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Abstract 

Prediction of the laminar combustion velocity in methane-air mixtures by means of 

deep learning algorithms  

 

The need to reduce environmental pollution has led to a search for alternative, low-emission fuels. In fact, 

internal combustion engines, are one of the main source of pollution in the urban environment. Methane is 

one of the best alternatives to the main and most common fossil fuels, because it is one of the fuels with the 

lowest CO2 and hydrocarbon emissions. In addition to being one of the cleanest fuels, it has remarkable 

chemical and physical properties, such as high anti-knocking, which would allow high efficiency in 

monovalent methane-fuelled heat engines with an high compression ratio. However, compared to petrol, 

methane burns slowly, which leads to a variation in efficiency and not complete stability cycle by cycle, 

reducing power and increasing fuel consumption. Low flame front propagation speed and poor burning 

capacity in poor mixture conditions can be improved by the addition of hydrogen, due to its higher burning 

speed. 

The aim of this thesis is to develop a deep learning algorithms for predicting the laminar speed of combustion 

in methane/air mixtures, providing as input the conditions of the mixture (pressure, temperature, percentage 

of EGR, equivalent ratio). The objective of this methodology is to see if it is possible to construct a neural 

network capable of understanding the non-linear relationships of the phenomenon under analysis, allowing 

a faster simulation, by virtue of the reduction of computational costs, but at the same time must be accurate, 

respecting what is the physics and kinetics of the combustion process.  The results obtained by training our 

neural network separately on the combustion tables obtained with the main chemical kinetics mechanisms, 

i.e. Aramco 2.0 and GRImech 3.0, were also compared with the laminar flame speed experimental data 

available in the literature. 

Another important objective of this thesis is to continue research in the field of heat engines, in particular to 

generate combustion tables using LOGEresearch, software for simulating the chemical kinetics of the 

combustion process, for air/methane mixtures with and without the addition of hydrogen.  The work focuses 

on finding the mixture dosage, with a value that differs from one, to observe how the value of the laminar 

speed varies, compared to the other input values, which are used to start the simulation.  
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1 Introduction  

The requirements of European emission standards, which define the maximum acceptable limit for new 

vehicles, influence the development and design of new technologies. The development of alternative 

petroleum fuels in internal combustion engines has been necessary, such as natural gas (CNG), which is 

mainly composed of methane, has a low carbon content and therefore a lower level of emissions in terms of 

carbon dioxide, carbon monoxide and hydrocarbon. As far as nitrogen oxides are concerned, they will 

decrease due to the lower temperature reached in the cylinder. However, nowadays there is a tendency to 

develop ever smaller and turbocharged powertrains, in the case of the latter, the temperature inside the 

cylinder will definitely increase resulting in higher 𝑁𝑂𝑥 emissions. Therefore, an EGR system will be used to 

prevent the formation of nitrogen oxides because the exhaust gases can act as diluents in the unburned gas 

mixture, and the peak temperature reached during the combustion process decreases as the residual 

concentration increases. The amount of recirculated exhaust gas must be monitored because it produces a 

less reactive mixture with possible errors or ignition problems. In fact, at the end of the combustion process, 

the pressure peak and the flame front, during the expansion phase, usually slow down due to the lower 

pressure and temperature of the mixture. If the temperature drops too quickly due to excessive EGR opening, 

the flame front can stop, leaving a portion of the mixture unburned. It should be remembered that natural 

gas has an antiknock property that enables a spark-ignition engine to be exploited, using a higher 

compression ratio, and consequently increasing thermal efficiency. On the other hand, methane burns 

slowly, adversely affecting the efficiency, available power and fuel consumption of the engine due to 

variations in the combustion process, which is not constant from cycle to cycle. Consequently, blending 

hydrogen with natural gas can help address these problems due to its reactivity, ensuring improved thermal 

efficiency, increasing combustion speed, extending flammability limits and reducing pollutant emissions due 

to a higher atomic hydrogen to carbon ratio. For these reasons, an accurate calculation of laminar 

combustion velocities is necessary for the design of spark ignition engines. 

Spark ignition engines (S.I., Otto, gasoline engine) can use fuels with relatively high ignition delays, i.e. low 

reactivity, such as petrol, methanol, ethanol, natural gas, LPG.  The fuel, which can be compressed without 

giving rise to combustion reactions, is pre-mixed with combustion air generally outside the cylinder. The 

combustion process is initiated from the outside by an electric spark, which is able to bring a small portion 

of the mixture to a temperature of over 1000 K, and from this initial ignition nucleus combustion spreads to 

the rest of the charge under conditions of a turbulent regime (combustion in turbulent air). An initial nucleus 

of combustion gases is formed which transmits heat by means of a heat exchange mechanism to the small 

layer of adjacent mixture, raising its temperature, causing oxidation reactions to take place in this layer as 

well, with the subsequent release of thermal energy, and subsequent propagation of the flame front until it 

reaches the areas furthest from the spark plug. This combustion process takes place in the gaseous phase in 

a "preformed" mixture, so that the process of mixture formation and combustion take place at two separate 

times, and only once the mixture is homogeneous can combustion take place. Combustion consists of a series 

of chemical reactions in which a fuel is oxidised by an oxidiser and heat is generated, electromagnetic and 

even light radiation. Combustion is very often also accompanied by the presence of a flame and the 

production of high-temperature gases produced by combustion, dispersing dust (usually carbonaceous soot), 

obtained from combustion and giving rise to smoke.  In other words, combustion is an exothermic oxidation-

reduction reaction, in which one compound is oxidised while another is reduced, in hydrocarbons, carbon is 

oxidised while oxygen is reduced, releasing energy and forming water and carbon dioxide. We can classify 

and identify different combustion processes, in fact the reactions between fuel and oxidiser can take 

place[13]: 

- Without flame: the reaction is very slow and takes place at temperatures around 500-600°C, low 

temperatures and with a response time up to ten seconds. 
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- With deflagrating flames: in this case most of the reactions take place within the thickness of the 

flame, with reaction times of less than a millisecond, and a flame front velocity of 20-30 m/s. During 

this type of combustion there is a drop in density and pressure in the area occupied by the products 

of combustion, which causes an increase in the speed of propagation of the front itself, which is also 

driven by the expansion of the combustion gases. This drop in pressure is a negligible fraction of the 

average pressure in the domain in which combustion takes place. This pressure drop is a negligible 

fraction of the average pressure in the domain in which combustion takes place. isobaric process, i.e. 

pressure variations across the domain are negligible compared to those of temperature or kinetic 

energy. 

- With detonating flames: in this case, the propagation speeds of the flame front become particularly 

high, with peaks reaching values of 1000 m/s, with the consequent formation of shock waves. This 

phenomenon occurs when there is simultaneous self-ignition of the entire mass of the mixture 

present, which does not require propagation but detonation of the entire mass present in the domain 

under consideration. Comparing deflagration with detonation, in the latter case there is an increase 

in pressure and density, and therefore a deceleration of the flame front, unlike deflagration. In the 

case of deflagration, we also have a different pressure trend, we can assume that there is no pressure 

gradient, while in the case of detonation there will not only be the typical step trend of the 

temperature profile as it crosses the flame front, but there will also be a pressure step [13]. 

Another possible classification of flames can be made by distinguishing them into laminar and turbulent 

flames:  

- Laminar flames: are characterised by having a well-defined flame front with a regular surface. The 

speed of propagation of the flame front is particularly low and the thickness of the laminar flame 

front is between 0.05-0.20 mm. 

- Turbulent flames: in this type of flame, the flame area is still identified but the flame front is wrinkled 

and irregular. The increase in the surface area of the flame front due to turbulent motion leads to an 

increase in the flame front propagation velocity which increases as the intensity of the turbulence 

increases. The thickness of the turbulent flame front is between 3 and 9 mm, so it is no longer 

negligible as in the case of laminar flame front thickness [13]. 

Laminar and turbulent flames can be classified in turn into:  

- Diffusive flames: in this type of flame the oxidiser and the fuel are introduced separately. Therefore, 

before the chemical reactions between the reactants can begin, the fuel must be in a gaseous state. 

Therefore, before the chemical reactions between the reactants can begin, the fuel must be in a 

gaseous state and there must also be mixing between the various reactants. A practical example of 

this type of flame is the candle flame, while a practical example is combustion in compression ignition 

engines [13]. 

- Pre-mixed flames: in this type of flame, combustion takes place after mixing the fuel and the oxidiser. 

A practical example of this type of flame is the home cooker, while a technical example is the 

combustion of petrol or methane in spark ignition engines [13]. 
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Figure 1: Laminar propagation velocity trend as the equivalence ratio changes, for different fuel types, for T = 300 K and p = 1 bar [14] 

In figure 1 we can see the trend of the laminar speed of propagation which is sensitive to the variation of the 

composition of the mixture. We must underline that the combustion process could not take place with the 

characteristic speeds of a laminar flame, which is two orders of magnitude less than the speeds necessary 

for the process. The speeds would be insufficient given the short time available, even with a stoichiometric 

ratio that gives the highest laminar flame speeds. From the graph, we see how the laminar speed varies as 

the equivalence ratio (Ø) varies, and we note that the speeds are different according to the composition of 

the mixture, as we expected, however there are other factors that affect the speed such as T, p and Xburn 

(which takes into account the presence of diluents such as EGR which slow down the flame front).  

