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ABSTRACT 

In primary production/UGS context, geomechanical modeling is aimed at evaluating the 

system safety in terms of reservoir and cap rock integrity, induced subsidence/rebound 

and existing faults (re)activation. To this end a discretized model able to describe the 

volume of interest is usually constructed and numerical simulations are performed to 

assess the displacement of the mesh nodes and the stress variation. Traditionally such 

calculations are performed through the well-established Finite Element Methods (FEM). 

In the present work, the Virtual Element Method (VEM) a generalization of FEM to 

polyhedral meshes was tested on ad hoc constructed 3D models and results were 

compared against solution obtained from FEM simulation. Sensitivity and limitations of 

the implemented VEM with respect to the selected grid were analyzed. 

 

Keywords: Virtual element method, Subsidence, Reservoir simulation, Corner point 

grids, Unstructured grids, Linear elasticity.
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1. INTRODUCTION 

Most of Geomechanical applications fall under the umbrella of safety analysis and 

prevention. More specifically exploration and exploitation of deepwater fields need a 

careful planning considering the corresponding expensive high rate wells and platforms. 

In primary production context, most reservoirs are multi-layered, over pressurized and 

have weakly cemented sands and silt sequences. Thus, a large pressure depletion can lead 

to large rock deformations and primarily compaction at the reservoir level, and associated 

surface subsidence that is responsible for a number of field operating problems. Hence, 

it’s imperative to carry out Geomechanical studies on the impact of reservoir operations 

to evaluate the system safety in terms of the reservoir and cap rock integrity, the induced 

subsidence/rebound and existing faults (re)activation. The results of these studies assist 

decision makers (engineers, operators, economists…etc) in crafting a fitting strategy for 

an optimal field development and management. 

The integration of a geomechanical study in a typical petroleum engineering workflow 

requests the construction of a 3D full-field model and the simulation of the response of 

the system to the production activities with the intrinsic challenge in balancing between 

accuracy and computation effort to calculate the solution considering that typically a 

geomechanical model can be significantly larger than a reservoir model. This is the reason 

why computation efficiency is critical in this case. Several numerical solutions can be 

found in technical literature which provide a compromise between economical 

requirements and numerical feasibility 

Traditionally, commercial softwares dedicated to geomechanical applications implement 

Finite Element approaches (FEM). Therefore, the model construction process is coherent 

with its theoretical framework. As an example, volume discretization strategies, data 

extrapolation schemes, and the set-up of boundary conditions are mainly adapted for the 

Finite Element Method. 

In the present work, the Virtual Element Method (VEM) a newly presented numerical 

method defined as a generalization of FEM to polyhedral meshes is applied to a realistic 

geomechanical test case. In particular the VEM solution is compared against the FEM 

commercial software solution provided by Schlumebrger Geomechanics®. At this stage 

of the project, a prototype code is available for the computation of field displacements 
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induced by pressure depletion within the elastic domain from an independent source 

input. 

At first, we devised a strategy to properly construct models for the VEM simulation which 

are equivalent of the FEM oriented models (by taking advantage of the options offered 

by FEM commercial software). 

Secondly we observed that certain details relating to data pre-processing and solver 

implementation of the FEM commercial software are inaccessible to the user due to 

software licensing and confidentiality, thus we defined a simplified synthetic model in 

order to confine the solution discrepancies between the two methods to different 

implementation strategies that cannot be reproduced using the VEM prototype. As an 

initial goal, we expected to quantify a minimum solution discrepancy for future 

references, when simulating realistic models. 

Finally, we tested the VEM over different discretizations of the same volume under the 

same set of inputs. Initially, in compliance with the VEM theoretical framework, the 

simulation was performed on a tetrahedral grid, where we expected the output to be 

reliable and representative of the subsidence phenomena. Next, we computed the VEM 

over the same “corner point grid” adopted by the commercial software. From the results 

analysis we probed the areas where the discrepancies were prominent and tried to single 

out the possible sources. Based on our assessment we modified the grid and prepared a 

new discretization scheme ready for the next simulation. We re-iterated these steps until 

an acceptable prediction of subsidence phenomena is approximated. Our main results 

concerned the assessment of the VEM dependency on volume discretizations, we tested 

its sensitivities within the frame of our model while conjointly provided a strategy to treat 

the confronted limitations. 
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2. LITERATURE REVIEW 

Within the framework of Geomechanics, the establishment of the mechanics of 

deformable solids and porous sedimentary environments is of main interest. The subject 

englobes a variety of disciplines aiming for building the constitutive behavior of materials 

when exposed to ever changing loading conditions: stresses, pressures, temperatures and 

chemistry. 

The scope of our work is the comparison of two numerical methods in 

approximating the solution of the geomechanical application: depletion-induced 

subsidence within the elastic frame. The latter is delimited by a threshold under which 

any mechanical deformation the material underwent can be recovered if the initial 

conditions were satisfied again. Any strain occurring outside of the elasticity limit is 

considered plastic and can’t be retrieved. The concept of elastic behavior is rather 

complex taking into account its dependence on material mechanical (elastic) properties, 

testing conditions and state of stress. 

We would consider the discrete nature of materials and develop certain concepts 

of elasticity and define particular properties used in the characterization of constitutive 

performance of porous material (Poro-elasticity). 

Subsequently, we examine the reservoir’s response to hydrocarbon production 

and how the mechanical disturbance travels to its surroundings. In addition, we explore 

an analytical evaluation of the compaction and subsequent subsidence problem based on 

Geertsma’s nucleus of strain model. 

Next, we approach the geomechanical modelling main considerations:  Reservoir 

dynamic simulation and its modelling components are briefly examined, the extension of 

the solution domain and the definition of the different theoretical approaches used in 

coupling fluid-flow and rock mechanics to reproduce the stress-strain deformation.  

We explore briefly Finite element and Virtual element methods, with a mention 

on how they solve elasticity problems. 
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2.1. Constitutive laws:  
 

A constitutive law is an ensemble of equations describing the relationship between 

applied stresses on a rock medium and its consequent deformation. Evidently, this 

conceptualization is the umbrella for a wide variety of physical behaviors, therefore, we 

will be addressing certain key principles, parameters and examples relating to the theory 

of elasticity and poroelasticity.   

 

2.1.1. The Theory of Elasticity [1][2]:  
 

The term «elastic» is used to underline the notion that a loaded Fig. 2.1 or a strained body 

possess a potential energy [2] that may be released during unloading causing it to rebound 

to its original shape.  To describe this behavior, Constitutive laws take into account the 

mechanical properties of the materials. 

 

 

 

 

 

 

 

 

 

 

 

 

The relationship that describes this behavior relating directly the infinitesimal stresses to 

the infinitesimal strains can be written as such Eq. (2.1):  

 

𝑑𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘ℎ𝑑𝜀𝑘ℎ                                                    (2.1) 

C is designated as the stiffness tensor, which is the ensemble of independent scalars 

relating the stresses to the consequent strains referred to as elastic constants.  

  

Fig. 2.1: Stresses acting on a finite parallelepipedal volume. 



NACER Benlalam  5 
_____________________________________________________________________________________ 

 

 The response of a material when loaded Fig. 2.1 within its elastic limit manifests 

under several scenarios Fig. 2.2 depending on the magnitude of stress applied, the elastic 

properties and the stress history of the material. Even though, bearing formations are 

subjected to large stresses that may induce non-linear responses, it’s still possible to 

analytically describe their behavior through linear relations if the applied stresses changes 

in an infinitesimal manner. 

 

  

The most well-known constitutive law is the Generalized Hooke’s law Eq. (2.2). 

for the behavior of an isotropic1  linear elastic material, characterized by the use of only 

two elastic parameters E young Modulus and υ Poisson’s ratio. 

 

[
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                      (2.2) 

 

 

 

 
1 Isotropic material: When subjected to a state of stress, the material’s response is independent of the 
orientation of the applied stress. 

Fig. 2.2: Different stress-strain relationships: (a) Linear elastic (b) Non-linear elastic (c) Hysteresis. 
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2.1.1.1.Elastic Parameters [1]: 

 The coefficients correlating the stress and the elastic responses of the material are 

grouped as “elastic moduli”: 

• Young Modulus E: is a measure of the stiffness of the material Eq. (2.3), 

it’s estimated through uniaxial stress tests, where the product of the 

modulus to the lateral strain is equal to the perpendicular applied stress.   

𝜎 = 𝐸𝜀                                           (2.3) 

• Poisson’s ratio : Eq. (2.4), the lateral expansion to the longitudinal 

shortening.  

𝜈 = −
𝜀𝑦

𝜀𝑥
                                         (2.4) 

• Lame’s Parameters:  

Shear modulus G: it quantifies the material’s resistance against shear 

deformations Eq. (2.4). It is physically estimated as the ratio of the 

applied shear stress to its shear strain.  

𝐺 =
𝐸

2(1+𝜈)
                                          (2.4) 

Lame’s Constant : Eq. (2.5) 

                            𝜆 =
𝜈𝐸

(1+𝜈)(1−2𝜈)
                            (2.5) 

• Bulk Modulus K: it quantifies the material’s resistance against 

hydrostatic loading Eq. (2.6), consequently the inverse 1/K is 

representative of the compressibility.   

K = λ +
2

3
G                                       (2.6) 

 The determination of elastic moduli can be a challenging process, as it can present 

a significant discrepancy depending on the methodology used to estimate them. We can 

group them as Dynamic moduli measured through acoustic velocities or Static moduli 

obtained from stress/strain measurements. Evidence have shown that the heterogeneous 

discrete nature of rocks is one of the main sources for such differences. This underlines 

that the depositional history, stress-strain history and rock types are defining factors for 

the value of elastic parameters. 
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2.1.2. Poro-Elasticity [1] [2] [3] [4] [5]:  
 

The theory of Poro-elasticty lays the grounds for constitutive models which describe the 

mechanical behavior of saturated rocks/soils when subjected to external load. 

Highlighting the role of void space in both fluid flow and the deformation of the 

containing material. The work, on which the theory was based on, was first initiated by 

K. Terzaghi 1925, aiming to study the process of soil consolidation under the assumption 

that the grains forming the soil are bounded by certain molecular forces constituting an 

elastic porous material. Terzaghi performed this work on a fully saturated soil under 

oedometric conditions (one-dimensional deformations). In 1941, M Biot extended this 

approach to a three-dimensional problem where the porous material is subjected to 

arbitrary loads. 

To account for poroelastic effects of material loading, certain assumptions have 

to be made first:  

• Interconnected pore system fully saturated.  

• Total Pore volume of the system is relatively smaller than the bulk volume. 

• External and internal loads (total stress, pore pressure) uniformly act on 

the system as well as its internal grain structure. 

Tab. 2.1: Static mechanical properties for some common rock types. 
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Terzaghi states: when a saturated porous material is under a state of stress, the distributed 

loads are partly supported by the solid framework of the volume, and partly by the fluid 

within the pores. Notably, the total external stress applied is evened out partially by 

stresses on the skeleton and partially by a hydrostatic pressure.  The potential energy of 

the strained poroelastic material is therefore influenced by the interstitial fluid within its 

pores. This is translated as “the effective stress principle” Eq. (2.7). 

 

𝜎𝑖𝑗
′ = 𝜎𝑖𝑗 − 𝛿𝑖𝑗𝑃                                                         (2.7) 

  

Where 𝜎𝑖𝑗 and  𝜎𝑖𝑗
′   are the total   and effective stresses respectively while P is the 

pore pressure. The formulation Eq. (2.7) describes the coupled behavior of applied 

stresses and pressure variations, stating that any mechanical alterations occurring to the 

medium are solely due to effective stress changes. 

By considering the physical aspect of the pore pressure level of effects on stresses 

acting on the solid framework, Biot has reformulated Terzaghi’s principle by introducing 

the coefficient “α” Eqs. (2.8) and (2.9):  

Fig. 2.3: a) Schematic illustration of a porous material on which an external load is applied outside an impermeable 

boundary, and pore pressure acting within the pore. b) Grain scale:  Schematization of the force acting on the grains as 

the difference between the applied force and pore pressure (Terzaghi principle).  [3] 
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𝜎𝑖𝑗
′ = 𝜎𝑖𝑗 − α𝛿𝑖𝑗𝑃                                                    (2.8) 

Where:  

𝛼 = 1 −
𝐾𝑓𝑟

𝐾𝑠
                                                          (2.9) 

 

𝑲𝒇𝒓: is the bulk modulus of the framework of the material (skeleton), it’s estimated 

through a hydrostatic drained (jacketed) test Fig. 2.4 done on a saturated material, where 

the pore pressure is kept constant. This is translated as any stress variation applied on the 

material is entirely carried by the framework allowing us to characterize the material’s 

stiffness. In literature, “drained conditions” refer to permeable mediums where fluids are 

able to dissipate through when load is applied. 

