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Abstract

Text generation is becoming more and more important in many applications
both on consumer and company side, for example with voice assistants and
chatbots. The former ones need to provide answers to the questions they
are asked, that needs to be built with a correct syntax and match the topic
of the question, while the latter is nowadays used commonly for basic assis-
tance, for example during technical issues with some service provided from
a company, which is able to save money by using a bot for problems that do
not require human intervention. In this work, we aim to build a model that
is able to generate text starting from a subset of words extracted from a full
sentence called seeds, compressing them to obtain a local context (the topic
of the sentence) and building a new sentence with the knowledge acquired
during the training. To do this, we implemented a Generative Adversarial
Network based on a Sequence-to-Sequence model made of an Encoder and
a Decoder, which is evaluated through a REINFORCE algorithm that uses
the output of a Discriminator, whose task is to decide if a sentence is real
or generated. We obtained good results over a small dataset (Image COCO)
with short sentences, with our model providing better results over the actual
state-of-the-art models considering quantitative metrics, while also evaluat-
ing qualitative ones with human evaluation.
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Chapter 1

Introduction

Human society is based on natural language, as it allows people to commu-
nicate and understand each other: this basic skill is learned by every person
quite simply, but it is instead a great challenge for a machine to understand
and/or reproduce such language, as it is built to deal with numbers rather
than words.
Natural Language Processing (NLP) is the branch of machine learning in
charge of finding a way to develop systems able to analyze, understand and
reproduce such language in order to allow an interaction between humans
and machines.

1.1 Story of Natural Language Processing
This task has seen an exponential growth in the last 10-15 years, but it is
actually a process that started long before. Already in the 50s Alan Turing
proposed a test [6] which he called The Imitation Game, and then was named
Turing Test after him: this test tried to answer the question “can machines
think?”, aiming to prove if a machine was able to produce thoughts. This
was in the form of a game with 3 actors, A B and C, respectively a man,
woman and an interrogator, which are in separate rooms and have different
objectives: C needs to pick who is the man and who is the woman, A has
to try to deceive C while B wants to help instead. The game is made up of
a series of questions asked from C to the other actors, and based on their
answers C has to produce a result. Turing then asks: what happens in one
of the players is replaced by a machine? C will decide wrongly as often as it
was with the two human players? If yes, we can reasonably assume that the
machine is able to think at the point to fool the interrogator.
Specifically for NLP, several approaches were used in past years:
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• Rule-based algorithms: they define rules to handle languages that are
of easy interpretation, but the number of rules to be crafted by hand is
not scalable and it is hard to code the various ambiguities and special
cases of a language.

• Pattern Matching: given an utterance from a human, search for the
most probable answer among the templates it has, and fills into place-
holders informations specific to the utterance given. This approach has
obviously no knowledge of context and/or language itself, and produce
standard and repetitive sentences over and over

• Neural Networks Techniques: they are able to create a model that is
able to generalize and reproduce what has been observed from a huge
collection of real data. The algorithms and mathematics behind these
systems are actually very old, but up until now machine power was not
sufficient to support such complex mathematical operations related to
such a huge quantity of data to analyze.

In this work we will analyze in depth the Neural networks applied in text
generation, and in particular a new approach: Generative Adversarial Net-
works.

1.2 Goals
We would like to have a system that is able to generate text for different
reasons, both for companies (for example generate readable reports based on
data) or people(chatbots).
Current state of the art has reached through recurrent neural network a very
good level of approximation but with some limitations: we have good per-
formances on the syntax structure but on the other side we have difficulties
in maintaining coherence through the sentence.
Generative Adversarial Networks brought a new way of approaching gener-
ative tasks, in the form of two RNNs confronting each other and improving
each other as a result. They proved themselves very good in the computer
vision domain, especially in application aiming at generating pictures of peo-
ple and/or places that do not exist. The goal of this work is finally to verify if
GANs can perform in text generation as well as they do in visual tasks. One
of the main reason for focusing on GANs is that ideally they are less prone to
merely copy what has been observed in the training, as they rely on a feed-
back given by a discriminator rather than one given by the difference real-fake
data. In this work we will verify how GANs perform in the following task:
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given some seeds words, they will generate a complete utterance containing
information obtained from a basic context given by those seeds: this will be
achieved by using an encoder-decoder generator and an LSTM discriminator.

1.3 Chapters
This work is organized as follows:

• Chapter 2: A focus on the state of the art both for NLP in general
and text generation specific, but also on the models used for such tasks
(RNNs, LSTM, GRU).

• Chapter 3: We present the models and configuration for them used in
the experiments, showing different solutions we found and explaining
why we made specific choice.

• Chapter 4: The experimental setup is described, including datasets and
metrics used for evalutation.

• Chapter 5: Presentation of the results obtained by the experiments and
discussion of various advantages and disadvantages of the implementa-
tion.

• Chapter 6: Conclusion on the work and possible future works
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Chapter 2

Background and related work

This chapter gives a general background about the main approaches used
today for text generation from two main points of view: one focusing on the
language modeling and word representation, considering the problem from a
linguistic perspective while the second one is more practical and involves the
mathematical models used to achieve results theorized in the first part.

2.1 Language models
In order to generate and/or manipulate natural language, it is necessary
a model that is able to approximate it: this is a statistical language model,
which uses a probability distribution over sequences of words to predict which
word wi would be most likely to follow wi−1. Considering a sequence of
words w = w1, w2, ..., wi, ..., wN of length N, where wi is a generic word at
position i, the probability of word i is given by the product of the conditional
probabilities of the previous words as follows:

P (wi) =
NÙ
i=1

P (wi|w1, w2, ..., wi−1) (2.1)

A language modeled as such will consider only previous words, but (especially
in generation tasks) without a context it is not possible to distinguish between
phrases and words that are similar but used in different situations. For this
reason context is introduced as a variable c conditioning the final prediction,
defining a different kind of language model defined as conditional, as follows:

P (wi|c) =
NÙ
i=1

P (wi|c, w1, ..., wi−1) (2.2)
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This theory implied many computations for even not so long sentences, so it
was applied using the Markov assumption:

A stochastic process has the Markov property if the conditional
probability distribution of future states of the process (conditional
on both past and present states) depends only upon the present
state, not on the sequence of events that preceded it. A process
with this property is called a Markov process. A. Markov

which leads to the application of the theory by means of n-gram, which are
sub-parts of n words inside a larger sentence: uni-grams (n=1), bi-grams
(n=2), tri-grams (n=3) were often used, but they are insufficient to model a
complex language because sentences often have long distance dependencies:
Considering a sentence of 15 words and applying a tri-gram model, word
at position 10 could have a correlation with word at position 5, but when
using a tri-gram model only last 3 words are considered, losing in this way
information. It was needed a different way of representing words/sentences,
so we reached vector space models.

2.2 Vector space Models
It is an algebraic model for representing words (or sentences or even entire
documents) as vectors, in which each dimension corresponds to a separate
element: if the element occurs, then its value is non-zero. Considering mul-
tiple documents, representing them in a vectorial space means that we can
compute what is called cosine similarity between them, which allows to de-
termine how much the documents are close to each other and then, similar in
some aspects rather than others. Not only that, the model is simple as it is
based on linear algebra, but with some downside, such as poor performance
on long documents (because of very large dimensionality) and loss of the
order of elements inside documents. Several different applications have been
made during years, with some of the most relevant being one-hot encoding,
bag of words and word embedding.

