and then increases. As it could be
expected, the deferred matching variant of the PGM algorithm leads to smaller values
of the error rate than the basic version, thus performs considerably better. When the
degree similarity matching variant is run, the error rate of the final map always shows a
clear phase transition in correspondence with the critical seed set size and tends to an
asymptotic value which is much higher than that observed with the basic PGM or its
deferred matching variant.

In summary, the proposed variant of the algorithm seems to perform considerably
worse than the other versions. The mere mark distribution mechanism based on
bootstrap percolation is better at solving the graph matching problem than the
proposed degree similarity metric, at least for stochastic block model random graphs.

	

	

	 33

Bibliography

Bibliography
[1] E. Abbe. Community detection and stochastic block models: recent developments.

Journal of Machine Learning Research, Special Issue, 2017.

[2] B. Bollobás. Random graphs, volume 73. Cambridge University Press, 2001.
[3] C.-F. Chiasserini, M. Garetto, and E. Leonardi. Social network de-anonymization

under scale-free user relations. IEEE/ACM Trans. Netw., vol. 24, no. 6, pages 3756-
3769, 2016.

[4] C.-F. Chiasserini, M. Garetto, and E. Leonardi. De-anonymizing clustered social
networks by percolation graph matching. ACM Transactions on Knowledge Discovery
from Data, TKDD, vol. 12, no. 2, art. 21, 2018.

[5] F. Chung, L. Lu. The average distance in a random graph with given expected
degrees. Internet Mathematics, vol. 1, no. 1, pages 91-113, 2004.

[6] S. Janson, T. Łuczak, T. Turova, and T. Vallier. Bootstrap percolation on the random
graph G!,!. The Annals of Applied Probability, 22(5), 2012.

[7] G. W. Klau. A new graph-based method for pairwise global network alignment. BMC
Bioinformatics, vol. 10, suppl. 1, 2009.

[8] N. Korula and S. Lattanzi. An efficient reconciliation algorithm for social networks.
PVLDB, 7(5), 2014.

[9] O. Kuchaiev and N. Pržulj. Integrative network alignment reveals large regions of
global network similarity in yeast and human. Bioinformatics, 27(10), 2011.

[10] A. Mislove, B. Viswanath, K. P. Gummadi, and P. Druschel. You are who you know:
inferring user profiles in online social networks. In Proceedings of the third ACM
international conference on Web search and data mining, WSDM, pages 251-260,
2010.

[11] A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse datasets.
In S&P, 2008.

[12] A. Narayanan and V. Shmatikov. De-anonymizing social networks. In Proceedings of
the 2009 30th IEEE Symposium on Security and Privacy, 2009.

[13] P. Pedarsani and M. Grossglauser. On the privacy of anonymized networks. In
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD, 2011.

[14] W. Peng, F. Li, X. Zou, J. Wu. A two-stage deanonymization attack against
anonymized social networks. IEEE	Trans.	Comput., vol. 63, no. 2, pages 290-303, 2014.

[15] Y.-K. Shih and S. Parthasarathy. Scalable global alignment for multiple biological
networks. BMC Bioinformatics, vol. 13, suppl. 3, 2012.

[16] P. Shvaiko and J. Euzenat. Ontology matching: State of the art and future
challenges. IEEE Transactions on Knowledge and Data Engineering, vol. 25,
issue 1, 2013.

[17] R. Singh, J. Xu, and B. Berger. Pairwise global alignment of protein interaction
networks by matching neighborhood topology. Research in Computational Molecular
Biology, vol. 4453, pages 16-31, 2007.

	

	 34

Bibliography

[18] G. Wondracek, T. Holz, E. Kirda, and C. Kruegel. A practical attack to de-anonymize
social network users. In IEEE Symposium on Security and Privacy, 2010.

[19] L. Yartseva and M. Grossglauser. On the performance of percolation graph
matching. In Proceedings of the First ACM Conference on Online Social Networks,
COSN, 2013.

	

	 35

Appendix

Appendix
Here is given the source code of the program developed and used to test the performance of
the different variants of the PGM algorithm. It is written in C++, with a strong object-oriented
approach.
In Thesis_PGM.cpp, which is the main file, are defined the values of the different parameters,
including those of the specific random graph model used to create the input graphs over
which the PGM is run, the ones useful to specify the different ways of picking the seeds and
the parameter ! of the PGM.
Ground-truth network graphs can be built by calling the constructors of either Gnp or
BlockModel classes which are both derived classes of Network. Each	Network object has
its own member map Nodes which stores the pointers to all the Node objects of the Network
itself, indexed by their net_ID. Each Node object has its own member net_ID and true_ID:
the first one is a random identifier which is merely given to distinguish a	Node from the others
in the same Network object, whereas the second one represents the true and hidden identity
of a Node. This means that, in the graphs that are given to the PGM as input, built by edge
sampling the original ground-truth Network, same Nodes have identical true_IDs but
different net_IDs. Lastly, each Node in a Network has its own neighbors array which
contains the net_IDs of all its neighbor Nodes. In all the developed classes, only bidirectional
links are considered.
The sampled network graphs are built by calling the constructors of either Gnps or
BlockModelSampled classes, depending on whether the ground-truth Network is a Gnp or a
BlockModel one respectively.

PGM is the class to which belong static methods that are used to run the different variants of
the PGM algorithm. All these methods need a seed set as input and return the final map as
output. Both the seed set and the final map are given as an instance of class Matching. Each
Matching object has its own member map matchingNodePairs. This map stores the
pointers to all the NodePair objects that represent the pairs of nodes that have been mapped
by the algorithm. Intuitively, the implemented algorithm iteratively expands the seed set given
as input, returning the final map when it stops. Consequently, the same Matching instance
represents both the seed set and the final map, at different moments.

	 	

	

	 36

Appendix

//===	
//	Name								:	Thesis_PGM.cpp	
//	Author						:	Fabio	GENNARI	
//	Version					:	
//	Copyright			:		
//	Description	:	Main	file	
//===	
	
#include	<iostream>	
#include	<fstream>	
#include	<stdlib.h>	
#include	<time.h>	
#include	<math.h>	
#include	"Gnp.h"	
#include	"Gnps.h"	
#include	"Node.h"	
#include	"PGM.h"	
#include	"BlockModel.h"	
#include	"BlockModelSampled.h"	
	
#define	M	3	 	 	 	 	 //	number	of	communities	
#define	S	3	 	 	 	 	 //	number	of	different	sampling	probability	values	
#define	P	6	 	 	 	 	 //	number	of	different	ways	of	picking	the	seeds	

//	from	communities	
#define	N	20	 	 	 	 	 //	number	of	different	sizes	for	the	seed	set	
#define	REALIZATIONS	15	
	
using	namespace	std;	
	
double	arithmeticMean(int	*array,	int	size);	
double	arithmeticMean(double	*array,	int	size);	
	
double	min_p();	
double	max_p();	
	
/*	Due	to	Gnp::extendedRand()	implementation,	this	code	works		
	*	only	for	n	not	greater	than	a	billion	(10^9).	*/	
	
/*	Parameters	for	Block	Model	testing.	*/	
int	n	=	10000;	
double	probNodeAssignment[M]	=	{1.0/3.0,	1.0/3.0,	1.0/3.0};	 //	probability	that	a	node	
	 	 	 	 	 	 	 	 	 //	of	the	BM	network	to	be	
	 	 	 	 	 	 	 	 	 //	created	belongs	to	Comm.	i	
	
double	p[M][M]	=	{{2.0/(n/3.0),	10.0/(n/3.0),	5.0/(n/3.0)},	 //	edge	probability	matrix	P	
	 	 				{10.0/(n/3.0),	2.0/(n/3.0),	25.0/(n/3.0)},	
	 	 				{5.0/(n/3.0),	25.0/(n/3.0),	2.0/(n/3.0)}};	
	
double	s	=	0.7;	
	
double	probSeedAssignment[P][M]	=	{{1.0,	0.0,	0.0},	 	 //	each	row	of	the	
																																			{0.0,	1.0,	0.0},	 	 //	two-dimensional	array		
																																			{0.0,	0.0,	1.0},	 	 //	is	a	different	σ_i	
																																			{0.4,	0.2,	0.4},	 	 //	to	be	tested	
																																			{1.0/3,	1.0/3,	1.0/3},	
																																			{0.5,	0.5,	0.0}};	
	
int	n_seeds[N];	
int	n_seeds_resolution	=	5;	
	
int	r	=	2;	
	
	

	

	 37

Appendix

int	main()	{	
	
	 /*	Initializes	random	seed.	*/	
	 srand(time(NULL));	
	
	 /*	Removes	all	previous	output	files	from	the	directory.	*/	
	 system("del	Output_Prints*.txt");	
	
	 /*	Opens	the	output	file	for	writing.	*/	
	 std::ofstream	ofs;	
	 ofs.open("Output_Prints\\Perf_Metrics.txt",	std::ofstream::out	|	std::ofstream::trunc);	
	
	 /*	Initializes	n_seeds.	*/	
	 for	(int	i=0;	i<N;	i++)	
	 	 n_seeds[i]	=	(i+1)*n_seeds_resolution;	
	
	 /*	Allocates	and	initializes	the	matrix	for	p	values.	*/	
	 double	**z	=	(double	**)malloc(M*sizeof(double	*));	
	 for	(int	i=0;	i<M;	i++)	{	
	 	 z[i]	=	(double	*)malloc(M*sizeof(double));	
	 	 for	(int	j=0;	j<M;	j++)	
	 	 	 z[i][j]	=	p[i][j];	
	 }	
	
	 BlockModel	*bm	=	new	BlockModel(n,	M,	probNodeAssignment,	z);	
	 Gnp	*lb	=	new	Gnp(n,	min_p());	
	 Gnp	*ub	=	new	Gnp(n,	max_p());	
	
	 /*	Test	code.	*/	
	 int	*communitiesSize	=	bm->getCommunitiesSize();	
	 for	(int	i=0;	i<M;	i++)	
	 	 ofs	<<	"Community	"	<<	i	<<	":\t"	<<	communitiesSize[i]	<<	std::endl;	
	 free(communitiesSize);	
	
	 for	(int	i=0;	i<P;	i++)	{	
	 	 ofs	<<	std::endl	<<	"Seed	picking	{";	
	 	 for	(int	j=0;	j<M-1;	j++)	
	 	 	 ofs	<<	probSeedAssignment[i][j]	<<	",	";	
	 	 ofs	<<	probSeedAssignment[i][M-1]	<<	"}"	<<	std::endl	<<	std::endl;	
	 	 	
	 	 for	(int	j=0;	j<N;	j++)	{	
	 	 	 int	*performedMatches	=	(int	*)malloc(REALIZATIONS*sizeof(int));	
	 	 	 double	*fractionOfWrongMatches	=	(double	*)malloc(REALIZATIONS*sizeof(double));	
	
	 	 	 for	(int	k=0;	k<REALIZATIONS;	k++)	{	
	 	 	 	 BlockModelSampled	*bms1	=	new	BlockModelSampled(n,	s,	bm);	
	 	 	 	 BlockModelSampled	*bms2	=	new	BlockModelSampled(n,	s,	bm);	
	
	 	 	 	 Matching	*seeds	=	bm->createSeedSet(bms1,	bms2,		

probSeedAssignment[i],	n_seeds[j]);	
	 	 	 	 	
	 	 	 	 Matching	*matches	=	PGM::deferredMatchingPGM(seeds,	r);	
	
	 	 	 	 performedMatches[k]	=	matches->getNumberOfPerformedMatches();	
	 	 	 	 fractionOfWrongMatches[k]	=	matches->getFractionOfWrongMatches();	
	
	 	 	 	 delete	bms1;	
	 	 	 	 delete	bms2;	
	 	 	 	 delete	matches;	
	 	 	 }	
	
	 	 	 ofs	<<	"N.	of	seeds:	\t"	<<	n_seeds[j]	<<	"\t";	
	

	

	 38

Appendix

	 	 	 ofs	<<	"N.	of	performed	matches:	\t"	<<	
	 	 	 	 	 arithmeticMean(performedMatches,	REALIZATIONS)	<<	"\t";	
	 	 	 ofs	<<	"Fraction	of	wrong	matches:	\t"	<<	
	 	 	 	 	 arithmeticMean(fractionOfWrongMatches,	REALIZATIONS);	
	 	 	 ofs	<<	std::endl;	
	
	 	 	 free(performedMatches);	
	 	 	 free(fractionOfWrongMatches);	
	 	 }	
	 }	
	
	 /*	Lower	bound	Gnp.	*/	
	 ofs	<<	std::endl	<<	"Lower	bound	G(n,min_p)"	<<	std::endl	<<	std::endl;	
	 for	(int	j=0;	j<N;	j++)	{	
	 	 int	*performedMatches	=	(int	*)malloc(REALIZATIONS*sizeof(int));	
	 	 double	*fractionOfWrongMatches	=	(double	*)malloc(REALIZATIONS*sizeof(double));	
	
	 	 for	(int	k=0;	k<REALIZATIONS;	k++)	{	
	 	 	 Gnps	*lbs1	=	new	Gnps(n,	min_p(),	s,	lb);	
	 	 	 Gnps	*lbs2	=	new	Gnps(n,	min_p(),	s,	lb);	
	
