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Introduction

The idea of renormalization was �rst introduced as an ad hoc method

of eliminating unphysical divergences arising in the theoretical treat-

ment of interacting many-body systems. Later, it found its ful�llment

as a technique for coarse-graining the statistical description of systems

[1, 2, 3, 4, 5, 6] with many length and time scales, and thus as a way to

understand critical phenomena and the concept of universality. Mean

�eld theory represents a �rst step towards a thorough understanding

of critical phenomena. When �uctuations at all scales play a vital role

one needs to go beyond the mean �eld approach. In this framework,

the renormalization group and scaling theory provide a series of tool

to systematically take into account the e�ects of �uctuations, provid-

ing a deep insight into critical phenomena. This is the reason why

the renormalization group has had great in�uence on the development

of statistical �eld theory, and has undoubtedly been one of the most

successful developments in many-body theory in the last half-century.

The main topic of this thesis is the application of renormaliza-

tion group techniques as a mathematical tool for the calculation of

non trivial integrals and for the determination of the spectrum of the

Schrödinger equation. The work is organized as follows.

Chapter 1 contains a brief introduction to the concepts of renormal-

ization group, with some practical examples.

In Chapter 2 a modern non-perturbative formulation of the func-
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tional renormalization group (FRG) is presented in the framework of

the e�ective average action approach.

Our original results are presented in Chapters 3 - 5. Chapters 3

and 4 are devoted to the application of the ideas of the RG to the

calculation of non-trivial integrals, respectively of one variable and of

many variables.

Chapter 5 contains applications of the RG concepts to quantum me-

chanics, and to the determination of the ground state of the Schrödinger

equation for di�erent potentials.
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Chapter 1

Reminders on the

Renormalization Group

1.1 Why renormalization?

The fundamental problem studied within statistical mechanics is the

emergence of new collective properties in the macroscopic realm from

the dynamics of the microscopics constituents of a system. This un-

derlies the idea of reducing the amount of information necessary to de-

scribe a system. An exact microscopic description of a physical systems

involves a very high number of degrees of freedom (e.g. position and

momentum of each particle {q⃗i, p⃗i}). Instead, a macroscopic description

of the system typically involves just few phenomenological parameters,

such as pressure, temperature, density, magnetization, etc...

The bridge between these two descriptions of a physical system is

coarse-graining. This idea, typical of RG approaches, consists in build-

ing an e�ective theory for the macroscopic degrees of freedom by pro-

gressively eliminating the microscopic ones. This procedure, together

with rescaling, represent the main ingredient of a RG transformation,

which generates a �ow of e�ective theories. The properties of �xed

points of �ow equations allow for a complete description of the critical
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behaviour of a physical system, and to address the problem of univer-

sality. Indeed, only few parameters survive the �ow, and determine the

critical behaviour of the system, and the latter is a manifestation of the

concept of universality.

In textbooks, one typically deals with examples from statistical me-

chanics, such as the Ising model. These examples will be covered in

the introductory Chapters 1 and 2. However, FRG can be surprisingly

useful also in other and simpler applications, such as the ones we are

going to treat in Chapters 3 - 5.

1.2 Renormalization at work: the 2D Ising

model

Consider a set of Ising spins si = ±1 aranged on a two dimensional

square lattice. The dimensionless hamiltonian for such a system in an

external magnetic �eld h reads

H = −K
∑
⟨ij⟩

sisj − h
∑
i

si, (1.1)

where
∑

⟨ij⟩ represents a sum over nearest neighbours pairs, and K > 0

is the dimensionless coupling of the ferromagnetic interaction among

nearest neighbors spins. The �rst exact analytical solution of this model

was proposed by Onsager in 1944 [7] for the case of zero �eld (h = 0).

I will approach this problem from the renormalization group perspec-

tive, in order to introduce the mathematical apparatus of the RG while

studying a concrete example [8, 9, 10].

In the previous section I have described a RG transformation as

composed of two fundamental steps: coarse-graining and rescaling.

Coarse-graining consists in integrating out some microscopic degrees

of freedom in order obtain an e�ective model for the long range ones.

The square lattice is a bipartite lattice, and thus it can be subdivided
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Figure 1.1: Graphical visualization of the coarse-graining on the 2D square

lattice. The blue spins of sublattice B are integrated out.

into two sublattices A and B (respectively red and blue spins in Figure

1.1 ). Therefore, a coarse-graining strategy that can be fostered is to

integrate out a whole sublattice, say sublattice B. This will leave us

with a coarse grained lattice which is still a square lattice, but rotated

by π
4
(right side of Figure 1.1 ). If we denote SL = {si}i∈L, L = A,B,

then the coarse-graining procedure can be formally written as

ZN(H) =
∑
SA

∑
SB

e−H(SA,SB) =
∑
SA

e−H′(SA) = ZN ′(H ′), (1.2)

where N ′ = N/2 and H ′ = − log
(∑

SB
e−H(SA,SB)

)
are respectively the

new number of particles, and the coarse-grained e�ective Hamiltonian.

In order to complete the RG transformation, one has to properly rescale

the spatial scale in such a way to normalize the new lattice spacing to

the original one. In this case, the scaling factor is clearly b =
√
2.

Therefore, we can symbolically represent a full renormalization group

transformation for the hamiltonian as

H ′ = Rb(H). (1.3)

Despite of its name, such a transformation does not de�ne mathemati-

cally a group, since information is burned out by coarse-graining, mean-

ing that there is no possibility to de�ne an inverse mapping. However,

the set of RG transformations {Rb} do form a semi-group, since it
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possesses an identity transformation, corresponding to b = 1, and the

composition of two transformations is still a RG transormations:

H ′′ = Rb2(H
′) = Rb2Rb1(H) = Rb2b1(H), (1.4)

i.e. Rb2Rb1 = Rb2b1 .

At this point, the idea behind the RG approach is to understand

the critical behaviour of the system by studying the asymptotic limit

of in�nitely many iterations of the renormalization process just from

the analysis of a single renormalization step. Therefore, let's perform

concretely the transformation (1.2), and compute H ′. One interesting

property of the bipartite lattice is that spins belonging to the same

sublattice do not interact, since if sj ∈ B, then all of its four neighbours

si, i = 1, . . . 4 are in A. So, we can treat separately each plaquette of

the kind shown in Figure 1.2. So, in zero �eld (h = 0) we have that

Figure 1.2: The central spin in sublattice B only interacts with four spins

of sublattice A.

∑
sj=±1

exp

(
Ksj

4∑
i=1

si

)
= 2 cosh

(
K

4∑
i=1

si

)
. (1.5)

Now, there is no reason to assume that H ′ is still of the form (1.1).

Indeed, trying with an ansatz of the formH ′ = −N ′e′0−K ′∑
⟨ik⟩∈A sisk,

and imposing the condition

2 cosh

(
K

4∑
i=1

si

)
= exp

(
e′0 +

K ′

2
(s1s2 + s2s3 + s3s4 + s4s1)

)
, (1.6)
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and considering all possible combinations for {si}4i=1, we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 cosh(4K) = exp(e′0 + 2K ′)

2 cosh(2K) = exp(e′0)

2 = exp(e′0)

2 = exp(e′0 − 2K ′)

. (1.7)

This system admits solution only for K ′ = K = 0, i.e. in absence of

interaction. Moreover, since we have four independent equations, we

need for parameters in H ′ in order to �nd a solution. Therefore, new

kinds of interactions will appear in the hamiltonian after the RG trans-

formation. This phenomenon is called the proliferation of interactions,

and it re�ectes the fact that even if a hamiltonian involves only a �nite

number of couplings, all correlation functions, involving an arbitrary

number of spins, are non-trivial [11]. On a general footing, if {Ôn}
is the set of all the operators compatible with the constraints of our

system (e.g. symmetries), then the hamiltonian can be written in its

most general form as

H =
∑
n

unÔn, (1.8)

where un are the coupling strengths corresponding to each operator

Ôn. Therefore, since the set of compatible operators is �xed by the

properties of the system, the renormalization group transformation will

act on the couplings, and (3) can be rewritten as

u⃗′ = Rb(u⃗). (1.9)

This is the renormalization group �ow equation, and gives the law of

change of the couplings in the hamiltonian after a single RG step. Fixed

points of this transformation are points u⃗∗ in parameter space which are

invariant, corresponding to scale invariant hamiltonians H∗. Indeed,

if we look at the trasformation of the correlation length under RG
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trasformations, we see that because of spatial rescaling it is given by

ξ(u⃗′) =
ξ(u⃗)

b
.

Therefore, at the �xed point we will have

ξ(u⃗∗) =
ξ(u⃗∗)

b
, (1.10)

meaning that at the �xed point we either have ξ = 0 or ξ → ∞,

the latter case corresponding to a critical �xed point. This expresses

the physical fact that at �xed point of the RG transformation there

is no characteristic length, corresponding to the manifestation of scale

invariance.

In general, the RG transformation Rb is nonlinear. Since at the

end of the day we will be interested in studying the critical behaviour

of physical quantities close to a critical point, we can just study the

properties of the RG transformation sligthly away from the �xed point,

and hence linearize the transformation:

u⃗′ = u⃗∗ + δu⃗′ = Rb(u⃗
∗ + δu⃗) = u⃗∗ + Tb(u⃗

∗)δu⃗+O((δu⃗)2).

Here, Tb is the jacobian matrix of the RG map evaluated at the �xed

point. So, in the end we have to study the linearized equation

δu⃗′ = Tb(u⃗
∗)δu⃗. (1.11)

In particular, critical phenomena will be characterized by the eigenval-

ues and eigenvectors of the linear operator Tb.

Regarding the eigenvalues, one can easily show that, because of the

linearity of Tb and of the semigroup property of the RG transformation,

they will have the form λi = byi . Indeed, for the semigroup property

we have Tb1Tb2 = Tb1b2 . Then, because of the linearity of the operator

Tb, the eigenvalues satisfy the functional equation

λi(b1)λi(b2) = λi(b1b2),
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whose solution will be indeed of the power law form λi = byi . Since

b ≥ 1, the couplings corresponding to eigenvalues with positive yi

are ampli�ed, while those corresponding to negative yi are suppressed.

Therefore, we distinguish respectively between relevant and irrelevant

couplings. Those couplings with exponent yi = 0 are instead called

marginal, and are associated to logarithmic corrections to scaling.

Coming back to our study of the 2D Ising model, and considering

that it is not possible in practice to really take into account the �ow of

all the possible couplings, we can propose the following ansatz for the

form of H ′ which respects the symmetries of the original model:

H ′ = −Ne′0 −K ′
∑
⟨ij⟩

sisj −K ′
2

∑
⟨⟨ij⟩⟩

−K ′
4

∑
[ijkl]

sisjsksl, (1.12)

where the second sum is over second neighbours, while the third one is

over square plaquettes. Repeating the procedure mentioned above, we

arrive to the system⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 cosh(4K) = exp(e′0 + 2K ′ + 2K ′

2 +K ′
4)

2 cosh(2K) = exp(e′0 −K ′
4)

2 = exp(e′0 − 2K ′
2 +K ′

4)

2 = exp(e′0 − 2K ′ + 2K ′
2 +K ′

4)

,

whose solution gives the recursion relation for the couplings:⎧⎪⎨⎪⎩
K ′ = 1

4
log cosh(4K)

K ′
2 =

1
8
log cosh(4K)

K ′
4 =

1
8
log cosh(4K)− 1

2
log cosh(2K)

. (1.13)

At this point, in order to proceed, we need some approximations

to deal with the proliferation of the interactions. In particular, when

K → 0, we can notice that K ′ and K ′
2 vanishes as K

2, while K ′
4 as K

4.

Therefore, we could think of neglecting the square-plaquette interaction

and set K ′
4 to zero. Then, we replace K ′ and K ′

2 with a new nearest-

neighbours coupling K̄ = K ′+K ′
2, chosen in such a way to preserve the
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ground state of (1.12). Therefore, our �ow equation simply becomes

K̄ =
3

8
log cosh(4K) = Rb(K), (1.14)

with b =
√
2. Equation (1.14) presents two attractive �xed points for

Figure 1.3: Renormalization group �ow of nearest-neighbors interaction.

K = 0 and K = ∞, corresponding respectively to high temperature

and low temperature, and a �nite temperature repulsive �xed point at

K = K∗ ≈ 0.50698, not too far from the exact result, whose numerical

value is K∗ ≈ 0.44069.

Linearization of the �ow equation about K∗ gives that the exponent

associated to the nearest-neighbours coupling is yK ≈ 1.06996, corre-

sponding to a critical exponent ν = y−1
K ≈ 0.934614 for the divergence

of the correlation length (see next section for a demonstration of scaling

relations). This is actually quite close to the exact value ν = 1.

1.3 Scaling relations

In the previous section we have seen that it is possible to understand

the critical behaviour of a system by studying the properties of the

RG �ow close to its �xed points. In particular, it is possible to relate

the exponents of the eigenvalues of the linearized transformation to the

critical exponents of the system.

Since physical information about the system can be extracted from

the free energy, let's �rst see how the free energy behaves under the RG
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�ow. Equation (1.2) implies that the partition function is unchanged

under RG transformation, and hence also the free energy remains the

same. However, since the number of particles changes as N ′ = b−dN in

a d-dimensional lattice, we have that the free energy per particle will be

modi�ed. Upon introduction of the scaling parameter t = T−Tc

Tc
, called

the reduced temperature, which is proportional to bare parameter k =

Kc −K, the scaling law for the free energy density is found to be

F (t, h) = F (t′, h′) = N ′f(t′, h′),

⇒ f(t, h) = b−df(bytt, byhh).