The graph represented by the figure 1, follows the following equation:  

𝑣𝐿 =  𝑣𝐿0 ∙  (
𝑇𝑋

𝑇0
)

2
∙  (

𝑃𝑋

𝑃0
)

−0.25
∙  (1 − 𝑐𝑥𝑏𝑢𝑟𝑛)0.7                

With 𝑣𝐿0 taken from the graph and referred to T0 = 300 K and p0 = 1 bar. At the same Xburn, with Tx = 700 K 

and px = 2 bar, 𝑣𝐿 roughly doubles with the same Xburn.   

 

Figure 2: Experimental LFS trends at varying pressure, for a stoichiometric mixture of methane at 298 K and 470 [15] 
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In order to understand the inverse dependence of flame front speed on pressure, i.e. with a denser mixture, 

it is necessary to analyse the combustion phenomenon. The process involves a convective heat exchange 

between what has already been burned, combusted gas, and the layer of unburned gas. In this case there is 

a heat flow from the burned gas to the unburned gas, the latter having a higher density and therefore a larger 

mass, which requires a greater heat exchange from the burned gas to raise the pressure and temperature 

necessary for the combustion process. In addition, a higher temperature results in a smaller temperature 

gradient between the charge and the burned gas, but as a consequence the charge density is lower and this 

effect prevails, so less heat is required to raise the temperature of the unburned gas. The further correction 

factor for the presence of diluents is (1 −  𝑐𝑥𝑏𝑢𝑟𝑛)0.7 , and where inert diluents are present absorb heat, so 

the only effect they have is to reduce or slow down the propagation rate.   

As mentioned above, the turbulent front speed is greater than the laminar front speed; it is the turbulence 

that increases the flame front speed. This is because it is the motions inside the chamber that make the 

surface jagged, with a multiplication effect of the surface that assuming the form of a thin foil corrugated 

and folded on itself several times with a fractal-like geometry, which allows us to recover those two orders 

of magnitude that were missing.  According to an early model proposed by Damkohler (1940), this increase, 

essentially attributable to the increase in the separation surface between the and fresh charge, can be 

expressed as: 

𝑤𝑇 =  𝑤𝐿  (𝐴𝑇/𝐴𝐿)                

Where: 

- AT: is the effective corrugate area, in turbulent condition, that is increased than AL 

- AL: is the plane combustion area characterize from a laminar flame 

Furthermore, according to Damkohler, (𝐴𝑇/𝐴𝐿) ~ 𝑢′ where 𝑢′ is the turbulent intensity, directly proportional 

to the mean speed.  The combustion process adapts to the operating conditions present in a given situation.  

 

Figure 3: Turbulence effect on corrugation and thickness of the flame front [14] 
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1.1 Review of chemical kinetics and laminar flame speed dependence 

During deflagrating combustion, as previously reported, the pressure remains uniform throughout the region 

concerned, and during this combustion there is a decrease in density on the part of the combustion products, 

which causes an increase in the propagation speed of the flame front, a result achieved by counting the 

transport component and the front component. The laminar flame front propagation speed is one of the 

most important properties in the study of combustion because many phenomena depend on this quantity, 

such as the structure and speed of turbulent flames, flame front instability, front stretching, and it plays a 

key role in many technical applications involving combustion such as internal combustion engines, gas 

turbines, burners, and explosion prediction. In the case of internal combustion engines, the value of the 

laminar velocity of front propagation influences [14]:  

- The value of the spark advance, and consequently the engine's performance and emissions. 

- Cyclic dispersion, a phenomenon whereby a cycle, even considering the same cylinder, tends to be 

different from the previous one. 

- Wall quench layers, an important factor in the production of hydrocarbons. This is the thickness 

within which combustion does not continue due to the low temperature of the combustion chamber 

walls.  

The laminar velocity is an intrinsic characteristic of a fuel and the main parameters that influence it are 

temperature, pressure, equivalence ratio (𝜙), percentage of combustion gases in the mixture. The parameter 

that most influences the Laminar Flame Speed (LFS) is temperature, because at the base of the flame front 

propagation there is a large number of parameters. This is because there are chemical reactions at the base 

of the flame front propagation. The faster these reactions are completed, the more the LFS increases. To 

better understand this aspect, it is necessary to remember some concepts of chemical kinetics, a 

fundamental physical phenomenon for physical events of such short duration.  The combustion of a generic 

hydrocarbon CxHy, even in the gaseous phase and pre-mixed homogeneously with the combustion air, takes 

place according to a multi-stage process, with the formation of intermediate reaction products (radicals, 

peroxides, etc.). The explosion mechanism leading to ignition of the mixture is due to chain reactions 

producing large quantities of radicals. Ignition of the mixture therefore only occurs after a certain ignition 

delay. The combustion of a hydrocarbon therefore involves the oxidation of the fuel with a series of 

intermediate reactions. Hydrogen atoms are the first to break their bond with carbon, and then bind with 

oxygen, resulting in the formation of a series of intermediate compounds. There are several ways in which 

this phenomenon can occur as shown in the figure below.  

 

Figure 1.1.1: Pre-reaction involving the methane molecule [14] 

To describe the combustion process in detail, even of a single pure hydrocarbon, requires high computational 

efforts. We can therefore consider, the common factor in these processes, where in general, the release of 
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major chemical energy occurs in the last steps of the process. The first reactions are essential for the 

formation of the intermediate compounds, which are so unstable, and this instability increases as the last 

steps of the reaction become almost instantaneous. This is because during the development of the reaction, 

there is an increase in the concentration of the radicals (intermediate compounds), which lead to the sudden 

development of the exothermic reaction. A certain amount of time, called the ignition delay, elapses before 

the exothermic reaction takes place.  The speed at which intermediate reactions proceed can be assessed 

using relation (1), given a generic combustion reaction, the speed at which the reactants are consumed (or 

at which the reaction proceeds from left to right) is given by the following relation for forward reaction:  

                                                                       𝑅+ =  𝑘+  ∏  [𝑀𝑅𝑖]𝑣𝑅𝑖𝑛
𝑖=1                                                                         (1) 

Where the constant 𝑘+ follows Arrhenius' law: 

                                                                              𝑘+ = 𝑎 𝑇𝑏𝑒−
𝐸𝑎
𝑅𝑇                                                                                 (2) 

Where Ea is the activation energy of a generic reaction, and with ‘a’ and ‘b’ depend on the type of the reaction. 

Then we see from the equation (2) that the speed with which a product of a generic reaction is generated, 

depends exponentially on the temperature [14]. The exponential coefficient, also known as the Boltzman 

factor, defines the fraction of collisions that have an energy greater than the activation energy and allow a 

reaction to take place. In other words, the chemical reaction takes place once the collision between the 

molecules has released enough kinetic energy for the bonds to dissolve and allow others to form. So this 

coefficient K+ expresses the probability that two molecules have of colliding and breaking bonds. The higher 

the temperature, the greater this probability. The lower is the activation energy, the greater is the 

probability.  

We have seen the effects of temperature and pressure on the laminar speed, we can also identify another 

fundamental parameter, that is the stoichiometric dosage defined as the correct air mass to fuel ratio that 

perfectly completes the chemical reaction of fuel oxidation, without excess of oxidant or fuel. It can be 

determined considering the ideal reaction of oxidation of a generic non-oxygenated fuel that leads to have a 

ratio (air/fuel)st depends only on the ratio between hydrogen atoms and oxygen atoms (y/x) that in the case 

of gasoline or diesel, this ratio is equal to about 1.85, leading to a stoichiometric dosage equal to 14,6 while 

in the case of methane (y/x) is equal to 4 and then the air fuel stoichiometric ratio is equal to 17,23. Regarding 

the dependence of the LFS on this parameter, we will have the maximum propagation velocity in the 

stoichiometric range, or rather in the slightly rich range, and then collapse for values far from the 

stoichiometric. The reason why the peak of the speed of propagation of the flame front is in the slightly rich 

range is to be found in the adiabatic temperature of the flame, which will have a peak in the slightly rich 

range, causing an acceleration of the reactions, having an exponential dependence on the temperature and 

therefore on the speed of propagation of the front. The adiabatic flame temperature has a peak in the slightly 

rich because in this zone there is more production of carbon monoxide than carbon dioxide, causing a 

decrease in the specific heat of the products, because triatomic gases absorb more energy than diatomic 

ones, consequently less energy will be absorbed by the products and this will increase the adiabatic flame 

temperature. This reasoning is restricted only to this area of the equivalence ratio, as for values of 

equivalence, since for values far from the stoichiometric one will have either an excess of air or of fuel, and 

since everything that does not burn absorbs energy, there will be a decrease in the adiabatic flame 

temperature and therefore in the speed of propagation of the front. As can be seen from Figure 1.1, the LFS 

curves are only represented in a portion of the equivalence ratio, this portion being bounded by the 

flammability limits. In fact, two flammability limits are defined: 
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-  Upper flammability limit: define as maximum percentage by volume of fuel in air for which there is 

propagation of the flame front; in fact, when there is an excess of fuel, the reaction instead of being 

endothermic becomes exothermic causing the flame front to stop.  