2.2.1 One-hot Encoding
A word using this type of encoding is represented by an N dimensional array
(with N being the number of distinct words inside of the document) and with
the only possible values being 0/1 (where 1 is set to the index assigned to the
current word and 0 in every other place). This representation brings many
problems, first of all an exponential growing in size of the vectors, alongside
with the loss of context and correlation between words.
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2.2.2 Bag of Words

The main difference with One-hot encoding is that BoW remove the limit of
a binary representation, allowing a repeated word to have more importance
over a more rarely occurring word. This brings a major shortcoming, since
very frequently occurring word would start to overwhelm other less occuring
ones, also with the risk of not bringing valuable information (articles or other
very common words ) : for this reason, tf-idf is often used. Term Frequency
Inverse Document Frequency is meant to rescale the number of times a word
occurs by averaging over the set of documents available, so that a word
occurring often in a single document or rarely in many documents would be
overall balanced.

2.2.3 Word Embeddings

Models described earlier are characterized by very little information which
is sparse inside of less meaningful data (few ones among many zeroes): with
word embeddings we try to fix this problem by making these array dense
and aggregating more information with less values. Not only that, dimen-
sionality can be fixed allowing a better generalization for different documents
rather than being based on their length. Also, with this space of values be-
ing continuous, similar words will be relatively close in the space allowing to
maintain correlations between words. This allows us to use algebraic relation-
ships between words through matematical methods, for example : emb(king)
- emb(man) + emb(woman) = emb(queen)

12



Figure 2.1: Considering two documents, examples of possible encodings for
the considered sentences.

Figure 2.2: Example of algebraic relationships between words: the famous
example King - Man + Woman = Queen.
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2.2.4 Applications
Natural language processing groups together many different tasks that can
be grouped in different categories, such as part-of-speech tagging related to
syntax, communication tasks such as chatbots and speech recognition, or still
sentiment analysis and text generation from the semantic point of view, the
latter being the main focus of this work:

• Part-Of-Speech (POS) tagging: mainly used as a subtask for other
bigger applications, final purpose of POS tagging is, given a sentence,
to tag each word with its correct part of speech (noun, verb, adjective,
etc...).

• Chatbots: built with the idea of simulating a conversation with a hu-
man partner, they have growing popularity for practical purposes such
as customer service (a bot giving assistance and replying to customer
questions) or vocal assistants (Alexa or Siri). They can have a various
range of complexity, from simpler one (simply taking relevant words
from a sentence and matching responses from a database) or more so-
phisticated ones.

• Speech recognition: determine words and sentences from an audio and
transcribing them into text is a non so trivial tasks because of the
diversity among the speakers, nonetheless can be important for example
to people with disabilities.

• Sentiment analysis: target of this task is to infer subjective information
from a set of documents, used often online to evaluate reviews about a
product or to identify trendings among the public for marketing pur-
poses.

2.3 Text Generation
Starting from a knowledge acquired from a set of documents, use those in-
formation to generate a text that is human readable. A model used for text
generation can be modeled on different levels of complexity (character, n-
gram, sentence, document) and is trained on a corpus to learn the likelihood
of occurrences of a word i based on the previous words [0, i-1], generating a
text very similar to the original one ( allowing also to keep a style very close
to the corpus one ). This task is interesting as it is one of the most close to
what can be defined machine creativity: could be used to generate scientific
articles and entries for an encyclopedia, or even very human things such as
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lyrics for songs or entire stories. The problem is modeled as a multiclass
prediction problem, where at each time and given preceding history we need
to select among all the entries in our dictionary what is the most probable
word that will occur in that context and in that moment, based on what
has been observed during the training. Vocabulary is made up of the words
contained in the corpus and, with each of them having associated an index.
The final aim of the task is to minimize the cross-entropy loss between the
predicted output and the expected one as follows:

H(yt, ŷt) = −
NØ
i

yti logŷ
t
i (2.3)

where N is the number of entries in the vocabulary, yt is the expected value
for example t and ŷt is the predicted value for the same example.

Figure 2.3: Generation step-by-step of the sentence “The house is green”.

2.4 Artificial Neural Networks
This kind of model is inspired by how the human brain works: they have
the ability to learn through observation and experience, adapting themselves
during the training process to generalize in the best way possible what is
fed to them. They are called neural networks because they are made up of
several cells called neurons, stacked up in both depth and width to make pos-
sible very complicate tasks impossible to achieve with linear networks. All of
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the neurons inside a neural network are made up of a set of weights obtained
through training and the activation function, which is the computation done
on the incoming input to produce a result. They have an increasing popu-
larity nowadays because of their flexibility and ability to recognize pattern
and to generalize them in various fields such as computer vision and natural
language processing, and because of the GPUs power allowing to stack many
layers of neurons to create what are called Deep Neural networks.

2.4.1 Feed forward networks
Feed forward networks (FFNs) are the basic type of neural networks, featur-
ing 3 main parts: an input layer, through where data is fed to the network,
an hidden layer, where the neurons apply the activation function on the data
received, and an output layer where results are found. The generic formula
to describe this process can be

y = f(W ∗ x+ b) (2.4)

where W is the weight matrix of the hidden layer learned through training,
which will allow later to generalize any input data (also unseen ones), x is
the input data and b is a bias term which is used to modify values that are
slightly off.

Figure 2.4: Example of structure and connections in a feed forward network.
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2.4.2 Activation Function
When neurons receive a new input, they apply on it what is called an acti-
vation function: these are functions that, giving a certain input, maps it to
a different value, often in range [-1, +1] or [0, 1] and have also some impor-
tant properties such as being monotonic, a finite range of values where the
function exists or is non-zero, and continuously differentiable.
Some examples could be:
• Sigmoid

f(x) = 1
1 + e−x (2.5)

Figure 2.5: Sigmoid activation function.

• ReLu

f(x) =

0 if x < 0
x if x ≥ 0

(2.6)

Figure 2.6: ReLu activation function.

2.4.3 Softmax
After obtaining the output from the neural network, since we’re considering
discrete data such as words, we need a way to discriminate among the avail-
able words what is the most viable for our current input: to do this it is used
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a function called softmax, which creates a probability distribution over a set
of classes (in our case words) having as total sum 1, and selecting the higher
probability will give us the most likely class related to that input.
A standard softmax function considering K classes can be written as:

softmax(xi) = exiqK
j=1 e

xj
(2.7)

2.4.4 Loss
The process called forward propagation, in which the input data is prop-
agated through neurons, will generate an output more or less close to the
expected value: how much these two results are close each other is called
loss and is computed by means of a loss function. Loss helps the network
to “learn” based on the evaluation it is given on a specific input, so it can
re-adapt itself (by changing for example some weight of the neurons) to fit
better what is the expected result.

2.4.5 Back propagation
Once the loss is computed, it needs to be inserted inside the network: this
is done through back propagation, which computes the partial derivatives of
the loss with respect to the weights, or gradients, which are then used to
update neurons, in order to approximate always better the real model.

Figure 2.7: Example of error back propagation for two neurons W1 and W2.
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2.5 Recurrent Neural Networks
Normal feed forward networks are limited with regards to persistence of the
information acquired, since each input is computed separately from each
other and no data is kept from them after the update of the neurons: recur-
rent neural networks try to address this problem, adding a loop inside that
allows information to persist, having at each time step not only the current
input but also the previous hidden state. This plays the role of something
close to what we could call memory in a human brain and, because of this
feature, they perform good in text generation having a way to maintain infor-
mation over sequence of terms. However, there are multiple implementations
of RNN with different features, the main ones considered here being Vanilla
RNN, LSTM and GRU.

Figure 2.8: Unrolled recurrent neural network, showed as a sequence of steps.