	 	 	 Matching	*seeds	=	PGM::getRandomSeedSet(lbs1,	lbs2,	lb,	n_seeds[j]);	
	 	 	 Matching	*matches	=	PGM::arithmeticPGM(seeds,	r);	
	
	 	 	 performedMatches[k]	=	matches->getNumberOfPerformedMatches();	
	 	 	 fractionOfWrongMatches[k]	=	matches->getFractionOfWrongMatches();	
	
	 	 	 delete	lbs1;	
	 	 	 delete	lbs2;	
	 	 	 delete	matches;	
	 	 }	
	
	 	 ofs	<<	"N.	of	seeds:	\t"	<<	n_seeds[j]	<<	"\t";	
	 	 ofs	<<	"N.	of	performed	matches:	\t"	<<	
	 	 	 	 arithmeticMean(performedMatches,	REALIZATIONS)	<<	"\t";	
	 	 ofs	<<	"Fraction	of	wrong	matches:	\t"	<<	
	 	 	 	 arithmeticMean(fractionOfWrongMatches,	REALIZATIONS);	
	 	 ofs	<<	std::endl;	
	
	 	 free(performedMatches);	
	 	 free(fractionOfWrongMatches);	
	 }	
	
	 /*	Upper	bound	Gnp.	*/	
	 ofs	<<	std::endl	<<	"Upper	bound	G(n,max_p)"	<<	std::endl	<<	std::endl;	
	 for	(int	j=0;	j<N;	j++)	{	
	 	 int	*performedMatches	=	(int	*)malloc(REALIZATIONS*sizeof(int));	
	 	 double	*fractionOfWrongMatches	=	(double	*)malloc(REALIZATIONS*sizeof(double));	
	
	 	 for	(int	k=0;	k<REALIZATIONS;	k++)	{	
	 	 	 Gnps	*ubs1	=	new	Gnps(n,	max_p(),	s,	ub);	
	 	 	 Gnps	*ubs2	=	new	Gnps(n,	max_p(),	s,	ub);	
	
	 	 	 Matching	*seeds	=	PGM::getRandomSeedSet(ubs1,	ubs2,	ub,	n_seeds[j]);	
	 	 	 Matching	*matches	=	PGM::arithmeticPGM(seeds,	r);	
	
	 	 	 performedMatches[k]	=	matches->getNumberOfPerformedMatches();	
	 	 	 fractionOfWrongMatches[k]	=	matches->getFractionOfWrongMatches();	
	
	 	 	 delete	ubs1;	
	 	 	 delete	ubs2;	
	 	 	 delete	matches;	
	 	 }	

	

	 39

Appendix

	
	 	 ofs	<<	"N.	of	seeds:	\t"	<<	n_seeds[j]	<<	"\t";	
	 	 ofs	<<	"N.	of	performed	matches:	\t"	<<	
	 	 	 	 arithmeticMean(performedMatches,	REALIZATIONS)	<<	"\t";	
	 	 ofs	<<	"Fraction	of	wrong	matches:	\t"	<<	
	 	 	 	 arithmeticMean(fractionOfWrongMatches,	REALIZATIONS);	
	 	 ofs	<<	std::endl;	
	
	 	 free(performedMatches);	
	 	 free(fractionOfWrongMatches);	
	 }	
	
	 /*	Deletes	the	original	BlockModel	Network.	*/	
	 delete	bm;	
	
	 /*	Deletes	the	original	lower	and	upper	bound	Gnp	Network.	*/	
	 delete	lb;	
	 delete	ub;	
	
	 /*	Frees	dynamically	allocated	memory.	*/	
	 for	(int	i=0;	i<M;	i++)	
	 	 free(z[i]);	
	 free(z);	
	
	 /*	Frees	dynamically	allocated	memory	of	Gnp	class.	*/	
	 Gnp::freeHeap();	
	
	 /*	Closes	the	output	file.	*/	
	 ofs.close();	
	
	 return	0;	
}	
	
double	arithmeticMean(int	*array,	int	size)	{	
	 int	sum	=	0;	
	
	 for	(int	i=0;	i<size;	i++)	
	 	 sum	+=	array[i];	
	
	 double	mean	=	(double)sum;	
	 mean	/=	size;	
	
	 return	mean;	
}	
	
double	arithmeticMean(double	*array,	int	size)	{	
	 double	mean	=	0.0;	
	
	 for	(int	i=0;	i<size;	i++)	
	 	 mean	+=	array[i];	
	
	 mean	/=	size;	
	
	 return	mean;	
}	
	
	
	
	
	
	
	
	

	

	 40

Appendix

double	min_p()	{	
	 double	min_p	=	p[0][0];	
	
	 for	(int	i=0;	i<M;	i++)	
	 	 for	(int	j=0;	j<M;	j++)	
	 	 	 if	(p[i][j]<min_p)	
	 	 	 	 min_p	=	p[i][j];	
	
	 return	min_p;	
}	
	
double	max_p()	{	
	 double	max_p	=	p[0][0];	
	
	 for	(int	i=0;	i<M;	i++)	
	 	 for	(int	j=0;	j<M;	j++)	
	 	 	 if	(p[i][j]>max_p)	
	 	 	 	 max_p	=	p[i][j];	
	
	 return	max_p;	
}	
	 	

	

	 41

Appendix

/*	
	*	BlockModel.cpp	
	*	
	*		Created	on:	06	mag	2018	
	*						Author:	Fabio	GENNARI	
	*/	
	
#include	<stdlib.h>	
#include	<iostream>	
#include	<string>	
#include	"BlockModel.h"	
	
/*		 	 	 	 	 	 */	
/*		 Instance	fields	and	methods.		 */	
/*	 	 	 	 	 	 */	
	
/*	Creates	the	BlockModel	Network,	with	m	communities.	The	probability	that	a	Node	is	assigned	to	
	*	a	certain	community	is	specified	by	probAssignment,	whereas	the	probability	that	a	link	exists	
	*	between	a	Node	belonging	to	community	i	and	a	Node	belonging	to	community	j	is	specified	by	
	*	pp[i][j].	pp	must	be	a	symmetric	matrix.	*/	
BlockModel::BlockModel(int	nn,	int	m,	double	*probAssignment,	double	**pp):	Network(nn)	{	
	
	 /*	Initialization	of	instance	field.	*/	
	 numberOfCommunities	=	m;	
	
	 /*	Initialization	of	instance	field.	*/	
	 probOfMembership	=	(double	*)malloc(numberOfCommunities*sizeof(double));	
	 for	(int	i=0;	i<numberOfCommunities;	i++)	
	 	 probOfMembership[i]	=	probAssignment[i];	
	
	 /*	Initialization	of	instance	field.	*/	
	 membershipCDF	=	(double	*)malloc((numberOfCommunities+1)*sizeof(double));	
	 membershipCDF[0]	=	0.0;	
	 for	(int	i=0;	i<numberOfCommunities;	i++)	
	 	 membershipCDF[i+1]	=	membershipCDF[i]	+	probOfMembership[i];	
	
	 /*	Initialization	of	instance	field.	*/	
	 comm_p	=	(double	**)malloc(numberOfCommunities*sizeof(double	*));	
	 for	(int	i=0;	i<numberOfCommunities;	i++)	{	
	 	 comm_p[i]	=	(double	*)malloc(numberOfCommunities*sizeof(double));	
	 	 for	(int	j=0;	j<numberOfCommunities;	j++)	
	 	 	 comm_p[i][j]	=	pp[i][j];	
	 }	
	
	 /*	Initialization	of	instance	field.	*/	
	 communities	=	(Gnp	**)malloc(numberOfCommunities*sizeof(Gnp	*));	
	 for	(int	i=0;	i<numberOfCommunities;	i++)	
	 	 communities[i]	=	new	Gnp();	
	
	 /*	Scans	all	the	Nodes	of	the	Network	and	assigns	them	to	a	community	according	
	 	*	to	the	probOfMembership	probability	values.	*/	
	 std::map<int,	Node	*>::iterator	it;	
	 for	(it=Nodes.begin();	it!=Nodes.end();	it++)	{	
	 	 double	rand	=	Gnp::uniRandZeroToOne();	
	 	 bool	extractedInterval	=	false;	
	 	 int	i	=	0;	
	 	 for	(;	i<numberOfCommunities	&&	!extractedInterval;	i++)	
	 	 	 if	(rand>=membershipCDF[i]	&&	rand<membershipCDF[i+1])	
	 	 	 	 extractedInterval	=	true;	
	 	 i--;	
	 	 communities[i]->addNode(it->second);	
	 }	
	

	

	 42

Appendix

	 /*	Creates	the	links	of	the	Network	among	Nodes	belonging	to	the	same	community	as	well	as	
	 	*	those	between	Nodes	belonging	to	different	communities.	*/	
	 int	totIterations	=	numberOfCommunities	+	(numberOfCommunities*	
	 	 	 	 	 numberOfCommunities	-	numberOfCommunities)/2;	
	 int	v	=	0;	
	 for	(int	i=0;	i<numberOfCommunities;	i++)	
	 	 for	(int	j=i;	j<numberOfCommunities;	j++)	{	
	 	 	 if	(i==j)	
	 	 	 	 communities[i]->createLinks(comm_p[i][i]);	
	 	 	 else	
	 	 	 	 createLinksBetweenCommunities(i,j);	
	
	 	 	 v++;	
	 	 	 std::cout	<<	"Link	generation:	"	<<		

(v	+	0.0)*100/totIterations	<<	"%"	<<	std::endl;	
	 	 }	
	
}	
	
BlockModel::~BlockModel()	{	
	 free(probOfMembership);	
	 free(membershipCDF);	
	
	 for	(int	i=0;	i<numberOfCommunities;	i++)	
	 	 free(comm_p[i]);	
	 free(comm_p);	
	
	 for	(int	i=0;	i<numberOfCommunities;	i++)	
	 	 delete	communities[i];	
	 free(communities);	
	
	 net_n	=	0;	
}	
	
/*	Returns	an	array	containing	the	size	value	of	each	community.	*/	
int	*BlockModel::getCommunitiesSize()	{	
	 int	*sizes	=	(int	*)malloc(numberOfCommunities*sizeof(int));	
	
	 for	(int	i=0;	i<numberOfCommunities;	i++)	
	 	 sizes[i]	=	communities[i]->getNet_n();	
	
	 return	sizes;	
}	
	 	

	

	 43

Appendix

	
/*	For	every	Node	belonging	to	community	i,	extracts	a	number	of	links	towards	Nodes	
	*	belonging	to	community	j,	according	to	a	binomial	distribution	Bi(n_j,comm_p_ij).	
	*	Then	creates	as	many	links	as	the	extracted	number	between	the	considered	Node	and	
	*	the	others	which	are	extracted	randomly	from	community	j.	*/	
void	BlockModel::createLinksBetweenCommunities(int	i,	int	j)	{	
	 std::map<int,	Node	*>::iterator	it;	
	
	 /*	Gnp::binomialDistr()	was	designed	to	extract	the	temporary	degree	of	a	Node	inside	
	 	*	a	G(n,p)	Network.	The	maximum	possible	degree	for	a	Node	in	this	scenario	is	(net_n	-1)	
	 	*	since	the	considered	Node	can't	be	counted.	Since	the	communities	are	different	here,	
	 	*	the	maximum	number	of	links	is	equal	to	net_n	of	community	j.	Hence	the	first	parameter	
	 	*	is	increased	by	1.	*/	
	 Gnp::binomialDistr((communities[j]->getNet_n()	+	1),	comm_p[i][j]);	
	 for	(it=communities[i]->Nodes.begin();	it!=communities[i]->Nodes.end();	it++)	{	
	 	 int	binDeg	=	Gnp::randomBinDegree();	
	 	 for	(int	i=0;	i<binDeg;	i++)	{	
	 	 	 int	nodeID	=	extractNeighborID(it->second,	j);	
	 	 	 it->second->addNeighbor(nodeID);	
	 	 	 Nodes[nodeID]->addNeighbor(it->first);	
	 	 }	
	 }	
}	
	
/*	Extracts	the	net_ID	of	a	Node	belonging	to	community	j	that	is	going	to	become	a	neighbor	
	*	of	Node	node.	If	the	extracted	Node	is	already	linked	to	Node	node,	pick	the	following	one	
	*	in	communities[j]->Nodes	until	this	condition	changes.	*/	
int	BlockModel::extractNeighborID(Node	*node,	int	j)	{	
	 std::map<int,	Node	*>::iterator	it;	
	
	 int	rand	=	(Gnp::extendedRand()%communities[j]->getNet_n());	
	 it	=	communities[j]->Nodes.begin();	
	 for	(int	i=0;	i<rand;	i++)	
	 	 it++;	
	
	 while	(node->isNeighbor(it->first))	{	
	 	 it++;	
	 	 if	(it==communities[j]->Nodes.end())	
	 	 	 it	=	communities[j]->Nodes.begin();	
	 }	
	
	 return	it->first;	
}	
	
void	BlockModel::printDetailedDegreeDistribution()	{	
	 std::ofstream	degDistr;	
	 std::map<int,	Node	*>::iterator	it;	
	
	 /*	Global	Network	degree	distribution.	*/	
	 degDistr.open("Output_Prints\\GlobalNetwork.txt",	std::ofstream::out	|	std::ofstream::trunc);	
	 for	(it=Nodes.begin();	it!=Nodes.end();	it++)	
	 	 degDistr	<<	it->second->getDegree()	<<	std::endl;	
	 degDistr.close();	
	
	 /*	Single	communities	degree	distributions.	*/	
	 for	(int	i=0;	i<numberOfCommunities;	i++)	{	
	 	 degDistr.open("Output_Prints\\Community_"	+	std::to_string(i)	+	".txt",	
	 	 	 	 	 	 	 	 	 	 	
	 std::ofstream::out	|	std::ofstream::trunc);	
	 	 for	(it=communities[i]->Nodes.begin();	it!=communities[i]->Nodes.end();	it++)	
	 	 	 degDistr	<<	it->second->getDegree()	<<	std::endl;	
	 	 degDistr.close();	
	 }	

	

	 44

Appendix

	

	 /*	Single	communities	towards	single	communities	partial	degree	distributions.	*/	

	 for	(int	i=0;	i<numberOfCommunities;	i++)	
	 	 for	(int	j=0;	j<numberOfCommunities;	j++)	{	
	 	 	 degDistr.open("Output_Prints\\Community_"	+		

std::to_string(i)	+	"_towards_Community_"	+	

	 	 	 	 std::to_string(j)	+	".txt",	std::ofstream::out	|	std::ofstream::trunc);	
	 	 	 for	(it=communities[i]->Nodes.begin();	it!=communities[i]->Nodes.end();	it++)	
	 	 	 	 degDistr	<<	getPartialDegreeTowardsCommunity(it->second,	j)	<<	

std::endl;	
	 	 	 degDistr.close();	

