
Politecnico di Torino
Department of Control and Computer Engineering

(DAUIN)

Master of Science in Mechatronic Engineering
Master Degree Thesis

Model Predictive Control of a Gear Actuator For
Dual Clutch Transmission Systems

Supervisors:
Prof. Vito Cerone
Prof. Massimo Canale
Prof. Diego Regruto Tomalino

Author:
Ahmed Hassan Abdelaziz Elhaddad

April 2018



Acknowledgement

I would like to express my deep gratitude to Prof. Vito Cerone, Prof. Mas-
simo Canale and Prof. Diego Regruto for their guidance, gracious support
and encouragement through out the thesis work. Their comprehensive advice
allowed me to achieve these results.

My grateful thanks are also extended to Valentino Razza for his generous
support in resolving challenging problems.

My sincere thanks to Centro Ricerche Fiat team for providing me such an
opportunity to join this thesis. I would like to express my strong appreciation
to Engineers; Emanuel Corigliano, Simone Baliva and Sabrina Spagnolo for
their extensive support. It was a very fruitful and an invaluable experience
to work with this team.

Finally, I would like to thank my family and friends for supporting me
spiritually and being by my side during this journey.

i



Abstract

Nowadays, Automotive manufacturers have devoted their researches
to enhance the efficiency of the transmissions with a mind to the fu-
ture taking into consideration ride quality and fuel conservation at
the same time. Automated Manual Transmission (AMT) has been
introduced before offering a good compromise between Manual Trans-
mission (MT) and Automatic Transmission(AT) offering high trans-
mission efficiency with less fuel consumption. The AMT consists of a
clutch with added-on control unit that control the gear shifting oper-
ations. However, the main problem of AMT is the torque interruption
that effects the ride quality.

A remarkable result of transmissions development is the Dual Dry
Clutch Transmission (DDCT). The DDCT basically consists of two
independent transmission lines one is devoted for the shifting of the
odd gears while the other is responsible for the even gears. Indeed, the
theory of using two independent gearboxes can result in elimination
of the torque interruption improving traction without interruption.

According to the literature, the problems appeared with the inven-
tion of DDCT are the management of the dual clutch in the launch
phase and the gearshift phase. The aim of this thesis, developed in
collaboration with Centro Ricerche Fiat (CRF) in Torino, Italy,
is to design a controller for the even clutch actuator (K2-actuator)
to track different pressure trajectories during the gear shifting phase.
The purpose of controlling the K2-actuator is to guarantee smooth-
ness during the gear shifting process without any torque interruption
that can lead to discomfort to the driver.

This Thesis consists of two main phases. The first phase is to
identify the K2-actuator by using system identification methodology
to build a mathematical model that represents the dynamics of the
system since there is not any priory model available to represent the
dynamics K2-actuator. The second phase is to use the identified model
in controlling the pressure to guarantee a good compromise between
tracking the predefined pressure trajectories. Thus, various control
architectures are considered to control the K2-actuator starting from
Multiple Model Predictive Controllers (MPC) based on Multi models,
Adaptive Model Predictive Control (MPC) and finally Adaptive Lin-
ear Quadratic Regulator (LQR).
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MATLAB and SIMULINK are exploited to identify and control the
K2-actuator consequently. Moreover, extensive simulations are carried
out to decide which control architecture is better to be deployed on
the Electronic Control Unit (ECU) of the DDCT.
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1 The Dual Dry Clutch Transmission (DDCT)

1.1 Introduction

In automotive vehicles, transmission system is a fundamental part that con-
verts the power from the engine into vehicle traction with the highest effi-
ciency possible that suits the vehicle, the surface, the driver and the envi-
ronment. The transmission has to be designed guaranteeing a good balance
between the number of speeds, climbing performance, acceleration and fuel
consumption of the vehicle.

The most common widely used transmissions for the passenger cars are
the Manual Transmission (MT) and the Automatic Transmission (AT). In the
USA, the favorable design for Passengers cars is the conventional Automatic
Transmission (AT) where 75 to 85 % of the passengers cars are equipped
by the Automatic Transmission system. On the other hand, the Europeans
prefer to use the Manual Transmission design where around 85 % of the cars
are found to be equipped by the Manual Transmission (MT) design [4].

Each design has an advantage over the other. For instance, The Manual
Transmission ensures high efficiency, low cost and full control of the drive,
while on the other hand the Automatic Transmission guarantees smooth
transition during shifting between the gears. This improvement comes over
the price of the fuel consumption.

In this context, in order to make a good compromise between the Manual
Transmission(MT) and the Automatic Transmission (AT), the Automated
Manual Transmission(AMT) has been introduced combining the features of
the Manual and the Automatic Transmissions together ensuring high trans-
mission efficiency in terms of fuel consumption and the add-on costs. How-
ever, the drawback of the Automated Manual Transmission (AMT) that
torque interruption exists during the gear shifting which causes bumpy feeling
during changing the speed of the car. Thus, The Dual Clutch Transmission
(DCT) has been developed to attenuate the torque interruption.
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1.1.1 History of Dual Clutch Transmission (DCT)

The Dual Clutch Transmission (DCT) had a great impact on the Automotive
industry over the last few decades in terms of enhancing the performance of
traction of an Automobile car and minimizing waste energy. The Dual Clutch
Transmission was invented by Adolphe Kgresse a french military engineer be-
fore starting the World war II, it was never deployed on an automobile though
until Harry Webster a British automotive Engineer came and developed the
design of the DCT in 1980 at Automotive product, Leamington Spa to be
deployed on Ford Fiesta Mk1, Ford Ranger, and Peugeot 205.

Figure 1: Dual Clutch schematic Diagram

1.1.2 DCT principal of operation

The DCT has two conventional clutches, one is dedicated for the switch-
ing of the odd gears while the other is dedicated for the even gears. The
DCT consists essentially of two transmissions, each one with its own clutch
working in Parallel. The gear shifting is performed automatically by gradual
but very rapid switching between the two clutches. The power of the DDCT
that it put an end to the usage of the Torque converter that is used in the
traditional transmissions. Unlike Manual or Automatic Transmissions which
momentary disconnect the Engine from the Wheels while changing gears
which cause traction interruption , the DCT maintain traction constant dur-
ing gear shifting which guarantee excellent power transmission smoothness
and Efficiency. Clutches and Gears are actuated by a compact super fast
electrohydraulic system. This electrohydraulic system is responsible to con-
vey pressurized oil by means of solenoid valves that actuates the fork that
selects the speeds. The Pressure required for actuation is generated by an
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electrical pump which is only operated when needed to minimize the waste
energy.

1.1.3 Types of Dual Clutch Transmission

DCT can be found in two forms either . The first form is wet dual clutch
transmission that uses oil as a coolant during the meshing of the gears. The
Wet dual clutch transmission is quite common in Automotive cars that its
engines produces high torque. The second type is the Dual Dry Clutch
Transmission (DDCT) which basically uses the friction to mesh between
the gears where the DDCT can be found with Automobile that has low
torque engines. The advantage of using a dry clutch over wet clutch that
it increases fuel efficiency by decreasing the pumping losses of the hydraulic
fluid in the transmission housing, however the wet clutch is better in terms
of torque efficiency. This thesis reports the Dual Dry Clutch Transmission
(DDCT) invented by Fiat Power-Train Technologies that belongs to the C635
Transmission Family. The Fiat’s C635 DDCT was released in 2010 with front
wheel drive, all wheel drive and manual versions. It can supply torque up to
350 N.m and weighs around 82 K.g including the Electronic Control Unit
and the oil of the electrohydraulic system.

Figure 2: C635 MT and DDCT versions

1.1.4 Electro-hydraulic Actuation System

The C635 DDCT clutches and gear shifting mechanisms are electro-hydraulically
actuated through a dedicated, sealed hydraulic oil circuit. The Actuation
system consists of a hydraulic power unit (PU) that composed of a pump
and an accumulator and the actuation module (CAM,figure 3). The CAM
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module contains the control solenoid valves, gear shift actuators and sensors.
The hydraulic oil used (Cspeed) has the same characteristics of the current
FPTs Automated Manual Transmissions (AMTs).

(a) (b)

Figure 3: (a) Hydraulic Power Unit (PU), (b) Complete Actuation Model
(CAM)

The clutch and gear actuation module (CAM) consists of:

- Four distinct double action cylinder operating the gear engagement
forks.

- One shifter spool which selects the piston to be actuated.

- Five solenoid valves of which 4 are Proportional Pressure Valve (PPV)
and one as Flow Pressure Valve (QPV).

The first PPV valve is responsible to control the spool that selects the needed
doubling acting cylinder for gear engagement. The two other PPVs actuates
the selected double action cylinder. The fourth PPV is used to control the
K2-clutch CSC for the even gears while the QPV used to control the the
distance of the K1-clutch devoted for the odd gears. All solenoid valves
are direct derivatives of those currently used in FPTs AMT systems and,
therefore, employ well proven technology and guarantee robustness. The
Actuation Module also comprises 5 non-contact linear position sensors, one
for each shifting piston and one for the shifter spool, as well as two speed
sensors reading the speed of the two primary shafts. Finally, one pressure
sensor is used for the control of the K2 clutch and one for the system pressure
monitoring and control.