𝑲𝒔: is the bulk modulus of the solid grains. It’s estimated through a hydrostatic undrained 

test (unjacketed) test Fig. 2.4 done on a saturated material. The test is conducted by 

applying confining loads on a porous material immersed fluid under pressure while 

holding the experiment under the conditionΔ𝜎 = Δ𝑃𝑓. This means that resulting the 

stiffness measured is one of the solid grains. “Undrained conditions” refer to mediums 

where fluids are not able to escape, or when they need considerable amount of time to 

reach equilibrium again when loaded, ‘impermeable media.  

 

 

 

 

 

 

 

 

 

 

 

With respect to Eq. (2.7) and Eq. (2.9), we have the possibility to describe in 

short the stress distribution and the effects of pore pressure with respect to stiff/weak 

framed rocks.  

 

Fig. 2.4: Schematics of a) Drained test b) Undrained test [2].  
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For weakly framed rocks “soils”: the frame is highly compressible: 𝐾𝑓𝑟 ≪ 𝐾𝑠 ➔ 𝛼 ≈ 1 

This validates Terzaghi’s orginal work about soil consolidation, confirming that the soil’s 

bulk modulus is also affected by the fluids’ bulk modulus  𝐾𝑓 .   

 

For stiff framed rocks: the frame has a low compressibility relative to that of the 

fluid𝐾𝑓𝑟 ≫ 𝐾𝑓. Where, the bulk modulus of the frame becomes comparable to that of its 

solid grains𝐾𝑓𝑟~𝐾𝑠, reducing the value of the Biot coefficient α. Consequential reduction 

of pore pressure effects in supporting the applied stresses. For hard rocks, most of the 

loads are carried by their skeleton. From a geotechnical point of view, the bulk moduli of 

the frame and of the solid grains of hard rocks differ due to the heterogeneous nature of 

the minerals constituting the rock, it’s possible to have the same value if it’s formed of 

one type of minerals. 

 

 Now that we have established through the poroelasticity concept and Terzaghi 

principle: that the effective stress component is the one causing solid deformations, it’s 

possible to rewrite the defined equations defined through the theory of elasticity by 

using the effective terms instead of total stresses while taking into account the 

dynamic/mechanical effects of fluid flow. This opens up a wide variety of scenarios: 

drained conditions, undrained conditions as well as the level of consolidation of 

material studied. Therefore, the elastic moduli that can be determined through these 

workflows are specific to the conditions under which the experiments were conducted.  

 

2.1.3. Beyond the elasticity limit [2]:  

The theory of placticity is the constitutive model used to describe the ductile2 behavior 

of materials.When materials are stressed beyond their elastic limit “yield point”, they 

undergo non recoverable deformations, where only a portion of the strains rebound back 

during unloading. Therefore the total strain asssociated to an applied stress can be 

described as the sum of elastic and plastic deformations Eq. (2.10):      

 

                                                      𝜀 = 𝜀𝑒 + 𝜀𝑝                                                          (2.10) 

 
2 Ductile behavior : it describes the space where the material undergoes permanent deformations without 
losing its ability to support the load. 
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As a result of continuous complex geological, mechanical and biological processes, in-

situ rocks and soils vary greatly in terms of structures. Undisturbed samples when 

subjected to loading, their response seems to be greatly affected by such history. 

Modeling this analogous behavior of geomaterials requires the consideration of their 

dependencies to accurately predict their response. Weak sedimentary rocks display 

unique behavior when loaded, as they depend greatly on their structure. They are 

intermediate between hard rocks and soils, characterized by little to no cementation 

between individual grains. It has been established that Cam clay (soil mechanics) can be 

modified to be able to properly describe their mechanical behavior with respect to the 

administered loading conditions [2].  

 

2.1.3.1.The CAM-Clay Model [2] [4] [5]: 

 

Originally, during sedimentary and weathering processes, soil deposits undergo a 

series of loading and unloading sequences Fig. 2.5. During the deposition process A-B-

C, the additional weight of overburden causes an increase of effective vertical stress, loose 

sediments will consolidate inducing a reduction of the void element (reduction of void 

ratio). The segment D-C representing the erosion process is translated as a reduction of 

the applied effective vertical load followed by a consequential decrease of void ratio. The 

graph shows evidence of residual strain after unloading, for the same effective overburden 

the points B and D exhibit different void ratios. This behavior sets certain singularities of 

the soils’ mechanical responses: its non-linear stress-strain response, its stress 

dependent stiffness and the exhibition of irreversible deformations without necessarily 

fulfilling failure conditions.  

Void ratio e: it is the relative void volume related to that of solid volume Eq. (2.11):   

 

𝑒 =
𝑉𝑣

𝑉𝑠
                                                        (2.11) 

Specific Volume υ: total value divided by solid volume Eq. (2.12):  

 

𝜐 =
𝑉𝑠+𝑉𝑣

𝑉𝑠
= 1 + 𝑒                                            (2.12) 
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When a soil is exclusively consolidated by a gradual increase of effective 

overburden stress, it is said to be “Normally Consolidated”, its stress-strain behavior is 

primarily elasto-plastic. The highest stress at which the soil was geologically subjected 

to is described as “Preconsolidation Stress 𝒑𝒄
′ ”. When the same soil goes through a phase 

of unloading it’s now called “Overly Consolidated” as it exhibits a degree of swelling 

but it reaches a lower void ratio than an NC soil for the same level of applied effective 

stress.  

 The model is based under the conduction of laboratory triaxial tests “isotropic 

loading” on unconsolidated soils (ex: soft clays). The diagram Fig. 2.6 below shows the 

response of a series of isotropic loading/unloading of clay under drained conditions. 

 

 

 

 

 

 

 

 

Fig. 2.5: Observed void ratio evolution under the effect of loading and unloading sequences of a soil 

deposit sample [5].   
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From the diagrams, it’s possible to infer that the slope of NC soil is relatively more 

important that the OCs : this is reflected by a higher reduction of specific volume when 

exposed to the same load increment, which allows us to conclude that the stiffness of OCs 

is relatively greater than NCs. 

In order, to determine the level of consolidation of the soils we are handling, we 

refer to the quantity “Overconsolidation Ratio” OCR Eq. (2.13): ratio between 

Preconsolidation stress and the current stress at which the soil is subjected to. When 

OCR=1 the soils are NC, when OCR>1 we have OC soils.  

 

𝑂𝐶𝑅 =
𝑝′

𝑝𝑐
′                                                      (2.13) 

 

 Moreover, normally consolidated soils have a unique relationship between 

specific volume and the exerted effective stress. As opposed to overly consolidated soils 

who follow different paths depending on the void ratio and the Preconsolidation stress 

from which the material was unloaded. 

 

 

 

 

 

 

Fig. 2.6: Schematic isotropic compression of clay [5].  
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2.2.Reservoir Geomechanics: 

 

Most of geomechanics applications fall under the umbrella of safety analysis and 

prevention. The most well-known example for mechanical effects caused by reservoir 

production is reservoir compaction as well as the associated surface subsidence.  It can 

generate operational challenges endangering the well-being of field operations on a small 

scale or even bring forth environmental concerns on a larger scale. 

A proper understanding of the physics behind such phenomena goes conjointly 

with the continuous development quest for better and more reliable engineering and 

computational tools to simulate and predict the geomechanical behavior during the 

exploitation phase to further optimize the reservoir management workflow. [2] 

 

2.2.1. Compaction physics and the associated subsidence:  

 

Rocks are generally described as “composite materials”, referring to their heterogeneity 

on a length scale that is comparable to the particle size. Meaning that the rock’s behavior 

and its over-all response depend not only on the matrix response but also on the non-solid 

part of the material. This concept is covered under the umbrella of “the poroelastic 

theory” providing us the necessary platform on which we can study compaction and its 

associated phenomena. [2] (Chapter 1, 6, 12). 

In simple terms, a reservoir is a porous medium that contains fluids (hydrocarbons 

and water) within its solid structure. When considering the geological criteria for fluid 

entrapment coupled with increasing depth of burial due to sedimentation, there is a 

possibility where fluid expulsion rate may be lower than the sedimentation rate causing 

an over-pressurization of fluids within the bearing formation. Such phenomenon Fig.2.7 

is generally characterized by a contrasting high level of pressure compared to that of a 

normal hydrostatic condition for the same depth and weight of the overlaying strata 

stressing upon the porous media, as well as having different intrinsic properties (such as 

porosity and permeability). The reason behind such distinctive behavior is due to having 

both the fluid and the solid framework supporting the stresses acting on the rock, and the 

degree of support provided by each one. This concept was previously described as the 

effective stress principle Eq. (2.8).  
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During production, the fluid pressure will generally drop, leading to an increase of the 

effective stress according to the Eq. (2.8), this is translated as more load is now being 

carried by the reservoir rock, causing the rock itself to shrink, in other words the reservoir 

will compact. [2] 

The resulting volume deformation of buried formation due to compaction is 

usually transmitted through the overburden Fig. 2.8 forming what is called a “subsidence 

bowl”. The latter is wider than the compacted area [6][7]. 

 

 

 

 

 

 

 

 

Fig. 2.7: The overburden stress (yellow arrows on the right) acting on the formation 

increases with depth due the added weight and is determined by density integration of the 

overburden (yellow line on the left). Similarly, the pore pressure (blue line on left) increases 

with a gradient determined by brine density. Beneath an impermeable layer (brown stripe), 

the pore fluid becomes overpressured as the formation compacts under additional 

overburden weight without being able to dissipate the pore fluid [6]. 
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Evidently, all depleted oil/gas bearing formations will experience compaction, yet 

most will only witness small changes in volume and consequently a negligible surface 

subsidence. Following observations and evidence collected through the years, to have 

considerable amount of subsidence these following conditions must be fulfilled first [2] 

[8]:  

 

• A significant reduction in reservoir pressure. (Any pressure 

maintenance mechanism will possibly counteract compaction).  

• The bearing formation must be highly compressible, such as soft, loose 

or weakly cemented rocks. 

• The reservoir must have a large vertical interval from which the 

production is effected (large thickness).  

• The reservoir compaction must be significant, and not shielded by the 

overburden rock, which is why the depth and geometry of the reservoir 

Fig. 2.8: Potential subsidence due to oil or gas withdrawal [2].  
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and the mechanical properties contrast between the reservoir and its 

surrounding plays a big part in the spread of subsidence bowl.  

 The compacting volume can be significantly larger if the aquifers beside or below 

the hydrocarbon bearing formation were affected, they may compact when their pressure 

is reduced.  

 When a formation undergoes compaction, the sideburden usually does not for two 

possible reasons: because it’s impermeable and separated from the compacting region by 

non-communicating faults, or because it is a stronger more stiff material [7]. 

 Another important point to consider is the motion with respect the subsidence 

bowl. Predominantly, the movement is vertical however horizontal movements also 

occur. The Land moves vertically down and horizontally toward the maximum pressure 

drop to what’s called a “reservoir gravity center” which is where production wells are 

drilled. [7][33]. 

 

2.3.Practical Analytical solution for compaction and subsidence [2] [8] [9]:  

 

Despite the general consensus in the engineering community, that numerical methods 

provide reliable and more accurate solutions, the analytical solutions are still of main 

interest because of their simple requirements and easy implementations to provide a 

general idea over the scale of compaction and the associated subsidence.    

 

2.3.1. Reservoir compaction:   

 

For the purpose of simplifying the solution for reservoir compaction, the reservoir volume 

reduction is assumed to be predominantly a result of height contraction. In technical 

terms, we can refer to it as a uniaxial reservoir compaction. Furthermore, we under the 

hypotheses of: homogeneous isotropic reservoir, acting as linear elastic/poroelastic 

volume, and the absence of contrast between the reservoir and its surroundings. 