	 	 }	

	

}	

	

/*	Returns	the	number	of	links	between	Node	node	and	Nodes	belonging	to	community	j.	*/	

int	BlockModel::getPartialDegreeTowardsCommunity(Node	*node,	int	j)	{	
	 int	*neighbors	=	node->getNeighbors();	
	 int	deg	=	node->getDegree();	
	

	 int	partialDeg	=	0;	
	 for	(int	i=0;	i<deg;	i++)	
	 	 if	(communities[j]->Nodes.find(neighbors[i])!=communities[j]->Nodes.end())	
	 	 	 partialDeg++;	

	

	 free(neighbors);	
	

	 return	partialDeg;	
}	

	

/*	Prepares	a	seed	set	of	size	size	from	which	the	PGM	algorithm	can	start.	Seeds	are	not	picked	

	*	uniformly	at	random	among	all	the	Nodes.	Every	seed	has	instead	a	probability	of	being	picked	

	*	from	community	i	equal	to	communityProb[i]	value.	*/	

Matching	*BlockModel::createSeedSet(Network	*net1,	Network	*net2,	double	*communityProb,	int	size)	{	
	 /*	Initialization	of	the	CDF	useful	to	extract	the	community		

	 	*	from	which	the	seed	is	picked.	*/	

	 double	*communityCDF	=	(double	*)malloc((numberOfCommunities+1)*sizeof(double));	
	 communityCDF[0]	=	0.0;	

	 for	(int	i=0;	i<numberOfCommunities;	i++)	
	 	 communityCDF[i+1]	=	communityCDF[i]	+	communityProb[i];	

	

	 Matching	*seedSet	=	new	Matching(net1,	net2);	
	

	 /*	For	size	times	*/	

	 for	(int	i=0;	i<size;	i++)	{	
	 	 /*	Extract	a	community	according	to	the	provided	probability	values.	*/	

	 	 double	rand1	=	Gnp::uniRandZeroToOne();	
	 	 bool	extractedInterval	=	false;	
	 	 int	j	=	0;	
	 	 for	(;	j<numberOfCommunities	&&	!extractedInterval;	j++)	
	 	 	 if	(rand1>=communityCDF[j]	&&	rand1<communityCDF[j+1])	
	 	 	 	 extractedInterval	=	true;	
	 	 j--;	

	

	 	 /*	Pick	a	Node	from	the	extracted	community,	uniformly	at	random.	*/	

	 	 int	n	=	communities[j]->getNet_n();	
	 	 int	rand2	=	Gnp::extendedRand();	
	 	 rand2	%=	n;	

	

	 	 std::map<int,	Node	*>::iterator	it;	
	 	 it	=	communities[j]->Nodes.begin();	

	 	 for	(int	k=0;	k<rand2;	k++)	
	 	 	 it++;	

	

	 45

Appendix

	

	 	 /*	If	the	extracted	Node	has	already	been	added	to	the	seedSet,	pick	the	next	

	 	 	*	available	one.	Since	the	seed	set	is	always	made	of	good	pairs	only,	the	check	

	 	 	*	can	be	performed	on	only	one	of	the	two	sets	of	net_IDs	of	Matching	seedSet.	*/	

	 	 while	(seedSet->checkFirstNodeID(net1->True_IDToNet_ID[it->second->getTrue_ID()]))	{	
	 	 	 it++;	

	 	 	 if	(it==communities[j]->Nodes.end())	
	 	 	 	 it	=	communities[j]->Nodes.begin();	

	 	 }	

	

	 	 /*	Add	the	seed	to	the	seedSet.	*/	

	 	 int	extractedNodeTrueID	=	it->second->getTrue_ID();	
	 	 Node	*firstNetNode	=	net1->Nodes[net1->True_IDToNet_ID[extractedNodeTrueID]];	

	 	 Node	*secondNetNode	=	net2->Nodes[net2->True_IDToNet_ID[extractedNodeTrueID]];	

	

	 	 seedSet->addMatching(new	NodePair(firstNetNode,	secondNetNode),	NOCHECKVAL);	
	

	 	 std::cout	<<	"Seed	set	generation:	"	<<	(i	+	1.0)*100/size	<<	"%"	<<	std::endl;	
	 }	

	

	 return	seedSet;	
}	

	

/*	Prints	the	percentage	of	good	pairs	of	Matching	m	that	belong	to	each	community.	*/	

void	BlockModel::matchingCommunityDistr(Matching	*m,	std::ofstream	*ofs)	{	
	 int	*communityCounter	=	(int	*)malloc(numberOfCommunities*sizeof(int));	
	 for	(int	i=0;	i<numberOfCommunities;	i++)	
	 	 communityCounter[i]	=	0;	

	

	 /*	Scan	all	the	performed	matches.	*/	

	 std::map<int,	NodePair	*>::iterator	it;	
	 for	(it=m->matchingNodePairs.begin();	it!=m->matchingNodePairs.end();	it++)	
	 	 /*	If	it	is	a	good	pair,	find	the	community	to	which	the	corresponding	Nodes	belong	to	

	 	 	*	and	increment	the	corresponding	counter.	*/	

	 	 if	(it->second->goodPair())	{	
	 	 	 int	trueID	=	it->second->getFirst()->getTrue_ID();	
	 	 	 bool	communityFound	=	false;	
	 	 	 for	(int	j=0;	j<numberOfCommunities	&&	!communityFound;	j++)	
	 	 	 	 if	(communities[j]->True_IDToNet_ID.find(trueID)!=	
	 	 	 	 	 	 	 communities[j]->True_IDToNet_ID.end())	{	

	 	 	 	 	 communityFound	=	true;	
	 	 	 	 	 communityCounter[j]++;	

	 	 	 	 }	

	 	 }	

	

	 /*	Prints	the	percentage	values	for	each	Community.	*/	

	 int	totalGoodPairs	=	m->getNumberOfGoodMatches();	
	 for	(int	i=0;	i<numberOfCommunities;	i++)	
	 	 *ofs	<<	"%	of	GPs	for	Community	"	<<	i	<<	"\t"	<<	

	 	 	 (communityCounter[i]	+	0.0)*100/totalGoodPairs	<<	"%\t";	

	

	 free(communityCounter);	
}	

	 	

	

	 46

Appendix

/*	
	*	BlockModel.h	
	*	
	*		Created	on:	06	mag	2018	
	*						Author:	Fabio	GENNARI	
	*/	
	
#include	"Network.h"	
#include	"Gnp.h"	
#include	"Matching.h"	
	
#ifndef	BLOCKMODEL_H_	
#define	BLOCKMODEL_H_	
	
class	BlockModel:	public	Network	{	
public:	
	 BlockModel(int	nn,	int	m,	double	*probAssignment,	double	**pp);	
	 virtual	~BlockModel();	
	
	 int	*getCommunitiesSize();	
	
	 void	printDetailedDegreeDistribution();	
	
	 Matching	*createSeedSet(Network	*net1,	Network	*net2,	double	*communityProb,	int	size);	
	
	 void	matchingCommunityDistr(Matching	*m,	std::ofstream	*ofs);	
	
private:	
	 int	numberOfCommunities;	
	 Gnp	**communities;	 	 	 //	array	containing	the	pointers	to	the	
	 	 	 	 	 	 //	various	Gnp	communities	
	 double	*probOfMembership;	 	 //	probability	that	a	Node	belongs	to	
	 	 	 	 	 	 //	the	corresponding	community	
	 double	*membershipCDF;	 	 //	corresponding	CDF	useful	to	extract	the	community	
	 	 	 	 	 	 //	to	which	a	Node	will	belong	
	 double	**comm_p;	 	 	 //	comm_p[i][j]	stores	the	value	of	the	probability	
	 	 	 	 	 	 //	that	a	link	exists	between	any	Node	belonging	to	
	 	 	 	 	 	 //	community	i	and	any	Node	belonging	to	community	j	
	
	 void	createLinksBetweenCommunities(int	i,	int	j);	
	 int	extractNeighborID(Node	*node,	int	j);	
	
	 int	getPartialDegreeTowardsCommunity(Node	*node,	int	j);	
};	
	
#endif	/*	BLOCKMODEL_H_	*/	
	 	

	

	 47

Appendix

/*	
	*	BlockModelSampled.cpp	
	*	
	*		Created	on:	22	mag	2018	
	*						Author:	Fabio	GENNARI	
	*/	
	
#include	<math.h>	
#include	<stdlib.h>	
#include	<iostream>	
#include	<map>	
#include	"Network.h"	
#include	"BlockModelSampled.h"	
	
/*		 	 	 	 	 	 */	
/*		 Instance	fields	and	methods.		 */	
/*	 	 	 	 	 	 */	
	
BlockModelSampled::BlockModelSampled(int	nn,	double	ss,	BlockModel	*net):	Network(nn)	{	
	 std::map<int,	Node	*>::iterator	it;	
	 net_s	=	ss;	
	 motherBlockModel	=	net;	
	
	 /*	Sampling	probability	of	a	link	net_s	comes	from	two	sampling	iterations	of	the	same	link	
	 	*	performed	by	inspecting	the	neighborhood	of	the	considered	adjacent	nodes.	The	resulting	
	 	*	"unidirectional"	sampling	probability	x	is	defined	as	the	following.	*/	
	 double	x	=	1	-	sqrt(1-net_s);	
	
	 /*	For	each	node,	sample	the	starting	neighborhood	with	probability	x.	For	each	successful	
	 	*	sample	create	the	corresponding	bidirectional	link.	
	 	*	Note	that	the	net_IDs	of	the	Nodes	in	the	new	Network	are	different	w.r.t.	the	old	one.	
	 	*	The	sampling	operation	must	be	performed	considering	the	true_IDs	of	the	Nodes,	which	
	 	*	truly	identify	them	in	every	Network.	*/	
	 for	(it=Nodes.begin();	it!=Nodes.end();	it++)	{	
	 	 int	nodeTrueID	=	it->second->getTrue_ID();	
	
	 	 int	*startingNeighborhood	=	
	 	 	 motherBlockModel->Nodes[motherBlockModel->	

True_IDToNet_ID[nodeTrueID]]->getNeighbors();	
	 	 int	startingDegree	=	
	 	 	 motherBlockModel->Nodes[motherBlockModel->	

True_IDToNet_ID[nodeTrueID]]->getDegree();	
	
	 	 for	(int	i=0;	i<startingDegree;	i++)	{	
	 	 	 double	rand	=	Gnp::uniRandZeroToOne();	
	 	 	 if	(rand<x)	{	
	 	 	 	 int	neighborNewNetID	=	
	 	 	 	 	 True_IDToNet_ID[motherBlockModel->	

Nodes[startingNeighborhood[i]]->getTrue_ID()];	
	 	 	 	 it->second->addNeighbor(neighborNewNetID);	
	 	 	 	 Nodes[neighborNewNetID]->addNeighbor(it->first);	
	 	 	 }	
	 	 }	
	
	 	 free(startingNeighborhood);	
	
	 	 std::cout	<<	"Link	generation:	"	<<	(it->first	+	1.0)*100/net_n	<<	"%"	<<	std::endl;	
	 }	
}	
	
BlockModelSampled::~BlockModelSampled()	{	
	
}	

	

	 48

Appendix

/*	
	*	BlockModelSampled.h	
	*	
	*		Created	on:	22	mag	2018	
	*						Author:	Fabio	GENNARI	
	*/	
	
#include	"Network.h"	
#include	"Gnp.h"	
#include	"BlockModel.h"	
	
#ifndef	BLOCKMODELSAMPLED_H_	
#define	BLOCKMODELSAMPLED_H_	
	
class	BlockModelSampled:	public	Network	{	
public:	
	 BlockModelSampled(int	nn,	double	ss,	BlockModel	*net);	
	 virtual	~BlockModelSampled();	
	
private:	
	 double	net_s;	
	 BlockModel	*motherBlockModel;	
};	
	
#endif	/*	BLOCKMODELSAMPLED_H_	*/	
	 	

	

	 49

Appendix

/*	

	*	Gnp.cpp	

	*	

	*		Created	on:	23	dic	2017	

	*						Author:	Fabio	GENNARI	

	*/	

	

#include	<pthread.h>	
#include	<stdlib.h>	
#include	<unistd.h>	
#include	<math.h>	
#include	<limits.h>	
#include	<iostream>	
#include	"Gnp.h"	
#include	"Node.h"	
	

/*		 	 	 	 	 */	

/*		 Static	fields	and	methods.		 */	

/*	 	 	 	 	 */	

	

double	*Gnp::binomialCumDistr	=	NULL;	
double	*Gnp::binomialPdf	=	NULL;	
double	*Gnp::logFact	=	NULL;	
double	Gnp::p	=	0.0;	
int	Gnp::n	=	0;	
int	Gnp::imaxCDF	=	0;	
	

/*	Generates	a	sample	of	a	random	variable	uniformly	distributed	over	[0,1).	*/	

double	Gnp::uniRandZeroToOne()	{	
	 return	(((double)rand())/(RAND_MAX+1.));	
}	

	

/*	Generates	a	sample	of	a	random	variable	uniformly	distributed	over	

	*	[0,	(RAND_MAX+1)*(RAND_MAX+1)).	*/	

int	Gnp::extendedRand()	{	
	 int	a	=	rand();	
	 int	b	=	rand();	
	 int	c	=	a*(RAND_MAX+1)+b;	
	

	 return	c;	
}	

	

/*	Generates	a	binomial	distribution	represented	by	means	of	a	vector.	