2.5.1 Vanilla RNN
Most Basic implementations for rnn, it has three learnable matrix of weights
U,W,V used in order for inputs, hidden states and outputs at each time step
t:

H(t) = σ(U ∗Xt +W ∗Ht−1) (2.8)

Y (t) = Softmax(V ∗H(t)) (2.9)
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This implementation has poor practical usage because of common prob-
lems related to the gradient (vanishing and exploding) that prevent a useful
backpropagation of error: specifically, vanishing gradient presents values for
gradients which decrease too much and, making gradients near zero means
that the network stops getting better at a certain point. On the opposite,
exploding gradient occurs when, for some reason, gradients become very
large: this causes the networks to diverge and to make wrong decision on the
parameters updates. Both of this problems were solved or mitigated with
LSTM.

2.5.2 LSTM
LSTM meaning Long-Short Term Memory [1] has among its feature the abil-
ity to learn long-term dependencies better than a vanilla RNN by using a
gating mechanism, which allows at each time step to evaluate and decide
what informations should be forgotten or added to the memory of the net-
work. Because of this, its structure includes the cell state C other than the
classic hidden layer, used for storing past informations. LSTM operates as
follows:

• Decide what information is going to be discarded from the cell state:
to do this use a sigmoid layer called “forget gate layer” that, based on
ht−1 and xt, outputs a number in range [0,1] indicating whether or not
keep part or any of the considered information. [2.10]

• Next decision is: what new information will be stored? First, a sigmoid
layer called “input gate layer” decides the values to update [2.11] and
then a tanh layer creates a new vector of candidates Ĉt that could be
added to the state [2.12]

• Create now the new state: multiply the old state by ft (forget part),
then add it ∗ Ĉt (input part) 2.13

• Last part is decide the output: this is done by applying a sigmoid on
the cell state, filtering what needs to be kept or not, then multiplying
this by a tanh layer applied on the cell state, obtaining the final output
ht [2.14]

ft = σ(Wf ∗ [ht−1, xt] + bf ) (2.10)

it = σ(Wi ∗ [ht−1, xt] + bi) (2.11)
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Ĉt = tanh(Wc ∗ [ht−1, xt] + bC) (2.12)

Ct = ft ∗ Ct−1 + it ∗ Ĉt (2.13)

ot = σ(Wo ∗ [ht−1, xt] + bo)ht = ot ∗ tanh(Ct) (2.14)

2.5.3 GRU
GRU (gated recurrent unit) [2] is another way of improving vanilla RNN,
it is very similar to LSTM as it uses a gated mechanism as well, but the
memory here is managed entirely inside of the hidden state, with no existing
cell state: this allows to have reduced number of parameters. Also, it has the
input and forget gate combined together inside what is called the “update
gate”, it has been having increasing popularity.

zt = σ(Wz ∗ [ht−1, xt]) (2.15)

rt = σ(Wr ∗ [ht−1, xt]) (2.16)

ĥt = tanh(W ∗ [rt ∗ ht−1, xt]) (2.17)

ht = (1− zt) ∗ ht−1 + zt ∗ ĥt (2.18)

2.5.4 Sequence to Sequence model
Using the models analyzed up until now, Google developed Sequence to Se-
quence model [7] with the aim to map an input to an output with possibly
different lengths: an example could be machine translation, where very often
translating from a language to another would result in a different number
of words, or speech recognition [8]. This model consists of encoder and de-
coder, both being stacks of recurrent units (for example LSTM or GRU), the
first has to compress information acquired from input and the decoder has
to expand them starting from the encoder output:

• The encoder takes each element of the sequence xi in input, collects
informations and then produces an hidden state at each timestep.
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• The last hidden states of the encoder will contain as much information
as possible acquired from the input sequence, and this will be used
as starting state for the decoder, allowing it to make more accurate
predictions.

• Each unit of the decoder takes in input both the previous hidden state
and word generated, producing itself the next hidden state and word
predicted using informations acquired.

Figure 2.9: Example of a Sequence to Sequence model made of two parts, an
Encoder and a Decoder.

2.6 Attention
This sequence model can be further improved using an attention mechanism
as showed in [9]. The idea behind attention revolves around how human
brain understands text: as we read text, we focus on specific parts of a
document rather than others, in particular to those containing more valu-
able informations to identify and understand context, subjects and actors
involved. This translates to a “choice” of what to consider more and what
less, in other words we assign a weight to each word indicating how much
that word is important inside of the sentence. It is particularly important
considering long sentences, in which correlations between words that are dis-
tant each other could be lost, but with this mechanism this information is
preserved.
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Figure 2.10: Intuition of how attention works based on color intensity: for
each word, the color is deeper based on how much that word is relevant in
the context of the sentence.

2.7 Generative Adversarial Networks

2.7.1 Game Theory
Game theory is the study of mathematical models for strategic interactions
between decision-makers, which can be called players. It has many applica-
tions in social and computer sciences in a wide range of configurations, most
common beings:

• Cooperative and non-cooperative: a game is defined as cooperative if
the players are able to form alliance between external parties, while it
is defined non-cooperative if parties cannot form alliance or they are
self-enforced (meaning that the agreement cannot be created and/or
destroyed by external parties): one of the most famous example is
Nash Equilibrium.

• Symmetric and Asymmetric: a game is defined as symmetric if a payoff
for a specific strategy depends only on the strategy itself and not on
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who is playing it, meaning that a player i playing strategy s will have
a different reward than player j using the same strategy.

• Zero-sum and non-zero-sum: in zero-sum games all player total rewards
sum up to 0 for each strategies and at every step of the game, meaning
that a loss to a player reflects a gain to another player: a very common
example is poker. In non-zero-sum games instead, loss and gains are
not complementary and do not sum up to 0.

• Simultaneous and sequential: in simultaneous games both players do
their moves at the same time being unaware of the action performed by
the other, while sequential ones allow each player to have some degree
of information about earlier actions.

• Perfect and imperfect information: a game consists of perfect informa-
tion if all players know the previous moves done by other players, but
most games are made of imperfect information where players know no
or some of the moves made by other

A game is made up of a set of steps made by the players, which are performed
based on what is called decision rules: these are used to create a mapping
between observation and action, and then evaluated through loss functions
(how good was the decision taken?). One of the main rules used in this field is
the minimax rule, used for minimizing (maximizing) the possible loss (gain)
for worst (best) case scenarios. After a series of finite steps, we would like
to reach a conclusion for the game, based on the previous moves observed:
this process is called a solution, a formal rule that allows to predict the
result of a game by deciding the strategies adopted by the players. Most
famous proposed solution is certainly the Nash Equilibrium: if each player
has chosen a strategy, and no player has advantages by changing only his
strategy while maintaining the other ones unchanged, then this set of choices
(and the corresponding payoff) are said to be in Nash Equilibrium.

