
POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Informatica

Tesi di Laurea Magistrale

Collaboration Interfacing Tools
via

Cloud Microservices

Relatori:

Politecnico
prof. Maurizio
Morisio

Intesa Sanpaolo
Alessandro Bruno

Candidato
Luca Giommoni

A.A. 2017 - 2018

Abstract

Nowadays almost all corporate applications integrate collaboration
components that need to interface with the Enterprise Collaboration
System through APIs. Concepts like always on, high availability, re-
silience, automatic scalability etc., have become part of the software
programming paradigm in every company and with the advent of cloud
computing, monolithic application architectures give way to new mi-
croservice architectures that, using container technology, realize the
functions decoupling, enabling the continuous delivery / continuous
integration paradigm of application development.

Introduction What is the Enterprise Collaboration System (ECS)?
Why is it so important for companies today? This chapter explains
the key role that the ECS plays in the business landscape and the
challenges that are faced technologically and culturally during its
introduction into the company. The ECS, born from the concept of
Social Business, can be classified in the 4 internal zones of the 8C
Model for Enterprise Information Management, but there are charac-
teristics that instead differentiate it a lot from Social Media. Finally,
ECS is often associated with ERP, but there are at least four aspects
in which the two systems differ: the application area, the content
structure, the implementation processes and the intended use.

Main Problems The three major problems faced by the project
are explained in this chapter. Until today, every application, that
interfaces with the ECS, does so in a heterogeneous way compared
to the rest of the existing applications, very often binding itself to
APIs whose evolution is not under the control of Intesa Sanpaolo,
but of the vendor of the product. This situation forces developers to
rewrite – and often restructure – applications whenever the vendor
forces to upgrade the version of an ECS component to a more recent
one that implements new features and deprecates others. This makes
the application ecosystem of the company rigid and difficult to manage
and maintain. Finally, the security: the diversity of APIs and the
long transition phases of an application from one version of the API
component of collaboration to another always creates security gaps
that are often difficult to manage, especially because vendor does not
support the old version anymore.

Intesa Sanpaolo This chapter epxlains the actual ECS infrastruc-
ture of Intesa Sanpaolo and its Cloud and Microservices technology.
The first topic is useful to understand the complexity, the numbers and

I

the issues met during this years. The second topic, instead, explains
how it was possible to leverage the technology of Private Cloud to
exploit the microservices infrastructure introduced in Intesa Sanpaolo
via OpenShift platform. Some words on the adoption of OpenShift
platform have also been spent. By creating new cloud service that set
up the OpenShift microservices enviroment it was finally possibile to
realize the platform with all its components.

Collaboration Platform As A Service The main idea of the
project is presented here. The set of APIs made available through
the developed platform will replace all those currently used by the
various existing applications, improving the overall management and
eliminating the non-managed update component deriving from the
proprietary API of the various products adopted by Intesa Sanpaolo.
Functional and non-functional requirements for the first row version of
the platform are also listed here, follwed by the main features of the ar-
chitecture of the platform, with layers organizational schema. Finally,
two main use cases of extended platform functionalities are explained.
The first one concerns the need of Alarm Center in Intesa Sanpaolo to
communicate with specific Organizational Unit (OU) about received
alarm: nowadays the list of users is extracted manually from a dedi-
cated web page and each user is contacted until one available is found;
the new platform, instead, provides specific APIs to retrieve available
users belonging to a particular OU. The second use case was born
to fulfills the GDPR requirement that allows customers to ask for all
their data collected by the company. In this way, the platform pro-
vides APIs to store all collected documents about a customer into
Sharepoint MySite of applicant employee.

Conclusions The platform is still in an incubation state and many
aspects can be improved. Surely efficiency can be increased and many
other use cases can be enabled. The microservice technology has given
significant advantages in terms of management and scalability, mak-
ing the service stable, highly reliable and with distaster recovery. In
conclusion, this project allowed us to build an abstraction layer that
standardize all collaboration APIs, giving the possibility to make new
others and making homogeneity in various paradigms, from security
to development ones.

II

Acknowledgement

I would first like to thank my thesis advisor Professor Maurizio Morisio of
the Collegio di Ingegneria Informatica, del Cinema e Meccatronica at Po-
litecnico di Torino. The Professor was always available whenever I ran into
a trouble spot or had a question about my research or writing. He steered
me in the right direction whenever he thought I needed it.

I would also like to acknowledge Alessandro Bruno, my manager in Intesa
Sanpaolo, and Gregorio Scialpi, the project manager from which this disser-
tation was born. I am gratefully indebted to them for their very valuable
comments on this thesis and their support. Furthermore, I thank the com-
pany, for which I still work, Intesa Sanpaolo, which allowed me to finish my
studies and write a thesis on an internal project.

Finally, I must express my very profound gratitude to my parents and rel-
atives and to my firends and colleagues for providing me with unfailing
support and continuous encouragement throughout my years of study and
through the process of researching and writing this thesis. This accomplish-
ment would not have been possible without them.

Thank you.

Author
Luca Giommoni

Contents

1 Introduction 1

1.1 Enterprise Collaboration Systems 1

1.2 Customers And Employee Experience 10

1.3 Layout And Main Components 12

1.4 Cloud Computing And Microservices 16

1.4.1 Cloud . 16

1.4.2 Microservices . 20

2 Main Problems 22

2.1 Single APIs Ecosystem . 23

2.2 Improvement Of Services And API Management 24

2.3 Improvement Of Security . 25

3 Intesa Sanpaolo 27

3.1 Enterprise Collaboration . 27

3.2 Private Cloud . 33

3.2.1 Cloud Framework . 34

3.2.2 Services . 36

3.3 OpenShift . 43

3.3.1 Platform Selection Process 43

3.3.2 Architecture . 45

3.3.3 Delivery Process . 53

4 Collaboration Platform As A Service 57

4.1 Main Idea . 57

4.2 Requirements . 58

4.2.1 Functionals Requirements 58

4.2.2 Non-Functionals Requirements 61

4.3 Architecture . 63

4.4 Use Cases . 66

4.4.1 Alarm Center . 66

4.4.2 GDPR . 68

5 Conclusions 70

List of Figures

1 8Cs Framework for Enterprise Information Management [23] . 4

2 People Oriented And Information Oriented Functionalities [22] 4

3 Social Media And Enterprise Collaboration Systems Share
The Same Features [17] . 7

4 The Radicati Group, Inc. — Forecast 2016-2020 [18] 11

5 The Radicati Group, Inc. — Forecast 2016-2020 [18] 11

6 Company uses collaboration SaaS from public cloud 13

7 Company exposes a single point of connection used by cus-
tomers and contractors . 13

8 Company uses federarion for contractors and a DMZ for cus-
tomers communication channel 13

9 Cloud Lifecycle Forecast . 16

10 7 Different Types of Cloud Computing Structures – uniprint.net
[5] . 18

11 Company vs. Cloud Provider Responsibility 18

12 Microservices Architecture – by Microsoft Azure [21] 21

13 The new platform decouples applications from products 26

14 Exchange version update in Intesa Sanpaolo 26

15 Categories of offered services in Intesa Sanpaolo 28

16 Peer to Peer Sessions in Intesa Sanpaolo 29

17 Volumes of ISP collaboration technologies 29

18 Videoconference architecture in Intesa Sanpaolo 31

19 Exchange architecture in Intesa Sanpaolo 31

20 Skype4Business architecture in Intesa Sanpaolo 32

21 Classification of Services . 33

22 Private Cloud framework in Intesa Sanpaolo 40

23 Brands . 40

24 Cloud Web Portal . 41

25 Cloud Web Portal . 41

26 Screenshot Of ServiceIdentificator/ServiceManifest DB table . 42

27 Final Results . 44

28 OpenShift Architecture in Intesa Sanpaolo 44

29 Cloud + Openshift Provisioning 54

30 New Openshift Project . 54

31 User Details . 55

32 Further Optional Details . 55

33 Tecnological Parameters . 56

34 Platform Architecture . 65

35 Frontend . 65

36 Swagger Skype APIs . 67

37 Alarm Center use case in Intesa Sanpaolo 67

38 GDPR use case in Intesa Sanpaolo 69

Listings

1 Service Manifest . 38

2 Openshift Cloud Service Manifest 49

3 Openshift Cloud Service Manifest Instance 51

Glossary

acronym (acronimo) In Intesa Sanpaolo the term acronym or acronimo
is used to indicate an application that belongs to an application sub-
system. It is used mainly for application registry and usually is formed
by four letters and a number. It is called Acronym because the first four
letter represent the name of the application. For example the Acronym
of the Cloud is CLOU0 . 53

C4 J2EE application that takes the name from Command & Control Com-
munications Cyber/Computers american project. It was designed to
lead the discovery, development and integration of military tecnologies
for the air force, space missions and cyber security. It integrates an An-
sible job scheduler and exposes REST APIs that enable environments
configuration for front-end and back-end applications . 49

container Containers are an abstraction at the app layer that packages code
and dependencies together. Multiple containers can run on the same
machine and share the OS kernel with other containers, each running
as isolated processes in user space. Containers take up less space than
VMs (container images are typically tens of MBs in size), can handle
more applications and require fewer VMs and Operating systems. —
What is a Container[19] . 21

GDPR It is a new european regulation that regulates the processing by an
individual, a company or an organisation of personal data relating to
individuals in the EU. It replace the Data Protection Directive 95/46/ec
and, with its 99 articles, makes more transparent the processing of
personal data. . II

NFS Network File System (NFS) is a distributed file system protocol orig-
inally developed by Sun Microsystems in 1984,[1] allowing a user on
a client computer to access files over a computer network much like
local storage is accessed. NFS, like many other protocols, builds on the
Open Network Computing Remote Procedure Call (ONC RPC) sys-
tem. The NFS is an open standard defined in Request for Comments
(RFC), allowing anyone to implement the protocol. — Wikipedia, NFS
. 46

1 Introduction

1.1 Enterprise Collaboration Systems

Technology growth, together with globalization event, have changed com-
pletely the work environment, enabling teams to collaborate and communi-
cate across time, geography and different organizations. Collaboration sys-
tems make people work efficiently, at reduced costs, avoiding physical shifts
from one working place to another, leading to better results.

The Enterprise Collaboration Systems (ECSs) are information systems
enabling and enhancing communication, coordination and collaboration
amongs the members of teams and workgroups. They can be seen as socio-
technical systems that include hardware and software as well as people,
processes and organizational aspects[16]. More precisely, ECS is the set of
strategies, tools, applications, and softwares that create the communication
structure for interfacing with ecosystem of customer and for managing the
internal exchanges of informations. This way, ECS make possible to carry
out work over computer networks, building up virtual teams that reduce the
need for people to be collocated. Several definitions have been formulated
about virtual teams (last definition is the most widely accepted nowadays):

“A virtual team is a group of people who work interdependently
with a shared purpose across space, time, and organization bound-
aries using technology. ”
— Lipnack and Stamps[9]

“Groups of geographically, organizationally and/or time dispersed
workers brought together by information technologies to accom-
plish one or more organization tasks ”
— Powell et al. [12]

From all these definitions come clears that virtual teams rely on advanced in-
formation technologies to communicate: being a cross-functional information
system, ECS responds to this needs because it helps individuals in companies
to manage documents, share informations and knowledges with each other
and work cooperatively, joining projects and assignments, enabling overall
efficiency.