- Lower flammability limit: define as minimum percentage by volume of fuel in air for which there is 

flame propagation. 

We must emphasise the importance of adding hydrogen as an "additive" for the combustion of methane, 

hydrogen has a considerable flammability range which is able to burn in conditions which are also very far 

from stoichiometric conditions, this, together with the very high speed of propagation of the flame front, 

represents one of the points of strength of the fuel. This, together with the very high speed of flame 

propagation, is one of the strengths of this fuel. This is why alternative fuels such as methane mixed with 

hydrogen are being studied in order to combine the strengths of two different fuels. 

Another very important factor is the dependence on the fraction of combustion gases in the mixture. Very 

often in motorsport, the reuse of combustion gases is used to reintroduce them into the combustion chamber 

in order to reduce emissions or to de-throttle partial loads in the case of spark ignition engines. This technique 

is known as EGR (Exhaust Gas Recirculation).  The impact of this fraction of combustion gases on the LFS is 

negative, causing it to slow down for various reasons, firstly by reducing the temperatures in the chamber, 

the speed of the reactions will also be reduced and therefore the speed of propagation, but it will also affect 

the concentrations of the reactants, making it less likely that the various reactants will collide.  

 

 

 

1.2 Laminar flame front structure 

The structure of the laminar flame front can be divided into three zones [13]:  

- In the first part, the temperature rises exponentially, while the enthalpy of formation remains 

constant, which means that combustion has not yet begun. However, the first reactions take place 

which lead to the dehydrogenation of the fuel molecule by radicals coming from the reaction zone 

by diffusion. The controlling phenomenon at this stage is therefore the diffusion of the radicals. 

- In the second zone, the increase in temperature and enthalpy of formation becomes linear, this zone 

is called the flame thickness. In this zone diffusion transport can be considered negligible compared 

to convection transport. At the end of this zone, practically all the fuel will have been oxidised. 

- In the third region, both the enthalpy of formation and the temperature increase very slowly. This 

zone is called the post-combustion zone. 

In order to analyse the laminar flame front from a chemical point of view, we must remember that several 

chemical kinetic models and laminar flame velocity correlations have been carried out for its prediction and 

to roughly describe the behaviour of the mixture in the engine combustion chamber. As a first assumption 

to make some evaluations and to understand how the combustion event takes place, we assume that the 

system works under laminar flow conditions, in this way, there is the possibility to neglect the effect of 

corrosion due to turbulence, which complicates the analysis. Simplifying, it is possible to imagine the 

combustion chamber subdivided into two macro-zones, one where there are unburnt gases and the other 

where there are burnt gases, these are separated by a flame front which is supposed to be infinitesimal.  



9 
 

 

Figure 1.2.1: Trend of concentrations of different chemical species involved during methane combustion [16] 

 

Figure 1.2.1 also shows the course of the various chemical species as they pass through the flame front. It is 

interesting to note that the laminar velocity is defined in a direction opposite to that of the propagation of 

the flame front (i.e. as if the front were stationary and the mixture was passing through it at a speed equal 

to the laminar velocity); this is because it is defined as the speed at which the reactants of the reactive 

mixture are consumed. 

If we look at figure 4, with the flame front on a smaller scale, it is possible to distinguish three layers [16]:  

- Preheating zone, where the available fuel is in the unburnt region, it reacts with oxygen to create O, 

OH and H radicals without releasing significant amounts of energy. We are in the initial phase 

promoted by the initiation activity of the plug. From the figure, it can be seen how the temperature 

gradient grows in an upward concave pattern due to the heat transferred from the inner layer. 

- Inner layer, where the chain reactions mentioned above take place. In this phase the products of the 

reaction, i.e. the radicals, contribute to the reactants (fuel and radical) of another reaction, giving 

rise to a continuous transformation of products into reactants leading to a thermal explosion with a 

major release of energy. 

-  Oxidation layer characterised by the hot products at the equilibrium temperature of the burnt gases. 

In this zone, the temperature gradient has a concave tendency, tending downwards due to heat 

delivery.  

All these reactions, which occur, are exothermic and the maximum for the rate of heat release is reached in 

the inner layer where the thermal explosion determines the combustion event.  
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We can use different types of approach to assess the flame speed, such as that in which the flame normally 

propagates and in relation to unburnt gases. In the latter case, an unstable spherical flame front propagates 

in the radial direction, and considering a one-dimensional flow in radial dimension, in scalar form, we can 

write the following formula:  

                                                                               
𝑑𝑟𝑓

𝑑𝑡
=   𝑉𝑢 +  𝑆𝐿,𝑢                                                                               (3) 

Where: 

-  the first term represents the velocity of the flame front 

-  the second is the velocity of the unburned gas  

-  the third is the laminar combustion velocity measured at the unburned gas 

Considering the principle of conservation of mass, applied between the burnt and unburnt zones, it is possible 

to calculate 𝑉𝑢: 

                                                                                𝑉𝑢 =  
𝜌𝑢−𝜌𝑏

𝜌𝑢
 
𝑑𝑟𝑓

𝑑𝑡
                                                                                (4) 

The term 
𝜌𝑢−𝜌𝑏

𝜌𝑢
  shows the expansion effect (unburnt gas density greater than the density of the burnt gas), 

a phenomenon which is present when the unburnt mass within the flame front becomes burnt.  

Consequently,  𝑉𝑏  for assumption is equal to zero, because the burned mass inside the flame front is not 

moving, the laminar combustion velocity measured at the unburned gas is obtained: 

                                                                         𝑆𝐿,𝑢 = (1 −
𝜌𝑢−𝜌𝑏

𝜌𝑢
 )

𝑑𝑟𝑓

𝑑𝑡
                                                                         (5) 

For the simulation of combustion engine cycles, several models were evaluated [16]: 

- Zero-dimensional model 

- Quasi-dimensional model 

- Multi-dimensional model 

- Multi-zone model  

The zero-dimensional model differs from the quasi-dimensional model due to the type of thermodynamic 

equilibrium, which gives us the possibility and ability to predict and visualise the three-dimensional 

phenomena occurring in the combustion chamber. The zero-dimensional model is based on two 

thermodynamic equations, which are the time-dependent mass conservation equation and the time-

dependent energy conservation equation. Multi-zone models, in addition to the previous thermodynamic 

approach, include some geometric parameters, such as the interface radius, i.e. the radius of the flame that 

divides the burnt and unburnt gases, which is why the multi-zone model can also be called a two-zone model. 

In the latter, combustion is triggered by several identical and multiple zones of burnt gas which are generated 

at each specific crank angle and allow the flame to propagate and start. The figure 1.2.2 shows a multi-zone 

model for an SI engine, with a specific crank angle (θ), with an unburnt zone and six burnt zones, and the 

spark occurs at point one.  Each zone of burnt and unburnt gas has a uniform temperature and composition, 

and a pressure that is shared evenly throughout the cylinder.  

 



11 
 

 

Figure 1.2.2: Representation of SI engine combustion event according to the Multi-zone model [16] 

If we want to make a mass balance in multizone area, for the first thermodynamic law, we consider an ideal 

gas inside the combustion chamber, with a homogeneous mixture and composed of induced air, fuel and 

residual gases (the latter computed by means of a correlation in which the residual gases are in function 

engine speed and average pressure during the exhaust and intake pressure strokes) from the previous engine 

cycle:  

                                                                                𝑚 = 𝑚𝑎 +  𝑚𝑓 + 𝑚𝑟                                                                    (6) 

For the conservation law, neglecting all possible leakages: 

                                                             𝑑𝑚 = 𝑑(𝑚𝑎 + 𝑚𝑓 +  𝑚𝑟) = 𝑑𝑚𝑢 +  𝑑𝑚𝑏,𝑛 = 0                                     (7) 

It is worth noting the presence of 𝑑𝑚𝑏,𝑛 in the formula: after the spark has been ignited, a first zone is burnt, 

this zone grows in volume and mass as a part of the unburnt gas is burning.  At a given crank angle (θ), a new 

zone of burnt gas is created, while the previous zone created does not receive mass from the unburnt gas, 

but its volume continues to change due to its change in density, consequently we have that:   