2.7.2 GANs
Generative Adversarial Networks [3] are a new way of approaching generative
tasks inspired by game theory explained before: at the base of this approach,
we have a simultaneous training of two models, a generator G which generates
new data based on what it has been observed in a real data distribution, and
a discriminator D which estimates the probability that a samples came from
the real world or from the generator output (fake). This process is modeled
as a non-cooperative zero-sum game, in which G tries to fool D by producing
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samples more and more similar to the real ones, and D has to discriminate
between real and fake with growing precision. This will eventually bring to
the desired result being the Nash Equilibrium, in which G generates examples
indistinguishable from the real ones, and D basically does a coin toss on each
sample (assigning 0.5 to both real and fake probability). This translates to
reach a constant value for the cross-entropy in which 2 classes are considered
(true/false) as follows:

loss(x, class) = −log(exp(x[class])q
j exp(x[j]) ) (2.19)

Starting from the definition of cross-entropy, in the equation we define x
as the probability that an element is part of that class. The loss for each
class is given by the negative log of the exponential of the considered class
divided by the sum over all possible classes: since we have only 2 classes and
we want them to have 0.5 probability each of occurring the equation reduces
to:

loss(x) = −log( exp(0.5)
exp(0.5) + exp(0.5)) = 0.69314 (2.20)

This is the ideal value that the discriminator should reach when in Nash
Equilibrium

2.7.3 Issues

However, these models have some major shortcomings, due to the fact of
being highly susceptible to hyper-parameters choices and training instability,
they end up very commonly in a state of non-convergence: this happens
mostly when an update of G and/or D causes a wrong update on the other
party. Another problem is found in vanishing gradients, specifically when D
became too good to quickly recognize fake one: having its loss go down really
quick, the error propagated back to G will tend to 0 causing the generator to
stop learning. Last but not least is mode collapse, a problem which brings G
to generate a very restricted set of outputs, in fact mapping many different
inputs to the same output: this happens when G finds some pattern that
fools D and updates its parameters to generate only that restricted set of
outputs.
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Figure 2.11: Basic GAN structure, with samples provided from the Generator
and from Real Data, which are then evaluated by the Discriminator and the
error computed is back-propagated to the Generator.

2.7.4 SeqGAN
In the specific task of text generation, the generator has to replicate content,
style and semantic rules from the real dataset, while the discriminator tries
to separate fake samples from real ones and provides feedback to the gener-
ator about the quality of the generated text. An important example of this
task is SeqGAN [4], which is a sequence generation framework considering
the problem of predicting the next word yn taking into account the current
state s = (y0, y1, y2...yn−1). The generator used is an LSTM which takes as
input the sequence of embeddings x1, x2, ..., xn and produces a corresponding
sequence of hidden states h1, h2, ..., hn, then a softmax layer gives the proba-
bility distribution for the output. On the other side, the discriminator used is
a CNN (convolutional neural network) [5] used to minimize the cross-entropy
loss between ground-truth and prediction.

2.7.5 Reinforcement learning
Reinforcement learning is concerned with how agents take action inside of a
certain environment in order to maximize some kind of cumulative reward
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(at each timestep t we add a partial reward for the current action taken)
based on some kind of policy: they are maps given the probability of taking
action a gives state s. These policies are explored by different methods:

• Brute force: as the name says, for each possible policy, take the one
with the maximum expected return. This is intuitively the best option
but the number of policies can grow very large or even be infinite, also
the return values can have high variance and then bias results.

• Value function: it attempts to find a policy that maximizes the return
while maintaining a set of expected values obtained by some policies
(for example the current one or the best one found until now). Here
optimality is defined in a stricter sense than before, as a policy is here
called optimal if it achieves the best return from any initial state.

• Monte Carlo Search: as the name says, it is based on Monte Carlo
methods and relies on repeated random samplings to obtain results.
To evaluate a policy using MC, given a policy π, a state s0 and an
action a0, the goal is to compute the function Qπ(s, a) for all state-
action pairs starting from state s0 and taking action a0 until reaching
an end to the decision tree and then averaging over different iterations
of these process. This is a good approximation but it brings with it
some problems such as slow convergence with high variance and possible
time loss in evaluating a sub-optimal policy

2.7.6 Policy Gradient

From a practical point of view, while GANs perform really well with con-
tinuous data such as pictures, they have some limitations when related to
text generation because, given the nature of languages, they are modeled as
discrete sequences of tokens, making it difficult to back-propagate gradients
to the generator: to deal with this problem, SeqGAN uses Policy gradient
based on reinforcement learning, allowing the generator to take actions with
high reward. Specifically, it uses Monte Carlo Search with a rollout policy:
given a sample of n words, for each word wi it generates wn−i words, and
then feeds these new sequences to the discriminator and, based on its output,
assign a score to word wi suggesting how much that word makes the sentence
real: the final reward is averaged over all iterations of the algorithm.
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Figure 2.12: SeqGAN structure, where G is an LSTM and Si are the steps for
computing the reward for each sentence using Monte Carlo Search, reward
which is back-propagated together with the NLL loss.

2.8 Important GAN applications
GAN saw different implementations for different tasks over the years, here
we present some of the most important ones:

2.8.1 MaliGAN
Maximum-Likelihood Augmented Discrete Generative Adversarial Networks
(MaliGAN) [17] addresses the problem of backpropagation in GANs by using
the same architecture proposed in SeqGAN but modifiying the reward com-
putation by rescaling it based on the batches of words with a specific length.
This process creates an artificial constraint that do not allows the model to
adapt efficiently to different document length, but allows for a better back-
propagation of error to the generator.

2.8.2 RankGAN
Adversarial Ranking for Language Generation [18], or RankGAN, focus on
the binary restriction that a discriminator has when evaluating outputs from
GAN (either the result can be true or false, 0 or 1), explaining how this
simplistic way of classification limits learning capabilities in a model that
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needs to generate complex structures such as natural language processing.
They address the problem by using a rank system over a collection of human-
generated sentences and machine-generated ones, which analyzes sentences
and assign a relative score to them, allowing the discriminator to do better
estimations and helps giving back to the generator more useful information.
One of the greatest problem in GANs applied to text is the backpropagation
of the loss because of the discrete elements (tokens), and this paper makes a
concrete step forward in solving this problem.

2.8.3 LeakGAN
GANs applied to natural language processing tasks have shown promising
results in multiple tasks, but also they have a clear limitation over long sen-
tences: the discriminator can provide feedback only when the entire text has
been generated and so the generator is missing a support in the middle of
the sentence. Long Text Generation via Adversarial Training with Leaked
Information [19], shortened in LeakGAN, tries to solve this problem by intro-
ducing a leak in the discriminative model D, which allows for the generator
G to obtain informations about features learned by D. This approach is very
powerful especially in generating long sentences and/or text, which still now
it is a non trivial task. This approach could be a great integration for our
model, as we had to introduce a scale factor over long sentences to reduce
the impact of bad tokens generated as the sentence grew longer, so adapting
a similar feature could help us solving this problem.

2.8.4 TextGAN
Adversarial Feature Matching for Text Generation [20], or TextGAN, im-
plements GAN model by using an LSTM as generator and a convolutional
network as discriminator, using a custom metric based on Maximum Mean
Discrepancy between the distributions of real and fake sentences, rathen than
using GAN objective function: this approach allows to improve diversity and
reduce mode-collapsing, which is a recurring problem in GAN applications.

2.8.5 MaskGAN
MaskGAN: Better Text Generation via Filling in the______ uses a to-
tally [21] different approach: while state-of-the-art models are based on max-
imum likelihood estimation and teacher forcing, also they are autoregressive
in a way that they produce an output and use that as input in the next time
step, making them more error prones, while MaskGAN implements a model
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trained to fill the blanks in a sentence by taking all the known words and
extracting a context from them. Not only that, it is not based on validation
perplexity, which is no really indicative of the quality of text generated and so
it misleads results. This approach is limited as it requires an almost complete
sentence to produce an accurate prediction, transforming the generation task
to a more simplistic completion task.

2.8.6 Language GANS Falling Short
Natural language processing tasks started by using maximum likelihood esti-
mation based models to try learning how to compose sentences: this brought
several problems due to teacher forcing during training, which resulted in
what is called exposure bias during inference. To solve this problem we had
GAN models take over with different solutions, but while they performed
well in quality of sentences they also did poorly in diversity (mode collapse
problem): Language GANs Falling Short [22] investigates that models based
on MLE outperforms consistently models based on GANs by fine tuning the
temperature parameter in the softmax function, while also being easier to
train and computationally lighter. They prove themselves superior by main-
taining a high quality with a good diversity, both aspects that often GANs
fall short on.
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Chapter 3

Approach

In this chapter we will explain the approach to text generation problem and
the models used to implement such an idea. Starting from the intuition
behind this work, we dive deeper into the models and choices done in matter
of configuration and/or parameters used for training, finally discussing how
we infer our model.