Evidently, the subsequent deformation of the rock can be expressed through the 

appropriate constitutive law: “Hooke’s law” Eqs. (2.14) to (2.16) expressed in terms of 

stress variations with respect to the initial stress state (before depletion initiation): 
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𝐸𝑓𝑟𝜀ℎ = ∆𝜎ℎ
′ − 𝜈𝑓𝑟(∆𝜎𝐻

′ + ∆𝜎𝑉
′ )                                        (2.14) 

𝐸𝑓𝑟𝜀𝐻 = ∆𝜎𝐻
′ − 𝜈𝑓𝑟(∆𝜎ℎ

′ + ∆𝜎𝑉
′ )                                        (2.15) 

𝐸𝑓𝑟𝜀𝑉 = ∆𝜎𝑉
′ − 𝜈𝑓𝑟(∆𝜎𝐻

′ + ∆𝜎ℎ
′ )                                        (2.16) 

 

Provided that the lateral dimensions of the reservoir are large compared to its 

height. The variation of reservoir thickness ∆ℎ is given by the following relationship Eq. 

(2.17) between the vertical strain and the original thickness of the reservoir:  

 

∆ℎ = −𝜀𝑣ℎ                                                          (2.17) 

Additionally. The stress evolution should be known to compute compaction, to do 

so certain assumptions must be imposed:  

 

• For a lateral expansion larger than its vertical counterpart, we can consider 

the reservoir to only compact vertically, so it’s possible to neglect 

horizontal strains Eq. (2.18):  

 

𝜀𝐻 = 𝜀ℎ = 0                                                       (2.18) 

 

• Second assumption is considering a constant total vertical load during 

production. This will result in the following equation  

Eq. (2.19) :  

∆𝜎𝑉
′ = ∆𝜎𝑉 − 𝛼∆ 𝑃𝑓 = −𝛼∆𝑃𝑓                                     (2.19) 

 

By introducing Eq. (2.18) into the Hook’s law model, we can infer the necessity for 

vertical compaction to be maintained, the effective horizontal stresses must increase 

accordingly Eq. (2.20):  

∆𝜎𝐻
′ = ∆𝜎ℎ

′ =
𝜈𝑓𝑟

1−𝜈𝑓𝑟
∆𝜎𝑣

′                                              (2.20) 

 

Once we consider the previous assumptions within the generalized Hooke’s law, 

the uniaxial compaction cab be expressed as such Eq. (2.21): 
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∆ℎ

ℎ
=

1

𝐸𝑓𝑟

(1+𝜈𝑓𝑟)(1−2𝜈𝑓𝑟)

1−𝜈𝑓𝑟
𝛼∆𝑃𝑓                                       (2.21) 

Or  
∆ℎ

ℎ
= 𝐶𝑚𝛼∆𝑃𝑓                                                       (2.22) 

 

𝑪𝒎: Compaction coefficient/uniaxial compressibility.  

From the resulting equations Eqs. (2.21) and (2.22) we can possibly quantify the 

reservoir’s uniaxial compaction through three different individual influences: 

• The reduction in reservoir pressure  ∆𝑃𝑓 = 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑃𝑓𝑖𝑛𝑎𝑙.            (2.23) 

• Vertical extent of the produced zone.  

• The order of magnitude of the relevant mechanical properties of the 

reservoir formation.  

 

Coherently, compaction defined as volumetric variation resulting from pore 

pressure depletion, it causes the reservoir to pull away relatively from the surface. Such 

behavior leads to a redistribution of vertical stresses Fig. (2.9) along the top reservoir as 

they decrease at the top of the reservoir and increase at its boundaries, in other terms 

they “arch”. Accompanied with the lateral stress consideration previously mentioned, 

such phenomenon will affect displacement behavior with respect to pressure changes. It 

has become important to evaluate the stress evolution of the reservoir during 

production, in other words computing the reservoir’s stress path.   

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.9: Arching effect.  
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Within the frame of linear poro-elastic constitutive model previously presented, 

it’s possible to introduce Stress Path Coefficients defined as follows Eqs. (2.23) to (2.25):  

 

𝛾𝑣 =
∆𝜎𝑣

∆𝑃𝑓
                                                             (2.23) 

𝛾ℎ =
∆𝜎ℎ

∆𝑃𝑓
                                                            (2.26) 

𝛾𝐻 =
∆𝜎𝐻

∆𝑃𝑓
                                                            (2.25) 

 

𝜸𝒗: is also called the arching coefficient.  Is equal to zero for uniaxial 

compaction.  

 

It’s possible to estimate the reservoir compaction for a general stress path Eqs 

(2.26): 
∆ℎ

ℎ
=

𝛼

𝐸𝑓𝑟
[(1 −

𝛾𝑣

𝛼
) − 2𝜈𝑓𝑟 (1 −

𝛾ℎ

𝛼
)] Δ𝑃𝑓                           (2.26) 

 

It’s necessary to highlight the fact that stress path coefficients are geometry 

dependent, in addition to the elastic contrast between the reservoir and its surroundings, 

emphasizing the dependency of the solution on the boundary conditions at the reservoir 

sides.  

 

2.3.1.1.Compaction of a layered reservoir [2]:  
 

For a layered material of isotropic layers of thickness ℎ𝑖 and total thickness 

ℎ subjected to a normal load, under the assumption that all the layers must carry the same 

load. This type of media is modeled through the summation of the individual compaction 

of each layer i:  

• The individual vertical strain per layer Eq. (2.27):  

 

𝜀𝑉,𝑖 =
𝜎𝑉

𝐸𝑖
=

∆ℎ𝑖

ℎ𝑖
                                                    (2.27) 

 

• The overall compaction of the material will then be as such Eq. (2.28):  
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𝜀𝑉 = −
1

ℎ
∑ ∆ℎ𝑖 =

1

ℎ𝑖 ∑ 𝜀𝑉,𝑖ℎ𝑖 = 𝜎𝑉
1

ℎ
∑

ℎ𝑖

𝐸𝑖
𝑖𝑖                         (2.28) 

 
2.3.2. The subsidence compaction relationship “ Geertsma’s nucleus of 

strain model” [2] [8] [10] [11] [12]:  
 

By definition, subsidence is the motion of a surface (in our context the earth’s surface) 

downward with respect to a reference (usually datum of the sea-level), which means that 

subsidence is quantified by a unit of length.  

In order to build a mathematical relationship between compaction and subsidence, 

it’s necessary to understand how the reservoir’s depletion induced compaction propagates 

through the overburden in order to form what we call a subsidence bowl. This interaction 

between the shrinking medium and the surrounding medium is estimated as well through 

the help of the theory of poroelasticity. There has been several discussions before about 

this subject, mainly highlighting its similarity with the thermoelasticity within the 

mathematical frame. From which, the approach named “nucleus of strain model” was 

presented by Geertsma in 1973. 

 

 The conceptualization of this model starts from the estimation of subsidence from 

a compaction of a unit volume (e.g. a sphere), and to calculate the total subsidence of any 

assembly of small volumes, with the assumption that superposition of effects is 

admissible.  

The technique is to consider the volumetric strain of the unit volume due to a 

pressure drop as a center of compression that induces a displacement field at the surface 

within the elastic domain. The displacements are determined by adding the contributions 

of unit volumes under the assumption of the linear elasticity of the whole depleting 

volume and its surroundings. 

It’s better described with spherical coordinates and their general solution for the 

displacement equation, if we consider a depleting sphere of a radius 𝑅0 inducing a radial 

displacement at the surface  𝑢0 , therefore the radial displacement at any distance 𝑟 from 

the center of the sphere is given by the following equation Eq. (2.29):  

 

𝑢(𝑟) = 𝑢0
𝑅0

2

𝑟2                                                          (2.29) 
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𝒖𝟎 : Radial displacement at the surface of the unit sphere.  

𝑹𝟎: Radius of the sphere.  

r: distance from the center of the sphere. 

 

  By taking into account the relation between the volume change of the depleted 

sphere and the surface displacement, and the definition of volumetric strain we will end 

up with this resulting equation Eq. (2.30):  

 

𝑢(𝑟) = −
𝐶𝑚

4𝜋
𝑉𝛼∆𝑃𝑓

1

𝑟2                                              (2.30) 

The final equation Eq. (2.30) is an indication that any subsidence is primarily 

proportional to the reservoir’s compaction 𝐶𝑚𝛼∆𝑃𝑓  while it entails as well the 

governance of the product of the reservoir volume and the pressure drop𝑉∆𝑃𝑓.  

The inherent issue with such process is that it doesn’t represent appropriately the 

surface at which the vertical load is null. The solution considered around the compacting 

sphere is supposed to propagate further from it until it vanishes at infinity. However, such 

consideration isn’t fulfilled at the surface and interfaces where the elastic parameters vary. 

Therefore, it’s necessary to impose a boundary condition “free surface effect”, to 

complement the solution around the center. This problem was solved by analogy with 

provided solutions in thermoelectricity, implementing a vector expression Eq. (2.30) at 

the surface (z=0,𝜎𝑧 = 0) Fig. 2.10 that corrects the general solution Eq. (2.31) given 

before.  

 

�⃗� =
𝐶𝑚

4𝜋
(

�⃗� 1

𝑅1
3 + (3 − 4𝜈)

�⃗� 2

𝑅2
3 −

6𝑧(𝑧+𝐷)�⃗� 2

𝑅2
5 +

2�̂�

𝑅2
3
[(3 − 4𝜈)(𝑧 + 𝐷) − 𝑧])𝑉𝛼Δ𝑃𝑓   (2.31) 

 

 

For z=0, the solution becomes as indicated below Eq. (2.32):   

𝑢 =
𝐶𝑚(1−𝜈)

𝜋
𝑉 Δ𝑃𝑓

1

𝑟2                                              (2.32) 
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By integrating the vertical deformation Eq. (2.31) along the overburden over the 

entire surface, it’s possible to estimate the size of the subsidence bowl, the resulting 

formulation Eq. (2.32) is [2]: 

 

∆𝑉𝑠𝑢𝑏𝑠 = 2(1 − 𝜈)∆𝑉𝑐𝑜𝑚𝑝                                          (2.32) 

 

Geertsma’s model is limited to the case where there is a negligible elastic contrast 

between the shrinking formation and its surroundings.  

The nucleus strain model up to this point, didn’t focus on the vertical uniaxial 

compaction, but was more general in terms of the direction of displacement. To 

circumvent such problem, it’s possible to confine the compaction-induced displacement 

to only the overburden, while imposing no-lateral movement conditions. By doing so, it’s 

possible to expect some up-word displacement by the rock under the reservoir. Literature 

is abundant with formulas that cater to such problems that are mainly shape dependent. 

In addition, we can find different models based on Geertsma’s solution, estimating the 

Fig. 2.10: Geometry for the Geertsma Solution. �̂� is the unit vector in the –z direction, �⃗⃗�  indicates the 

direction of the particle movement for subsidence [2].  
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subsidence of reservoirs with different shapes and mechanical properties, and situations 

where arching is present. 

This traditional analytical method for the subsidence, has put forward an inherent 

issue in the reliability of the solution that is based on many simplifying assumptions. 

When in reality, reservoirs are the result of complex geological process, rendering the 

geomechanical volumes very inhomogeneous. In addition due to the properties contrast 

of the reservoir and its surroundings, the reservoir itself sometimes has to be divided into 

compartments to easily reproduce its possible diverse properties. Analytical solutions, 

can be flexible, time optimal and may provide decent results. However, for a reliable 

analysis, refined models are required to account for the considered volume complexities. 

Numerical methods are deemed more qualified for these advanced demands.   

 

2.4.Geomechanical Modeling considerations: 
 

The study of hydrocarbons production includes two main mechanically linked physical 

aspects: the rock medium and the fluid(s) contained in its pores. The mechanical effects 

induced by such production may modify the performance of said reservoir and can 

generate environmental alterations of its surroundings, caused by reservoir compaction 

and subsequent surface subsidence. 

  To assess the physical consequences of hydrocarbon production, several 

approaches have been proposed to couple geomechanical effects with subsurface flow, 

they were applied on several case studies of field applications providing us with 

comprehensive tools for a better understanding of recovery mechanics, stress field 

evolution, and production induced rock deformation and their effects on reservoir 

properties such as permeability and pore compressibility.  

 The challenge presented in the execution of a coupled analysis of multiphase flow 

simulation and stress analysis inside a routine petroleum engineering workflow is mainly 

the computation effort and time required for a full-field 3D simulation, especially that a 

geomechanical model can be significantly larger than a reservoir model. 
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2.4.1. Reservoir Dynamic simulation:  

 

A proper representative dynamic reservoir model is one that can correctly estimate the 

bearing formation behavior during production while providing the ability to encompass 

the production induced effects on said medium, in this case geomechanical effects. 

 

Reservoir flow modeling includes two complementary components [13]:  

• A functional model: a set of differential equations and of numerical 

methods for solving equations. 