Therefore, after n renormalization steps we will have

f(t, h) = b−ndf(bnytt, bnyhh). (1.15)

For t ̸= 0 we can choose n in such a way that bnytt = 1. Then, the

scaling law of the free energy reduces to

f(t, h) = t
d
yt f(1, ht

− yh
yt ) = t

d
yt φ(ht

− yh
yt ), (1.16)

where φ is a scaling function. Upon di�erentiating this equation we can

establish the critical behaviour of the physical quantities of the system.

For example, the speci�c heat in zero �eld is obtained by di�erentiating

twice the free energy:

C(t, 0) ∝ ∂2f

∂t2

⏐⏐⏐⏐
(t,0)

∝ t
d
yt

−2
,

giving the critical exponent for the speci�c heat as

α = 2− d

yt
. (1.17)

Similarly, the magnetization is found by di�erentiation with respect to

h:

m(t, 0) ∝ ∂f

∂h

⏐⏐⏐⏐
(t,0)

∝ t
d−yh
yt ,
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giving

β =
d− yh
yt

. (1.18)

One can play the same game for other quantities such as the magnetic

susceptibility, correlation functions, etc..., and the results would be⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α = 2− d
yt

β = d−yh
yt

γ = 2yh−d
yt

δ = yh
d−yh

ν = 1
yt

η = d− 2yh + 2

. (1.19)

These formulas also allow to obtain other two important sets of relations

between the critical exponents by elimination of yt and yh. The �rst

are called the thermodynamic scaling relations :{
α + 2β + γ = 2

γ = β(δ − 1)
, (1.20)

and relates the exponents that characterizes the singularities of the

free energy at the critical point. The second are called the hyperscaling

relations ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α = 2− dν

β = ν d−2+η
2

γ = ν(2− η)

δ = d+2−η
d−2+η

, (1.21)

connecting the exponents describing the critical behavior of the free

energy to ν and η, which characterize the critical behaviour of the

correlation function.
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Chapter 2

The �ow equation for the

e�ective action

In the previous chapter we have shown a real space implementation

of the renormalization group, i.e. the decimation of spin on a regular

lattice. As we have seen, despite being transparent and e�ective, the

decimation process generates new terms in the hamiltonian, forcing

us to perform some uncontrolled approximations in order to deal with

calculations. The alternative is to set up the RG transformation in

momentum space, where the coarse-graining is performed by integrating

out high momentum modes in order to obtain an e�ective theory for the

slow modes. Since high momenta corresponds to short length scales,

this amounts to a coarse-graining in real space.

In this chapter I will introduce the so called functional renormal-

ization group (FRG), which is a nonperturbative implementation of

momentum space RG which combines the functional methods of quan-

tum �eld theory with the renormalization group ideas introduced by

Wilson. Many formulations of the FRG have been developed, such

as the Callan-Symanzik, Wegner-Houghton and Wilson-Polchinski for-

mulations. Here I will present a formulation introduced based on the

study of a formally exact �ow equation for a scale dependent e�ec-
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tive action Γk[ϕ] [12], which has proven to be successful in devising

non-perturbative approximation schemes [11, 13, 14].

2.1 The e�ective average action approach

Consider a statistical �eld φ whose dynamics is governed by an ac-

tion S[φ]. Physical information is contained in the n-points correlation

functions, tha are generated by the generating functional

Z[j] =

∫
D[φ]e−S[φ]+

∫
dDxj(x)φ(x), (2.1)

where
∫
D[φ] denotes integration over all �eld con�gurations. We as-

sume this measure to be properly regularized by an UV-cuto� Λ. There-

fore, the n-point correlation functions are obtained by taking the func-

tional derivatives of Z[j] with respect to the external source �eld j(x):

⟨φ(x1) . . . φ(xn)⟩ =
∫

D[φ]φ(x1) . . . φ(xn)e
−S[φ] =

δnZ[j]

δj(x1) . . . δj(xn)

⏐⏐⏐⏐
j=0

.

It is also customary to introduce the generating functional of the con-

nected correlation functions, obtained by taking the logarithm of (2.1),

called the Schwinger functional :

W [j] = logZ[j],

and its Legendre transform, called the e�ective action

Γ[ϕ] +W [j] =

∫
dDxj(x)ϕ(x),

where ϕ = δW
δj

= ⟨φ⟩j.
The main idea of Wilson's RG is to compute the partition function

by progressively integrating out fast momenta, corresponding to short-

distance �uctuations. In the FRG approach, one builds a family of

models indexed by a momentum scale k in such a way that �uctuations
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are taken into account as k is lowered from some reference UV scale

to 0, corresponding to the thermodynamic limit. More concretely, the

idea is to de�ne a scale dependent e�ective action, called the e�ective

average action Γk, which interpolates between the bare action of the

model S at the UV scale Λ, and the true e�ective action Γ, the latter

being approached when k → 0.

ΓΛ[ϕ] = S[ϕ], Γk→0[ϕ] = Γ[ϕ] (2.2)

To construct such interpolating action, we introduce a IR-cuto� term

∆Sk[φ] to the bare action, obtaining scale dependent generating func-

tionals:

Zk[j] =

∫
D[φ]e−S[φ]−∆Sk[φ]+

∫
dDxj(x)φ(x), Wk[j] = logZk[j].

The prototypical form of ∆Sk is that of a mass-like quadratic term, i.e.

∆Sk =
1

2

∫
x

∫
y

φ(x)Rk(x− y)φ(y) =

∫
q

φ(−q)Rk(q)φ(q), (2.3)

where I have denoted
∫
x
=

∫
dDx and

∫
q
=

∫
dDq
(2π)D

. Rk is called the

regulator function, and it must be chosen in order to satisfy the require-

ments (2.2). Its properties are explained in detail in the next section,

together with some examples of regulator functions.

The e�ective average action Γk is therefore obtained via modi�ed

Legendre transformation of the scale dependent Schwinger functional

Wk:

Γk[ϕ] +Wk[j] =

∫
x

j(x)ϕ(x)−∆Sk[ϕ]. (2.4)

The �ow equation describing the evolution of the e�ective average ac-

tion with the scale k is called the Wetterich equation, and reads

∂kΓk =
1

2
Tr

(
∂kRk

Γ
(2)
k +Rk

)
, (2.5)
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where the trace is performed over momenta and over the �eld index

(e.g., for a O(n) model we would have to sum over the n components

of the �eld). A detailed derivation of (2.5) is presented in Section 2.3.

2.2 The regulator function

In the previous section we have introduced the IR-cuto� ∆Sk, with a

momentum dependent mass Rk. Since it has to work as an IR regulator,

which avoids the right hand side of (2.5) to blow up when q → 0, the

�rst property that we should require is that it must be �nite and positive

for small momenta:

lim
q→0

Rk(q) > 0. (2.6)

Then, since when k → 0, i.e. when all �uctuations have been integrated,

we want Γk→0 = Γ, we must also require that

lim
k→0

Rk(q) = 0 ∀q, (2.7)

in such a way that Zk[j] = Z[j], and therefore also Γk �ows towards

the full e�ective action. The last requirement is that at the UV scale

Λ we want to have ΓΛ[ϕ] = S[ϕ]. It can be shown that this is achieved

by requiring that Rk diverges at least as Λ2:

lim
k→Λ

Rk(q) = O(Λ2) ∀q. (2.8)

In order to understand why this is the case, consider the following.

From (2.4) we have that1

j(x) =
δΓk

δϕ(x)
+

∫
y

Rk(x− y)ϕ(y). (2.9)

Exponentiating (2.4) we have that

e−Γk[ϕ] = eWk[j]−
∫
x j(x)ϕ(x)+ 1

2

∫
x,y ϕ(x)Rk(x−y)ϕ(y).

1As one can see by taking functional derivative of both sides of the equation with

respect to φ(x).
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So, substituting the de�nition of Wk in terms of Zk and using (2.9) for

j(x), one obtains

e−Γk[ϕ] =

∫
D[φ]e−S[φ]+

∫
x

δΓk
δϕ(x)

(φ(x)−ϕ(x))− 1
2

∫
x,y(φ(x)−ϕ(x))Rk(x−y)(φ(y)−ϕ(y)).

Therefore, if Rk diverges for all q as k → Λ, then the gaussian like

exponential behaves has a functional Dirac delta, δ(φ(x) − ϕ(x)), and

we have

Γk[ϕ] = S[ϕ] + const, (2.10)

which also represents the initial condition to the �ow equation.

Considering the constraints (2.6 - 2.7 - 2.8), a typical choice for the

regulator function Rk is of the form

Rk(q
2) = q2r(q2/k2), (2.11)

where r(y) is a dimensionless function which determines the shape of

the regulator. Some examples are [8]:

• the exponential regulator:

rexp(y) =
1

eyb − 1
;

• the power regulator:

rpow(y) = y−b;

• the Litim regulator:

ropt(y) =

(
1

y
− 1

)
Θ(1− y).
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2.3 Derivation of the Wetterich equation

Let's now derive step-by-step the Wetterich equation (2.5). The start-

ing point is (2.4), that we have to di�erentiate with respect to k. First

of all, we should notice that (2.9) tells us that if we consider ϕ to

be independent of k, then j is instead k-dependent. This means that

the derivative with respect to k of the Schwinger functional has two

contributions:

∂kWk[j] =

∫
x

δWk

δj(x)
∂kj(x) + ∂k|jWk[j],

where in the second term the partial derivative is taken at �xed j(x).

Therefore, recalling that ϕ(x) = δWk

δj(x)
, we obtain that

∂kΓk = −∂k|jWk[j]−
1

2

∫
x,y

ϕ(x)∂kRk(x− y)ϕ(y). (2.12)

At this point we have to compute ∂k|jWk[j]:

∂k|jWk[j] =
∂k|jZk[j]

Zk[j]
= −1

2

∫
x,y

∂kRk(x− y)⟨φ(x)φ(y)⟩.

Therefore, (2.12) becomes

∂kΓk =
1

2

∫
x,y

∂kRk(x− y)
[
⟨φ(x)φ(y)⟩ − ⟨φ(x)⟩⟨φ(y)⟩

]
,

⇒ ∂kΓk =
1

2

∫
x,y

∂kRk(x− y)
δ2Wk

δj(x)δj(y)
. (2.13)

The last step we need to perform is to express the second functional

derivative of Wk in terms of the e�ective average action Γk. One could

notice that

δ(x− z) =
δϕ(x)

δϕ(z)
=

δ2Wk

δϕ(z)δj(x)
=

∫
y

δ2Wk

δj(y)δj(x)

δj(y)

δϕ(z)
.
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The second factor appearing in the integrand can then be evaluated

di�erentianting (2.9), to obtain

δ(x− z) =

∫
y

δ2Wk

δj(y)δj(x)

[
δ2Γk

δϕ(z)ϕ(y)
+R(y − z)

]
.

If we now denote the second derivatives as W
(2)
k and Γ

(2)
k respectively,

the last expressions means that

W
(2)
k =

[
Γ
(2)
k +Rk

]−1
, (2.14)

i.e. the second functional derivative of the Schwinger functional is the

inverse, in the operator sense, of the second derivative of the e�ective

average action plus the regulator. This should not be surprising, since

it resembles a quite common property of the Legendre transform. In-

serting (2.14) into (2.13) �nally gives the Wetterich equation (2.5).

2.4 The Local Potential Approximation

TheWetterich equation (2.5) is a non-linear functional integro-di�erential

equation, which is rather complicated to solve in general. Therefore,

some approximations are required.

Two main approximation procedures have been developed: the ver-

tex expansion, and the derivative expansion. In both cases, the stategy

consists in solving the equation in a restricted functional space rather

than employing series expansions in small parameters. Therefore, the

quality of the results strictly depends on the choice of the functional

space on which we are projecting the �ow equation [14]. Here I will

describe the second strategy, i.e. the derivative expansion. A detailed

description of the vertex expansion method can be found in [11]. For

simplicity of notation I will consider a scalar �eld φ(x), but the concepts

can be extended straightforwardly to vector �elds.
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The underlying idea of the derivative expansion is that since we are

mostly interested in the long distance physics, than we can think to

keep all the orders in a �eld expansion of the e�ective average action

Γk, and retain only the lowest orders in the derivatives:

Γk[φ] =

∫
x

[
Uk(ϕ) +

Zk(ϕ)

2
(∇⃗ϕ)2

]
+O(∇4). (2.15)

The coe�cient Zk is called the wavefunction renormalization, and is

needed in order to study the anamalous dimension η of the model.

Higher order terms in the gradient are instead needed in order to get

accurate results for the critical exponents. In the applications that I

will present in this work, i.e. the computation of integrals and the

determination of the ground state energy of the Schrodinger equation,

the fundamental term of the derivative expansion is the so-called ef-

fective potential Uk. Therefore, I will neglect higher order gradients,

and the wavefunction renormalization Zk, which I will set equal to one.

Moreover, the �ow equations will also be projected onto uniform con-

�gurations for ϕ. This order of the derivative expansion is called the

local potential approximation (LPA). At this level of approximation the

e�ective average action is thus given by

Γk[ϕ] =

∫
x

(
1

2
(∇⃗ϕ)2 + Uk(x)

)
. (2.16)

In order to project the Wetterich equation on the functional space that

we have just selected, we �rst have to evaluate the second derivative of

Γk. This is given by

Γ
(2)
k = (U ′′

k −∇2)δ(x− x′) =

∫
p

(
U ′′
k + p2

)
eip(x−x′),

⇒ (Γ
(2)
k +Rk)(x− x′) =

∫
p

{
U ′′
k + p2[1 + r(y)]

}
eip(x−x′).