4



Figure 4: Complete Actuation System (CAS)

1.1.5 C635 DDCT control unit

The C635 DDCT control strategies have been developed by FPT and run in
a multitasking environment in order to meet the frequency requirements of
the control loops that they implement, preserving at the same time the Main
Micro Controller resources. They can be grouped as described below: Actu-
ator controls: Based on the experience of many AMT systems in production,
the actuator control strategies exploit the high performance attainable with
electro-hydraulic actuators. The main control strategies concern:

- Engagement actuators control: based on a force/speed control con-
cept, the desired profiles are realized by commanding the two relevant
PPVs one against the other.

- Shifter (selector) control: hydraulic power to the required engage-
ment actuator is guaranteed by a fast and precise control of the shifter.
The related PPV is commanded to push the shifter piston against a
spring in order to reach one of the four desired positions. Continuous
monitoring of the selector position guarantees the required safety level.

- Odd gears clutch controls: the normally closed clutch (K1) is con-
trolled by a position closed loop. This is the clutch of the first and of
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the reverse gear; therefore, this control strategy is essential also for the
vehicle starting performance.

- Even gears clutch: the normally open clutch (K2) is controlled in
force with a pressure feedback signal delivered by one of the CAM sen-
sors.

- Self-tuning controls: FPTs DDCT control system has, clearly, many
self-tuning controls in order to compensate for the various parameters
drift and to adapt the same high-level calibrations to all vehicles. The
main self-tuning control algorithms concern the conversion of the re-
quested clutch transmitted torque to K1 position and K2 pressure.

- Launch and gear shift strategies: The C635 DDCT implements
various driving modes, depending on the desired performance and Brand/
OEM requirements, both in manual and in automatic mode. Three
different modes of shift patterns in automatic and two different ones
in manual (tip) mode are contemplated and are accomplished also by
specific control strategies and calibrations on the engine side. Vehi-
cle creeping on brake release is also implemented, together with the
braking systems hill holding functions.

1.2 K2-actuator

The aim of this thesis is to control the pressure applied to the even gears
clutch by controlling the dual clutch K2-actuator through designing a Model
predictive control to track a predefined pressure reference signals. Pressure
is measured by a pressure sensor applying a feedback controller signal to the
controller which is crucial in order to obtain the control objectives.

1.2.1 Proportional Pressure Control Valve

Proportional Pressure Control valves (PPV) are easily controlled using a
solenoid coil. A valve is considered open when the solenoid is supplied with
electric current and closed when the coil is de-energized. The proportional
valve produces an output (direction, pressure, flow) that is proportional to
the control input(electric current). The PPV can be utilized using different
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ways of control techniques depending on the type of the application. PPV
can be controlled using open loop control system where no feedback from
the output of the valve is taken into consideration in the control circuit.
On the contrary, PPV can be controlled using an Electronic control unit
that computes the control input providing high accuracy of control over the
pressure. The feedback is received from a pressure transducer providing high
accuracy. This allows the spool of the PPV to be stopped at intermediate
positions according to the input electric current applied to the solenoid coil.

1.2.2 Pressure Control and Dead Zone

Most PPVs use varying electric current as a control variable instead of vary-
ing voltage. The reason behind that is to avoid the influence of the tem-
perature variation on the electric current since the resistance of the solenoid
coil changes within the fluctuation of the temperature. Thus, current control
system is devoted to eliminate this problem.

Figure 5: Schematic section of a PPV

It is possible to control the pressure by controlling the flow of the hy-
draulic fluid through the orifice of the PPV. By applying the force to a
compression spring, its deflection can be controlled. If the spool in a valve
(as shown in figure 5) is acted on by a spring at one end and a proportional
solenoid on the other, the orifice size can be varied along with the control cur-
rent. The flow from the valve is proportional to the current flowing through
the solenoid. Because of the difficulties in producing a zero lap spool, over-
lapped spools are used in proportional spool valves. This means that the
spool has to move a distance equal to the overlap before any flow occurs
through the valve, giving rise to a dead zone (as shown in figure 6).
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Figure 6: Flow current characteristics of a PPV

1.2.3 Control objectives and performance requirements

The design specifications requested by Centro Ricerche Fiat (CRF) is to
track the pressure at different steps references with the following performance
requirements:

- overshoot: ŝ ≤ 10%

- rising time: Tr ≤ 120 ms

- settling time: Tsettling5% ≤ 120 ms

- steady steady error for constant reference: |e∞r | = 0

- Input current: 0% of Umax ≤ u ≤ 100% of Umax

- pressure: 0% of Pmax ≤ P ≤ 100% of Pmax

Where Pmax and Umax in the following, will denote the maximum values
of respectively the current and the pressure operating ranges.

Yet, the greatest challenge to reach the control objective is to identify
first the K2-actuator since there is no any prior model available to represent
the system. In control system a good mathematical model that represents
the dynamics system is crucial to be able to meet the performance require-
ments. Hence, the K2-actuator will be considered as black box and system
identification methodology is going to be exploited to build a mathematical
model that properly represents the dynamics of the system.

8



2 Model Predictive Control for DDCT

This chapter is devoted to illustrate the main conceptual theory behind
Model Predictive Control (MPC) as well as the formulation to track a de-
sired reference signal with constraints applied on the system to achieve the
performance requirements defined in (1.2.3).

Nowadays, Model-Based Predictive Control (MPC) is the most popular
efficient controller that has a great impact over a wide range of applications
in different engineering fields especially for chemical industries. The power of
MPC arises due the efficiency in handling the constraints with achieving high
performance in the mean time. These features are conditioned by explicitly
considering the model of the system to obtain the control action as a result
of of a constrained optimization problem.

Fundamentally, The MPC architecture uses the system’s model to predict
its dynamic behavior over a finite prediction steps and to solve a constrained
optimization problem based on the predicted behavior to compute the op-
timal control action at the current time. The computation for the optimal
control action can be quite intensive for large prediction horizon. Never-
theless, the great impact of technology on computers and microprocessors
allowed Model predictive control to be applied in faster system like automo-
tive applications as well as chemical applications. The MPC architecture is
composed of ( refer to figure 7) :

- Optimizer

- Cost function and Constraints

- Prediction model

- The controlled System

All these aspects will be explained in the following sections of this chapter
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Figure 7: Generic Scheme of MPC

The merit of exploiting MPC architecture can summarized as follows:

- The possibility to explicitly include constraints on the control input
and the states variables.

- The capability to handle multi-variable control problem.

- The formulation of the optimization problem allows to trade off between
different objectives by tuning some critical parameters.

2.1 Non-Linear time invariant system

2.1.1 Prediction for Non-Linear Time invariant System

The prediction model is represented by a discrete time, non linear, time
invariant state space representation of the following form:

x(k + 1) = f(x(k), u(k)) f ∈ C1

y(k) = g(x(k), u(k)) g ∈ C1 (2.1)

where:
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- x(k) ∈ Rn is the state variable

- y(k) ∈ Rp is the output of the system

- u(k) ∈ Rm is the control input

The prediction of the model takes place by considering the evaluation of
the states formulated in (2.1) starting from a time instant k over a finite
prediction horizon Hp. In this context, all state variables x(k) are assumed
to measurable.

2.1.2 Cost function and optimization problem for Non-Linear Time
Invariant system

The MPC is based on solving a constrained optimization problem that min-
imizes a cost function over a defined finite prediction horizon Hp. The cost
function can be expressed as:

J(x(k|k), U(k)) =

Hp−1∑
i=0

L(x(k + i|k), u(k + i|k)) + Φ(x(k +Hp|k)). (2.2)

where:

- Hp is the prediction horizon interval

- x(k|k)= States measurements at current time k.

- x(k+i|k) is the ith step ahead state prediction, obtained using model(2.1)

- U(k) =
[
U(k|k) U(k + 1|k) . . . U(k +Hp − 1|k)

]T
is the command

input sequence to be optimized.

- L(.)= Per-stage weighting function.

- Φ(.)= Terminal state weighting function.

L(.) and Φ(.) are considered as design parameters to achieve the required
performance defined in section.
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The general formulation of the optimal control can be expressed as :

U o = arg min
U

J(U, x(k))

s.t

x(k + 1) = f(x(k), u(k))

x(k + i|k) ∈ X , i = 1, · · · , Hp − 1

u(k + i|k) ∈ U , i = 0, · · · , Hp − 1

x(k + i|k) ∈ Xf

(2.3)

where:

- X and U are the input and state constraints sets respectively that are
assumed to be convex.

- Xf is the terminal constrain set introduced in the optimization problem
to ensure asymptotic stability (more details in [12])

- U o(k) =
[
U o(k|k) U o(k + 1|k) . . . U o(k +Hp − 1|k)

]T
2.2 Linear time invariant system

2.2.1 Prediction for linear time invariant system

similarly, the prediction model (2.1) can be formulated as well as for a Linear
Time Invariant (LTI) discrete time system, described by the following state
space representation:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
(2.4)

where A ∈ Rn,n, B ∈ Rn,m and C ∈ Rn,p

Hence, the ith step ahead prediction state x(k + i|k) for a LTI system is
given by:

x(k + i|k) = Aix(k|k) + Ai−1Bu(k|k) + Ai−2Bu(k + 1|k) + · · ·+Bu(k + i− 1|k).