• A representation model: mathematically describes the considered 

reservoir (rock and fluid properties) denoted through specific spatial 

variable coefficients, initial and final boundary conditions. 

 

 

 

 

 

 

 

 

 A full-scale representation of the reservoir (rock properties, fluid properties and 

their interactions properties) and production inputs are the main inputs for the dynamic 

simulation. 

 After calibration, the productivity and recovery forecasts are performed describing 

the reservoir’s response to the imposed input parameters.  

 

 

 

 

Fig. 2.11: Schematics of reservoir flow model components: the functional model and the representation 

model [13]. 
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2.4.2. From dynamic flow to mechanical simulation:  
 

Most classic commercial softwares/methods provide the option for the exclusive 

possibility for the fluid dynamic behavior to be simulated. This can be conceptually 

correct if certain model parameters (mainly permeability and porosity) remained constant 

(or underwent negligible variations) as the pressure depletion continues to alter the state 

of the stress of the reservoir and its surroundings. In due course, mechanical disturbances 

due to production are always present even if their effects are negligible on fluid extraction. 

Consequently, this allows a different array of Numerical approaches and computational 

scales to be used between dynamic flow and mechanical simulations. 

Considering that the porous media is mechanically linked to its non-producing 

surroundings, and that its behavior is responsive to different conditions other than 

pressure drops with respect to its mechanical deformations. In addition to our focus on 

surface subsidence, it becomes necessary to extend the numerical Grid to include 

neighbor formations. into additional blocks [2] [14]: 

• The overburden: representing the rocks/soil lithology lying between the 

reservoir and the surface (seabed in our case). Its geometry, thickness and 

constitutive (mechanical) properties are introduced to ensure an accurate 

computation of the transmission of reservoir compaction effects into the 

surface.  

• The sideburden: it’s the rock/soil adjacent to the producing zone. The 

sideburden has a great impact on the reservoir’s stress path, in certain 

cases, for a “stiff sideburden”; during depletion the vertical stress can be 

transferred laterally instead of being completely carried by the producing 

medium “arching effects”, emphasizing the need for an overall stress 

assessment.  

• The underbuden: it represents the rock underlying both the reservoir and 

the sideburden. The underbuden’s degree of stiffness impacts the arching 

effect and stress distribution over the sideburden, as well as the the 

volumetric compaction of the reservoir as it correlates to the latter’s stress 

path [2].  
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2.4.3. Coupling Strategies [15] [16] [17] [18] [19] [20] [21] [22]:  

We can numerous papers and publications providing different technical and 

computational approaches on how to couple fluid-dynamics (reservoir simulation) with 

the geomechanical behavior of the reservoir and its surroundings. This is done to account 

for the interaction between mechanical deformation and fluid flow, where pressure and 

temperature distribution estimated by the reservoir simulator are fed to the geomechanical 

simulator. Once the stresses and the strains are calculated, they are passed back to the 

reservoir simulator in order to update the coupled parameters (porosity and permeability). 

From which, we can classify these techniques into different coupling levels depending on 

the code used for simulation. In its basic form, all coupled problems in finite element 

setting follow this general matrix formula Eq. (2.32) (Lewis and Schrefler 1987) [15]:  

 

 [
[𝐾] 𝐿

[𝐿]𝑇 𝐸
] [

∆𝑡𝛿 

∆𝑡�⃗� 
] = [𝐹

 

�⃗� 
]                                             (2.32) 

 

[𝑲] : Stiffness matrix. 

[𝑬]: Flow matrix.  

[𝑳]: Coupling matrix between the mechanical and flow unknowns (i.e. 

displacements and pore pressure).  

�⃗⃗� : Vector of force boundary conditions.  

�⃗⃗� : Residual of the flow equations. 

�⃗⃗� : Vector of displacements.  

�⃗⃗� : Vector of the reservoir’s unknowns (Pressures, saturations, and temperatures)  

∆𝒕: Variation per time step.   

 

2.4.3.1.Uncoupled approach [20]:  

 

  A conventional reservoir simulation where pore pressure distribution in space and 

time is estimated using fluid flow simulator, in which rock compressibility is the only 

mechanical parameter included in the flow simulation. Pore pressure changes are then 

added as input loads for the calculation of reservoir’s compaction and subsequent 
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subsidence. This method doesn’t account for the pressure changes induced by variation 

of material properties (i.e. permeability and porosity variation) that are affected by 

depletion-induced stress variations. Meaning that petrophysical properties are assumed to 

stay constant over the lifetime of the hydrocarbon-bearing formation. In other terms, 

fluid-flow dynamics and stress-strain relationships are both solved independently  

Fig. 2.12.   

 

   

 

 

 

 

 

 

2.4.3.2.Fully coupled approach [19] [20]:  
 

This method solves simultaneously the flow and solid problems, as it calls to one 

integrated source code within the same grid and by adopting the same discretization. Its 

benefit is for it to provide a more likely accurate solution. However, such simulator 

requires a more complex computation and consequently it is more time consuming. 

Ideally this method can achieve a great representation of pressure distribution in stress-

sensitive reservoirs. 

 

2.4.3.3.Explicitly coupled approach [15] [20]:  
 

An approach where there is a one-time step lag between the fluid-flow and the solid 

simulators. It will still solve each problem sequentially and separately, but in this situation 

the reservoir simulator will use the coupling terms porosity/permeability based on the 

geomechanical solution from the previous time step. This method provides an effective 

solution in simple depletion stress paths and is considered to be as rigorous as the fully 

coupled approach if iterated to full convergence Fig. 2.13.  

 

 

Fig. 2.12: One-way coupling approach.  
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2.4.3.4.Iterative coupling [20]:  

This method solves the two problems independently and sequentially, and then iterates 

the solutions within each time step until full convergence through the coupling module. 

Flow simulation assumes the stresses to be constant during each time step, rendering the 

unrealistic dependency of porosity to only pressure and temperature variations. While 

within the geomechanical solver, porosity is calculated by means of partial 

compressibilities that are function of pressure and temperatures variations in addition to 

the total stresses.  The number of iterations is set by a convergence tolerance with respect 

to pressure/stress changes between two consecutive iterations.  Such method allows the 

use of different simulators for fluid and mechanical problems and can be linked by means 

of a third-party iterative solver Fig. 2.14.  

 

 

 

 

 

 

 

 

 

 

Fig. 2.13: Explicit coupling approach [20] 
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2.5.Numerical simulations:  

The complex heterogeneous nature of petroleum systems coupled with the mathematical 

relationships describing their geomechanical behavior, calls for a higher degree of care in 

building a representative model to achieve accurate outputs. Undoubtedly, the quest for a 

detailed descriptive volume introduces severe computational challenges, urging engineers 

to continually improve solution methods or the establishment of new ones.  

 Analytical methods can provide insight over the mechanical behavior of the 

reservoir as well as the order of magnitude of the solution (compaction/subsidence), while 

numerical approaches are able to address aforementioned complexities through the use of 

powerful computational tools without having to over-simplify the problem. They 

approximate the solution over the whole domain within an expected acceptable error 

range. However, Numerical methods do not come without their own challenges, one of 

which their dependency on the accuracy of the input data. 

 We have focused our work scheme for the geomechanical response of the 

reservoir rock and its surrounding within the elastic domain. Therefore, the numerical 

methods treated, in this thesis, are designed to solve the considered elasticity problems. 

In The next subchapters, FEM and VEM will be shortly explained.   

 

Fig. 2.14: Iterative coupling  appraoch [22]. 
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2.5.1. Finite Element Method:  

 

Essentially every natural phenomenon biological, geological or mechanical can be 

expressed with the aid of the laws of physics. The mathematical formulation of these 

space- and/or time- dependent processes often results in statements expressed in Partial 

Differential Equations (PDEs) relating quantities we are interested in for the construction 

or perception of said physical processes. [23] 

Finding a solution for PDEs through exact methods of analysis is a daunting task 

for the majority of geometries and problems. Preferably, numerical methods are used to 

calculate approximate solutions. Among these the Finite Element Method (FEM) is the 

most used in literature and is used in the commercial software that is partly subject to our 

study. [23] 

‘’ …. The idea behind the finite element method is to break the spatial domain up 

into a number of simple geometric elements such as triangles or quadrilaterals. The 

weighted residual concept is then used to approximate the solution function over each 

finite element domain. Care needs to be taken to ensure continuity of the dependent 

variables and their first partials in moving from element to element. Partial differential 

equations are therefore transformed into sets of ordinary differential equations in time. 

The method is particularly suited for solving problems involving irregular geometries 

…’’. [24] 

2.5.1.1.FEM solution procedure:  
 

From a phenomenon point of view the studied geomechanical problem can be synthesized 

as the forecast of the behavior of a system that is subjected to external loads that 

represents the disturbance to the state of the system. As mentioned in the introductory 

part of this subchapter, we are going to look for a numerical solution to the governing 

equations that characterize the behavior of the system [25]. 

In order to summarize the workflow of the Finite Element Method, I sought out to arrange 

it into few simplified steps, as follows [23] [25]: 

1. Discretization of the continuum domain: the aim of this step is to discretize the 

geometrically complex domain of our problem into smaller regions (sub-domains) 

called finite elements with a “fixed” shape (i.e. tetrahedron or bricks). It is 
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important to mention that these elements don’t overlap and they are 

interconnected, leaving no gaps, at a discrete number of nodes situated at the 

respective boundaries of each cell. Nodes of neighboring cells are coincident. 

Typically hanging nodes are not allowed. The resulting arrangement of the cell-

node network is called a Mesh (grid).  

 

2. Selection of the shape function on the reference element: Shape functions 

approximate the solution (displacement) on each element. Their definition derives 

from the idea that continuous functions can be approximated by using linear 

combinations of algebraic polynomials (basis function). NB: the degree of 

polynomials depends on the number of nodes appointed to each element and the 

order of the differential equation being solved.  

 

3. Construction of the element stiffness matrix: the displacement of the nodal 

points are set to be the unknowns of the problem. Exploiting variational 

formulation and Galerkin approach a matrix equation is then formed linking nodal 

values of the unknown function of our problem to the other parameters. 

 
4. Assembling of  the global matrix: All Local element equations with respect to 

each elements are combined to construct the Global Equation System. The latter 

defines the entire response of the system and its dimension depends on the number 

of nodes and degree of freedom of the problem. 

Boundary conditions must be defined and then imposed before the next step. Which is 

usually done by modifying the system equations by adding values to existing terms and/or 

shifting the terms from one side to the other. [24] 

5. Solution of global equation system: The resulting algebraic system of equation is 

solved through conventional numerical methods (Direct or iterative). The solution 

can be given at each node and interpolated to the centroids by means of shape 

functions interpolations.  

6. Computation of additional results: other physical properties can be derived from 

the solution and displayed with respect to the problem and solution need at hand.  
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It is important to highlight that; this analysis can only provide an insight into the 

physical problem at hand. It’s not feasible to predict the exact response of the system 

because it’s not possible to reproduce even with the most refined model all the 

information present in nature and consequently implicated in the physical problem.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Through the years FEM has been established as the most reliable numerical mathematical 

method for solving engineering problems, and particularly geomechanical simulations. 

What allowed this method to stand out among others is: the independence of the algorithm 

to geometrical complexity of the domain, the straightforward fashion in enforcing natural 

and essential boundary conditions and most importantly a relative high-level solution 

accuracy depending on the provided computational effort. However, these beneficial 

features have a major drawback fostering strict rules on the mesh design construction 

[26]. 

            These rules have a tendency to challenge the practicality for the solution of 

several complex problems in modern solid mechanics, specifically in the 3D domains, 

where a mechanical design of extremely complex components may require weeks of 

human effort to reproduce an adequate mesh [26].     

 

Fig. 2.15: The process of finite element analysis. 
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 Thus, the idea of introducing arbitrary polyhedral elements to provide much 

flexibility in the discretization of complex engineering domains. Rendering unstructured 

grids 3 attractive in the meshing of said complicated domains. [27]   

        Several approaches have been developed trying to extend the Finite Element Method 

to non-traditionally shaped elements such as general polygons, and polyhedra. Within this 

theoretical framework, the Mimetic Finite Difference Method4 (MFD) has been proved 

over simple quadrilateral meshes for unstructured polyhedral meshes, while preserving 

the fundamental properties of the underlying physical and mathematical properties. [28] 

[29]  

 Among the different proposed numerical methods, the newly Virtual Element 

Method comes to light, a method that is considered as an evolution of the Mimetic 

Finite Difference Method (MFD) diffused on problems with relatively irregular 

decompositions [29]. 

