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Summary

Variable stiffness composites are fiber reinforced components manufactured by
means of automated fiber placement technique. The fiber orientation angle varies
within the tow path, providing the variable stiffness properties of the manufactured
components. These non-conventional parts have shown better mechanical properties
per unit-weight than many conventionally manufactured components. However, its
fabrication process is subjected to imperfections which are prone to generate defects
and undesired variability in the parts, decreasing the mechanical performance of the
components. In order to avoid material waste or the application of very large safety
coefficients, it is of great importance to understand the effect of manufacturing
induced defects and uncertainty in variable stiffness composites.

In this work, a multi-scale sensitivity analysis is performed, in which the buckling
performance at a macro-scale level is studied for composite plates affected by
uncertainty effects at a micro-scale level. For the study, the macro and micro-stress
fields are obtained for the static solution of two variable stiffness composites. Finite
element models and theories within the Carrera Unified Formulation framework
are employed in the investigation. A layer-wise approach is applied in order to
model each composite layer separately, introducing uncertainty effects in the ply
level, at the meso-scale.

Stochastic fields are generated to introduce variability into the fiber volume
fraction at the micro-scale. This parameter affects the material properties assigned
to the finite element mesh elements and are obtained from the unit cell problem
resolution applying the mechanics of structure genome.

The sensitivity study is performed via Monte Carlo analyses, carrying out many
deterministic linearized buckling simulations in which the fiber volume fraction
value within the plies is defined by a different random field. Distribution plots of
the buckling analysis outputs are obtained and statistical indicators are calculated.
At the conclusion of the analysis, polynomial chaos expansion models are proposed
as a time saving alternative to the full Monte Carlo analysis.
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Chapter 1

Introduction

1.1 Automated fiber placement technique

Automated fiber placement technique (AFP) is a manufacturing process which
makes possible the production of fiber reinforced structures. This composite
materials have two identifiable constituents: a fiber reinforcement and a epoxy
resin matrix. With this technique it is possible to obtain high strength and stiffness
per unit-weight parts, also high quality on both surface finish and part integrity
[1]. Its weight-specific properties are great vantage over conventionally used metals,
being the reason for which many AFP components are widely implemented in many
industries. For example, it is of great interest for Aerospace applications where a
reduction on structural weight means less fuel consumption and costs [2]. Fuselage
barrels and main wing boxes are some of the parts produced in this sector by AFP
[3].

The manufacturing process is normally performed by a CNC machine. A fiber
placement head is mounted at the end of a robotic arm that has many degrees of
freedom. Material tows, conformed by many fibers impregnated in matrix resin, are
heated and then fed into the head. The robotic tool places a bunch of tows, also
called a course, following a determined path while at the same time compacts them
with a compaction roller. Afterwards, postprocessing operations as cure processes
are carried out to obtain the final product [1].

Courses can be composed of up to 32 tows. The AFP machine controls each one
of the tows, being able to cut and restart their feeding independently. Complex
geometries, even with double curvature surfaces, can be produced by AFP [2]. A
complete laminate is constructed by placing multiple courses, one parallel to the
other along the surface [3].

Nowadays, the fiber placement technique can be totally automated providing
great accuracy, process robustness and speed. The proper automation process leads
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to reduced labour time and operational costs. For being economically competitive, it
is important to ensure that AFP operation, machine investment and material costs
do not exceed the operational costs saved (for example, fuel costs) [2]. Therefore,
research is needed to improve and optimize the manufacturing process as it directly
has an influence on the final product performance. Part defects emerge due to
fabrication and processing constraints, and imply an increase in the labour time
and material waste [1]. In the next section, the main defects affecting to the AFP
manufactured parts are going to be discussed.

1.2 Manufacturing defects
With AFP it is possible to obtain high quality parts with good repeatability and
accuracy. However, this manufacturing process is not exempt from limitations.
Process imperfections make the actual manufactured part differ from its design.
The mechanical properties of the component could be affected by this process
induced defects. A brief explanation of the main issues found in the literature
involving AFP are now presented:

• Angle deviation: AFP has the possibility to place fibers following a certain
path which can be rectilinear or curvilinear. Normally, guiding curves are
used for this. Fiber courses are oriented as such reference curves. When using
curvilinear fiber paths, the angle of the course deviates from the reference
one. This defect is influenced by the chosen course width. Wider fiber courses
imply bigger angle deviation, but the use of narrower ones involve more
manufacturing time. Therefore, a balance between quality and time is decided
by selecting the proper width.

• Tow misalignment: this defect is caused by position inaccuracy on the robotic
arm’s deposition head due to inertial effects on the machine structure and
process speed.

• Fiber waviness: it can occur both on the laminate plane (in-plane) or within the
laminate thickness (out-of-plane). The first one is produced by fiber steering
and complex surfaces. The second is influenced by tooling and processing and
fiber steering as well. Out-of-plane waviness reduces strength and stiffness of
the parts.

• Gaps and overlaps between adjacent tows: this defects are influenced by
material process-ability, tow width fluctuations and machine parameters.
Gaps and overlaps are most frequent on complex geometries. During fiber
steering, a course width adjustment is applied. It can only be done by discrete
steps resulting on non-fitting edges between courses. This adjustment follows

2
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a coverage strategy determined by the manufacturer. The percentage of tow
overlap on the course boundaries is related to this strategy. A 0% coverage
strategy imply that no overlaps happen on the boundary defect areas but
only gaps. Coverage percentage ranges from 0 to 100, being each value a
combinations between gaps and overlaps. This kind of defects are the most
frequent on AFP.

Figure 1.1: Gaps and overlaps induced by AFP. Extracted from [2]

• Twisted tows: it consists of the twist of individual tows on a ply during the fiber
placement operation. This issue is not frequent thanks to the implementation
of control processes and the use of high quality materials.

Figure 1.2: A twisted tow on the surface of a ply. Obtained from [2]

• Bridging and crowning: lack of pre-tension within the tows may cause bridging
and crowning when manufacturing, respectively, concave and convex complex
surfaces.

3



Introduction

• Wrinkling and upfolding: these defects are provoked by the absence of adhesion
between a tow and the surface underneath. These phenomena are related
to tow compressive and tensile stresses during steering. Compressive stress
generate wrinkles while tensile stress is responsible for tow upfolding. These
kind of defects depend on the minimum turning radius which is related to the
material.

Figure 1.3: Tows affected by wrinkling and upfolding. From [2]

• Voidage and inclusions: the appearance of voids and inclusions are highly
related with the quality of the employed material, its temperature conditions
and the compaction force applied. Insufficient compaction force leaves a bigger
amount of air entrapped inside the ply. Voids arise with the presence of gaps
and overlaps. Inclusions are not common in AFP.

• Residual stresses and deformations: induced by the manufacturing process on
the component.

• Fuzzballs: fuzz formation due to contact interaction between the machine and
the fiber material.

Defects are inevitable during the manufacturing process. Therefore, in order to
reduce their negative impact, it is need to investigate how these defects affect to
the part properties. Further knowledge on these AFP defects can be found in the
review by Heinecke and Willberg [2].
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1.3 Variable stiffness composites
An innovative aspect of AFP manufacturing is the ability to produce non-conventional
composites with variable stiffness properties. Variable stiffness composites (VSC),
also known as Variable Angle Tow (VAT), are obtained placing fibers following
a curvilinear path [4]. This design of the fiber stacking procedure within the ply
is also known as tailoring [5]. Orienting the fibers in a favorable way positively
influences the stress distribution on VSC, obtaining better buckling performance
and stiffness properties than conventional composites composed of straight-path
fibers [6]. Therefore, the tailoring of the plies is optimized in order to maximize the
component performance. Despite many theoretical calculations, not all optimized
patterns can be actually produced due to machine limitations as, for example, the
minimum turning radius [4].

AFP software defines guiding lines as a reference to define the fiber placement
path. VSC are constructed by shifting curvilinear courses perpendicularly to the
variation direction of the reference line [3]. For the sake of simplicity, it is common
to use a constant curvature line as a reference for the fiber path. In this case, the
fiber orientation function is defined taking an arbitrary point A as a reference.
Then, the equation of the fiber orientation, obtained from [5], between A and
another point B is:

θ (xÍ) = φ+ T0 + (T1 − T0)
d

|xÍ| (1.1)

in which xÍ = x cosφ + y sinφ. T0 and T1 indicate the fiber angle orientation
at points A and B, respectively. The characteristic length d corresponds to the
distance between both points and it is usually defined for square and rectangle
plates as half of a side length of the laminate. Angle φ specifies a rotation in the
axes orientation.

With constant curvature fibers it is possible to define the fiber path on a ply
just by defining the values of φ, T0 and T1 and it can be expressed as:

[φ < T0, T1 >] (1.2)
This nomenclature is taken from the literature [5]. A ± symbol can be added to
Equation (1.2) when the layup consists of two adjacent layers with same value of T0
and T1 but opposed in sign. Additionally, an s on the sub-index position indicates
that other laminates are added with a rotated fiber orientation in order to achieve
a symmetric structure [1].

In some cases a non-linear fiber orientation functions are used. This means
that the curvature radius is not constant along the fiber. Some of the methods
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Figure 1.4: Example of a fiber path definition varying linearly along the characteristic
length d. Extracted from [5]

to define path functions for non-linear cases involve Lobatto polynomials, Bezier
curves or Lagrange polynomials [7]. An example from the literature of non-linear
fiber orientation equation with Lagrange polynomials is:

θ(x, y) =
M−1Ø
m=0

N−1Ø
n=0

Tmn
Ù
m/=i

3
x− xi
xm − xi

4 Ù
n/=j

A
y − yj
yn − yj

B
(1.3)

The use of VSC implies vantages from the performance point of view. However,
care has to be taken as fiber steering is prone to generate defects on the structure,
being gaps and overlaps on the course boundary the most frequent ones [4].

1.4 Models for macro-mechanical analysis of VSC
Many authors have carried out investigations in order to understand how the
mechanical performance of VSC is affected by manufacturing induced defects.
Virtual tests applying Finite Element Methods (FEM) were performed for macro-
mechanical analysis of VAT composites, including in the model some defects as
fiber misalignment, tow-angle discontinuities, gaps and overlaps. These two lasts
are the most commonly studied in the literature.

Authors as Blom et al. [3] modelled defective areas for gaps and overlaps by using
a very refined meshing in order to fully capture the size of the defects. However,
this method implied a high computational cost due to the big amount of elements.
Other authors as August Noevere and Craig Collier [8], applied a methodology
in which the thickness of the model elements was adapted to include the effect of
gaps and overlaps. This procedure, however, overestimated the VSC strength when
studying overlaps. Another approach, applied by Cairns et al. in [9], doubled the
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stiffness of overlaps areas and assigned the material properties of the matrix resin
to gap areas.

In the work of Fayazbakhsh et al. [6], Matlab routines were implemented to detect
gap and overlap areas over the composite layers. These defects were introduced
in the model using the Defect Layer Method (DLM), which was computationally
more efficient than previous works. DLM alters the properties of the elements of
the model depending on its defect percentage area. For overlaps, the thickness
of the model is increased proportionally to this area while gaps are modelled by
scaling the material properties of the element. The performed analysis concluded
that overlaps could benefit VSC performance whereas gaps reduce its strength.
Further work was undertaken by Nik et al. [4] to study the effect of manufacturing
parameters on this defective areas.

Authors O. Falcó et al. [10] and A. Pagani and A.R. Sanchez-Majano [5, 11]
performed analysis being able to include defects at a meso-scale level, modeling each
layer independently. In the former, X-ray tomography was used to analyze defects
as fiber angle discontinuities, gaps and overlaps. The performed work analyzed
failure mechanisms in notched and unnotched VSCs coming to the conclusion that
gap effect has more incidence for unnotched plates. On the other hand, in [5, 11],
Carrera Unified Formulation was implemented by the authors for modeling the
VSC. The composite was defined using layer-wise (LW) theories which are able to
model each layer independently introducing details at the meso-scale, for instance,
fabrication induced imperfections. The approach was implemented to investigate
the influence of fiber missalignments in VSC tows on its buckling performance and
failure mechanisms. At the conclusion it is stated that LW models are compulsory
to fully account the effect of meso-scale flaws.

1.5 Micro-scale modeling
The study of VSCs at the micro-scale level is motivated by the necessity to obtain
its effective properties based on the fiber-matrix arrangement and the volume
fraction of the two constituent phases [12].

Many models have been developed to study the fiber-matrix microstructure and
obtain the material properties which can be applied in the macro-scale analysis.

Hashin and Rotem, proposed the Concentric Cylinder Model (CCM) in [13].
This analytical model derived the effective elastic moduli for parallel hollow circular
fibers, contained in a cylindrical portion of composite, by a variational method.
The procedure was able to develop the expressions of some of the effective elastic
moduli.

Other semi-analytical works were able to provide not only the elastic moduli,
but also the local fields at the constituent level. In many of these studies, a
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representative volume element (RVE) is defined, which is a specific portion of
material repeated along the VSC structure. Then, numerical methods are employed
to estimate the material properties of the homogenized RVE.

This is the case of the models developed by Aboudi [14] and Aboudi et al. [15,
16]. In the prior, the author presented the Method of cells (MOC). It consisted in
the study of a periodic square array divided in four subcells. One corresponding to
the fiber and the other to the matrix. The model was capable to predict accurately
the ineslastic response of composites. In the other works of the author, the MOC
was extended to the generalized method of cells (GMC), see [15], and the high-
fidelity generalized method of cells (HFGMC), in [16]. These further developed
theories resolved the local fields at the cell level, computed the effective material
properties of the homogenized RVE and were able to obtain accurate results for
non-linear and failure analysis. In [17], Williams developed the Elasticity based
Cell method (ECM). It discretized cells in eight subregions and approximated the
displacement field by truncated eigenfunctions of 5th order.