3.1 Task Description

The idea behind this work is very simple: starting from some knowledge,
we would like to generate text able to express that knowledge in a human-
readable text: the first challenge is how to encode in a meaningful way the
acquired knowledge, and finally to produce text maintaining syntax and se-
mantic structure learned from the real dataset. To achieve the first goal
we decided to extract some specific information from each sentence that we
called seeds, in the form of a triple made of Noun-Verb-Noun which should
represent the backbone of the sentence(context, subjects, actions) that will
be then expanded into a full sentence as follows:
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Seed to text examples
Seed Full sentence

group driving motorcycle A group of motorcycle riders driving past buildings.
dogs stick heads Dogs stick their heads out of car windows.
man takes picture A man takes a picture of an airplane taking off.

governor take decision The governor would take an important decision for the
United States.

Coliseum is amphitheatre The Coliseum is an oval amphitheatre in the centre of
the city of Rome, Italy.

movie is sequence
A movie is a medium composed of a sequence of

images and sounds used to communicate ideas, stories
and perceptions.

Table 3.1: Examples of text generation: on the left the seeds giving a context
and to the right an example of possible output.

This process is implemented with a Sequence-to-Sequence model, where
the encoder has the task of produce a context for the input sequence and
then passing it down to the decoder, which will use it to produce an output
sequence starting from the received context. Since we would like to see
sentences which are very different from the ones observed, otherwise we would
have a simple sequence prediction problem, we use GANs for this task which
will allow us to use a discriminator feedback to judge the quality of the
produced sentences.
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Figure 3.1: Steps for the generation: considering the sentence in figure, we
extract three words (Noun-Verb-Noun), which will be used to obtain a con-
text based on what has been learned through the training. The context is
then used as the starting point for generating countless possible sentences,
for example the left one (less close to the original seed but with a similar
meaning) and the right one (closer to the original also in the words used).

3.2 Generator

As already specified, its task is to generate sentences starting from seeds
words used to infer context and other informations useful to build the final
sentence. The encoder, modeled with a GRU as well as the decoder, receives
in input seed words and produces an hidden and an output layer: these are
then used in an attention layer which allows to build a context allowing the
decoder to predict the correct word avoiding ambiguities. What the decoder
takes in input is in fact the concatenation of the current word embedding
with the context information, producing then the most probable word wN
given context c and word wN−1
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Figure 3.2: Steps for generating of the sentence “a young man plays violin
in his kitchen”: Encoder takes the seed as input, producing an output and
intermediate hidden layers, which are then passed to the Decoder in the form
of attention. This gives a context to the decoder, which starts to predict the
next word based on the informations acquired plus the previous word (<sos>
for the beginning) at each timestep.

3.3 Discriminator
The discriminator used is an Attention-based bidirectional LSTM introduced
by [10], which is not affected by the vanishing gradient problem because of
the bidirectional feature. It is used as a classifier for our generator in charge
of discriminate between real data and generate one. It works as follows:

• Generate the embeddings starting from the input sequences.

• LSTM takes the input and produces the hidden statesH = h1, h2, ..., hn
where n is the sentence length.

• The attention layer assigns weights for each part of the sentence based
on α = softmax(wT ∗tanh(H)), with w being a learned matrix weight.
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• The context vector is created as r = H ∗ αT .

• At this point the sentence representation is obtained as h∗ = tanh(r).

• Finally a softmax layer is used to obtain probability distribution for
output classes (in our case two).

Figure 3.3: Bidirectional LSTM discriminator.

3.4 GAN Policy
Once defined generator G and discriminator D, we need to define how they
will work together, where the main focus will be how D propagates error back
to generator: this is done through a rollout policy as specified in [4], using
the Negative-Log Likelihood (NLL) Criterion paired with the rewards given
by the Monte Carlo Search. Starting from a sample Xg of length n generated
by G, we generated k = n− 1 new samples Xr of same length starting from
the first n-k terms given by Xg: in this way we evaluate how much each part
of the sentence contributes to make the sample real. An example of length 5
is provided as follows, where xi are words taken from sentence Xg given by
G and ri are words given from sentence Xr given by the Rollout policy:
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Figure 3.4: Progression of the decay factor as the sentence grows longer.

Iterations
Time Step Sample

1 Xr1 = [x1, r1, r2, r3, r4]
2 Xr2 = [x1, x2, r1, r2, r3]
3 Xr3 = [x1, x2, x3, r1, r2]
4 Xr4 = [x1, x2, x3, x4, r1]
5 Xr5 = Xg = [x1, x2, x3, x4, x5]

Table 3.2: Building of the sentences used for Monte Carlo search in rollout
policy: considering a sentence of length k, at each timestep n, we take n
tokens from the generated text, and k-n new tokens are generated. After k
total tokens are obtained, we evaluate them through the discriminator and
obtain the probability of the n tokens being part of a real sentence.

D evaluates these sentences and gives a score to each sentence in the
form of probability that the sample is real. Because of the unstable nature of
Monte Carlo search, we also apply a decay factor to the rewards to make the
scores more numerically stable over the various iterations of the algorithm.
Complete formula is described in Equation (3.1).

Loss(x) = 1
N

NØ
j

NLL(xj) ∗Kj ∗Rj (3.1)

where x is the sample considered of length N, xj the j-th word in the
sample, Kj is a decay factor which decreases by 0.9 for each token contained
in the sentence and Rj is the reward given to the j-th word.
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Figure 3.5: Complete view of the model, made up of Generator on the left
and Discriminator on the right.

3.5 Training Process
With all the elements defined, we describe how a training scenario would be
done with our model: first we pre-train both G and D because otherwise we
would have a generator extremely weak and the loss for D would be too low
since the start, not allowing to backpropagate a proper feedback, and at the
same time D would be fooled to easily from the start. After this initial phase
we begin the GAN training where we alternate a phase of training for G,
the policy evaluation and lastly a training for D, where with this sequence of
steps we would like to maximize the rewards in order to make the generated
sentences indistinguishable from the real ones.

3.6 Inference
Once the training of the model is done, we can infer the model by submitting
a seed of 3 words in the form of Noun-Verb-Noun, and generate an output
sentence which describes an action defined by the verb involving the nouns.
The seeds given as input do not necessarily define the exact words the sen-
tence will contain, but they will define the context that will be used for the
generation: for example considering the sentence already used as example “A
man plays violin in his kitchen” the seeds “man,plays,violin” could bring the
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Algorithm 1 Training Process
1: Initialize Gθ and Dφ with pre-trained GloVe.
2: Pre-train Gθ on real seeds Xr using Cross Entropy with the target sen-

tences
3: Generate samples Xg with Gθ

4: Pre-train Dφ on real data Xr and fake data Xg using Cross Entropy
5: Define N as number of adversarial training epochs
6: for i = 1, 2, ..., N do
7: Feed seeds to the encoder Eθ
8: for k = 1, 2, ...,maxlen do
9: Feed to the decoder Dθ the encoder output and token k

10: Output token k+1
11: end for
12: Generate sequence Xg using Gθ

13: Evaluate Xg using policy gradient as described in 3.4
14: for l = 1, 2, ..., rolloutnum do
15: Generate new sentences Xp starting from Xg tokens
16: Discriminate using Dθ and get loss for each token
17: end for
18: Compute loss lg using equation (3.1)
19: Update Gθ by backpropagating lg
20: Train Dφ on both Xg and Xr

21: end for
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context in other general directions, for example involving men, instruments,
games, and other things which could be more or less close to the context.