	*	nn	is	the	number	of	nodes	of	the	network,	pp	is	the	edge	probability.	*/	

void	Gnp::binomialDistr(int	nn,	double	pp)	{	
	 n	=	nn;	
	 p	=	pp;	
	

	 /*	Deallocates	arrays.	*/	

	 free(binomialCumDistr);	
	 free(binomialPdf);	
	 free(logFact);	
	

	 /*	Dynamically	allocate	arrays.	*/	

	 binomialCumDistr	=	(double	*)malloc((n+1)*sizeof(double));	
	 binomialPdf	=	(double	*)malloc(n*sizeof(double));	
	 logFact	=	(double	*)malloc((n+1)*sizeof(double));	
	

	 /*	Evaluate	array	of	logarithmic	factorials.	*/	

	 logFact[0]	=	0.0;	
	 for(int	i=1;	i<n+1;	i++)	{	
	 	 logFact[i]	=	logFact[i-1]	+	log(i);	
	 }	

	

	 50

Appendix

	
	 /*	Evaluate	array	of	binomial	pdf.	*/	
	 if	(p!=0	&&	p!=1)	
	 	 for	(int	i=0;	i<n;	i++)	{	
	 	 	 binomialPdf[i]	=	exp(logBinCoeff((n-1),	i)	+	i*log(p)	+	(n-1-i)*log(1-p));	
	 	 }	
	 else	if	(p==0)	{	
	 	 binomialPdf[0]	=	1.0;	
	 	 for	(int	i=1;	i<n;	i++)	{	
	 	 	 binomialPdf[i]	=	0.0;	
	 	 }	
	 }	else	{	
	 	 for	(int	i=0;	i<n-1;	i++)	{	
	 	 	 binomialPdf[i]	=	0.0;	
	 	 }	
	 	 binomialPdf[n-1]	=	1.0;	
	 }	
	
	 /*	Evaluate	array	for	binomial	CDF.	*/	
	 binomialCumDistr[0]	=	0.0;	
	 for	(int	i=1;	i<n+1	&&	binomialCumDistr[i-1]<1;	i++)	{	
	 	 if	(binomialCumDistr[i-1]==0	&&	binomialPdf[i-1]==0)	
	 	 	 binomialCumDistr[i]	=	0.0;	
	 	 else	{	
	 	 	 int	startWin	=	floor(fmax(0,	i-n*0.01));	
	 	 	 binomialCumDistr[i]	=	binomialCumDistr[startWin];	
	 	 	 for(int	j=startWin;	j<i;	j++)	
	 	 	 	 binomialCumDistr[i]	+=	binomialPdf[j];	
	 	 }	
	
	 	 if	(binomialCumDistr[i]>=1	||	i==n)	
	 	 	 imaxCDF	=	i;	
	 }	
	
}	
	
/*	Generates	the	binomial	coefficient	nn	over	m.	*/	
double	Gnp::logBinCoeff(int	nn,	int	m)	{	
	 return	logFact[nn]-(logFact[m]	+	logFact[nn-m]);	
}	
	
/*	Extracts	a	uniform	random	variable	and	returns	the	corresponding	extracted	degree	for	the	node	
	*	according	to	the	binomial	distribution.	n	is	the	number	of	nodes	of	the	network.	*/	
int	Gnp::randomBinDegree()	{	
	 int	i;	
	 double	randNumber	=	uniRandZeroToOne();	
	 i	=	binSearch(randNumber);	
	 i--;	
	 return	i;	
}	
	
/*	Clears	all	dynamically	allocated	memory.	*/	
void	Gnp::freeHeap()	{	
	 free(logFact);	
	 free(binomialPdf);	
	 free(binomialCumDistr);	
}	
	 	

	

	 51

Appendix

/*	Binary	search	for	binomial	CDF.	*/	
int	Gnp::binSearch(double	rand)	{	
	 int	p	=	0;	 	 	 //	inferior	endpoint	of	search	window	
	 int	r	=	imaxCDF;	 	 //	superior	endpoint	of	search	window	
	 int	q;		 	 	 //	mean	value	between	current	endpoints	
	 int	index;	 	 	 //	the	index	we	are	searching	for	
	 int	end	=	0;	 	 	 //	flag	for	completed	search	
	
	 while	(p<=r	&&	!end)	{	
	 	 q=(p+r)/2;	
	 	 if	(binomialCumDistr[q]>rand	&&	binomialCumDistr[q-1]<=rand)	{	
	 	 	 index	=	q;	
	 	 	 end	=	1;	
	 	 }	else	if	(binomialCumDistr[q]>rand)	
	 	 	 r	=	q-1;	
	 	 else	
	 	 	 p	=	q+1;	
	 }	
	
	 return	index;	
}	
	
void	Gnp::printLogFact()	{	
	 std::ofstream	logFactorial;	
	
	 logFactorial.open("Output_Prints\\logFactorial.txt",		

std::ofstream::out	|	std::ofstream::trunc);	
	
	 for	(int	i=0;	i<n+1;	i++)	
	 	 logFactorial	<<	logFact[i]	<<	std::endl;	
	
	 logFactorial.close();	
}	
	
void	Gnp::printBinPdf()	{	
	 std::ofstream	Pdf;	
	
	 Pdf.open("Output_Prints\\Pdf.txt",	std::ofstream::out	|	std::ofstream::trunc);	
	
	 for	(int	i=0;	i<n;	i++)	
	 	 Pdf	<<	binomialPdf[i]	<<	std::endl;	
	
	 Pdf.close();	
}	
	
void	Gnp::printBinCDF()	{	
	 std::ofstream	CDF;	
	
	 CDF.open("Output_Prints\\CDF.txt",	std::ofstream::out	|	std::ofstream::trunc);	
	
	 for	(int	i=0;	i<n+1;	i++)	
	 	 CDF	<<	binomialCumDistr[i]	<<	std::endl;	
	
	 CDF.close();	
}	
	 	

	

	 52

Appendix

/*		 	 	 	 	 	 */	
/*		 Instance	fields	and	methods.		 */	
/*	 	 	 	 	 	 */	
	
/*	Creates	an	empty	G(n,p)	network.	Nodes	have	to	be	added	one	by	one	and,	after	this,	
	*	the	creation	of	links	has	to	be	performed	by	invoking	the	corresponding	method.	*/	
Gnp::Gnp():	Network()	{	
	 net_p	=	0.0;	
}	
	
Gnp::Gnp(int	nn,	double	pp):	Network(nn)	{	
	 std::map<int,	Node	*>::iterator	it;	
	
	 net_p	=	pp;	
	
	 /*	Creates	the	G(n,p)	network.	For	every	node,	extracts	its	temporary	degree	according	to	
	 	*	a	binomial	distribution	Bi(n,p/2).	Then	creates	as	many	links	as	the	extracted	degree	
	 	*	between	the	considered	node	and	the	others	which	are	extracted	randomly.	Every	following	
	 	*	node	can	create	new	links	with	already	considered	nodes	(and	then	incrementing	its	degree)	
	 	*	as	long	as	there	isn't	an	existing	link	between	the	two	already.	After	this	procedure	
	 	*	is	reiterated	for	all	nodes,	the	network	is	ready.	*/	
	 binomialDistr(net_n,	net_p/2);	
	 for	(it=Nodes.begin();	it!=Nodes.end();	it++)	{	
	 	 int	binDeg	=	randomBinDegree();	
	 	 for	(int	i=0;	i<binDeg;	i++)	{	
	 	 	 int	nodeID	=	extractNeighborID(it->second);	
	 	 	 it->second->addNeighbor(nodeID);	
	 	 	 Nodes[nodeID]->addNeighbor(it->first);	
	 	 }	
	
	 	 std::cout	<<	"Link	generation:	"	<<	(it->first	+	1.0)*100/net_n	<<	"%"	<<	std::endl;	
	 }	
	
}	
	
Gnp::~Gnp()	{	
	
}	
	
/*	Creates	the	links	of	the	G(n,p)	network	in	the	same	way	as	above.	To	be	invoked	after	all	the	
	*	Nodes	have	been	added	to	the	Network.	*/	
void	Gnp::createLinks(double	pp)	{	
	 std::map<int,	Node	*>::iterator	it;	
	
	 net_p	=	pp;	
	
	 binomialDistr(net_n,	net_p/2);	
	 for	(it=Nodes.begin();	it!=Nodes.end();	it++)	{	
	 	 int	binDeg	=	randomBinDegree();	
	 	 for	(int	i=0;	i<binDeg;	i++)	{	
	 	 	 int	nodeID	=	extractNeighborIDGeneralized(it->second);	
	 	 	 it->second->addNeighbor(nodeID);	
	 	 	 Nodes[nodeID]->addNeighbor(it->first);	
	 	 }	
	 }	
}	
	 	

	

	 53

Appendix

/*	Extracts	a	Node's	net_ID.	If	this	net_ID	is	equal	to	the	net_ID	of	the	considered	Node	
	*	or	a	Node	which	is	already	linked	to	it,	increment	the	net_ID	until	this	condition	
	*	changes.	*/	
int	Gnp::extractNeighborID(Node*	node)	{	
	 int	nodeID	=	(extendedRand()%net_n);	
	 while	((nodeID	=	node->nextAvailableNeighborID(nodeID))>=net_n)	
	 	 nodeID	=	nodeID%net_n;	
	
	 return	nodeID;	
}	
	
/*	Generalized	version	of	the	above	method	for	which	the	Nodes'	net_IDs	can	be	also	non-contiguous.	
	*	Extracts	the	net_ID	of	a	Node	belonging	to	this	Network	that	is	going	to	become	a	neighbor	
	*	of	Node	node.	If	the	extracted	Node	is	already	linked	to	Node	node	or	is	the	same	Node,	
	*	pick	the	following	one	in	the	map	Nodes	until	this	condition	changes.	*/	
int	Gnp::extractNeighborIDGeneralized(Node*	node)	{	
	 std::map<int,	Node	*>::iterator	it;	
	
	 int	rand	=	extendedRand()%net_n;	
	 it	=	Nodes.begin();	
	 for	(int	i=0;	i<rand;	i++)	
	 	 it++;	
	
	 while	(node->isNeighbor(it->first)	||	node->getNet_ID()==it->first)	{	
	 	 it++;	
	 	 if	(it==Nodes.end())	
	 	 	 it	=	Nodes.begin();	
	 }	
	
	 return	it->first;	
}	
	 	

	

	 54

Appendix

/*	
	*	Gnp.h	
	*	
	*		Created	on:	23	dic	2017	
	*						Author:	Fabio	GENNARI	
	*/	
	
#include	<fstream>	
#include	<map>	
#include	"Network.h"	
#include	"Node.h"	
	
#ifndef	GNP_H_	
#define	GNP_H_	
	
class	Gnp:	public	Network	{	
public:	
	 static	double	uniRandZeroToOne();	
	 static	int	extendedRand();	
	 static	void	binomialDistr(int	nn,	double	pp);	
	 static	int	randomBinDegree();	 //	extracts	a	random	degree		

//	according	to	current	distribution	
	 static	void	freeHeap();	 	 //	always	invoke	this	method		

//	at	the	end	to	free	memory	
	 static	void	printLogFact();	
	 static	void	printBinPdf();	
	 static	void	printBinCDF();	
	
	 Gnp();	
	 Gnp(int	nn,	double	pp);	
	 virtual	~Gnp();	
	
	 void	createLinks(double	pp);	
	
protected:	
	 double	net_p;	 	 	 	 //	CARE:	net_p	could	be	different		

//	from	static	p	(net_p	=	2p)	
	
private:	
	 static	int	n;	 	 	 	 //	the	current	static	parameters		

//	for	the	current	bin.	distribution	
	 static	double	p;	 	 	 //	CARE:	static	p	could	be	different		

//	from	net_p	(p	=	net_p/2)	
	 static	int	imaxCDF;	 	 	 //	index	for	last	element	(=1)	of	bin	CDF	
	
	 static	double	*logFact;	 	 //	vector	for	factorials	up	to	n	
	 static	double	*binomialPdf;	 	 //	vector	for	binomial	pdf	
	 static	double	*binomialCumDistr;	 //	the	vector	of	the	binomial	distribution	Bi(n,p)	
	
	 static	double	logBinCoeff(int	n,	int	m);	
	 static	int	binSearch(double	rand);	
	
	 int	extractNeighborID(Node*	node);	 //	Extracts	the	net_ID	of	a	valid	candidate		

//	neighbor	for	Node	node	
	 int	extractNeighborIDGeneralized(Node*	node);	
};	
	
#endif	/*	GNP_H_	*/	
	 	

	

	 55

Appendix

/*	

	*	Gnps.cpp	

	*	

	*		Created	on:	16	mar	2018	

	*						Author:	Fabio	GENNARI	

	*/	

	

#include	<math.h>	
#include	<stdlib.h>	
#include	<iostream>	
#include	<map>	
#include	"Network.h"	
#include	"Gnps.h"	
	

/*		 	 	 	 	 	 */	

/*		 Instance	fields	and	methods.		 */	

/*	 	 	 	 	 	 */	

	

Gnps::Gnps(int	nn,	double	pp,	double	ss,	Gnp	*net):	Network(nn)	{	
	 std::map<int,	Node	*>::iterator	it;	
	

	 net_p	=	pp;	

	 net_s	=	ss;	

	 motherGnp	=	net;	

	

	 /*	Sampling	probability	of	a	link	net_s	comes	from	two	sampling	iterations	of	the	same	link	

	 	*	performed	by	inspecting	the	neighborhood	of	the	considered	adjacent	nodes.	The	resulting	

	 	*	"unidirectional"	sampling	probability	x	is	defined	as	the	following.	*/	

	 double	x	=	1	-	sqrt(1-net_s);	
	
	 /*	For	each	node,	sample	the	starting	neighborhood	with	probability	x.	For	each	successful	

	 	*	sample	create	the	corresponding	bidirectional	link.	

	 	*	Note	that	the	net_IDs	of	the	Nodes	in	the	new	Network	are	different	w.r.t.	the	old	one.	