Other authors as Sun and Vaidya, predicted the composite properties from
the RVE employing FEM, Gauss theorem and strain equivalence principles [18].
Kaleel et al. employed the Carrera Unified Formulation to develop a component-
wise approach for the study of RVE. The method can be exploited to accurately
obtain 3D-fields and displacements within the cell by means of interpolating the
cross-section behaviour of the structure employing Lagrangian-type polynomials as
expansion functions. Similarly, the works of A.G de Miguel et al. employ models
based on the Carrera Unified Formulation altogether with the mechanics of the
structure genome. This approach was capable to capture the effective properties
of the homogenized cell and to compute the fields at the micro-scale level by
implementing the variational asymptotic method. This least, minimizes the lost of
information between the heterogeneous and the resulting homogenized cell. More
information about micro-scale models for the study of composites can be found in
[12].

1.6 Uncertainty on VSC
Most of the efforts to develop and study VSC use a deterministic approach which
do not take into account the presence of uncertainties in composites [7]. However,
composite materials are susceptible to space-dependent uncertainties consequence
of the fabrication process and environmental factors [19]. This uncertainties may
affect in a variety of forms. For instance, missalignments, waviness, aspect ratio
or volume fraction are some of the fiber properties affected by it. With the
deterministic perspective, the presence of uncertainty is mitigated by applying
high safety factors, which may fall between 8 and 10 in some cases, obtaining
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very conservative designs. Instead of big safety factors, taking into consideration
uncertainties in the analysis enables to achieve robust and reliable designs. The
optimization process to design relatively insensitive to uncertainty components is
also named robust design optimization (RDO) [7].

As uncertainties generate a variability on the VSC properties which is difficult
to control, space dependent random fields are usually used and methods based on
stochastic simulations with random data sets are applied. Guimarães et al. [19]
used a random field to model uncertainty on the material properties of VSC. In this
case, the studied property was the Fiber Volume Fraction within the Fiber-Matrix
structure. Uncertainty was propagated using Karhunen-Loeve Expansions (KLE)
and affected space-variable mass and stiffness of the composites. Zhou et al. [7]
introduced variability on the loading conditions, which were considered as random
variables following a normal distribution. Scarth et al. [20], proposed a random
field whose covariance function was based on the geodesic distance between points
in curved surfaces. This random field defined the point-wise varying material
properties of their model, which was subjected to a buckling analysis. Other works
of Zhou et al. [21] applied stochastic finite element methods as well to model
material properties and fiber angle variation. Pagani and Sánchez-Majano [5]
employed the Covariance Matrix Decomposition (CMD) technique in order to
obtain a random field to model fiber missalignment while investigating the buckling
performance of VSC.

In many of the works [5, 19, 20, 21], uncertainty quantification was carried out
by means of Monte Carlo simulation technique. This method calculates results
many times using for each simulation a different set of stochastic values. Then,
output data can be analyzed in order to obtain statistical parameters of the results
and probability distributions which may help to understand uncertainty effects on
the investigated factors.

1.7 Contents of this dissertation
The first part of this paper explains the formulation employed and the equations
involved in the performed analyses. Chapter 2 presents the Carrera Unified
Formulation and the constitutive equations which rule the finite element analyses
for the VSCs. Later, Chapter 3 introduces the micro-mechanics theory employed
in the study of the VSCs, which will allow to obtain the material properties for the
finite element analysis and the recovery of the micro-scale fields. Then, Chapter 4
shows how uncertainty effects on the fiber volume fraction have been modeled and
introduced in the analysis. Monte Carlo analysis and Polynomial chaos expansion
are presented as tools for the study of the buckling performance of VSCs affected
by uncertainty. Chapter 5 includes the verification stage for the models developed
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in this study and the numerical results for both the static and buckling response of
the VSCs. Macro and micro-scale analysis outcomes are included. Finally, Chapter
6 contains the conclusions which were deduced from the results obtained in this
work.
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Chapter 2

Layer-wise models of
laminated VAT panels

2.1 Carrera Unified Formulation

Carrera Unified Formulation (CUF) is an approach which allows FE matrices to be
written in a compacted way in terms of fundamental nuclei (FN). This framework
can be applied for structural 1D, 2D and 3D problems [22]. On this dissertation,
special attention will be payed to 1D models which are going to be applied to
model VAT composite laminates. In 1D CUF formulation, the nodal displacement
vector for any generic point in the three dimensional space can be defined as:

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1,2, . . . ,M (2.1)

In this equation, the term Fτ corresponds to an expansion function of the cross-
section which varies along the longitudinal direction y, and approximates the
displacement values of the cross-section of the VSC. The uτ term is known as the
generalized displacement unknown vector and M stands for the number of terms
employed in the expansion. The accuracy of the approximation is ruled by this
parameter, reaching more precision when increasing M value. Einstein notation
is adopted in CUF, hence repeated subindexes imply summation of terms. Many
different expansions Fτ can be used to define the behaviour of the cross-section.
Some commonly used are based on the Taylor Expansion (TE), Lagrange Expansion
(LE) or Hierarchical Legendre Expansion (HLE). These three models are going
to be now explained but a review on other CUF beam theories using different
expansions can be found in [23].
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2.1.1 Taylor Expansion
TE is obtained making use of 2D series of the type xlzm in which l and m are
positive integers ranging between zero and the maximum polynomial order, N .
The values of the Fτ functions and M can be expressed as function of N as it is
shown in Table 2.1, which is obtained from the literature [22].

order M Fτ
0 1 F1 = 1
1 3 F2 = x F3 = z

2 6 F4 = x2 F5 = xz F6 = z2

3 10 F7 = x3 F8 = x2z F9 = xz2 F10 = z3

... ... ...
N (N+1)(N+2)

2 F(N2+N+2)/2 = xN . . . F(N+1)(N+2)/2 = zN

Table 2.1: Taylor expansion polynomial terms

For instance, using this type of expansion, a third order model can be expressed
as follows:

ux = ux1 + xux2 + zux3 + x2ux4 + xzux5 + z2ux6 + x3ux7 + x2zux8 + xz2ux9 + z3ux10

uy = uy1 + xuy2 + zuy3 + x2uy4 + xzuy5 + z2uy6 + x3uy7 + x2zuy8 + xz2uy9 + z3uy10

uz = uz1 + xuz2 + zuz3 + x2uz4 + xzuz5 + z2uz6 + x3uz7 + x2zuz8 + xz2uz9 + z3uz10

(2.2)
This includes 30 generalized displacement unknowns in the cross-section. TE can
achieve higher accuracy by adding higher order terms into the equations. In this
case, the kinematics of the system are derived from constant (N = 0), linear
(N = 1), parabolic (N = 2) and cubic terms (N = 3). Some classical beam
theories, as Euler-Bernoulli and Thimoshenko, can be obtained by selecting only
some constant and linear terms of the TE [24].

2.1.2 Lagrange Expansion
LE models make use of Lagrange polynomials for the Fτ expansion functions. In the
framework of CUF, when using LE approach the cross-section is divided into sub-
domains in which 2D polynomials are employed to interpolate the unknowns over
the transverse section. There are many different types of polynomials, including
three-noded linear (L3), four-noded bilinear (L4), nine-noded quadratic (L9) or
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sixteen-noded (L16). As L9 interpolation functions are going to be implemented in
this work, its equations are here included:

Fτ = 1
4 (r2 + rrτ ) (s2 + ssτ ) , τ = 1,3,5,7,

Fτ = 1
2s

2
τ (s2 + ssτ ) (1 − r2) + 1

2r
2
τ (r2 + rrτ ) (1 − s2) , τ = 2,4,6,8

Fτ = (1 − r2) (1 − s2) τ = 9
(2.3)

in which r and s are normalized coordinates defined in the interval [-1, 1]×[-1, 1].
Terms sτ and rτ correspond to the location of the roots of the polynomial functions.
A Jacobian transformation has to be implemented to transform normalized geometry
of the subdomains into their actual geometry [25].

(a) Actual Geometry (b) Normalized Geometry

Figure 2.1: L9 Lagrange Expansion element geometry

More precision can be obtained by adopting higher order Lagrange polynomials
or by refining the cross-section with a combination of multiple subdomains.

2.1.3 Hierarchical Legendre Expansion
HLE employs a hierarchical set of Legendre-like functions. This approach is based
on an orthogonal basis of functions, which can be defined as:

L0 = 1
L1 = x

Lp = 2p−1
p
xLp−1(x) − p−1

p
Lp−2(x), p = 2,3, . . .

(2.4)
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where p is the degree of the Legendre polynomial. For a 1D space a set of
interpolated functions L̃i can be obtained as follows

L̃1(r) = 1
2(1 − r)

L̃2(r) = 1
2(1 + r)

L̃i(r) = φi−1(r), i = 3,4, . . . , p+ 1
(2.5)

where φj(r) is defined as

φj(r) =
ó

2j − 1
j

Ú r

−1
Lj−1(x)dx, j = 2,3,4, . . . (2.6)

L̃i functions for i = 1 and i = 2 correspond to linear modes whose values fall
within the range [0, 1] along the domain [−1, 1]. For any other higher order these
functions vanish on the edges of the interval and are known as internal modes [25].
The set of Legendre-like functions have inherent orthogonal properties. Therefore,
the following expression applies to them:

Ú 1

−1

dL̃i
dr

dL̃j
dr

dx = δij, for i ≥ 3 and j ≥ 1 or i ≥ 3 and j ≥ 1 (2.7)

in which δij is known as Kronecker’s delta whose values are given by:

δij =
I

1 if i = j
0 if i /= j

(2.8)

The two-dimensional set of equations used for the expansion Fτ is obtained expand-
ing the already explained formulation into a quadrilateral domain whose domain
is [-1, 1] × [-1, 1]. Three type of modes are therefore derived: nodal, edge and
internal. There are four nodal modes and they are exactly as first order Lagrange
quadrilateral polynomials [24]. These equations vanish on all nodes except for one
and are expressed as

Fτ = 1
4 (1 − rτr) (1 − sτs) τ = 1,2,3,4 (2.9)

Secondly, there are four edge modes for each polynomial degree p ≥ 2. In this case,
their edge values differ from zero just for one of the four edges of the 2D-domain.
The expansion equations which define these modes are

Fτ (r, s) = 1
2(1 − s)φp(r) τ = 5,9,13,18, . . .

Fτ (r, s) = 1
2(1 + r)φp(s) τ = 6,10,14,19, . . .

Fτ (r, s) = 1
2(1 + s)φp(r) τ = 7,11,15,20, . . .

Fτ (r, s) = 1
2(1 − r)φp(s) τ = 8,14,16,21, . . .

(2.10)
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Internal expansions result from the product of 1D internal modes. A total of
(p − 2)(p − 3)/2 polynomials of this type are obtained for p ≥ 4. The following
formulas are an example of internal expansions for p = 6:

F28(r, s) = φ4(r)φ2(s)
F29(r, s) = φ3(r)φ3(s)
F30(r, s) = φ2(r)φ4(s)

(2.11)

The precision of the Fτ Legendre-like polynomials can be increased by adopting
higher p values.

2.2 Finite element approximation

2.2.1 Constitutive equations for VSC
According to classical elasticity and due to symmetric properties, the stress and
strain tensors in reference to the global reference system (x, y, z) can be described
each with a six-term vector following the Voigt notation as:

σT =
î
σxx σyy σzz σxz σyz σxy

ï
εT =

î
εxx εyy εzz εxz εyz εxy

ï (2.12)

The relationship between the strain tensor and the displacements can be written
as:



εxx
εyy
εzz
εxz
εyz
εxy


=



∂
∂x

0 0
0 ∂

∂y
0

0 0 ∂
∂z

∂
∂z

0 ∂
∂x

0 ∂
∂z

∂
∂y

∂
∂y

∂
∂x

0




ux
uy
uz

 (2.13)

which can be expressed in a compact notation by

ε = Du (2.14)

being D the linear differential operator. In composite laminates the mechanical
properties are dependent on the fiber orientation angle. By adopting a material
reference system with axes (1, 2, 3), it is possible to obtain the following equation
given by Hooke’s law:

σm = Cεm (2.15)
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where subindex m indicates the use of the material reference system and C corre-
sponds to the stiffness matrix of the material, which is defined as:

C =



C33 C23 C13 0 0 0
C23 C22 C12 0 0 0
C13 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66


(2.16)

In this work, two kind of materials are going to be presented:

• Isotropic materials: These materials have identical elastic properties in all
directions of the 3D-space. In this case, the terms of matrix C are computed
as follows:

C11 = C22 = C33 = (1−ν)E
(1+ν)(1−2ν)

C12 = C13 = C23 = C21 = C31 = C32 = νE
(1+ν)(1−2ν)

C44 = C55 = C66 = E
2(1+ν)

(2.17)

For isotropic materials all coefficients of C are function of only two elastic
constants, E and ν, known respectively as Young modulus and Poisson ratio.