Algorithm 2 Inference
1: Load models Gθ and vocabulary V
2: Receive seed S in input
3: Obtain seed in form of word IDs Si for the seed using V
4: Give Si to the Encoder E obtaining its output Eo and starting hidden

state for Decoder D Eh = Dh

5: Define starting word W0
6: for i = 1, 2, ..., L do
7: Feed Dh and Eo and word Wi−1 to D
8: Predict next word Wi

9: Replace Dh with the newly computed hidden state
10: end for

Algorithm 2 gives an example of inference stage: this process is called
“Free Running” as we don’t deal anymore with real data but we use the
collected knowledge to generate new sentences based on what has been ob-
served.
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Chapter 4

Experimental Setup

In this chapter we will present the tools and setup used for our experiments
and evaluation, such as configuration parameters, datasets and metrics.

4.1 Dataset
For our experiments we used the Image COCO dataset [11], a dataset made
up of annotated images used normally for object detection and captioning.
Each sample is in the form: image caption describing the action/actors of
the picture. Since our application only works on text, we stripped away the
pictures. We use a subset of the total samples, specifically 9,000 sentences
for training and 6670 for test, all of them tokenized using NLTK tokenizer:

1. Suppose to have the following sentence: “a young man sitting on the
ground next to a skateboard.”

2. Using Spacy we can extract a seed of three words which will create the
context of the sentence (in the form of name-verb-name), in this case
it would be: “man sitting ground”

3. At this point we tokenize the original sentence obtaining: “a young
man sitting on the ground next to a skateboard .”

4. Put <eos> token to define the end of the sentence and <pad> to reach
a pre-defined length (all the sentence need to have the same length for
computation purposes): “a young man sitting on the ground next to a
skateboard . <eos> <pad> <pad> <pad>”

5. The sentence is ready for being processed.
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Image COCO dataset Train set Test set
Number of sentences 9,000 6,670
Number of tokens 95,679 69,276

Number of distinct words 4,625 3,455
Average sentence length 10.63 10.38
Max length sentence 35 32
Min length sentence 7 6

Max occurrences for word 14,919 10,893
Min occurrences for word 1 1
Words occurring only once 2,050 1,603

GloVe 42B coverage 99% 98.9%

Table 4.1: Relevant statistics for the dataset used.

4.2 Tools
We used PyTorch (version 1.1.0), an open source machine learning framework
based on the Torch library and developed by Facebook’s artificial intelligence
research group. It implements in a transparent way tensors in a python en-
vironment, allowing most common tensor operations and deep neural net-
works models. We also used Natural Language ToolKit (NLTK) library for
language-related tasks, such as tokenization and evaluation. Lastly we use
Spacy to identify entities (names, verbs) used to generate seed words that
give context for the final sentence. Lastly, we used GloVe pre-trained embed-
dings [12], created with a training on different Wikipedia articles, which will
be adjusted during training adding information received from our datasets.
We use the 42B version, containing 42 billion tokens and 1.9 million distinct
words.

4.3 Configuration
In this section we will give details about the parameters used for training the
model.

Parameter Value Explanation
General

Epochs 50

We train the model for 50 epochs,
since we observed from experiments
that this time is more than enough to

make the model converge.
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Batch size 32

Indicates in how many subparts the
dataset is split during the training,
we chose a low value because we

considered a relatively small dataset.

Embeddings size 300

Dimension of the vectorial space in
which each word is placed based on
the information acquired during
training, we chose a high value to
contain more information possible

within each word.

Max sequence length 20

Max possible length for a sentence,
value chosen based on the dataset
considered, since we have few
sentences longer than 20 words.

Dropout 0.3

Indicates how many cells are turned
off randomly at each iterations during

training, to make them less
dependent on each other.

Learning rate 1e-4
Coefficient indicating how much we

move our parameters at each
iteration.

Policy MC search

We used policy gradient from [4] but
with a decay factor to give less
penalty to last tokens over long

sentences.

Optimizer SGD

As observed in [13] methods based
on gradient descent allows to

generalize better a model and to
obtain superior results over test set,

while being slower to train.
Generator

Pre- training 15 epochs

Number of iterations over the dataset
for pre-training the generator, we
chose a low value to be less biased

during the adversarial part.

Model GRU We chose a bidirectional Gated
Recurrent unit with 3 layers.
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Hidden size 128

Number of cells being part of each
layer inside of our network, we

supposed we would not need more
than this considering we also have a

bidirectional network.

Optimizer Adam

Adaptive algorithm which server the
purpose of giving a good starting
point for the generator, being also

fast in execution.
Discriminator

Pre-training 2 epochs

pre-training made for the
discriminator as well as the

generator, but we kept it even smaller
here to avoid the discriminator
getting too accurate since the

beginning for training purposes.

Model LSTM We used a 1-Layer bidirectional
LSTM with attention.

Label error 0.15

We perform label swapping in 15% of
the dataset to slow down the
discriminator and allowing the

generator to learn from its feedback.

Optimizer SGD

Stochastic Gradient Descent provides
a slower convergence over GAN and

allows to maintain a weaker
discriminator which can

backpropagate a better feedback.
Table 4.2: Main parameters used for the training of the model, from the left:
Name of the parameter, value used, and brief explanation of meaning and
reason of choice.

4.4 Metrics
A problem yet to be fully solved is how to evaluate generative models: how to
evaluate complex aspects of language such as sentence coherence, grammar,
syntax in a way similar to a human? The current standards are based on
word-overlapping methods, word embedding and readability analysis. The
latter is defined as the effort needed to read a written text, depending on
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many factors such as the vocabulary and syntax. Unfortunately known met-
rics still fall short to what a real person evaluation could give, but are still a
good baseline to start with: in particular we used BLEU [14], POS-BLEU [15]
and SELF-BLEU [16].

4.4.1 BLEU
Bilingual evaluation understudy [14] is an algorithm designed for quality
evaluation of a text translated from a language to another: it needs a human-
written corpus to be used as reference and outputs a numerical value (in
the range [0,1]) that suggests the translation has a better quality as it gets
closer to 1. BLEU is based on word overlapping and geometric mean(4.1),
used together with a brevity penalty (4.2) (to avoid assigning high rewards
to excessively short sentences) and computes how many n-grams from the
candidate sentence match with the reference one(4.3).

pn =
q
nmatchedq
n count

(4.1)

bp = min(1, candidate_length
reference_length) (4.2)

BLEU = bp ∗ (
nÙ
i=1

pi)
1
n (4.3)

BLEU example
Reference: ’a’, ’man’, ’is’, ’running’
Candidate: ’a’, ’man’, ’is’, ’playing’
n-grams: 4

precision-1 = 3 / 4 (’a’, ’man’, ’is’)
precision-2 = 2 / 3 (‘a’, ’man’), (’man’, ’is’)
precision-3 = 1 / 2 (’a’, ’man’, ’is’)
precision-4 = 0
BP = 1
BLEU = 0.707

4.4.2 POS-BLEU
Part-Of-Speech BLEU [15] uses part-of.speech tags instead of words: it con-
siders the syntax aspect of the sentence and compare how the reference and
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candidate are similar in that sense.