Inserting this into the Wetterich equation, we �nd that

∂kΓk =
1

2

∫
x

∫
x′

∫
p

∫
p′

∂kRk(p)

U ′′
k + p′2[1 + r(y)]

ei(p+p′)(x−x′) ⇒
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∂kΓk =
1

2

∫
x

∫
p

∫
p′

∂kRk(p)

U ′′
k + p′2[1 + r(y)]

δ(p+ p′) ⇒

∂kΓk =
1

2

∫
x

∫
p

∂kRk(p)

U ′′
k + p2[1 + r(y)]

=

∫
x

∂kUk,

where the last identity comes from comparison with (2.16) evaluated

for constant �eld con�gurations. Therefore, the �ow equation for the

e�ective potential is given by

∂kUk =
1

2

∫
p

∂kRk(p)

U ′′
k + p2[1 + r(y)]

(2.17)

At this point, it is customary to change the integration variable from p

to y:

∂kUk =
Ωd

(2π)d

∫ ∞

0

∂kRk(p)

U ′′
k + p2[1 + r(y)]

pd−1dp⇒

⇒ ∂kUk =
kd−1Ωd

(2π)d

∫ ∞

0

y
d−1
2 ∂k[yk

2r(y)]

U ′′
k + yk2[1 + r(y)]

kdy

2
√
y

⇒ ∂kUk =
kdΩd

(2π)d

∫ ∞

0

˂˂˂˂˂˂˂˂˂˂˂
−2ykr(y) + 2ykr(y)− 2ky2r′(y)

U ′′
k + yk2[1 + r(y)]

y
d−2
2
dy

2

⇒ ∂kUk = −kd+1µd

∫ ∞

0

y
d+2
2 r′(y)

U ′′
k + yk2[1 + r(y)]

dy, (2.18)

where µd = Ωd/(2π)
d and Ωd is the d-dimensional solid angle.

2.5 Regulator dependence

To conclude this chapter, I would like to stress out that the Wetterich

equation (2.5) is in principle an exact �ow equations. This means that

if we were able to solve it without resorting to any approximation,

then we would obtain the exact result for the e�ective action Γ at the

end of the �ow, independently of the regulator we choose. In other

words, although the speci�c �ow followed by Γk depends intrisically on

the choice of Rk, if we solve the Wetterich equation exactly then any
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dependence on the regulator disappears in the thermodynamic limit

k → 0, and all the di�erent �ows associated to di�erent regulators

converge to the full e�ective action Γ.

Unfortunately, as explained in Section 2.4, approximations are re-

quired in order to solve the Wetterich equation. This introduces an

unwanted spurious dependence on the regulator function in the results

of the �ow. Therefore, a very important question arises: how can we

choose the regulator function in order to produce the closest-to-reality

results within a given approximation? In literature. several attempts

to try to answer this question developing some optimization criteria are

present.

A �rst one, called the principle of minimal sensitivity (pms) [15],

states that we should seek for the values of a physical quantity which

depends less on the regulator function. To be more explicit, imagine

that we want to measure some observable O, and we compute it using

a one parameter family of regulators Rk(α). Then, what we measure is

a function O(α). Since the physical value O of the observable does not

depend on the parameter α, the principle of minimal sensitivity suggests

to take as the best estimate the value O(α∗) where the derivative with

respect to α vanishes:

α∗ :
dO

dα
= 0. (2.19)

A di�erent approach was proposed by Litim [16, 17]. In the denomi-

nator of (2.18) the quantity y[1+r(y)] appears. This can be recognized

to be the dimensionless inverse coarse-grained propagator at scale k

and at vanishing �eld, which we can denote as P 2 = 1/(k2∆k(q
2)). So,

equation (2.18) can be written as

∂kUk = −kd+1µd

∫ ∞

0

F (y)

U ′′
k + k2P 2(y)

dy, (2.20)

with F (y) = y
d+2
2 r′(y)/(1 + r(y)). Now, suppose that we consider one-

parameter families of regulators, rα(y). Then, we can ask ourselves
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how the convegence properties of the intregral in (2.20) depend on the

regulator, and therefore for which value of the parameter α the best

regulator is obtained. The idea is to expand the integral in powers of

U ′′
k : ∫ ∞

0

F (y)

U ′′
k + k2P 2(y)

dy =

∫ ∞

0

F (y)

k2P 2(y)

1

1 +
U ′′
k

k2P 2

dy =

=

∫ ∞

0

F (y)

U ′′
k + k2P 2(y)

dy =

∫ ∞

0

F (y)

k2P 2(y)

∞∑
n=0

(
−1

n

)(
U ′′
k

k2

)n

P−2n =

=
∞∑
n=0

1

k2

(
−1

n

)(
U ′′
k

k2

)n ∫ ∞

0

F (y)P−2(n+1) =

=
∞∑
n=0

(−1)n

k2n+2
an(U

′′
k )

n.

The radius of convergence of a series is de�ned as

C = lim
n→∞

an
an+1

.

In our case, when n → ∞, since P 2(y) > 0 ∀y ≥ 0 because of the IR

regulation operated by r(y), we have that the integral appearing in the

coe�cients an is dominated by the minimum of P 2(y). Therefore, we

�nd the radius of convergence to be

Cα = k2min
y≥0

{P 2(y)}. (2.21)

The subscript α signals the dependence on the parameter of the reg-

ulator. Therefore, the optimal value for α is the one that maximizes

(2.21), and the optimal radius of convergence is

Coptimal = k2max
α

{min
y≥0

{P 2(y)}}. (2.22)

An important remark is that this procedure is model independent, since

it depends only on the inverse propagator at zero �eld. As an example,

let's apply the Litim's optimization criterium to the power law regulator

rpow(y) = y−b, b > 1.
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We have that the inverse propagator is given by

P 2(y) = y + y−b+1,

⇒ dP 2

dy
= 1 + (−b+ 1)y−b,

⇒ C̄b
2 = min

y≥0
{P 2(y)} = b(b− 1)

1
b
−1.

This has to be maximized w.r.t. b.

dC̄b

db
− (b− 1)

1
b
−1 log(b− 1) ≥ 0 ⇐⇒ b ≤ 2.

So, we �nd C̄opt = 2, and bopt = 2.

2C̄b = Cb/k
2 is the adimensional radius of convergence.
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Chapter 3

Integrals of one real variable

Despite being often presented in literature within the context of statisti-

cal mechanics (and as we did in Chapter 1 and 2 ), the renormalization

group techniques can be employed to study other problems, such as

turbolence [10] or deep learning [18]. The simplest, but still very inter-

esting and non-trivial problem that can be treated using the RG tools

is the calculation of integrals. Rather surprisingly, pedagogical presen-

tations of this kind of application are quite rare in the literature, where

one may refer to [19] for the study of the one variable gaussian integral.

In the following, the FRG tools introduced in Chapter 2 will be

specialized to the problem of the calculation of one variable integrals

of the kind

Z =

∫ +∞

−∞
f(x)dx, (3.1)

where f : R → R+
0 is a non-negative function de�ned over the real axis.

As an original result, I will present the study of non-trivial quartic

integrals, showing that the LPA is exact for this problem and explain-

ing how one can obtain very good estimates, which agree with exact

numerical results, by studying the convergence of the LPA truncation.
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3.1 The �ow equation

Since we have chosen f(x) ≥ 0, then we can write the integral (3.1) as

Z =

∫ +∞

−∞
e−S(x)dx, (3.2)

where we have de�ned S(x) = − log f(x). With this notation, the

analogy with statistical mechanics is straightforward: we can think

of Z as the partition function for the distribution of a real random

variable x1 with Boltzmann wheight e−S(x). Therefore, if we add a

source variable j, we can de�ne the moments and cumulants generating

functions, respectively

Z(j) =

∫ +∞

−∞
e−S(x)+jxdx, (3.3)

and

W (j) = log
[
Z(j)

]
. (3.4)

Again, the idea is to work with the Legendre transform of the cumulant

generating function, called the e�ective action Γ(ϕ):

Γ(ϕ) = jϕ−W (j), (3.5)

where ϕ = dW
dj

≡ ⟨x⟩.
In order to implement the Wilson idea of successive �uctuation

modes elimination, we introduce a quadratic cut-o� which depends on

some scale parameter k:

∆Sk =
1

2
Rkx

2, (3.6)

where Rk ∈ R+ is called the regulator function. Accordingly, we de�ne

a scale dependent moment generating function as

Zk(j) =

∫ +∞

−∞
e−S(x)+jx− 1

2
Rkx

2

dx. (3.7)

1To be on the same line with Chapter 2, a real random variable can also be

considered as a (0 + 0) - dimensional random �eld.
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In particular, Rk is chosen in such a way that:

• when k ≫ 1, then also Rk ≫ 1, so that only a narrow window

of the real axis contributes to Zk(j), since the contributions from

the region outside the interval [−R−1
k , R−1

k ] are exponentially sup-

pressed;

• when k → 0 then also Rk → 0, in such a way that we integrate

all the contributions from the real axis, and we can recover the

original integral.

Therefore, the idea is now to de�ne a running e�ective action Γk(ϕ),

that again we call the e�ective average action, and to follow its evolution

with the scale parameter k, until it eventually �ows to the true e�ective

action of the model Γ for k → 0. This e�ective average action is de�ned

as the modi�ed Legendre transform of Wk(j) = logZk(j):

Wk(j) + Γk(ϕ) = jϕ−∆Sk(ϕ). (3.8)

In the same spirit of Section 2.4 we are now in position to derive

an evolution equation for Γk. Therefore, we need to di�erentiate (3.8)

with respect to k. One point to note here is that if ϕ is assumed to be

k-independent, then j is scale dependent. Indeed, di�erentiating (3.8)

with respect to ϕ we see that

∂

∂ϕ
Γk(ϕ) = j −Rkϕ (3.9)

and hence j depends on k. Therefore, the derivative of (3.8) with

respect to k will be given by

∂kΓk = −∂jWk∂kj + ϕ∂kj − ∂k|jWk −
∂kRk

2
ϕ2,

where ∂k|j denotes that the derivative is taken at �xed j. Thus, since

∂jWk = ϕ = ⟨x⟩,
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and

∂k|jWk =
∂k|jZk

Zk

= −∂kRk

2
⟨x2⟩,

we conclude that

∂kΓk =
∂kRk

2

(
⟨x2⟩ − ⟨x⟩2

)
=
∂kRk

2
∂2jWk. (3.10)

The last step is to express ∂2jWk in terms of Γk. From (3.9) we have

that

j = ∂ϕΓk +Rkϕ.

Thus, di�erentiating both sides with respect to j we have that

1 = ∂j∂ϕΓk +Rk∂jϕ =
(
∂2ϕΓk +Rk

)
∂jϕ =

(
∂2ϕΓk +Rk

)
∂2jWk,

and hence

∂2jWk =
(
∂2ϕΓk +Rk

)−1
. (3.11)

Inserting (3.11) in (3.10) we �nally get

∂kΓk(ϕ) =
1

2
∂kRk

(
∂2ϕΓk +Rk

)−1

, (3.12)

that is the equivalent of the FRG equation (2.5) for the case of a one

variable integral. We emphasize that we are then transforming the cal-

culation of an integral intoto the solution of a partial di�erential equa-

tion, which later will be transformed into a set of ordinary di�erential

equations.

The initial condition for equation (3.12) is given by examining the

behaviour of Γk for large k:

e−Γk(ϕ) = eWk(j)−jϕ+∆Sk(ϕ) =

=

∫ +∞

−∞
e−S(x)+j(x−ϕ)+∆Sk(ϕ)−∆Sk(x)dx

=

∫ +∞

−∞
e−S(x)+Γ′

k(ϕ)(x−ϕ)+Rkϕ(x−ϕ)+∆Sk(ϕ)−∆Sk(x)dx
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=

∫ +∞

−∞
e−S(x)+j(x−ϕ)− 1

2
Rk(x−ϕ)2dx.

Therefore, since we have assumed that for k → Λ ≫ 1 ⇒ Rk → RΛ ≫
1, and recalling that

δ(x− ϕ) = lim
α→∞

α√
2π
e−

1
2
α2(x−ϕ)2 ,

we get that

e−ΓΛ(ϕ) ≈
√

2π

RΛ

e−S(ϕ), Λ ≫ 1,

⇒ ΓΛ(ϕ) = S(ϕ) +
1

2
log

(
RΛ

2π

)
. (3.13)

Finally, once (3.12) is solved with the initial condition (3.13), the

value of Z is obtained by taking k = 0 and j = 0, the latter corre-

sponding to ϕ = ϕ∗ : dΓ
dϕ
(ϕ∗) = 0 because of the Legendre transform

de�nition. So, we will have

Z = e−Γ(ϕ∗). (3.14)

At the end of the day, we have thus replaced the direct calculation of an

integral (3.1) with the solution of a partial di�erential equation (3.12)

for a properly de�ned function Γk.

In the following section the strategy for the solution of the Wetterich

equation is explained with some pratical examples.