1

All these aspects of ECS indicate its inclination to be a social network.
In particular it enables what has been defined as Social Business. The term
derives from the concept of Social Media that identifies systems in which there
are features that support interaction and interchange: people voluntarily
spend their free time chatting, playing and above all exchanging documents
and ideas. So again a system that allows people to connect with each other,
making them interact with the concept of sharing. The first definition of
Social Business may have been given by IBM, which states:

“A business that embraces networks of people to create business
value. Social businesses embrace technology to enhance relation-
ships between employees, customers, and partners. They augment
business processes and applications with social interactions and
insight. They provide integrated activities that use business data
and social data. Social businesses more fully integrate the collec-
tive knowledge of people-centric networks to accelerate decision
making, strengthen business processes, and increase innovation
that matters. ”
— IBM, Redguides for Business Leaders[6]

Another definition for Social Business can be found in the article written by
David Kiron, Doug Palmer, Anh Nguyen Phillips and Nina Kruschwitz:

“In our survey, we defined social business as activities that use
social media, social software and social networks to enable more
efficient, effective and mutually useful connections between people,
information and assets. These connections can drive business
decisions, actions and outcomes across the enterprise. ”
— Kiron et al. (2012)[7]

ECS, having been categorized also as a set of Social Software, can be
classified into the four inner areas of the 8C Model for Enterprise Information
Management [22] – Figure 2. This framework is divided into two zones with
four areas each: the inner core contains tipical groupware funcitonalities and
can be thought of as people oriented and information oriented :

• Communication: PEOPLE EXCHANGING MESSAGES
Softwares and tools, such as chat tools, email, blogging, audio / video
conferencing, forums, etc., involving people exchanging messages with

2

other people, and includes functions capable to support different com-
munication modes in terms of time – synchronous or asynchronous –,
relationships – unicast, multicast or broadcast –, location – collocated
versus remoted –, media – audio / video / test / . . . – etc.

• Collaboration And Cooperation: PEOPLE WORKING TO-
GETHER
It concerns mutual engagement of people achieving common goals, thus
all the devices that enable group cooperation such as sharing docu-
ments, workspaces and information in general, as well as user profiles
and the possibility to express evaluations.

• Combination: RE-USE OF DIGITAL CONTENTS
This area is really important in supporting most of the collabora-
tive technologies – emails, blogs, persistent chats, documents sharing,
etc. . . – producing contents that need somehow to be managed. Thus, it
deals with the management and reuse of digital informations producted
by the other areas, encompassing all softwares, tools and methods that
simplify, facilitate, improve findability and support aggregation, inte-
gration and reuse of digital contents.

• Coordination: ORCHESTRATION OF PROCESSES, WORKFLOWS,
EVENTS AND TASKS
It focuses on functionalities to support orchestration of workflows,
processes – highly structured, semi-structured and ad hoc processes
–, events, tasks and management of the access to resources such as
meeting room, documents, digital contents etc., and, finally, tools for
supporting scheduling of meetings via shared calendars.

The outer ring of the 8C Model is focused on the management areas of
the Enterprise Information Management. In fact there is a need, for instance,
to integrate the tested technologies from the experimental phase into the
existing system and processes in a viable and compliant manner with respect
to companies and government regulations. The areas being part of the outer
zone of the model are the following:

• Content Management: MANAGEMENT OF DIGITAL CONTENT
DURING ALL ITS EXISTENCE
This area deals with digital contents management, from their creation
to their expiration time. It creates determination about management

3

Figure 1: 8Cs Framework for Enterprise Information Management [23]

Figure 2: People Oriented And Information Oriented Functionalities [22]

4

and stewardship of imformations generated by collaboration technolo-
gies during all their lifecycle. To achieve these goal, this area includes
activities such as:

– Design of metadata for structuring documents;

– Implementation of storage;

– Retrieval and retention systems and policies;

– Rights management and monitoring of information findability.

• Change: BUSINESS TRANSFORMATION AND PROCESS CHANGE
MANAGEMENT
The adoption of a new technology or a new collaboration paradigm
almost always leads to a transformation of the business and the change
of many business processes. For example, the introduction of new
channels of communication to customers has radically changed the
process of interaction with them. Or the availability of APIs offered
by collaboration services has radically changed the way of writing
software, more and more oriented to the user interaction, now made
possible and easily implemented, with these services. This area deals
with management of this kind of changement and with transformation
of interactions and processes that happend into companies.

• Contribution: COSTS AND BENEFITS
This area deals with identification and measurement all costs and ben-
efits achieved by companies from their investments in collaborative
technologies; moreover it focuses on monitoring and management of
achieved benefits over time.

• Compliance: COMPLIANCE MANAGEMENT AND LEGISLA-
TIVE ADEQUACY
The introduction of new collaboration technologies and the adoption of
new collaboration paradigms can strengthen and intensify the already
numerous risks and add new ones. For example, most new risks are
due to social media that can be used to monitor social profiles from
unauthorized entities and to publish content that is not permitted or
does not comply with the law. Therefore, this area becomes critical
for the continuous search for the ever present threats and for the veri-
fication of the conformity of the contents with respect to the company
norms and the government laws: constant monitoring is applied that
guarantees contents and informations security.

5

The picture depicted in Figure 1 shows the framework structure and comes
clear as ECS can be collocated in the four central areas. Nevertheless, So-
cial Media and Enterprise Collaboration Systems differ in many aspects, in
particular:

• Access: Public Social Media are generally accessible by any Internet
user, just a computer, tablet or smartphone and an internet connec-
tion to start using them. Furthermore, each interaction between dif-
ferent parties is decided and managed by the parties themselves - the
service provider provides tools that allow the user to manage the in-
teraction with any other user. In addition, the contents are accessible
from any other platform according to the policies decided by the user.
In companies, however, access to corporate social media takes place
exclusively behind firewalls and content sharing is strictly controlled
to ensure compliance with company rules and government regulations.
Also the interaction between other users is strongly managed. from
the company, allowing large freedom to the interaction between inter-
nal employees, but restricting the perimeter to external suppliers who
can interact only after the federation of the systems.

• Ownership: Ownership of social profiles and content on public Social
Media platforms is usually held by the service provider, based on the
terms of use accepted by the user. This means that the user can manage
the contents he produces – hide or modify, share and delete them – but
this does not guarantee that, for example, the content deleted from
the virtual space is also deleted on the service provider’s servers, which
being the owner, can always keep a copy together with the chronology
of the life cycle of the content, both for purposes of market studies or
other internal activities or legislative obligations. This situation does
not fit the policies of companies that instead need to be the owners of
all the content produced within. So they cannot adopt public solutions
they do not have control of, but must use products that allow full
management of digital content and user profiles.

We can better understand what ECS and Social Media have in common look-
ing at Figure 3: both Social Media platforms and Enterprise Collaboration
Systems rely on Social Softwares which enable the typical features of the
inner areas of 8C Model.

Enterprise Collaboration Systems, sometimes, can be associated to En-
terprise Resource Planning (ERP) systems too, but there are some substan-

6

Figure 3: Social Media And Enterprise Collaboration Systems Share The
Same Features [17]

tial differences between them. Indeed they differ from the at least four aspects
[16]:

• Application area: ERP systems are based on a process-oriented view
[2] with the aim of supporting clearly defined and repeatable business
functions following built-in business rules [16]. Both systems are critical
for companies, but ERP systems are more crucial to businesses because
of supporting the core order fulfilment process, while ECS systems are
designed to enable and support joint work among people in the work-
place. They are supportive in nature and their continuous availability
is usually less business critical than in the case of ERP systems [8].

• Content structure: ERPs data comprises highly structured master and
transactional data that reflect resources of the company and business
activities, while ECSs contain, for the most part, unstructured content
such as documents, blogs or posts [16].

• Implementation process : The selection and implementation of ERP
systems must follow a well-defined project plan [11], [1] whilst ECS
are often reported to follow a “bottom up” [3] and rather experimental
[13] introduction approach. As a consequence, ERP implementation
projects are about understanding business processes and finding ways

7

to ideally support them, whilst ECS implementation projects are about
identifying use cases and collaboration scenarios that best suit a specific
company and the people working in it. By understanding the potential
of the ECS, companies can create a better and more efficient digital
workplace for their employees [16].

• Purpose and use: ERP systems are not designed to give room for cre-
ativity, indeed they impose their structure and their implemented order
of events onto the user; their use is mandatory for activities in the or-
der fulfilment process. ECSs, on the other side, are tools for ad-hoc
use which offer choice and thus entail uncertainty [4]. Both system
types require skills for their use, however, ERP skills are much more
routine. ECS require the user to understand the suitability of a tool
for a current task at hand and to make appropriate selections. ECS use
is often voluntary so that the user has to acknowledge the benefits of
using the tool. This is why “user acceptance” has traditionally played
an important role in research on collaboration systems [14].

The communications and informations exchange are nowadays the foun-
dation onto which companies establish their business. Their capabilities
to build strong communication network between employees and customers
ecosystem can determines the health of their investments. Moreover, the
life perspective of companies is driven by the ability to create and manage
communications between all its internal parts, ensuring a quick exchange
of information that can largely determine the success or failure of projects.
With the birth of ECS the culture of companies has changed completely
because the idea of collaboration has gone from simple synchronous or asyn-
chronous communication to user interaction on multiple levels, incorporating,
as mentioned above, various aspects deriving from social media. So today
it is essential for companies to keep this network alive and feed it as much
as possible with new technologies because, by doing so, they will contribute
to building a common and shared corporate conscience, making proactive
actions more and more possible and feasible, which safeguard investments.
Moreover, these new social aspects that have become part of the Enterprise
Collaboration Systems consistently reinforce the sense of belonging that em-
ployees feels towards the company, making them much more involved and
protagonists of company life. Especially in large companies these tools allow
all employees to feel part of a single great team that works to achieve com-
mon goals, breaking the culture of the past that tended to circumscribe the
feeling of a team to the next managerial reality.

8

So, overall, ECS is changing the way employees work together and, for
this reason, they are attracting more and more attention with a consequent
increase in investments by companies in this sector. Heinz and Kumar, in
the IBM conference in Orlando, said: [17]

“The ESN (Enterprise Social Network, a/n) will be the backbone
of future organizations – and thus a prerequisite for business op-
erations ”
-– Heinz and Kumar, IBM Connect, Orlando, Feb 1, 2016

9

1.2 Customers And Employee Experience

The Enterprise Collaboration System has significantly improved the expe-
rience of company employees, but above all the customer experience. New
communication channels are now available and new solutions that enable the
social aspects of interpersonal interaction have been adopted together with
new information management paradigms.

When the emails were introduced there was a real revolution because the
information circulated much more quickly and, consequently, the corrective
actions and the investments could be managed with greater speed. In addi-
tion, the customers had another channel available to communicate directly
with the company, in a more fluid and fast way, avoiding costs and delays
deriving from the classic correspondence. Over time, however, the amount of
information has grown exponentially and with it, the amount of emails sent
and received, going almost to saturate this channel, damaging, sometimes,
the user experience during communication and exchange of information. Fig-
ures 4 and 5 show a forecast made by The Radicati Group, Inc. in which
is evident the estimated growth, from year 2016 to year 2020, of the email
user account and the quantity of sent and received emails. The chart shows
that the number of email users increases by about a hundred million each
year: it starts from more than two-thousand-six-hundred millions in 2016
and it will reach three thousand millions in 2020. In addition, the amount
of emails sent and received will come to about two-hundred-sixty billions,
starting from two-hundred-fifteen billions in 2016. It is therefore possible
to notice a strong expansion of this communication channel until, in some
situations, it arrives at a real abuse. The experience of customers and em-
ployees therefore does not always grow with the same growth coefficient as
new collaboration technologies. In order to keep this ecosystem of experience
constant, companies need to restructure the collaboration paradigm in order
to preserve its integrity. Forrester defines the [15] customer experience
ecosystem as:

“The web of relations among all aspects of a company — including
its customers, employees, partners, and operating environment —
that determine the quality of the customer experience. ”

The web of relations in the Forrester quotes can be created, maintained and
increased only with the correct management of the Enterprise Collaboration
System, adopting strategies that aim to make the customer feel part of the

10

ecosystem of the product, creating a more intimate contact with it. It is
no coincidence that nowadays almost every company decides to create its
presence on the various social platforms and increasingly makes available
both customers and employees effective and efficient collaboration channels.
So customers can provide their feedbacks that goes directly into the product
development cycle and, therefore, usable in a very short time.