= Aix(k|k) +
i−1∑
j=0

Ai−j−1Bu(k + j|k)

(2.5)
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Hence, the prediction model (2.5) depends only on the current state x(k|k)

and on the control sequence U(k) =
[
U(k|k) U(k + 1|k) . . . U(k +Hp − 1|k)

]T
2.2.2 Input and states Constraints

Control Input and state constraints U and X are usually modeled as sets of
inequalities.
U is often chosen to introduce input actuator saturation and slew rate con-
straints. These constrains can be formulated as:

Umin ≤ u(k + i|k) ≤ Umax, i = 1, 2, · · · , Hp − 1

∆Umin ≤ ∆u(k + i|k) ≤ ∆Umax, i = 1, 2, · · · , Hp − 1
(2.6)

where:

- Umin is the constraint vector associated with the minimum control in-
put.

- Umax is the constraint vector associated with maximum control input.

- ∆Umin is the constraint vector associated with the minimum control
input increment.

- ∆Umax is the constraint vector associated with the maximum control
input increment.

In order to clarify more this context, for simplicity Hp = 2 is considered.

Hence, the control command input U(k) =
[
u(k|k) u(k + 1|k)

]T
is sub-

jected to the following control input constraints:

Umin ≤ u(k + i|k) ≤ Umax

Umin ≤ u(k + 1|k) ≤ Umax
(2.7)
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After some rearrangements , Control input constraints (2.7) is formulated as:[
1 0
0 1

] [
u(k|k)

u(k + 1|k)

]
≤
[
umax

umax

]
[
−1 0
0 −1

] [
u(k|k)

u(k + 1|k)

]
≤
[
umin

umin

]

⇒
[
I
−I

]
︸ ︷︷ ︸
LU

[
u(k|k)

u(k + 1|k)

]
≤


umax

umax

umin

umin


︸ ︷︷ ︸

Wu

⇒ LuU(k) ≤ Wu

(2.8)

Moreover, through some manipulations, the constrains associated with the
control input increment can be expressed as:

L∆uU(k) ≤ W∆u (2.9)

By combing constrains 2.7 and 2.9, the linear inequality constraints of the
control input can be formulated as:

LUU(k) ≤ WU (2.10)

where LU and WU are matrices that represents the linear constrain on the
control input.

Further, the state constraints X can be taken into consideration during
the prediction of the states. This is crucial to limit the response of state vari-
ables and/or output variables to not exceed a predefined value. For instance,
to limit the overshoot during the transient phase to satisfy the performance
requirements.

likewise, the state variables that subjected to state constraints can be
formulated as :

xmin ≤ x(k + i|k) ≤ xmax, i = k, · · · , Hp (2.11)

By considering the same previous example (2.7) such that Hp = 2, the pre-
dicted state that subjected to constraints can be written as :

Lx1x(k + 1|k) ≤ Wx1

Lx2x(k + 2|k) ≤ Wx2

(2.12)
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Further, by substituting the step ahead prediction state (2.5) in both, we
have:

Lx1(Ax(k|k) +Bu(k|k)) ≤ Wx1

Lx2(A2x(k|k) + ABu(k|k) +Bu(k + 1|k)) ≤ Wx2

(2.13)

By applying some rearrangements , (2.13) can be written as:

LxU(k) ≤ Wx (2.14)

where:

Lx =

[
Lx1 0
0 Lx2

] [
B 0
AB B

]
Wx =

[
−Lx1 0

0 −Lx2

] [
A
A2

]
x(k|k) +

[
Wx1

Wx2

] (2.15)

2.2.3 Quadratic Programme(QP) optimization Problem

As has been discussed in section 2.1.2, MPC is based on solving an optimiza-
tion problem that subjected to linear constraints. Recalling the cost function
2.2 associated with the optimization problem:

J(x(k|k), U(k)) =

Hp−1∑
i=0

L(x(k + i|k), u(k + i|k)) + Φ(x(k +Hp|k)). (2.16)

It is crucial to choose the form of the cost function 2.16 the allows the MPC
to reach the control objectives. For instance, for output or states regulations,
a common choice is to formulate the weighting functions L(.) and Φ(.) in a
quadratic form as below.

L(.) = x(k + i|k)TQx(k + i|k) + u(k + i|k)TRu(k + i|k), i = 0, · · · , Hp − 1

Φ(.) = x(k +Hp|k)Px(k +Hp|k)

(2.17)

where Q ≥ 0, R > 0 and P ≥ 0 are suitable matrices to be defined to reach
the control objectives.
By substituting (2.17) in (2.16), the cost function be rewritten as :

J(x(k|k), U(k)) =

Hp−1∑
i=0

x(k + i|k)TQx(k + i|k) + u(k + i|k)TRu(k + i|k)

+ x(k +Hp|k)TPx(k +Hp|k)

(2.18)
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This is to say, a Quadratic Programme optimization problem arises when
the following characteristics take place [17]:

- a quadratic cost function as in (2.18)

- a LTI prediction model as in (2.5)

- linear input and slew rate constraints as in (2.8) and (2.14)

In this context, in the following it will be shown that :

1. the cost function (2.18) is quadratic with respect to optimization vari-
able U(k)

2. input and state constraints (2.8) and (2.14) can be rearranged in a
unique linear constraint with respect to U(k)

By recalling equation (2.5),

x(k + i|k) = Aix(k|k) + Ai−1Bu(k|k) + Ai−2Bu(k + 1|k) + · · ·+Bu(k + i− 1|k).

= Aix(k|k) +
i−1∑
j=0

Ai−j−1Bu(k + j|k)

(2.19)

the sequence of the predicted states can be expressed as:

X(k) = [x(k|k), x(k + 1|k), · · · , x(k +Hp − 1|k)]T

X(k) = Ax(k|k) + BU(k)
(2.20)

where:

A =


A
A2

...
AHp

 ,B =


B 0 0 · · · 0
AB B 0 · · · 0
· · · · · · · · · · · · · · ·

AHp−2B AHp−3B AHp−4B · · · B̂
AHp−1B AHp−2B AHp−3B · · · AB


and by defining matrices Q and R
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Q =


Q 0 · · · 0

0
. . . . . .

...
...

. . . Q 0
0 · · · 0 P

 ∈ RnHp×nHp , R =


R 0 · · · 0

0 R
. . .

...
...

. . . R 0
0 · · · 0 R

 ∈
RmHp×mHp

the cost function (2.18) can be rewritten as :

J(x(k|k), U(k)) = X(k)TQX(k) + UTRU(k) (2.21)

by substituting expression X(k) (2.18) in equation (2.21) and after some
manipulations, we get such quadratic form:

J(x(k|k), U(k)) =
1

2
UT (k)HU(k) + xT (k|k)fU(k) + J (2.22)

where:

H = 2(BTQB +R)

f = 2ATQB
J = xT (k|k)ATQAx(k|k)

(2.23)

Principally, H is the Hessian matrix which is positive definite such that
H > 0.

As has been discussed in section 2.2.2, the control input and linear state
constraints can be expressed as:

LuU(k) ≤ Wu

LxU(k) ≤ Wx

By combining both input and state constraints, we get:

LU(k) ≤ W (2.24)

where L = [Lu, Lx]
T and W = [Wu,Wx]

T represent a set linear constrain on
U(k).
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To sum up, the optimization problem associated with the MPC can be
formulated as the following Quadratic Programming problem :

U o = arg min
U(k)

1

2
UT (k)HU(k) + xT (k|k)fU(k)

s.t

LU(k) < W

(2.25)

According to the literature, such QP formulations ensure that the optimiza-
tion problem is convex and the optimal solution can be satisfactorily com-
puted through different numerical algorithms such as:

- ”active” set algorithm [13],

- ”Prime-dual” interior point algorithms [13],

Furthermore, new algorithms have been introduced recently ensuring effi-
ciency in terms of online computation of the MPC. Some of these algorithms
are:

- The Partial enumerator methodology [14],

- The modified active set method [15],

- The approximate barial solution [16],

Moving to another context, in case of the absence of the constraints, an
explicit solution for the optimal control input sequence U o can be found by
minimizing the cost function (2.22) such that:

U o = −H−1fx(k|k) (2.26)

The optimal control input sequence U o has to be computed for all the
finite prediction steps Hp. In this context, for High values of HP , the
computation of the optimal control sequence becomes significantly inten-
sive. In order to solve this problem a possible solution is to optimize the
the cost function (2.18) with a reduced number of finite steps such that
U(k) = [u(k|k), u(k+ 1|k), · · · , u(k+Hc− 1|k)]T where Hc ≤ HP is referred
as the Control Horizon. In case Hc < HP the remaining Hp − Hc control
input command U(k) = [u(Hc|k), u(Hc + 1|k), · · · , u(k +Hp − 1|k)]T can be
chosen :
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1. u(k + i|k) = 0 Hc ≤ i ≤ Hp − 1,

2. u(k + i|k) = u(k +Hc|k) Hc ≤ i ≤ Hp − 1,

3. u(k+ i|k) = −Fx(k+ i|k) Hc ≤ i ≤ Hp− 1 where F ∈ Rn is the gain
of stabilizing feedback gain.