• Orthotropic materials: The elastic properties of this type of materials exhibit
two symmetry planes. In order to fully define the material, nine elastic
constants are needed. These are three Young moduli (E1, E2, E3), three
shear moduli (G12, G13, G23) and three Poisson ratios (ν12, ν13, ν23). Then, C
coefficients are obtained with the following formulae:

C11 = E1(1−ν23ν32)
β

, C12 = E1(ν21+ν23ν31)
β

, C13 = E1(ν31+ν21ν32)
β

C21 = E2(ν12+ν13ν32)
β

, C22 = E2(1−ν13ν31)
β

, C23 = E2(ν32+ν12ν31)
β

C31 = E3(ν13+ν12ν23)
β

, C32 = E3(ν23+ν13ν21)
β

, C33 = E3(1−ν12ν21)
β

C44 = G21, C55 = G31, C66 = G23

(2.18)

where the parameter β is obtained by the following relation:

β = 1 − ν12ν21 − ν23ν32 − ν13ν31 − 2ν21ν32ν13 (2.19)
Due to the orthogonal symmetric properties the following relations are satisfied:

νij
Ei

= νji
Ej

imply C12 = C21, C13 = C31, C23 = C32 (2.20)

16



Layer-wise models of laminated VAT panels

In both above-explained cases, the stiffness matrix is defined using material reference
system. To translate the matrix into the global reference frame two angles are
necessary, θ and φ. These angles correspond to the rotation of the material axes in
relation to the global axes, as in Figure 2.2. In this work, material axis 3 is defined
always parallel to the fiber orientation while 1 and 2 define the out-of-plane and
in-plane directions of the fiber transverse section. Stress and strain vectors can be
translated from one reference frame to another using a transformation matrix T:

σ = Tσm
ε = Tεm

(2.21)

in which the coefficients terms of matrix T are function of angles θ and φ. Matrix
T is not reported herein, but can be found in the book by Reddy [26]. Finally,
Hooke’s law in the global coordinate system can be expressed as:

σ = TCTTε = C̃ε (2.22)

Each coefficient of C̃ is computed with the elastic constants of the material and is
function of the fiber orientation angles, θ and φ. C̃ij expressions are here omitted
for the sake of brevity, but can be found in the paper by Carrera and Filippi [27].

Figure 2.2: Fiber rotation angles

In the case of VSC, the fiber orientation angle varies point-wise within the ply.
Therefore, the fiber angle can be expressed as a function of the in-plane cartesian
coordinates, θ(x, y), as it is shown in Figure 2.3. For this reason, the rotation
matrix T is dependent on the point coordinates as well. Equation (2.22) is redefined
as:

σ = T(x, y)CTT (x, y)ε = C̃(x, y)ε (2.23)
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Figure 2.3: Fiber orientation angle on VAT

2.2.2 Finite Element Formulation
On this dissertation, Finite Elements (FE) formulation has been chosen for the
analysis of VSC structures. It has been proven that the coupling of FE and 1D
CUF-based theories constitute a powerful analysis tool for VAT composite laminates
[11, 28, 29, 30]. Using FEM, the generalized displacement at any point of the 1D
axis can be described as

uτ (y) = Ni(y)uτi, i = 1,2, . . . , ne, (2.24)

where Ni is a 1D shape function, ne is the number of nodes per element and the
unknown nodal vector uτi is defined as

uτi =
î
uxτi uyτi uzτi

ïT
(2.25)

To define the shape functions applied on the longitudinal axis, also named beam
axis, Lagrange beam elements are usually employed. The polynomials which
describe this kind of elements are obtained by the formula

Ni(ξ) =
rbÙ

i=1,i /=j

ξ − ξi

ξj − ξi
with

I
j = 1, . . . , ne
−1 ≤ ξ ≤ 1 (2.26)

in which rb is the order or the Lagrange polynomial. An important property of
these polynomials is that its roots (ξi) are equidistant. Lagrange shape functions
for two-node (B2), three-node (B3) and four-node (B4) beam elements can be
found in [22]. Cubic element B4 formulation is here included as it will be employed
on the case analysis of the present work:

N1 = − 9
16

1
ξ + 1

3

2 1
ξ − 1

3

2
(ξ − 1), N2 = 9

16

1
ξ + 1

3

2 1
ξ − 1

3

2
(ξ + 1),

N3 = +27
16(ξ + 1)

1
ξ − 1

3

2
(ξ − 1), N4 = −27

16(ξ + 1)
1
ξ + 1

3

2
(ξ − 1),

(2.27)
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Finally, introducing Equation (2.24) into Equation (2.1), the displacement field
results:

u(x, y, z) = Fτ (x, z)Ni(y)uτi, τ = 1,2, . . . ,M i = 1,2, . . . , ne (2.28)

(a) B4 element (b) B4 Shape Functions

Figure 2.4: B4 (four-node) Lagrange beam element for the longitudinal direction and its
shape functions

2.2.3 Principle of virtual displacements
The equations that govern the FE problem are obtained by means of the principle
of virtual displacements (PVD). PVD states that it is a necessary condition for
the equilibrium of a structure that the virtual variation of the internal work has
to be equal to the virtual variation of the work of external forces and the virtual
variation of inertial volume forces. This equality is stated as:

δLint = δLext + δLine (2.29)

All terms of Equation (2.29) can be written in a compacted notation as follows:

δLint = δuTsjK
τsijuτi,

δLine = −δuTsjM ijτsüτi, τ, s = 1,2, . . . ,M i, j = 1,2, . . . , ne

δLext = δuTsjP
sj

(2.30)
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whereKτsij is a 3 x 3 matrix that constitutes the FN of the stiffness matrix,M ijτs

corresponds to the FN of the mass matrix of the FE, and P sj is a vector which
contains the components of external forces concentrated on each element and üτi is
the vector of nodal acceleration values. It is important to state thatKτsij terms are
independent from the type and the order of the structural theory chosen, being this
one of the main advantages of the appliance of CUF. For the sake of completeness,
the equations to obtain the coefficients of the FN stiffness matrix for an orthotropic
material are here included:

Kτsij
xx = åC22IijEτ,xs,x + åC44IijEτ,zs,z + åC26Iij,yEτ,xs + åC26Ii,yjEτs,x + åC66Ii,yj,yEτs

Kτsij
xy = åC23Iij,yEτ,xs + åC45IijEτ,zs,z + åC26IijEτ,xs,x + åC36Ii,yj,yEτs + åC66Ii,yjEτs,x

Kτsij
xz = åC12IijEτ,xs,z + åC44IijEτ,zs,x + åC45Iij,yEτ,zs + åC16Ii,yjEτs,z

Kτsij
yx = åC23Ii,yjEτs,x + åC45IijEτ,zs,z + åC26IijEτ,xs,x + åC36Ii,yj,yEτs + åC66Iij,yEτ,xs

Kτsij
yy = åC33Ii,yj,yEτs + åC55IijEτ,zs,z + åC36Iij,yEτ,xs + åC36Ii,yjEτs,x + åC66IijEτ,xs,x

Kτsij
yz = åC13Ii,yjEτs,z + åC55Iij,yEτ,zs + åC45IijEτ,zs,x + åC16IijEτ,xs,z

Kτsij
zx = åC12IijEτ,zs,x + åC44IijEτ,xs,z + åC45Ii,yjEτs,z + åC16Iij,yEτ,zs

Kτsij
zy = åC13Iij,yEτ,zs + åC55Ii,yjEτs,z + åC45IijEτ,xs,z + åC16IijEτ,zs,x

Kτsij
zz = åC11IijEτ,zs,z + åC44IijEτ,xs,x + åC55Ii,yj,yEτs + åC45Iij,yEτ,xs + åC45Ii,yjEτs,x

(2.31)
where E and I terms are computed by resolving the following integral equations:

Eτ,xs,x =
s
Ω Fτ,xFs,xdΩ, Eτ,zs,z =

s
Ω Fτ,zFs,zdΩ, Eτs =

s
Ω FτFsdΩ,

Eτ,xs,z =
s

Ω Fτ,xFs,zdΩ, Eτ,zs,x =
s

Ω Fτ,zFs,xdΩ, Eτ,xs =
s

Ω Fτ,xFsdΩ,
Eτs,x =

s
Ω FτFs,xdΩ, Eτ,zs =

s
Ω Fτ,zFsdΩ, Eτs,z =

s
Ω FτFs,zdΩ,

(2.32)

Iij =
s
lNiNj dy Iij,y =

s
lNiNj,y dy

Ii,yj =
s
lNi,yNj dy Ii,yj,y =

s
lNi,yNj,y dy

(2.33)

being l the plate’s length on the longitudinal direction. On the other hand, the
mass matrix is diagonal, which means that only terms on the diagonal are not null.
This diagonal coefficients can be computed with the formula:

Mijτs
xx = Mijτs

yy = Mijτs
zz = ρ

Ú
l
NiNjdy

Ú
Ω
FτFsdΩ (2.34)

Only constant density (ρ) components are going to be here considered.
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Finally, by substituting Equation (2.30) in Equation (2.29) the following expres-
sion is obtained:

δuTsjM
ijτsüτi + δuTsjK

τsijuτi = δuTsjP
sj (2.35)

2.2.4 Static analysis
The static analysis is the first FE problem which is going to be here considered.
The equilibrium state of the structure implies that the nodal acceleration vector,
üτi, is null. Taking this into consideration, the FE problem governing Equation
(2.35) can be written as:

δuTsjK
τsijuτi = δuTsjP

sj (2.36)
in which uTsj term can be omitted from both sides, obtaining the following equation:

Kτsijuτi = P sj (2.37)
The unknowns of the analysis are the displacements uτi. These can be obtained by
simply resolving the system:

uτi = Kτsij−1
P sj (2.38)

2.2.5 Linearized buckling analysis
The second analysis here presented is a linearized buckling analysis. The equations
that govern this analysis are also obtained from the PVD. The following expression
is obtained from the Lint term of Equation (2.30):

δ2 (Lint) = δuTsjK
ijτs
T δuτi (2.39)

where Kijτs
T corresponds to the tangent stiffness matrix of the structure under

investigation. In order to get to the buckling problem solution it is needed to seek
for bifurcations and limit points of the equilibrium state [5]. In other words, it is
resolved by solving the following problem:

|KT | = 0 (2.40)
The problem is here linearized, obtaining the following equation:

δ2 (Lint) ∼= δuTsj
1
Kijτs

0 + Kijτs
σ

2
δuτi (2.41)

in which Kijτs
0 and Kijτs

σ are respectively the FN of the linear and the geometric
stiffness matrix or pre-stress stiffness. The equations needed to compute the
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coefficients of the later, can be found in [31]. Finally, applying the linearized
approach the buckling problem is defined as follows:

|KT + λcrKσ| = 0 (2.42)

The resolution of the system provide the critical buckling loads, λcr. Later in this
paper, the effect of uncertainty factors on these critical loads will be investigated.

2.3 ESL vs LW modeling techniques

In this section two different approaches are going to be presented for modeling the
composite structure. The first one is known as Equivalent single layer (ESL). When
applying ESL, the composite is modelled as a single layer whose stiffness matrix of
the structure is computed by summing the contributions of all the plies. Therefore,
it results in a unique layer with homogenized variables over its cross-section. A
representation of CUF application for ESL is shown in Figure 2.5.

Figure 2.5: Equivalent single layer assembly procedure of the stiffness matrix

The material coefficients can be computed for the ESL approach with the
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following formula:

Eτ(,x)(,z)s(,x)(,z) =
nkØ
k=1

C̃k(x, y)
Ú
b

Ú zkt

zk
b

Fτ(,x)(,z)Fs(,x)(,z)dzdx (2.43)

where nk is the number of layers on the composite, zkb and zkt are respectively
the z coordinates of the bottom and the top of the layer k and b is the layer
width. Finally, eventual partial derivatives are indicated by the subindexes between
brackets.

The second approach corresponds to the Layer-Wise (LW) modeling. In this
case, the variables of all layers are studied separately. Also the contribution of
each layer to the structure stiffness matrix is considered independently. Then, a
condition of continuity on the displacement field between layers is imposed as:

uktop = uk+1
bottom (2.44)

where k is again referred to the layer numbering. This relation establishes that the
displacement values of the points in a common side of two adjacent plies are equal.
A representation of the LW approach is described in Figure 2.6:

Figure 2.6: Layer-wise assembly procedure of the stiffness matrix

The following formula, included as an example, allows the computation of the
matrix stiffness coefficients when applying LW approach based on LE for the
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cross-section expansion:

Ek
τ(,x)(,z)s(,x)(,z)

= C̃k(x, y)
Ú 1

−1

Ú 1

−1
Fτ(,r)(s)Fs(,r)(s) |JΩk | drds (2.45)

in which JΩk corresponds to the Jacobian transformation matrix for the subdomain
Ωk. This matrix allows the transformation between expansion natural coordinates
(r, s) into cartesian (x, z) system.

Despite the fact that both approaches can be modelled using TE, LE and HLE
(among others) expansions, for practical reasons, TE is preferred for ESL while LE
and HLE are usually employed for LW. The application of LE and HLE in LW is
more convenient due to the cross-section division into subdomains, which allow the
layer-wise modeling for the analysis. The application of the ESL approach allows
the resolution of the FE problem with a low computational cost as it just considers
one single layer for the analysis. However, the main disadvantage of the method
is the lack of capability to describe intrinsic effects of each layer specifically, due
to the homogenization process. For this reason, LW approach is preferred, as it
allows us to model each layer independently, with its own characteristics, defects
or other factors of interest.
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Chapter 3

Micro-mechanics

VSCs are complex structures which are normally affected by factors and defects on
its microstructure. Variability on the fiber volume fraction (FVF), void content
on the material or the presence of multiple phases in the composition are some
examples of factors affecting the structure on a micro-scale level. The analysis
performed in this work aims to take into account microstructure details and their
effect on the global structure. For this purpose, the approach of the mechanics of
structure genome (MSG) is herein adopted, where the global structure is divided
into structure genomes. These are the smallest mathematical building blocks which
can be defined within the structure.

MSG micromechanics theory allows a precise resolution of the unit cell (UC)
problem, decoupling the multi-scale of the problem into global and local analyses.
The main goals pursued in the microstructure’s study are two:

1. Obtain the stiffness properties of the homogenized UC, which can be later
applied for the global analysis of the structure.

2. Recover the local fields of displacements, stress or strain over the volume of
the UC from the outputs of the global solution.

In the following section, the UC selected for our VSC is going to be presented,
together with its formulation.