POS-BLEU example
Reference: ’a’, ’man’, ’is’, ’running’, ’alone’
POS: ’article’, ’name’, ’verb’, ’verb’, ’adjective’
Candidate: ’a’, ’man’, ’is’, ’playing’, ’guitar’
POS: ’article’, ’name’, ’verb’, ’verb’, ’name’
n-grams: 4

precision-1 = 4 / 5 (’article’, ’name’, ’verb’, ’verb)
precision-2 = 3 / 4 (’article’, ’name’), (’name’, ’verb’), (’verb’, ’verb’)
precision-3 = 2 / 3 (’article’, ’name’, ’verb’), (’name’, ’verb’, ’verb’)
precision-4 = 1 / 2 (’article’, ’name’, ’verb’, ’verb’)
BP = 1
POS-BLEU = 0.668

4.4.3 SELF-BLEU

Lastly SELF-BLEU [16] is a metric computing the diversity of a generated
text: this is a particularly important metric in a model based on GANs,
since the mode collapse is one of the most diffused problems affecting them.
This score is computed same as BLEU, but uses the same test as candidate
and reference, and outputs a number between 0 and 1 indicating how much
repetition the candidate contains.

SELF-BLEU example
Considering the document:
’a’,’b’,’c’,’d’.
’c’, ’d’, ’e’, ’f’.
’a’, ’b’, ’b’, ’c’.
n-grams: 4

precision-1 = 1.0+0.75+0.5
3 = 0.75

precision-2 = 1.0+0.40+0.70
3 = 0.70

precision-3 = 0.36+0.20+0.29
3 = 0.28

precision-4 = 0.26+0.16+0.22
3 = 0.21

SELF-BLEU = 0.42
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4.5 Likert scale
Quantitative metrics such as BLEU cannot fully evaluate the quality of a
text, so we decided to add another level of evaluation by assigning scores to
different aspects of the sentences following the Likert scale [25]. Named after
its inventor Rensis Likert, it is a scale going from 1 to (4-5) commonly used
in questionnaires and surveys, with the numbers indicating how much the
person answering agrees or disagrees with what has been written before. An
example could be:

The problem of pollution has to be addressed as soon as possible.

• (1) Strongly disagree

• (2) Disagree

• (3-optional) Neither agree nor disagree

• (4) Agree

• (5) Strongly agree

This scale provides a good tool for evaluating things that are non-trivial
to estimate with precision and require a human evaluator, such as generated
text: with metrics it is quite hard to evaluate complex aspects of language
such as coherence through the sentence or even some syntax errors. Likert
scales are not perfect though, as they fall under common distortions tied to
surveys and human evaluations. For example, a Likert scale without the third
answer is considered to lead people to extremist views, while not perfectly
representing a softer answer. Also, people are often tempted to answer in a
way that appear perfect or normal and so giving an answer that differs from
real identity and ideals. All of this considered, Likert scale is still a pretty
good instrument of evaluation, and we used it since this problem is less prone
to suffer such biases. For each sentence evaluated we adopted 3 scores from
1 to 5, divided as follows:

4.5.1 Pertinence
With pertinence we indicated how much the sentence is related to the seeds
used: if a sentence is strictly related to what is presented in the seeds, then the
score is high, otherwise if the context is completely different then the sentence
is evaluated poorly. For example if the seed “woman tosses frisbee” generates
“a woman throws a frisbee in a park.”, then this sentence is evaluated 5/5,
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while if it would have generated something completely unrelated as “a man
is running in the gym” then the evaluation would be 1/5. As shown, this
does not represents if the sentence contains all the words from a seed, but if
the generic context is the same between the two elements.

4.5.2 Syntax
Syntax is made up of rules and principles that give the foundation of a
language, including general sentence structure and word order. A misused
verb in a specific context or general grammar mistakes could be the causes
for a sentence to get low syntax score. For example, a sentence with no errors
such as “a couple of people walking down the street” would get a 5 score,
while if the sentence were to be “a couple of person walking down the street”
then the syntax would be evaluated as 3 or 4, because of the misuse of the
singular “person” over “people”.

4.5.3 Coherence
With coherence we wanted to evaluate how much a sentence keeps revolving
around the same argument, penalizing those sentences suddenly changing
the topic and so breaking the sentence in two (or more) parts completely
unrelated with each other. A basic example could be the sentence “there are
two dogs with their owner”, which is fine since the sentence keeps revolving
around a single scenario, while another sentence such as “a dog is walking
with a men that is cooking in a pan”, which although having a good syntax
it lacks coherence between the first and second part.
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Chapter 5

Results

In this chapter we will present the results of our experiments, together with
other models used as baseline: specifically in the first part we explain some
details over our experiments, followed by a confrontation between scores ob-
tained by state-of-the-art models and ours, finishing with a human evaluation
done over a set of 100 sentences selected randomly from the Image COCO
dataset.

5.1 Experiments
We run our experiments over the annotations of Image COCO dataset, made
up of mostly short sentences. After pre-processing the sentences (tokeniza-
tion and division in batches of 32 samples with max length 20, as the average
sentence is less than 11 words long), we load pre-trained GloVe embeddings
of size 300 for both generator and discriminator, allowing the model to obtain
general knowledge given by GloVe, which will then be modified based on our
dataset local informations. At this point we start with a short pre-training
for both Generator and Discriminator: the first one consists of 15 epochs,
to leave the most part of the learning for the GAN part, while the second
one consists of only 2 epochs, as the discriminator gets too accurate in dis-
tinguishing the data. The adversarial part runs for 50 epochs, and in each
one of them, we run Monte Carlo search with roll-out policy, which is heavy
on computation: considering a sentence of length l, we run the algorithm
k times for each word contained in the sentence (l x k), to estimate how
much the word li contributes to make the sentence real. Therefore, we set
the k value to 8, giving us a good trade-off between time and performance.
After the training process has ended, we use our test set of 6670 samples to
compute all the scores showed in the next section.
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5.1.1 Adam vs SGD

A special mention has to be made for the optimizers: as shown in the exper-
imental setup, we used Stochastic Gradient Descent for both Discriminator
pre-training and during GAN training for both models, while we used Adam
in the Generator pre-training. This is due to what we observed during our
starting tests and has been confermed thanks to [13], which specifies that
adaptive optimization methods (such as adam) often find very different so-
lution from the classic Gradient Descent (or stochastic GD in our case),
showing that in test sets adaptive algorithms ofter perform a worse general-
ization on several learning models, but have better training performance. In
our experiment we had a confirmation of this behaviour, as we observed a
good training while the test performed very poorly (both with metrics and
human evaluation), so switching to SGD only in GAN training allowed us
to improve significantly our results. However we maintained Adam in the
generator pre-training,as we observed a good behaviour and faster training.

Figure 5.1: Training of the model using Adam optimizer in Generator pre-
training, during GAN training and Discriminator pre-training
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BLEU POS-
BLEU

SELF-
BLEU

2-gram 0.75562 0.96017 0.92066
3-gram 0.49795 0.90345 0.79215
4-gram 0.32308 0.79699 0.61746
5-gram 0.21538 0.65108 0.44389

Table 5.1: Quantitative scores considering 2-3-4-5 grams for the model
trained with Adam optimizer.

As we can see, the training is very good as the loss seems to decrease
until reaching a constant value, but evaluating the test set we notice a poor
performance in both BLEU and POS-BLEU, indicating that the model is
not capable to generate sentences that are meaningful and grammatically
corrects, while using SGD we obtain far superior results as shown in the next
sections.

5.1.2 Discriminator labels

During training, we found immediately a problem: the discriminator since
the beginning was too strong and able to distinguish between real and fake
sentences with little error, so we implemented an occasional flip of the labels
used as ground-truth from the discriminator in order to slow it down. We
tried this with two approaches: the first had the percentage of label swapped
be constant throughout the entire training, while the other one had the error
on the labels decrease over time: with the two approaches we obtained results
superior to the state-of-the-art and both really comparable, so we decided to
show both of them.
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Figure 5.2: Training of 50 epochs using a constant label error (15%).