 

2.5.2. Virtual Element Method [28] [30] [31]:  
 

For the trained eye, this new method can be easily identified as the ultimate progression 

of the Mimetic Finite difference approach. However, within the last step of VEM 

development, it has become clear that its implementation resembles more the Finite 

Element Method. In addition to the particularity of the VEM were the local shape 

functions of each element are defined implicitly which led to the use of the term “Virtual”, 

and the provision of a whole new perspective.  

 Fundamentally speaking, VEM shares the same spaces (domains) as FEM 

with additional suitable non-polynomial functions. The latter are harder to create or 

handle, which is why VEM operates in a way that allows the computation of the Matrix 

stiffness without having to actually compute these non-polynomial functions.  

There are several aspects that favour VEM in comparison to other numerical 

methods:  

• Its firm mathemtical foundation.  

 
3 Unstructured grid: A mesh identified by irregular connectivities.  
4 Mimetic Finite Difference Method: A numerical method that mimics fundamental properties of 
mathematical and physical systems, by creating discrete approximations that preserve the properties of 
the considered equations on general polygonal and polyhedral meshes [32].  
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• Its simplicity in implementation. 

• Its accuracy and efficiency in computation.  

This Procedure will allow us to easily manage complicated element geometries 

and/or higher order-continuity conditions. This broad conceptualization provided by the 

Virtual Element Method, allows the user to have a wide range of possibilities on how and 

where to exercise it on large scale of different engineering problems. 

 
2.5.3. Finite Element and Virtual element discretization [24] [15] [14] 

[17] [18] [19] [20] [21] [33] [34] [35] [36] : 

 

The geometric considerations to build a geomechanical model can be limiting in order to 

achieve an accurate solution.  The advancement in the geophysical acquisition methods 

continually improves the understanding of sedimentary formations and their 

characterizations, allowing engineers to provide better interpretations of stratigraphic 

structure. In other terms, we have a better grasp on the spatial correlations contrast of 

spatially/directionally dependent parameters that can lead to distorted cells shapes or high 

aspect ratio cells during mesh generation phase. 

 Often, these complexities may lead to information losses when building a 

geomechanical mesh. Certain numerical methods are robust for these irregularities by 

inducting grid simplifications, yet this can prompt inaccurate system responses. 

Therefore, highly distorted elements not only effect computation time, but, if not dealt 

with, they will influence the final results as well.  

 It follows that the challenge lays in finding the optimal compromise between a 

representative geological structure and an adequate numerical method. Conventional 

commercial softwares solve the geomechanical problems using the finite element method. 

This method has shown a satisfactory level of flexibility in dealing with grids resulting 

from complex geology structures. Bearing in mind that the delta pressure map which 

represent the main loading term in reservoir geomechanical simulation comes from flow 

simulation which, in turn , it is performed independently using a different grid and a 

different numerical approach,typically Finite Differences Method on corner point 

gridding. In a traditional workflow the reservoir grid is extended to allow the estimation 

of production induced mechanical deformations. Such a step it is possible only if certain 
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constraints are imposed mainly on shape functions5, and yield6 criteria for it to have an 

admissible global solution. Evidently, to exploit the corner point gridding inherited from 

flow simulation, FEM requires a specific type of cell shape “Hexahedron” formed by 

connecting adjacent pillars defined with a two dimensional Cartesian Partition. Several 

workflows were developed in order to generate suitable results for mechanical 

simulations, without having to excessively refine the mesh.      

The literature supports the general consensus that Unstructured Meshes are the 

best representation of subsurface sedimentary sequences while respecting the physical 

parameters, and the complex structures of the system. Theoretically speaking, being able 

to manipulate this grid format is ideal for geomechanical applications. However, the 

compromise needed to run such computations, severely alters the solution.  

Considering that VEM is an extension of FEM generalized over polyhedra, it will 

inherently adopt the properties of the standard method. This will allow engineers to 

bypass errors induced by structural simplifications, and overall meshing limitations 

imposed on standard grids used by simulators. In addition, to already having the path 

mapped out for an easier way to couple the multiphase model to the VEM 

geomechanical model. 

 

 

 

 

 

 

 

 

 

 

 

 

 
5 Shape function: The function which interpolates the solution between the discrete values at the grid 
nodes.  
6 Yield: On-set for plastic deformations.  
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3. Model building and Comparison Methodology 

 

At this early stage of development, the scope of VEM applications is focused on 

case comparisons with the aim of validating the method against a FEM classical simulator 

and of integrating the solver in the traditional reservoir study workflow. The tested VEM 

code is developed by the GEOSCORE Group7 in collaboration with the Petroleum 

Engineering Group8. At the present, the VEM solver doesn’t offer the possibility for a 

complete geomechanical modelling setup. Therefore, parallel channels are considered to 

circumvent this issue. Details will be further disclosed in this chapter.  

The Finite Element Geomechanical solver used for the benchmark is VISAGE9 

which is integrated in the Petrel E&P platform by Schlumberger with the name of Petrel 

Geomechanics. Petrel provides a graphical interface to accommodate the support needed 

by the VISAGE simulator for data configuration and solution visualization. Petrel 

Geomechanics provides a self-contained workflow, enabling the 3D/4D modeling of rock 

stresses and deformations in reservoirs and their surroundings. This includes pre-

processing, model creation, property modeling, simulation-launch and case management, 

in addition to post processing, results analysis and visualization. 

The dynamic reservoir simulations are performed by the commercial software 

ECLIPSE, considered as an industry-reference reservoir simulator. The simulator is used 

to calibrate the reservoir model and forecast its dynamic flow behavior. The software can 

be accessed independently by use of a launcher or can be accessed through the Petrel E&P 

platform. 

Advantages of the Petrel E&P platform is the integration of multiple disciplines, 

user friendly standardized workflows and multiple file format data storage. The 

Workflows are optimized in a manner which allows straightforward data testing and 

scenario analysis. In particular the standardized workflow from model building to 

solution visualization for the compaction (induced by depletion) and the subsequent 

subsidence will be described accordingly.  

 
7 DISMA:   Department of Mathematical Sciences. 
8 DIATI:     Department of Environment, Land and Infrastructure Engineering.  
9 VISAGE: Vectorial Implementation of Structural Analysis and Geotechnical Engineering [37]. 
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Starting from Petrel we arranged parallel workflow (mainly by Matlab scripts) to 

process the data in order to prepare the input model for the VEM simulation. 

At the basis of the geomechanical model construction, there is the definition of 

the 3D static model which derives from a geological study which integrates lithological 

and petrophysical characteristics within the grid (layers, anticlines, pinchouts…etc). 

Properties are assigned to each grid block with respect to the purpose of the simulation. 

The reservoir zones are populated by petrophysical properties fluid saturations, porosities 

as the main parameters regulating the original hydrocarbons in place; and permeabilites 

controlling the ease at which the fluids flow within the reservoir. Modeling is performed 

at reservoir scale and then extended to the regional one in order to capture the full 

mechanical response of reservoir depletion while assuring that the boundary conditions 

do not affect the computed solution.  

 

3.1.Dynamic reservoir simulation:  
 

The objective of this step is to simulate the dynamic flow behavior of the 

considered reservoir in order to create realistic scenarios to test the VEM against FEM 

solution. 

Components of a dynamic reservoir model we considered are [17]:  

• The static model. 

• Rock, fluid and rock-fluid interactions properties. 

• Equilibration data (i.e. initial conditions).  

• Productions scenarios.  

In particular, once the reservoir model is built, discretized and populated, we 

proceed to the initialization process, through the assignment of initial fluid saturations, 

pressure distributions (datum depth, datum pressure and fluid contacts were fixed). 

Objective of this phase is to meet the original hydrocarbons in place provided by eclipse 

with respect to the one provided by static modelling.   

During simulation phase, the input parameters are tuned to achieve a range of 

pressure depletion high enough in order to get an acceptable induced subsidence respect 

to the solution discrepancy of the two solvers. 
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When preparing scenarios our main focus is directed towards the parameters 

affecting the dynamic flow behavior, more precisely absolute permeability and porosity. 

The dynamic simulation was run independently via an Eclipse launcher. To easily handle 

porosity and absolute permeability maps, we import the Eclipse dataset and simulation 

results to the Petrel E&P platform, for a more practical manipulation of pressure, porosity 

and permeability as model properties.  

3.2.Geomechanical modeling:  

The steps followed for Model setup are accommodated via the Petrel Geomechanics 

interface. As emphasized before, geomechanical analysis is performed primarily for 

safety analysis on a regional scale, to account for stress-strain variation effects on the 

reservoir and its surroundings. So, the first step is to increase the volume of investigation 

through grid extension to capture the full geomechanical response due to reservoir 

production, along with making sure that boundary conditions do not affect the computed 

solution. Usually the reservoir is positioned roughly in the middle of the simulated 

volume. 

The extension is achieved by providing a representative lithological sequencing 

of the field or the basin we are modeling. Conjointly, we choose the discretization 

strategy. Because the number of cells influences the simulation time, we sought out to 

refine only the areas of interest. Therefore, the scope of focus is towards the reservoir 

region and the area directly above it “The overburden”. Inversely, all regions exhibiting 

negligible or null stress-strain changes due to production are discretized by coarse 

gridding. It is observed that the absence of aquifers makes the area affected by the 

subsidence rather limited.  

After the incorporation of the geological characteristics within the considered 

volume, we assign each stratigraphic section the appropriate mechanical parameters: 

elasto/plastic moduli, rock strength, and density. The values are assigned to each cell 

within the grid.  

We established that the model’s solution is sensitive to the coupling degree 

between the dynamic fluid-flow problem and stress-strain problems. The reason behind 

our choice selection will be explained in the next chapter.  At the same time, we set up 

the initial pressure profile of the reservoir, as well as, the static pressure evolution 

resulting from the reservoir’s imposed production history which comes from the dynamic 
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reservoir simulation (ECLIPE’s solution).The platform allows to manipulate the pressure 

as a model property, by storing its evolution as independent properties with respect to 

different time-steps. At this stage we consider only the full reservoir-imposed depletion, 

thus by introducing the initial reservoir pressure profile and the final one after production, 

in order to have an overall stress-strain evolution pertaining to surface subsidence.  

To run a geomechanical simulation, stress distribution over the full volume is 

required.  This phase is performed by imposing a hydrostatic pressure regime and 

estimating a vertical stress profile through a looping workflow which incrementally take 

account of the contribution of overhead layers by adding contribution to lithostatic 

pressure of each cell.  

 Petrel Geomechanics, offers a variety of output selection. In the context of our 

thesis, the main outputs are displacements, strains, stresses and Pore-pressure. 

 Up to this point, we have detailed the steps followed to prepare a geomechanical 

model within the integrated frame of the Petrel E&P platform. This self-contained 

workflow doesn’t expose the user directly to VISAGE. However, once the simulation 

case is ready for simulation, it’s implicitly passed to VISAGE for Finite Element 

numerical stress-strain computations, and then Petrel Geomechanics uploads the results 

for analysis and data visualization.  

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 3.1: Integrated Petrel workflow for FEM simulation [21]. 
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3.2.1. Lack of Graphical Interface User for VEM:  
 

First objective was to import the model from Petrel Geomechanics in the VEM 

code. For this specific task, a dedicated Matlab code is developed to populate the VEM 

model.   

We exploit the option offered by Petrel to export data into files, in order to be 

managed by third party softwares. The properties that need to be exported are: grid 

geometry, mechanical properties, and pressure profiles at the reservoir scale resulting 

from an imposed reservoir production, densities and a boolean property the net gross 

which is used for the identification of reservoir cells.   

 We export the aforementioned properties as .GRDECL10 files. This format allows 

the export of the corner point grid defined in Petrel (structured), and to store the exported 

properties as cell data.   

 It is observed that .GRDECL is built to manage structured grids. Ergo, the 

necessity to convert our files into a more flexible configuration to handle the VTK 

unstructured mesh which represents the standard input of the tested VEM code. A Matlab 

script was written to convert the Petrel structured grid format to a .VTK11 file..  

 VTK unstructured grid object is able to support a wide range of datasets of 

arbitrary cell configurations and types, as opposed to regular GREDECL files which is 

limited to hexahedron. The VTK syntax organizes the definition of the grid by nodes, 

cells and cell types. In order to manage the irregularity of the meshes, the nodes are 

referenced by ID-numbers, while the cell are supplied by a number of faces and an 

ordered list of nodes that define it [38].   

 Once the model is set up, the VEM mechanical simulation can be run.  