3.2 Gaussian integrals

Equation (3.12) is in general complicated to solve, and appropriate

approximation schemes must be devised. A major case that can be

treated analytically without any approximation is that of a gaussian

integral, i.e. we choose

S(x) =
1

2σ2
x2. (3.15)
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In this case, it is indeed su�cient to consider a gaussian ansatz for the

e�ective average action, with the same variance as in (3.15):

Γk(ϕ) = a0,k +
1

2σ2
ϕ2. (3.16)

Therefore, the Wetterich equation has to be projected onto the scale

dependent parameter a0,k, giving

∂ka0,k =
1

2

∂kRk

σ−2 +Rk

, (3.17)

with the initial condition a0,Λ = 1
2
log RΛ

2π
�xed by (3.13). So, we only

have to integrate (3.17):

∂ka0,k =
1

2

∂kRk

σ−2 +Rk

,

⇒ 1

2
log

(
RΛ

2π

)
− a0,0 =

1

2

∫ Λ

0

∂kRk

σ−2 +Rk

,

⇒ a0,0 =
1

2
log

(
RΛ

2π

)
− 1

2
log

(
σ−2 +RΛ

σ−2

)
=

1

2
log

[
σ−2RΛ

2π(σ−2 +RΛ)

]
.

Therefore, sending Λ → ∞ we get a0,0 = 1
2
log

(
1

2πσ2

)
, and hence the

integral is given by

Z = e−a0,0 =
√
2πσ2, (3.18)

which corresponds to the very well known exact result!

3.3 Quartic integrals

Let's now consider the case of a quartic action

S(x) =
b

2
x2 +

c

4!
x4,

where c is a positive parameter, while b can be positive, negative or

either zero. In this case there is no simple ansatz which allows for an
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exact solution of the �ow equation (3.12). The main strategy is to �nd

an approximated solution to the �ow equation by expanding in Taylor

series the e�ective average action Γk
2

Γk(ϕ) =
n∑

i=0

a2n,k
(2n)!

ϕ2n, (3.19)

and projecting (3.12) onto the scale-dependent coe�cients a2n,k. This

procedure is equivalent to the LPA described in Section 2.4, but in

the case of the calculation of integrals this would become exact if we

were able to send n→ ∞ and follow the running of the in�nitely many

couplings generated along the �ow, since there are no further gradient

terms to include in a derivative expansion. For example, if we choose

a 4th - order truncation for the e�ective average action

Γk(ϕ) = a0,k +
a2,k
2
ϕ2 +

a4,k
4!
ϕ4, (3.20)

then the �ow equations projected onto the expansion coe�cients are

∂ka0,k =
1

2

∂kRk

a2,k +Rk

, (3.21)

∂ka2,k = −1

2

∂kRk

(a2,k +Rk)2
a4,k, (3.22)

∂ka4,k = 3
∂kRk

(a2,k +Rk)3
a24,k, (3.23)

with the initial conditions a0,Λ = 1
2
log RΛ

2π
, a2,Λ = b, a4,Λ = c �xed by

(3.13).

3.3.1 Analytical results

Working within the LPA we have thus replaced the solution of (3.12)

with the solution of a system of coupled non-linear di�erential equa-

tions for the expansion coe�cients, which in general has to be solved

2Since the �ow equation preserves the symmetries of our problem, we can keep

only even powers of ϕ since we started with an even action S.
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numerically. However, there is still some interesting property about the

�ow that we can study analytically.

For the moment, let's keep the regulator general, and consider the

case of a �nite but small 4th - order coupling c≪ 1. In order to perform

some analytical calculation, the simplest non trivial approximation that

we can think of is a 4th - order truncation of the Taylor expansion of

the e�ective average action, in which we stop the running of the 4th -

order coupling by setting a4,k = c ∀k. Then we can solve the resulting

equations for a0,k and a2,k{
∂ka0,k =

1
2

∂kRk

a2,k+Rk

∂ka2,k = −1
2

∂kRk

(a2,k+Rk)2
c

, (3.24)

perturbatively in c. For starting, we substitute a2,k = b+ a
(1)
2,kc+ a

(2)
2,kc

2

into the second equation and solve it perturbatively for the a
(i)
2,k. So, we

�nd3

∂ka
(1)
2,k = −1

2

∂kRk

(b+Rk)2
,

⇒ a
(1)
2,k =

1

2

1

b+Rk

, (3.25)

while

∂ka
(2)
2,k =

∂kRk

(b+Rk)3
a
(1)
2,k,

⇒ a
(2)
2,k = −1

6

1

(b+Rk)3
. (3.26)

Now we shall expand perturbatively the �rst equation of (3.24), and

using the results (3.25) and (3.26) we get4

∂ka
(1)
0,k = −1

2

∂kRk

(b+Rk)2
a
(1)
2,k,

3The initial conditions are a
(i)
2,k = 0.

4To get the �nal result, the �UV" limit Λ → ∞ has to be taken.
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⇒ a
(1)
0,k =

1

8b2
, (3.27)

while

∂ka
(2)
0,k =

1

2

∂kRk

b+Rk

[
(a

(1)
2,k)

2

(b+Rk)2
−

a
(2)
2,k

b+Rk

]
,

⇒ a
(2)
2,k = − 5

96b4
. (3.28)

Since the zeroth order result for a0,0 is nothing but the gaussian one,

we �nd the following second order perturbative expansion in c:

a0,0 =
1

2
log

(
b

2π

)
+

c

8b2
− 5c2

96b4
+ o(c3). (3.29)

Amazingly, we discover that the perturbative expansion does not de-

pend on the choice of the regulator for one variable integrals.

At this point, the RG estimate of the integral is thus given to second

order by

ZRG = e−a0,0 ≈
√

2π

b
·
[
1− c

8b2
+

23c2

384b4
+ o(c3)

]
. (3.30)

One can show (see Appendix A) that the quartic integral that we are

trying to compute can also be expressed in closed form in terms of a

modi�ed Bessel function of second kind:

Z =

∫ ∞

−∞
e−

b
2
x2− c

4!
x4

dx =

√
3b

c
e

3b2

4c K 1
4

(
3b2

4c

)
. (3.31)

Its expansion for small c is given by

Z ≈
√

2π

b
·
(
1− c

8b2
+

35c2

384b4
+ o(c3)

)
(3.32)

Therefore, comparing (3.30) and (3.32) we see that the �rst order per-

turbative result obtained via the RG �ow equation retrieves the exact

one, while at second order the error on the expansion coe�cient is of
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34%. However, one can see that this error can be improved by including

the running of a4,k and of the higher order couplings.

We are now ready to study the numerical solution of the �ow equa-

tion.

3.3.2 Numerical analysis

The numerical solution of the LPA �ow equations introduces two un-

wanted dependencies in the �nal result. One is on the cut-o� scale Λ,

which must take a �nite value in order to perform the numerical inte-

gration, and one on the order of the truncation that we choose for Γk.

However, these two dependencies can be easily removed following the

procedure described below. All of the following numerical results are

obtained using the regulator Rk = k2, also called the Callan-Symanzik

regulator [8].

In order to remove the Λ-dependence, we can �x the order of the

polynomial truncation of the e�ective average action and study how

the result of the numerical integration varies with Λ. In particular, we

use a �tting procedure based on the relation

I = I0 + β

(
1

Λ

)α

, (3.33)

where I is the result of the numerical integration and I0 is the value

reached in the limit Λ → ∞. The results obtained using a 14th - order

truncation, for b = c = 1 is shown in Figure 3.1. A �t with equation

(3.33) gives I0 = 2.30338808(2).

This value I0 is still a function of the truncation order n, where we

again use the functional form

I0 = Z + β

(
1

n

)α

(3.34)

where now Z, i.e. the value obtained for n → ∞, is the value of the

integral that we want to compute, without the unwanted dependences.
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Figure 3.1: Λ dependence of the integral.

In order to eliminate also the dependence on the order of truncation, we

should thus repeat the above procedure to �nd I0 for di�erent values

of n. Then, a �t with (3.34) will give us the value for Z. A plot is

shown in Figure 3.2, and the result Z = 2.3033874(9) agrees at the

�fth digit with the numerical results obtained using Mathematica, that

is 2.3033881.

Once we have understood how to optimize our estimates remov-

ing all the unwanted dependences, it is still interesting to see how

the quality of the estimate obtained via numerical integration of the

�ow equation varies with the strength of the 4th - order coupling c for

�xed b = 1. After elimination of the Λ−dependence, the results for

a 4th−order truncation are shown in Figure 3.3. We can observe that

already within a 4th - order truncation the results are quite good in the

small coupling regime, but they worsen with increasing c. Therefore, in

order to get better estimates in the strong coupling regime we need to

use higher order truncations. The results of a 20th - order truncation
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Figure 3.2: Truncation dependence of the integral

are shown in Figure 3.4, and con�rm that the estimate signi�cantly

improves also in the strong coupling limit when the order of truncation

is raised.
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Figure 3.3: LPA-4 numerical results for di�erent values of the coupling c.

Figure 3.4: LPA-20 numerical results for di�erent values of the coupling c.



38 3. Integrals of one real variable



39

Chapter 4

Multivariable integrals

In this chapter the concepts introduced for one variable integrals will be

generalized to N−variable ones. Therefore, the integral that we want

to compute takes now the general form

Z =

∫
dNx e−S(x⃗), (4.1)

where x⃗ = (x1, . . . , xN)
T ∈ RN is a N−dimensional vector, and the

measure is given by
∫
dNx =

∏N
i=1

∫∞
−∞ dxi.

4.1 The �ow equation

As done for the one variable case, we can think of Z as the partition

function for the joint distribution of a set of real random variables

X⃗ = {Xi}Ni=1 with Boltzmann weight e−S(x⃗). Accordingly, we can de�ne

the moments and cumulants generating functions, respectively as

Z (⃗j) =

∫
dNx e−S(x⃗)+j⃗·x⃗,

and

W (⃗j) = log
[
Z (⃗j)

]
,
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while the e�ective action Γ(ϕ⃗) is de�ned as usual via Legendre trans-

form

Γ(ϕ⃗) = j⃗ · ϕ⃗−W (⃗j),

where ϕi = ∂jiW ≡ ⟨xi⟩.
The renormalization group approach is again implemented upon

introduction of a scale dependent cut-o� function in the exponent of

the integrand, with the prototypical quadratic form

∆Sk(x⃗) =
1

2
x⃗ ·Rkx⃗.

Therefore, Rk is now a positive semi-de�nite matrix-valued function of

the scale k, whose entries satis�es analogous constraints as for the one

variable case in the limits k → 0 and k → ∞:

lim
k→0

Rk = 0,

and

lim
k→Λ≫1

(Rk)ij = (RΛ)ij ≫ 1.

The scale dependent partition function is thus given by

Zk (⃗j) =

∫
dNx e−S(x⃗)+j⃗·x⃗−∆Sk(x⃗).

Therefore, if we suppose Rk = k2I, where I denotes the N ×N identity

matrix, the role of the cut-o� term becomes very clear: it suppresses

exponentially the contribution to Zk outside of the N−dimensional box

of side 1
k
centered at the origin.

The running e�ective action at scale k is given by the modi�ed

Legendre transform:

Wk (⃗j) + Γk(ϕ⃗) = j⃗ · ϕ⃗−∆Sk(ϕ⃗). (4.2)

The derivation of the �ow equation follows the same scheme used for

the N = 1 case, with some more attention to pay to the fact that we
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are now dealing with vectors and matrices. We start by di�erentianting

(4.2) with respect to k, which gives

∂kΓk = −
N∑
i=1

(
∂kji∂jiWk − ϕi∂kji

)
− ∂k|⃗jWk −

1

2
ϕ⃗ · ∂kRkϕ⃗, (4.3)

where the chain rule has been used because to scale independent ϕ⃗

corresponds a scale dependent j⃗, with

ji = ∂ϕi
Γk +

N∑
l=1

(Rk)ilϕl (4.4)

Since ϕi = ∂jiWk the �rst term in (4.3) vanishes, and the equation

becomes

∂kΓk =
1

2

N∑
i,l=1

(∂kRk)il
(
⟨xixl⟩ − ⟨xi⟩⟨xl⟩

)
=

1

2

N∑
i,l=1

(∂kRk)il(W
(2)
k )li,

⇒ ∂kΓk =
1

2
Tr

(
∂kRkW

(2)
k

)
. (4.5)

Here, W
(2)
k is the hessian matrix of Wk, and must be written in terms

of Γk in order to complete the derivation. Di�erentiating (4.4) with

respect to jm we get, upon using the chain rule on the right hand side

δim =
N∑
l=1

[
∂ϕi

∂ϕl
Γk − (Rk)il

]
(W

(2)
k )lm,

⇒ W
(2)
k =

(
Γ
(2)
k +Rk

)−1
, (4.6)

where Γ
(2)
k (ϕ⃗) is the Hessian matrix of the running action. Therefore,

the Wetterich equation for multivariable integrals �nally reads

∂kΓk =
1

2
Tr

∂kRk

Γ
(2)
k +Rk

. (4.7)
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In order to establish the initial condition to (4.7) one can proceed as

in the N = 1 case. After a few analogous steps, we reach the expression

e−Γk(ϕ⃗) =

∫
dNx e−S(x⃗)+∇⃗Γk·(x⃗−ϕ⃗)− 1

2

(
x⃗·Rkx⃗−2x⃗·Rkϕ⃗+ϕ⃗·Rkϕ⃗

)
The latter term in the exponent can be rewritten in the following way:

x⃗ ·Rkx⃗− 2x⃗ ·Rkϕ⃗+ ϕ⃗ ·Rkϕ⃗ =
N∑

i,j=1

(Rk)ij
(
xixj − 2xiϕj + ϕiϕj

)

=
N∑

i,j=1

(Rk)ij
[
xi(xj − ϕj)− (xi − ϕi)ϕj

]

=
N∑

i,j=1

(xi − ϕi)(Rk)ij(xj − ϕj) = (x⃗− ϕ⃗) ·Rk(x⃗− ϕ⃗),

where I have assumed Rk to be symmetric1. So, we get a multivariate

gaussian term, in analogy with the N = 1 case. Therefore, for k →
Λ ≫ 1 ⇒ (Rk)ij → (RΛ)ij ≫ 1, then we get

e−ΓΛ(ϕ⃗) ≈
(√

(2π)N detR−1
Λ

)
e−S(ϕ⃗), Λ ≫ 1,

and hence

⇒ ΓΛ(ϕ⃗) = S(ϕ⃗) +
1

2
log

(
detRΛ

(2π)N

)
. (4.8)

The value of Z is obtained by taking k = 0 and j⃗ = 0, the latter

corresponding to ϕ⃗ = ϕ⃗∗ : ∇⃗Γ(ϕ∗) = 0. So, we will have

Z = e−Γ(ϕ⃗∗). (4.9)

1This is always possible since we have no constraints on the actual shape of the

regulator matrix.
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4.2 Multivariate gaussian integrals

As for the one variable case, also for the multivariate gaussian integral

Z =

∫
dNx e−

1
2
x⃗·Σ−1x⃗

the Wetterich equation (4.7) can be solved analytically. It is again su�-

cient to consider the following gaussian ansatz for the e�ective average

action:

Γk(ϕ) = a0,k +
1

2
ϕ⃗ · Σ−1ϕ⃗,

and the �ow equation will be projected onto the coe�cient a0,k, with

the initial condition �xed by (4.8). The �ow equation thus becomes

∂ka0,k =
1

2
Tr

∂kRk

Σ−1 +Rk

. (4.10)

Integration of (4.10) yields

1

2
log

detRΛ

(2π)N
− a0,0 =

1

2
Tr

[
log

(
Rk + Σ−1

)
− log Σ−1

]
.