-  𝑑𝑚𝑏   is different from zero only in the last formed zone 

-  𝑑𝑉𝑏  is always different from zero for each zone that is formed 

If we now want to apply the energy conservation equation, it is necessary to write three different equations, 

one for the unburnt gas zone, n-equations one for each burnt gas zone and one for the last burnt zone: 

a) −𝑞𝑢𝐴𝑢
𝑑θ

𝜔
 + 𝑉𝑢𝑑𝑝 = (1 − 𝑥𝑏)𝑚𝑑ℎ𝑢                   for the unburned gas zone                            (8) 

b) −𝑞𝑏,𝑖𝐴𝑏,𝑖
𝑑θ

𝜔
 + 𝑉𝑏,𝑖𝑑𝑝 = 𝑥𝑏,𝑖𝑚𝑑ℎ𝑏,𝑖                      for the i-th burned gas zone                          (9) 

c) −𝑞𝑏,𝑛𝐴𝑏,𝑛
𝑑θ

𝜔
 + 𝑉𝑏,𝑛𝑑𝑝 = 𝑥𝑏,𝑛𝑚𝑑ℎ𝑏,𝑛 +  𝑚𝑑ℎ𝑏,𝑛 (ℎ𝑏,𝑛 − ℎ𝑢)     for the last b.g. zone       (10) 
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If we look at the three equations, we can see that in all of them appear the term “𝑞” which is the heat flux 

transferred to the wall, the term “A” which is the surface through which the heat flux exchange takes place, 

the term “𝑑𝜃 /𝜔” is the time, the term “𝑥” which is the mass fraction and “h” is the enthalpy. In all equations, 

we distinguish three terms: 

-  A first term is that of heat transfer   

- A second term is the transferred work 𝑝𝑑p (It is not 𝑝𝑑𝑉 because on the right side of the equation 

there is the enthalpy term)  

- An enthalpy change term relative to the specific zone to the right of the equal 

In equation (10), there is an additional fourth term representing the presence of some unburned gases 

entrained in the burnt gas zone, which will change their chemical composition.  

The multidimensional model is also governed by the Navier-Stokes equations, which also depend on space, 

as well as the conservation of mass and energy equation. However, in practical simulations with the 

simulation software, it uses analytical correlations as a function of the equivalence ratio, pressure, 

temperature and EGR value to obtain the laminar flame speed value. They are simply implemented in the 

simulation codes, considering that it is possible to obtain the laminar velocity value for any fuel type, once 

the mixture composition, pressure and temperature are known. Various forms of empirical and semi-

empirical functional relationships have been proposed for the laminar burning rate, the most widely used 

being the power law formula:  

                                                                    𝑆𝐿 (Ø, 𝑇𝑢, 𝑝𝑢) =  𝑆𝐿,0  (
𝑇𝑢

𝑇0
)

𝛼
(

𝑝𝑢

𝑝0
)

𝛽
                                                         (11) 

where 𝑆𝐿,0  is the laminar velocity for a specific equivalence ratio (Ø), measured at (𝑇0, 𝑝0) i.e. at ambient 

conditions, α and β are exponents that could be constant or dependent on the strength of the mixture. Gülder 

made the expression of 𝑆𝐿,0 explicit: 

                                                                          𝑆𝐿,0 (Ø) = 𝑍 𝑊 Øη 𝜀−𝜉(Ø−𝛿)2
                                                          (12) 

Where Z is equal to one for a single fuel constituting the mixture, and W, η and 𝜉 are constants for a specific 

fuel. In the case of methane, the mixture is a mix of hydrocarbon molecules and their volume fraction varies, 

depending on the treatment applied during production, transport or the area where it was extracted [17]. 

Despite varying Z in the Gülder correlation, it has been shown that it is not sufficient to evaluate the effects 

of varying the composition of the natural gas on its laminar flame velocity [17], therefore evaluating the 

analysis of, Dirrenberger, who started from a mass balance, and obtained a valid relationship for a natural 

gas composed of methane, ethane and propane. The velocity estimated with this correlation has a good 

accuracy for lean and rich mixtures, but less acceptable near the stoichiometric condition. In the present 

thesis, we can refer to the laminar velocity measurement experimentally with Lowry, that use a constant 

pressure method (CPM), this is because our datasets were validated by comparing the simulated velocity 

values with the various experimental methods available for measuring laminar velocity, and the method with 

overlapping values was the CPM method. As for the Lowry estimation, it was found to be more accurate, 

even though it does not take into account the “radiation effect”, neglecting the radiation at this stage of 

combustion can lead to large errors on the LFS. The hypothesis behind this choice is that the carbon dioxide 

and water produced by combustion are mainly responsible for this energy absorption and release 

mechanism; therefore, during the early stages of propagation there will be small quantities of these 

compounds in the chamber and therefore is negligible the energy absorption and  the energy release. In 

other method, not considering the effect of radiation leads to an over-estimation of the LFS because the 

flame temperature would be higher than the actual temperature and therefore the flame front would 

propagate faster. The second aspect concerns the flotation effect, i.e. the creation of a vertical velocity 

component of the combustion gases due to the different density of the gases present in the chamber. This 
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effect is all the more significant the lower the velocity of propagation of the front, i.e. less than 15 cm/s.  

Lowry takes this other aspect into account compared to other methods, and this improves its accuracy. 

Furthermore, the heat losses, although not considered in Lowry, but being a CPM, for the first stages of 

combustion, are absolutely negligible (less than 1% of the total energy). The effect of flame front wrinkling 

can also significantly alter the final LFS value and this is taken into account in Lowry. Lastly, the pressure of 

the combustion gases, which is not taken into account in Lowry, because it is assumed that the front 

propagates in an unconfined environment, at least for the first moments of flame front propagation, and this 

would not influence much the error on the LFS, deriving from taking into account the pressure growth, which 

is less than 3% and therefore negligible.  

 

 

1.3 Why choose natural gas? 

Gaseous fuels are a good alternative to petrol because they have low reactivity. The main constituent of 

natural gas (CNG) is methane mixed with inert gases (N2, CO2) and ethane plus a small percentage of propane 

and high molecular weight hydrocarbons. CNG because it is stored and distributed in the form of compressed 

natural gas.  Recently, technologies for storing natural gas in liquid form (LNG) are also becoming more 

widespread. LNG is a viable alternative for heavy-duty traction vehicles that need to meet requirements on 

vehicle range and are characterised by high fuel consumption. There are numerous advantages of natural gas 

over petrol:  

- Greater availability  

- Reduction of CO2 because for the same amount of energy obtained from the combustion process, 

methane has a lower carbon content than petrol, and greater efficiency in the extraction-refining-

distribution chain, which translates into benefits in terms of a well-to-wheel analysis. 

- The compact molecule makes it highly resistant to detonation. This is why it is difficult to calculate 

the octane rating, as it would be on a scale of around 130 octane. A wide range and variety of octane 

numbers depends on the composition of the fuel, which allows a higher compression ratio to be used 

than for petrol with benefits in terms of efficiency and CO2 emissions. However, the problem with 

these engines is the inefficient storage of the fuel, which is in gaseous form. This is because gaseous 

fuels have a low energy density and therefore need a greater volume to achieve the same range as a 

vehicle powered by liquid fuels. Another problem is that distribution is less widespread than with 

petrol. Because of these problems, bi-fuel applications have become widespread, i.e. engines that 

run on both petrol and natural gas, but the design of a bi-fuel engine requires a lower compression 

ratio for petrol operation to avoid detonations, and so we will not exploit the full potential of 

methane. In figure 6 we can see what happened with a bi-fuel engine. 

- Since the fuel is gaseous and not liquid, there is no need to enrich during transients, thus making the 

engine run with a stoichiometric ratio equal to one. This has benefits in terms of CO2 emissions, lower 

fuel consumption, and lower carbon monoxide and hydrocarbon emissions. 

- Unburned hydrocarbons are less aggressive and have less impact on the environment. All 

hydrocarbons are reactive in the atmosphere, especially with nitrogen oxides, resulting in 

photochemical smog. However, methane hydrocarbons are less reactive due to the rigid and 

compact form of the molecule. 

- The natural gas is lighter than air, so there is no particular risk in the event of a gas leak, as is the case 

with LPG (liquefied petroleum gas), which is heavier than air. 

- Natural gas has a very low flammability range and there is little chance that a flammable mixture will 

be created by methane leaks. 
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Figure 1.3.1: Same engine running on petrol and natural gas, the engine cannot fully exploit the natural gas [14] 

In addition, it does not have particularly high LFS values, which is one of the reasons why it was decided to 

add hydrogen, in order to solve this problem, allowing a shorter combustion phase duration and thus 

increasing engine efficiency. The direct drawback of adding hydrogen is the achievement of high 

temperatures in the end of the combustion chamber, and thus emissions, the production of which depends 

mainly on a thermal mechanism that is strongly influenced by the temperatures reached in the combustion 

chamber. In addition, another drawback could be caused by the fact that the engine is in a gaseous state. In 

fact, in traditional spark-ignition engines, using a rich fuel reduces the temperature in the chamber thanks to 

the heat subtracted for the vaporisation of the fuel. In the case of methane, this effect could not be relied on 

to keep chamber temperatures down.  