3.1 Unit Cells
A unit cell (UC) is defined as the minimum geometrical arrangement of the materials
that is repeated all over the structure. It must contain all the necessary information
as to be able to identify the material properties at the macro-scale. In order to
find the proper UC which defines VSC, special attention is payed into the fiber and
epoxy matrix distribution along the layers of the composite. Then, an assumption
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is made for which the fibers follow a regular and periodic pattern, allowing the
identification of the UC, which in the case of VSC coincides with the structure
genome. Figure 3.1 shows an example of an structure with an heterogeneous
composition and periodically repeated cells from which a UC has been identified.

Figure 3.1: Heterogeneous material with periodically repeated cells. Extracted from [25]

In order to proceed with the multi-scale analysis it is necessary to define
the coordinate systems for the global coordinate system, from now on named
x = {x1, x2, x3}, and the local reference system for the UC, y = {y1, y2, y3}.
Both coordinate systems are related to each other through a scaling parameter δ,
characteristic of the UC dimension, as follows:

yi = xi
δ

(3.1)

An important property is that the average of the local values over the UC
volume correspond with the values obtained from the global solution. Therefore, it
is possible to write:

1
V

Ú
V
φi(x,y)dV = φ̄i(x) i = 1,2,3, (3.2)

where φ represents a generic field from the solutions of the studied problem, V
is the volume of the UC and φ̄ is the field average value over the volume. The
connection between the different neighbouring UC is defined by periodic boundary
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conditions whose mathematical expressions are:

φi
1
x1, x2, x3; d1

2 , y2, y3
2

= φi
1
x1 + d1, x2, x3; −d1

2 , y2, y3
2

φi
1
x1, x2, x3; y1,

d2
2 , y3

2
= φi

1
x1, x2 + d2, x3; y1,−d2

2 , y3
2

φi
1
x1, x2, x3; y1, y2,

d3
2

2
= φi

1
x1, x2, x3 + d3; y1, y2,−d3

2

2 (3.3)

in which d1, d2 and d3 define the dimensions of the studied UC, as shown in Figure
3.1. For the VSCs of this study, the UC consists of a square pack microstructure
as it can be seen in Figure 3.2. The UC lay-up is a cubic domain of epoxy that
contains in its center the fiber reinforcement, which has a circular cross-section.

Figure 3.2: Unit cell consisting on a circular transverse-section fiber surrounded by a
portion of epoxy matrix

3.2 Variational Asymptotic Method
MSG applies the variational asymptotic method (VAM) in order to solve the
structural problem of the UCs. This method computes stationary points of a
functional given a certain variational statement. In our case, this functional of the
stationary problem which has to be minimized, denoted as Π, corresponds to the
difference between the strain energies of the UC and the equivalent homogenized
material. Functional Π can be expressed with the following formulation:

Π = 1
V

Ú
V

1
2CijklεijεkldV − 1

2C∗
ijklε̄ij ε̄kl =

=1
2Cijklεijεkl

>
− 1

2C
∗
ijklε̄ij ε̄kl (3.4)

where the first term of the equation corresponds to the heterogeneous microstruc-
ture strain energy average and the second is the strain energy of the equivalent
homogenized material. From now on, the volume average integral 1

V

s
V •dV will

be denoted as é•ê. The other parameters correspond to the elastic tensors (Cijkl),
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strain tensors (ε) and global strains (ε̄). Then, local displacements can be written
as:

ui(x;y) = ūi(x) + δχi(x;y) (3.5)

in which χi are local fluctuation functions. These are multiplied by the scaling
parameter δ. After applying derivatives to Equation (3.5) and neglecting smaller
terms the local strain function is derived as:

εij(x;y) = εij(x) + χ(i,j)(x;y) (3.6)

Then, the following constraints are applied:

ūi = éuiê ε̄ij = éεê éχiê = 0
e
χ(i,j)

f
= 0 (3.7)

Therefore, considering the homogenized structure as invariable, the functional can
be written as:

Π1 = 1
2
e
Cijkl

1
ε̄ij + χ(i,j)

2 1
ε̄kl + χ(k,l)

2f
(3.8)

Then, the MSG problem consists on finding the χ functions that minimize Π1.

3.3 VAM and FE methods
To resolve the UC-problem, FE methods and CUF-based theories are again applied.
For that purpose, the local coordinate axes are defined as in Figure 3.2. The
fluctuation unknowns are expanded over the UC cross-section using expansion
functions, Fτ , as follows:

χ (x; y1, y2, y3) = Fτ (y2, y3)χτ (x; y1) τ = 1,2, . . . ,M (3.9)

in which χτ stands for the vector of generalized unknowns along y1-direction.
The analysis is performed from a component wise (CW) perspective, modeling
independently the kinematics of the two materials: fiber reinforcement and matrix
resin. The expansion over the plane y2y3 uses HLE polynomials. Therefore, the
cross-section is divided into subdomains. On the other hand, the discretization of
the longitudinal axis employs Lagrangian beam elements as the ones employed in
Chapter 2. For that reason, the χτ are interpolated along the beam direction in
the following way:

χτ (x; y1) = Ni (y1)χτi(x) i = 1,2, . . . , n (3.10)
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where χτi and n are respectively the vector of nodal unknowns and the number of
Lagrangian beam nodes. For the beam element, the following geometrical relations
apply:

ε = ε+ Dχ (3.11)
where the global strains are:

εT =
î
ε̄11 ε̄22 ε̄33 2ε̄23 2ε̄13 2ε̄12

ï
(3.12)

and D is a differential operator which can be described as:

D =



∂
∂y1

0 0
0 ∂

∂y2
0

0 0 ∂
∂y3

0 ∂
∂y3

∂
∂y2

∂
∂y3

0 ∂
∂y1

∂
∂y2

∂
∂y1

0


(3.13)

After introducing the FE formulation, the functional described in Equation (3.8)
can be written now as:

Π∗
1 = 1

2

Ú
V

(ε+ Dχ)T C̃(ε+ Dχ)dV (3.14)

The periodic boundary conditions presented on Equation (3.3) imply:

χτ1 = χτn τ = 1,2, . . . ,M (3.15)
being 1 and n the first and last nodes. An important aspect of this implementation
is that the problem solutions are constant along the beam axis, which means that
a B2 Lagrange element is enough for the interpolation in the Y1-direction, without
suffering a loss of accuracy. Finally, the functional Π∗

1 can be rewritten as:

Π∗
1 = 1

2
1
χTsjE

τsijχτi + 2χTsjDτi
hεε+ εTDεεε

2
(3.16)

where Eτsij and Dsj
hε are respectively 3 × 3 and 3 × 6 matrices which constitute

the fundamental nuclei of the UC-problem. Dεε is a 6 × 6 matrix that corresponds
to the effective stiffness matrix of the material by volume average. The expressions
of these matrices can be written as:

Eτsij =
s
l

s
Ω (D (FτNiI))T C̃D (FsNjI) dΩdy1

Dτi
hε =

s
l

s
Ω (D (FτNiI3))T C̃dΩdy1

Dεε =
s
l

s
Ω C̃dΩdy1

(3.17)
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where l stands for the length of the UC on the beam axis and I is a 3 × 3 identity
matrix. Here, the coefficient expressions of matrix Eτsij are equal to the ones of
matrix Kτsij, introduced in Chapter 2. On the other hand, the formulas to obtain
the terms of matrix Dτi

hε are the following:

Dτi
hε11 = C̃11

s
lNi,y1 dy1

s
Ω FτdΩ Dτi

hε12 = C̃12
s
lNi,y1 dy1

s
Ω FτdΩ

Dτi
hε13 = C̃13

s
lNi,y1 dy1

s
Ω FτdΩ Dτi

hε14 = 0
Dτi
hε15 = C̃55

s
lNi dy1

s
Ω Fτ,zdΩ Dτi

hε16 = C̃66
s
lNi dy1

s
Ω Fτ,xdΩ

Dτi
hε21 = C̃12

s
lNi dy1

s
Ω Fτ,xdΩ Dτi

hε22 = C̃22
s
lNi dy1

s
Ω Fτ,xdΩ

Dτi
hε23 = C̃23

s
lNi dy1

s
Ω Fτ,xdΩ Dτi

hε24 = C̃44
s
lNi dy1

s
Ω Fτ,zdΩ

Dτi
hε25 = 0 Dτi

hε26 = C̃66
s
lNi,y1 dy1

s
Ω FτdΩ

Dτi
hε31 = C̃13

s
lNi dy1

s
Ω Fτ,zdΩ Dτi

hε32 = C̃23
s
lNi dy1

s
Ω Fτ,zdΩ

Dτi
hε33 = C̃33

s
lNi dy1

s
Ω Fτ,zdΩ Dτi

hε34 = C̃44
s
lNi dy1

s
Ω Fτ,xdΩ

Dτi
hε25 = C̃55

s
lNi,y1 dy1

s
Ω FτdΩ Dτi

hε26 = 0

(3.18)

Finally, the expression which gives the minimum value of the functional is
obtained. Taking into account that χτi is a linear function of ε, the linear system
of equations can be written as:

Eτsijχτi0 = −Dτi
hε (3.19)

in which the fluctuation solutions are found in the 3 × 6 matrix χτi0.

3.4 Cross-section mapping
Occasionally, standard isoparametric elements which are used to define the cross-
section fail to define curved geometries. One advantage of employing HLE as
Fτ is the ability to represent curved boundaries by means of non-isoparametric
techniques. In our case, it is of great importance to properly define the geometry
of the UC, which contains curved boundaries for the fiber reinforcement (Figure
3.2), in order to precisely apply the CW approach. The correct representation
of the geometry can be achieved with the help of mapping functions, Q, whose
role is to define the curved boundaries when transforming the domain from the
normalized (r, s) to the global coordinates (x, z), as shown in Figure 3.3. Therefore,
cross-section coordinates can be written as:

x = Qx(r, s)
z = Qz(r, s)

(3.20)

A review on some possible mapping techniques is going to be now presented:
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Figure 3.3: Transformation to the global coordinate system using mapping functions.
Extracted from [25]

3.4.1 First order mapping

These mapping functions make use of linear expansion functions. Boundaries are
approximated using piece-wise linear curves. The following expressions correspond
to a first order mapping of a four node subdomain:

x = Qx(r, s) =1
4(1 − r)(1 − s)X1 + 1

4(1 + r)(1 − s)X2

+ 1
4(1 + r)(1 + s)X3 + 1

4(1 − r)(1 + s)X4

z = Qz(r, s) =1
4(1 − r)(1 − s)Z1 + 1

4(1 + r)(1 − s)Z2

+ 1
4(1 + r)(1 + s)Z3 + 1

4(1 − r)(1 + s)Z4

(3.21)

where (Xi, Zi) indicate the vertex of the subdomain. This kind of mapping is not
suitable for representing curved boundaries.

3.4.2 Second order mapping

Second order mapping employs quadratic Lagrangian polynomials as mapping
functions. By using a parabolic approximation the error when representing curved
lines is reduced. The description of the Lagrangian polynomials can be found in
Chapter 2 of this dissertation.
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3.4.3 Blending function method
The last mapping technique which is presented is the blending function method
(BFM). This method is able to reproduce the exact geometry of the cross-section by
generating non-isoparametric HLE domains. For this purpose, a pair of parametric
functions are defined for each edge of the domain. For example, taking the geometry
of Figure 3.3, the domain edge (X2X3, Z2Z3) is described by functions x = x2(s)
and z = z2(s) for defining the curved feature. This equations can be read as:

x2(s) = ax + bxs+ cxs
2 + dxs

3

z2(s) = az + bzs+ czs
2 + dzs

3 (3.22)

where the following conditions are imposed:

x2(−1) = X2, x2(1) = X3

z2(−1) = Z2, z2(1) = Z3
(3.23)

leading to the following expressions:

x = Qx(r, s) = Fτ (r, s)Xτ +
1
x2(s) −

1
1−s

2 X2 + 1+s
2 X3

22
1+r

2

z = Qz(r, s) = Fτ (r, s)Zτ +
1
z2(s) −

1
1−s

2 Z2 + 1+s
2 Z3

22
1+r

2

(3.24)

where Fτ corresponds to the first-order mapping and (1 + r)/2 is named blending
function. This last term imposes the vanishing of the transformation on the opposite
edge of the domain. Finally, applying this formulation to all domain edges results
in:

x = Qx(r, s) =1
2(1 − s)x1(r) + 1

2(1 + r)x2(s) + 1
2(1 + s)x3(r)

+ 1
2(1 − r)x4(s) − Fτ (r, s)Xτ

z = Qz(r, s) =1
2(1 − s)z1(r) + 1

2(1 + r)z2(s) + 1
2(1 + s)z3(r)

+ 1
2(1 − r)z4(s) − Fτ (r, s)Zτ

(3.25)

Therefore, the actual geometry of the domain is captured as shown in Figure 3.4.
The accuracy of the method relies on the order of the polynomials. It is decided to
employ BFM in this work with the aim of describing the microstructure geometry
of VSCs unit cells.
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Figure 3.4: Actual geometry of the cross-section achieved via BFM. Figure obtained from
[25]

3.5 Equivalent stiffness properties and local field
recovery

One important aspect of the UC-problem is that allows one to obtain the effective
properties or equivalent properties of an homogenized UC. By imposing equal
values of energy stored in the heterogeneous material as in the homogenized one,
the following equation is obtained:

C̃∗ = 1
V

1
χTsj0D

sj
hε +Dεε

2
(3.26)

where matrix C̃∗ stands for the stiffness matrix of the equivalent homogenized
volume.

Once the structural stationary problem is solved, local stresses can be computed
from Hooke’s law, σ = C̃∗ε, by introducing the local strains with the fluctuation
solutions:

ε = ε+ D (FτNiχτi0ε) (3.27)

Further knowledge about the implementation of the microstructure formulation
developed in this chapter can be found in the works by A.G. de Miguel et al. [25,
32].