	 	*	The	sampling	operation	must	be	performed	considering	the	true_IDs	of	the	Nodes,	which	

	 	*	truly	identify	them	in	every	Network.	*/	

	 for	(it=Nodes.begin();	it!=Nodes.end();	it++)	{	
	 	 int	nodeTrueID	=	it->second->getTrue_ID();	
	

	 	 int	*startingNeighborhood	=	
	 	 	 motherGnp->Nodes[motherGnp->True_IDToNet_ID[nodeTrueID]]->getNeighbors();	

	 	 int	startingDegree	=		
motherGnp->Nodes[motherGnp->True_IDToNet_ID[nodeTrueID]]->getDegree();	

	

	 	 for	(int	i=0;	i<startingDegree;	i++)	{	
	 	 	 double	rand	=	Gnp::uniRandZeroToOne();	
	 	 	 if	(rand<x)	{	
	 	 	 	 int	neighborNewNetID	=	True_IDToNet_ID[motherGnp->	

Nodes[startingNeighborhood[i]]->getTrue_ID()];	

	 	 	 	 it->second->addNeighbor(neighborNewNetID);	

	 	 	 	 Nodes[neighborNewNetID]->addNeighbor(it->first);	

	 	 	 }	

	 	 }	
	

	 	 free(startingNeighborhood);	
	

	 	 std::cout	<<	"Link	generation:	"	<<	(it->first	+	1.0)*100/net_n	<<	"%"	<<	std::endl;	
	 }	

}	

	

Gnps::~Gnps()	{	
	

}	

	 	

	

	 56

Appendix

/*	
	*	Gnps.h	
	*	
	*		Created	on:	16	mar	2018	
	*						Author:	Fabio	GENNARI	
	*/	
	
#include	"Network.h"	
#include	"Gnp.h"	
	
#ifndef	GNPS_H_	
#define	GNPS_H_	
	
class	Gnps:	public	Network	{	
public:	
	 Gnps(int	nn,	double	pp,	double	ss,	Gnp	*net);	
	 virtual	~Gnps();	
	
protected:	
	 double	net_p;	
	 double	net_s;	
	 Gnp	*motherGnp;	
	
private:	
	
};	
	
#endif	/*	GNPS_H_	*/	
	 	

	

	 57

Appendix

/*	
	*	Macros_PGM.h	
	*	
	*		Created	on:	18	mar	2018	
	*						Author:	Fabio	GENNARI	
	*/	
	
#define	CHECKVAL	 0	
#define	NOCHECKVAL	 1	
	 	

	

	 58

Appendix

/*	

	*	Matching.cpp	

	*	

	*		Created	on:	18	mar	2018	

	*						Author:	Fabio	GENNARI	

	*/	

	

#include	<map>	
#include	"Matching.h"	
#include	"Network.h"	
	

Matching::Matching(Network	*net1,	Network	*net2)	{	
	 firstNetwork	=	net1;	

	 secondNetwork	=	net2;	

	 size	=	0;	

}	

	

Matching::~Matching()	{	
	 std::map<int,	NodePair	*>::iterator	it;	
	

	 for	(it=matchingNodePairs.begin();	it!=matchingNodePairs.end();	it++)	
	 	 delete	it->second;	
	 matchingNodePairs.clear();	

	

	 firstNodesIDs.clear();	

	 secondNodesIDs.clear();	

}	

	

Network	*Matching::getFirstNetwork()	{	
	 return	firstNetwork;	
}	

	

Network	*Matching::getSecondNetwork()	{	
	 return	secondNetwork;	
}	

	

int	Matching::getSize()	{	
	 return	size;	
}	

	

/*	If	called	with	CHECKVAL	macro,	this	method	adds	matchedPair	to	the	Matching	only	if	it	is	not	

	*	a	conflicting	pair.	By	checking	for	conflict,	it	also	prevents	the	adding	of	duplicates.	

	*	The	check	can	be	avoided	with	NOCHECKVAL	macro.	*/	

void	Matching::addMatching(NodePair	*matchedPair,	int	performCheck)	{	
	 if	(performCheck==CHECKVAL)	{	
	 	 if	(checkNonConflict(matchedPair))	{	
	 	 	 matchingNodePairs[size]	=	matchedPair;	

	 	 	 size++;	

	 	 	 /*	Updates	the	two	lists	of	net_IDs	for	nonConflict	check.	*/	

	 	 	 firstNodesIDs.insert(matchedPair->getFirst()->getNet_ID());	

	 	 	 secondNodesIDs.insert(matchedPair->getSecond()->getNet_ID());	

	 	 }	

	 }	else	if	(performCheck==NOCHECKVAL)	{	
	 	 matchingNodePairs[size]	=	matchedPair;	

	 	 size++;	

	 	 /*	Updates	the	two	lists	of	net_IDs	for	nonConflict	check.	*/	

	 	 firstNodesIDs.insert(matchedPair->getFirst()->getNet_ID());	

	 	 secondNodesIDs.insert(matchedPair->getSecond()->getNet_ID());	

	 }	

}	

	 	

	

	 59

Appendix

/*	Checks	if	NodePair	pair	is	conflicting	w.r.t.	node	pairs	already	added	to	the	
	*	Matching.	By	doing	this,	it	also	prevents	the	adding	of	duplicates.	*/	
bool	Matching::checkNonConflict(NodePair	*pair)	{	
	 bool	nonConflict;	
	
	 if	(!checkFirstNodeID(pair)	&&	!checkSecondNodeID(pair))	
	 	 nonConflict	=	true;	
	 else	
	 	 nonConflict	=	false;	
	
	 return	nonConflict;	
}	
	
/*	Checks	if	the	first	node's	net_ID	of	NodePair	pair	is	already	present	in	the	set.	*/	
bool	Matching::checkFirstNodeID(NodePair	*pair)	{	
	 bool	check;	
	
	 int	firstID	=	pair->getFirst()->getNet_ID();	
	
	 if(firstNodesIDs.find(firstID)!=firstNodesIDs.end())	
	 	 check	=	true;	
	 else	
	 	 check	=	false;	
	
	 return	check;	
}	
	
/*	Checks	if	the	second	node's	net_ID	of	NodePair	pair	is	already	present	in	the	set.	*/	
bool	Matching::checkSecondNodeID(NodePair	*pair)	{	
	 bool	check;	
	
	 int	secondID	=	pair->getSecond()->getNet_ID();	
	
	 if(secondNodesIDs.find(secondID)!=secondNodesIDs.end())	
	 	 check	=	true;	
	 else	
	 	 check	=	false;	
	
	 return	check;	
}	
	
/*	Equivalent	methods,	but	simply	accepting	the	Nodes'	net_IDs	as	parameters.	*/	
bool	Matching::checkNonConflict(int	firstNodeID,	int	secondNodeID)	{	
	 bool	nonConflict;	
	
	 if	(!checkFirstNodeID(firstNodeID)	&&	!checkSecondNodeID(secondNodeID))	
	 	 nonConflict	=	true;	
	 else	
	 	 nonConflict	=	false;	
	
	 return	nonConflict;	
}	
	
bool	Matching::checkFirstNodeID(int	ID)	{	
	 bool	check;	
	
	 if(firstNodesIDs.find(ID)!=firstNodesIDs.end())	
	 	 check	=	true;	
	 else	
	 	 check	=	false;	
	
	 return	check;	
}	

	

	 60

Appendix

bool	Matching::checkSecondNodeID(int	ID)	{	
	 bool	check;	
	
	 if(secondNodesIDs.find(ID)!=secondNodesIDs.end())	
	 	 check	=	true;	
	 else	
	 	 check	=	false;	
	
	 return	check;	
}	
	
void	Matching::printMatches()	{	
	 std::map<int,	NodePair	*>::iterator	it;	
	 std::ofstream	PGM_matches;	
	
	 PGM_matches.open("Output_Prints\\PGM_matches.txt",		

std::ofstream::out	|	std::ofstream::trunc);	
	
	 for	(it=matchingNodePairs.begin();	it!=matchingNodePairs.end();	it++)	{	
	 	 int	firstNodeNetID	=	it->second->getFirst()->getNet_ID();	
	 	 int	firstNodeTrueID	=	it->second->getFirst()->getTrue_ID();	
	 	 int	secondNodeNetID	=	it->second->getSecond()->getNet_ID();	
	 	 int	secondNodeTrueID	=	it->second->getSecond()->getTrue_ID();	
	 	 PGM_matches	<<	firstNodeNetID	<<	"	("	<<	firstNodeTrueID	<<	"),	"	<<	
	 	 	 secondNodeNetID	<<	"	("	<<	secondNodeTrueID	<<	")"	<<	std::endl;	
	 }	
	
	 PGM_matches.close();	
}	
	
void	Matching::printPerformanceMetrics(std::ofstream	*ofs)	{	
	 *ofs	<<	"Total	number	of	performed	matches:	\t"	<<	getSize()	<<	"\t";	
	 *ofs	<<	"Fraction	of	wrong	matches:	\t"	<<	getFractionOfWrongMatches()	<<	"\t";	
}	
	
int	Matching::getNumberOfPerformedMatches()	{	
	 return	getSize();	
}	
	
int	Matching::getNumberOfGoodMatches()	{	
	 std::map<int,	NodePair	*>::iterator	it;	
	 int	goodMatches	=	0;	
	
	 for	(it=matchingNodePairs.begin();	it!=matchingNodePairs.end();	it++)	
	 	 if	(it->second->goodPair())	
	 	 	 goodMatches++;	
	
	 return	goodMatches;	
}	
	
double	Matching::getFractionOfWrongMatches()	{	
	 std::map<int,	NodePair	*>::iterator	it;	
	 int	wrongMatches	=	0;	
	 double	fraction;	
	
	 for	(it=matchingNodePairs.begin();	it!=matchingNodePairs.end();	it++)	
	 	 if	(!it->second->goodPair())	
	 	 	 wrongMatches++;	
	
	 fraction	=	(double)wrongMatches/getSize();	
	
	 return	fraction;	
}	

	

	 61

Appendix

/*	

	*	Matching.h	

	*	

	*		Created	on:	18	mar	2018	

	*						Author:	Fabio	GENNARI	

	*/	

	

#ifndef	MATCHING_H_	
#define	MATCHING_H_	
	

#include	<map>	
#include	<set>	
#include	"Network.h"	
#include	"NodePair.h"	
#include	"Macros_PGM.h"	
	

class	Matching	{	
public:	
	 std::map<int,	NodePair	*>	matchingNodePairs;	 //	the	set	of	obtained	matchings	

	

	 Matching(Network	*net1,	Network	*net2);	
	 virtual	~Matching();	
	

	 Network	*getFirstNetwork();	
	 Network	*getSecondNetwork();	
	 int	getSize();	
	

	 void	addMatching(NodePair	*matchedPair,	int	performCheck);	
	 bool	checkNonConflict(NodePair	*pair);	
	 bool	checkFirstNodeID(NodePair	*pair);	
	 bool	checkSecondNodeID(NodePair	*pair);	
	 bool	checkNonConflict(int	firstNodeID,	int	secondNodeID);	
	 bool	checkFirstNodeID(int	ID);	
	 bool	checkSecondNodeID(int	ID);	
	

	 void	printMatches();	
	 void	printPerformanceMetrics(std::ofstream	*ofs);	
	

	 int	getNumberOfPerformedMatches();	
	 int	getNumberOfGoodMatches();	
	 double	getFractionOfWrongMatches();	
	

private:	
	 Network	*firstNetwork;	 	 	 //	the	two	networks	to	which	the	matched		

	 Network	*secondNetwork;	 	 	 //	pairs	of	nodes	belong	

	 int	size;	 	 	 	 	 //	the	number	of	obtained	matchings	

	

	 std::set<int>	firstNodesIDs;		 	 //	list	of	net_IDs	of	net1	nodes	that	

	 	 	 	 	 	 	 //	have	been	already	matched	

	 std::set<int>	secondNodesIDs;	 	 //	list	of	net_IDs	of	net2	nodes	that	

	 	 	 	 	 	 	 //	have	been	already	matched	

};	

	

#endif	/*	NODE_H_	*/	
	 	

	

	 62

Appendix

/*	
	*	Network.cpp	
	*	
	*		Created	on:	15	mar	2018	
	*						Author:	Fabio	GENNARI	
	*/	
	
#include	<pthread.h>	
#include	<stdlib.h>	
#include	<unistd.h>	
#include	<math.h>	
#include	<limits.h>	
#include	<iostream>	
#include	"Network.h"	
#include	"Gnp.h"	
#include	"Node.h"	
	
/*		 	 	 	 	 	 */	
/*		 Instance	fields	and	methods.		 */	
/*	 	 	 	 	 	 */	
	
/*	Creates	an	empty	Network.	*/	
Network::Network()	{	
	 net_n	=	0;	
}	
	
/*	This	Network	constructor	is	in	charge	of	creating	the	Node	objects,	whereas	the	constructor	of	
	*	the	specific	derived	class	is	in	charge	of	creating	the	links	among	the	various	Nodes.	
	*	NOTE	that	in	every	Network	object	every	element	key	must	always	be	equal	to	the	
	*	corresponding	Node's	net_ID.	This	is	granted	by	the	Network	constructor.	
	*	The	only	way	to	get	one	Node's	true_ID	should	be	to	directly	point	to	it	and	use	getTrue_ID().	
	*	True_IDToNet_ID	should	only	be	used	if	really	necessary,	e.g.	for	check	purposes	
	*	or	Gnps	construction.	*/	
Network::Network(int	nn)	{	
	 std::map<int,	Node	*>::iterator	it;	
	
	 net_n	=	nn;	
	
	 /*	Creates	the	Node	objects	of	the	generic	Network	and	adds	them	to	the	map.	*/	
	 for	(int	i=0;	i<net_n;	i++)	{	
	 	 int	rand	=	Gnp::extendedRand()%net_n;	
	 	 while	(Nodes.find(rand)!=Nodes.end())	
	 	 	 rand	=	(rand+1)%net_n;	
	 	 Nodes[rand]	=	new	Node(rand,	i);	
	 	 True_IDToNet_ID[i]	=	rand;	
	 	 std::cout	<<	"Node	generation:	"	<<	(i	+	1.0)*100/net_n	<<	"%"	<<	std::endl;	
	 }	
}	
	