2.2.4 Receding Horizon (RH) principle

Finite horizon(FH) optimization results in optimal control sequence obtained
from equations (2.25) and (2.26) which starts from at current time i and ends
at HC−1. The optimized control sequence corresponds to an open loop con-
trol technique. However, open loop control strategy has potential drawbacks
, it is well known that such control technique is highly non robust due to
modeling errors, parameter uncertainties or disturbances. Thus, closed loop
is applied by considering the Receding Horizon (RH) Principle is going to be
exploited to overcome such limitations. The RH principle can be summarized
in the following:

1. get the state x(k) = x(k|k)

2. get the optimal control sequence by solving the optimization problem
over the interval [k, k +HP − 1].

3. apply the first step of the optimal control sequence.

4. Repeat the finite optimization problem by moving to time k + 1 and
predict over the interval [k + 1, k + HP ] considering the current state
x(k + 1).
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Figure 8: Scheme of static feedback control law

from equation (2.22), it is obvious the cost function J(.) depends only on the
current state x(k|k) = x(k). Thus the computed control input u(k) at time
k is equal to :

u(k) = uo(k|k) = uo(k|k) = uo(x(k|k)) = uo(x(k)) (2.27)

Therefore, RH principle implicitly introduces a state feedback control law in
the form U(k) = K(x(k)). Figure 8 shows the principle of applying a state
feedback control law.

2.2.5 Tracking Problem

In order to track a desired pressure reference, the cost function can be mod-
ified taking into account the reference Pref (k) into the formulation:

J(P (k|k), U(k)) =

Hp−1∑
i=0

(Pref (k + i|k)− Cx(k + i|p))TQp(Pref (k + i|k)− Cx(k + i|p))

+ u(k + i|k)TRu(k + i|k)

(2.28)
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The optimization problem (2.25) tries to eliminate the tracking error of the
states variables ‖Pref (k+i|k)−Cx(k+i|k)‖. However, due to the presence of
uncertainties in the system, it is common to find a steady state error, even for
tracking constant references. A possible solution to overcome this problem,
is to include integral action to eliminate the steady state error. This is will
be discussed in the next sections.

2.2.6 Explicit integral action

In control theory, in order to achieve a good response in terms of tracking
a constant reference, an integral action should be taken into consideration.
Integral action is a common approach to eliminate steady state error such
that the integral term of the tracking error is taken in consideration as an
extra state variable. The tracking error in the discrete time form is:

e(k) = Pref (k)− P (k) = Pref (k)− Cx(k) =
q(k + 1)− q(k)

Ts
(2.29)

Where P (k), Ts are the output pressure and sampling time respectively.

Hence, the integral term of the tracking error is:

q(k + 1) = q(k) + Ts(Pref (k)− Cx(k)) (2.30)

Consequently, the state equation is augmented in following form:[
x(k + 1)
q(k + 1)

]
︸ ︷︷ ︸

x̂(k+1)

=

[
A 0
−TsC 1

]
︸ ︷︷ ︸

Â

[
x(k)
q(k)

]
︸ ︷︷ ︸

x̂

+

[
B
0

]
︸︷︷︸
B̂

u(k) +

[
0
Ts

]
r(k)

ŷ(k) =
[
C 0

]︸ ︷︷ ︸
Ĉ

[
x(k)
e(k)

] (2.31)

where:

- Â, B̂ and Ĉ are the augmented state matrices.

- x̂ is the augmented state variables.
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Figure 9: MPC schematic diagram with integral action

Accordingly, the cost function (2.28) is modified to the following :

J(P (k|k), U(k)) =

Hp−1∑
i=0

(Pref (k + i|k)− P (k + i|p))TQp(Pref − P (k + i|p)))

+ q(k + i|k)TQintq(k + i|k) + u(k + i|k)TRu(k + i|k)

s.t

Pmin(k + i|k) ≤ P (k + i|k) ≤ Pmax(k + i|k), i = 1, 2, · · · , Hp − 1

Umin ≤ u(k + i|k) ≤ Umax, i = 1, 2, · · · , Hc − 1

∆Umin ≤ ∆u(k + i|k) ≤ ∆Umax, i = 1, 2, · · · , Hc − 1

(2.32)

where:

- Pmin and Pmax are the minimum and maximum pressure constraints
associated with the overshoot ŝ defined in (1.2.3).

- Qint is a tuning parameter adopted to regulate the tracking error. High
values of Qint ensures that the tracking error converges to zero faster
with a strong command action. However, the higher the Qint, the more
aggressive is the system response.

2.2.7 Implicit integral action

Another method to include an integral action in the formulation of the MPC
is to optimize the cost function based on the increment of the Control input
∆u by considering the control input ∆u. By considering the previous control
input valueu(k − 1) as an extra state variable, an implicit integral action is
imposed to derive a control input u(k) to the system as shown in figure 10.

22



This results in eliminating the steady state error.

In this context the state space matrices are augmented in the following
form:

x(k + 1) = Ax(k) +Bu(k) (2.33a)

y(k) = Cx(k) (2.33b)

x(0) = x0 (2.33c)

∆u(k) = u(k)− u(k − 1) (2.33d)

By substituting equation (2.33d) in (2.33b) ,we get:[
x(k + 1)
u(k)

]
︸ ︷︷ ︸

x̂(k+1)

=

[
A B
0 I

]
︸ ︷︷ ︸

Â

[
x(k)

u(k − 1)

]
︸ ︷︷ ︸

x̂

+

[
B
1

]
︸︷︷︸
B̂

∆u(k)

ŷ(k) =
[
C 0

]︸ ︷︷ ︸
Ĉ

[
x(k)

u(k − 1)

] (2.34)

Where:

- Â, B̂ and Ĉ are the augmented state matrices.

- x̂ is the augmented state variables.

Figure 10: MPC schematic diagram with integral action based on the input
increment

23



Hence, the objective function can be formulated as follows:

J(P (k|k),∆U(k)) =

Hp−1∑
i=0

(Pref (k + i|k)− P (k + i|k))TQp(Pref (k + i|k)− P (k + i|k))

+ ∆u(k + i|k)TR∆u(k + i|k)

∆U(k) =
[
∆u(k|k) ∆u(k + 1|k) . . . ∆u(k +Hc − 1|k)

]T
s.t

Pmin(k + i|k) ≤ P (k + i|k) ≤ Pmax(k + i|k), i = 1, 2, · · · , Hp − 1

Umin ≤ u(k + i|k) ≤ Umax, i = 1, 2, · · · , Hc − 1

∆Umin ≤ ∆u(k + i|k) ≤ ∆Umax, i = 1, 2, · · · , Hc − 1

(2.35)
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3 Multi-MPC based on multiple Hammerstein

models

As has been discussed in chapter 1, it is crucial to represent the K2-actuator
with a mathematical model that represents the dynamics of the system. The
identification of K2-actuator is based on measured data provided by Cen-
tro Ricerche Fiat(CRF). MATLAB system identification tool box is used to
identify the system.

3.1 Hammerstein system

The presence of the dead zone as discussed in section 1.2.2, non linearity
plays a big role in our system. The K2-actuator can be considered as a
Hammerstein system. A Hammerstein model consists of a static non-linear
function followed by a Linear Time Invariant (LTI) system as shown in the
below figure.

Figure 11: Hammerstein system block diagram

Where:

- N : is a static nonlinear function.

- w(k): is the intermediate variable which is the output of the nonlinear
function such that w(k) = N(u(k)). w(k) has the same dimensions of
u(k).

- G(z): Discrete Linear Time Invariant system where G(z) is the ratio
between of the the output of the system y(k) and the intermediate

variable w(k) such that G(z) = y(z)
w(z)

.
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3.1.1 Identification

Two different data sets have been provided by CRF during different working
conditions. One data set can be used for identifying the K2-actuator while
the other can be used for validating the identified model or vice versa.
As has been discussed, MATLAB System Identification Toolbox is exploited
to identify the K2-actuator. In MATLAB System Identification Toolbox,
the feature of estimating nonlinear models has been chosen considering the
system as a Hammerstein model such that the nonlinear part behaves as dead
zone. After running several simulations and by trial and error approach, we
have identified the model based on the on the following structure:

- Nonlinear Part is described as a dead zone until [0%, 38.99676%] of
Umax. After then, the intermediate variable w increases linearly with
respect to the input current.
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Figure 12: Static non-linearity of the dead zone

- Linear Part:

G(z) =
y(z)

w(z)
=

β

z + α
(3.1)

where α = −0.9939 and β = 4.1746e− 04
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3.1.2 Validation

The identified model has been validated using the same the input-output
data used for the identification procedure. As shown below in figure 13, the
estimated output is able to track the measured output data. Correspondingly,
the absolute error of the estimated output is about 5.6250% of Pmax as shown
in figure 14.
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Figure 13: Estimated output vs measured output - ramp reference
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Figure 14: Error of the estimated output- ramp reference

The second data set; the steps profile is used to validate the identified
model as well, however unlike the previous data set, the estimated output is
not able to catch the measured output data for the whole working conditions
as shown in figure 15. Consequently, the absolute error of the estimated
output increased dramatically recording 80.85% of Pmax as shown in figure
16.
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Figure 15: Estimated output vs measured output - steps reference
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Figure 16: Error of the estimated output- steps reference
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3.2 Multi-Hammerstein models

Based on the validation results of the identified Hammerstein model in the
previous section 3.1.2 that the estimated output was not able to catch the
measured output in different operating conditions. Multiple Models approach
will be considered in the next section to represent the K2-actuator in varying
working conditions.