33



Chapter 4

Defect uncertainty
quantification

4.1 Multi-scale Uncertainty Analysis
All manufacturing processes are affected by small variations that can introduce
uncertainty into the final properties and characteristics of the manufactured com-
ponents. AFP is not an exception and VSCs are not exempt from uncertainty
issues. However, uncertainty detrimental effects can be reduced by taking them
into account during the design stage of the components. Therefore, it is of great
importance to introduce uncertainty in the design analysis in order to obtain robust
designs, which are relatively insensitive to it.

Uncertainties may affect VSCs in many different ways. In this work, special
attention is payed to manufacturing induced variability at a micro-scale level,
affecting the FVF. As it was explained in Chapter 3, this parameter governs the
cross-section fiber-matrix proportion of the UC defined for the our VSCs in Figure
3.2. Different values of FVF lead to different mechanical and material properties of
the homogenized UC, which later affects the properties of the global structure.

The procedure applied in this study is the following:

• Firstly, uncertainty affecting the micro-scale parameter FVF within each ply
is modelled as a random field.

• Secondly, expressions of the material and mechanical properties for the homog-
enized UC are obtained by applying regression methods to the UC-problem.
It allows the computation of the UC homogenized properties as a regression
function only of the FVF parameter.

• FVF random field is sampled on the Gauss integration points of the ply.
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Properties in each of the points are calculated employing the above-mentioned
regression functions and these values are used to compute the FE matrices.

• The procedure is repeated for each VSC ply separately. At the end, the layer-
wise modelled final structure is obtained, with the micro-scale uncertainty
effects integrated in the FE matrices.

• Then, a Monte Carlo analysis is performed in order to characterise the lin-
earized buckling response. VSC macro-scale buckling response data is gathered
and uncertainty effects investigated.

• Finally, the local fields at the micro-scale are recovered from the static solution
of the global problem.

Figure 4.1: Scheme of the multi-scale problem

4.2 Modeling uncertainty
Due to the nature of uncertainty, it is practically impossible to predict exactly
how it will affect the component. For this reason, a common way of modeling it is
by means of stochastic or random fields. These fields generate random variations
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on the parameters which are later spread over the ply surface. There are many
different ways to generate stochastic fields [33]. In this work, a similar procedure as
one from the literature is reproduced. The formulation herein applied is therefore
based on the work by Guimarães et al. [19].

4.2.1 Random field
Random fields are developed to define FVF values all over the VSC plies. In this
study, the generated stochastic field is intended to behave as a normal distribution
with mean value µ and standard deviation σ. The µ value corresponds to the
expected nominal value of FVF, which is defined during the design. On the other
hand, σ regulates the field dispersion. This last parameter has to be defined
according to the dispersion level of the actual manufacturing process variability.

A new reference system is employed to model random fields. To obtain the new
coordinates (α, β), it is necessary to transform the global coordinates of the ply
points, (x, y), making them dimensionless. Parameters α and β are defined as:

α = 2x/a and β = 2y/b (4.1)
where a and b are the side lengths of the VSC plate. The new dimensionless
coordinate system origin is placed at the center of the plate geometry. Therefore,
all VSC plate points are contained in the domain [-1,1]×[-1,1]. According to this
new reference system, the FVF stochastic field can be expressed as:

ΨFV F (α, β;ω) = ΨFV F + σ∆ΨFV F (α, β;ω) (4.2)
in which ω is a variable associated to each stochastic experiment of the space of
random events Ω. The first term, ΨFV F , corresponds to the gaussian mean value
µ or expected FVF nominal value. The second one, ∆ΨFV F (α, β;ω) is a random
zero-mean Gaussian, which introduces variability on the field ΨFV F as a function
of the geometrical position (α, β) of each point inside the VSC plate.

4.2.2 Karhunen-Loeve Expansion
To model the space-distributed random field, the Karhunen-Loeve Expansion (KLE)
is employed. According to this approach, ΨFV F values are approximated by means
of the eigenvalues and eigenfunctions of the covariance function ρ(X1,X2), in which
X1 = (α, β) and X2 = (αÍ, βÍ) are two generic points of the plate. By definition,
ρ(X1,X2) is a bounded, symmetric and positive definite function which can be
expressed as its spectral decomposition:

ρ (X1,X2) =
∞Ø
i=0

λihi (X1)hi (X2) (4.3)
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where λi and hi are respectively the eigenvalues and eigenfunctions of the covariance
kernel which can be obtained by solving the following integral eigenvalue problem:Ú

D
ρ (X1,X2)h (X2) dX2 = λh (X1) (4.4)

which is a second kind homogeneous Fredholm integral. With KLE, the term of
Equation (4.2), ∆ΨFV F (α, β, ω), can be written as:

∆ΨFV F (α, β;ω) =
∞Ø
i=1

ξi(ω)
ñ
λihi(α, β) (4.5)

By truncating the series to the Kth term of the expansion, the integral problem of
Equation (4.4), on the dimensionless domain previously defined, can be expressed
as:

Ú 1

−1

Ú 1

−1
ρ(α, β, αÍ, βÍ)hi(αÍ, βÍ)dαÍdβÍ = λihi(α, β) i = 1,2, ..., K (4.6)

and Equation (4.5) can be approximated as:

∆ΨFV F (α, β;ω) =
KØ
i=1

ξi(ω)
ñ
λihi(α, β) (4.7)

Here, K is the number of terms on the truncated KLE and ξi corresponds to a set
of K random numbers obtained from a Gaussian zero-mean normal.

There are many possible function types which can be selected as covariance
function. Exponential functions are usually employed on the literature for this
purpose. In this work, the following exponential function, obtained from [19], is
applied:

ρ(α, β, αÍ, βÍ) = exp
A

−|α− αÍ|
l̄x

− |β − βÍ|
l̄y

B
(4.8)

in which
l̄x = lx/a, l̄y = ly/b (4.9)

where l̄x and l̄y are the dimensionless correlation distance parameters. It is impor-
tant to state that in this study, the correlation distance value is equal for both x
and y dimensions. This results in an isotropic variation of the random field. The
use of the correlation equation implies that high correlated points, which are the
ones that are close to each other, will have similar field values, whereas points
being far apart will have a larger field value difference.
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Finally, the stochastic field for the FVF, employing KLE, can be written as:

ΨFV F (α, β;ω) = ΨFV F + σ
KØ
i=1

ξi(ω)
ñ
λihi(α, β) (4.10)

Figure 4.2: Stochastic field ΨFV F (α, β;ω) expanded over a ply using KLE with parameters
(ΨFV F , σ) = (0.6, 0.02)

The random field is therefore described by the following parameters:

• ΨFV F : corresponds to the expected nominal value of FVF. It can also be
named µ as it coincides with the mean value of the gaussian field.

• σ: this parameter regulates the dispersion level of the field. It has to be
selected by the designer based on experience.

• λ and h(α, β): respectively, eigenvalues and eigenfunctions calculated from
the Fredholm integral, see Equation (4.4).

• ξi: a set of K random values sampled from N(0, 1) gaussian distributions.

Further knowledge about KLE can be found in the book by Ghanem and Spanos
[34].

38



Defect uncertainty quantification

4.2.3 Latin Hypercube Sampling Method
As it was presented in the previous section, ξi vector is a set of K values sampled
from a N(0,1) normal distribution. In order to ensure that the sampling process is
properly and efficiently done, Latin Hypercube Sampling (LHS) is applied.

LHS divides the probability space of the uncertain parameter ξ into NT segments
with equal probability. NT is equal to the sample size, which in our case coincides
with K, the number of terms of the KLE. Therefore, the probability of each segment
is 1/K.
ξi values are computed by sampling once on each of the equally-probable range

segments. Additionally, paring methods are applied in order to obtain LHS schemes
with the proper stochastic correlation. Otherwise sampled values could be linearly
correlated.

The use of LHS is motivated by its capability to provide, in comparison to
classical random sampling methods, a more accurate description of the employed
input probability density function (PDF) tails and for yielding statistic estimators
which present lower standard deviation [35].

4.2.4 Coupling random field and FEM
Once the stochastic field is designed, it is possible to generate a random distribution
of FVF over the ply. ΨFV F is a function of the in-plane ply dimensionless coordinates
(α, β). The random variability effect is introduced in the FE model when computing
the material and stiffness matrices for each element in the model mesh. For this
purpose, equations which describe the variation of the homogenized orthotropic
material properties with the FVF of each point within a laminate are obtained
via regression analysis of the UC-problem. A polynomial fitting process is applied,
obtaining the now point-wise varying material properties.

Regression functions
E11 (ψFvF ) E11(α, β)
E22 (ψFvF ) with ψFV F (α, β) =⇒ E22(α, β)
G12 (ψFvF ) G12(α, β)

... ...

(4.11)

These expressions are used to couple the random field and the FE analysis.
When the stiffness matrices of the elements are computed, the material properties
are obtained evaluating the mentioned equations in the Gauss integration points
and are employed in the calculation process of the matrices.

This method has the ability to introduce the modifications of the properties
of the element without having to modify the model mesh or the formulation of
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Figure 4.3: The stochastic field is sampled on the Gauss integration points and the values
are employed for the computation of the FE matrices

the FE problem. Therefore is considered a non-intrusive procedure. The process
is repeated for all layers using their respective random field at each, as they are
modelled independently with the LW approach.

4.3 Monte Carlo analysis for uncertainty quan-
tification

In the previous sections it has been stated that, due to its nature, uncertainty can
be modelled as a random field whose values, in our case, are related to the stochastic
parameter ξi. To quantify the effect of uncertainty in the buckling performance of
a VSC’s plate, a Monte Carlo analysis is proposed.

According to this method, many deterministic simulations are performed, em-
ploying in each of them a different random set ξi(ω). As a reminder, ω is a variable
associated to each random experiment in the space of random events Ω. The
domain Ω has to be sufficiently large (commonly between 103 and 106 simulations)
to allow a clear detection of uncertainty effects on the outputs. Then, these outputs
from all simulations are gathered and studied altogether by means of statistical
analysis.

Specifically, the stages that are going to be followed in each simulation are the
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following:

1. A stochastic field ΨFV F (α, β;ω) is obtained throughout the computation of a
ξi(ω) new value.

2. FE matrices take into account the material properties obtained with the
regression equations. The mechanical properties of the mesh elements are
defined in each simulation without modifying the model, just modifying inputs,
in a non-intrusive way.

3. A simulation is carried out and the different outputs of interest are stored.
Stress and strain fields, critical buckling loads and its correspondent deforma-
tion modes are some of the outputs which are going to be investigated.

4. The process is repeated until the total number of simulations is reached. Stored
data from all simulations is studied at the end of the Monte Carlo analysis.

At the conclusion, a statistical analysis is carried out. The usually employed
statistical tools for this matter are histograms and PDFs. The first one corresponds
to a graphical representation of data using bars, whose lengths indicate the frequency
magnitude of a discrete value. On the other hand, PDFs describe the probability
for the different output values.

(a) Histogram (b) Normal PDF

Figure 4.4: Representation of an histogram and PDF of a normal distribution

In this study, due to the Gaussian nature of the stochastic field and the linearity
of the problem, the analysis outputs are expected to behave as a normal distribution.
Therefore, some parameters of interest obtained from the outcomes are the mean
value of the distribution, µ, and its standard deviation, σ.
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4.3.1 Polynomial Chaos Expansion
Polynomial chaos expansion (PCE) is a probabilistic method which substitutes a
computational model and provides a good approximation of its output by means of
orthogonal polynomials. This method is well known due to its ability to generate a
good representation of the model output variability according to random inputs.
Therefore it has been applied in a broad range of application fields as solid mechanics,
fluid flows or thermal sciences [36].

With PCE, an output is defined as a function of the independent random vector
X, whose components are independent and can be described by a PDF, fX . The
PCE metamodel, named M, is considered to have finite variance, satisfying the
following expression:

E
è
Y 2
é

=
Ú

DX
M2(x)fX(x)dx < ∞ (4.12)

where Y is the model output which can be approximated by a series of multivariate
polynomials Ψα(X) orthonormal with respect to fX as follows:

Y = M(X) =
Ø
α∈NM

yαΨα(X) (4.13)

in which yα are the PCE coefficients and α ∈ NM corresponds to a multi-index
for identifying the multivariate polynomials. The expansion is truncated for its
realistic application, approximating the sum by a selected set of values, A ⊂ NM :

M(X) ≈ MPC(X) =
Ø
α∈A

yαΨα(X) (4.14)

The multivariate polynomials are obtained as a product of univariate orthogonal
polynomials in the following way:

Ψα(x) def=
MÙ
i=1

φ(i)
αi

(xi) (4.15)

where subindex i identifies the input variable. The employed univariate polynomials
satisfy: e

φ
(i)
j (xi) , φ(i)

k (xi)
f def=

Ú
DXi

φ
(i)
j (xi)φ(i)

k (xi) fXi (xi) dxi = δjk (4.16)

where indexes j and k are respectively the polynomial family and its degree. δjk
is the Kronecker delta which was defined previously in Chapter 2, Equation (2.8).
Due to its orthogonal relations, the multivariate polynomials have orthonormal
properties too:

éΨα(x),Ψβ(x)ê = δαβ (4.17)
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According to PCE, different orthonormal polynomial families can be employed,
depending on the random variable studied. The Askey scheme relates the random
variable distributions with the appropriate polynomial family as follows:

Type of variable Distribution Orthogonal polynomials ψk(x) basis

Uniform 1]−1,1[(x)/2 Legendre Pk(x) Pk(x)/
ñ

1
2k+1

Gaussian 1√
2πe

−x2/2 Hermite Hek(x) Hek(x)/
√
k!