 

1.4 Why use methane-hydrogen mixtures? 

An alternative to conventional fuels is mixtures of hydrogen and methane. This combines the advantages of 

methane with those of hydrogen, combining a higher combustion speed with a high resistance to detonation. 

In fact, methane has a low front propagation speed for mixtures even slightly far from stoichiometric. One 

could think of intensifying the turbulence in the chamber in order to compensate for the low values of front 

propagation speed, exploiting a duct geometry that improves turbulence, but the filling coefficient will be 

affected, since the entire cross-section of the duct would not be used. The solution is to use hydrogen as an 

additive, which also reduces the cyclical variability of the engine, operation at partial loads and also reduces 

incomplete combustion. The main differences between the two fuels are 

-  the laminar flame speed, which is about ten times higher for hydrogen, and the flammability limit, 

which is much higher for hydrogen.  

- A particularly interesting parameter is the energy density, which is clearly in favour of methane, 

meaning that, due to the low density of hydrogen, a large quantity of fuel needs to be stored on 

board the vehicle.  

- hydrogen has a very high stoichiometric ratio, which means that large quantities of air must be 

introduced into the combustion chamber to ensure that the engine operates at the required 

stoichiometric ratio. Therefore, when creating the mixture of methane and hydrogen, a compromise 

has to be made between improving combustion due to the addition of hydrogen and the 

simultaneous decrease in energy density.  
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The addition of hydrogen allows the combustion phase to be completed in ever shorter intervals of time, but 

with the consequent achievement of ever higher temperatures (combustion tends towards the higher 

temperature). The combustion tends to the ideal isochoric one foreseen by the Otto cycle), with a 

consequent increase in NOx emissions.   
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2 Introduction on Machine Learning and Artificial Neural Networks 

One of the first definitions of machine learning is given to us by Arthur Samuel who defines it as “ the field of 

study that gives computers the ability to learn without being explicitly programmed.” 

Nowadays, machine learning, and more generally neural networks, are widely used in the fields of robotics, 

medical and networking, while it remains a topical subject in the automotive field, where, only a few years 

ago, they started to be investigated to bring improvements in terms of safety, control and emissions of cars. 

Machine Learning (ML) is the science (and art) of programming computers in such a way that they can learn 

from data [2]. In the present work of the thesis a code is used, written in Python environment, which exploits 

an algorithm of Machine Learning, specifically called Linear Regression. We will see later in detail how this 

algorithm is made up and how it works.  

Machine learning uses various statistical methods to learn directly from data. The first real step, where the 

available data is examined to create a model, is 'training'. From the analysis and training, an algorithm is 

obtained to represent our dataset. Once the algorithm is found, it is used to make predictions and estimates. 

The loop is represented in the illustration below: 

 

Figure 2.1: Machine learning loop [1] 

The algorithm that is reflected in the training must be guided to look for hidden correlations, thanks to 

features that are provided by the input data. The characteristics on which our algorithm must train, and those 

which it must predict, are then provided. No less important is the next step, the parameters and 

hyperparameters optimization to extract a better result from our algorithm. The goal is to have a final model 

that satisfies our search parameters. 

 

 

2.1 Classification of machine learning algorithms 

There are different types of Machine Learning, they can be divided into three macro categories: 

- the category in which they can or cannot do training with human supervision, and in this domain we 

find supervised, unsupervised, semi-supervised and Reinforcement Learning; 

- the algorithm due to training may or may not learn exponentially during application; 

- Whether they work by simply comparing new data to already known data, or 

- they detect patterns using training data and then build a predictive model, a scientifically similar 

approach.[2] 
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These criteria can also be combined. For this thesis work we focus on the first macro-category, the reason 

for this choice will be explained later. 

Let's briefly look at the Machine Learning systems that can be classified according to the type and amount of 

supervision they can obtain during training. 

 

2.1.1 Supervised Learning 

In supervised learning data are provided in 'input-output' form, are used to extract a 'general rule' associating 

them, the data that we feed includes the labels which is our goal. This method is based on the experience 

gained in the training phase. Then the algorithm is able to create an output for an input it has never seen 

before without the help of a human being. We have two areas where supervised learning can be applied: 

- Classification: the learning system must create a model that filters the inputs, the algorithm is first 

trained on several unknown data, each belonging to a different class, and then learns to classify the 

new ones; 

-  Regression: from multiple inputs, the learning system must predict a single output. This is a different 

approach where the algorithm itself must predict a certain numerical target value, given a certain set 

of features, called predictors. To train such a system it is necessary to provide, in general, a lot of 

data containing both predictors and target values, called labels, which can be, therefore, considered 

as input and output of the system respectively. Thus, solving a regression problem corresponds to 

learning an approximate function of the given input-output pairs.  

 

Figure 2.1.1.1: Regression of known data and prediction of a new instance [2] 

 

The most important and well-known supervised learning algorithms, of which we will only discuss the one of 

interest for the present work, are: 

- K-Nearest Neighbors 

- Linear Regression 

- Logistic Regression 

- Support Vector Machines 

- Decision Trees and Random Forests 

- Neural networks 
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Among these, as previously mentioned, we will analyse only the case of Linear Regression used for this work. 

2.1.2 Unsupervised Learning 

In unsupervised learning algorithms, the training set is not labelled, i.e. it does not contain the output values 

by which to train the model and, therefore, the pattern classes used for training are not known. The algorithm 

must find a structure in the input data, sort and learn. It is used to identify a 'cluster' or grouping.  The most 

important algorithms of this type include:  

- Clustering: identifies groups (clusters) of patterns with similar characteristics in which the classes of 

the problem are not known and the patterns unlabelled (no output).  Often the number of clusters 

is not known a priori, but those identified in the learning can then be used as classes. The 

unsupervised nature of the problem makes them more complicated to classify. 

 

 

        Figure 2.1.2.1: Type of clustering. PCA stands for Principal Component Analysis. TSNE stands for t-distributed Stochastic Neighbor Embedding [3] 

 

 

- Dimensionality reduction: reduces the number of dimensions of the input patterns, without losing 

too much information. The operation involves a loss of information, but the aim is to keep the 

information that is important for the case, and therefore dependent on the application. It is therefore 

very useful to make very high dimensionality problems tractable, discarding redundant and/or 

unstable information, thus allowing the code to compute faster due to the smaller disk space disk 

space occupied by the data and sometimes higher performance. 

 

2.1.3 Semisupervised Learning 

Semi-supervised learning algorithms work with only partially labelled training sets and the distribution of 

patterns without output can help to optimise the classification rule. Many algorithms of this type are 

combinations of supervised and unsupervised. An example of the use of semisupervised learning is in the 
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photo-hosting services algorithm, where by uploading several photos of groups of people, we obtain 

clustering (unsupervised learning) of people A who appear in photos 1,3 and 5 for example, while people B 

are identified in photos 2, 4 and 6. [2] 

 

2.1.4 Reinforcement Learning 

This is a machine learning technique that aims to create autonomous agents capable of choosing actions to 

achieve certain objectives through interaction with their environment. A Reinforcement Learning algorithm 

targets the learning of optimal behaviour from past experience. The acquisition of an agent, which observes 

its environment and performs actions to modify it. Actions to modify it, causing transitions from one state to 

another and receiving “rewards”. Rewards, which may also be penalties in the sense of negative rewards. 

The goal is to learn the optimal action in each state in order to maximise the sum of the rewards obtained in 

the long run. It is important to underline an aspect that concerns the ML in general: since the main objective 

is to select a learning algorithm and train it on a certain set of data, the selection is extremely important since 

we may have a "bad algorithm" and "bad data", in the sense that they may not be compatible, or we have 

only a small number of data available for training, or even the chosen algorithm is not compatible with the 

application itself. 

 

 

 

2.2 Artificial Neural Networks and Deep Neural Networks 

just as man took inspiration from birds for the field of aviation, so too in the field of artificial intelligence he 

took inspiration from the architecture of human’s brain. This was the key that led to the development of the 

artificial neural network (ANN). ANN are a supervised learning system made up of a large number of simple 

elements, called neurons or perceptron. Any neuron can make a number of simple decisions, and feeding 

those decisions to other neurons, organised in interlinked layers [4]. In other word ANN is a machine learning 

approach, seen as a “mathematical model”, formed by artificial neurons used to solve problems. A "simple  

neural network" is formed by: 

- Layer of input neurons (or nodes), which receives signals from outside 

- Hidden layers that receive signals from the input layer or from other intermediate layers 

- Output layer 

 
Figure 2.2.1: Network’s architecture  

 

 And we can say that ANN is the real beating heart of Deep Learning. In this chapter we introduce the 

architectures of the ANN up to the Deep Learning. 
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2.2.1 From Perceptron to Deep Neural Networks 

Cornell Frank Rosenblatt invented the first architecture of a perceptron in 1957, the first binary classification 

algorithm [2]. It helps to divide a set of input signals into two parts: "0" and "1", i.e. "yes" and "no". But unlike 

many other classification algorithms, the perceptron is designed around the essential unit of the human 

brain, the neuron, and has an extraordinary ability to learn and solve complex problems. A perceptron is a 

very simple learning machine. It can take a small number of inputs, each of which has a weight to indicate 

how much it matters, and generate an output decision of '0' or '1'. However, when it is combined with many 

other perceptron, it forms an ANN. 