Figure 4: The Radicati Group, Inc. — Forecast 2016-2020 [18]

Figure 5: The Radicati Group, Inc. — Forecast 2016-2020 [18]

11

1.3 Layout And Main Components

To support collaboration, social business, communication, content and
knowledge sharing within organizations, ECS seeks to combine social software
components, such as social profiles, with traditional groupware components
(e-mail, for example, shared agenda, shared workspace for documents). The
main needs that the ECS usually faces are telephony, instant messaging,
e-mail, file exchange, the ability to work simultaneously on shared docu-
ments, video conferencing and meeting rooms. All the components listed
above could be declined very differently, depending on size, business, work
modalities and territorial dispositions of companies. The layout of the ECS
can therefore vary a lot. Small enterprises, for example, with few employees
and without particular legal restrictions, can use a single application for
internal and external communications, another application for the exchange
of files and another for e-mails. The listed applications could all be used
through Cloud SaaS (Software As A Service). The layout in this case is
very simple and does not require any dedicated paarticular infrastructure,
with the exception of some licenses. The services offered by Google, such
as Hangouts, Gmail and Drive could represent a realization of the layout
described above – figure 6. On the other hand, the most complex and
medium / high-sized companies could have different needs. If they process
sensitive data or generate a lot of traffic, a hybrid or totally in-house solu-
tion could fit better – Figures 7 and 8. This type of layout requires that
companies have a private or managed server farm, in which to dedicate the
infrastructure to manage the various components of ECS. In this way you
can have full control of traffic and content. The investments in this mode
are of CapEx (Capital Expense, a/n) type, i.e. the company supports a
cost for the purchase and maintenance of the technology. With public Cloud
solutions, instead, there are investments of type OpEx (Operational Expense,
a/n) in which the cost is directly proportional to the use of technology (you
pay the allocation and time of use of a resource). However, medium / large
companies may also need direct interfacing technologies with the user, such
as conference rooms, adding this type of asset to investments and potentially
increasing the complexity of the ECS layout.

Figure 6 shows an example of a solution that totally adopts the pub-
lic Cloud: the company buys enterprise lincences and accesses the services
offered by the Cloud provider via the Internet. This is the simplest layout
because it does not require any server farms being managed by the com-
pany. In addition, product support and scalability is totally managed by

12

Figure 6: Company uses collaboration SaaS from public cloud

Figure 7: Company exposes a single point of connection used by customers
and contractors

Figure 8: Company uses federarion for contractors and a DMZ for customers
communication channel

13

the cloud provider. The company that adopts this solution will only have
operating costs that will scale proportionally to the growth of its business:
when intense work requires more resources, these are payed and allocated
on demand, then disposed when no longer necessary. This paradigm trans-
lates the business needs into perfectly adjusted company costs. Obviously,
as mentioned previously, all this freedom has the price of no longer having
full control of infrastructures.

A more complex example of the layout of an Enterprise Collaboration
System is shown in Figure 7. Here the public component no longer ex-
ists because everything is managed on premises. In this case, the company
manages the infrastructure for collaboration applications, exposing a single
point of contact to the outside for establishing communications and interac-
tions with external suppliers and customers. In practice it is similar to what
happened with the public cloud, but reported in the private domain of the
company. This layout has the advantage of using the same applications for
both internal and external communications, but exposes some security issues
– there is no distinction between an employee, a supplier or any other user
on the network, as is the case with telephone conversations – that companies
of considerable size and importance can not afford.

Figure 8 represents a layout suitable for companies of great importance
and size as it fills many gaps in the preceding layout. In fact, in this model
we can distinguish three domains:

• The internal domain for the communications between the employees

• The domain for communications with the suppliers and the external
federates

• The domain for the communication channels to the customers

The latter is usually found on a secure network, much more controlled and
with many reduced functionalities. With this layout it is possible to use en-
terprise applications for communications and collaboration within the com-
pany, while customers are increasingly looking to use the applications they
already own, such as Whatsapp and Telegram, to make communication more
comfortable – the customer uses an app that he already knows and does not
have the burden of downloading others.

In conclusion, there are many layouts that can be adopted by the com-
panies: according to their needs they can choose a solution totally cloud, in

14

which all the management and support of technology is left to the service
provider and the cost is proportional to the use, hybrid solutions or totally
in place. Companies will choose the right solution based on their business
and the legislative constraints they must comply with.

15

1.4 Cloud Computing And Microservices

In the section 1.3 we talked about Cloud solutions for ECS layouts. To better
understand these concepts, we see here what Cloud computing is and how it
is done.

1.4.1 Cloud

“Cloud computing is the delivery of computing services – servers,
storage, databases, networking, software, analytics, and more –
over the Internet (“The Cloud”). ”
-– What is cloud computing? – Microsoft Azure [20]

From the quotation found on the Microsoft Azure website, we understand
that Cloud Computing is a paradigm for IT resources delivery, such as virtual
servers, storage, runtime platforms, applications and services, etc. It was
born in 2010, with a lot of skepticism, so it started its real development in
2015 and finally the forecasts place its maturity between 2020 and 2025, as
shown in Figure 9. This new paradigm wants to replace the precedent that

Figure 9: Cloud Lifecycle Forecast

forced companies to build their own server farm and fill it with all the types
of technological infrastructures they needed. Before the advent of Cloud
Computing, as a new delivery paradigm, whenever the need arose to create
a new application or adopt a new technology to support a new product,
the company had to take on the task of buying, installing, maintaining and
support all the necessary technological infrastructure. Delivery times and
time-to-market were much longer and investments were even more risky. In

16

fact, if the company wanted to test a new product or software, it was forced
to add all the necessary technology to its server farm, without the guarantee
that this type of long-term investment would lead to an economic return.
Today, with the various Cloud providers on the market, you can have all
the IT services you need, even for experimentation, without the need for
long-term investments, paying only for what you use, for the time when you
use it. This paradigm obviously allows to scale or reduce the infrastructure
as needed, perfectly adapting the costs to the business needs. So Cloud
Computing brings many benefits to the company that decides to adopt it
[20]:

• Cost: you pay what you use

• Speed: vast amounts of computing resources can be provisioned in
minutes, typically with just a few mouse clicks

• Global Scale: ability to scale when its needed, and from the right
geographic location

• Productivity: no waste of time in installation and configuration

• Performance: the Cloud provider is responsible for periodically up-
dating all the technology infrastructure with the most modern technol-
ogy available

• Reliability: data backup, disaster recovery, and business continuity
easier and less expensive

Cloud computing offers three main types of services, as shown in Figure 10:

• IaaS – Infrastructure-as-a-Service:
computing infrastructure like virtual machines, storage, networking,
provisioned and managed over the Internet

• PaaS – Platform-as-a-Service:
on-demand evironment for developing, testing, delivering and manag-
ing software applications (e.g. Oracle WebLogic or RedHat JBoss as
application server)

• SaaS – Software-as-a-Service:
Software applications provisioned and used over the Internet, usually
asking for subscription (e.g. Google Gmail, Microsoft Office 365, etc.)

17

Figure 10: 7 Different Types of Cloud Computing Structures – uniprint.net
[5]

According to this classification of services, the responsibility of the user, and
therefore of the company, changes in the management of the infrastructure.
Figure 11 shows clearly how the responsibility of the company, regarding
completely in-house solutions, regards the entire infrastructure stack, starting
from the base with the different technological components (network, storage,
etc.) up to the application. In this case the company is responsible for

Figure 11: Company vs. Cloud Provider Responsibility

18

the technological renewal, the support of all the parts and the updating and
patching of the application. As soon as you move into Cloud solutions you im-
mediately notice a reduction in responsibility assumed by the company. For
IaaS services, the Cloud provider is responsible for all the low-level techno-
logical components, while the company remains the medium-high part of the
infrastructure stack that starts from the operating system. With platform-
as-a-service the responsibility of the company is still reduced, concerning
only the management of data and application software, while in the SaaS so-
lutions the entire infrastructure stack is managed by the Cloud provider and
the company only has to worry about how to use the application. Finally,
the Cloud be declined in:

• Private: The company owns its private datacenter, or pays a third
party hosting it, and implements the Cloud paradigm with orchestra-
tors and infrastructure software. In this case the responsibility of the
company encompasses the whole infrastructure stack. Many compa-
nies opt for this declination because they already have a datacenter or
because they are obliged by law or internal statute to have full control
of the digital content produced.

• Public: All IT resources are provided by a Cloud provider outside
the company. In this case the model of responsibility falls into the
one shown by the last three stacks on the right in Picture 11. This
case is very common to small or startup companies that can not yet
afford a datacenter or simply does not suit them. With this decli-
nation, a startup can be immediately up to speed by minimizing the
weight of information technology on time-to-market. Obviously this
type of solution requires a careful choice of the Cloud provider, trying
to standardize the terms of use offered with the requirements and legal
obligations.

• Hybrid: The hybrid solution is the most chosen by older and larger
companies as it combines the advantages of external management with
the control of digital content guaranteed by the possession of an internal
data center. For large companies it is not easy, neither physically,
nor culturally, to switch from one technological solution to another,
so companies that are born with the old delivery paradigm are slowly
coming to the new one first building their own private Cloud and then
combining it with the public one with platforms (the so-called IPaaS –
Integration-Platforma-as-a-Service) that make it possible to share data
between the two types of Cloud.

19

1.4.2 Microservices

Until a few years ago, before the advent of Cloud Computing, the technology
was static and applications were designed to fit statically on users’ devices
and on-premise corporate servers. To give applications more flexibility and
possibility to scale, the 3 tier architecture was adopted: presentation, busi-
ness logic and data.But it was still a monolithic structure, released on pre-
scaled hardware to withstand estimated load peaks. When the maximum
load limit was reached, IT scale-up was performed to avoid reconfiguring
other servers and rewriting the application’s architecture. Because of this,
developers created application capabilities highly coupled with each other,
even in different tiers. This meant that a change, even small, to a single
functionality forced the redeploy of the entire application on all the tiers and
any update could lead to unforeseen situations with consequent application
downtime. Nowadays applications are no more performed locally, neither on
the user’s devices nor on pre-set on-premise hardware, but are distributed on
different technological infrastructures, even in different geographical places.
Furthermore, the large number of Cloud service providers on the market
has lowered the entry barrier for IT service competitors, making concepts
like maintenance windows or update downtime give way to always on, high
availability and service continuity ones. The microservice architecture was
created to meet all these challenges, trying first to eliminate the coupling
between the various application features. The name ”microservices”, in fact,
refers precisely to the decomposition of the application into small indepen-
dent functional units that has its own API, which is typically in REST for-
mat, with which it can interact with the other microservices (12); it can also
be updated independently from the rest of the microservices that are part
of the application. Unlike monolithic applications, for which the developer
declares requirements directly to IT staff, microservices applications com-
municate their resource requirements to orchestration software – also called
cluster manager – which assigns them to the VM 1 of the most suitable cluster
to respect the terms of efficiency and optimization of resources. This enables
on-demand scale-out, using resources only when needed and eliminating any
single-point-of-failure. Updates are also managed in a much simpler and
more consistent way, with the possibility of updating even a single function,
testing it and, in case of problems, restore the initial situation by making a
simple rollback. This decoupled system enables CD / CI paradigm2, allowing

1Virtual Machines: virtual servers that emulate physical ones and are created upon a
cluster of physical servers

2Continuous Delivery and Continuous Integration

20

Figure 12: Microservices Architecture – by Microsoft Azure [21]

developers to frequently evolve the application.
Containers technology represents the most common way to implement a mi-
croservices architecture and, in order to take full advantage of the paradigm,
an orchestration platform is required, which automatically manages the life
cycle of each container: in case of load peak, the platform automatically
deploys new containers; if a virtual server fails, it moves the respective con-
tainers to another server without interruption. Finally, it can also manage
geolocality, deploying the containers in the datacenter closest to the user (if
the Cloud provider allows it) so as to always guarantee the best performance.