Since Rk + Σ−1 and Σ−1 are positive de�nite matrices, then we can

exploit the property

Tr logA = log det(A).

Therefore, we get the following expression for a0,0:

a0,0 =
1

2
log det

(
Σ−1RΛ

2π(RΛ + Σ−1)

)
,

which in the limit Λ → ∞ becomes

a0,0 = −1

2
log det(2πΣ). (4.11)

Finally, the result for the integral is given by

Z = e−a0,0 =
√

det(2πΣ), (4.12)

which recovers again the well known exact result!
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4.3 Multivariate quartic integrals

As a �rst non trivial example, let's focus on the extension of the quartic

integral proposed in Section 3.3 :

Z =

∫
dNx e−

1
2
x⃗·Bx⃗− 1

4!

∑N
i=1 cix

4
i .

As for the one variable case, I will �rst consider analytically the case of

small quartic couplings using a perturbative approach, and then I will

evaluate the numerical results of the integration of the �ow equation.

4.3.1 Perturbative approach

Let's consider the case where the couplings {ci}Ni=1 are small, in such

a way that they can be treated as small perturbations to a gaussian

model.

As for the N = 1 case, the simplest approximation that we could

perform is to consider a polynomial truncation for the running e�ective

action where the 4th - order couplings do not �ow, and the lower order

ones are expanded perturbatively with respect to them. Hence, we

consider a truncation of the form

Γk(ϕ⃗) = a0,k +
1

2
ϕ⃗ · a2,kϕ⃗+

1

4!

N∑
i=1

ciϕ
4
i ,

with the initial condition

ΓΛ(ϕ) =
1

2
log

(
detRΛ

(2π)N

)
+

1

2
ϕ⃗ ·Bϕ⃗+

1

4!

N∑
i=1

ciϕ
4
i .

As for the regulator, I will assume without loss of generality that it has

a diagonal form, i.e. Rk = rkI. With this choice for the regulator, the

�ow equation for the e�ective action becomes

∂kΓk(ϕ) =
∂krk
2

Tr

[(
Γ
(2)
k + rkI

)−1
]
. (4.13)
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So, the �rst thing to do is to evaluate Γ
(2)
k and then compute the trace.

In particular, it is easy to understand that the Hessian will take the

form

Γ
(2)
k = a2,k +∆c⃗(ϕ⃗), (4.14)

where the latter term arises when c⃗ ̸= 0⃗ from the derivatives of the

quartic terms. It has a diagonal form, given by

∆c⃗(ϕ⃗) =
1

2
diag(c1ϕ

2
1, . . . , cNϕ

2
N).

The inverse of Γ
(2)
k + rkI can be expressed perturbatively as

1

Γ
(2)
k + rkI

=
1

a2,k +∆c⃗(ϕ⃗) + rkI
≈ 1

a2,k + rkI

(
I− ∆c⃗(ϕ⃗)

a2,k + rkI
+ o(c⃗ · c⃗)

)
Inserting this expansion into (4.13) we can deduce the two �ow equa-

tions projected onto a0,k and a2,k:

∂ka0,k =
∂krk
2

Tr

[
1

a2,k + rkI

]
, (4.15)

1

2
ϕ⃗ · ∂ka2,kϕ⃗ = −∂krk

2
Tr

[
∆c⃗(ϕ⃗)

(a2,k + rkI)2

]
. (4.16)

Therefore, we have to solve �rst equation (4.16), and then use the result

to solve equation (4.15). Because of the diagonal form of ∆c⃗(ϕ⃗), it is

immediately understood that on the RHS of (4.16) there are no terms

in ϕi · ϕj for i ̸= j. This means that the o�-diagonal terms remain

constant along the �ow within this truncation, keeping their initial

value. Therefore, we can choose a �rst order perturbative expansion

for a2,k in the form

a2,k = B + a
(1)
2,k(c⃗) + o(c2i ),

where a
(1)
2,k(c⃗) = diag(b

(1)
i ci, i = 1, . . . , N). Therefore, �rst order pertur-

bation theory gives

∂kb
(1)
i = −∂krk

2
·
[

1

(B + rkI)2

]
ii

. (4.17)
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The above discussion holds for a generic number of variablesN , but now

on I will consider N = 2 in order to carry on the calculation explicitely.

So, suppose that the initial condition is the 2× 2 matrix

B =

(
b1 d
d b2

)
corresponding to the 2-dimensional integral

Z =

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2e

− b1
2
x2
1−

b2
2
x2
2−dx1x2− c1

4!
x4
1−

c2
4!
x4
2 .

Then, standard matrices algebra leads us to the �ow equations for b1

and b2:

∂kb
(1)
1 = −∂krk

2

(rk + b
(1)
2 )2 + d2

(rk + b
(1)
1 )(rk + b

(1)
2 )− d2

,

while the other equation for b
(1)
2 is obtained by exchanging 1 → 2, 2 → 1

(this con�rms the fact that the �ow preserves the symmetry of the bare

model). The integration of this equation yields

b
(1)
1 (k) =

1

2

b2 + rk
(b1 + rk)(b2 + rk)− d2

. (4.18)

We can immediately check the consistency of this result. Setting d = 0

the two integrals on x1 and x2 are now decoupled, and we retrieve the

result found for the N = 1 perturbation theory (3.25), that is what one

would indeed expect.

The last step is to insert this result into the equation for a0,k to

compute the �rst order correction. Of course, at zeroth order, the

Gaussian result (4.12) is recovered. The �nal result is

a0,0 = log

(√
detB

2π

)
+

b22
(b1b2 − d2)2

c1
8
+

b21
(b1b2 − d2)2

c2
8
. (4.19)

Once again, we recover the N = 1 �rst order correction (3.27) if we set

d = 0. The perturbative expansion for the integral Z will then be:

ZRG =

√
(2π)2

detB

[
1− b22

(detB)2
c1
8
− b21

(detB)2
c2
8
+ o(c21) + o(c22)

]
, (4.20)
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where detB = b1b2 − d2.

This can be compared with the perturbative expansion of Z for

small c1 and c2. To �rst order we have

ZPT =

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2e

− b1
2
x2
1−

b2
2
x2
2−dx1·x2

(
1− c1

4!
x41 −

c2
4!
x42

)
.

These are now gaussian integrals, which can be easily evaluated. The

result is

ZPT =

√
(2π)2

detB

[
1− b22

(detB)2
c1
8
− b21

(detB)2
c2
8
+ o(c21) + o(c22)

]
. (4.21)

So, as for the N = 1 case, the �ow equation returns the correct result

to �rst order in pertubation theory, independently of the choice of the

regulator rk.

4.3.2 Numerical analysis

Let's now analyze in the results obtained from numerical integration of

the �ow equation in the N = 2 case.

In particular, let's start by considering the case where b1 = b2 =

c1 = c2 = 1, while the coupling d between the two variables x1 and x2

is small.

For small values of d the exponential can be expanded in power series

as follows:

Z =

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

∞∑
n=0

(−d)n

n!
(x1x2)

ne−
1
2
(x2

1+x2
2)−

1
4!
(x4

1+x4
2),

⇒ Z =
∞∑
n=0

d2n

(2n)!

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2(x1x2)

2ne−
1
2
(x2

1+x2
2)−

1
4!
(x4

1+x4
2),

⇒ Z =
∞∑
n=0

d2n

(2n)!

(∫ ∞

−∞
dxx2ne−

1
2
x2− 1

4!
x4

)2

, (4.22)
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where the integrals involving odd powers of x disappeared because they

are obviously equal to zero. So, for very small d values we expect a

parabolic behaviour.

Numerical results coming from the integration of the RG �ow equation

have been compared with numerical integration and 2nd - order pertur-

bation theory, and the results are displayed in Figure 4.1. Very good

agreement is obtained.

Figure 4.1: Numerical vs numerical RG vs PT results in the small coupling

For non perturbative values of the coupling d the e�ect of trunca-

tion. For a 4th - order truncation, instead of increasing monotonically,

the RG-computed integral reaches a maximum and then decreases. This

is understood as an e�ect of the truncation. Indeed, Figure 4.2 shows

that increasing the order of truncation the agreement improves. So, to

get better and better estimates of the integral we should go to higher

order truncations for large d values.
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Figure 4.2: Truncation dependence

4.4 Integral of a homogeneous quartic form

In this section I will consider the integrals of homogeneous quartic form,

i.e. with an action of the type

S(x⃗) =
N∑

i,j=1

x2iAijx
2
j ,

where Aij is a symmetric N×N matrix. In Appendix A some strategies

for the analytical solution of such integrals are reviewed and proposed,

with calculations carried on explicity for the case N = 2.

The integral that I will study via the FRG approach is thus

Z =

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2e

−x41
4!

−x42
4!

− ϵ
4!
x2
1x

2
2 , (4.23)

which can be expressed in closed form as

Z =
√
24πKE

(
1

2
− ϵ

4

)
, (4.24)
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where KE is a special function, called the elliptic integral of second

kind. This integral is a bit simpler to study than the quartic integral

of the previous section because of symmetry reasons. Indeed, the bare

action S(x1, x2) possesses even symmetry, and hence the number of

couplings generated along the �ow is signi�cantly reduced. To make

this concept clear, consider the set of all 4th - order operators in two

variables. These are given by

x41, x
3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2.

For an even action only three of them are generated along the �ow,

since the two presenting odd powers in x1 and x2 violates the even

symmetry, and this is true at each order of truncation. Instead, when

the symmetry of the action is just the exchange x1 → x2, as for the

previous quartic integral, all of the couplings are generated at each order

since this time they all respect the exchange symmetry. Therefore, an

integrand with even bare action is easier to be studied in the sense that

we can reach higher order truncations with less e�ort, i.e. the number

of �ow equations to be studied is smaller.

The numerical results produced with a 10th - order LPA truncation

of the e�ective action are shown in Figure 4.3, and present very good

agreement with (4.24) both in the perturbative (top �gure) and non-

perturbative (bottom �gure) ϵ regimes. Such agreement suggests that

in case of larger values of N , such as between 5 and 10, the FRG

calculation of these integrals can be a convenient scheme with respect

to other possible numerical methods.
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Figure 4.3: FRG results for the r = 2 non-gaussian form.
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Chapter 5

Renormalization group

approach to quantum

mechanics

One of the fundamental problems studied in quantum mechanics is the

solution of the time-independent Schrödinger equation

−1

2

d2ψ

dq2
+ V (q)ψ = Eψ, (5.1)

which allows to determine the eigenfunctions and the energy spectrum

of a quantum system under the action of a potential V (q). Of course,

several analytical, semi-classical, approximate and numerical proce-

dures have been developed in order to solve this problem.

This problem is intermediate between the solution of the integrals,

presented in Chapter 3 and 4, and the calculation of the partition

function of statistical mechanical models (e.g. the Ising model), which

are described by (d+ 1) - dimensional �eld theories. Indeed, quantum

systems can be described through (0 + 1) - dimensional �eld theories

using the Euclidean path integral formalism, where the dynamics of the

system is governed by the bare action

SE[q(t)] =

∫
dt

(
q̇2

2
+ V (q)

)
.
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Therefore, the direct generalization of the integrals is obtained by pro-

moting the variable q to a �eld q(t), and correspondingly the action

becomes a functional of this �eld.

In this chapter I will employ the functional renormalization group

techniques described in Chapter 2 for the determination of the ground

state of the one dimensional Schrödinger equation (5.1) for di�erent

kinds of non-trivial potentials, such as the quartic anharmonic oscilla-

tor, the quartic double-well potential and a periodic cosine potential.

5.1 The LPA �ow equation

In order to apply the FRG formalism of Chapter 1, we will thus consider

the Euclidean path-integral formulation of quantum �eld theory (QFT)

[8, 20], which describes quantum mechanics as a scalar �eld theory in

(0 + 1) - dimensions.