Gamma xae−x1R+(x) Laguerre Lak(x) Lak(x)/
ñ

Γ(k+a+1)
k!

Beta 1]−1,1[(x) (1−x)a(1+x)b
B(a)B(b) Jacobi Ja,bk (x) Ja,bk (x)/Ja,b,k

Ĵ2
a,b,k = 2a+b+1

2k+a+b+1
Γ(k+a+1)Γ(k+b+1)
Γ(k+a+b+1)Γ(k+1)

Table 4.1: Askey scheme relating random variable distributions with its correspondent
polynomial family for PCE. Extracted from [37]

Specifically, Hermite polynomials will be employed in this study as the outputs
are expected to behave as Gaussian distributions. In the PCE model for Gaussian
distributions, the independent term of the expansion corresponds to the mean value
of the distribution µ and the sum of the square power of the other coefficients
coincides with its variance:

y0 = µ and
Ø
i=1

y2
i = σ2 (4.18)

More information about the application of PCE for uncertainty quantification can
be found in [36, 37].
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Chapter 5

Numerical results

This chapter presents all the results obtained from the performed FE analyses
of VSC plates. The main outputs of the linearized buckling analysis which are
going to be considered are the critical buckling loads, from now on referred as Fcri ,
together with their correspondent deformation modes and the stress and strain
fields.

Firstly, Section 5.1.1 presents a verification of the micro-scale UC-problem
process to obtain the homogenized material properties. The correct functioning
of this process is verified throughout comparison with results extracted from the
literature. Then, a similar process is carried out in Section 5.1.2, to verify the
proper behaviour of the employed modeling techniques at the macro-scale. For this
purpose, the buckling performance of VSC models is going to be investigated. The
first buckling critical load, Fcr1, obtained in the study is going to be compared with
the one obtained for the same VSC plate employing commercial software Abaqus.

Once this verification stage is concluded, a mesh convergence analysis is shown
in Section 5.1.3, from which the final mesh of our model is obtained. In Section
5.2, the outputs for VSC models without defects are presented. Only six Fcri and
their respective deformation modes are going to be included among the outputs.
Later, a local field recovery is going to be computed from the global solution. The
process is shown for UC located in a certain point of the structure and the local
stress components will be plotted. Finally, the uncertainty analysis for the VSC
plates is included in Section 5.3. The statistical data gathered from the Monte
Carlo analysis outputs is presented and PCE is proposed as a time-saving option
for the VSC uncertainty study.
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5.1 Model verification

5.1.1 Micro-scale verification
First of all, the process to obtain the global homogenized properties from the
UC-problem at the micro-scale is going to be verified. It is a very important
aspect to check as these properties will be later taken into account to compute
the stiffness properties of the mesh elements in our model. In order to verify this
procedure, an example case found in the literature is going to be reproduced and
then, the calculated outputs are going to be compared with the results obtained in
the example. The example used as a reference is present in the work by A. G. de
Miguel [32].

To proceed with the calculation of effective properties from the VSC UC-problem,
MUL2-UC program is going to be employed with the help of its manual [38]. Firstly,
it is necessary to indicate the material properties of the UC constituents. These
fiber reinforcement and epoxy resin material properties are extracted from the
literature example, as well as the UC geometry used in this verification study.

The UC geometry consists of a cubic cell as the one shown in Figure 3.2. The
inner cylinder corresponds to the fiber reinforcement and the material surrounding
it, to the epoxy matrix. For solving the UC-problem, MUL2-UC uses mapping
functions to describe the exact geometry of the cross-section of the UC, which can
be fully defined by the FVF parameter. This parameter establishes the surface
percentage in the cross-section area for each component present on the UC. For
example, a FVF value of 0.4 indicates that 40% of the UC cross-section area is
occupied by fiber. Figure 5.1 shows the variation of fiber area with the FVF value.

Figure 5.1: FVF parameter fully defines the geometry of the UC cross-section

Once the UC geometry is defined, the next step is introducing the material
properties of both constituents as input in the program. These material properties
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are listed on Table 5.1, whose values are expressed using the local reference system
of the UC. The carbon fiber has orthotropic material properties, while the ones for
the matrix are isotropic.

Fiber
E11[GPa] E22[GPa] G12[GPa] G23[GPa] ν12 ν23

235 14 28 5.6 0.2 0.25
Matrix

E[GPa] ν
4.8 0.34

Table 5.1: Material properties of the fiber and the epoxy matrix, extracted from the
example in [32]

In the example used for verification, the FVF value used to define the geometry
of the UC is 0.6, therefore the fiber reinforcement occupies 60% of the UC cross-
section surface. Then, the order of the HLE polynomial used for modeling the
cross-section is decided. This parameter has an influence on the accuracy of the
results. 8th-order HLE polynomials are going to be employed to ensure good
accuracy in the calculus. All this data is introduced as input into the program,
which now has all the needed parameters to proceed with the resolution of the
UC-problem applying VAM. At the conclusion of the MSG method computation,
the material effective properties which are obtained are listed on Table 5.2. These
correspond to the homogenized UC with orthotropic properties, again expressed in
its local reference system:

Effective UC material properties
E11[GPa] E22[GPa] G12[GPa] G23[GPa] ν12 ν23
143.2 9.6 6.1 3.1 0.25 0.35

Table 5.2: Equivalent material properties for the homogenized UC

These obtained homogenized properties of the UC coincide exactly with the
ones in the example from [32] in the literature, verifying that no mistakes are done
during the computational process. These material properties are the ones that will
be introduced into our VSC models in the forthcoming analyses.
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5.1.2 Macro-scale verification
A verification process of the VSC models buckling performance at the macro-scale
level is now going to be presented. In this work, two VSC plates are going to be
investigated. Both of them are composed of four equal thickness plies but with
different ply fiber orientations. The first one, from now on referred to as VSC A,
has a fiber orientation within the plies described by expression θ = [0± < 45, 0 >]s
On the other side, the second one, named VSC B, has a fiber orientation defined
by expression θ = [90± < 0, 45 >]s. Both VSCs have globally balanced fiber
orientation designs and symmetric structures.

The two VSCs models have the same plate geometry and are composed of
the same two material constituents for the matrix and fiber reinforcement. The
stiffness matrices of the models mesh elements are computed taking into account
the effective properties of the homogenized UCs at the micro-scale level. These
were already computed in the previous section and can directly be taken from
Table 5.2. These material properties are expressed in the local reference system
of the UC and have to be rotated, for each mesh element, to the global reference
system through rotation according to its respective fiber orientation angle.

The verification process will consist of carrying out a linearized buckling analysis
to the VSC models and then, the analysis results will be verified through comparison
with the ones obtained in the same analysis by the commercial software Abaqus.
The buckling simulations will have the same boundary conditions and constraints for
both VSCs. Figure 5.2 shows a drawing of the plate with the boundary conditions
applied in the analysis. These conditions are the following:

1. The VSC plate has one of its edges clamped while the others are left free-to-
deform.

2. On the opposite side of the clamped edge, a 1 N load is applied as a compression
pressure distributed all over the edge surface.

On the other hand, the geometry of the VSC plates is described with the
parameters listed on Table 5.3

VSC plate geometry
a [m] b [m] one ply thickness [mm]
0.254 0.254 0.127

Table 5.3: Geometrical properties of the VSC plate

The buckling simulations are performed with different modeling techniques. In
Table 5.4, the resulting Fcr1 is reported for LW and ESL models, together with the
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Figure 5.2: Plate with boundary conditions. F stands for free edge, C for clamped and P
corresponds to the 1N distributed load

results obtained from Abaqus. For ESL, TE is employed with different polynomial
degrees. A refined model mesh is used for the FE analysis. The table also includes
the total degrees of freedom (DOF) of each model. Later, in Section 5.1.3, a mesh
convergence analysis is carried out to find a proper mesh for the simulations which
allows to get results with precision and reducing the computational time spent.

VSC A Abaqus LW TE1 TE2 TE3
Fcr1 [N] 141.9 142.2 114.4 148.8 146.6
VSC B Abaqus LW TE1 TE2 TE3
Fcr1 [N] 25 25.8 20.9 29.5 29.4
DOF 4056 18360 360 720 1200

Table 5.4: Fcr1 values obtained by Abaqus and with the LW and ESL models

As it can be observed, the LW model provides a more accurate description of
Fcr1 than TE models, with similar values to the ones obtained by Abaqus, which is
the most precise one. However, only LW models are going to be considered in this
work as they allow to model uncertainty defects for each VSC ply independently,
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at the meso-scale level.
Finally, the deformation shape of the first mode for the investigated models are

shown in Figures 5.3 and 5.4. For both VSCs, the deformed shape is the same
as for the Abaqus model, leading to the conclusion that the models are able to
properly describe the buckling response of the VSC plates.

(a) VSC A LW model (b) VSC A TE1 model

(c) VSC A TE2 model (d) VSC A TE3 model

Figure 5.3: Comparison between the first deformation mode obtained with LW model
and TE models for VSC A

Once the verification of the model is concluded, the next step is to perform a
mesh convergence analysis. It is going to be presented in the next section.

5.1.3 Mesh convergence analysis
To select a proper meshing for the VSC, a mesh convergence analysis is carried out.
This analysis consists of repeating the buckling linearized analysis with different
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(a) VSC B LW model (b) VSC B TE1 model

(c) VSC B TE2 model (d) VSC B TE3 model

Figure 5.4: Comparison between the first deformation mode obtained with LW model
and TE models for VSC B

mesh refinements. It starts with a simple mesh and its refinement is gradually
increased with each simulation. The process continues until convergence is reached
for the first six Fcri values. As in the previous section, the material properties
assigned to the VSC models are listed in Table 5.2. After each simulation, the
obtained values of Fcri , the elapsed time and the number of degrees of freedom
(DOF) will be stored. In this analysis, not only the convergence of Fcri is going to
be relevant, but also the computational cost is an important aspect to take into
account when selecting the best mesh for the simulations.

The model geometry and the boundary conditions of the analysis are the same as
in the previous Section (see Table 5.3 and Figure 5.2). Only the pristine structure
of the plate is studied in the mesh convergence analysis. Uncertainty effects on
the micro-scale are not modelled and the FVF value remains constant and equal
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to 0.6. The material properties of the elements are oriented according to the fiber
orientation within the ply and a LW approach is employed to define the model.

For the sake of brevity, only the mesh convergence analysis of VSC A is here
presented. The meshing strategy adopted for the model is based on B4 and L9
Lagrangian elements. B4-elements are employed for describing the behaviour in
the longitudinal x-direction, and L9-elements for the cross-section expansion. In
this study, it is decided to model the cross-section of each VSC ply with only one
element in the z-direction. Therefore, during the analysis, the mesh refinement will
only be increased by increasing the element number along the y-direction.

The first part of the mesh convergence analysis studies the convergence of
Fcri when varying the number of B4-elements in the longitudinal x-direction. A
prime analysis is performed by setting the number of L9-elements in each ply’s
cross-section to six. As the studied VSC is composed of four layers, there are a
total of 24 L9-elements on the plate’s cross-section expansion. Then, the number
of B4-elements in the mesh along the x-direction is progressively increased in each
simulation until the convergence of Fcri . The convergence analysis results for the
x-direction are presented in Figure 5.5.
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Figure 5.5: Convergence of Fcri when varying the number of B4-elements along the
longitudinal dimension of the VSC plate A

Secondly, the same analysis is again performed for the cross-section expansion.
Setting to twelve the total number of B4-elements in the x-direction, and varying
the number of L9-elements composing the cross-section. The process starts with
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one L9-element in each ply’s yz-section. The buckling simulations are performed,
gradually increasing by one the number of L9-elements per ply in each step, until
the convergence of the Fcri . Figure 5.6 shows the convergence of Fcri during the
analysis .
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Figure 5.6: Fcr convergence analysis varying the quantity of L9-elements in the cross-
section of each ply of VSC A

In Figures 5.5 and 5.6, it can be observed that, after some fluctuations, the
Fcri converge to the same values in each figure and for each load. A more refined
mesh leads to more accuracy but also increases the computational cost of the
model, obtaining larger simulation times. In order to properly select the best
meshing for the model, it is important to consider not only the precision but also
the computational cost.

Data including the DOF and the elapsed time of each simulation is presented
in Table 5.5. As the elapsed time depends on the CPU employed for the analysis,
time values are divided by tmin, which is the value of the minimum time needed for
the most basic simulation performed. This way, time is presented qualitatively.

Taking into account all the gathered information, the numerical mesh which
is adopted for modeling the VSC is constituted by twelve B4-elements on the
x-direction and six L9-elements on each ply transverse yz-section. This meshing
provides good precision without an excessive computational cost. Some details of
the final mesh are illustrated in Figure 5.7.
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Mesh convergence x-direction
B4 elements x-direction L9 elements on each ply cross-section DOF Elapsed time ti/tmin

2 6 3510 1.37
3 6 4563 1.84
4 6 5616 2.32
5 6 6669 2.76
6 6 7722 3.34
7 6 8775 3.71
8 6 9828 4.16
9 6 10881 4.66
10 6 11934 5.13
11 6 12987 5.66
12 6 14040 6.05

Mesh convergence yz-plane
B4 elements x-direction L9 elements on each ply cross-section DOF Elapsed time ti/tmin

12 1 3240 1
12 2 5400 1.97
12 3 7560 3
12 4 9720 4.05
12 5 11880 5.05
12 6 14040 6.05
12 7 16200 6.92
12 8 18360 8.03

Table 5.5: DOF and elapsed time of the performed buckling simulations in the mesh
convergence analysis
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Figure 5.7: Final mesh with six L9-elements per layer and detail of a B4-element in the
longitudinal dimension of the VSC plate

Final Mesh
Total B4-elements Total L9-elements per ply DOF

12 6 14040

Table 5.6: Final mesh for the VSC model

5.2 Pristine model analysis

Once the modeling techniques employed in this study have been validated, and
prior to the introduction of uncertainty affecting the FVF parameter in the model,
the two VSCs are subjected to the analysis defined in the previous sections (see
Figure 5.2). Again the material properties are obtained from the UC-problem of
Section 5.1.1, and the employed numerical mesh is the one resulting from the mesh
convergence analysis of Section 5.1.3. In this section, the uncertainty effects are
not included yet in the model and only the pristine structure performance is going
to be here studied. Firstly, this section is going to present the global stress and
strain fields obtained from the static solution of the problem. Then, the buckling
linearized analysis results will be shown. These results include the first six Fcri and
their respective structure deformation modes. At last, a local stress field recovery
is going to be performed for both VSCs.
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5.2.1 Static solution
The first step of the analysis is to compute the static solution for the defect-free
VSCs under investigation. The global stress and strain fields are obtained for all
points in the plate structure. However, in this study, it has been decided to show
these field values along a specific line along the z-direction, named s. Figure 5.8
shows the location of line s, whose (x, y) coordinates are (0, 0). All field values are
represented versus 2z/h, being h the total thickness of the VSC plate.