21

2 Main Problems

Nowadays Virtual Teams rely on sophisticated technologies to communicate
– see section 1.1 – that can be synchronous, like chat or audio / video con-
ference, or asynchronous like email and fax. Many times it is hard for these
products to communicate whith each other because of the different tech-
nology with which they were developed or the different platforms in which
they are performed. This situation make IT environment chaotic, costly and
couterproductive, with consequences like repeated miscommunication, diffi-
culties to locate data, etc. This also applies to IT staff striving to monitor and
control collaboration tools[10]. Hence, a lot of today’s collaboration technol-
ogy initiatives do not succeed in expressing their transformational potential
because of the absence of unified collaboration strategy. Furthermore, every
time a major update affects those applications, developers shall rebuild soft-
wares that use old APIs: this job generally happens very slowly, drawing up
a lot of transition periods that overlap, increasing collaboration ecosystem
complexity and security issues. So the introduction of an Enterprise Collab-
oration System within an already consolidated company, as Intesa Sanpaolo
is, brings many challenges and hindrances. In fact, a number of critical situa-
tions have emerged along with the benefits of collaboration products, making
a fully home-managed solution a necessary remedy for them. It is not al-
ways easy to identify interaction problems with the collaboration ecosystem.
Many critical issues are indeed often ascribed to telecommunications, that
form the backbone of the ECS, or to other supporting technologies, such as
server infrastructure, storage, etc. Moreover, once the real cause has been
found, the solution could not be straightforward. In Intesa Sanpaolo the
problems presented by the various groups of application developers were col-
lected, therefore the design of the platform was elaborated to expose the
collaboration services required as a solution that best fits the infrastructural,
application and management needs, together with the technological ones and
economic.

The three main problems addressed are described in the following sub-
sections:

• In sub-section 2.1 it is explained how the lack of a single ecosystem of
APIs has led to a fragmentation in the management of applications that
interface with multiple collaboration products; in fact each product has
its APIs that evolve independently from those of other products: this
inevitably leads to a continuous restructuring of the software.

22

• In sub-section 2.2 expands the previous topic to explain how this allows
not only to have a single entrypoint for the APIs of collaboration used
by the applications, but also to improve the management of them,
creating additional services and decoupling the functionality from the
product.

• In sub-section 2.3 the topic of security is taken up again, explaining
the pitfalls that often hide in the various products that make up the
ECS; it is therefore explained what remedy has been chosen.

2.1 Single APIs Ecosystem

One of the main problems that often arise in Intesa Sanpaolo derives from
the large number of products present in the company and the heterogeneity
of the interfaces exposed by them. In this way, there is no single point
of contact (SPOC) but as many as the services exposed by each product.
This situation makes the management and maintenance of applications using
those interfaces very difficult and inflexible, forcing developers to update –
and sometimes to totally restructure – the software every time the vendor
releases a new version of the product, removing the support to the previous
ones. This complexity is fully realized specially in the case of one application
interfacing with multiple products, each of which has different life cycle and
version. Furthermore, it becomes really hard to write quality software in an
environment with several formats for exchanged data and with a large amount
of different APIs available. The new platform meets the standardization
requirements in the exposure and use of collaboration services, filling the
gap between the SPOC required by applications and the moltitude of APIs
available. Whenever there will be a need to interface with the ECS, the
platform will provide a single access point through uniform and managed
APIs whose life cycles and development will follow the natural physiology
of the company. Developers will no longer be forced to restructure and / or
rewrite applications every time a collaboration product version changes as
they will not be aware of this any more: the platform, assuming the role of
middleware, will hide this complexity, guaranteeing continuity of service and
stability of communication. The advantages brougth by this new platform are
not only increased stability and security for the consumer applications, but
also the enhancement given to developers who can now implement additional
features instead of wasting time continually updating existing ones in order to
adapt them to ECS changes. The ecosystem of the new APIs, in fact, is not

23

a simple broker that wants to mask the complexity of ECS, but a real new
level of abstraction that controls, filters and balances the communications
between the world of applications and that of collaborations. This improves
overall safety and stability. Another advantage derives from the possibility of
sharing code among different projects thanks to the unique interface provided
by the platform for the use collaboration services.

2.2 Improvement Of Services And API Management

Lots of collaboration problems in Intesa Sanpaolo come from product mi-
grations and transition periods. As shown in Figure 14, every time a new
version of Exchange is released, it takes at least a year for the migration to
finish. But once the migration is completed, many servers still remain run-
ning with the old product version to support applications that use the related
APIs. For instance, the last servers with Exchange 2007 have been deacti-
vated in 2016 – after three generations have passed! – and many servers that
support the 2010 version are still active. In general, there are still running
servers that support three versions of Exchange because of some old appli-
cations – probably developed with monolithic structure – using the APIs of
those versions that are difficult to update. It clearly requires the need for
an abstraction layer that finally decouples the business functionalities of the
collaboration products from the product APIs, strongly tied to the version.
The same goes for Sharepoint and Skype and in general for all the services
that are part of the Intesa Sanpaolo ECS. Obviously it is not just the fault of
the products and version updates, but also of the architecture of the applica-
tions that does not allow a flexible update. Unfortunately, Intesa Sanpaolo,
being a great reality and not a software house, but a bank, is not always
able to keep up with all the new software technologies and architectures and
having a very large application ecosystem, it also has large inertia towards
change. This does not mean that applications are not updated, but that
they do it more slowly than products they interface with. This is why the
new platform also assumes the fundamental role of temporal shock absorber,
filling the gap between the update times of external products and internal
applications. Furthermore, new APIs, that form the abstraction layer, will
maintain, during update, all old functionalities that are stable and used by
old applications, adding the new ones in a low impact mode for the entire
ecosystem. In this way no more restructuring of software will be necessary,
creating a lot of stability among applications environment. In conclusion,
the new ecosystem that will group together all the available APIs related to

24

the several collaboration products will enable a centralized management and
maintenance of the exposed services, decoupling the development of applica-
tions from the deep ksnowledge of products and their lifecycle.

2.3 Improvement Of Security

The last major problem faced with this project concerns computer security.
The evolution of a product to a new version – and related changement of its
APIs – makes, indeed, hard the maintenance of the security level for many
old applications which are probably designed highly tied to the API present
at the time and for those with special requirements. This situation happends
specially when time constraint is very small and the update must be released
quickly. Moreover, each collaboration infrastructure (Skype, Exchange, etc.)
has its own security degree and paradigm that contributes to make the man-
agement and maintenance of overall security fragmented. The new developed
platform try to responds to the issue creating a unique layer of exposure of
collaboration services that has a uniformed security paradigm, fully compli-
ant with company’s regulations. So developers and users can exploit these
APIs without take care of security compliant because the platform provides
the same for all services. Furthermore, the architecture of the microservices
(see section 3.3) on which the platform is built provides another layer of se-
curity: with two high availability sites, the Openshift architecture in Intesa
Sanpaolo guarantees resilience, always on, continuous delivery / continuous
integration without downtime due to any kind of failure. Finally, since the
platform does not expose all the features made available by the product, this
also limits the damages that may be caused by an illegal, inappropriate or
accidental use of those API. Moreover, building and managing internally an
intermediate layer, as the new platform is, it enhances the suitability to the
company – and governments when it needs – terms, since the product APIs
not always are fully compliant with these and this situation is often detected
too late, when some developer decides to use those APIs.

25

Figure 13: The new platform decouples applications from products

Figure 14: Exchange version update in Intesa Sanpaolo

26

3 Intesa Sanpaolo

3.1 Enterprise Collaboration

Over the years, the banking group of Intesa Sanpaolo has grown increasingly,
becoming a very large company, with a strong presence even beyond the
Italian national border. For this reason, the collaboration has had to grow
and develop to cope with the exponential growth of users. The ECS has
therefore become a great complex system that incorporates all the necessary
features that allow to provide a continuous service even in case of accidents.
Security, high availability and disaster recovery are the cornerstones on which
all of its infrastructure is based.
Collaboration system in Intesa Sanpaolo follows three main principles:

• Consistent and Improved User Experience – access on any device, any-
where, and at any time.

• Highly Availability and Disaster Recovery – designed to keep the num-
ber of unplanned and/or extended outages low, it enables patching and
upgrading activities without violating service-level agreements. Addi-
tionally, two pools in different geographical areas provide disaster re-
covery: if an entire pool goes down, the backup one continues to provide
service.

• Centrality – the system is deployed in a centralized manner within three
data centres located in Moncalieri – Settimo (Turin) and Parma.

The Collaboration Bureau in Intesa Sanpaolo Group deals with provid-
ing services to all the companies belonging to the group, having branches
in every part of the globe. The services offered can be categorized into four
main stacks, as shown in Figure 15. At the bottom of each stack there is
a service belonging to standard package that includes Skype for Business,
Exchange, Outlook, SharePoint Mysite and Teamsite. In addition, optional
services are offered such as video conferencing, SMS and Fax Server, certified
e-mail, File Sharing and Weshare.

Skype for business (S4B) Formerly Lync, it is the application used today
by all employees of the Bank group for activities like instant messaging, audio

27

Figure 15: Categories of offered services in Intesa Sanpaolo

and video conferencing, management of switchboards, sharing of desktops
and applications and online meetings. The service is totally on-premises and
relies on a three-pole infrastructure. Today it serves 72,000 users with an
average of 500,000 p2p sessions (Figure 16), 9,000 audio calls and 3,000
conferences per day. This kind of services allows employees to always be
reachable on their client regardless of their physical location. S4B integrates
completely with traditional telephony making sure that users are reachable
also from any telephone, internal and external. This integration is today a
service offered to a portion of users; in particular to the colleagues of the ”new
concept” bank branches, in which they chose not to install any traditional
telephone, and in the central offices.

Video Conference It gives the possibility to perform point-to-point video-
communication (1500 sessions per month), multipoint (2400 sessions per
month), LiveCast, recording sessions on request. The infrastructure is fully
integrated with Skype for Business giving the possibility also to connect users
from traditional telephone devices.

Microsoft Exchange It provides a way to centralize e-mail messaging,
calendars, notes, task lists and address books management. Microsoft Out-
look, the most used client to connect to an Exchange server, is the company’s
official one together with its Web interface: Outlook Web Access (OWA). It
also offers additional features such as ten years e-mail archiving, the abil-
ity to archive e-mail directly online, integration with fax and SMS systems,
integrated chat in webmail, autonomous management of permissions and in-
tegration with Sharepoint. Furthermore, one of the most important feature
comes from the close integration with the Active Directory system, which

28

Figure 16: Peer to Peer Sessions in Intesa Sanpaolo

Figure 17: Volumes of ISP collaboration technologies

29

facilitates the management of users and distribution groups implemented at
the level of Organizational Units (OU).