The physical information of the quantum system is contained in the

n-points correlation functions, generated by the Schwinger functional

Z[j] =

∫
D[q]e−SE [q]+

∫
dτj(τ)q(τ),

where SE[q], as introduced before, is the Euclidean action that describes

the dynamics of the system, while
∫
D[q] denotes integration over all

paths q(τ). We assume this measure to be properly regularized by an

UV-cuto� Λ. Therefore, it shall now be clear that we can implement

the Wetterich approach exactly as prescribed in Chapter 2, and study

the �ow of the e�ective average action Γk interpolating between the

Euclidean bare action SE in the UV and the full quantum action Γ

when all the quantum �uctuations have been taken into account in the

limit k → 0 [20].

Since we are interested in the determination of the ground state, it

will be su�cient to work within the framework of the LPA approxima-
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tion, where we consider the following truncation for Γk
1:

Γk =

∫
dτ

(
ẋ2

2
+ Uk(x)

)
. (5.2)

The �ow equation for the e�ective potential Uk was given in (2.20) for

a d−dimensional scalar �eld theory. Thus, for d = 1 we obtain

∂kUk = − k2

2π

∫ ∞

0

y3/2r′(y)

U ′′
k + k2P 2(y)

dy, (5.3)

where P 2(y) = y[1 + r(y)].

An important physical correction has to be done here. If we start

at the UV scale Λ with a free particle, then we would expect Uk not to

�ow, but to remain constant at every scale. However, this is not the

content of equation (5.3), which, setting U ′′
k = 0, tells us that

∂kUk = − 1

2π

∫ ∞

0

y3/2r′(y)

P 2(y)
dy ̸= 0.

Hence, in order to obtain physically meaningful results we have to sub-

tract this term from the �ow equation, which becomes

∂kUk =
U ′′
k

2π

∫ ∞

0

y3/2r′(y)

[U ′′
k + k2P 2(y)]P 2(y)

dy. (5.4)

This is an instance of the renormalization of a physical theory, which

is typically seen in the regularization of quantum �eld theories.

We are now in position to study some concrete application of the

method.

5.2 The harmonic oscillator

The simplest problem that we can study is for sure the quantum har-

monic oscillator, with hamiltonian

Ĥ = −1

2

d2

dq2
+
ω2

2
q2, (5.5)

1Here x ≡ ⟨q⟩.
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for which the exact determination of the energy spectrum and eigen-

functions is presented in every reference textbook for quantum mechan-

ics.

With no surprise, we are able to solve analytically the Wetterich

equation in this case. Indeed, the harmonic oscillator corresponds to a

gaussian �eld theory and thus, as for the case of the integrals, the usual

quadratic ansatz will be su�cient for the e�ective potential:

Uk(x) = E0,k +
ω2

2
x2, (5.6)

with E0,Λ = 0, and E0,0 representing the quantum ground state energy.

the �ow equation (5.4) becomes

∂kE0,k =
ω2

2π

∫ ∞

0

y3/2r′(y)

[ω2 + k2P 2(y)]P 2(y)
dy. (5.7)

Keeping the regulator general, we shall �rst perform the integration

over k:

0− E0,0 =
ω2

2π

∫ ∞

0

dy
y3/2r′(y)

P 2(y)

∫ ∞

0

dk
1

ω2 + k2P 2(y)
, (5.8)

⇒ E0,0 = −ω
4

∫ ∞

0

dy
y3/2r′(y)

P 3(y)
= −ω

4

∫ ∞

0

dyf(y). (5.9)

Therefore, we are left with the calculation of the integral over y, which

will be useful also in the next section:∫ ∞

0

dyf(y) =

∫ ∞

0

r′(y)dy

[1 + r(y)]3/2
,

⇒
∫ ∞

0

dyf(y) = −2

[
1√

1 + r(y)

]∞
0

= −2, (5.10)

where the last step comes from the fact that because of (28) and (29)

we have r(y) → 0 when y → ∞, and r(y) → ∞ when y → 0. Finally,

inserting (111) in (112) we get that

E0,0 =
ω

2
, (5.11)
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that is the very well known exact result for the ground state energy

of a particle in one dimensional quantum harmonic potential, in units

where ~ = 1.

5.3 The anharmonic oscillator

Let's now consider the problem of a quartic anharmonic oscillator, de-

scribed by the Hamiltonian

Ĥ = −1

2

d2

dq2
+
ω2

2
q2 +

λ

4!
q4. (5.12)

In order to solve the �ow equation (5.4) we need to resort to some

further approximation, and the best-suited for this problem is a poly-

nomial expansion for the e�ective potential

Uk(x) =
∞∑
n=0

a2n,k
(2n)!

x2n, (5.13)

where only even terms are considered because of the even symmetry of

the bare potential. Thus, the �ow equation has to be projected onto

the scale dependent coe�cient a2n,k. Therefore, using a 4th - order

truncation of the type

Uk(x) = E0,k +
ω2
k

2
x2 +

λk
4!
x4, (5.14)

we obtain three coupled di�erential equations for the scale dependent

expansion coe�cients:

∂kE0,k =
ω2
k

2π

∫ ∞

0

y3/2r′(y)

[ω2
k + k2P 2(y)]P 2(y)

dy, (5.15)

∂kω
2
k =

k2λk
2π

∫ ∞

0

y3/2r′(y)

[ω2
k + k2P 2(y)]2

dy, (5.16)
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∂kλk = −3k2λk
π

∫ ∞

0

y3/2r′(y)

[ω2
k + k2P 2(y)]3

dy, (5.17)

with the initial conditions EΛ = 0, ω2
Λ = ω2, λΛ = λ.

The solution of the system must be carried out numerically. As for

the case of the quartic integrals, I will �rst propose some analytical

insight about perturbative solution of the FRG equations, and then I

will show the numerical results of the integration.

5.3.1 Perturbative approach

Consider the case where λk = λ ≪ 1 ∀k. Then, we can solve pertur-

batively (5.15) and (5.16) in λ. Starting from (5.16), let's consider the

following perturbative expansion for the frequency

ω2
k = ω2 + Ω

(1)
k λ+O(λ2). (5.18)

Thus, the �rst order perturbation will evolve according to

∂kΩ
(1)
k =

k2λk
2π

∫ ∞

0

y3/2r′(y)

(ω2 + k2P 2
y )

2
dy. (5.19)

Hence, we have

Ω
(1)
k = − 1

2π

∫ ∞

0

dyy3/2r′(y)

∫ ∞

k

ds
s2

(ω2 + s2P 2
y )

2
,

⇒ Ω
(1)
k = − 1

2πω

∫ ∞

0

dyf(y)

∫ ∞

k
Py
ω

dz
z2

(1 + z2)2
,

⇒ Ω
(1)
k = − 1

2πω

∫ ∞

0

dyf(y)g

(
k
Py

ω

)
, (5.20)

where I have denoted

g(s) =

∫ ∞

s

z2

(1 + z2)2
. (5.21)
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This result has to be inserted into the equation (5.15) for the ground

state energy, and we �nd that the �rst order correction to the energy

is the solution of

∂kE
(1)
k =

Ω
(1)
k k2

2π

∫ ∞

0

y3/2r′(y)

[ω2 + k2P 2(y)]2
dy. (5.22)

Thus, we have that

E
(1)
0 = − 1

2π

∫ ∞

0

dyy3/2r′(y)

∫ ∞

0

dk
Ω

(1)
k k2

(ω2 + k2P 2
y )

2
,

E
(1)
0 =

1

4π2ω

∫ ∞

0

dyy3/2r′(y)

∫ ∞

0

dxf(x)

∫ ∞

0

dk

g

(
kPx

ω

)
k2

(ω2 + k2P 2
y )

2
,

E
(1)
0 =

1

4π2ω2

∫ ∞

0

dyf(y)

∫ ∞

0

dxf(x)

∫ ∞

0

ds

g

(
sPx

Py

)
s2

(1 + s2)2
,

E
(1)
0 = − 1

4π2ω2

∫ ∞

0

dyf(y)

∫ ∞

0

dxf(x)

∫ ∞

0

dsg

(
s
Px

Py

)
g′(s),

E
(1)
0 = − 1

4π2ω2

∫ ∞

0

dyf(y)

∫ ∞

0

dxf(x)

∫ ∞

0

dzg(z)g′(z),

where in the last passage I have changed variable to z = sPx

Py
. Thus, I

�nally obtain

E
(1)
0 =

1

8π2ω2
g2(0)

(∫ ∞

0

dyf(y)

)2

. (5.23)

From (5.21) we can see that g(0) = π
4
, and hence we �nally get

E
(1)
0 =

1

32ω2
. (5.24)

So, the �rst order perturbative series for the ground state energy can

be written as

E0 =
ω

2
+

3ω

4

(
λ

4!ω3

)
+O(λ2), (5.25)

which coincides with the result of standard perturbation theory in quan-

tum mechanics [8, 20]. Once again, it is remarkable that this is achieved

independently of the choice of the regulator function.
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5.3.2 Numerical results

Let's now study the results obtained via numerical integration of the

�ow equation. For this purpose one can use the Litim regulator [8, 20]

r(y) =

(
1

y
− 1

)
θ(1− y).

With this choice of the regulator2 the domain of integration of the

integral in (5.4) is restricted to y ∈ [0, 1], and considering that P 2(y) =

1, while r′(y) = −y−2, we have that

∂kUk = − 1

2π

U ′′
k

U ′′
k + k2

∫ 1

0

y−1/2dy,

and hence the �ow equation for the e�ective potential is given by

∂kUk = − 1

π

U ′′
k

U ′′
k + k2

. (5.26)

At 4th - order truncation of the e�ective potential the �ow equations

are given by

∂kE0,k = − 1

π

ω2
k

ω2
k + k2

, (5.27)

∂kω
2
k = − 1

π

k2

(ω2
k + k2)2

λk, (5.28)

∂kλk =
6

π

k2

(ω2
k + k2)3

λ2k. (5.29)

The numerical solution of the RG �ow equation for ω = 2 and λ ∈
(0, 100) can be compared with the ground state energy obtained via

numerical solution of the Schr�'odinger equation. Figure 5.1 shows that

already within 4th - order LPA it is possible to obtain a good estimate

for the ground state energy. More speci�cally, it can be noticed that

the estimate improves for smaller values of the coupling λ.

2The �ow equations for some di�erent regulators are derived in Appendix B.
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Figure 5.1: Comparison of RG and numerical results for di�erent values of

the quartic coupling Λ in LPA-4.

In order to improve our estimates also in the strong coupling regime

we should consider higher order truncations of the e�ective potential.

The new results obtained using a 20th - order truncation are shown in

the left side of Figure 5.2. In order to see explicitly how the estimate

Figure 5.2: Left: Results from the LPA-20 trunctation. Right: Comparison

of the quality of the two truncation orders.

has improved we can plot the di�erence between the RG and numerical

ground state for both the truncation orders. This is done in the right

side of Figure 5.2, and we can clearly observe that the estimate in the

strong coupling regime indeed improves signi�cantly, of about one order



62 5. Renormalization group approach to quantum mechanics

of magnitude.

5.4 The double well potential

We shall now consider the problem of a quantum particle inside a quar-

tic double well potential, that is described through the Hamiltonian

Ĥ = −1

2

d2

dq2
− ω2

2
q2 +

λ

4!
q4, (5.30)

which presents a change in the sign of the quadratic term with respect

to the anharmonic potential in (5.12). This change in the sign corre-

sponds to a completely new shape for the potential, which now presents

a maximum at q = 0 instead of a minimum, and two symmetric min-

ima at q = ±
√
6ω√
λ
, as shown in Figure 5.3. Since the potential is still

Figure 5.3: Pro�les of the anharmonic and double well potentials for λ =
ω = 1.

polynomial, we shall resort to the same approximations used for the

anharmonic oscillator in the previous section, and expand the e�ective

potential in power series in order to solve the �ow equation (5.4). Once
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again, since the problem possesses an even symmetry, only those cou-

plings corresponding to even powers of the Taylor expansion will be

generated along the �ow. Therefore, it should be clear that the �ow

equations for the expansion coe�cients will be exactly the same as for

the case of the anharmonic oscillator.

The numerical solution of the RG �ow equation is carried out for

ω = 1 and λ ∈ (1, 100), and again the Litim regulator has been cho-

sen for the integration. The results coming from 4th and 20th - order

truncation are displayed in Figure 5.4. What we observe this time is

Figure 5.4: Comparison of RG and numerical results for di�erent values of

the quartic coupling Λ in LPA-4.

completely di�erent from what we found for the case of the anharmonic

oscillator. Indeed, this time we see that the estimate of the ground state

energy obtained within a 4th - order LPA is very bad for small values

of the coupling λ, although the results improve when looking at the

strong coupling regime. This global picture improves when we go to

20th - order truncation. However, we still observe that the estimates

are better in the strong coupling regime. This is better observed when

plotting the di�erence between the RG and numerical ground state

(Figure 5.5 ). The failure of the LPA truncation in the weak coupling

regime can be explained in view of the shape of the potential. Indeed,

we have said that the position of the minimum of the potential energy
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Figure 5.5: Comparison of the LPA-4 and LPA-20 truncations.

is proportional to λ−1/2. This means that if we decrease λ, then we are

moving the minima of the potential away from the origin. Therefore,

a 4th - order Taylor expansion about x = 0 is not enough to capture

properly the behaviour of the potential close to its minima, and we

are forced to consider higher order expansions in order to get accurate

results.

As an alternative, one could think to solve the �ow equation (5.4)

numerically without expanding the potential in power series. This pro-

cedure is explained in [8], but it is not pursued here.