Figure 5.8: Stress and strain fields are presented along line s

The obtained stress and strain field values for VSC A are respectively plotted
in Figure 5.9 and Figure 5.10. On the other hand, the stress and strain field values
for VSC B are the ones shown in Figure 5.11 and Figure 5.12.
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Figure 5.9: Stress tensor representation along line s for VCS A
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Figure 5.10: Strain tensor representation along line s for VSC A
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Figure 5.11: Stress tensor representation along line s for VCS B
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Figure 5.12: Strain tensor representation along line s for VSC B
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5.2.2 Buckling analysis

Once the static solution is computed, the next step consists of performing the
linearized buckling analysis. The buckling performances of both VSCs pristine
models are here analyzed. The outputs which are going to be presented are the
first six Fcri for both VSCs, as well as their respective deformation modes. These
last give dimensionless information about the deformed structure shape for each
load.

The different Fcri values obtained for VSC A are listed on Table 5.7 and their
correspondent deformation modes are shown in Figure 5.13.

VSC A 1st 2nd 3rd 4th 5th 6th
Fcri [N ] 142.2 157.1 214.3 300.3 353.4 403.5

Table 5.7: Fcri of the pristine model of VSC A

(a) 1st Mode (b) 2nd Mode (c) 3rd Mode

(d) 4th Mode (e) 5th Mode (f) 6th Mode

Figure 5.13: Buckling deformation shape modes for VSC A
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On the other hand, the same results are presented for VSC B. Its Fcri values
obtained from the simulation are listed in Table 5.8 and the deformation modes,
corresponding to these critical loads, are presented in Figure 5.14.

VSC B 1st 2nd 3rd 4th 5th 6th
Fcri [N ] 25.8 47.4 59.2 78.4 107.2 127.1

Table 5.8: Fcri of the pristine model of VSC B

(a) 1st Mode (b) 2nd Mode (c) 3rd Mode

(d) 4th Mode (e) 5th Mode (f) 6th Mode

Figure 5.14: Buckling deformation shape modes for VSC B

Observing the results of the two VSCs, one can relate that there are significant
differences between the buckling performance of plates A and B. As the loads applied
in the analysis are the same for both, this fact can only be due to the different
fiber orientations of each VSC. This event demonstrates the great importance of
this factor in the mechanical response of the AFP manufactured parts. In a real
case, it would be very important to properly design the fiber orientation of the
VSC in order to achieve the most advantageous component buckling performance.
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In Figure 5.15, a comparison between the Fcri values of both VSCs is shown. It is
possible to observe how VSC A clearly outperforms VSC B in matters of buckling
performance.

1st 2nd 3rd 4th 5th 6th
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VSC B

Figure 5.15: Fcr comparison between VSC A and B
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5.2.3 Micro-scale field recovery

After the static solution of the problem has been calculated, it is possible to proceed
with the dehomogenization process of the UC-problem. The micro-scale stress field
can be computed from the macro-scale strain field. In this case, the method will
be applied to a UC located in point C. This point belongs to the line s, and its
dimensionless position coordinates are 2z/h = 0.75. It corresponds exactly to the
middle point of the VSC top layer as indicated in Figure 5.16.

Figure 5.16: The UC under investigation belongs to the top layer of the VSC. It is located
in the middle point of the ply.

The global strain tensor components, in the position of point C and expressed
in the local reference system of the fiber, are obtained from the static solution of
the problem and its values are listed, for both VSCs, in Table 5.9.

ε11 ε22 ε33 ε12 ε13 ε23

VSC A -8.2 ·10−8 -8.2 ·10−8 5.5 ·10−8 -3.8 ·10−7 1.7 ·10−10 1.6 ·10−10

VSC B -6.5 ·10−7 5.8 ·10−9 1.6 ·10−7 2.4 ·10−12 6.6 ·10−10 -7 ·10−11

Table 5.9: Static solution strain field in point C, in the fiber local reference system, for
VSCs A and B

Then, the dehomogenization process is applied and the local stress field is
computed independently for the two material constituents present in the VSCs: the
fiber reinforcement and the epoxy matrix. Figure 5.17 shows the stress distribution
over the UC expressed in the local reference system of the cell. All components of
the stress field are presented for both VSCs A and B together.
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(a) σ11

(b) σ22

(c) σ33

Figure 5.17: UC local stress field recovery

64



Numerical results

(d) σ12

(e) σ13

(f) σ23

Figure 5.17: UC local stress field recovery
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5.3 Uncertainty Analysis

In the previous sections, the mechanical performance of the VSC plates has been
studied without taking into account uncertainty effects. All simulations were carried
out following a deterministic approach, in which the FVF remained always constant.
Now, uncertainty effects are going to be introduced in the study, applying stochastic
methods. This section presents a sensitivity study of the VSCs mechanical response
to the effects of uncertainty leading to variations in the FVF parameter. In order
to be able to quantify the uncertainty effect, many deterministic analyses are
performed by means of a Monte Carlo analysis. In each simulation, a different
random field determines the FVF parameter for the UC-problem. However, to avoid
repeating the MSG method computation for each analysis, polynomial expressions
are obtained through a regression analysis of the UC-problem. The polynomials
are able to express the material effective properties as a function of the FVF
parameter. Therefore, the model material properties can be easily obtained, in
a very time-saving process. This process to obtain the material properties of the
homogenized UC is considered non-intrusive, as there is no need to change the
formulation or redesign the model. This section will firstly present the polynomial
expressions from the regression method. Later, the parameters which rule the
generation of the stochastic fields are going to be decided. Finally, the results of
the static solution and the linearized buckling analysis obtained through the Monte
Carlo method are presented and studied.

5.3.1 Material regression functions

The material effective properties are calculated from the homogenization process for
the UC-problem in the micro-scale. However, performing the micro-scale analysis
in each Monte Carlo simulation will be very time-consuming, leading to excessively
demanding analyses. Therefore, it is of our interest to obtain regression functions
which directly compute these properties as a function of the uncertainty affected
parameter, FVF. These material regression expressions are here obtained by means
of a polynomial fitting procedure. The relationships between the dependent, the
effective material properties, and the independent variable, the FVF value, are
modelled as an n-th degree polynomial. The degree of the polynomial is selected
to reduce the fitting error as much as possible. Figure 5.18 contains the plots
of the effective material properties vs the FVF value in the fiber local reference
system. The graphics include the polynomial fitting curve obtained by the regression
analysis. These equations will be sampled in the Gauss point of the structure to
obtain the material properties of the mesh elements, used for the computation of
the stiffness matrices of the model.
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Figure 5.18: UC homogenized material properties as a function of ψFV F and polynomial
fitting functions
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5.3.2 Problem definition
The uncertainty-affected buckling analysis performed in this section has the same
boundary conditions as the ones presented in Section 5.1.2, shown in Figure 5.2.
The VSC plates geometry are described with the parameters of Table 5.3. Again
both VSC plates only differ in the ply fiber orientation. To introduce uncertainty
in the model, it is necessary to set the parameters which rule the generation of
the random fields. Among these, it is necessary to define the field mean value, µ
or ΨFV F , and the standard deviation, σ. The nominal value assigned to ΨFV F is
0.6 and the standard deviation value is set to σ = 0.05. These values are decided
based on the literature works (see [19]).

On the other hand, a total of K = 10 terms on the KLE are employed for the
random field generation to ensure a proper convergence of the integral problem
eigenvalues. Then, the dimensionless correlation lengths are set to l̄x = l̄x = 1.
With these conditions and applying LHS for sampling the random ξi inputs, the
random fields are fully defined. Figure 5.19 shows two examples of generated
random fields with the above-mentioned parameters.

(a) ξi(ω1) (b) ξi(ω2)

Figure 5.19: Stochastic fields with (ψFV F , σ) = (0.6, 0.05).

Finally, it is decided to perform a Monte Carlo analysis with N = 103 simulations
for each VSC. The results which are going to be gathered in each simulation are
the static solution stress and strain fields, and the Fcri from the linearized buckling
analysis.
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5.3.3 Stress and strain fields
At the conclusion of the Monte Carlo analysis, the stress and strain field values of
the static solution are gathered. Here, the values of these fields are presented for
the points belonging to the line s, which is the same as Section 5.1.2 (see Figure
5.8). Statistics are employed to present the gathered data. For each component of
the strain and stress tensor, the following statistical data is shown:

1. Mean value from the Monte Carlo simulations

2. 95% Confidence interval

3. Total range of values

Again the stress and strain components are plotted versus 2z/h. The stress
value representation obtained for VSCs A and B are presented respectively in
Figure 5.20 and Figure 5.22. On the other hand, the strain field components for
the two VSCs are shown in Figure 5.21 for VSC A, and Figure 5.23 for VSC B. All
field components are expressed in the global reference system.

Finally, x, y and z stress components are presented in Table 5.10 for points
belonging to line s. The data shows the mean value and, in parenthesis, the
standard deviation.

2z
h

[-] -1 -0.64 -0.27 0.27 0.64 1

VSC A σxx [kPa] -8.645 (0.499) -8.649 (0.531) -8.651 (0.587) -8.651 (0.589) -8.650 (0.531) -8.647 (0.498)
VSC A σyy [kPa] -3.867 (0.223) -3.870 (0.191) -3.867 (0.197) -3.869 (0.200) -3.870 (0.191) -3.868 (0.225)
VSC A σzz [Pa] -6.611 (1.312) -6.629 (0.863) -6.634 (0.566) -6.650 (0.582) -6.664 (0.866) -6.666 (1.316)
VSC B σxx [kPa] -6.192 (0.240) -6.195 (0.242) -6.222 (0.271) -6.204 (0.251) -6.216 (0.236) -6.217 (0.240)
VSC B σyy [kPa] -0.704 (0.189) -0.707 (0.162) -0.707 (0.143) -0.714 (0.142) -0.715 (0.156) -0.718 (0.182)
VSC B σzz [kPa] 0.441 (1.772) 0.401 (1.159) 0.411 (0.622) 0.382 (0.621) 0.321 (1.177) 0.317 (1.790)

Table 5.10: Mean value and standard deviation (in parenthesis) for the stress field values
along line s
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(a) VSC A σxx (b) VSC A σyy

(c) VSC A σzz (d) VSC A σxy

(e) VSC A σxz (f) VSC A σyz

Figure 5.20: Stress tensor representation along line s for VSC A
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(a) VSC A εxx (b) VSC A εyy

(c) VSC A εzz (d) VSC A εxy

(e) VSC A εxz (f) VSC A εyz

Figure 5.21: Strain tensor representation along line s for VSC A
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(a) VSC B σxx (b) VSC B σyy

(c) VSC B σzz (d) VSC B σxy

(e) VSC B σxz (f) VSC B σyz

Figure 5.22: Stress tensor representation along line s for VSC B
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(a) VSC B εxx (b) VSC B εyy

(c) VSC B εzz (d) VSC B εxy

(e) VSC B εxz (f) VSC B εyz

Figure 5.23: Strain tensor representation along line s for VSC B
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5.3.4 Buckling critical loads

The buckling performance of the VSCs affected by uncertainty effects is here
presented. From the Monte Carlo, the first six Fcri are obtained in each simulation,
and statistical data is calculated from the outputs of the analysis. The mean value,
standard deviation and the coefficient of variation (COV) are the statistical data
computed from these Monte Carlo results. Then, histograms are employed for
obtaining the Fcri graphical representations. Table 5.11 contains the statistical data
referred to the results of VSC A. The histograms which describe the distribution
of the loads for this VSC are shown in Figure 5.24. The results for VSC B are
presented following the same procedure. Table 5.12 contains its gathered data from
the Monte Carlo analysis and Figure 5.25 shows the histograms which describe the
loads’ distributions.