Right Management System Enabling encryption of Office suite docu-
ments – word, excel, power point and e-mail – this tool also provides inte-
gration with mobile devices using the VPN and the use of pre-set protection
templates: not printing, not forwarding, reserved, not responding to all, etc.
An additional feature of particular relevance is the application of the product
for the Sharepoint suite.

The Intesa Sanpaolo group offers to employees the certified e-mail ser-
vice, managing today around 850 accounts, with future extension to all
branches of the Bank. Through this service, the e-mail messages have le-
gal validity, equivalent to a registered letter with a return receipt. Moreover,
the possibility to send telegrams, create and manage virtual PEC accounts,
track access and mail flows and digital signature are offered. Additional fea-
tures include the possibility of using a standard archiving service through
MailDOCpro.

Sharepoint It is divided into three sub-services: Mysite, Teamsite and
WeShare. Mysite and Teamsite respectively allow the creation of personal
document areas, currently about 72,000, and group document areas, about
13,000, whose documents can be shared even outside, offering data backup,
versioning, authorization management in autonomy and automatic provision-
ing of user profiles. Other interesting features are the recycle bin through
which documents can be recovered autonomously up to 15 days after the
elimination and co-editing through the Office Web App that allows you to
edit a file simultaneously. WeShare, with 80 working groups currently ac-
tive, offers easier projects and work groups management, integrating more
solutions offered by different market products including discussion groups,
task management, document sharing. The showcase section makes possible
to illustrate the project or the objectives of the group externally through
descriptions or FAQ section.

30

Figure 18: Videoconference architecture in Intesa Sanpaolo

Figure 19: Exchange architecture in Intesa Sanpaolo

31

Figure 20: Skype4Business architecture in Intesa Sanpaolo

32

3.2 Private Cloud

In 2011, the paradigm of Private Cloud was adopted in Intesa Sanpaolo as
a means of technology infrastructures delivery. Today, after almost 8 years,
around 80% of the departmental infrastructure is managed using Cloud tech-
nologies. The delivery speed has increased and has been made also standard.
Before Cloud, indeed, servers, storage, network and all other IT resources
and runtime environments, were strongly customized for the needs of appli-
cations. Now, as the Cloud offers a set of pre-defined services with which to
obtain IT resources, developers need to adapt in the same way they would if
they were using public cloud service providers.

Figure 21: Classification of Services

However, the use of the private Cloud is limited to the group of IT ex-
perts in which there is an office, called Project Coordination, which interfaces
with application developers. This office translates the application needs ac-
cording to the technology present in the company and then provides it to the
developers using the Cloud. Developers can only use services that deliver re-
sources in PoC (Proof of Concept) environment (Figure 21). This is because
they are usually unable to understand IT needs of applications, also because
the DevOps3 culture was not adopted at the same time as the private Cloud

3A software engineering culture and practice that aims at unifying software development
(Dev) and software operation (Ops).[https://en.wikipedia.org/wiki/DevOps]

33

https://en.wikipedia.org/wiki/DevOps

was. All other employees not belonging neither to IT nor developers groups
can not even access the Private Cloud web portal. This precaution is due to
the fact that the services that may be requested via Cloud are economically
reported a posteriori and the IT resources in the server farm are estimated
for developers needs and not to be used by everyone. Moreover, the services
in the private cloud are designed keeping in mind that users are aware of
the infrastructure present in the company and of the various customizations
that have been made over the years. Then, for example, users should know
which cluster to use or on which network to create a virtual server. Since
developers are not aware of this information, the corporate private Cloud
exposes to them only simple services to realize PoC, while all other more
complex services are used by experienced and authorized users.

In the following subsections the backbone framework of private Cloud
and the structure of services are explained.

3.2.1 Cloud Framework

The framework of the private Cloud, in Intesa Sanpaolo, is composed of three
tier (Figure 22): Presentation, Service Orchestration and Service Providers.

Presentation Layer This is the front-end layer, in which the main compo-
nent is the web portal (Figure 24 and 25), actually realized via Microfocus
CSA4. It implements the user authentication and authorization via single sign
on (SSO) and comprehends, furthermore, the services catalog on which users
can select the service they prefer. The authorization takes place through the
binding with Active Directory in which groups allowing access and use of the
web portal are recorded. The webpage of a service, commonly called form, is
composed by several fields – drop-down menus, free text input – that user will
fill in with parameters like sizes for disk, cpu, ram and OS version. As said
above, every forms have static fields (such as drop-down menus) that are val-
ued via JSP5 scripts that retrieve proper informations from a dedicated DB.
It also checks free text input against predefined policies, preventing wrong

4https://software.microfocus.com/en-us/products/

cloud-service-automation/overview
5Is a technology that helps software developers create dynamically generated web pages

based on HTML, XML, or other document types [. . .] JSP is similar to PHP and ASP, but
it uses the Java programming language [https://en.wikipedia.org/wiki/JavaServer_
Pages]

34

https://software.microfocus.com/en-us/products/cloud-service-automation/overview
https://software.microfocus.com/en-us/products/cloud-service-automation/overview
https://en.wikipedia.org/wiki/JavaServer_Pages
https://en.wikipedia.org/wiki/JavaServer_Pages

information entered by user. While the user fills in the fields, the portal also
queries the CMDB to retrieve and verify some information. Finally, once user
has submitted the request, the web portal perform a series of pre-operations
to evaluate some hidden informations and then it invokes the orchestrator
located in the Service Orchestration Layer, sending a JSON payload to it
with all the informations related to the request.

Service Orchestration Layer This layer represents the core of the entire
framework because it takes all the necessary informations and orchestrates
the service providers (see next paragraph) in order to build the resource re-
quested by the user. The actual orchestrator software is HP OO6 of Micro-
focus HCM suite. It interacts many times with cloud portal to synergically
evaluates all the necessary informations to build the IT resource. When the
user request goes into orchestrator management, once web portal finished,
it first select the service manifest, a JSON template reporting all the infor-
mations needed for resource creation, then, from that template, it creates
an instance that contains all the informations evaluated so far. Finally it
invokes low level service providers, using a specific mapper for each of them.
Orchestrator continually monitors service providers waiting for responses. If
something goes wrong, it stops all the process and sends a failure ticket to
the competence technical group. It is almost always possible to restart the
automation from the break point, without restarting the request from the be-
ginning (manually from the web portal). In the case it is not possible, there
are dedicated flows that clean up all the changes done so far, performing a
sort of rollback, to free up any allocated resources. If, indeed, all operations
succeed, the orchestrator performs the final censuses into CMDB and send
email to the user with request confirmation and all the details regarding the
resource – in the case of virtual server, the way to access it. This layer is
not used only when triggered by web portal with new coming requests, but
there are scheduled flows that autonomously perform checks, log activities
and monitoring.

Service Providers Layer It groups together all service providers that,
performing a series of operations, contribute to the creation of the final IT re-
source. There are seven main service providers in this layer, with some other
minor ones. For Linux environment the main service provider is VMware
VRO, an orchestrator that creates resources in VMware vcenter and Exa-

6https://software.microfocus.com/en-us/home

35

https://software.microfocus.com/en-us/home

logic. This powerfull software allows any kind of management on VMware
resources and it is also used to run Ansible playbooks, that configure virtual
servers, and to manage RedHat Satellite, that provides licenses, repository
and updates on linux machines. Microsoft Orchestrator is, indeed, used to
create and manage resources on Hyper-V clusters, hence, virtual Windows
servers for instance. It performs more less the same operations that VRO
does. The third service provider manages storage resources, with large use of
the Rundeck job scheduler7. Then there is a TLC orchestrator that creates
new rules on load balancers and manage SDN8, enabling network operations
via cloud services. The fifth service provider is the one that deals with cen-
suses in CMDB / GSS, set up of Change Console, the framework responsible
of software change, DNS registrations and all other registration operations.
Finally there are service providers for microservices and Azure services: the
first one in represented by OpenShift that exposes APIs used by the high
orchestator; the last one is a set of tools, including Terraform9, to interface
with Azure and deploy resources on this public Cloud.

3.2.2 Services

Type of Services Intesa Sanapaolo Private Cloud provides services re-
lated to several technology brands (Figure 23) and it continually evolves to
integrate new ones. Furthermore, there are dedicated services for different
organizations belonging to the banking group like Finanza, Fideuram - Polo
Assicurativo and the Foreign Banks. The main categories in which services
are grouped are:

• IaaS

– Storage

∗ EMC

∗ PURE

∗ NetApp

∗ Share CIFS

7https://rundeck.org/
8 [. . .] SDN architectures decouple network control and forwarding functions, enabling

network control to become directly programmable and the underlying infrastructure to be
abstracted from applications and network services [https://en.wikipedia.org/wiki/
Software-defined_networking]

9https://www.terraform.io/

36

https://rundeck.org/
https://en.wikipedia.org/wiki/Software-defined_networking
https://en.wikipedia.org/wiki/Software-defined_networking
https://www.terraform.io/

∗ Share NFS

– Network

∗ Load Balancer Rules

• PaaS

– Integration Test Environment

– Oracle WebLogic

– RedHat JBoss

– Microsoft IIS

– JAVA

– MQ and IIB

– IBM WebSphere

– OpenShift

• POC

– Microsoft .NET

– JAVA

– Microsoft SharePoint

– RedHat Linux

– Microsoft Windows Server

– MongoDB

– Oracle DB

• DBaaS

– Microsoft SQL Server

– Oracle DB

– MongoDB

The type of services includes different technologies between virtual servers,
databases, runtime application environments, storage and TLC. One of the
most innovative services introduced recently is OpenShift PaaS which allows
the orchestration of containers.

37

Structure Each service in the Cloud catalog is identified with a unique
Service Identificator. This identificator is associated with a JSON-formatted
record, called Service Manifest that specifies various technological parame-
ters together with service providers used for the resource creation and de-
livery. Service Identificator is recalled in several steps of the framework in
order to identify proper IT options – such as cluster, network, storage ty-
pology, etc. – and workflows specific for that resource requested. Picture
26 shows a screenshot of a table of Cloud DB in which are recorded all the
associations between Service Identificators and Service Manifests. Service
Manifest, instead, is a template from wich an instance is created every time
a request is submitted from the web portal. Each instance is identified by a
number called Requisition ID and contains all the options specified by the
user – cpu, ram, disk size, etc. – and further back-end evaluations. Listing
1 reports a simplified version of the manifest related to the VMware PaaS
services. In conclusion, since the company is CMDB centric, i.e. all informa-
tions about IT is stored and managed by CMDB, the Cloud cannot manage
the resource lifecycle indipendently. For this reason there is a service for each
of the following operations:

• Creation: used only once for the each resource that becomes available
from the moment of delivery.

• Modification: ca be used more than once for each resource.

• Elimination: used only once for each resource (this is deallocated and
becomes available again).