5.5 The cosine potential

The last problem that we will study is that of a quantum particle inside

a periodic cosine potential, that is described by the Hamiltonian

Ĥ = −1

2

d2

dq2
+ u cos(q). (5.31)

In this case, the Schrödinger equation

−1

2

d2ψ

dq2
+ u cos(q)ψ(q) = Eψ(q) (5.32)
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corresponds to the so called Mathieu equation. This is a celebrated

equation of mathematical physics which appears in the treatment of a

wide class of problems [21]. Perturbative results for the eigenvalues of

this equation can be found in literature [22].

A polynomial expansion of the e�ective potential is no more well

suited for treating the problem. Indeed, the periodicity of the potential

constitutes itself a symmetry of the problem, and this would be bro-

ken using a �nite order polynomial expansion. Therefore, in order to

allow for a convenient solution of the �ow equation and preserve the

periodicity the idea is to expand Uk in Fourier series [23]:

Uk(x) =
∞∑
n=0

un,k cos(nx). (5.33)

In this framework, the simplest truncation for the e�ective potential is

thus given by

Uk(x) = E0,k + uk cos(x). (5.34)

Thus, we need to project the �ow equation (105) onto the coe�cients

E0,k and uk. This requires to expand in Fourier series the term

U ′′
k

U ′′
k + k2P 2

y

.

Using the choice (5.34) for the truncation we get

U ′′
k

U ′′
k + k2P 2

y

= 1−
k2P 2

y

[(k2P 2
y )

2 − u2k]
1/2

+
2k2P 2

y

uk

(
1−

k2P 2
y

[(k2P 2
y )

2 − u2k]
1/2

)
cos(x).

Therefore, the �ow equations for the two expansion coe�cients become

∂kE0,k =
1

2π

∫ ∞

0

y3/2r′(y)

P 2(y)

(
1−

k2P 2
y

[(k2P 2
y )

2 − u2k]
1/2

)
dy, (5.35)

∂kuk =
k2

ukπ

∫ ∞

0

y3/2r′(y)

(
1−

k2P 2
y

[(k2P 2
y )

2 − u2k]
1/2

)
dy. (5.36)
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5.5.1 The small coupling regime

Truncation (5.34) allows to get some insights about the small coupling

regime. Choosing again the Litim's regulator, the �ow equations (5.35)

and (5.36) becomes

∂kE0,k = − 1

π

(
1− k2

[k4 − u2k]
1/2

)
, (5.37)

∂kuk = − 2k2

ukπ

(
1− k2

[k4 − u2k]
1/2

)
. (5.38)

When we consider the case u≪ 1, then these two coupled equations can

be solved perturbatively considering uk ≪ 1. This is true because of

the following physical consideration. For the one-dimensional quantum

system that we are considering there is no symmetry-breaking, and

therefore in the thermodynamic limit k → 0 the true e�ective action of

the model Γ should be convex. In turns, this means that we expect that

the cosine-coupling �ows towards zero under the RG �ow, i.e. uk=0 = 0,

in order to recover convexity in the thermodynamic limit. Therefore, if

the initial condition uΛ = u ≪ 1, then it is reasonable to assume that

uk ≪ 1 ∀k. For uk ≪ 1 the �ow equations reduce to{
∂kE0,k =

u2
k

2πk4

∂kuk =
uk

πk2

. (5.39)

The solution of the second equation gives

uk = ue−
1
πk . (5.40)

Inserting this result in the equation for the energy and integrating from

0 to ∞ we �nally get

E0 = −π
2

8
u2. (5.41)

This shall be compared with the perturbative result for the ground

state of the Mathieu equation, which is given by [22]

E0(u) = −u2 + 7

4
u4 − 58

9
u6 +O(u8). (5.42)
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Therefore, we see that the �rst order in u is retrieved exactly also

for this periodic potential (it is indeed zero), while the leading order

parabolic behaviour is correctly recovered with a discrepancy of 23% for

the expansion coe�cient, which is not too bad considering that a similar

error is found also when studying second order perturbation theory for

the anharmonic oscillator using lowest order truncations [8, 20].

The results coming from full numerical integration of (5.37) and

(5.38) are shown in Figure 5.6, in comparison with (5.42) and with the

numerical solution of the Schrödinger equation (5.32). We see that in

Figure 5.6: Ground state of the cosine potential in the small coupling

regime.

this case the perturbative formula (5.42) produces more accurate results

than the renormalization group procedure, at least to the truncation

order that we have taken into account. Notice, indeed, that we are at

the lowest order of the Fourier truncation scheme. Motivated by the

results presented in Chapters 3 and 4, as well as those in the previous

sections of this chapter, one can be con�dent that increasing the trun-

cation scheme one can have a signi�cant improvement of the obtained

results.
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Chapter 6

Conclusions

The aim of this thesis was to study the application of renormaliza-

tion group techniques to two problems of interest in mathematics and

physics: the calculation of integrals and the solution of the Schrödinger

eigenvalue equation.

Using renormalization group (RG) tools and in particular the func-

tional renormalization group (FRG) formalism, we have shown that

both these problems can be reduced to the solution of a non-linear par-

tial di�erential equation for a properly de�ned e�ective action, which

is also known as the Ginzburg-Landau free energy in condensed matter

contexts.

For the problems treated in this work we have studied how fast the

local potential approximation (LPA) truncations hierarchy converges

to the exact results (if these exist) or to numerically exact solutions.

Despite being rarely encountered in the RG literature, the problem

of the calculation of integrals can be considered an excellent tool for a

pedagogical introduction to the FRG. Studying this problem, we have

shown that it is possible to estimate the convergence to exact results

increasing the level of the LPA truncation. This is possible because

the LPA is an exact approximation for this problem, since there are no

gradients in the derivative expansion of this (0 + 0)-dimensional case.
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Therefore, we have been able to obtain very good numerical estimates of

the values of non-trivial quartic integrals both for one and two variables.

The method can be easily generalized to more variables.

The solution of the Schrödinger equation can be seen as a general-

ization of the (0 + 0)-dimensional case of the integrals since quantum

systems can be described through (0 + 1) - dimensional �eld theories

using the Euclidean path integral formalism. For this problem we have

seen that it is not possible to converge to exact results using LPA.

However, also within this approximation scheme one can obtain very

good numerical estimates for the ground state energies, and study how

rapidly convergence is approached for di�erent potentials. Excellent

results have been obtained in the case of the anharmonic oscillator, be-

cause of the rather simple shape of this potential. When the potential

pro�les become more complicated, such as for the quartic double well

or the cosine potential, the results worsen and higher order truncations

are needed in order to improve the estimates of the ground-state energy.

In particular, a good direction for future work would be to include more

Fourier modes in the expansion of the e�ective potential for the Math-

ieu equation, or to even include higher order gradients in the derivative

expansions, i.e. to go beyond the LPA. Moreover, a possible future de-

velopment could be the study of the regulator dependence of the �ow,

and to devise a general optimization criterium which allows to identify

which regulator produces the best results within a given approximation

scheme.



71

Appendix A

Analytical calculation of

non-gaussian integrals

Here I will give a derivation of an analytical closed form for some non-

gaussian integrals, that in the multivariable case will have an homoge-

neous action of the form

S(x⃗) =
N∑

i,j=1

xriAijx
r
j ,

where A ∈ RN,N is a symmetric matrix.

In particular, I will pursue two di�erent approaches for the non-

trivial cases: integration by series and a di�erential approach intro-

duced in [24].

A.1 Trivial examples

Let's start from some simple examples which do not require any special

treatment.
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A.1.1 S(x) = λx2r

Consider the one variable integral

Z =

∫ +∞

−∞
e−λx2r

dx.

Upon changing variable to y = λx2r we get

Z =
λ−

1
2r

r

∫ ∞

0

y
1
2r

−1e−ydy.

Here we can recognize the Euler gamma function, and we �nally have

Z =
λ−

1
2r

r
Γ

(
1

2r

)
. (A.1)

Using the same idea we can also compute all the moments of the nor-

malized distribution

p(x) =
rλ

1
2r

Γ
(

1
2r

)e−λx2r

.

The odd moments all vanish for symmetry reasons

E[x2n+1] = 0 ∀ n = 0, 1, . . . . (A.2)

Instead the even moments are given by

E[x2n] =
rλ

1
2r

Γ
(

1
2r

) ∫ +∞

−∞
x2ne−λx2r

dx,

⇒ E[x2n] =
λ−

n
r

Γ
(

1
2r

) ∫ +∞

0

x
2n+1
2r

−1e−ydy,

⇒ E[x2n] = λ−
n
r
Γ
(
2n+1
2r

)
Γ
(

1
2r

) . (A.3)
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A.1.2 Diagonal coupling matrix

The simplest case when we considere more than one variable is for a

diagonal coupling matrix, A = diag(λ1, . . . , λN). The integral we want

to compute is thus

Z =

∫
dNxe−λix

2r
i ,

where Einstein convetion for the sum over repeated indices is intended

in the exponent. In such a case, all of the N integrals over xi can be

performed separately, since the variables are uncoupled. Each of them

will give a contribution of the form (A.1). So, the result will read

Z =

[
1

r
Γ

(
1

2r

)]N( N∏
i=1

λi

)− 1
2r

=

[
1

r
Γ

(
1

2r

)]N(
detA

)− 1
2r . (A.4)

A.1.3 The quartic spherical case

Another case which is simple to treat is the case in which

Aij =
√
λiλj ∀ i ̸= j,

and r = 2. In such case, the determinant of A vanishes, and the quartic

form in the exponent becomes a perfect square:

S(x⃗) =
N∑

i,j=1

√
λiλjx

2
ix

2
j =

( N∑
i=1

√
λix

2
i

)2

.

Therefore, upon changing variables to λ
1/4
i xi, the integral becomes

Z =

( N∏
i=1

λ
−1/4
i

)∫
dNxe−(

∑N
i=1 x

2
i )

2

.

This integral becomes trivial in spherical coordinates, where we have

Z = ΩN

( N∏
i=1

λ
−1/4
i

)∫ +∞

0

dρe−ρ4 ,
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where ΩN is the N -dimensional solid angle, and the integral over the

radial coordinate is half of (A.1) with r = 2, resulting in

Z = ΩN

( N∏
i=1

λ
−1/4
i

)
1

4
Γ

(
1

4

)
. (A.5)

A.2 Integration by series

We now switch to more complicated non-trivial integrals, and start by

approaching them using the method of integration by series.

A.2.1 S(x) = ϵxr + λx2r

Suppose that we want to compute the one variable integral

Z1|2r =

∫ ∞

−∞
e−ϵxr−λx2r

dx, (A.6)

with r ∈ N.
A strategy to �nd a closed form for such an integral is to expand

the xr exponential, and then switch integration and series:

Z1|2r =
∞∑
i=0

(−ϵ)n

n!

∫ ∞

−∞
xrne−λx2r

dx. (A.7)

The remaining integral can now be easily expressed in terms of the

Euler gamma function, exactly as we did Appendix A.1.1. We shall

distinguish the even and odd r cases.

For r = 2k, k ∈ N, then the integrals are non-vanishing ∀n, and we

get ∫ ∞

−∞
x2kne−λx4k

dx =
1

2k
λ−

2nk+1
4k Γ

(
2nk + 1

4k

)
. (A.8)

Therefore, we get

Z1|4k =
λ−1/4k

2k

∞∑
i=0

(−1)n

n!

(
ϵ√
λ

)n

Γ

(
2kn+ 1

4k

)
. (A.9)
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Then, �nally, the series can be summed, and we get

Z1|2r =
λ−1/2r

r
Γ

(
1

2r

)
1F1

(
1

2r
,
1

2
;
ϵ2

4λ

)
+ . . .

· · · − ϵ√
λ

λ−1/2r

r
Γ

(
1 + r

2r

)
1F1

(
1 + r

2r
,
1

2
;
ϵ2

4λ

)
. (A.10)

with r even. In the r = 2 case this expression simpli�es to

Z1|4 =
1

2

√
ϵ

λ
e

ϵ2

8λK 1
4

(
ϵ2

8λ

)
, (A.11)

corresponding to the formula given for the quartic integral in (3.31)

with rescaled coe�cients.

The r = 2k − 1 case is treated identically, but this time only even

n terms will survive the integration. Therefore, we have that

Z1|2(2k−1) =
λ−

1
2(2k−1)

2k − 1

∞∑
i=0

1

(2n)!

(
ϵ√
λ

)2n

Γ

(
n+

1

2(2k − 1)

)
, (A.12)

giving

Z1|2r =
λ−1/2r

r
Γ

(
1

2r

)
1F1

(
1

2r
,
1

2
;
ϵ2

4λ

)
, (A.13)

for odd values of r.

A.2.2 S(x, y) = 2ϵxryr + λ1x
2r + λ2y

2r

Consider now the two variables extension of (A.6):

Z2|2r =

∫ ∞

−∞
dx

∫ ∞

−∞
dye−2ϵxryr−λ1x2r−λ2y2r , (A.14)

with r ∈ N. The procedure is analagous to the one variable case.

Indeed, this time we will expand the interaction term, in such a way

that the integrals decouples:

Zr =
∞∑
i=0

(−2ϵ)n

n!

(∫ ∞

−∞
xrne−λ1x2r

dx

)(∫ ∞

−∞
yrne−λ2y2rdy

)
, (A.15)
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where the integrals appearing in the summation have already been eval-

uated in Appendix A.2.1. Again, we shall distinguish the even and odd

r cases.