3.2.1 Identification of multiple Hammerstein models

The second input-output data set that represents the steps profiles will be
subdivided into 3 data sets to represent the K2-actuator in the following
working conditions:

- Low Pressure [0%,12.5%] of Pmax.

- Medium Pressure [12.5%,50%] of Pmax.

- High Pressure [50%,100%] of Pmax.

Hence, 3 different Hammerstein models will be identified to represent the
K2-actuator for the entire pressure range. Accordingly, the K2-actuator will
be represented as the structure illustrated in the below figure 17.

Figure 17: K2-actuator represented in Multi-Models approach

Likewise, the identification of the multiple models follow the same proce-
dure of identifying a single model as has been discussed in section 3.1.1 by
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utilizing the nonlinear models features provided by MATLAB System Iden-
tification Toolbox.

Each data set is exploited separately to identify a unique Model that
corresponds to a particular working conditions. By considering the nonlinear
part as a dead zone and the linear model made up of 1st order transfer such
that:

Gn(z) =
y(z)

w(z)
=

βn
z + αn

n = 1, 2, 3 (3.2)

We are able to identify 3 different models that satisfy the whole working
conditions.

- First Hammerstein Model

* Non-Linear Model
Dead zone interval :[0%,33.70901%] of Pmax
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* Linear Model

G1(z) =
0.001225

z − 0.9717
(3.3)

- Second Hammerstein Model
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* Non-Linear Model
Dead zone interval :[0%,36.7.92%] of Pmax
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* Linear Model

G2(z) =
0.001635

z − 0.9711
(3.4)

- Third Hammerstein Model

* Non-Linear Model
Dead zone interval : [0%,42.1179%] of Pmax
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* Linear Model

G3(z) =
0.003533

z − 0.9513
(3.5)

3.2.2 Multi-Model MPC Controller

Forthwith identifying the Multi-Models that satisfy the wide range of op-
erating conditions, multiple MPC controllers have been tuned in order to
meet the performance requirements of the system. Basically, Multiple MPC
is fundamentally utilizing Gain Scheduling technique to control a nonlin-
ear plant that operates over a wide range of operating conditions. Multiple
MPC switches between the pre-tuned controllers according to a predefined
logic that detect the suitable controller that fit that particular operating
condition range noting that each of these controller is tuned based on one
of the three identified models that have been discussed before with different
weighting functions.

11 controllers have been designed to satisfy the whole range of operating
conditions by exploiting the 3 identified model such that:

- 1st, 2nd and 3rd controllers are dedicated to control the 1st model that
represents the K2-actuator at low pressure.

- 4th, 5th, 6th, 7th, 8th and 9th controllers are dedicated to control the 2nd

model that represents the K2-actuator at medium pressure.

- 10th controller is dedicated to control the 3rd model that represents the
K2-actuator at high pressure.

- 11th controller is designed to track 0% of Pmax as a reference which has
been modeled based on the 1st model.

In fact, only one controller from the 11 provides the optimal control in-
put. In the meanwhile, the other controllers become inactive during run
time. To enhance the performance of the multiple MPC and to ensure a
smooth response during the switching between the controllers, the inactive
controllers keep on predicting the states. This prevents any sudden change
in the manipulated variable when the controller switching exists.
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As has been discussed in section 2.2.3, MPC is based on solving a QP
optimization optimization problem. However, a Hammerstein Model is com-
posed of a static nonlinear function followed by a linear dynamic model. This
static non linearity leads the optimization problem to be non convex. In order
to solve this problem, the linear dynamic model is only taken into consider-
ation for designing each MPC controller where the intermediate function is
considered as the input to the linear model. Therefore, the optimized ma-
nipulated variable is the intermediate variable w(k). Hence, an inverse of the
static nonlinear function is applied directly to the manipulated variablew(k)
in order to obtain the actual input u(k) as in the below figure 18.

Figure 18: MPC scheme for Hammerstein system

3.3 Multiple MPC tuning and simulation results

MATLAB MPC Toolbox is used to simulate the tracking of the Pressure
for different steps references. The advantage of exploiting MATLAB MPC
Toolbox is to decrease the running time of the simulation since there are
11 controllers running in parallel that make the computation of the optimal
solution extremely intensive.

MATLAB MPC Toolbox formulates the MPC problem by optimizing the
objective function based on the increment of the manipulated variable adding
an explicit integral action as has been discussed in equation (2.35).
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Figure 19: MPC scheme for Hammerstein system

As has been discussed in 3.2.2 that the optimized variable for the MPC
to control a Hammerstein model is the intermediate variable w(k), the cost
function (2.35) utilized by MATLAB is modified as the following:

J(x(k|k),∆W (k)) =

Hp−1∑
i=0

(Pref (k + i|k)− P (k + i|k))TQp(Pref (k + i|k)− P (k + i|k))

+ ∆w(k + i|k)TR∆w(k + i|k)

∆W (k) =
[
∆w(k|k) ∆w(k + 1|k) . . . ∆w(k +Hc − 1|k)

]T
s.t

Pmin(k + i|k) ≤ P (k + i|k) ≤ Pmax(k + i|k), i = 1, 2, · · · , Hp − 1

wmin(k + i|k) ≤ W (k + i|k) ≤ Wmax(k + i|k), i = 1, 2, · · · , Hc − 1

∆wmin(k + i|k) ≤ ∆w(k + i|k) ≤ ∆wmax(k + i|k), i = 1, 2, · · · , Hc − 1

(3.6)

After several simulations by trial and error technique, the following design
parameters of the 11 controllers have been obtained to control the whole
range of the operating region of the K2-actuator.
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1st Controller

Qp = 0.55

R = 1

wmin(k + i|k) = 0

wmax(k + i|k) = 662.91

∆wmin(k + i|k) = −0.04

Hp = 150

Hc = 150

(3.7)

2nd Controller

Qp = 10

R = 12

wmin(k + i|k) = 0

wmax(k + i|k) = 662.91

∆wmin(k + i|k) = −0.075

Hp = 150

Hc = 150

(3.8)

3rd Controller

Qp = 10

R = 12

wmin(k + i|k) = 0

wmax(k + i|k) = 662.91

∆wmin(k + i|k) = −0.075

Hp = 150

Hc = 150

(3.9)
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4th Controller

Qp = 10

R = 12

wmin(k + i|k) = 0

wmax(k + i|k) = 632.31

∆wmin(k + i|k) = −0.087

Hp = 150

Hc = 150

(3.10)

5th Controller

Qp = 10

R = 11.8

wmin(k + i|k) = 0

wmax(k + i|k) = 632.31

∆wmin(k + i|k) = −0.1

Hp = 150

Hc = 150

(3.11)

6th Controller

Qp = 10

R = 12.5

wmin(k + i|k) = 0

wmax(k + i|k) = 632.31

∆wmin(k + i|k) = −0.115

Hp = 150

Hc = 150

(3.12)
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7th Controller

Qp = 10

R = 12.8

wmin(k + i|k) = 0

wmax(k + i|k) = 632.31

∆wmin(k + i|k) = −0.14

Hp = 150

Hc = 150

(3.13)

8th Controller

Qp = 10

R = 15

wmin(k + i|k) = 0

wmax(k + i|k) = 632.31

∆wmin(k + i|k) = −0.14

Hp = 150

Hc = 150

(3.14)

9th Controller

Qp = 10

R = 15

wmin(k + i|k) = 0

wmax(k + i|k) = 632.31

∆wmin(k + i|k) = −0.17

Hp = 150

Hc = 150

(3.15)
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10th Controller

Qp = 0.0415

R = 6.7281

wmin(k + i|k) = 0

wmax(k + i|k) = 578.83

∆wmin(k + i|k) = −2.8

Hp = 20

Hc = 20

(3.16)

11th Controller

Qp = 0.55

R = 1

wmin(k + i|k) = 0

wmax(k + i|k) = −0.087

Hp = 150

Hc = 150

(3.17)

Figure 20 shows the response of the pressure to track different steps refer-
ences besides the switching of the pre-tuned controllers according to a prede-
fined logic that detect the right controller for the current working condition.
Moreover, figures 21,22 and 23 and table 1 reports the performance of the
transient performance at different step references.
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Figure 20: Pressure response for step reference using Multi-model Multi-
MPC approach
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Figure 21: Pressure response for step reference of 25% of Pmax
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Figure 22: Pressure response for step reference of 50% of Pmax
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Figure 23: Pressure response for step reference of 75% of Pmax
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Reference
% of Pmax

Overshoot (%)
ŝ

rise time (ms)
Tr

settling time (ms)
Tsettling

25 4.7 111 111
50 3.19 192 192
75 2.7 581 581

Table 1: Transient response at different step references for Multi-MPC ap-
proach

To conclude, by exploiting Multiple Model Predictive Controlled based
on Multiple models , we have achieved a good performance particularly for
the overshoot requirement as shown in table 1. However, due to the complex-
ity of Multiple MPC structure and due to the long prediction horizon used
by each MPC controller, the computation of the optimal solution is quite
intensive which lasts for almost 24 hours that can not be implemented on
a real Vehicle’s hardware. Therefore, different control architectures will be
considered and described in the following chapters to achieve a good trade-off
between pressure trajectories.
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4 Adaptive Model Predictive Control

Adaptive control is a common approach to control a nonlinear system which
its parameters vary within time. The control procedure is based on adjusting
the control law at each sampling time by adapting the system’s parameters
using a suitable online estimator algorithm. In fact, The effectiveness of the
online estimation occurs particularly for controlling nonlinear system that its
dynamic behavior changes significantly according to the operating condition.
Figure 24 shows a schematic scheme of Adaptive Model Predictive control
which is based on two procedures:

1. Estimate the system parameters θ̂(k) online using a suitable online
estimator algorithm. The estimation of the parameters employ on the
basis of the current input u(k) and output y(k) measurements.