Listing 1: Service Manifest

1 {
2 "serviceIdentificator": "PaaSVMware",

3 "contentVersion": "1.0",

4 "inputsFromRequest": {
5 "RequisitionID": "${ RequisitionID }",
6 "Environment": "${ Environment }",
7 "Version": "${Version }",
8 "Domain": "${Domain }",
9 "Description": "${ Description }",

10 "DiskSizeKey": "${ DiskSizeKey }",
11 "DiskSize": "${ DiskSize }",
12 "ServiceOwner": "${ ServiceOwner }",
13 "Heap -size -giga": "${ Heap_size_giga }",
14 "MemorySize": "${ MemorySize }",
15 "Platform": "${ Platform }",

38

16 "User": "${User}",
17 "OS": "${OS}",
18 "Acronym": "${Acronym }",
19 "CPU": "${CPU}",
20 "BackupPolicy": "${ BackupPolicy }",
21 "DR": "${DR}",
22 "jdk -patch -level": "${jdk -patch -level }",
23 "jax -rs": "${jax -rs}",
24 "authentication": "${ authentication }"
25 },
26 "inputsFromAutomation": {
27 "Datacenter": "${ Datacenter }",
28 "vCenter": "${vCenter }",
29 "Cluster": "${Cluster }",
30 "Hostname": "${ Hostname }",
31 "StorageLevel": "${ StorageLevel }",
32 "Networks": "${ Networks }",
33 "Port": "${Port}"
34 },
35 "prerequisites": [

36 "Site",

37 "Datastore",

38 "Hostname",

39 "Port"

40],

41 "serviceProviders": [

42 "CMDB",

43 "DNS",

44 "VRO",

45 "ChangeConsole",

46 "GSS"

47]

48 }

39

Figure 22: Private Cloud framework in Intesa Sanpaolo

Figure 23: Brands

40

Figure 24: Cloud Web Portal

Figure 25: Cloud Web Portal

41

Figure 26: Screenshot Of ServiceIdentificator/ServiceManifest DB table

42

3.3 OpenShift

3.3.1 Platform Selection Process

During last years of Cloud development the need of orchestration platform
for microservices arose in Intesa Sanpaolo. Hence some main brands was
analyzed to check compliance against company regulation. The most known
firm that offered that kind of product were:

• RedHat with OpenShift

• Pivotal with Cloud Foundry

• Docker with Docker Datacenter

• IBM with Bluemix

• Oracle with Oracle Cloud

The last two listed platforms have not been deeply analyzed because
they were fully managed by vendor and this represented a sort of lock-in
that did not fit with company regulation. The first two platforms, indeed,
have been tested against the main tecnologies used so far: three Java Stand
Alone applications, one application running on JBoss runtime environment,
one application running on Weblogic runtime environment and one Mon-
goDB backend have been cloned into containers orchestrated by Openshift
and Cloud Foundry. Conversely, Docker Datacenter has been tested using
parallel development environment for MUREX softwares. At the end of the
sperimentation, a comparative analyses has been produced (Figure 27):

1. Three evaluation areas were defined

2. Evaluation criteria for each area were adopted

3. A score from 1 to 6 was associated to each platform

The choice was driven by the total score gained by the platform and some
considerations about its maturity in enterprise context.

43

Figure 27: Final Results

Figure 28: OpenShift Architecture in Intesa Sanpaolo

44

3.3.2 Architecture

To fulfill the development cycle adopted by Intesa Sanpaolo, Openshift ar-
chitecture was built with the ability to supply containers in the three main
environments:

• Development – Used by developers

• System Test – Used for quality test

• Production

The first two environments are provided from the same Openshift in-
stallation, whilst the Production one has a dedicate installation. Developers
can access only the first environment because the System Test and Produc-
tion doployment is done via Change Console, a specific internal software
for application change management integrated with GitHub Enterprise and
CloudBees Jenkins Enterprise instances. Another Laboratory installation of
Openshift was built in order to test and evolve the platform itself.

The physical hardware that hosts Openshift instances is spread among
different servers located in Moncalieri and Settimo Torinese datacenters, in
order to guarantee geo-redundace. Another site for failover has been located
in Parma datacenter. The virtual servers running OpenShift are located
into VMware ESXi cluster. There are two indipendent cluster, the first one
hosts Laboratory, Development and System Test instances, the last one hosts
Production instance only. Furthermore, there are three available storage
types according to data replication requirementes:

• Bronze: primary datastore hosted in Moncalieri; it is used for non-
critical environments (e.g. Laboratory)

• Silver: Primary datatore hosted in Moncalieri with asynchronous
replica in Parma datacenter; it is mainly used for applications that
require disaster recovery

• Gold: Primary datatore hosted in Moncalieri with synchronous replica
in Settimo Torinese datacenter and asynchronous replica in Parma dat-
acenter; it is mainly used for applications that require disaster recovery
(high availability and isaster recovery)

45

The network between Moncalieri and Settimo Torinese datacenters in an
layer 210 streched network. The synchronous / asynchronous replica data is
performed at storage level.

Each microservice running in a container is stateless by definition, i.e.
does not need persistent storage to save data because it interfaces with other
microservices dedicated to do so. In some cases, however, it could be nec-
essary for a microservice to save its computed data for further operations.
Since, generally, distinct executions of an application can be done in differ-
ent nodes belonging to the OpenShift cluster, persistent storage accessible
from the cluster’s network was required. In this way NFS11 was chosen as a
solution for all the environments. So, if an application has this special need
regarding persistent storage the following step are executed:

1. Storage is provisioned manually on NFS servers

2. Specific authorizations are associated to the created storage area

3. The directory is created and exported on the NFS server

4. After prvisioning, the storage area is linked to the application creating
a Persistent Volume or a Persistent Volume Claim

OpenShift constantly checks pod status and infrastracture monitoring is
performed via native tools, like Hawkular and Heapster, collecting met-
rics that are stored on a dedicated Cassandra database, located on a per-
sistent 35GiB volume. Other performance checks are performed via HP
Performance Manager, Application Performance Manager (APM)
and other internal softwares.

Finally, in order to avoid unauthorized changes performed by developers
on applications, OpenShift implements RBAC policies out of the bos. In
this way is possible to assign one or more predefined roles to each user.

For what concern the Cloud service, the web portal exposes a rather
long form in which to enter the service parameters. Figure 31 reports the
first two part of the form related to user and economic details:

• the user part – the highest one – is self-filled using SSO parameters

10ISO / OSI stack
11Network File System, see glossary

46

• the second part must be filled by the user

– the first fields is optional: if user has made an economic estimate
through the internal dedicated portal must enter here the budget
ID

– WBE field is a dropdown menu and states the office that will pay
the resources

– last field concerns the year of expenditure

This part is common to all of Cloud services.
Figure 33 shows the main body of the form in which infrastractural param-
eters must be entered.

1. Ambiente: Dropdown menu where to select one between Sviluppo,
Test and Produzione

2. Acronimo: The application code registered on CMDB

3. Descrizione Acronimo: Description of acronimo. Is self-filled (the
value is retrieved from CMDB)

4. Criticità Acronimo: Identify the importance of the application and
help support groups to give the correct priority. User can select one of
the following value:

• Non Critico

• Critico

• Vitale

5. Cluster: self-filled value, evaluated using the value of field Ambiente
– specify the right cluster between Development / Test and Prodution
ones

6. Nome microservizio: user can specify here the name of the microser-
vice

7. Verifica Ambiente: self-filled fields that states if the environment
check succeded or not

8. Tecnologia: user can specify the technology used by his application
(e.g. Java, Python, etc.)

47

9. Versione: user can specify the version of chosen technology

10. Prodotto: static no value (field for future uses)

11. Size: user can specify the size of the POD between the following:

• Tiny – 1 CPU / 1 GB RAM

• Small – 2 CPU / 2 GB RAM

• Medium – 4 CPU / 4 GB RAM

• Large – 8 CPU / 8 GB RAM

• Extra-Large – 16 CPU / 16 GB RAM

12. Infrastruttura: user can choose from Intranet and Internet ; the last
one gives possibility to interface with internet, hence, to expose the
service ”outside”

13. Context root: Optional field; user can specify a custom endpoint with
which to communicate with the application

14. Verifica Nome Microservizio e Context root: self-filled fiels; gives
the result of checks performed on microservice name and context root

15. Autenticazione: user can choose hte type of authentication for his
application between

• swa2 (intranet)

• fiam (internet)

• no-auth (intranet and internet)

16. Verifica Tipo Autenticazione: self-filled fields with the result of
authentication checks

17. Verifica Porta: self-filled field with the result of TCP port checks

18. Utenza web: self-filled field that gives the auto-computed value of
web user (a local user to perform some operations on th front-end size)

19. Verifica Utenza Web: self-filled field with the result of web user
checks (it checks if user already exists)

20. Dominio: user can choose the domain in which the application will be
placed

48

21. Service Owner: Specify the owner of the service; this value is useful
in cas of failures because support groups will work together with him
to restore the service

The JSON Listing 2 is the OpenShift service Manifest on the Cloud
portal. Most of the fields it contains correspond to those found in the form
described above. In InputsFromRequest object there are fields for values
that will be produced by web portal (user inserted values and auto-computed
ones). In InputsFromAutomation object, instead, there are further fields that
will contain values produced by the first orchestrator (the middle layer in
the Cloud Framework – see Figure 22). Workflows that will produce these
values are specified into Prerequisites object. Finally in ServiceProviders
there is a list of service providers (the ones situated in the bottom layer in
the Cloud Framework – see Figure 22) that will produce each part of the
resource required. In the case of OpenShift service, there are two service
providers only:

1. VRO: it prepares some configurations and run C4 to start the provi-
sioning on OpenShift platform (through REST APIs)

2. GSS: it register the microservices application to CMDB / GSS

The JSON Listing 3 represents an instance of the service Manifest. One of
this is produced every time a new Cloud request – for the specific service –
is submitted. It contains all the values displayed in the form of Cloud web
portal together with the others described above.

Listing 2: Openshift Cloud Service Manifest

1 {
2 "serviceIdentificator": "CreaPaaSOpenshift",

3 "contentVersion": "0.1",

4 "inputsFromRequest": {
5 "annoCompetenza": "${ annoCompetenza }",
6 "Service -level": "${ Service_level }",
7 "RequisitionID": "${ RequisitionID }",
8 "WBE": "${WBE}",
9 "SLA": "${SLA}",

10 "ServiceName": "${ ServiceName }",
11 "Type": "${Type}",
12 "C4Environment": "${C4Environment }",
13 "Environment": "${ Environment }",
14 "ARuolo": "${ARuolo }",

49

15 "Layer": "${Layer }",
16 "Bank": "${Bank}",
17 "Servizio": "${ Servizio }",
18 "Version": "${Version }",
19 "Domain": "${Domain }",
20 "CriticoAcronimo": "${ CriticoAcronimo }",
21 "Descrizione": "${ Descrizione }",
22 "ServiceOwner": "${ ServiceOwner }",
23 "Infrastructure": "${ Infrastructure }",
24 "NomeServizioGSS": "${ NomeServizioGSS }",
25 "SistemaInformativo": "${ ServizioInformativo }",
26 "User": "${User}",
27 "ServicePhase": "${ ServicePhase }",
28 "Service -name": "${ Project_name }",
29 "IdProfiloDR": "${ IdProfiloDR }",
30 "Acronym": "${Acronym }",
31 "ServiceOfficeOwner": "${ ServiceOfficeOwner }",
32 "DR": "${DR}",
33 "isPaaS": "${isPaaS }",
34 "http -hostname": "${http -hostname }",
35 "authentication": "${ authentication }",
36 "C4Profile": "${C4Profile }",
37 "Project -name": "${ Project_name }",
38 "size": "${size}",
39 "openshift_cluster": "${ openshift_cluster }",
40 "description": "${ description }",
41 "ssa_profile": "${ ssa_profile }",
42 "wildcard": "${ wildcard }",
43 "path -http": "${path -http}",
44 "web -user": "${web -user}",
45 "http -port": "${Port}",
46 "language": "${ language }",
47 "source": "${source }"
48 },
49 "inputsFromAutomation": {
50 "webservers": "${ webservers }"
51 },
52 "prerequisites": [

53 {
54 "prerequisiteIdentificator": "Webservers",

55 "sequenceNumber": "1",

56 "prerequisiteOutput": [

57 "webservers"

58]