For r = 2k we get

Z2|4k =
(λ1λ2)

−1/4

(2k)2

∞∑
i=0

(−1)n

n!
znΓ2

(
2nk + 1

4k

)
,

where z = 2ϵ√
λ1λ2

. This series is expressed in closed form in terms of

hypergeometric functions:

Z2|2r =
(λ1λ2)

−1/2r

r2
Γ2

(
1

2r

)
2F1

(
1

2r
,
1

2r
;
1

2
;
z2

4

)
+ . . .

· · · − z
(λ1λ2)

−1/2r

r2
Γ2

(
1 + r

2r

)
2F1

(
1 + r

2r
,
1 + r

2r
;
3

2
;
z2

4

)
, (A.16)

for r even. In the case r = 2, corresponding to a quartic homogeneous

integral, the expression simpli�es to

Z2|4 = (λ1λ2)
−1/4

√
πKE

(
1

2
− ϵ

2
√
λ1λ2

)
, (A.17)

where KE is the complete elliptic integral of second kind.

For the odd r case, setting r = 2k − 1, k ∈ N we instead get

Z2|2r =
(λ1λ2)

−1/2r

r2
Γ2

(
1

2r

)
2F1

(
1

2r
,
1

2r
;
1

2
;
z2

4

)
. (A.18)

Clearly, the case r = 1 corresponds to the gaussian integral, and indeed

we get

Z1 =
π√

λ1λ2 − ϵ2
. (A.19)

A.3 Di�erential approach

Integral discriminants are a particular class of integrals of the form∫
dNxe−S(x⃗),
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where

S(x⃗) =
N∑

i1...ir=1

Ai1...irxi1xi2 . . . xir

i.e. it is a homogeneous form of degree r in the N variables x1 . . . xN .

This class of integrals has been studied in [?] by Morozov and Shakirov,

who proposed an approach based on the solution of some di�erential

identies that the integral satis�es as a function of the parameters of A.

Here I will study a simpler subclass of integral discriminants of

interest in physics, i.e. those where

S(x⃗) =
N∑

i,j=1

Aijx
r
ix

r
j , (A.20)

where A ∈ RN,N is a symmetric matrix.

A.3.1 Ward identities

Let's consider the integral

ZN |2r =

∫
dNxe−S(x⃗),

where S is of the form (163).

The idea is to consider ZN |2r as a function of the parameters ap-

pearing in the matrix A, i.e. ZN |2r = ZN |2r({Aij}). Then, we can

demostrate that Z satis�es some di�erential identities, called Ward

identities, as a function of these parameters.

First of all, let's �x some notation here. I will denote

⟨f(x⃗)⟩ =
∫
dNxf(x⃗)e−S(x⃗),

and hence it is clear that ZN |2r = ⟨1⟩. We can observe that the following

four relations holds true for any symmetric A:

∂Z

∂Aii

= −⟨x2ri ⟩,
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∂2Z

∂Aii∂Ajj

= ⟨x2ri x2rj ⟩,

∂Z

∂Aij

= −2⟨xrixrj⟩,

∂2Z

∂A2
ij

= 4⟨x2ri x2rj ⟩.

Therefore, it follows that ZN |2r satis�es a �rst set of di�erential identi-

ties: (
∂2

∂A2
ij

− 4
∂2

∂Aii∂Ajj

)
Z = 0. (A.21)

Since this set of identities holds also for the integrand itself, they are

too particular, and we can look for another set which instead holds only

for Z.

An idea is to consider that∫
dNx

∂

∂xi

(
f(x⃗)e−S(x⃗)

)
= 0,

whenever f(x⃗)e−S(x⃗) vanishes at the integration boundaries. Then, per-

forming the derivative inside the integral we get to⟨
∂f

∂xi

⟩
−
⟨
f
∂S

∂xi

⟩
= 0.

Choosing f(x⃗) = xi we therefore obtain

ZN |2r −
⟨
xi

∂

∂xi

N∑
k,j=1

Akjx
r
kx

r
j

⟩
= 0,

⇒ ZN |2r − 2r
N∑
j=1

Aij⟨xrixrj⟩ = 0,

⇒ ZN |2r + r
N∑
j ̸=i

Aij
∂Z

∂Aij

+ 2rAii
∂Z

∂Aii

= 0.
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There are N such relations, one for each value of i = 1 . . . N . Therefore,

summing over i we get∑
i,j≤i

Aij

∂ZN |2r

∂Aij

= −N
2r
ZN |2r. (A.22)

This is the other identity we where looking for.

From the latter expression we can immediately deduce an inter-

esting property of Z. Indeed, (A.22) is nothing but Euler's identity

for homegenous functions, telling us that ZN |2r will be an homegenous

function of the couplings, of degree −N
2r
.

Therefore, instead of directly computing the integral, we can obtain

ZN |2r by solving the two sets of di�erential equations (A.21) and (A.22).

A.3.2 S(x) = λx4r + ϵx2r

Before proceeding to the multivariable case it is interesting to consider

S(x) = λx4r + ϵx2r. This is not a homogeneous form, but it is still

interesting to study it because it is the simplest non-trivial case where

we can apply the technique of the Ward identies. The two identities

satis�ed by Z in this case are⎧⎪⎨⎪⎩
∂2Z
∂ϵ2

+ ∂Z
∂λ

= 0

4λ∂Z
∂λ

+ 2ϵ∂Z
∂ϵ

= −Z
.

We can easily understand the scaling form which satis�es the the second

equation by considering that with the change of variable x → λ−1/4rx

the integral becomes

Z = λ−
1
4r

∫ +∞

−∞
e
−x4r− ϵ√

λ
x2r

dx.

So, considering this emerging scaling form, and (A.1), we can make the

guess

Z =
Γ
(

1
4r

)
2r

λ−
1
4r f

(
ϵ2

λ

)
,
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with f(0) = 1. Substituting this form into the �rst di�erential identity,

then we obtain the following equation for f :

4tf ′′(t) + (2− t)f ′(t)− f(t)

4r
= 0.

Setting now r = 1, we can solve this equation and imposing the correct

condition for recovering the Gaussian result in the limit λ→ 0, and the

�nal result is

Z =
1

2

√
ϵ

λ
e

ϵ2

8λK 1
4

(
ϵ2

8λ

)
.

A.3.3 The N=2 case

For the case of two coupled variables, the matrix A introduced in (A.20)

can be written as

A =

(
λ1 ϵ
ϵ λ2

)
.

The Ward identity (A.22) now reads

λ1
∂Z

∂λ1
+ λ2

∂Z

∂λ2
+ ϵ

∂Z

∂ϵ
= −Z

r
,

telling us that Z2|2r is a homogeneous function of degree −1
r
.

In order to understand the correct form of the scaling function,

consider the following argument. The integral that we want to compute

is

Z2|2r =

∫ +∞

−∞
dx

∫ +∞

−∞
dye−λ1x2r−λ2y2r−2ϵxryr .

If we perform the change of variable{
x→ λ

− 1
2r

1 x

y → λ
− 1

2r
2 y

,

then the integral becomes

Z2|2r = (λ1λ2)
− 1

2r

∫ +∞

−∞
dx

∫ +∞

−∞
dye

−x2r−y2r−2 ϵ√
λ1λ2

xryr



A.3 Di�erential approach 81

So, considering this result, together with (A.1), a good starting ansatz

for Z2|2r is

Z2|2r = (λ1λ2)
− 1

2r

[
1

r
Γ

(
1

2r

)]2
f

(
ϵ2

λ1λ2

)
, (A.23)

where f is a homogeneous of order zero in the couplings, such that

f(0) = 1.

In order to determine f we have to insert this ansatz into (A.21) and

derive a di�erential equation for it. After some tedious but straight-

forward algebra, a di�erential equation for f(t) is obtained, and reads:

4t(1− t)f ′′(t) + 2

(
1− 2

1 + r

r
t

)
f ′(t)− f(t)

r2
= 0 (A.24)

where t = ϵ2

λ1λ2
. Equation (A.24) can be recognized as the Euler's

hypergeometric di�erential equation, whose generic form is

t(1− t)f ′′(t) +
[
c− (a+ b+ 1)t

]
f ′(t)− abf(t) = 0.

In our case the parameters of the equation are a = b = 1
2r

and c = 1
2
.

So, the general solution satysfying the condition f(0) = 1 is given by

f(t) = 2F1

(
1

2r
,
1

2r
;
1

2
; t

)
+ α

√
t2F1

(
1

2r
+

1

2
,
1

2r
+

1

2
;
3

2
; t

)
, (A.25)

where α is an integration constant to be determined.

The quartic case r=2

If we set r = 2, then we know also the condition for t = 1 from the

result of the quartic spherical integral (A.5). In particular, we �nd that

taking the limit for t→ 1 this is �nite only for

α = − 4π2

Γ
(
1
4

)4 .
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This means that (A.25) becomes

Z = (λ1λ2)
− 1

4

[
1

2
Γ

(
1

4

)]2[
2F1

(
1

4
,
1

4
;
1

2
;x

)
− 4π2

Γ
(
1
4

)4√x2F1

(
3

4
,
3

4
;
3

2
;x

)]
.

The term in square brackets is proportional to a complete elliptic inte-

gral, and in particular we �nd

Z2|4 =

√
π

(λ1λ2)1/4
KE

(
1

2

(
1−

√
x
))
,

and hence

Z2|4 =

√
π

(λ1λ2)1/4
KE

(
1

2
− ϵ

2
√
λ1λ2

)
. (A.26)

The odd r case

When r is odd we can exploit another condition to determine α. Indeed,

we can argue that

∂Z

∂ϵ

⏐⏐⏐⏐
ϵ=0

= −2⟨xryr⟩ϵ=0 = 0.

This condition is translated into the requirement that f ′(t) is �nite

when t→ 0. This is true only for α = 0. Therefore, we have that

Z2|2r = (λ1λ2)
− 1

2r

[
1

r
Γ

(
1

2r

)]2
2F1

(
1

2r
,
1

2r
;
1

2
;
ϵ2

λ1λ2

)
, (A.27)

for r = 2k − 1, k ∈ N. An immediate consistency check is given by

setting r = 1, in which case we �nd

Z2|2 =
π√

λ1λ2 − ϵ2
,

which is the well known Gaussian result! The following plots illustrate

that the expression (A.27) agrees with the numerical estimates of the

integrals.
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Appendix B

Flow equations for the

anharmonic oscillator

In this appendix the �ow equation for the quantum anharmonic os-

cillator problem is derived for some speci�c regulators, for which the

integral appearing in (105) can be performed analytically.

B.1 The generalized Litim regulator with

b=2

Another interesting regulator is the generalized form of the Litim one:

r(y) =

(
1

yb
− 1

)
θ(1− y). (B.1)

Introducing this regulator into equation (5.4) then we obtain the fol-

lowing �ow equation:

∂kUk = −bU
′′
k

2π

∫ 1

0

yb−
3
2

k2 + U ′′
k y

b−1
dy. (B.2)

Here we can make the substitution t = αky
b−1, where αk = U ′′

k /k
2.

Then we get

∂kUk = − b

2π(b− 1)
α
− 1

2(b−1)

k

∫ αk

0

t
1

2(b−1)

1 + t
dt. (B.3)
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If we consider the case b = 2, then the �ow equation will �nally be

given by

∂kUk = − 2

π

[
1− k√

U ′′
k

arctan

(√
U ′′
k

k

)]
. (B.4)

The latter can be projected on the coe�cient of the 4th-order local

potential approximation, obtaining the following system of coupled dif-

ferential equations:

∂kE0,k = − 2

π

[
1− k

ωk

arctan

(
ωk

k

)]
, (B.5)

∂kω
2
k = − 1

π

[
− k2

ω2
k(k

2 + ω2
k)

+
k

ω3
k

arctan

(
ωk

k

)]
λk, (B.6)

∂kλk = − 3

2π

[
k2(3k2 + 5ω2

k)

ω4
k(k

2 + ω2
k)

2
− 3

k

ω5
k

arctan

(
ωk

k

)]
λ2k. (B.7)

B.2 The b=1 power regulator

Let's now change family of regulators, and consider the power law ones:

r(y) = y−b. (B.8)

Inserting the power regulator with b = 1 in (5.4) the �ow equation

becomes

∂kUk = −U
′′
k

2π

∫ ∞

0

1

U ′′
k + k2(1 + y)

1

1 + y

1
√
y
dy,

and hence we get

∂kUk = −1

2
+

1

2

k√
U ′′
k + k2

. (B.9)

The LPA �ow equations truncated to 4th order now read:

∂kE0,k = −1

2
+

1

2

k

(ω2
k + k2)1/2

, (B.10)
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∂kω
2
k = −λ

4

k

(ω2
k + k2)3/2

, (B.11)

∂kλk = −9λ2

8

k

(ω2
k + 2k2)5/2

. (B.12)

B.3 The b=2 power regulator

As a �nal example, consider again the power regulator, but this time

with b = 2. The �ow equation reads

∂kUk = −U
′′
k

π

∫ ∞

0

√
y

U ′′
k y + k2(1 + y2)

1

1 + y2
dy,

which after integration yields

∂kUk = − 1√
2

[
1−

√
2k√

U ′′
k + 2k2

]
. (B.13)

The �ow equations truncated to 4th order now read:

∂kE0,k = − 1√
2
+

k

(ω2
k + 2k2)1/2

, (B.14)

∂kω
2
k = −λ

2

k

(ω2
k + 2k2)3/2

, (B.15)

∂kλk = −9λ2

4

k

(ω2
k + 2k2)5/2

. (B.16)
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