2. Adjust the control law of the MPC by updating the state space model
associated with the new estimated parameters θ̂(k).

Figure 24: Schematic diagram of Adaptive MPC

Recursive least square (RLS) is a common estimator to be employed for
estimating the system online. In the next section we will discuss the main
conceptual aspects of the RLS and the different RLS estimation algorithms
that can be exploited to reach a good performance in terms of estimation
error and stability.
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4.1 Least square

Fundamentally, RLS is based on solving a Least square problem recursively,
where least square is common linear regression approach to find an approxi-
mate solution for an over-determined system by minimizing the least square
error that satisfy a finite measured input-output data N . In the following we
will show the derivation of the optimal solution for estimating the parameters
θ̂. First of all, by assuming the system has the following structure:

G(z) =
Y (z)

U(z)
=
b0z

m + b1z
m−1 + · · ·+ bm

zn + a1zn−1 + · · ·+ an
,m ≤ n

Y (z)

U(z)
=
b0z

m−n + b1z
m−n−1 + · · ·+ bmz

−n

1 + a1z−1 + · · ·+ anz−n

(4.1)

where n is the system order type. By applying some rearrangements , Y (z)
can be written as:

Y (z)[1 + a1z
−1 + · · ·+ anz

−n] = U(z)[b0z
m−n + b1z

m−n−1 + · · ·+ bmz
−n]

Y (z) = −a1Y (z)z−1 − · · · − anY (z)z−n + b0U(z)zm−n + b1U(z)zm−n−1 + · · ·+ bmU(z)z−n

(4.2)

By transferring to the time domain

y(k) = −a1y(k − 1)− · · · − any(k − n)

+b0u(k +m− n) + b1u(k +m− n− 1) + · · ·+ bmu(k − n)
(4.3)

Y = Ψθ̂ (4.4)

Y =


Y (k + n+ 1)
Y (k + n+ 2)

...
Y (k +N)

 (4.5)

Ψ =


−y(k + n) −y(k + n − 1) · · · −y(k + 1) u(k + m + 1) U(k + m) · · · u(k + 1)

−y(k + n + 1) −y(k + n) · · · −y(k + 2) u(k + m + 2) U(k + m + 1) · · · u(k + 2)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
−y(k + N − 1) −y(k + N − 2) · · · −y(k + N − n) u(k + N + m − n) u(k + N + m − n − 1) · · · u(k + N − n)


(4.6)
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θ =



a1

a2
...
an
b0

b1
...
bm


(4.7)

where:
θ: are the parameters of the system to be identified.
Ψ: is the regressor matrix that composed of previous values of output and
input.
Y : The output samples have been collected up to the current time.

If the number of the output samples N equals to the number of parame-
ters to be identified (n + m + 1), a unique solution is found. On the other
hand, if the number of the output samples N is greater than the number of
parameters to be estimated which is the common case, an approximate solu-
tion has to be found to satisfy the whole data set. The approximate solution
is found my minimizing the least square error such that:

θ̂ =arg min
θ
‖Y −Ψθ‖2

Y =Ψθ̂

ΨTY =ΨTΨθ̂

(ΨTΨ)−1ΨTY =(ΨTΨ)−1ΨTΨθ̂

θ̂ =(ΨTΨ)−1ΨTY

(4.8)

Where P−1 can be considered as P−1 = (ΨTΨ), Therefore, the equation can
be rewritten as

θ̂ = PΨTY (4.9)

An approximate solution is found for the whole data set if and only if the P
matrix is invertible.
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4.2 Recursive least square

In case of receiving a new measurements of input and output data, the least
square matrices have to be augmented increasing in dimensions and solve the
least square optimization problem again.

Yk+N+1 =

[
Y

y(k +N + 1)

]
Ψk+N+1 =

[
Ψ

ψ(k +N + 1)

]
P−1
k+1 = P−1

k + ψ(k + 1)ψT (k + 1)

(4.10)

θ̂k+1 = (ΨT
k+1Ψk+1)−1ΨT

k+1Yk+1 (4.11)

At each instant of receiving a new measurement , the size of the matri-
ces get bigger and bigger and solving the least square optimization problem
becomes computationally intensive. In order to solve this problem, recursive
least square method is exploited to estimate the parameters of the system on-
line such the last regressor vector ψ(k+N+1) is only taken into consideration
for the computation of the new parameters based on the last measurements
measurement y(k+N+1). Any recursive estimation is based on the following
structure:

θ̂(k) = θ̂(k − 1) +Q(k)ψ(k)(y(k)− ŷ(k)) (4.12)

such that the new estimated parameters θ̂(k) is equal to the old parameters
θ̂(k − 1) plus a correction term Q(k)ψ(k)(y(k)− ŷ(k)) .
Where:

- y(k): the measured output at the current time.

- ŷ(k): the predicted output based on the measurements at k − 1.

- ψ(k): the regression vector of the last input-out data.

- Q(k): a gain that has different forms and based on choosing the form
of Q(k), the algorithm of the recursive estimation differs. Q(k) implies
a weighting function which decides how much the new parameters are
influenced either by the previous parameters estimate or by the new
measurements.

By changing the form of Q(k), the following estimations algorithms asso-
ciated with RLS estimator can be adopted:

46



1. Unnormalized and Normalized Gradient

2. Forgetting Factor

3. Kalman Filter

In the next sections, each estimation algorithm will be explained to decide
the most suitable algorithm assuming that the system is of type order one
as follows:

Gk(z) =
αk

z + βk
(4.13)

where α and β vary within time.

4.2.1 Unnormalized and Normalized Gradient algorithm

Regarding the Unnormalized Gradient method, Q(k) is considered as an
adaptation gain γ where γ determines how sensitive the estimated parame-
ters is sensitive to the variations of the dynamics of the plant. The value of
γ ranges between 0 ≤ γ ≤ 1.

However , the disadvantage of using the unnormalized gradient algorithm
that as a matter of fact it is difficult to find a range of γ that maintains the
stability of the system.

In order to solve this problem , the normalized gradient method is induced
such that the Adaptation gain γ is scaled by the square norm of the two-norm
of the gradient vector , where the regressor matrix Ψ is considered to be the
gradient vector. Hence, Q(k) has the following form:

Q(k) =
γ

‖Ψ‖2 + ε
(4.14)

Where the bias term is ε a very small number has to be taken into consid-
eration in case the norm of the vector reaches to zero. This prevents any
sudden jumps in the estimation of the parameters.
Different values of γ have been taken into consideration to determine the
most suitable value of γ to be used in estimating the system parameters.
Figures 25, 26 and 27 report the effect of variation of γ on the efficiency of
the estimation.

47



Adaptation gain γ=0.1
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Figure 25: Identification results by adopting normalized gradient algorithm
such that γ = 0.1
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Adaptation gain γ=0.5
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Figure 26: Identification results by adopting normalized gradient algorithm
such that γ = 0.5
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Adaptation gain γ=1
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Figure 27: Identification results by adopting normalized gradient algorithm
such that γ = 1

4.2.2 Kalman Filter algorithm

Kalman filter is a widely used as a state estimator and observers. The
Kalman filter is based on a group of mathematical formulations that min-
imizes the mean of the square error where Q(k) is considered to have the
following form:
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Q(k) =
P (k − 1)

R2 + Ψ(k)TP (k − 1)Ψ(k)
(4.15)

Where P (k) is considered to be the covariance matrix such that:

P (k) = P (k − 1) +R1 −
P (k − 1)Ψ(k)Ψ(k)TP (k − 1)

R2 + Ψ(k)TP (k − 1)Ψ(k)
(4.16)

Where R1 is considered to be the process noise covariance matrix, while R2 is
considered to be the measurement covariance matrix. Based on the selection
of R1 , P (k − 1) is scaled such that to remain the value of R2 = I. This
ensures that the state covariance matrix P (k) doesn’t converge to zero or to
become too small.