Network::~Network()	{	
	 for	(int	i=0;	i<net_n;	i++)	
	 	 delete	Nodes[i];	
	 Nodes.clear();	
	
	 True_IDToNet_ID.clear();	
}	
	
int	Network::getNet_n()	{	
	 return	net_n;	
}	
	 	

	

	 63

Appendix

	
/*	Adds	node	to	the	Network.	If	any	of	the	Node's	two	IDs	has	already	been	used,	does	nothing.	*/	
void	Network::addNode(Node	*node)	{	
	 if	(Nodes.find(node->getNet_ID())==Nodes.end()	&&	
	 	 True_IDToNet_ID.find(node->getTrue_ID())==True_IDToNet_ID.end())	{	
	
	 	 Nodes[node->getNet_ID()]	=	node;	
	 	 True_IDToNet_ID[node->getTrue_ID()]	=	node->getNet_ID();	
	 	 net_n++;	
	 }	
}	
	
void	Network::printDegreeDistr()	{	
	 std::ofstream	degDistr;	
	
	 degDistr.open("Output_Prints\\degDistr.txt",	std::ofstream::out	|	std::ofstream::trunc);	
	
	 for	(int	i=0;	i<net_n;	i++)	
	 	 degDistr	<<	Nodes[i]->getDegree()	<<	std::endl;	
	
	 degDistr.close();	
}	
	 	

	

	 64

Appendix

/*	
	*	Network.h	
	*	
	*		Created	on:	15	mar	2018	
	*						Author:	Fabio	GENNARI	
	*/	
	
#include	<fstream>	
#include	<map>	
#include	"Node.h"	
	
#ifndef	NETWORK_H_	
#define	NETWORK_H_	
	
class	Network	{	
public:	
	 std::map<int,	Node	*>	Nodes;	
	 std::map<int,	int>	True_IDToNet_ID;	
	
	 Network();	
	 Network(int	nn);	
	 virtual	~Network();	
	
	 int	getNet_n();	
	 void	addNode(Node	*node);	
	
	 void	printDegreeDistr();	
	
protected:	
	 int	net_n;	 	 	 	 //	the	number	of	nodes	of	this	network	instance	
};	
	
#endif	/*	NETWORK_H_	*/	
	 	

	

	 65

Appendix

/*	

	*	Node.cpp	

	*	

	*		Created	on:	01	gen	2018	

	*						Author:	Fabio	GENNARI	

	*/	

	

#include	<set>	
#include	<iostream>	
#include	<stdlib.h>	
#include	"Node.h"	
#include	"Gnp.h"	
	

/*		 	 	 	 	 	 */	

/*		 Instance	fields	and	methods.		 */	

/*	 	 	 	 	 	 */	

	

Node::Node(int	networkID,	int	trueID)	{	
	 net_ID	=	networkID;	

	 true_ID	=	trueID;	

	 degree	=	0;	

}	

	

Node::~Node()	{	
	 neighbors.clear();	

}	

	

int	Node::getNet_ID()	{	
	 return	net_ID;	
}	

	

int	Node::getTrue_ID()	{	
	 return	true_ID;	
}	

	

int	Node::getDegree()	{	
	 return	degree;	
}	

	

/*	Returns	an	array	of	the	net_IDs	of	this	Node's	neighbors.	*/	

int	*Node::getNeighbors()	{	
	 int	*list;	
	

	 list	=	(int	*)malloc(degree*sizeof(int));	
	 int	i	=	0;	
	 for	(it=neighbors.begin();	it!=neighbors.end();	it++)	{	
	 	 list[i]	=	*it;	

	 	 i++;	

	 }	

	

	 return	list;	
}	

	

void	Node::printNeighbors()	{	
	 for	(it=neighbors.begin();	it!=neighbors.end();	it++)	
	 	 std::cout	<<	*it	<<	std::endl;	
}	

	 	

	

	 66

Appendix

/*	Adds	a	neighbor	with	nodeID	as	net_ID	to	the	Node.	The	net_ID	must	be	different	from		

	*	the	Node's	one,	otherwise	the	neighbor	is	not	added.	I.e.	a	Node	can't	be	a	neighbor		

	*	of	itself.	*/	

void	Node::addNeighbor(int	nodeID)	{	
	 std::pair<std::set<int>::iterator,bool>	ret;	
	

	 if	(nodeID!=net_ID)	{	
	 	 ret	=	neighbors.insert(nodeID);	
	 	 if	(ret.second)	
	 	 	 degree++;	

	 }	

}	

	

/*	CARE.	This	method	removes	only	the	outgoing	direction	of	the	link.	If	the	original	link	is	

	*	bidirectional,	it	doesn't	remove	the	other	direction.	*/	

void	Node::removeNeighbor(int	nodeID)	{	
	 if	(neighbors.erase(nodeID))	
	 	 degree--;	

}	
	

/*	CARE.	This	method	removes	only	the	outgoing	direction	of	the	link.	If	the	original	link	is	

	*	bidirectional,	it	doesn't	remove	the	other	direction.	*/	

void	Node::removeNeighborsWithProb(double	x)	{	
	 int	*neighborhood	=	getNeighbors();	
	 int	n	=	getDegree();	
	

	 for	(int	i=0;	i<n;	i++)	{	
	 	 double	rand	=	Gnp::uniRandZeroToOne();	
	 	 if	(rand<x)	
	 	 	 removeNeighbor(neighborhood[i]);	
	 }	

	

	 free(neighborhood);	
}	

	

/*	Checks	if	Node	with	nodeID	as	net_ID	is	a	neighbor	of	this	Node.	*/	

bool	Node::isNeighbor(int	nodeID)	{	
	 bool	thereIs	=	false;	
	

	 it	=	neighbors.find(nodeID);	

	 if	(it!=neighbors.end())	
	 	 thereIs	=	true;	
	

	 return	thereIs;	
}	

	 	

	

	 67

Appendix

	
/*	Starting	from	a	given	candidate	neighbor	net_ID,	returns	the	same	net_ID	if	available,		
	*	or	the	next	available	one	if	not.	The	returned	net_ID	is	granted	to	be	different	from		
	*	this	node's	net_ID.	*/	
int	Node::nextAvailableNeighborID(int	nodeID)	{	
	 int	availableID	=	nodeID;	
	
	 if	(availableID==net_ID)	
	 	 availableID++;	
	 it	=	neighbors.find(availableID);	
	 if	(it!=neighbors.end())	{	
	 	 availableID++;	
	 	 it++;	
	 	 if	(availableID==net_ID)	
	 	 	 availableID++;	
	 	 while	(availableID==*it)	{	
	 	 	 availableID++;	
	 	 	 it++;	
	 	 	 if	(availableID==net_ID)	
	 	 	 	 availableID++;	
	 	 }	
	 }	
	
	 return	availableID;	
}	
	 	

	

	 68

Appendix

/*	
	*	Node.h	
	*	
	*		Created	on:	01	gen	2018	
	*						Author:	Fabio	GENNARI	
	*/	
	
#ifndef	NODE_H_	
#define	NODE_H_	
	
#include	<set>	
	
class	Node	{	
public:	
	 Node(int	networkID,	int	trueID);	
	 virtual	~Node();	
	
	 int	getNet_ID();	
	 int	getTrue_ID();	
	 int	getDegree();	
	 int	*getNeighbors();	
	 void	printNeighbors();	
	 void	addNeighbor(int	nodeID);	
	 void	removeNeighbor(int	nodeID);	 	 	 //	CARE!	link	removal	in	the	outgoing		

//	direction	ONLY	
	 void	removeNeighborsWithProb(double	x);	 	 //	CARE!	link	removal	in	the	outgoing		

//	direction	ONLY	
	 bool	isNeighbor(int	nodeID);	
	 int	nextAvailableNeighborID(int	nodeID);	
	
private:	
	 std::set<int>	neighbors;	 	 	 	 //	list	of	neighbors'	net_IDs	TOWARDS		

//	which	the	node	is	pointing	
	 std::set<int>::iterator	it;	 	 	 	 //	iterator	for	scanning		

//	the	list	of	neighbors	
	
	 int	net_ID;	 	 	 	 	 	 //	the	ID	that	the	node	has	in	the	network	
	 int	true_ID;	 	 	 	 	 	 //	the	true	ID	of	the	node	
	 int	degree;	
};	
	
#endif	/*	NODE_H_	*/	
	 	

	

	 69

Appendix

/*	

	*	NodePair.cpp	

	*	

	*		Created	on:	18	mar	2018	

	*						Author:	Fabio	GENNARI	

	*/	

	

#include	"NodePair.h"	
	

NodePair::NodePair(Node	*node1,	Node	*node2)	{	
	 first	=	node1;	

	 second	=	node2;	

	 marks	=	0;	

	 metric	=	-1;	

	 metricWeight	=	-1;	

}	

	

NodePair::~NodePair()	{	
	

}	

	

Node	*NodePair::getFirst()	{	
	 return	first;	
}	

	

Node	*NodePair::getSecond()	{	
	 return	second;	
}	

	

int	NodePair::getMarks()	{	
	 return	marks;	
}	

	

void	NodePair::incrementMarks()	{	
	 marks++;	

}	

	

/*	Returns	metric	value	if	weight	w	is	equal	to	the	current	metricWeight	value,	

	*	-1	otherwise.	Weight	w	must	be	a	real	number	in	[0,1].	*/	

double	NodePair::getMetric(double	w)	{	
	 double	returnValue	=	-1;	
	

	 if	(w==metricWeight)	
	 	 returnValue	=	metric;	

	

	 return	returnValue;	
}	

	

/*	Sets	metric	and	metricWeight	values.	*/	

void	NodePair::setMetric(double	m,	double	w)	{	
	 metric	=	m;	

	 metricWeight	=	w;	

}	

	

bool	NodePair::goodPair()	{	
	 bool	a;	
	 if	(first->getTrue_ID()==second->getTrue_ID())	
	 	 a	=	true;	
	 else	
	 	 a	=	false;	
	

	 return	a;	
}	

	

	 70

Appendix

/*	
	*	NodePair.h	
	*	
	*		Created	on:	18	mar	2018	
	*						Author:	Fabio	GENNARI	
	*/	
	
#ifndef	NODEPAIR_H_	
#define	NODEPAIR_H_	
	
#include	"Node.h"	
	
class	NodePair	{	
public:	
	 NodePair(Node	*node1,	Node	*node2);	
	 virtual	~NodePair();	
	
	 Node	*getFirst();	
	 Node	*getSecond();	
	
	 int	getMarks();	
	 void	incrementMarks();	
	
	 double	getMetric(double	w);	
	 void	setMetric(double	m,	double	w);	
	
	 bool	goodPair();	
	
private:	
	 Node	*first;	
	 Node	*second;	
	
	 int	marks;	 	 	 //	PGM	mark	counter	
	 double	metric;		 	 //	metric	value	
	 double	metricWeight;	 	 //	weight	with	which	the	metric	value	is	computed	
};	
	
#endif	/*	NODEPAIR_H_	*/	
	 	

	

	 71

Appendix

/*	
	*	PGM.cpp	
	*	
	*		Created	on:	18	mar	2018	
	*						Author:	Fabio	GENNARI	
	*/	
	
#include	<iostream>	
#include	<set>	
#include	<math.h>	
#include	"Gnp.h"	
#include	"PGM.h"	
	
/*		 	 	 	 	 */	
/*		 Static	fields	and	methods.		 */	
/*	 	 	 	 	 */	
	
Matching	*PGM::PGMMatching	=	NULL;	
int	PGM::markThreshold	=	0;	
double	PGM::metricWeight	=	-1;	
std::map<int,	std::map<int,	NodePair	*>>	PGM::candidates;	
std::map<int,	std::map<int,	NodePair	*>>	PGM::thresholdCandidates;	
	
/*	Prepares	a	seed	set	of	size	size	from	which	the	PGM	algorithm	can	start.	This	seed	set	is	
	*	built	by	picking	Nodes	from	the	intersection	Network	uniformly	at	random.	The	intersection	
	*	Network	contains	all	the	Nodes	that	belong	to	both	net1	and	net2	(same	true_ID)	and	must	be	
	*	provided.	In	this	way,	net1	and	net2	Networks,	on	which	we	are	trying	to	perform	the	matching,	
	*	can	also	have	different	sets	of	Nodes.	Intersection	Nodes'	net_IDs	can	also	be	non	contiguous.	*/	
Matching	*PGM::getRandomSeedSet(Network	*net1,	Network	*net2,	Network	*intersection,	int	size)	{	
	 std::map<int,	Node	*>::iterator	it;	
	
	 Matching	*seedSet	=	new	Matching(net1,	net2);	
	
	 /*	The	number	of	nodes	that	belong	to	both	networks.	*/	
	 int	n	=	intersection->getNet_n();	
	
	 for	(int	i=0;	i<size;	i++)	{	
	 	 int	rand	=	Gnp::extendedRand();	
	 	 rand	%=	n;	
	
	 	 it	=	intersection->Nodes.begin();	
	 	 for	(int	i=0;	i<rand;	i++)	
	 	 	 it++;	
	
	 	 /*	If	the	extracted	Node	has	already	been	added	to	the	seedSet,	pick	the	next	
	 	 	*	available	one.	Since	the	seed	set	is	always	made	of	good	pairs	only,	the	check	
	 	 	*	can	be	performed	on	only	one	of	the	two	sets	of	net_IDs	of	Matching	seedSet.	*/	
	 	 while	(seedSet->checkFirstNodeID(net1->True_IDToNet_ID[it->second->getTrue_ID()]))	{	
	 	 	 it++;	
	 	 	 if	(it==intersection->Nodes.end())	
	 	 	 	 it	=	intersection->Nodes.begin();	
	 	 }	
	
	 	 int	extractedNodeTrueID	=	it->second->getTrue_ID();	
	 	 Node	*firstNetNode	=	net1->Nodes[net1->True_IDToNet_ID[extractedNodeTrueID]];	
	 	 Node	*secondNetNode	=	net2->Nodes[net2->True_IDToNet_ID[extractedNodeTrueID]];	
	
	 	 seedSet->addMatching(new	NodePair(firstNetNode,	secondNetNode),	NOCHECKVAL);	
	
	 	 std::cout	<<	"Seed	set	generation:	"	<<	(i	+	1.0)*100/size	<<	"%"	<<	std::endl;	
	 }	
	 	