VSC A Pristine [N] Monte Carlo mean [N] Standard deviation [N] COV %(σ
µ

· 100)

Fcr1 142.2 142.3 4.5 3.2
Fcr2 157.1 157.4 4.8 3
Fcr3 214.3 215 6.7 3.1
Fcr4 300.5 300.8 9.2 3
Fcr5 353.4 354.3 11.9 3.3
Fcr6 403.5 404.1 12.8 3.2

Table 5.11: Monte Carlo analysis results for VSC A

VSC B Pristine [N] Monte Carlo mean [N] Standard deviation [N] COV (σ
µ

· 100)

Fcr1 25.8 25.9 0.7 2.7
Fcr2 47.5 47.4 1.2 2.5
Fcr3 59.2 59.2 1.6 2.7
Fcr4 78.4 78.3 1.8 2.3
Fcr5 107.3 107.3 2.9 2.7
Fcr6 127.1 127 3 2.4

Table 5.12: Monte Carlo analysis results for VSC B

The COV values obtained for both VSCs are similar for all Fcri . This fact is
due to the linearity of the buckling analysis which maintains the proportionality
between the standard deviation and the mean values of the loads. Again, due to
the linearity of the problem and the Gaussian nature of the stochastic fields under
investigation, the Fcri show normal distributions too.
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Figure 5.24: Histograms of the Fcr for VSC A
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(a) VSC B Fcr1 (b) VSC B Fcr2

(c) VSC B Fcr3 (d) VSC B Fcr4

(e) VSC B Fcr5 (f) VSC B Fcr6

Figure 5.25: Histograms of the Fcr for VSC B
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5.3.5 Mode classification
Once the results of the critical loads have been obtained, there is an important
detail that must be analyzed. It consists of the superposition between different
load distributions for VSC A, which can be observed in Figure 5.26. This event
could occur due to a mode interchange between the different Fcri .
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Figure 5.26: Superposing Fcri distributions for VSC A .

It is of our interest to understand if these superposing distributions correspond
to the mode swapping phenomena or it is simply due to the uncertainty effect
which generate wide ranges of values of Fcri that overlap with each other. To shed
some light on the event, a Modal Assurance Criterion’s (MAC) matrix is calculated
for each simulation. MAC matrices are computed in the following way:

MAC(i)
j,k =

---φTi,jφpris,k

---21
φTi,jφi,j

2 1
φTpris,kφpris,k

2 (5.1)

In this expression, i is an index indicating the current Monte Carlo simulation.
The other terms, φpris,k and φi,j are eigenfunctions of the j and k modes which
correspond respectively to the pristine structure and the one affected by uncertainty.
Due to the eigenfunctions properties, the product of this operation gives information
about the modes in the following way:

• If there is no mode swapping, the diagonal terms of the MAC matrix are
nearly a unit (5.27a).

• If mode swapping occurs between two modes, their respective diagonal terms
of the matrix become zeros and their non-diagonal terms get significant values
instead (5.27b).
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(a) No mode swapping (b) Swapping between modes i and j

Figure 5.27: MAC matrices give information about mode swapping

More information about MAC matrices can be found in [39]. For VSC A, a
MAC matrix has been computed for each simulation. The data gathered from all
simulations is presented in Figure 5.28, which indicates the mean value of each
MAC coefficient and its standard deviation. The mean value of the diagonal terms
is approximately one for each mode. Therefore, no mode swapping is detected
between any of the deformation modes of the structure.

On the other hand, VSC B does not present any superposing load distribution.
However, for the sake of completion, the MAC matrix for VSC B is shown in Figure
5.29. It can be observed that the diagonal terms of its MAC matrix are nearly
a unit as well. With MAC statistical data, the possibility of mode swapping is
discarded.

5.3.6 Buckling Loads Correlation
In this section, the correlation between the Fcri is going to be investigated. The
aim of this study is to verify if uncertainty in the FVF parameter affects the loads
in the same way, increasing or decreasing all their values together at the same time,
or if it may oppositely affect some of them. As an example, Figure 5.30 shows
these two possible cases under investigation for VSC A Fcr1 and Fcr2:

• Figure 5.30a presents the case in which all loads are affected in the same
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Figure 5.28: MAC matrix statistical data: mean value and standard deviation for VSC A

Figure 5.29: MAC matrix statistical data: mean value and standard deviation for VSC B
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way. For both Fcri , the obtained values belong to the range area closer to the
maximum value.

• Figure 5.30b presents the opposite case, in which the loads are affected the
other way round. For Fcr1, the obtained value belongs to the right tail of its
distribution, while the Fcr2 value is closer to its range minimum.

In this case, a correlation study could help. The correlation coefficient, r, gives
information about whether the variables tend to move in tandem or have an inverse
relationship. The value of r ranges between (−1, 1) and has the following meaning:

• r > 0 indicates that when one load increases, there is a positive increase on
the other too.

• r < 0 indicates that when one load increases, the other one decreases.

• r = 0 indicates no correlation between the loads.

For each simulation, the correlation coefficient is computed for all Fcri in relation
to Fcr1 in the following way:

ri = N (qFcr1Fcri) − (qFcr1) (qFcri)òè
N
q
F 2
cr1 − (qFcr1)2

é è
NΣF 2

cri − (qFcri)2
é (5.2)

where N is the number of simulations. The r-coefficients are computed for VSC A
and B and are listed in Table 5.13.

Fcri correlation with Fcr1 Fcr1 Fcr2 Fcr3 Fcr4 Fcr5 Fcr6

r-coefficient VSC A 1 0.9815 0.9455 0.957 0.9786 0.9641
r-coefficient VSC B 1 0.9851 0.9746 0.9757 0.9896 0.9819

Table 5.13: Correlation coefficients in relation to Fcr1

These correlation coefficients are positive and nearly a unit. This fact indicates
that when Fcr1 increases, the other critical loads do so and almost linearly. Therefore,
when a Fcr1 is obtained in the right side area of its distribution plot, the obtained
values of the other Fcri are also close to the right tail of their respective distributions
and vice-versa. It can be stated that uncertainty affects all Fcri with the same
trend.
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(a) Fcr1 and Fcr2 are affected the same way by uncer-
tainty effects

(b) Fcr1 and Fcr2 are affected the opposite way by
uncertainty effects

(c) Fcr1 and Fcr2 range of values

Figure 5.30: Uncertainty affecting Fcr1 and Fcr2 in the same way (a) and in the opposite
way (b). The range limits for both loads are listed in (c)
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5.3.7 Polynomial chaos expansion
PCE is employed for uncertainty quantification in the study of Monte Carlo Fcr
distributions. The PCE models are obtained on a basis of Hermite polynomials and
their output is here represented with a normal probability plot. PCE data for the
first and second degree’s models is here presented. The outputs of the surrogate
model for VSC A are listed in Table 5.14. Then, the same data for VSC B is shown
in Table 5.15.

Monte Carlo 1st degree PCE 2nd degree PCE
VSC A Mean [N] COV (σ

µ
· 100) Mean [N] COV (σ

µ
· 100) Mean [N] COV (σ

µ
· 100)

Fcr1 142.3 3.2 142.1 3.2 142.1 3.1
Fcr2 157.4 3 157.2 3.1 157.2 3
Fcr3 215 3.1 214.6 3.1 214.6 3.1
Fcr4 300.8 3 300.3 3.1 300.3 3.1
Fcr5 354.3 3.3 353.7 3.4 353.7 3.4
Fcr6 404.1 3.2 403.4 3.2 403.4 3.2

Table 5.14: PCE statistical data for VSC A

Monte Carlo PCE mean (1st degree) PCE mean (2nd degree)
VSC B Mean [N] COV (σ

µ
· 100) Mean [N] COV (σ

µ
· 100) Mean [N] COV (σ

µ
· 100)

Fcr1 25.9 2.7 25.9 2.8 25.9 2.8
Fcr2 47.4 2.5 47.5 2.5 47.5 2.5
Fcr3 59.2 2.7 59.2 2.7 59.2 2.7
Fcr4 78.3 2.3 78.4 2.4 78.4 2.4
Fcr5 107.3 2.7 107.4 2.8 107.4 2.8
Fcr6 127.1 2.4 127.2 2.4 127.2 2.4

Table 5.15: PCE statistical data for VSC B

The PCE surrogate models show a great ability to capture the sensitivity of
Fcri to the FVF variation and reproduce the same results as the Monte Carlo
analysis. It can be observed that the polynomial degree of the PCE expansion has
no significant effect on the surrogate’s output. Figure 5.31 contains the plots of
the Monte Carlo output distributions with the normal probability plot obtained by
PCE for Fcr1.

PCE has shown to be a reliable surrogate model for our study. It can be very
advantageous to employ it in order to save time in the analysis. For this purpose, it
is going to be investigated how many Monte Carlo simulations are needed to have
enough information to describe the PCE. This study is only going to be presented

82



Numerical results

130 135 140 145 150 155

F
cr1

 [N]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

D
e
n
s
it
y

Monte Carlo F
cr1

PCE 1st degree

PCE 2nd degree

(a) VSC A

24 24.5 25 25.5 26 26.5 27 27.5 28

F
cr1

 [N]

0

0.1

0.2

0.3

0.4

0.5

0.6

D
e
n
s
it
y

Monte Carlo F
cr1

PCE 1st degree

PCE 2nd degree

(b) VSC B

Figure 5.31: Fcr1 distributions obtained from the Monte Carlo analysis and the PCE
models

for one of the VSCs. Figure 5.32 presents the convergence of the PCE data in
relation to the number of simulations employed to train the surrogate model for
VSC A. Only the convergence of Fcr1 and Fcr5 are investigated as these are the
loads with larger COV values. The graphs display the convergence of the mean
value and the standard deviation which are obtained with the PCE models for first
and second-degree expansions. It is important to notice the two axes employed in
each graph and the difference of scales from one graph to another.

As it can be observed, after a certain number of Monte Carlo simulations, the
PCE is already capable to describe the model and to compute the mean and
standard deviation of the loads. Employing only 300 Monte Carlo simulations, it
is possible to get accurate results, saving the computational time of 700 Monte
Carlo simulations. Table 5.16 shows the time required to obtain the results through
both ways. Again, as time is dependent on the employed CPU, it is presented
in a qualitative way, dividing all values by the total time needed for the 1000
simulations, tall. Therefore, PCE allows one to save 70% of the time needed to
compute all the simulations. This is a significant difference, which definitively
makes PCE a very interesting option for the sensitivity study. Finally, Figure 5.33
presents a graphical representation of the elapsed time if:

1. All Monte Carlo simulations are performed and no PCE is employed.

2. Only the Monte Carlo simulations needed by the PCE are performed and the
PCE model is responsible for calculating the load distributions.
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(a) Fcr1 PCE convergence

(b) Fcr5 PCE convergence

Figure 5.32: PCE convergence analysis
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Elapsed time ti/tall [-]
1000 Monte Carlo simulations 1
300 Monte Carlo simulations 0.3
PCE computational time 0.000003

Table 5.16: Qualitative computational times

Figure 5.33: Time employed to perform all Monte Carlo simulations (1) vs total time for
performing 300 simulations and for the PCE calculations (2)
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Chapter 6

Conclusions

The aim of this study was to perform multi-scale sensitivity analysis of Variable
Stiffness Composites (VSCs). In this work, the mechanical performance at a macro-
scale level of two VSCs subjected to linearized buckling analyses is investigated
when uncertainty effects introduce variability into the fiber volume fraction (FVF)
parameter at the micro-scale level.

For this purpose, finite element (FE) models altogether with Carrera Unified
Formulation (CUF) based theories were employed as the instrument of analysis. All
laminates were described independently with a layer-wise (LW) approach, which
allowed the introduction of uncertainty in each layer separately. Uncertainty was
modeled as a stochastic field expanded within the plies through Karhunen-Loève
expansion (KLE), and Latin Hypercube Sampling (LHS) was implemented to
ensure a proper FVF field generation. The meso-scale material properties assigned
to the FE mesh elements were obtained applying the mechanics of the structure
genome (MSG). Solving the Unit Cell (UC) problem, which depends on the FVF
parameter, provides the effective material properties of the homogenized UC.

The mechanical behavior of the VSCs models and the procedures employed in
the analysis were properly verified by comparison with literature results and data
obtained with commercial software Abaqus.

The first results were obtained for the pristine structure and shown the stress
and strain fields obtained from the static solution, at a macro-scale level, through
the thickness of the laminated plate. A micro-scale field recovery process was
presented for a cell located in a point of the structure. Later, the buckling analysis
results were shown, again for the defect-free model.

Then, uncertainty effects were introduced in the model, and the sensitivity
analysis was performed by means of a Monte Carlo analysis. Among the obtained
results of this analysis, one can find the stress and strain fields from the static
solution at the macro-scale level. These are presented with a 95% confidence interval
which indicates the most probable values to be obtained. The main focus relies on
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the buckling critical loads obtained from the linearized buckling analysis. The loads
present Gaussian distributions and the mean value and standard deviation are
reported for the first six critical loads. coefficient of variation (COV) parameter is
employed as a measure of the data dispersion due to the variation of the micro-scale
parameter.

The buckling critical loads and their respective deformation modes were provided,
and a possible mode swapping phenomena was studied and discarded applying
Modal Assurance Criterion (MAC). Later, Polynomial Chaos Expansion (PCE) was
applied in order to generate surrogate models which provide a reliable representation
of the behavior of the VSCs.

At the conclusion of the multi-scale sensitivity analysis, it can be affirmed that:

• The design of the composites’ fiber orientation have a very significant effect
on the mechanical performance of VSCs.

• The generation of the stochastic fields based on KLE and applying LHS have
turned out to be an adequate procedure to model uncertainty.

• The utilization of LW models is compulsory in order to be able to model the
defects for each layer independently.

• Uncertainty effects in the FVF parameter affects all the critical buckling loads
in the same way. They are strongly correlated, almost in a linear way, with r
correlation coefficients close to +1.

• Critical buckling loads are sensitive to the FVF variation in the following way:
normally, the stochastic FVF fields have an average COV parameter of around
6-7% and the load distributions barely reach a COV of 2-3%.

• The application of PCE can save up to 70% of the Monte Carlo simulations
needed for the VSCs studied in this work, leading to a less time-consuming
analysis.

Finally, as a continuation of this work, it is proposed to model more defects
which can be introduced in the analysis as, for example, void formation. Other
possible further work will consist of analysing a combination of uncertainty with
other defects already modeled in the literature for VSC plates. In the field of
multi-scale sensitivity, further analysis could proceed with the study of uncertainty
effects in the micro-scale fields which can be obtained through the recovery process
of the UC-problem.
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