 

 

 

 

 

 
10 GRDECL: “GRID ECLIPSE” is a file format that stores the properties in hexahedral cells which define 
the geometry of the field. 
11 VTK: Visulization ToolKit.  
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3.3.Setup for comparison process using a third-party software:  

 

In order to analyze the solutions obtained through two different simulators on the same 

grid, it’s necessary to construct a workflow that allows both a qualitative and a 

quantitative comparison. 

Petrel interface provides the possibility to manipulate the input data and analyze 

the results obtained from its integrated FEM geomechanical simulator. However, 

coherently with the modelling approach implemented in the whole platform, properties 

are associated to the cells, thus node displacements and stress obtained from FEM 

simulations are processed and someway interpolated to the centroids of the grid cells. 

Consequently, we can’t directly compare FEM original results to the VEM ones through 

this interface. Hence, the necessity to introduce a third-party software that provides the 

necessary visualization tool to perform comparisons.  

To this task, we employ ParaView12. This tool is able to process a large number 

of datasets including unstructured meshes. It is not by chance that the VEM solver input 

files respect the VTK syntax. Evidently, to close the loop we have to export the 

inputs/outputs of FEM simulations and convert them into a dataset that ParaView can 

process 

 

 

 
12 Paraview: an open source application for visualizing two- and three- dimensional data sets based on 
.VTK libraries.  

Fig. 3.2: Model building for VEM simulation. 
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3.3.1. Qualitative comparison:  

For a qualitative comparison, it is sufficient to consider the solution associated to 

the grid elements. Therefore, we will export input and simulations results data from Petrel 

using the proprietary GRDECL format which lists the grid geometry and the properties 

associated to each cell. The already mentioned Matlab script is employed to handle the 

conversion to a VTK file read by the ParaView application. 

3.3.2. Quantitative comparison:  

 By definition, FEM calculates the solution at node positions, thus it can be 

derived in correspondence of the centroid of each element, for example by means of 

geometric or arithmetic averaging, depending on the type and order of the finite element 

that is used. Petrel exports the centroid based solution to the user interface which provides 

the visual support to analyze the mechanical deformations induced by production 

(compaction and subsidence). However, for a more accurate comparison between FEM 

and VEM solution, it’s necessary to conduct the analysis at node positions. 

 For the purpose of acquiring the FEM nodal solution, it’s possible to call 

VISAGE directly and bypassing Petrel by the means of batch processing13. This method 

allows us to collect and process data through a series of executable commands in a script, 

where it is also specified which and where inputs/outputs should be stored.  

 By this way of setting and launching FEM simulation, it was possible to 

explicitly save the nodal solution instead of element one. Moreover, in order to limit the 

dimension of the output file, it was possible to list the output parameters, in this specific 

case: displacements, stresses, pressure differences and constraints. In addition, the setup 

of the batch run requires grid topology, nodes coordinates, nodal constraints for each 

simulation step, initialized cell stress and pressure, and cell pressure variation. All data 

are exported from Petrel in a dedicated folder where a collection of files is stored. Among 

input information, they also contain batch processing commands to run the FEM 

simulation. Simulation results are then stored in a dedicated file and thus compared with 

the VEM nodal solution (readily provided by the simulator).  

 

 

 
13 Batch processing: a form of data processing in which a number of input commands are grouped for 
processing during the same simulation run. 



NACER Benlalam  44 
_____________________________________________________________________________________ 

 

 

 

 

 

Fig. 3.3: Workflow for comparison process of the FEM and VEM Geomechanical simulations. 
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4. Numerical test cases 

 
4.1.Case study 0:   

 

The first case study is a synthetic simplified isotropic homogeneous elastic model built 

primarily to reduce as numerically as achievable the possible sources that can induce 

solution discrepancies between the FEM and VEM simulations.  

 As mentioned before, the reservoir simulator allows non-flow units such as in the 

case of presence of faults, impermeable layers... etc. When the Eclipse solution is passed 

to the extended geomechanical module, stored as cell properties, it will be translated as 

discontinuous pressure distribution between two adjacent cells (and more precisely at the 

concerned possible boundary) within the extended mechanical mesh.  

 The geomechanical simulators FEM/VEM require the pressure terms to be defined 

at the node and consequently at the boundaries, which is done by extrapolating the 

pressure from the element centroids to the element nodes. However, for confidentiality 

reasons we cannot recreate the same method for pressure discontinuities handling and the 

same method for data extrapolation used by FEM simulator VISAGE over the VEM code.  

 Additionally, the VEM code used for simulation imposes a no displacement 

conditions at the boundary for all three directions, as opposed to VISAGE which imposes 

a no displacement condition only at the plane that is perpendicular to one coordinate axis, 

as for the remaining two coordinate directions the used boundary conditions to close the 

loop remain inaccessible.  

 As a starting point, to mitigate these possible sources for solution discrepancy 

between the two simulators, we have considered these steps:  

• We adopted a simplified grid geometry for both the source of pressure depletion       

and the extended geomechanical volume. It is a regular structured grid, with 

standard hexahedron cells. 
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• To reduce the effect of data extrapolation on the last results, we have considered 

two mitigation paths utilized simultaneously:  

 

Constant Geomechanical parameters Tab. 4.1: the considered volume is 

homogenous over the whole domain, in order to eliminate the possible cause of 

discrepancy due to the input elastic moduli and the mechanical parameters 

extrapolation. A constant distribution of these parameters is then constant over the 

nodes for both simulators over the whole solution domain.    

 

Tab. 4.1: Mechanical properties of the synthetic model Case 0. 

Parameter  

Bulk Density ρ (kg/𝒎𝟑) 2000 

Young modulus E (Gpa) 3 

Poisson ratio υ (-) 0.35 

Lamé’s coefficient λ (Gpa) 2.592 

Shear modulus G (GPa) 1.111 

 

Pressure distribution approximation Fig. 4.1: a source of pressure depletion was 

prepared analytically where the maximum pressure drop is at the center of a 

parallelepipedal volume with dimensions x×y×z (600m×600m×600m), while it 

decreases continuously away from the center until it becomes null at its 

boundaries. The pressure decline over the volume is given as a discrete drop of 

delta pressure steps expressed at the centroids of each cell. In addition, the smooth 

decrease is adopted in order to reduce as much as the possible the discrepancy of 

delta pressure distribution between the cells and consequently between the nodes. 

At the boundary of source of pressure depletion, the pressure is null, in order to 

avoid the discrepancy that can be caused by no-flow boundary when extrapolating 

pressures.  
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• In order to assess the possible impact of the different boundary conditions used 

by both simlators on the solution approximation of the induced displacement field, 

we tested two geomechanical volumes which differ for vertical extension (z 

direction) Fig. 4.2. Concequently, the first grid’s underburden was extended 

beyond the dispalcement field x×y×z (10000m×10000m×6500m), while the 

second grid’s vertical extension was reduced in order to interfere with the solution 

x×y×z (10000m×10000m×3500m).  

 

 

 

Fig. 4.1: Delta-Pressure distribution [bars] at the level of source of where the displacement field 

is  nInJnK (121212) (Paraview visualization). 
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The processing and comparison workflow described in the third chapter was then 

applied on the two considered geomechanical volumes.  

 

4.1.1. Results and discussion:  

The performance of VEM and FEM simulations in terms of vertical displacements for the 

non-extended and the extended are shown below Figs. 4.3 to 4.6 and Tab. 4.2:  

 

 

 

 

 

Fig. 4.2: The geomechanical grids of case 0 (Paraview visualization): 

 a) red grid: source of pressure depletion, b) green grid: geomechanical volume of non-extended 

model, c) green+grey grid: geomechanical volume of the extended model.  
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Fig. 4.3: Top view of the approximated subsidence (displacements along the z-axis) on the non-extended 

grid: VEM solution to the right, and FEM solution to the left (ParaView visualization). 

Fig. 4.4: Vertical section approximated subsidence (displacements along the z-axis) on the non-extended 

grid: VEM solution to the right, and FEM solution to the left (ParaView visualization). 
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Fig. 4.5: Top view of the approximated subsidence (displacements along the z-axis) on the extended grid: 

VEM solution to the right, and FEM solution to the left (ParaView visualization). 

Fig. 4.6: Vertical section approximated subsidence (displacements along the z-axis) on the extended grid: 

VEM solution to the right, and FEM solution to the left (ParaView visualization). 
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Tab. 4.2:  Summary of Calculated displacements of FEM and VEM solution (case 0) 

 
Non- Extended grid Extended grid 

FEM VEM FEM VEM 

Maximum displacement at the 

surface (subsidence) in mm 
-6.08385 -6.63764 -6.0945 -6.17129 

Maximum displacement over 

the whole volume in mm 
-59.9485 -59.7333 -59.8883 -59.0659 

 

In Figs 4.4 and 4.6, we can observe that the source of pressure depletion undergoes an 

uploading (in red) and a downloading (in blue) that extends within the pressure volume 

until it cancels out at the center. The behavior is due to the continuous delta pressure 

variation within the source volume. At the center, the cells, having the highest delta 

pressure as a loading factor, induce the highest displacement field around it. The adjacent 

cells, having a lower delta pressure, will generate a relatively weaker displacement field 

than the center. By, considering the superposition of displacements, we will observe a 

concentration of displacements downwards and upwards towards the center where they 

cancel out.   

 

Qualitatively, the numerical solutions obtained by the VEM code seem to reliably 

simulate the phenomena in terms of magnitude of displacements and the extension of the 

solution over a regular hexahedron grid. In both grid-extension scenarios, the VEM 

approximation gives much appreciated results with a difference in the order of magnitude 

from 10−1millimeters to millimeters.  

 

To evaluate the discrepancy of solution approximation of VEM, we compare the solution 

at each node of the grid, by calculating the absolute norm relative error Eq. (4.1) in 

displacements between VEM and FEM with respect to the maximum displacement 

estimated by FEM. The calculations are done for each grid independently. 

 

𝑒𝑟𝑒𝑙𝑖
[%] =

|𝑑𝑧𝑖
𝐹𝐸𝑀−𝑑𝑧𝑖

𝑉𝐸𝑀|

max _𝑑𝑧𝐹𝐸𝑀 × 100                                               (4.1) 

i: node ID.  
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In Figs 4.7 and 4.8, we show the error evolution over the solution domain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 4.7: Top view of the calculated absolute norm relative error on the extended grid to the right, and the 

non-extended grid to the left (ParaView visualization). 

Fig. 4.8: Vertical section of the calculated absolute norm relative error on the extended grid to the Top, and 

the non-extended grid to the Bottom (ParaView visualization). 
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Tab. 4.3:  Summary of Calculated discrepancies of VEM solution with respect to the FEM solution. 

 Non- Extended grid Extended grid 

Maximum solution discrepancy 

at the surface (subsidence) in 

(%) 

0.92 0.42 

Maximum solution discrepancy 

over the whole volume in (%) 
2.54 1.37 

 

 

 In Figs 4.7 and 4.8, we show the effects of the boundary conditions applied on the bottom 

plane perpendicular to the z coordinate axis on the solution discrepancy between the two 

grid-extension scenarios. For the non-extended grid, we report that once the solution 

reaches the boundary, it reflects back, inducing larger discrepancies over the whole 

displacement field and more precisely at the pressure depletion source with respect to the 

whole volume, and at the center of the subsidence bowl with respect to the surface level. 

The comparison performed over the extended grid is deemed satisfactory given that the 

maximum discrepancy is lower than 1%.  

 

Coherently, the possible sources for solution discrepancy over the extended grid are:  

• The pressure extrapolation methodology. 

• The intrinsic numerical approximations of the FEM/VEM in solving the stress-

strain problem.  

While, the boundary conditions may increase this discrepancy up to 2.54%, the VEM 

approximation remains acceptable with regards to the considered vertical grid extension. 

 

The discrepancy is lower at the surface level because of the formulation we used to 

estimate the absolute norm relative error, where higher displacements are adjacent to the 

source generating the pressure drop, rendering the difference between the nodal solutions 

at that level generally one order of magnitude higher than the ones calculated at the 

surface.  
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To conclude, the numerical solution provided by the Virtual element method is deemed 

representative and accurate with respect to the FEM solution, given that the discretization 

used is a regular structured grid with no deformations for both the geomechanical 

volume and the pressure source volume. 