To solve more complicated problem we need a perceptron network. Referring to figure 2.2.1.1, it shows an 

ANN called multi-layer perceptron (MLP), with exactly three layers. Each perceptron in the input layer, sends 

outputs to all the perceptrons in the hidden layer, and all perceptrons in the second layer send outputs to 

the the output layer. From each perceptron there are several input signals, each signal goes to each 

perceptron of the hidden layer, but these signals use different weights, so we will have different outputs. In 

figure 2.2.1.1, each line going from a perceptron from one layer to the next layer carries a different output. 

In this way it is possible to obtain a complex system, i.e. the neural network, consisting of several perceptrons 

and several layers. An MLP with three layers, such as the diagram above, is called a non-deep neural network. 

An MLP with more than four layers is called a Deep Neural Network (DNN). Unlike the classic perceptron, the 

neural networks obtained by MLP, can use functions and weights able to have outputs also different from 0 

and 1, typical characteristic of "simple" problems of classification, and then obtain values in the real field. 

 

Figure 2.2.1.1: Perceptron’s structure [4] 
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2.3 Data available for our neural network  

The starting data, which will be used to 'feed' our first layer of the neural network, were obtained using LOGE 

research, a LOGE tool for studying reactive flows using complex chemical kinetics models. It allows 

combustions to be simulated using detailed chemical mechanisms for a wide variety of engineering 

applications; it also allows different types of reactors to be simulated, as well as combustion in the 

combustion chamber. In fact, the laminar burning speed can be either measured (using different 

experimental procedures) or calculated by simulating the chemical kinetics of the reactions involved in the 

entire combustion process. In this thesis work, an attempt was made to predict the laminar burning speed 

by means of a deep learning algorithm that identifies the connections between the initial simulation input 

data and the simulation result (i.e. the speed). Two large libraries of LS values, measured in [cm/s], obtained 

under different initial conditions and by two different chemical mechanisms, were analysed:  

- ARAMCO 2.0  

- GRI-mech 3.0 

The libraries were obtained by varying various physical parameters, in particular: 

-  Dosage [-] 

-  EGR [%] 

-  Temperature [K]   

-  Pressure [bar] 

 

2.3.1 Aramco 2.0 library 

The first step involves the creation and the analysis of a library of LS at the variation of EGR, dosage, pressure 

and temperature. In Table 2.3.1.1, the ranges of the quantities under consideration are summarised. 

Parameters Range Discretization step Number of points 

 
Initial pressure [bar] 

 
1-200 

From 1 to 20 bar          step 1 bar 
From 20 to 100 bar          step 10 bar 
From 100 to 200 bar          step 20 bar 

 
33 

Temperature [K] 300-1100 100 K 9 

Dosage [-] 1 - 1 

EGR [%] 0-50 10% 6 
Table 2.3.1.1: Range of Aramco 2.0 parameters 

 

So in total 1782 different cases were simulated. If we vary the dosage in a range from 0.75 to 1.25, in steps 

of 0.05, i.e. 10 steps of 0.05[-] the total number of simulated points is 17820. 

The available data had a dosage value of 1 for all simulations. It was decided in this case to create a single 

dataset, eliminating the "phi" column because it did not give a real contribution to the training phase of our 

network.  Furthermore, observing the data, included in our dataset, for high values of pressure and 

temperature, presented "NaN" velocity values (not numbers), it was decided in this case to delete the whole 

respective row. The decision was made after testing the neural network, and observing a not optimal training 

of this, specifically it was noticed that the network learned in a wrong way, showing "prediction" NaN values 

in the initial training phase. For this reason, upstream of our neural network, an algorithm of classification 

was elaborated, that is, a network "pass/fail", which discriminates the NaN values. As a goal it must give as a 

result 1 when it finds a value of NaN speed, and 0 when it finds a real value of speed. This point will be taken 

up in the chapter dedicated to the description of the neural network. 
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A single dataset was created, resulting in a file of 1626 rows and 4 columns, as we can see from table 2.3.1.2, 

we have a recap of min and max value, standard deviation and mean value:  

 EGR [%] p [bar] T [K] Speed [cm/s] 

Rows 1626 1626 1626 1626 

Columns  4 4 4 4 

Mean 23.77 46.24 725.83 50.37 

Std 16.72 5.57 247.89 66.85 

Min 0 1 300 0.088 

Max  50 200 1100 480.90 
Table 2.3.1.2: Cleaned available Aramco 2.0 data 

The data analysed shows that the average speed of our file is around 50.37 cm/s, a value that we must keep 

in mind, when we go to evaluate the performances of our neural network. This is because we expect that our 

network, which learns and trains from our input file, will be more accurate at low to medium speed values.  

A further analysis to confirm the distribution of our data can be observed from the figure 2.3.1.1, where we 

find a summary of the trends and the distributions of our data contained in our dataset. 

 

 

 



23 
 

 

Figure 2.3.1.1: Dataset Aramco 2.0 data distributions  
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2.3.2 GRI-mech 3.0 library  

Also in this case, the first step involves the creation and the analysis of a library of LS at the variation of EGR, 

dosage, pressure and temperature. In Table 2.3.2.1, the ranges of the quantities under consideration are 

summarised. 

Parameters Range Discretization step Number of points 

 
Initial pressure [bar] 

 
1-200 

From 1 to 10 bar              step 5 bar 
From 10 to 20 bar            step 10 bar 
From 20 to 40 bar            step 20 bar 
From 40 to 200 bar          step 40 bar 

 
9 

Temperature [K] 300-1600 From 300 to 1200 K          step 100k 
One point at 1600 K 

11 

Dosage [-] 0-5 From 0 to 2            step 0.1 
From 2 to 3            step 0.5 
One point at 5  

 
23 

EGR [-] 0-0.6 0.1 7 
Table 2.3.2.1: Range of Gri-mech 3.0 parameters 

So in total 15939 different cases were simulated.  

Again, a single txt file was created from the results of the simulations carried out. It was cleaned from the 

1.0000000E-03 speed values in the file, as they were NaN values. These non-numbers, as can be imagined, 

came from zero dosing values, as was obvious to expect, and from high stoichiometric ratio values, i.e. 

simulations with phi equal to 5, and as in the previous case we have non-numbers when you have very high 

pressures and temperatures. Once we have cleaned up our file, this resulting with 11602 rows and 5 columns. 

We move on to the analysis of it, through mean value, standard deviation, min and max value ,as shown in 

table 2.3.2.2: 

 EGR [-] p [bar] T [K] Phi [-] Speed [m/s] 

Rows 11602 11602 11602 11602 11602 

Columns  5 5 5 5 5 

Mean 0.25 70.41 846.43 1.29 0.69 

Std 0.18 69.53 364.90 0.7 1.56 

Min 0 1 300 0.2 0.001 

Max  0.6 200 1600 3 26.46 
Table 2.3.2.2: Cleaned available Gri-mech 3.0 data 

In contrast to table 2.3.1.2, we can see that the speed is not expressed in cm/s but in m/s. Also we can notice 

that the EGR values are not expressed in percentage. What is very important is that we have a dataset with 

dosage values not equal to one, but a total of 23 intermediate points between the min and max values. We 

stress these differences because it will be very important to see how our first attempt neural network will 

behave with a dataset that is substantially very different from the Aramco 2.0 dataset. A further analysis to 

confirm the distribution of our data can be observed from the figure 2.3.1.1, where we find a summary of 

the trends and the distributions of our data contained in our dataset. From the figure, we can see that the 

simulations were launched by trying to take the pressure, temperature and dosage values to extremes. It is 

worth noting that there is a grouping of points which present a high speed value, approximately 25 m/s, with: 

- low pressure, close to 1 bar; 

- temperature of 1600 K; 

- EGR set at 0.4; 

- dosage into the range 0.2-0.3. 
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Figure 2.3.2.1: GRI-mech 3.0 dataset data distributions  

This result is to be investigated with the formulas of chemical kinetics with a comparison through the Aramco 

simulation using the same step size. The above points were investigated, with the first point being the 

highlighted one. Unfortunately, the Aramco 2.0 software did not report any real results, nor even a NaN 

value, it could not interpolate this combination of points, so it is impossible to make a direct comparison 

between the two mechanisms and the kinematics. It should be remembered that the Aramco dataset 

previously illustrated was validated using Lowry's kinematic method, taking representative points throughout 

the dataset and seeing how it approached the values of the chemical kinetics. It was therefore decided to 

continue with this dataset, because if we were to make a comparison we would need to have results from 

both modes of simulation, with the same step size. This is time-consuming as Aramco is more accurate but 

requires much more computational time. Furthermore, the aim of our thesis work is to see if it is possible to 

find relationships between the various input data, even non-linear ones, using machine learning techniques, 

and this dataset represents a real challenge for our algorithm. 
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2.3.3 Comparison of Aramco 2.0 and GRI-mech 3.0  