Figure 5.3: Training of 50 epochs using a decreasing label error (20% de-
creased at each epoch).
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Figure 5.4: Decrease factor for the error in the labels, each value xn is ob-
tained by multiplying xn−1 by 0.95.

5.2 Quantitative results

We tested our results against the ones obtained with other famous state-of-
the-art models using Texygen [23], in particular SeqGAN [4], RankGAN [18]
and LeakGAN [19], all of them trained for 100 epochs. In the following
table we will show the results obtained from SeqGAN, RankGAN and Leak-
GAN trained with the same dataset used in our work, and we will compare
them with our results indicated as Tri-GAN (C/D to indicate if we used the
constant label swap or the decreasing one as explained before).

SeqGAN RankGAN LeakGAN TriGAN C TriGAN D
BLEU-2 0.76412 0.75991 0.87245 0.89369 0.89557
BLEU-3 0.53147 0.51714 0.74126 0.76081 0.76457
BLEU-4 0.33487 0.31405 0.59008 0.59922 0.60212
BLEU-5 0.21032 0.18971 0.43941 0.44161 0.44403

Table 5.2: BLEU scores considering 2-3-4-5 grams.
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SeqGAN RankGAN LeakGAN TriGAN C TriGAN D
POS-

BLEU-2 0.98645 0.99147 0.99798 0.99871 0.99885

POS-
BLEU-3 0.97587 0.97702 0.99327 0.99539 0.99528

POS-
BLEU-4 0.94731 0.94494 0.98063 0.98579 0.98473

POS-
BLEU-5 0.89496 0.88345 0.95847 0.96501 0.96289

Table 5.3: POS-BLEU scores considering 2-3-4-5 grams.

SeqGAN RankGAN LeakGAN TriGAN C TriGAN D
SELF-
BLEU-2 0.92736 0.94955 0.95251 0.93127 0.93386

SELF-
BLEU-3 0.78733 0.84410 0.89048 0.83065 0.83620

SELF-
BLEU-4 0.60066 0.69409 0.81373 0.69764 0.70627

SELF-
BLEU-5 0.42544 0.53726 0.73119 0.55521 0.56497

Table 5.4: SELF-BLEU scores considering 2-3-4-5 grams.

We can see clearly from the results that our models performs better in
both BLEU and POS-BLEU both SeqGAN and RankGAN, indicating a bet-
ter structure in the sentence building, while LeakGAN is closer in scores to
our results. A special mention has to be done for the SELF-BLEU which, as
explained in the previous chapter, refers to the diversification of the consid-
ered text, with a lower value indicating a better variety. As shown, SeqGAN
and RankGAN, in particular the former, seem to have a far better diversity
in the generated text, but this is most likely a consequence of the poor qual-
ity of the sentences. A language is made up of groups of words that are more
common in comparison to others, so when the generated text loses structure
and overall quality, it is less likely for these words to appear as frequently as
they should and so this score reflects a more chaotic choice of words rather
than a real diversity in the text considered.
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5.3 Qualitative results
We wanted to add another level of evaluation over state-of-the-art metrics
evaluated before because, being quantitative metrics, they are not able to
represent some qualitative aspects contained within natural language. All of
this considered, we decided to run an experiment taking 100 samples ran-
domly selected from our test set, and evaluated them over the different as-
pects of pertinence, syntax and coherence as described before. We run this
experiment for both our models, constant and decreasing, and obtained the
following results:

TriGAN C TriGAN D
Pertinence 3.340 3.510
Syntax 3.945 3.935

Coherence 3.485 3.790

Table 5.5: Human evaluation done over some test sentences.

As we can see the two models are quite close to each other, with the de-
creasing model performing slightly better in syntax and coherence, meaning
that the decreasing label error helps the model in building a better sentence
structure and maintaining the coherence throughout the whole generation,
although we have very short sentences in our dataset. The constant model
performs a bit better in pertinence, meaning that the topic of the generated
sentences are closer to the one expressed in the seeds.

5.3.1 Discussion
When evaluating the sentences we need to consider that, given the nature
of the dataset pre-processing, some seeds could make less sense than others:
when we extract two nouns and a verb there is the chance that the choice of
these elements could be non-optimal, therefore giving birth to meaningless
seeds. This is because there is no method to pick exactly the structure
subject-action-object inside a sentence, but the pick is in order inside the
sentence from left to right. This simplifies the pre-processing but at the
same time generates seeds that are hard to expand and so generating bad
samples. For example considering the sentence “A man with a sweater is
riding a snowboard.” should give the seeds “man riding snowboard”, while
instead it gives “man is snowboard”. This sample shows a choice of seeds
clearly non-optimal, and also brings up another problem within the pre-
processing: some verbal forms such as present continuous are “truncated”
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to the first part of the verb, reducing or even disrupting the context of the
sentence itself. We did not find effective solutions to these problem, which
are intrinsically problems of evaluating a language in a quantitative way:
smoothing these problems could improve drastically the performances in our
model.
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Chapter 6

Conclusions

In our work we proposed a new approach for text generation starting from
an acquired knowledge that builds a general context starting from GloVe and
then specializes it with informations obtained from the training dataset. The
seeds are then used to focus on a limited part of this context and build a
sentence over that specific topic, allowing to generate new and every time
different sentences. Using the SeqGAN model [4] as inspiration, we built
a Generative Adversarial Network model using as Generator a sequence-to-
sequence model and as Discriminator an attention based Long Short-Term
Memory. The generator had the task of taking 3-word seeds and generating
a full length sentence, having as main topic the same as the original seed.
To do this we used an encoder (modeled over a Gated Recurrent Unit) to
compress the seeds and obtain a local context, and then expanded it with
the decoder (again a Gated Recurrent Unit). To train this GAN model we
draw heavily from the REINFORCE algorithm already used in the SeqGAN,
although with some modifications, that allowed us to overcome the differen-
tiability problem of discrete data.
From the results we notice that the model can produce realistic text in this
specific task using short sentences, but it produced also samples that are ei-
ther totally disconnected from the original context and/or structurally wrong,
for example having words repeated two or more times. From the quantitative
metrics we can tell that our model obtained results superior to the state of
the art, although the room for improvement is still huge. Considering also
the qualitative evaluation, the model stays around the medium-upper part
of the likert scale, which hints us that we have overall a discrete quality but
with some critical samples that bring down the results.
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6.1 Future work
Although we obtained quite good results if compared with the state of the art,
several improvements come to mind when thinking of the experiments: first of
all a finer tuning of the hyper parameters could bring a lot of improvements,
as we were not able to try all the possible combinations. Also, using different
types of discriminators, for example a self-attentive discriminator [24] or
one based on Convolutional neural network [5] could lead to other results.
Another interesting improvement could be implementing the leak system
from [19], which could step up our syntax and coherence over long sentences.
Again, improving the pre-processing would allow us to eliminate meaningless
seeds and help building a more solid sentence structure. Lastly, an important
experiment to run would be to try change the seed structure, considering
for example sentences with 4, 5 or more seeds, maybe a variable number
for each sentence. Leaving behind the noun-verb-noun paradigm could also
give new perspectives, therefore considering only the most relevant words in
general, maybe obtained with an attention net during the pre-processing of
the dataset.
With this and other possible improvements there are countless applications
for such model, for example chatbots, where we could extract seeds from a
question given by the user and therefore produce a proper response, or even
systems for generating human readable text and write essays of articles over
various topics.
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