 

4.2.  Realistic model:  
 

4.2.1. Geological context:  

 

Petroleum systems occurrences (Gas/oil fields) in Italy are the result of complex 

geological processes (plural tectono-stratigraphic cycles) that have taken place within the 

Italian peninsula and the Adriatic Sea Fig. 4.10 [39] [40].  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.9: Oil and gas occurrences within the Italian peninsula.  
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The considered source rocks were formed due to the Apennine thrusting from the 

Miocene to late Pliocene. During which, suitable conditions favored the biogenic gas 

generation: [41] 

• High sedimentation rate.  

• Low geothermal gradient.  

 

The bearing reservoir rocks can be structural traps, where the biogenic gas accumulated 

in anticlines situated in the internal part of the foredeep adjacent to the Apennines thrust 

belt. These traps were formed during the late Pliocene and early Pleistocene as a result of 

the Apennine compression. Prompting a significant vertical displacement from 800-1000 

m, ideal for the super-positioning of gas pools. As for the external part, gentle anticlines 

formed due to differential compaction of turbidites sandstones over the same geological 

era, yet they are considered stratigraphic traps as they are sealed up-dip (pinchout) by 

shales (argille del Santerno) Fig. 4.11 [39][40].  

 

 

 

 

 

Fig. 4.10: Seismic profile highlighting the stratigraphic and structural traps of biogenic gas [40]. 
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The gas reservoirs are found within the Po Plains which expand over the Northern 

Adriatic and majority of Central Adriatic. They are the result of depositional successions 

mainly from turbidities mainly from environments. These successions consist of 

sequential cycles of turbidite cycles alternating between sandy deposits and shaly deposits 

leading to interbedded sandstone bearing rocks and shales forming mainly multilayered 

reservoirs. [39][40][41] 

4.2.2. Case study:  

The available geological data provided the possibility to build a 3D representative model 

of the lithology of an offshore field within the Northern part of the Adriatic Sea. With the 

help of the literature and seismic data gathered over the whole region [39] [40] [41] [42], 

integrated with well-logs interpretation, it was possible to represent the real lithology Fig. 

4.11 in an adequate manner.  

 

Fig. 4.11: Lithostratigraphy and lithofacies in Northren of Adriatic (croatian waters) [42]. 
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In particular, each strata was represented as a grid portion storing mechanical properties 

specific to each formation as shown in Tab. 4.4. The synthetic model also reproduces a 

thinning of the Carola formation forming a pinch-out as shown in the Fig.4.12. 

 

 

 

 

Age Formation lithology 

Zone 

reference in 

the model 

 

horizon 

depth  

(m TVDs) 

Surface 

Holocene 

Ravenna 

Marine sands 0 -37  Top 1 Ravenna 

Pleistocene 

Clays with local 

sand interlayer 

1 -70  Top 2 Ravenna 

2 -270  Top Carola 

Carola 
Alternating thin 

sands and clays 

3 -712  Top Reservoir 

4 -742  
Bottom 

Reservoir 

5 -842  Top Santerno 

Pliocene Saterno Clays 6 ~  Top Basamento 

Cenosoic-

Mesozioc 
Basamento 

Marls and 

calcareous marls 
7 ~   

Fig. 4.12: Scheme representative of the stratigraphic zones. 

Tab. 4.4: Stratigraphic zones of the 3D model. 
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The synthetic reservoir model is represented by an anticlinal gas bearing formation 

Fig.4.13. It is a gas pool within the Carola formation Fig. 4.14, while the Ravenna 

formation provides the impermeable clay seal to trap the gas. The reservoir is 

characterized by a homogeneous distribution of the petrophysical properties over the 

whole domain. The productive zone is not supported by any aquifer. Therefore, the 

volumetric depletion (gas expansion) becomes the main production drive mechanism.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Geomechanical Volume was populated based on the collected mechanical data 
[42][39] [40][41][42], and the routine laboratory triaxial tests CID and CIU performed on 
rock samples taken from gas wells producing within the same region, Fig. 4.14 and Tab 
4.6. The volume is assumed to be homogeneous, isotropic and linear elastic.   
  

 

 

 

Tab. 4.5: Reservoir data.  

Reservoir 

Datum 

level 

(m TVDs) 

pressure 

@Datum 

(barsa) 

Porosity  

(-) 

NTG 

 (-) 

Irreducible 

water 

saturation 

(-) 

Silty sandy 

Gas 

bearing 

formation. 

-714 79 0.3 1 0.266 

Pr
es

su
re

 

(b
ar

sa
) 

Fig. 4.13: Initial pressure distribution of the reservoir’s (ParaView visualization). 
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A production scenario was planned to impose a 40 bars pressure drop over a 4 years 

period, from March, 23rd 2018 to March, 23rd 2022.  

 

 In order to analyze the depletion induced subsidence, we considered these Hypotheses 

as a starting point for our simulations:  

• The geomechanical model response to production isotropic and linear elastic.  

• The petrophysical parameters (permeability and porosity) are assumed to remain 

constant over the production period and are not affected by the stress-strain 

variations caused by the reservoir’s compaction.  

• The contrast of elastic moduli between the reservoir and its surroundings is 

negligible, reducing the arching effects.  

Geomechanical 

Class 

Young’s 

Modulus 

(GPa) 

Poisson’s 

ratio 

(-) 

Bulk Density 

(g/cm^3) 

Biot 

Coefficient 

1 0.03 
0.38 

1.8 

1 

2 0.4 1.9 

3 

0.0046z+0.3082 0.35 

2.1 

4 2.2 

5 2.3 

6 65 0.3 2.6 

Fig. 4.14: geomechanical classes. 

Tab.  4.6: Geomechanical Parameters distribution.  
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4.2.3. Technical considerations for geomechanical model building and 
data processing : 
 

4.2.3.1.Coupling technique selection:  

 

Ideally, adopting a fully coupling technique provides a complete and an accurate solution, 

since the fluid flow and geomechanical problem are solved simultaneously taking into 

account the reciprocal dependencies of the involved parameters. However, we opted for 

a modular approach i.e. solving the strain-strain set of equations independently from the 

multiphase flow simulation. In the technical literature such approach is called the De-

coupled approach (or the one way coupling approach). We have chosen this alternative 

for several reasons related to technical limitations, benchmarking requirement and 

literature references.  

 It is technically challenging at this stage of the work to adopt a higher coupling 

degree. In this phase of the study, we compare the approximated displacements by two 

numerical methods, induced by the same production history. For this purpose, any 

parameter (i.e. permeability and porosity) that can influence the reservoir’s pressure 

evolution during the geomechanical simulation is kept constant. Higher degrees of 

coupling may lead to different pressure redistribution profiles between the two simulators, 

generating different pressure values at the centroids and consequently at nodes. While 

considering the different extrapolation techniques used by the simulators, adding a new 

level of complexity by the adoption of a higher coupling strategy, there is a possibility 

that the FEM and VEM methods will not simulation the same pressure-scenario. 

Therefore, for a more fair results comparison, the one-way approach is most suitable, 

because it offers the best possibility of control over the parameters that can cause pressure 

input-discrepancies.  

 In addition, we refer to results shown in - [21] (Numerical Techniques Used for 

Predicting Subsidence Due to Gas Extraction in the North Adriatic Sea), and - [22] (A 

Coupled Fluid Flow - Geomechanical Approach for Subsidence Numerical Simulation). 

In these two papers, the effects of different coupling approaches are analyzed on the 

history matched model of Dosso Degli Angeli field - [21], and on a synthetic mode 

constructed referring to lab/literature data gathered with reference to the Adriatic basin - 

[22], similarly to the case study our synthetic model is built on. Both studies deduced that 
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the one way approach provides accurate results for subsidence in gas fields, while the 

two-way approach is deemed more representative in the presence of an aquifer or at 

reservoir level (compaction). 

 

4.2.3.2. Pinchout related issues:  

 

The geometrical modeling of a gradual stratigraphic thinning of beds (pinch-out), is 

translated in structured meshes by a decrease of cell’s thickness until they become null. 

Such configuration leads to nodes collapsing as Fig. 4.15 shows. Subsequently, the 

resulting grid exhibits node connections that are not related physically. They are called 

Non-Neighboring connections.  

 

 

 

 Petrel automatically identifies these new connections created upon 

surface/horizon implementations and classifies the cells with zero thickness as inactive 

cells so they would be neglected during the solution process. Yet, they are still present in 

the grid. Therefore, to handle correctly the grid conversion, it is necessary to identify the 

non-neighboring connections. 

 However, the topology exported via batch process doesn’t eliminate collapsed 

cells from the exported topology as opposed to Petrel geomechanics output that contain 

only active cells. The resulting grid differs in term of number of cell and the related 

numbering. Hence, a series of commands were added to the concerned Matlab script that 

converts the file to a VTK extension. These commands cross-reference the Petrel’s output 

Fig. 4.15: Pinchout scheme in the FE domain 
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with the Visage one and flags out any non-neighboring connections in order to obtain an 

improved VISAGE .VTK file ready for the comparison. 

 
4.2.4. Volume Discretization Scenarios:  

 

This thesis work deals with the assessment of solutions approximated by the Virtual 

Element method when simulating the subsidence phenomena over four different volume 

discretizations. The results are then compared against the FEM simulation provided by 

the Petrel commercial software. 

The geomechanical volume dimensions are kept constant over the different scenarios, 

x×y×z (35913.7m×35200m×3200m). At this stage of our work, the boundary conditions 

are made sure to not interfere with the solutions.  

Unstructured grid: tetrahedral Mesh 

As a starting point, we comply with the VEM hypothesis, by testing it over an 

unstructured mesh Figs.4.16 and 4.17, identified by tetrahedral cells over the whole 

geomechanical volume, including the reservoir’s grid. 

Fig. 4.16: The 3D geometrical representation of the geomechanical volume over an unstructured 

mesh (ParaView Visualization). 
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Tab 4.7: Information about mesh discretization.  

 STRUCTURED  MESH 
UNSTRUCTURED 

TETRAHEDRAL MESH  

 
Reservoir 

grid 

Full 

geomechanical 

volume 

Reservoir 

grid 

Full 

geomechanical 

volume 

NUMBER OF CELLS 5149 276700 34001 1104293 

NUMBER OF NODES 6406 287818 6826 187494 

 

 

Results : 

The performance of VEM simulations in terms of vertical displacements over the 

tetrahedral mesh are shown Figs. 4.18 and 4.19 and Tab. 4.8. The results are compared 

against the FEM solution provided by Petrel Geomechanics.  

Fig. 4.17: Top view of the 3D geometrical representation of the geomechanical volume over an 

unstructured mesh (ParaView Visualization). 
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Fig. 4.18: Top View displaying the approximated subsidence over the whole geomechanical volume: A) 

FEM solution and B) VEM solution over the tetrahedral unstructured mesh (ParaView Visualization). 

 

B 

A 
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Tab. 4.8:  Summary of Calculated displacements of VEM solution over the tetrahedral unstructured mesh. 

 FEM solution  
VEM 

solution  

over the unstructured mesh  

Maximum displacement at the 

surface (subsidence) in mm 
-30.8897 -33.1450 

Maximum displacement over 

the whole volume in mm 
-42.7726 -45.4396 

 

Fig. 4.19: Vertical section approximated displacements (along the z-axis) over the whole geomechanical 

volume: A) FEM solution and B) VEM solution over the tetrahedral unstructured mesh (ParaView 

Visualization).  

 

B 

A 
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The numerical solution of VEM over the tetrahedral discretization scenario provides 

comparable results with the FEM solution. We report that it overestimates the subsidence 

by a difference of few millimeters, but the phenomenon is properly represented.  

 

Structured grid: Regular hexahedral grid  

 

The second discretezation tested on VEM is the regular structured grid (corner point) 

 Figs 4.20 and 4.21. The discrtezied mesh is identified by hexahedron cells. We test the 

VEM method directly on the original grid generated by Petrel, on which the FEM solution 

is computed.  

 

 

 

 

  

 

Fig. 4.20: The 3D geometrical representation of the geomechanical volume over a regular structured 

hexahedron grid (ParaView Visualization). 
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Results:  

 

The performance of VEM simulations in terms of vertical displacements over the 

structured mesh are shown Figs. 4.22 and 4.23 and Tab. 4.9. The results are compared 

against the FEM solution provided by Petrel Geomechanics.  

 

Fig. 4.21: Top view of the 3D geometrical representation of the geomechanical volume over a 

regular structured hexahedron grid (ParaView Visualization). 



NACER Benlalam  68 
_____________________________________________________________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

A 

C 

Fig. 4.22: Top View displaying the approximated subsidence over the whole geomechanical volume:  

A) FEM solution and C) VEM solution over the regular structured mesh (ParaView Visualization). 
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Tab. 4.9:  Summary of Calculated displacements of VEM solution over the regular structured mesh. 