	

	 72

Appendix

	
	 return	seedSet;	
}	
	
/*	The	classical	arithmetic	PGM.	*/	
Matching	*PGM::arithmeticPGM(Matching	*seedSet,	int	threshold)	{	
	 PGMMatching	=	seedSet;	
	 markThreshold	=	threshold;	
	
	 std::set<int>	z;	 	 //	the	set	containing	the	index	values	of	the	NodePairs	in	
	 	 	 	 	 //	PGMMatching	that	still	need	to	add	their	marks	
	
	 /*	Initialization	of	set	z.	In	the	beginning,	all	NodePairs	of	the	seedSet	
	 	*	still	need	to	be	considered.	*/	
	 for	(int	i=0;	i<PGMMatching->getSize();	i++)	
	 	 z.insert(i);	
	
	 /*	The	PGM	algorithm	stops	when	there	is	no	new	NodePair	that	still	needs	to	add	its	mark	to	
	 	*	its	neighbor	pairs.	This	happens	when	the	next	NodePair	key	i	is	equal	to	the	current	size	
	 	*	of	the	Matching,	i.	e.	no	new	NodePair	was	added	to	the	Matching	during	last	iteration.	*/	
	 for	(int	i=0;	i<PGMMatching->getSize();	i++)	{	
	 	 /*	Randomly	selects	an	index	value	among	those	of	the	NodePairs	that	still	need	to	be	
	 	 	*	considered.	*/	
	 	 int	rand	=	Gnp::extendedRand()%z.size();	
	 	 std::set<int>::iterator	it	=	z.begin();	
	 	 for	(int	j=0;	j<rand;	j++)	
	 	 	 it++;	
	 	 int	index	=	*it;	
	
	 	 /*	The	selected	NodePair	adds	its	mark	to	all	its	neighbor	pairs.	*/	
	 	 addNodePairMarks(PGMMatching->matchingNodePairs[index]);	
	
	 	 /*	After	the	selected	NodePair	has	added	its	marks,	it	must	be	removed	from	set	z.	*/	
	 	 z.erase(index);	
	
	 	 /*	Keep	scanning	candidates	searching	for	the	next	valid	match	as	long	as	possible.	
	 	 	*	When	no	other	matches	can	be	selected,	a	new	iteration	can	begin.		
	 	 	*	Every	time	a	new	match	is	added	to	PGMMatching,	the	corresponding	index	must	be		

	*	inserted	in	z.	*/	
	 	 while	(addNextMatch())	{	
	 	 	 z.insert(PGMMatching->getSize()-1);	
	 	 	 std::cout	<<	"PGM	algorithm:	"	<<		

PGMMatching->getSize()*100.0/fmin(PGMMatching->	
getFirstNetwork()->getNet_n(),	PGMMatching->	
getSecondNetwork()->getNet_n())	<<	"%"	<<	std::endl;	

	 	 }	
	 }	
	
	 /*	Clear	candidates	map	allowing	for	future	method	calls.	*/	
	 clearCandidates();	
	
	 return	PGMMatching;	
}	
	 	

	

	 73

Appendix

/*	The	Deferred	matching	variant	of	the	PGM	algorithm.	*/	
Matching	*PGM::deferredMatchingPGM(Matching	*seedSet,	int	threshold)	{	
	 PGMMatching	=	seedSet;	
	 markThreshold	=	threshold;	
	
	 int	i	=	0;	
	 /*	The	PGM	algorithm	stops	when	there	is	no	new	NodePair	that	still	needs	to	add	its	mark	to	
	 	*	its	neighbor	pairs.	This	happens	when	the	next	NodePair	key	i	is	equal	to	the	current	size	
	 	*	of	the	Matching,	i.	e.	no	new	NodePair	was	added	to	the	Matching	during	last	iteration.	*/	
	 while	(i<PGMMatching->getSize())	{	
	 	 int	end	=	PGMMatching->getSize();	
	 	 /*	Scan	all	NodePairs	of	Matching	that	still	need	to	be	considered	and	add	their		

	*	marks.	It	scans	up	to	the	current	last	NodePair	in	the	Matching.		
	*	Any	NodePair	that	will	be	added	to	the	Matching	will	be	considered	and	scanned		
	*	in	the	next	iteration.	*/	

	 	 for	(;	i<end;	i++)	
	 	 	 addNodePairMarks(PGMMatching->matchingNodePairs[i]);	
	 	 /*	Search	for	a	candidate	whose	mark	counter	is	maximal	and	at	least	threshold.	
	 	 	*	If	found,	it	is	added	to	PGMMatching,	then	a	new	iteration	can	begin.	*/	
	 	 addMaximalMatch();	
	 	 std::cout	<<	"PGM	algorithm:	"	<<		

PGMMatching->getSize()*100.0/fmin(PGMMatching->getFirstNetwork()->getNet_n(),	
	 	 	 PGMMatching->getSecondNetwork()->getNet_n())	<<	"%"	<<	std::endl;	
	 }	
	
	 /*	Clear	candidates	map	allowing	for	future	method	calls.	*/	
	 clearCandidates();	
	
	 return	PGMMatching;	
}	
	
/*	Personal	variant	of	the	PGM	algorithm.	It	follows	the	same	strategy	as	the	Deferred	
	*	Matching	Variant,	but	searches	for	a	candidate	pair	whose	mark	counter	is	at	least	
	*	threshold	and	whose	metric	value	is	minimal.	See	computeMetric(NodePair	*pair)	method	
	*	for	the	meaning	of	the	parameter	weight.	*/	
Matching	*PGM::personalVariantPGM(Matching	*seedSet,	int	threshold,	double	weight)	{	
	 PGMMatching	=	seedSet;	
	 markThreshold	=	threshold;	
	 metricWeight	=	weight;	
	
	 int	i	=	0;	
	 /*	The	PGM	algorithm	stops	when	there	is	no	new	NodePair	that	still	needs	to	add	its		

	*	mark	to	its	neighbor	pairs.	This	happens	when	the	next	NodePair	key	i	is	equal	to	the		
	*	current	size	of	the	Matching,	i.	e.	no	new	NodePair	was	added	to	the	Matching	during		
	*	last	iteration.	*/	

	 while	(i<PGMMatching->getSize())	{	
	 	 int	end	=	PGMMatching->getSize();	
	 	 /*	Scan	all	NodePairs	of	Matching	that	still	need	to	be	considered	and	add	their		

	*	marks.	It	scans	up	to	the	current	last	NodePair	in	the	Matching.		
	*	Any	NodePair	that	will	be	added	to	the	Matching	will	be	considered	and	scanned		
	*	in	the	next	iteration.	*/	

	 	 for	(;	i<end;	i++)	
	 	 	 addNodePairMarks(PGMMatching->matchingNodePairs[i]);	
	 	 /*	Search	for	a	candidate	whose	mark	counter	is	at	least	threshold	and	
	 	 	*	whose	metric	value	is	minimal.	If	found,	it	is	added	to	PGMMatching,	
	 	 	*	then	a	new	iteration	can	begin.	*/	
	 	 addMinimalMetricMatch();	
	 	 std::cout	<<	"PGM	algorithm:	"	<<		

PGMMatching->getSize()*100.0/fmin(PGMMatching->getFirstNetwork()->getNet_n(),	
	 	 	 PGMMatching->getSecondNetwork()->getNet_n())	<<	"%"	<<	std::endl;	
	 }	
	 	

	

	 74

Appendix

	 /*	Clear	candidates	map	allowing	for	future	method	calls.	*/	
	 clearCandidates();	
	
	 return	PGMMatching;	
}	
	
/*	Scans	all	the	neighbor	pairs	of	NodePair	pair	and	adds	a	mark	to	each	of	them	if	they	
	*	are	still	valid	candidates	(i.e.	if	they	are	non	conflicting	w.r.t.	the	PGMMatching	
	*	NodePairs).	If	the	neighbor	pair	is	already	present	in	candidates,	it	means	it's	still	valid	
	*	(every	time	a	new	match	is	added	to	PGMMatching,	all	the	conflicting	pairs	are	immediately	
	*	got	rid	of).	If	it	is	not	present	but	is	a	valid	candidate,	it	is	added	to	candidates.	
	*	If	it	isn't	a	valid	candidate,	the	method	does	nothing	since	that	neighbor	pair	will	never	
	*	be	added	to	PGMMatching	no	matter	what.	Every	time	that	the	mark	of	a	NodePair	is	incremented,	
	*	it	checks	if	the	mark	has	reached	or	exceeded	markThreshold.	If	so,	the	NodePair	is	added	
	*	to	thresholdCandidates	which	must	always	be	a	subset	of	candidates.	*/	
void	PGM::addNodePairMarks(NodePair	*pair)	{	
	 int	*firstNodeNeighbors	=	pair->getFirst()->getNeighbors();	
	 int	*secondNodeNeighbors	=	pair->getSecond()->getNeighbors();	
	
	 int	firstNodeDegree	=	pair->getFirst()->getDegree();	
	 int	secondNodeDegree	=	pair->getSecond()->getDegree();	
	
	 /*	For	all	the	neighbor	pairs	of	NodePair	pair.	To	scan	them	all	it's	sufficient	to	
	 	*	consider	all	the	possible	pairs	of	neighbors	of	NodePair	pair's	single	nodes.	*/	
	 for	(int	i=0;	i<firstNodeDegree;	i++)	{	
	 	 for	(int	j=0;	j<secondNodeDegree;	j++)	{	
	 	 	 int	firstNodeNetID	=	firstNodeNeighbors[i];	
	 	 	 int	secondNodeNetID	=	secondNodeNeighbors[j];	
	
	 	 	 /*	If	the	neighbor	pair	is	already	present	in	candidates,		

	*	it	means	it's	still	valid.	*/	
	 	 	 if	(findCandidate(firstNodeNetID,	secondNodeNetID))	{	
	 	 	 	 candidates[firstNodeNetID][secondNodeNetID]->incrementMarks();	
	 	 	 	 if	(candidates[firstNodeNetID][secondNodeNetID]->	

getMarks()>=markThreshold)	
	

	 	 	 	 	 thresholdCandidates[firstNodeNetID][secondNodeNetID]	=	
	 	 	 	 	 	 candidates[firstNodeNetID][secondNodeNetID];	
	 	 	 }	
	 	 	 /*	If	it	is	not	present	but	is	a	valid	candidate,	it	is	added	to	candidates.	
	 	 	 	*	Otherwise,	nothing	is	done.	*/	
	 	 	 else	if	(PGMMatching->checkNonConflict(firstNodeNetID,	secondNodeNetID))	{	
	 	 	 	 NodePair	*newCandidate	=	new	NodePair(PGMMatching->getFirstNetwork()->	

Nodes[firstNodeNetID],	PGMMatching->getSecondNetwork()->	
Nodes[secondNodeNetID]);	

	 	 	 	 newCandidate->incrementMarks();	
	 	 	 	 candidates[firstNodeNetID][secondNodeNetID]	=	newCandidate;	
	 	 	 	 if	(candidates[firstNodeNetID][secondNodeNetID]->	

getMarks()>=markThreshold)	
	

	 	 	 	 	 thresholdCandidates[firstNodeNetID][secondNodeNetID]	=	
	 	 	 	 	 	 candidates[firstNodeNetID][secondNodeNetID];	
	 	 	 }	
	 	 }	
	 }	
	
	 /*	Clear	the	dynamically	allocated	arrays.	*/	
	 free(firstNodeNeighbors);	
	 free(secondNodeNeighbors);	
}	
	 	

	

	 75

Appendix

/*	Returns	true	if	NodePair	(firstNodeNetID,	secondNodeNetID)	is	already	present	in	candidates,	
	*	false	otherwise.	*/	
bool	PGM::findCandidate(int	firstNodeNetID,	int	secondNodeNetID)	{	
	 bool	present	=	false;	
	
	 std::map<int,	std::map<int,	NodePair	*>>::iterator	it;	
	 it	=	candidates.find(firstNodeNetID);	
	 if	(it!=candidates.end())	
	 	 if	(it->second.find(secondNodeNetID)!=it->second.end())	
	 	 	 present	=	true;	
	
	 return	present;	
}	
	
/*	This	method	scans	thresholdCandidates	in	order	to	select	the	next	match.	ThresholdCandidates	
	*	is	always	a	subset	of	candidates,	therefore	it	always	contains	only	valid	pairs.	This	means	
	*	that,	if	it	contains	pairs,	these	pairs	don't	need	to	be	tested	in	order	to	be	added	as	
	*	matches	(one	at	a	time	of	course,	since,	after	adding	a	new	match,	the	new	conflicting	pairs	
	*	have	to	be	removed	first).	If	the	method	finds	a	pair,	it	adds	the	match	to	PGMMatching	
	*	(validity	check	is	not	performed	for	what	we	said	earlier).	After	adding	the	match,	
	*	candidates	and	thresholdCandidates	are	updated	(the	candidate	that	has	been	chosen	is	removed	
	*	and	so	are	all	the	conflicting	pairs	w.r.t.	it)	and	the	method	returns	true.	
	*	If	a	match	could	not	be	found	(i.e.	thresholdCandidates	is	empty),	the	method	returns	false.	*/	
bool	PGM::addNextMatch()	{	
	 std::map<int,	std::map<int,	NodePair	*>>::iterator	firstIt;	
	 std::map<int,	NodePair	*>::iterator	secondIt;	
	
	 bool	foundNextMatch	=	false;	
	