From the libraries, it was possible to compare the two mechanisms and to specify the differences between 

the mechanisms under analysis, which are summarised in the following table 2.3.3.1: 

Kinetic Mechanism  GRI-Mech 3.0 Aramco 2.0 

 
Composition 

Includes 
CH4/C2H6/C3H8 
Mixtures 
 

Includes  
CH4/C2H6/C3H8/C2H4/C2H2/ 
C2H5OH/C3H6/CH3OH 
Mixtures 
 

Experimental techniques Rapid compression machine and 
shock tube 

Shock tubes, rapid compression 
machines, flames, jet-stirred and 
plug-flow reactors 

Pressure range of validation  13-21 bar 1.2-260 bar 

Temperature range of validation 850-925 K 1040-2584 K 

Chemical reaction and species 325 reactions and 53 species 2716 reaction and 502 species 
Table 2.3.3.1: Differences between Aramco 2.0 and GRI-Mech 3.0 mechanisms [5] 

The two mechanisms are derived from the experimental data, by setting some coefficients of the equations 

solved by the chemical model, in order to reach the same values of LFS obtained experimentally.  The main 

difference between the two reaction mechanisms is the number of chemical species and reactions with which 

the combustion phenomenon is simulated, in particular Aramco 2.0 uses about ten times the number of 

species and reactions used by GRImech 3.0. The reason for that approach is found in sensitivity consideration, 

i.e. not all the reaction have an equal weight. As consequence the simulation times increase exponentially 

with the number of reactions and species contained in the mechanism, and the choice number of reaction 

are a consequence of compromise between time and accuracy. We aspect a great precision from Aramco 2.0 

and a faster simulation from GRI-mech 3.0. 
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2.4 Data processing and normalization techniques 

It is good practice to normalise features using different ranges and scales, in our case we have different 

ranges of pressure, temperature, dosing and EGR, all ranging from low to high values, as seen in the previous 

chapter. Our model receiving, the input data, although it can converge without normalising the features, but 

this makes training more difficult, and makes the resulting model dependent on the choice of units used in 

the input. Below we will look at some of the data processing and normalisation techniques. You want to get 

all the data on the same scale, this is because if the scales for different features are vastly different, this can 

have a knock-on effect on your ability to learn (depending on the methods you are using to do this). Data 

normalisation must ensure that standardised function values implicitly weight all features in their 

representation. 

2.4.1 Normalization and standardization  

Normalization and standardisation are two processes used in the data pre-processing phase in which the 

data is prepared for further processing by our neural network.  The two methods seek to scale the data set. 

Normalisation is a re-scaling technique in which we shift and re-scale values so that they end up oscillating 

between 0 and 1. It is also commonly known as Min-Max scaling [6]. From the figure 2.4.1.1 below and 

formula (13), we can understand how min-max scaling works. 

 

Figure 2.4.1.1: Normalization effect [7] 

 

𝑋′ =  
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥− 𝑋𝑚𝑖𝑛
       (13) 

Where Xmax  and Xmin are the maximum and minimum values. 

Standardisation is another scalability technique in which values are centred around the mean with a standard 

deviation equal to one. This results in that the mean of the attribute becomes zero and the resulted 

distribution has a unit standard deviation [6]. The standardization formula (14) is described as: 

𝑋′ =
𝑋− µ

𝜎
      (14) 
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Where µ is the mean values and σ is the standard deviation. In this case we have not a restricted range as in 

case (13). Now it’s important to understand if for our distribution data which is better. Normally the general 

rule say that Normalization is most used when we know that the data not follow a Gaussian distribution, but 

show a random distribution data. At the contrary standardization is used when we have data that are 

described which a Gaussian curve. However, the choice of whether to use normalisation or standardisation 

depends on the problem and on the machine learning algorithm used. There is no fixed rule.  As will be made 

clear later, our datasets will be divided into training, testing and validation, these serve respectively to train 

our network, to test if it fits well and to validate the hyperparameters. Therefore, a good practice is to fit the 

scaler to the training data and then use it to transform the test data, avoiding any data loss during the model 

testing process. Moreover, normalisation or standardization of target values is generally not required.  In this 

case we decided to use the (14) formula applied to our dataset with some differences: 

normed_trainData = (trainData - mean(trainData)) / std(trainData)        (15) 

 normed_testData = (testData - mean(trainData)) / std(trainData)           (16) 

We chose to normalise our data using only the training data. This choice depends on the size of the datasets 

and whether both the training and the test are equally representative of the domain you are trying to model. 

If you have thousands of data points and the test set is completely representative of the training set (although 

this is difficult to prove), then you will be able to normalise the training set with the training data and the 

test set with its respective data. If you use a small but representative set of test data, then it is best to 

normalise using only the training parameters, as sampling errors can negatively affect predictions. We 

consider in our choice the scaling process as part of the model generated from the training data, so the test 

data is testing both the generality of the model combined with the pre-processing. Very often people scale 

all the data and then split it into training/test datasets, but in this case, the test will then validate the model 

on its own, which can be useful if your goal is not to produce a predictive algorithm but to understand the 

structure of the data (i.e. the important variables) [8]. Our conservative choice was made by looking at the 

size of the data sets and whether both the train and the test are equally representative of the domain you 

are trying to model. Having two datasets with different data and different sizes, this conservative way was 

chosen. The available data has been standardised to prevent the network only learning from values that are 

too large or too low. 

 

 

2.5 Description of our deep learning algorithm  

As mentioned previously, for the realisation of our neural network we will use linear regression, which is used 

in science but also in finance, for predictive problems, and can also be used for deep learning problems.  

What is the connection between neural network and linear regression? Let us look at a simple regression 

equation:  

𝛾 =  𝛽1 + 𝛽2𝑋2 + 𝛽3𝑋3 + ⋯ + 𝛽𝑘𝑋𝑘 + ɛ      (17) 

Where: 

- γ is the dependent variable (the value to be predicted) 

- Xk is the independent variable (input values) 

- βk are the weights or correlations to be found by the network 

- ɛ is the error, i.e. the distance between the predicted value and variable γ 
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Neural networks are able to model complex problems, using a learning process that simulates the human 

brain. The neural network generates a model that approximates any regression function. In addition, many 

of the regression models do not fit the data perfectly, and neural networks must therefore generate a more 

complex model that will provide greater accuracy. Therefore, it was decided to use linear regression to build 

our deep learning algorithm. 

 

2.5.1 Training validation and test 

The best way to know how a model will adapt to new data is to test it on the instances themselves. To do 

this the dataset supplied to the algorithm is divided into two parts: Training and Testing, the first being split 

into training set and validation set:  

- Training test: data set used for learning, to fit the parameters of the model (linear regression), we 

would use the training set to find the "optimal" weights β.  

- Validation test: set of patterns on which the system tares the hyperparameters that will be used to 

optimise our algorithm. Used to see if the chosen model fits our case. In our case, we would use the 

validation set to find the "optimal" number of hidden units or determine a stopping point for learning 

the algorithm. 

- Testing: set of patterns on which the algorithm evaluates the final performance.  It is only used once 

a model is completely trained. 

Why separate test set and validation? A general rule say that the estimated error rate, of the final model, on 

the validation data will be biased (lower than the real error rate) because the validation set is used to select 

and evaluate the model. After evaluating the final model on the test set, the further model should not be 

tuned! 

 

Figure 2.5.1.1: Dataset subdivision obtained by the algorithm [9] 

 

From the previous division, evaluating the model on the test set, we obtain an error rate on new instances, 

which is called the generalisation error. This value tells us how well our model will perform on instances it 
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has never seen before. We will use 80% of the data for training and 20% for testing. The validation set will 

be proportionally the same as the test set but will be included in the training data. The need to have a test 

set, unrelated to our network that is learning from the training data, and a validation set results from the fact 

that if we use the test set to find the ideal hyperparameters for our case, our network will underestimate the 

generalisation error, because it optimises and then evaluates itself on the test set. This means that the model 

is unlikely to perform as well on new data [2]. In general, the behaviour of a Machine Learning algorithm is 

governed by a set of parameters that characterise it. The learning consists in determining the optimal value 

of these same parameters. Therefore, given a training set Train and a set of parameters, the objective 

function. The majority of the algorithms require to define, before the real learning, the value of the so-called 

hyper-parameters and, once appropriately chosen, the learning is carried out for each one, going to take 

those that have provided the best performances. Examples of hyper-parameters can be the number of 

neurons in a neural network, the type of loss-function, the number of levels, optimisation functions and so 

on. Let us then give a definition of what is considered to be the performance of the algorithm and define the 

parameters that characterise it.  