59 }
60],

61 "serviceProviders": [

62 {
63 "providerIdentificator": "VRO",

50

64 "serviceIdentificatorInProvider": "c18d8c68-2289-41ec-

ab80-7d65bac519b9",

65 "payloadIdentificator": "C4",

66 "sequenceNumber": "1",

67 "providerOutputs": [

68 "listen -port",

69 "url",

70 "siteminder -version"

71]

72 },
73 {
74 "providerIdentificator": "GSS",

75 "serviceIdentificatorInProvider": "InsertService",

76 "payloadIdentificator": "APService",

77 "sequenceNumber": "2",

78 "providerOutputs": [

79 "IDServizioGSS"

80]

81 }
82]

83 }

Listing 3: Openshift Cloud Service Manifest Instance

1 {
2 "serviceIdentificator": "CreaPaaSOpenshift",

3 "contentVersion": "1.0",

4 "inputsFromRequest": {
5 "annoCompetenza": "2018",

6 "Service -level": "standard",

7 "RequisitionID": "49100",

8 "WBE": "CLOUD",

9 "SLA": "",

10 "ServiceName": "Crea VM",

11 "Type": "OCP",

12 "C4Environment": "svil",

13 "Environment": "Sviluppo",

14 "ARuolo": "",

15 "Layer": "AP",

16 "Bank": "MB",

17 "Servizio": "PaaS Openshift",

18 "Version": "1.8",

19 "Domain": "sede.corp.sanpaoloimi.com",

20 "CriticoAcronimo": "Non Critico",

21 "Descrizione": "",

22 "ServiceOwner": "LUCA GIOMMONI",

23 "Infrastructure": "Intranet",

24 "NomeServizioGSS": "cpaas",

25 "SistemaInformativo": "INTESASANPAOLO",

51

26 "User": "U379246",

27 "ServicePhase": "Preallocazione",

28 "Service -name": "CLOU0",

29 "IdProfiloDR": "",

30 "Acronym": "CLOU0",

31 "ServiceOfficeOwner": "No Referente Applicativo",

32 "DR": "",

33 "isPaaS": "2",

34 "http -hostname": "cpaas -CLOU0-svil.cloudapps -be-test.

intesasanpaolo.com",

35 "authentication": "SWA2",

36 "C4Profile": "standard",

37 "Project -name": "CLOU0",

38 "size": "medium",

39 "openshift_cluster": "ocp -test -api.syssede.systest.

sanpaoloimi.com",

40 "description": "Project used by CLOU0 new platform for

collaboration APIs management",

41 "ssa_profile": "Y8",

42 "wildcard": "cloudapps -be-test.intesasanpaolo.com",

43 "path -http": "\\/ cpaas \\/api",

44 "web -user": "wwtclou0",

45 "http -port": "",

46 "language": "JAVA"

47 },
48 "inputsFromAutomation": {
49 "webservers": ""

50 },
51 "prerequisites": [

52 {
53 "prerequisiteIdentificator": "Webservers",

54 "sequenceNumber": "1",

55 "prerequisiteOutput": [

56 "webservers"

57]

58 }
59],

60 "serviceProviders": [

61 {
62 "providerIdentificator": "VRO",

63 "serviceIdentificatorInProvider": "c18d8c68-2289-41ec-

ab80-7d65bac519b9",

64 "payloadIdentificator": "C4",

65 "sequenceNumber": "1",

66 "providerOutputs": [

67 "listen -port",

68 "url",

69 "siteminder -version"

70]

52

71 },
72 {
73 "providerIdentificator": "GSS",

74 "serviceIdentificatorInProvider": "InsertService",

75 "payloadIdentificator": "APService",

76 "sequenceNumber": "2",

77 "providerOutputs": [

78 "IDServizioGSS"

79]

80 }
81]

82 }

3.3.3 Delivery Process

The OpenShift platform can only be used after registering a microservice
through the Cloud portal, which displays a special service. To integrate the
existing ecosystem and technology with the infrastructure made available
by OpenShift, a powerful Cloud automation has been created that takes
care of performing all the necessary censuses on CMDB and environments
provisioning for the new created project.

The application environment delivery process (Figure 29) concerning
OpenShift platform follows five main steps:

• A developers group send to Project Coordination Office details about
the application sub-system – i.e. the logical namespace domain in which
the application must be placed – and the size of the POD (CPU &
RAM)

• Project Coordination Office registers a new Acronym (acronimo) of
container type, specifing Openshift as container platform and GitHub
as versioning tool

• Project Coordination Office uses Cloud to create a new project in a
development environment in Openshift

• Change configurations and OCP-Configuration repository are created
in Change Console

• The developers group receive URL to connect to OpenShift console
related to the new created project and the GitHub endpoint to perform
code versioning

53

Figure 29: Cloud + Openshift Provisioning

Figure 30: New Openshift Project

54

Figure 31: User Details

Figure 32: Further Optional Details

55

Figure 33: Tecnological Parameters

56

4 Collaboration Platform As A Service

4.1 Main Idea

The major problems addressed, explained in Section 2, required the solution
to provide stability, security and the creation of a new ecosystem that groups
together all the APIs, and new derived functionalities, related to the collab-
oration products present inside the company. This comprehends also a set of
secondary requirements that are not satisfiable with a simple infrastructure
or a unique monolithic software. So the best idea chosen to solve these needs
was to exploit the flexibility and power offered by the Cloud and microservice
architecture to create an abstraction layer that will expose uniform APIs for
ECS services. This allows us to add or remove functionalities without having
to restructure the architecture every time and also provides centralize access
to collaboration services, creating a single endpoint to expose the APIs: new
funciotnalities can be implemented with the most appropriate technology
and in a completely transparent way for developers. Such a large solution
requires monitoring, high reliability and security and, again, the microser-
vice architecture offered by the Cloud and OpenShift meets the requirements
well. In fact, OpenShift natively implements many monitoring tools and in-
tegrates well with those already existing in the company. Furthermore, as
implemented in Intesa Sanpaolo, it already offers out-of-the-box high relia-
bility and disaster recovery. Finally, container technology natively provides
kernel-level isolation and thanks to the RBAC policies adopted by OpenShift,
it is possible to create customized access rules.

In conclusion, many options were considered: at the beginning we
thought of creating a single application in a Java environment that would
have provided the only point of contact with the collaboration services and
that would have been performed on the WebLogic application server. But
this solution did not meet the need for flexibility and stability and would
require many additional monitoring and management tools. Moreover it
would not allow to easily modify the structure of the framework, forcing to
do heavy non-regression tests at each update. Finally, it would not have
been possible to integrate features written in other programming languages.
Fortunately, in recent years the microservice infrastructure has been consoli-
dated at Intesa Sanpaolo, which fully meets all the requirements in question.
For these reasons the choice fell on it.

57

4.2 Requirements

4.2.1 Functionals Requirements

Architecture

• Continuous delivery and continuous integration paradigm must be pos-
sible — this will allow to update services without outages

• Updates must not cause any service interruption — the architecture of
each microservices must be properly designed

• On demand scale out must be possible — any time a usage peak occurs,
the infrastructure must be able to manage the situation without outages

• High availability must comes from deployment on different pools —
multiple pools guarantee high availability of infrastructure

• Disaster recovery must comes from datacenter at least 300 km away —
in case of disaster (completely loss of main datacenter) service contin-
uoity must be guarantee

Reachability

• APIs must be provided via REST paradigm — communications are
more flexible and more suitable for applications

• There must be a single alias to access endpoints — this decreases com-
plexity and increase overall management

• The platform must be reachable from Intranet

• The platform must be reachable from Internet via VPN

Access

• Access restriced to specific clients only — to avoid uncontrolled access
and to increase stability

58

• User authentication via Active Directory binding — to allow access
control via authenticated integration

• User authorization via Active Directory ad hoc groups — to restrict
access to authorized user only

• Access via SSO only — to avoid some sort of hacking and to facilitate
the connections

• Each access must be recorded in a dedicated database — to allow audit
and troubleshooting

Data

• Exhanged data must be JSON formatted — this is a commonly adopted
standard, already widespread into Intesa Sanpaolo; it is easy to read
and debug

• Encoding must be UTF-8 — this is also an already present standard
in the company and reflects the applictations’ dictionary

• Payload of each request / response must be at most 10 MBs — to avoid
loss and retrasmission of too heavy packet and to allow a better traffic
management

Regulatory / Compliance

• Each application must have a dedicated user ID — to ascribe each
activity to the right application and facilitate audit and troubleshooting

• Each user ID must be associated with strictly necessary Active Direc-
tory groups only — this guarantees the minimum privileges paradigm

• Passwords related to each user ID must be managed by Operational
Management Bureau only — this is a common Intesa Sanpaolo security
policy

59

Security

• No privileges escalation admitted — this prevents users and applica-
tions to perform high level unauthorized operations

• All communication (both intranet and internet) must be protected
through SSL / TLS — this is a common infrastructure into the com-
pany that has a dedicate CA12

• APIs gateway must be placed in DMZ network — to be reachable from
internet without security risks

• All databases must be placed in hardened network — to enhance secu-
rity and prevent data leak

Session

• Each session must last at most one hour — to increase session security
and stability and avoid stall

• Each session must be retrievable in logs or databases using a unique
session identifier — for audit and troubleshooting

• For each session the following information must be collected

– Start time

– End time

– Total duration of the session

– User ID as recorded in Active Directory

– List of operations

– Types of operations

– Amount of received data for each operation

– Amount of sent data for each operation

– Total amount of exchanged data for each operation

– Total amount of received data for the entire session

– Total amount of sent data for the entire session

12Certification Authority

60

– Total amount of exchanged data for the entire session

– Type of data exchanged for each operation

– Percentage of each type of data exchanged in the session

Client Informations

• User-Agent

• IP address

• Geolocality

LOG

• Logging must not be done locally but via dedicated remote servers

• Each operations must be logged

• Each logged record must report

– Timestamp

– Session ID

– Event type

– Event description

4.2.2 Non-Functionals Requirements

Communication

• Response time must below 3 seconds max

• In case of lost connection, session data must last at most 30 minutes
and, if connection is not set up again, they must be deleted

61

Reachability

• In case of disaster event (the main pool goes down), the platform must
return available in at most two hours to make less outage possible

• Data replication at most every second to guarantee minimun data loss

Regulatory / Compliance

• All data related to a specific user must be retrievable in at most one
hour in order to facilitate audit and to better fulfill GDPR

62

4.3 Architecture

The platform has been designed in order to satisfay the requirements of
flexibility, security, agility and reliability. To satisfy these containers infras-
tructure was chosen to implement a microservices architecture in which each
container implements a functionality. This way, each container can be man-
aged indipendently from the others, ensuring stability and reliability of the
framework. If there is a need to update or restructure a microservice, this
operation can be done in a very low impact mode. In addition, there is no
need to develop the entire platform strictly with one programming language
only because each container can host a different environment from the oth-
ers. This allows to leverage the language that better fit the functions needs.
Finally, the central OpenShift console allow us to manage and monitor all
the containers belonging to the platform, making consumption reports, secu-
rity analysis and enhancement suggestions. Globally, the platform has been
structured on three layers logical as explained in the following paragraphs.

Front-End Exposes the API used by applications (Figure 35). In this
first version all its functions is implemented with four container only: two
for intranet domain and two for the internet. In this layer access control
and communication proxy activities are performed. Once the authentication
and authorization to access the platform as been proved by the first line
containers, the subsequent connections will be managed by the second line
container only. The user check is performed using Active Directory APIs,
overtaking the middleware.