	 /*	thresholdCandidates	is	scanned	sequentially,	i.e.	the	first	one	that	is	found	
	 	*	is	selected	and	becomes	the	next	match.	*/	
	 if	(thresholdCandidates.size()>0)	{	
	 	 firstIt=thresholdCandidates.begin();	
	 	 secondIt=firstIt->second.begin();	
	
	 	 PGMMatching->addMatching(secondIt->second,	NOCHECKVAL);	
	 	 updateCandidates(firstIt->first,	secondIt->first);	
	 	 foundNextMatch	=	true;	
	 }	
	
	 return	foundNextMatch;	
}	
	
/*	This	method	performs	the	same	operations	as	addNextMatch().	The	only	difference	is	that	
	*	it	scans	thresholdCandidates	in	order	to	select	the	candidate	pair	with	the	
	*	maximal	mark	counter	as	next	match	to	be	added	to	PGMMatching.	*/	
bool	PGM::addMaximalMatch()	{	
	 std::map<int,	std::map<int,	NodePair	*>>::iterator	firstIt;	
	 std::map<int,	NodePair	*>::iterator	secondIt;	
	
	 std::map<int,	std::map<int,	NodePair	*>>::iterator	maximalFirstIt;	
	 std::map<int,	NodePair	*>::iterator	maximalSecondIt;	
	 int	maximalMarkCounter;	
	
	 bool	foundNextMatch	=	false;	
	
	 /*	If	there	is	at	least	a	candidate	pair	whose	mark	counter	is	at	least	threshold,	
	 	*	performs	an	approximate	search	for	the	pair	with	the	maximal	mark	counter.	*/	
	 if	(thresholdCandidates.size()>0)	{	
	 	 firstIt	=	thresholdCandidates.begin();	
	 	 secondIt	=	firstIt->second.begin();	
	
	 	 maximalFirstIt	=	firstIt;	

	

	 76

Appendix

	 	 maximalSecondIt	=	secondIt;	
	 	 maximalMarkCounter	=	secondIt->second->getMarks();	
	
	 	 for	(;	firstIt!=thresholdCandidates.end();	firstIt++)	{	
	 	 	 secondIt	=	firstIt->second.begin();	
	 	 	 if	(secondIt->second->getMarks()>maximalMarkCounter)	{	
	 	 	 	 maximalFirstIt	=	firstIt;	
	 	 	 	 maximalSecondIt	=	secondIt;	
	 	 	 	 maximalMarkCounter	=	secondIt->second->getMarks();	
	 	 	 }	
	 	 }	
	
	 	 PGMMatching->addMatching(maximalSecondIt->second,	NOCHECKVAL);	
	 	 updateCandidates(maximalFirstIt->first,	maximalSecondIt->first);	
	 	 foundNextMatch	=	true;	
	 }	
	
	 return	foundNextMatch;	
}	
	
/*	This	method	performs	the	same	operations	as	addMaximalMatch().	The	only	difference	is	
	*	that	it	scans	thresholdCandidates	in	order	to	select	the	candidate	pair	with	the	
	*	minimal	metric	value,	computed	with	weight	w,	as	next	match	to	be	added	to	PGMMatching.	*/	
bool	PGM::addMinimalMetricMatch()	{	
	 std::map<int,	std::map<int,	NodePair	*>>::iterator	firstIt;	
	 std::map<int,	NodePair	*>::iterator	secondIt;	
	
	 std::map<int,	std::map<int,	NodePair	*>>::iterator	minimalMetricFirstIt;	
	 std::map<int,	NodePair	*>::iterator	minimalMetricSecondIt;	
	 double	minimalMetricValue;	
	
	 bool	foundNextMatch	=	false;	
	
	 /*	If	there	is	at	least	a	candidate	pair	whose	mark	counter	is	at	least	threshold,	
	 	*	performs	an	approximate	search	for	the	pair	with	the	minimal	metric	value,	
	 	*	computed	with	weight	w.	*/	
	 if	(thresholdCandidates.size()>0)	{	
	 	 firstIt	=	thresholdCandidates.begin();	
	 	 secondIt	=	firstIt->second.begin();	
	
	 	 minimalMetricFirstIt	=	firstIt;	
	 	 minimalMetricSecondIt	=	secondIt;	
	 	 minimalMetricValue	=	computeMetric(secondIt->second);	
	
	 	 for	(;	firstIt!=thresholdCandidates.end();	firstIt++)	{	
	 	 	 secondIt	=	firstIt->second.begin();	
	 	 	 if	(computeMetric(secondIt->second)<minimalMetricValue)	{	
	 	 	 	 minimalMetricFirstIt	=	firstIt;	
	 	 	 	 minimalMetricSecondIt	=	secondIt;	
	 	 	 	 minimalMetricValue	=	computeMetric(secondIt->second);	
	 	 	 }	
	 	 }	
	
	 	 PGMMatching->addMatching(minimalMetricSecondIt->second,	NOCHECKVAL);	
	 	 updateCandidates(minimalMetricFirstIt->first,	minimalMetricSecondIt->first);	
	 	 foundNextMatch	=	true;	
	 }	
	
	 return	foundNextMatch;	
}	
	 	

	

	 77

Appendix

/*	Retrieves	pair's	metric	value.	If	it	is	not	available	yet,	computes	it	and	saves	it	
	*	for	future	uses.	*/	
double	PGM::computeMetric(NodePair	*pair)	{	
	 double	metricValue	=	pair->getMetric(metricWeight);	
	
	 /*	If	pair's	metric	value	is	not	available	yet,	computes	it	and	saves	it	for	future	uses.	*/	
	 if	(metricValue==-1)	{	
	 	 Network	*firstNet	=	PGMMatching->getFirstNetwork();	
	 	 Network	*secondNet	=	PGMMatching->getSecondNetwork();	
	
	 	 /*	Computes	the	absolute	value	of	the	difference	btwn	the	degrees	of	pair's	nodes.	*/	
	 	 int	firstNodeDegree	=	pair->getFirst()->getDegree();	
	 	 int	secondNodeDegree	=	pair->getSecond()->getDegree();	
	 	 double	degreeDiff	=	fabs(firstNodeDegree-secondNodeDegree);	
	
	 	 /*	Computes	the	average	degree	of	the	first	node's	neighbors.	*/	
	 	 double	firstNeighborsAvgDegree	=	0;	
	 	 int	*firstNeighborhood	=	pair->getFirst()->getNeighbors();	
	 	 for	(int	i=0;	i<firstNodeDegree;	i++)	
	 	 	 firstNeighborsAvgDegree	+=	firstNet->Nodes[firstNeighborhood[i]]->getDegree();	
	 	 firstNeighborsAvgDegree	/=	firstNodeDegree;	
	
	 	 /*	Computes	the	average	degree	of	the	second	node's	neighbors.	*/	
	 	 double	secondNeighborsAvgDegree	=	0;	
	 	 int	*secondNeighborhood	=	pair->getSecond()->getNeighbors();	
	 	 for	(int	i=0;	i<secondNodeDegree;	i++)	
	 	 	 secondNeighborsAvgDegree	+=	secondNet->	

Nodes[secondNeighborhood[i]]->getDegree();	
	 	 secondNeighborsAvgDegree	/=	secondNodeDegree;	
	
	 	 /*	Computes	the	absolute	value	of	the	difference	between	
	 	 	*	the	two	neighbors'	average	degrees.	*/	
	 	 double	neighborsAvgDegreeDiff	=		

fabs(firstNeighborsAvgDegree-secondNeighborsAvgDegree);	
	 	 free(firstNeighborhood);	
	 	 free(secondNeighborhood);	
	
	 	 /*	Computes	the	final	metric	value	of	the	pair,	which	is	a	linear	combination	
	 	 	*	of	the	two	absolute	values.	Saves	it	for	future	uses.	*/	
	 	 metricValue	=	(1-metricWeight)*degreeDiff	+	metricWeight*neighborsAvgDegreeDiff;	
	 	 pair->setMetric(metricValue,	metricWeight);	
	 }	
	
	 return	metricValue;	
}	
	
/*	To	be	called	after	adding	the	corresponding	match	to	PGMMatching.	This	method	removes	
	*	the	NodePair	(firstNodeNetID,	secondNodeNetID),	that	has	just	been	added	to	PGMMatching,	from	
	*	candidates	and	thresholdCandidates,	without	deleting	it	as	an	Object.	It	then	removes	all	pairs	
	*	that	are	conflicting	w.r.t.	it	from	the	two	maps,	deleting	them	too	(they	will	never	be	able	to	
	*	be	added	to	PGMMatching,	no	matter	what,	because	they	are	conflicting).	*/	
void	PGM::updateCandidates(int	firstNodeNetID,	int	secondNodeNetID)	{	
	 std::map<int,	std::map<int,	NodePair	*>>::iterator	firstIt;	
	 std::map<int,	NodePair	*>::iterator	secondIt;	
	
	 /*	Removes	the	pair	from	candidates	and	thresholdCandidates	without	deleting	it.	*/	
	 candidates[firstNodeNetID].erase(secondNodeNetID);	
	 thresholdCandidates[firstNodeNetID].erase(secondNodeNetID);	
	 	

	

	 78

Appendix

	 /*	Removes	and	deletes	pairs	that	are	conflicting	in	terms	of	their	first	node's	net_ID.	
	 	*	Deleting	the	pairs	contained	in	candidates	is	sufficient,	since	thresholdCandidates	is	
	 	*	always	a	subset	of	it.	*/	
	 for	(secondIt=candidates[firstNodeNetID].begin();	
	 	 secondIt!=candidates[firstNodeNetID].end();	secondIt++)	
	
	 	 delete	secondIt->second;	
	
	 candidates[firstNodeNetID].clear();	
	 candidates.erase(firstNodeNetID);	
	
	 thresholdCandidates[firstNodeNetID].clear();	
	 thresholdCandidates.erase(firstNodeNetID);	
	
	 /*	Removes	and	deletes	pairs	that	are	conflicting	in	terms	of	their	second	node's	net_ID.	
	 	*	Deleting	the	pairs	contained	in	candidates	is	sufficient,	since	thresholdCandidates	is	
	 	*	always	a	subset	of	it.	*/	
	 for	(firstIt=candidates.begin();	firstIt!=candidates.end();	firstIt++)	{	
	 	 secondIt	=	firstIt->second.find(secondNodeNetID);	
	 	 if	(secondIt!=firstIt->second.end())	{	
	 	 	 delete	secondIt->second;	
	 	 	 firstIt->second.erase(secondIt);	
	 	 }	
	 }	
	
	 for	(firstIt=thresholdCandidates.begin();	firstIt!=thresholdCandidates.end();	firstIt++)	{	
	 	 secondIt	=	firstIt->second.find(secondNodeNetID);	
	 	 if	(secondIt!=firstIt->second.end())	
	 	 	 firstIt->second.erase(secondIt);	
	 }	
	
	 /*	For	how	thresholdCandidates	works,	it	must	never	contain	empty	rows.	Therefore,	after	
	 	*	removing	the	conflicting	pairs	from	it,	the	possible	empty	rows	that	are	left	must	be	
	 	*	erased.	*/	
	 bool	compacted	=	false;	
	 while	(!compacted)	{	
	 	 compacted	=	true;	
	
	 	 bool	foundEmptyRow	=	false;	
	 	 for	(firstIt=thresholdCandidates.begin();	
	 	 	 firstIt!=thresholdCandidates.end()	&&	!foundEmptyRow;	firstIt++)	
	
	 	 	 if	(firstIt->second.size()==0)	{	
	 	 	 	 thresholdCandidates.erase(firstIt);	
	 	 	 	 foundEmptyRow	=	true;	
	 	 	 	 compacted	=	false;	
	 	 	 }	
	 }	
}	
	 	

	

	 79

Appendix

/*	Clears	candidates	and	thresholdCandidates,	allowing	for	new	PGM	calls.	*/	

void	PGM::clearCandidates()	{	
	 std::map<int,	std::map<int,	NodePair	*>>::iterator	firstIt;	
	 std::map<int,	NodePair	*>::iterator	secondIt;	
	

	 for	(firstIt=candidates.begin();	firstIt!=candidates.end();	firstIt++)	{	
	 	 for	(secondIt=firstIt->second.begin();	secondIt!=firstIt->second.end();	secondIt++)	
	 	 	 delete	secondIt->second;	
	 	 firstIt->second.clear();	

	 }	

	

	 candidates.clear();	
	 thresholdCandidates.clear();	
}	

	 	

	

	 80

Appendix

/*	
	*	PGM.h	
	*	
	*		Created	on:	18	mar	2018	
	*						Author:	Fabio	GENNARI	
	*/	
	
#include	"Matching.h"	
#include	"Macros_PGM.h"	
	
#ifndef	PGM_H_	
#define	PGM_H_	
	
class	PGM	{	
public:	
	 static	Matching	*getRandomSeedSet(Network	*net1,		

Network	*net2,	Network	*intersection,	int	size);	
	 static	Matching	*arithmeticPGM(Matching	*seedSet,	int	threshold);	
	 static	Matching	*deferredMatchingPGM(Matching	*seedSet,	int	threshold);	
	 static	Matching	*personalVariantPGM(Matching	*seedSet,	int	threshold,	double	weight);	
	
private:	
	 static	Matching	*PGMMatching;	
	 static	int	markThreshold;	
	 static	double	metricWeight;	
	 static	std::map<int,	std::map<int,	NodePair	*>>	candidates;	
	 static	std::map<int,	std::map<int,	NodePair	*>>	thresholdCandidates;	
	
	 static	void	addNodePairMarks(NodePair	*pair);	
	 static	bool	findCandidate(int	firstNodeNetID,	int	secondNodeNetID);	
	 static	bool	addNextMatch();	
	 static	bool	addMaximalMatch();	
	 static	bool	addMinimalMetricMatch();	
	 static	double	computeMetric(NodePair	*pair);	
	 static	void	updateCandidates(int	firstNodeNetID,	int	secondNodeNetID);	
	 static	void	clearCandidates();	
};	
	
#endif	/*	PGM_H_	*/	
	