 FEM solution  
VEM 

solution  

over the regular structured mesh  

Maximum displacement at the 

surface (subsidence) in mm 
-30.8897 -4.4969 

Maximum displacement over 

the whole volume in mm 
-42.7726 -5.9624 

C 

A 

Fig. 4.23: Vertical section approximated displacements (along the z-axis) over the whole geomechanical 

volume: A) FEM solution and B) VEM solution over the regular structured mesh (ParaView 

Visualization).  
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From the results obtained, the VEM solution failed to reproduce the subsidence 

phenomena properly, as it underestimates greatly the displacements at the reservoir level 

(with a difference > 35 mm). In addition, it did not properly reproduce the displacement 

field in the above overburden zone up to the surface, as the highest displacements are 

concentrated directly above the reservoir. The remaining overburden seem to fairly 

witness variations within the range of 1 millimeter as opposed to the FEM solution up to 

11 millimeters. This suggests that the accuracy of the computation deteriorates at the 

reservoir level.   

To explain the failed VEM response we refer to – [10] (Basic principles of Virtual 

Element Methods. Mathematical Models and Methods in Applied Sciences) and - [49] 

(Virtual element method for geomechanical simulations of reservoir models). The paper 

suggests that the method doesn’t handle complex geometries for deformed cells. This 

means that the reservoir’s anticlinal topology can be the source of the solution 

discrepancy.  

When constructing the strucutred mesh to represent the reservoir, the resulting 

hexahedron cells have non perfectly planar faces14  Fig. 4.24, to properly recreate the 

curvature of the anticline.   

It is observed that  the tetrahedral unstructured grid have proven comparable with the 

FEM solution, because triangular faces implcitily satisfy the planarity requirement. 

 

 

 

 

 

 

 

 

 

 

  

 
14 A planar face is established when all its vertices define one plane.   

Fig. 4.24: 3D representation of isolated hexahedron cells from the top of the reservoir with cruved 

faces (ParaView Visualization).  
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Structured grid: hexahedral meshing with general polyhedral discretization at the 

reservoir formation level:  

 

We take as a reference, the work done in - [34] (Virtual element method for 

geomechanical simulations of reservoir models) providing a primary mitigative solution 

to the issue of non-planar cells. A Matlab script was used to recognize the faces that don’t 

satisfy the planarity requirement, then it adds a barycenter to split  the surfaces, into 4 

planar triangle face. In Figs 4.25 and 4.26 we can see the original hexahedron cell with 

non-planar faces converted to a polyhedron cell with triangulated faces.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 4.25: 3D representation of hexahedron cells with curved faces to the left, and the same 

processed cell and converted into a general polyhedral with split triangulated faces to the right 

(ParaView Visualization). 
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A third grid is then constructed that contains a hybrid of polyhedra with triangulated faces 

within the reservoir level and the surrounding region while retaining  regular shaped 

hexahedron cells over the remaining geomechanical volume. It’simportant to mention 

that while the number of nodes will increase, the number of cells remains the same with 

respect to the Petrel’s grid Tab 4.10.  

 
Tab 4.10: Information about mesh discretization.  

 STRUCTURED  MESH 

STRUCTURED MESH WITH 

POLYHDERA WITH SPLIT 

FACES   

 
Reservoir 

grid 

Full 

geomechanical 

volume 

Reservoir 

grid 

Full 

geomechanical 

volume 

NUMBER OF CELLS 5149 276700 5149 276700 

NUMBER OF NODES 6406 287818 12092 355768 

 

 

  

Fig. 4.26: Top view of 3D representation of the reservoir grid: Hexahedral cells to the left, and the 

processed polyhedral cells to the right (Paraview visualization).  
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Results:  

The performance of VEM simulations in terms of vertical displacements over the 

structured mesh are displayed in Figs. 4.27 and 4.28 and Tab. 4.11. The results are 

compared against the FEM solution provided by Petrel Geomechanics.  
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A 

D 

Fig. 4.27: Top View displaying the approximated subsidence over the whole geomechanical volume:  

A) FEM solution and D) VEM solution over the structured mesh with polyhdera identified by split faces 

(ParaView Visualization). 
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A 

D 

Fig. 4.28: Vertical section approximated displacements (along the z-axis) over the whole geomechanical 

volume: A) FEM solution and D) VEM solution over the structured mesh with polyhdera identified by 

split faces (ParaView Visualization). 
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Tab. 4.11:  Summary of Calculated displacements of VEM solution over the structured mesh with general 

polyhedra. 

 FEM solution  

VEM 

solution  

over the structured 

mesh  

VEM 

solution  

over the structured 

mesh with general 

polyhdra 

Maximum displacement at the 

surface (subsidence) in mm 
-30.8897 -4.4969 -10.7809 

Maximum displacement over 

the whole volume in mm 
-42.7726 -5.9624 -15.3301 

 

 

By comparison with the previous case of the regular grid, the VEM solution, over a grid 

that satisfies the planarity requirement, shows a good improvement as the computed 

compaction went from 6 mm to 15mm. We also report that the displacements seem to be 

properly represented in both the reservoir and the surrounding zones. However, the results 

overall remain greatly underestimated within the reservoir level and consequently at the 

computed subsidence.  This suggests that the degree of computation precision at the 

reservoir level is still too low. With reference to the Tabs 4.7 and 4.10, the unstructured 

mesh primarily used, contain a number of cells  66 times higher than the remaining two 

meshes, prompting the issue that the reservoir needs to be refined even further for an 

accurate numerical analysis. Therefore, the degree of accuracy of the solution provided 

by the VEM is possibly affected by the volume of the cells. 

 

Hybrid grid: Structured geomechanical volume with tetrahedral meshing of the 

reservoir:  

Building on the previous conclusions, we need to refine our grid even further at the 

reservoir level. A Matlab script was written, to split the polyhedral elements Fig. 4.29 

into tetrahedral ones, in order to refine the reservoir’s grid in addition to making sure the 

planarity requirement is respected. The resulting cells inplicitly satisfy both conditions.  
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Fig. 4.29: Resulting tetrahedral cells after processing of polyhedral with split triangulated 

faces: A) regular tetrahedral cell, B) Vertical section of 4 connected tetrahedral cells, C) Top 

view of 3 connected tetrahedral cell, (ParaView Visualization). 

A B 

C 
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Tab 4.11: Information about mesh discretization.  

 
 STRUCTURED  MESH HYBRID MESH 

 
Reservoir 

grid 

Full 

geomechanical 

volume 

Reservoir 

grid 

Full 

geomechanical 

volume 

NUMBER OF CELLS 5149 276700 61788 333339 

NUMBER OF NODES 6406 287818 12092 355768 

 
Results:  

The performance of VEM simulations in terms of vertical displacements over the 

structured mesh are displayed in Figs. 4.31 and 4.32 and Tab. 4.12. The results are 

compared against the FEM solution provided by Petrel Geomechanics.  

  

Fig. 4.30: Top view of 3D representation of the reservoir grid: Hexahedral cells to the left, and the 

processed polyhedral cells into tetrahedra to the right (Paraview visualization).  
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Fig. 4.31: Top View displaying the approximated subsidence over the whole geomechanical volume:  

A) FEM solution and E) VEM solution over the Hybrid mesh (ParaView Visualization). 
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Tab. 4.12:  Summary of Calculated displacements of VEM solution over the hybrid mesh. 

 FEM solution  
VEM 

solution  

over the hybrid mesh  

Maximum displacement at the 

surface (subsidence) in mm 
-30.8897 -31.0086 

Maximum displacement over 

the whole volume in mm 
-42.7726 -42.4803 

Fig. 4.32: Vertical section approximated displacements (along the z-axis) over the whole geomechanical 

volume: A) FEM solution and E) VEM solution over the Hybrid mesh (ParaView Visualization). 

 

A 

E 
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For this volume discretization scenario, the VEM computes accurate results with a 

discrepancy range within the order of  10−1 millimeters over the whole volume and the 

computed subsidence as well. In this case, the hybrid mesh is refined 12 times more than 

the mesh with split faced-polyhedra, confirming the previous hypothesis: for a load factor 

concentrated at the reservoir level, the polyhedral discretization is too coarse for VEM to 

compute accurately the stress variations and consequently the displacements.    

Summary:  
Tab. 4.13:  Summary of Calculated displacements by VEM. 

 
FEM 

solution 

VEM solution with respect th discretization scenario 

Unstructured 

mesh 

Structured 

grid 

Structured 

grid with 

general 

polyhdera 

Hybrid grid 

Maximum 

displacement 

at the 

surface 

(subsidence) 

in mm 

-30.8897 -33.1450 -4.4969 -10.7809 -31.0086 

Maximum 

displacement 

over the 

whole 

volume in 

mm 

-42.7726 -45.4396 -5.9624 -15.3301 -42.4803 

 

 

Considering the various discretization scenarios, we confined our comparison of solution 

discrepancy to the assessment of the degree of magnitude of displacements between VEM 

and FEM solutions and how the phenomena is properly simulated.  Because, when 

working with these different grids: the coordinates of nodes and centroids and their 

respective number differ from one scenario to another; rendering the nodal analysis of 

solutions challenging. For each grid a different comparison workflow must be adopted 

against FEM solution solved under Petrel’s regular structured grid. This new step 
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introduces additional numerical/geometrical variables specific to each scenario that have 

be considered when analyzing the discrepancies. It can hinder the integrity of the overall 

study for time being. Prompting us to rely only on the assessment of the degree 

magnitudes.   
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5. Conclusion 
 

The effects of volume discretization on the Virtual Element Method (VEM) in simulating 

the subsidence phenomena induced by gas production bearing formation were tested and 

analyzed. A synthetic model was constructed, representative of an offshore gas reservoir 

within the Northern part of the Adriatic Sea. The anticlinal topology of the formation has 

provided us with meshing scenarios to investigate the sensitivity of the implemented first 

order Virtual Element scheme. The computed values were compared against an 8 node 

isoparametric hexaedron FEM Geomechanics® solution taken as reference.  

 

We described briefly the workflow adopted to pass the 3D Geomechanical model from 

the FEM commercial software to the VEM simulator, highlighting the processing steps 

followed during data export.  

  

Before starting our analysis, we employed a simplified synthetic model in order to assess 

the solution discrepancy factors that are solver dependent: data extrapolation methods and 

boundary conditions. Through the use of a regular hexahedral structured grid, we showed 

that the VEM gives accurate results when simulating a displacements field with negligible 

discrepancy less than 1% from the FEM solution.  

 

Once the minimum expected solution discrepancy was established, we applied the VEM 

method over the realistic model. At first, we ran the VEM method on a tetrahedral 

unstructured grid. The mesh proved to be adequate in terms of degree of refinement and 

implicit satisfaction of planarity. Thus, the subsidence was properly represented.  

 

Next we showed that, when used directly on the original Petrel’s structured grid, the VEM 

fails to provide comparable results. In particular, because of the curvature of the anticline, 

the resulting hexahedral cells have non-planar faces, posing a difficulty for the VEM to 

properly transfer the displacements.  

 

Once we converted cells into polyhedra by splitting not-planar faces in triangles, we 

observed an improvement in the computed subsidence (doubled values), but yet it was 
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still largely underestimated. So, we sought out to improve the precision of the 

computation at the reservoir level by increasing the number of cells. At this purpose the 

previously defined polyhedral cells were split into tetrahedra.  

 

The resulting grid became an hybridization of the original corner point grid and an 

unstructured mesh identified by tetrahedral cells at the reservoir level. Results comparison 

was now satisfying with a discrepancy with FEM reference solution even lower than the 

ones obtained from unstructured meshing.  

Conclusion remarks 

• The tested VEM scheme can provide an accurate prediction of the subsidence 

phenomena depending on the mesh discretization (tetrahedral unstructured grid 

vs corner point gridding) 

• We confirmed that influence of not-planar cell faces has a not negligible effect on 

the displacement calculated through the actual implementation of the VEM  

• The implemented VEM scheme, based on first order approximation, requires a 

grid refinement such as the introduction of tetrahedral element in order to 

reproduce a solution which has an accuracy comparable with the tested first order 

FEM based on 8 node isoparametric brick element. 

Since the present analysis pointed out the intrinsic limitations in directly applying the first 

order VEM to corner point grids, in future work a grid optimization algorithm, in terms 

of faces planarization and refinement, will be investigated in order to be able to perform 

reliable simulations on such kind of meshes which represents a well-established output 

of geological modelling workflow. 
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