Middleware This is the core of the platform and hosts all the microser-
vices implementing business logics of collaboration services. They receive
requests from the front-end and perform operations with backend. When
the work in done, they send responses to the front-end that proxies them
to the application. It is possible to add as microservices as the number of
ECS services that can be exposed. The power of the solution can be well
undestood here because the flexibility provided by microservices architecture
allows at any time to add or remove functionality, on demand, without af-
fecting the others. Development cycle is faster and the APIs management is
fully centralized.

63

Back-End This layer groups together all the external and supporting func-
tionalities like databases for sesssions and logs recording, Active Directory,
documental server and so on. It provides the way with which middleware
microservices performs their operation with the non-ECS applications. Fur-
thermore here is possible to meet the last requirement of filling the gap
between all business features and ECS ecosystem.

64

Figure 34: Platform Architecture

Figure 35: Frontend

65

4.4 Use Cases

In this chapter two use cases are reported. These concern the main microser-
vices added to the platform. Figure 36 shows a screenshot of web interface
of Swagger reporting the APIs exposed.

4.4.1 Alarm Center

In the following use case, the application used by the Alarm Center will be
called The Application while the developed platform will be called The
Platform

1. The Application receives an alarm related to an organizational unit
(OU)

2. The Application sends the OU identifier to The Platform

3. The Platform sends the OU identifier to the Registry Service mi-
croservice

4. The Registry Service microservice sends back to The Platform the
list of SIP addresses of the Skype users whose OU number is the same
as the one from which the alarm started and who have the status equals
to active

5. The Platform sends to The Application the SIP addresses

6. The Application uses the APIs provided by The Platform to send
a warning Skype message to the available collegues belonging to the
OU

7. The Platform uses the Skype APIs to deliver the message to the
users specified

8. Skype actually delivers the message

9. The Platform polls on Skype to retrieve any messages sent back by
the contacted users

10. If some message has been sent by users, The Platform retrieves it
from Skype

11. The Platform delivers the message to The Application

66

Figure 36: Swagger Skype APIs

Figure 37: Alarm Center use case in Intesa Sanpaolo

67

4.4.2 GDPR

This use case is very important for the Bank in order to be more compliant
with GDPR that states:

“The controller shall provide a copy of the personal data under-
going processing. ”
— GDPR – Article 15 (3)

The Platform provides a crucial functionality for attempting this purpose.
In fact it enables the copy of data in a safe place from which the controller
can download them and subsequently deliver to the subject.

In the following, the employee of the Bank will be called The Employee
while the developed platform will be called The Platform

1. The Employee, through a crawler application, retrieves all the files
related to one of his clients

2. The crawler application search files into the farm of documentations
and makes a compressed zip archive of them

3. crawler application sends the compressed archive, in binary format,
together with the user ID of The Employee to The Platform via APIs

4. The Platform retrieves the url of Sharepoint MySite of The Employee
by means of Registry Service microservice

5. The Platform stores the archive into Sharepoint MySite of The Em-
ployee

6. The Platform sends a return code to the crawler application

7. The crawler application sends a notification to The Employee

8. The Employee can download / read the contents required from his
Sharepoint MySite

68

Figure 38: GDPR use case in Intesa Sanpaolo

69

5 Conclusions

Nowadays collaboration has become indispensable for companies. While
years ago companies were forced to create their own dedicated infrastructure,
today there are many possibilities offered by the market, such as the Google
or Cisco suite, which give the possibility to buy only the services, without
the need to install anything physical. In this scenario, small companies and
startups that do not want or can not bear the costs of such infrastructures
fall very often. The medium and large companies instead prefer, for inter-
nal or legislative needs, to create their own dedicated infrastructure. These
are usually forced to face many problems related to the ECS that they have
created. In the case of Intesa Sanpaolo, the main problems are due to the
heterogeneity of the services that make up the ECS and the difficulty that
developers encounter when using them, due to changes in version or differ-
ences in interfacing. In fact every product has its architecture and API that
evolves with the different versions that the vendor releases. So the applica-
tions that interface with these products must evolve in the same way, but
with a multiplying factor linked to the number of products with which they
interface. Last but not least, security, a very important aspect especially in
a banking system like that of Intesa Sanpaolo, is declined for each of the
collaboration products adopted.

To solve the major problems that ECS exposes, many options have been
considered, including that of creating a single Java application that would
have been run on a WebLogic aplication server. However, this solution proved
to be unsuccessful because it left many aspects unresolved and forced to inte-
grate many other tools for monitoring and management. The best solution we
have decided to adopt has led to the creation of a platform for the exposure
of collaboration services, structured so as to fully exploit the microservice
architecture made available through the company’s Private Cloud. In this
way it is possible to expand the range of services provided by the platform
itself simply by adding microservices to the general architecture. In addition,
it performs automatic scaling and centralized management, directly from the
OpenShift console. The services are no longer linked to a single technology
or programming language, but it is possible to use all those authorized by
the OpenShift platform itself according to the rules established in the com-
pany. Whenever an application needs to interface with a collaboration tool,
it will do so using the new platform. It will no longer be necessary for the
developer to know the APIs of each product, nor all the endpoints present,
but only one platform-related endpoint will be available. If the company de-

70

cides, for example, to replace instant messaging rather than email software,
the APIs exposed by the new platform will remain the same, avoiding the
work of updating all the applications involved. With this solution it is also
possible to add functionality in the provision of collaboration services, such
as security functions or pipelines connected to other services outside of ECS.
The potential offered by this solution is many and thanks to the flexibility
that comes from the underlying technology of containers, it will be possible
in the future to fill all the gaps in the world of ECS and beyond. Since ECS
has now become the center of the universe to which all corporate applications
and workflows belong, with this new platform the company finally has the
possibility of making all its application ecosystem homogeneous and centrally
managed.

In conclusion, there are no simple solutions to solve the problems that
are encountered intefacciandosi with the world of collaboration. The more
time passes and the more it becomes indispensable, being an enabler of smart
working and remote communication. On the other hand, the new cloud tech-
nologies make a big contribution to creating ad hoc, flexible and secure solu-
tions, making it easier to manage the ECS. In addition, the market already
presents frameworks designed for the integration of the many collaboration
products present in the company, highlighting the awareness of the impor-
tance that this system has acquired.

This project allowed us to experience for the first time in a complete way
the creation of a microservice infrastructure created solely by cloud. So many
challenges have been faced on this front, which have allowed us, however, to
create a consistent experience that will be added to the know-how already
present in the company and that will certainly be reused for all the other
applications that are part of the banking ecosystem of Intesa Sanpaolo.

71

References

[1] Jörg Becker, Oliver Vering, and Axel Winkelmann. Softwareauswahl
und-einführung in Industrie und Handel: Vorgehen bei und Erfahrungen
mit ERP-und Warenwirtschaftssystemen; mit 21 Tabellen. Springer,
2007.

[2] Thomas H Davenport. “Putting the enterprise into the enterprise sys-
tem”. In: Harvard business review 76.4 (1998).

[3] Roland Diehl, Tim Kuettner, and Petra Schubert. “Introduction of
enterprise collaboration systems: In-depth studies show that laissez-
faire does not work”. In: (2013).

[4] Paul Dourish. “The appropriation of interactive technologies: Some
lessons from placeless documents”. In: Computer Supported Cooper-
ative Work (CSCW) 12.4 (2003), pp. 465–490.

[5] Arron Fu. 7 Different Types of Cloud Computing Structures. Mar. 2017.
url: https://www.uniprint.net/en/7-types-cloud-computing-
structures/.

[6] IBM. Using IBM Social Business to Take Your Business Relationships
to the Next Level: A Game Changer for Small, Medium, and Large
Businesses. Mar. 2014.

[7] David Kiron et al. “What managers really think about social business”.
In: MIT Sloan Management Review 53.4 (2012), p. 51.

[8] Tim Kuettner, Roland Diehl, and Petra Schubert. “Change factors in
Enterprise 2.0 initiatives: Can we learn from ERP?” In: Electronic Mar-
kets 23.4 (2013), pp. 329–340.

[9] Jessica Lipnack and Jeffrey Stamps. “Virtual teams”. In: People work-
ing across boundaries with technology 2 (2000).

[10] Goran Markovski, Natasa Koceska, and Saso Koceski. “Improving en-
terprise efficiency using IT collaboration systems”. In: Journal of Ap-
plied Economics and Business 1.4 (2013), pp. 95–103.

[11] M Lynne Markus and Cornelis Tanis. “The enterprise systems experience-
from adoption to success”. In: Framing the domains of IT research:
Glimpsing the future through the past 173 (2000), pp. 207–173.

[12] Gabriele Piccoli, Anne Powell, and Blake Ives. “Virtual teams: team
control structure, work processes, and team effectiveness”. In: Infor-
mation Technology & People 17.4 (2004), pp. 359–379.

72

https://www.uniprint.net/en/7-types-cloud-computing-structures/
https://www.uniprint.net/en/7-types-cloud-computing-structures/

[13] Alexander Richter and Alexander Stocker. “Exploration & Promotion:
Einführungsstrategien von Corporate Social Software”. In: Proceedings
of the 10th International Conference on Wirtschaftsinformatik. 2011,
pp. 1114–1123.

[14] Kai Riemer and Robert Bruce Johnston. “Place-making: A phenomeno-
logical theory of technology appropriation”. In: (2012).

[15] Art Schoeller. “Gain A Competitive Advantage Through Enterprise
Collaboration”. In: Forrester (2017).

[16] Petra Schubert and Johannes H Glitsch. “Use Cases and Collaboration
Scenarios: How employees use socially-enabled Enterprise Collabora-
tion Systems (ECS)”. In: Int. J. Inf. Syst. Proj. Manag 4.2 (2016),
pp. 41–62.

[17] Petra Schubert and Susan P Williams. “The Concept of Social Busi-
ness: Oxymoron or Sign of a Changing Work Culture?” In: Bled eCon-
ference. 2013, p. 26.

[18] Radicati Team. Email Statistics Report, 2016-2020. The Radicati
Group. 2016.

[19] What is a Container – A standardized unit of software. url: https:
//www.docker.com/resources/what-container.

[20] What is cloud computing? – A beginner’s guide. url: https://azure.
microsoft.com/en-us/overview/what-is-cloud-computing/.

[21] Why a microservices approach to building applications? url: https:
//docs.microsoft.com/en-us/azure/service-fabric/media/

service-fabric-overview-microservices/.

[22] Susan P Williams. “Enterprise 2.0 and collaborative technologies”. In:
Koblenz: Working Report of the Research Group Business Software,
University of Koblenz-Landau (2011).

[23] Susan P Williams, Petra Schubert, et al. “An empirical study of enter-
prise 2.0 in context”. In: Bled eConference. 2011, p. 44.

73

https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/
https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/
https://docs.microsoft.com/en-us/azure/service-fabric/media/service-fabric-overview-microservices/
https://docs.microsoft.com/en-us/azure/service-fabric/media/service-fabric-overview-microservices/
https://docs.microsoft.com/en-us/azure/service-fabric/media/service-fabric-overview-microservices/

	Introduction
	Enterprise Collaboration Systems
	Customers And Employee Experience
	Layout And Main Components
	Cloud Computing And Microservices
	Cloud
	Microservices

	Main Problems
	Single APIs Ecosystem
	Improvement Of Services And API Management
	Improvement Of Security

	Intesa Sanpaolo
	Enterprise Collaboration
	Private Cloud
	Cloud Framework
	Services

	OpenShift
	Platform Selection Process
	Architecture
	Delivery Process

	Collaboration Platform As A Service
	Main Idea
	Requirements
	Functionals Requirements
	Non-Functionals Requirements

	Architecture
	Use Cases
	Alarm Center
	GDPR

	Conclusions