Figures 28, 29 and 30 show the effect of selection of the noise covarinace
matrix R1 on the parameter estimation.
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Process Noise Covariance matrix R1 = 0
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Figure 28: Identification results by adopting Kalman Filter algorithm such
that R1 = 0
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Process Noise Covariance matrix R1 = 0.01
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Figure 29: Identification results by adopting Kalman Filter algorithm such
that R1 = 0.01
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Process Noise Covariance matrix R1 = 100
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Figure 30: Identification results by adopting Kalman Filter algorithm such
that R1 = 100
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4.2.3 Forgetting Factor algorithm

The forgetting factor algorithm applies an exponential weighting function to
the previous estimated parameters to be taken into consideration in the fol-
lowing estimation procedure. In other words , the forgetting factor decides
the influence of the previous estimated parameters on the estimation of the
new parameters in an exponential mean. Where 0 < λ ≤ 1 is the forgetting
factor which usually ranges between 0.98 and 0.995 for efficient parameter es-
timation. By applying some manipulations using the matrix inversion lemma
rule, P (k) is formulated as follows:

P (k) =
1

λ
(P (k − 1)− P (k − 1)ψ(k)ψ(k)TP (k − 1)

λ+ ψ(k)TP (k − 1)ψ(k)
) (4.17)

Accordingly, Q(k) can be considered as follows:

Q(k) = P (k) =
1

λ
(P (k − 1)− P (k − 1)ψ(k)ψ(k)TP (k − 1)

λ+ ψ(k)TP (k − 1)ψ(k)
) (4.18)

Figures 31, 32 and 33 report how varying the value of the forgetting factor
λ influences the efficiency of the parameter estimation.
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Forgetting Factor λ = 0.98
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Figure 31: Identification results by adopting Forgetting Factor algorithm
such that λ = 0.98
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Forgetting Factor λ = 0.995
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Figure 32: Identification results by adopting Forgetting Factor algorithm
such that λ = 0.995
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Forgetting Factor λ = 1
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Figure 33: Identification results by adopting Forgetting Factor algorithm
such that λ = 1

As has been discussed before that the K2-actuator is of system order type
one such that :

G(z) =
β

z + α
(4.19)

The value of α must vary within the unitary circle in order to guarantee
stability (refer to figure 34) such that:

|α| < 1 (4.20)
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Figure 34: Stability in Discrete LTI system

By referring to figures 28, 29, 30, 31, 32 and 33, we will find that by
adopting recursive estimation using Kalman filter or Forgetting Factor, the
value of α exceeds the unitary circle such that |α| > 1 in the z domain which
can lead to instability during the control phase. While on the other hand,
by adopting Normalized Gradient algorithm as shown in figures 25, 26 and
27 the value of α varies without exceeding the bounds of unitary circle such
that |α| < 1.
Under those circumstances, Normalized Gradient algorithm is the optimal
algorithm to adopt for the recursive estimation in order to order guarantee
stability and efficiency in the mean time.

4.3 MPC tuning and simulation results

In the following part, tuning of the MPC will be covered to reach the best
performance. Moreover, extensive simulations have been carried out using
different profiles that represent the K2-actuator in different situations.

Recalling the formulation of the cost function stated in equation (2.32),
we will find that the tuning of the cost function depends on the selection
of the output weighting matrix Qp, Input weighting matrix R, Prediction
Horizon Hp and Control Horizon Hc. Moreover, the adaption gain γ of the
Normalized gradient adopted for the online recursive estimator has influence
on the tuning of the MPC as well.
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J(P (k|k), U(k)) =

Hp−1∑
i=0

(P (k + i|k)− Pref (k + i|k))TQp(P (k + i|k)− Pref (k + i|k))

+ q(k + i|k)TQintq(k + i|k) + u(k + i|k)TRu(k + i|k)

U(k) =
[
u(k|k) u(k + 1|k) . . . uk +Hc − 1|k)

]T
s.t

Pmin(k + i|k) ≤ P (k + i|k) ≤ Pmax(k + i|k), i = 1, 2, · · · , Hp − 1

Umin ≤ u(k + i|k) ≤ Umax mA, i = 1, 2, · · · , Hc − 1

(4.21)

At the beginning, initial values for the K2-actuator parameters α and β have
been guessed as an initial condition. Zero initial conditions will lead to in-
stability of our system since β 6= 0 . In addition, Hp and Hc are considered
to be equal. Later on with trial and error technique, extensive simulations
have carried out by tuning each design parameter until an adequate perfor-
mance has been achieved. The following design parameters values have been
obtained that ensures a satisfactory trade-off between the performance re-
quirements.

α(0) = −8.4937× 10−3

β(0) = 0.040574

Qp = 1× 108

Qint = 0

R = 0.0001

Hp = 1

Hc = 1

γ = 0.01

(4.22)

In the following we will discuss the reason behind the selection of such
design parameters, in particular the choice of selecting Hp = 1 and Hc = 1.

4.3.1 Selecting prediction horizon Hp

In the literature , choosing a large prediction horizon is crucial in order to
induce robustness and maintain stability of the system.
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However and unusually, there is no significant difference in the response
by varying the Prediction Horizon. Hence, Prediction Horizon has been con-
sidered Hp = 1, since large Prediction Horizon makes the computation of the
optimal solution quite intensive. Accordingly, the control Horizon is set to
Hc = 1 as well.

4.3.2 Selecting output pressure weight Qp

Figures 35, 36, 37 and 38 report the impact of the variation of the weighting
value Qp on the tracking of the pressure for different profiles. The value
Qp changes from 10 to 1 × 108 maintaining the weights of the other design
parameters as in (4.22).
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Figure 35: Pressure response for different steps references adopting Adaptive
MPC for different values of Qp
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Figure 36: Pressure response for ramp trajectory adopting Adaptive MPC
for different values of Qp
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Figure 37: Pressure response for stairs trajectory adopting Adaptive MPC
for different values of Qp
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Figure 38: Pressure response for fast ramp trajectory adopting Adaptive
MPC for different values of Qp

Referring to figure 35, it is obvious that by increasing the weight of Qp

with respect to the other design parameters, the performance of tracking
the pressure has been improved in terms of transient and tracking error.
Moreover, with referring to figure 36, the was no response for selecting Qp =
10. The reason for this behavior that manipulated variable was not able to
overcome the deadzone. Hence, the weight Qp has been taken as 1× 108.

4.3.3 Selecting input weight matrix R

Figures 39, 40, 41 and 42 demonstrate the effect of changing the Weight-
ing matrix R on the tracking of the pressure to the same profile applied as
discussed in keeping the others design parameters constants.
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Figure 39: Pressure response for different steps references adopting Adaptive
MPC for different values of R
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Figure 40: Pressure response for ramp trajectory adopting Adaptive MPC
for different values of R
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Figure 41: Pressure response for stairs trajectory adopting Adaptive MPC
for different values of R
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Figure 42: Pressure response for fast ramp trajectory adopting Adaptive
MPC for different values of R

Conversely, with regarding to choosing the setting of Qp , increasing the
value R implies degradation on the performance in terms of transient and
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Tracking error. To emphasize, high values of R increase the offset size result-
ing in high tracking error. Moreover, the response becomes slower increasing
rising Tr and setting time Tsettling.

4.3.4 Selecting adaption gain γ of the recursive estimation

As has been discussed in , Normalized Gradient algorithm using adaptation
gain γ = 1 is the optimal approach to identify the K2-actuator. However
after running plenty of simulations, we have discovered that γ = 1 is not the
suitable value for the adaption gain to control the K2-actuator. Figure 43
represents the effect of the variation of the adaptation gain γ = 0.01, 0.05 and
0.1 on the response of the pressure of the K2-actuator to track different steps
references. It is quite evident that for selecting γ = 0.05, we have maintained
the overshoot of the system response for the whole working conditions.
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Figure 43: Pressure response for steps references based on different values of
γ

To conclude, the settings of design parameters discussed in (4.22) ensure a
good performance of pressure tracking for different trajectories that represent
the K2-actuator in different applications. Moreover, with reference to table
2, it is quite evident that Adaptive MPC is able to satisfy the control objec-
tive explicitly for ŝ and Tr for most of the working conditions, where tracking
a step reference over 50% of Pmax is not a common practice for K2-actuator.
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Besides, regarding the Tsettling requirement, in control theory it is possible to
trade-off between the control objective to reach the best performance.

Reference
% of Pmax

Overshoot (%)
ŝ

rise time (ms)
Tr

settling time (ms)
Tsettling

25 7.4 77.49 350
50 9.5 108.38 273.4
75 6.95 262.2 385.74

Table 2: Transient response at different step references for Adaptive MPC
approach

Concerning the computational effort required to compute the optimal
control input adopted by this architecture, such design parameters (4.22)
ensure quite fast computation since we have considered prediction horizon
Hp = 1. Moreover, the computation has been enhanced by considering an
explicit saturated control input. This is achieved by solving a non con-
strained problem as in equation (2.26) instead of using a QP optimizer to
solve a constrained optimization problem (2.25). The advantage of applying
such explicit solution that the optimal control input becomes on the basis of
matrices multiplication.
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5 Adaptive Linear Quadratic Regulator con-

trol

In this chapter , we will discuss the architecture of Adaptive Linear Quadratic
Regulator (LQR) to control the K2-actuator to track the same pre-defined
trajectories that have been discussed in the previous chapter. The Estima-
tion of the K2-actuator online is done using the same the algorithm used
in the Adaptive MPC which is recursive least square based on Normalized
gradient algorithm. Moreover, simulation results are provided to compare
the performance between Adaptive MPC and Adaptive LQR.

5.1 Infinite horizon Linear Quadratic Control for Dis-
crete Systems

The fundamental aspect of Linear Quadratic Regulator Control (LQR) is
based on Optimal Control as well as Model Predictive Control (MPC) which
its objective is to find an optimal solution by minimizing a cost function
which has a quadratic form.

J(u) =
∞∑
k=0

(x(k)TQx(k) + u(k)TRu(k) + 2x(k)TNu(k)) (5.1)

The optimal solution of LQR is based on solving a Riccati differential equa-
tion associated with the infinite horizon problem such that:

S = ATSA+ (ATSB +N)(BTSB +R)−1(BTSA+NT ) +Q (5.2)

where:

- S is the solution of the infinite horizon Riccati equation.

- A and B are the state matrices of the system

- Q and R are the design parameters to minimize the cost function

5.2 Integral action for LQR

As has been discussed in section 2.2.6, an integral action is crucial to be
included in the formulation of the cost function in order to eliminate the
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steady state error. This can be done by adding the integral term of the
tracking error as an extra state. Hence, the state space matrices can be
augmented as follows:[

x(k + 1)
q(k + 1)

]
︸ ︷︷ ︸

x̂(k+1)

=

[
A 0
−TsC 1

]
︸ ︷︷ ︸

Â

[
x(k)
q(k)

]
+

[
B
0

]
︸︷︷︸
B̂

u(k) +

[
0
Ts

]
r(k)

ŷ(k) =
[
C 0

]︸ ︷︷ ︸
Ĉ

[
x(k)
q(k)

] (5.3)

Consequently, the cost function and the solution of the Riccati equation can
be modified using the augmented state matrices as follows:

J(u) =
∞∑
k=0

(x̂(k)T Q̂x̂(k) + u(k)TRu(k) + 2x̂(k)TNu(k)) (5.4)

The optimal solution of LQR is based on solving a Riccati differential equa-
tion associated with the infinite horizon problem such that:

S = ÂTSÂ+ (ÂTSB̂ +N)(B̂TSB̂ +R)−1(B̂TSÂ+NT ) + Q̂ (5.5)

where Q̂ =

[
Qx 0
0 Qint

]

5.3 Tracking a reference

After solving the Riccati equation ,the optimal solution U0 can be found by
applying a feedback contribution such that:

K̂(k) = (B̂T (k)S(k)B̂(k) +R)−1(BT (k)S(k)Â(k) +NT )

K̂(k) =
[
Kx Kq

] (5.6)

U0 = −K̂x̂(k) (5.7)
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Figure 44: Adaptive LQR scheme

Since we are adopting an adaptive approach to estimate the system online,
at each new sampling time Ts a new Riccati equation is solved to compute
the feedback matrix K̂ that is contributed for the computation of the optimal
solution. The computation of K̂ matrix has been carried out by exploiting
the dlqr MATLAB function.

5.4 Simulation results for Adaptive LQR

After carrying out several simulations and following trail and error technique
, the following design parameters have been obtained that guarantee a good
trade-off to track the predefined trajectories of the K2-actuator.

Qx = 10

Qint = 5

R = 1

γ = 0.1

(5.8)
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Figure 45: Pressure response for different steps references adopting Adaptive
LQR architecture

Reference
% of Pmax

Overshoot (%)
ŝ

rise time (ms)
Tr

settling time (ms)
Tsettling

25 9.6 117.63 373.84
50 12 125.24 181.86
75 26.66 282.5 743.87

Table 3: Transient response at different step references for Adaptive LQR
approach
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Figure 46: Pressure response for ramp trajectory adopting Adaptive LQR
architecture
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Figure 47: Pressure response for stairs trajectory adopting Adaptive LQR
architecture
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Figure 48: Pressure response for fast ramp trajectory adopting Adaptive
LQR architecture

With Reference to figures 45, 46, 47 and 48, the approach for adopting
Adaptive Linear Quadratic Regulator (LQR) shows an great performance to
track the pressure trajectories of the K2-acutator especially for the stairs
trajectory as shown in figure 47. However, regarding the steps references as
shown in figure 45, there is an apparent overshoot that exists for tracking
steps over 50% of Pmax (refer to table 3). Nevertheless, as has been discussed
in 4.3.4, it is not a common situation to track step reference over 50% of Pmax.

Considering the deployment of Adaptive LQR on the vehicle’s hardware,
such architecture is not ideal to be equipped for controlling the K2-actuator
since we need to solve an infinite horizon Riccati equation at each sampling
time which is not affordable by the vehicle’s hardware.

In conclusion and with reference to table 4, it is quite evident that Adap-
tive MPC is the most adequate approach to control the K2-actuator. Adap-
tive MPC showed a good performance allowing trading off between control
objectives. Moreover, the advantage of deploying Adaptive MPC on the
vehicle’s hardware over the other control methods is that Adaptive MPC
consumes less energy for computing the optimal control input since an ex-
plicit solution has been considered instead of exploiting a QP solver which
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has reduced the computational effort and accelerated the simulation results.

Steps (% of Pmax)
Multi-MPC ,Multi-Model Adaptive MPC Adaptive LQR

(ŝ%) (Trms) (Tsetms) (ŝ%) (Trms) (Tsetms) (ŝ%) (Trms) (Tsetms)
25 4.7 111 111 7.4 77.49 350 9.6 117.63 373.84
50 3.19 192 192 9.5 108.38 273.4 12 125.24 281.86
75 2.7 581 581 6.95 262.2 385.74 26.66 282.5 743.87

Table 4: Comparison of the performance achieved by each control method
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6 Conclusion and future work

6.1 Conclusion

This thesis emphasized on controlling the pressure applied by the K2-actuator
on the even gear clutch to attenuate the torque interruption and guarantee-
ing smoothness during the gear shift phase. Different control architectures
have been exploited to conclude which one is ideal in terms of satisfying the
performance requirements to be devoted for controlling the pressure of the
K2-actuator.

In fact, the biggest challenge to control the K2-actuator was to be able
first to build up a model that represents the dynamics of the system. A
possible representation of the K2-actuator is to model it as a Hammerstein
system since non-linearity plays a big role in the system due to the presence
of a dead zone in our system.

In chapter 3, multiple MPC based on multiple Hammerstein models ap-
proach has been introduced. The reason behind considering this approach is
to control the K2-actuator in different working conditions. This architecture
showed a good performance, particularly to achieve the overshoot require-
ment. However, due to the structure complexity of the Multiple MPC which
has employed 11 controller to control the whole working conditions. More-
over, because of the long prediction horizon consumed by each controller, the
computation of the optimal control input was quite intensive which is not
recommended for real time automotive applications. Hence, adaptive control
was proposed to control the K2-actuator instead of Multiple MPC approach.

In chapter 4, Adaptive MPC has been employed to control the pressure
of the K2-acutator using recursive least square algorithm to estimate the
system online. Moreover, the selection of the estimation algorithm associ-
ated with RLS have been discussed concluding that Normalized gradient was
the optimum algorithm to employ such that it provides very low estimation
error and guarantees system stability. Further, Extensive simulations have
been presented to demonstrate the selection of the design parameters of the
Adaptive MPC. Moreover, an explicit solution has been considered to com-
pute the optimal control input which has improved the computational effort.
Indeed, Adaptive MPC showed outstanding results for tracking the pressure
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satisfying the overshoot and rising time requirements.

Finally, In chapter 5 Adaptive LQR approach has been considered using
the same estimation method of Adaptive MPC as well. Adaptive LQR is
ideal for tracking stairs references and it showed good performance for track-
ing steps reference up to 50% of the maximum pressure operating range.
However, due to hardware limitation of the electronic control unit, Adaptive
LQR is not the ideal controller to deploy since a riccati equation needed to be
solved online equation at each sampling time which can not be implemented
in our case.

To conclude, different control architectures have been introduced to con-
trol the K2-actuator to determine which control method is superior for de-
ployment, taking into consideration the performance achieved and the com-
putational effort of each control method. Adaptive MPC showed outstanding
performance allowing trading-off between control objectives. Moreover, the
power of deploying Adaptive MPC in comparison to other control methods
is the low computation effort needed by Adaptive MPC since an explicit so-
lution has been employed to compute the optimal control input which has
reduced the computational effort and accelerated the simulation results..

6.2 Future Work

A possible way to control the K2-actuator is to track the position of the
clutch. However, due to design limitations of the DDCT, position sensor is
not able to be deployed on the system to provide position feedback of the
clutch to the controller. A possible solution to overcome this problem is to
provide a position feedback to the controller by employing a virtual sensor
through exploiting Neural Network. The Neural Network will provide an
estimate of the position using finite measured input-output data which can
be used then as a feedback signal to the controller.

Further after implementing the virtual sensor, an appealing way to con-
trol the K2-actuator is to consider a nested feedback loops approach such
that both pressure and position feedback are taken into consideration in the
control law. Nested feedback loops may enhance the performance of tracking
the position and pressure satisfying the performance requirements ensuring
smoothness during the gear shifting phase.
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Appendix A Simulink implementations

Figure 49: Simulink scheme for Multi-MPC based on Multi-Models approach

Figure 50: Simulink scheme for Adaptive MPC approach
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Figure 51: Simulink scheme for Adaptive MPC explicit solution

Figure 52: Simulink scheme for recursive least square (RLS) estimator
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Figure 53: Simulink scheme for Adaptive LQR approach
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