 

 

2.5.2 How to evaluate our deep neural network 

All machine learning algorithms aim to maximise or minimise a function, which we call the "objective 

function". The latter if they are minimised are called "loss functions", they are a measure of how well a model 

does. Another method used to get the minimum point of the function, is "gradient descent". The loss function 

is like an undulating mountain and gradient descent tries to find the lowest point. There is no single loss 

function that works for all types of data, it depends on a number of factors including the presence of any 

outliers, the type of machine learning algorithm chosen, the time efficiency of gradient descent, the facility 

of finding derivatives and the robustness of the predication. . Generally, however, it is preferable to use a 

measure which is directly related to the semantics of the problem, i.e. mathematical parameters from the 

field of statistics and probability. Loss functions can be classified into two types:   

- Classification (used in discrete system) 

- Regression (used in continues system) 

Loss functions can be classified into two types: classification and regression loss. In this work we will focus 

on regression loss which is akin to our algorithm. The most commonly used regression loss functions are: 

- Mean Square Error (MSE) is the sum of the squared distances between the target variable and the 

predicted values. It is one of the most widely used regression loss functions. 

 (18) 

- Mean Absolute Error (MAE) is the sum of the absolute differences between our target and predicted 

variables. It measures the mean magnitude of the errors in a set of predictions, without considering 

their preferred directions. With a preferred direction we obtain the Mean Bias Error (MBE), which is 

a sum of residuals. The range goes from zero to infinity. 

  (19) 

The quadratic error is easier to solve, but the absolute error is more true when there are outliers in the 

dataset.  Given the algorithm our goal is to find the point that minimises the loss function. The minimum for 
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both will be reached when the prediction is exactly equal to the true value.  Since the MSE squares the error, 

the value of the error (e) increases greatly if it is greater than one. If we have an outlier in our data, the value 

will be much higher. This will cause the model with MSE loss to give more weight to outliers, hence for values 

that are not representative of our dataset, than a model with MAE loss. If on the other hand, we try to adjust 

MSE to minimise that single outlier case at the expense of the others, this will reduce its overall performance. 

MAE loss is useful if the training data have unrepresentative values, this is because if we were to provide only 

one prediction for all observations that attempt to minimise MSE, then that prediction is supposed to be the 

average of all target values [2]. But if we are trying to minimize the MAE, that prediction would be the median 

of all observations. We know that the median is more robust to outliers than the mean, which consequently 

makes MAE more efficient at outliers than MSE. A big problem with using MAE loss, in neural networks, is 

that its gradient is fixed throughout the training phase, so we will have a large gradient even for small values 

of loss.  This is not good for learning. We will see later to use a dynamic learning rate that decreases as we 

approach the minima. MSE, on the other hand, will converge well even with a fixed learning rate.  If the 

outliers represent important anomalies or data sets that represent more of our dataset then we should use 

MSE. On the other hand, if we believe that the outliers represent small clusters, then we should choose MAE 

as the loss function. 

From these considerations and as reported earlier, when we analysed our two datasets, the choice falls on 

MAE because we are not sure that the outliers obtained, as in the GRi-mech 3.0 dataset, are representative 

for the study of our algorithm. 

 

2.5.3 Deep neural algorithm  

If in the previous chapters we wanted to show an overview of the theory behind this thesis work, introducing 

the phenomenological part of flame front propagation and combustion in methane engines and a brief 

description of machine learning, in this chapter we want to start entering the specifics of the actual work 

done to create our neural network. Starting from a previous study conducted on the correlation that exists 

between pressure, EGR, temperature, dosage and laminar speed. The aim of this research is to apply and 

validate a ML machine learning model that is totally unrelated to the mathematical phenomenological aspect 

of combustion and is able to find correlations between our input data and laminar speed. The present model, 

as mentioned above, exploits a supervised machine learning algorithm called Linear regression, and is 

implemented in an open-source integrated development environment in the Python computer language. For 

this purpose, an open-source machine learning library for this programming language is used, called Scikit-

Learn and within which contains the previously mentioned algorithms, and designed to work with other 

libraries such as NumPy and SciPy. libraries such as NumPy and SciPy that contain most of the functions used 

in the predictive model code of the predictive model. We will first look at the structure of this code and then 

at the analysis and results. then move on to analysis and results. In our model, to create our algorithm, we 

should choose: 

- number of hidden layers  

- number of neurons per layer 

- optimization function  

- activation function  

- percentage of dropouts 

Number of hidden layers 

As mentioned above, neural networks had only three types of layers: hidden, input and output. We can see 

these as all being of the same layer type, if we consider that the input layers are fed by external data (no 
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previous layers) and the outputs feed the data outwards (final result). These three layers are now called 

dense layers, because each neuron in this one is fully connected to the next layer.  Modern neural networks 

have many other types of layers to deal with. Besides the mentioned dense layers, we also have dropout, 

convolutional and recurrent layers. Very often dense states are used together with the other types of layers 

[10]. Our algorithm, as a first attempt, plans to use only dense layers. When considering the structure of 

dense layers, two fundamental decisions must be made about these hidden layers, how many hidden layers 

form our neural network and how many neurons will be in each of these layers. Two or fewer layers will often 

be sufficient with simple data sets, such as one-to-one dependency, however with complex data sets, 

additional layers may be useful. The general rule that we can apply in our first attempt is [11]: 

Number of hidden layers Goals result 

None to represent separable linear functions or decision functions 

1 To approximate functions containing a continuous mapping from one space 
to another 

2 To represent an arbitrary decision boundary to arbitrary accuracy with 
rational activation functions and can approximate any smooth mapping to 
any accuracy 

> 2 To learn complex representations such as automatic feature design for 
layers 

Table 2.5.3.1: How to choose the number of hidden layers 

In our case, considering the input data analysed, we have chosen two densely connected hidden layers, with 

an output layer that approximates the speed. Let us now see how to choose the number of neurons for each 

of them. 

Number of neurons per layer 

Deciding the number of neurons for each hidden layer is very important in deciding the overall architecture 

of the neural network. These have an enormous influence on the final output, even though they do not 

interact directly with the outer layer. Therefore, both the number of hidden layers and the number of 

neurons must be carefully considered. Using too few neurons in the hidden layers will result in underfitting, 

which occurs when there are too few neurons in the hidden layers to adequately detect the connections 

linking a complicated data set.  Conversely, using too many neurons in the hidden layers can lead to 

overfitting [2]. This occurs when the neural network has so much information processing capacity compared 

to the limited amount of information contained in the training set that it fails to train all the neurons in the 

hidden layers. However, even if we have an adequate amount of set data, we may have a second error. 

Indeed, a large number of neurons in the hidden layers exponentially increases the time needed to train the 

network. Remember that our thesis goal is to create a model that is faster than classical mathematical 

models, and an increase in computation time is what we do not want. Extending the number of neurons 

therefore increases the amount of training time, which can increase to such an extent that it will be 

impossible to train the neural network properly. We will have to make trade-offs between too many and too 

few neurons in the hidden layers. There are many empirical methods, according to the literature [10], to 

determine an acceptable number of neurons to be used in the hidden layers: 

 

- The number of hidden neurons should be between the size of the input layer and the size of the 

output layer 

- The number of hidden neurons should be 2/3 of the size of the input layer plus the size of the output 

layer 

- The number of hidden neurons should be less than twice the size of the input layer 
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These three rules are a starting point to consider, but we must also consider our datasets, they are very 

different from each other, and we must consider the computational power of our tools. This is why to avoid 

that the selection of an architecture for the neural network is reduced to trial and error, our model will then 

be optimized with the tuning of the hyperparameters through GridSearch, which optimizes all the factors, 

important for the creation of the network, and avoid trial and error. Considering the literature and our goals, 

we choose for the first attempt 64 neurons for each hidden layer.  

Optimization function  

Training a very large deep neural network can be very slow, to speed up this process and find our weights β, 

we must use optimization functions that allow us to minimize the delta between predicted value and real 

value. One of the simplest used is the “descending gradient”. Gradient descent is a generic optimization 

algorithm. To reduce the cost function, gradient descent modifies the parameters iteratively. If we think of 

our training phase, and the reduction of the cost function as a mountain, the strategy for quickly reaching 

the bottom of it is to go down in the direction of the steeper slope, which is what makes the descent of the 

gradient, by measuring the gradient to the local error. Another important parameter in the descent of the 

gradient is the size of the steps, durance the search for the minimum, determined by the rate of learning. If 

the learning rate is too small, there will be too many iterations and for converging will take a long time. On 

the contrary, if the learning rate is too high, it may happen that you have an apprenticeship that does not 

minimize but tries to go up the "mountain", not being able to find a good solution. If we think of minimizing 

the error as an element in three dimensions, there can be holes, ridges, plateaus and everything types of 

uneven soils, making convergence at a minimum very difficult [2]. It is important when using gradient 

descent, you need to make sure that all features have a similar scale, which does not happen in our case, as 

a result it will take much longer to converge.  

 

Figure 2.5.3.1: Gradient descent [2] 

For that reasons we must watch other optimization function, for our first attempt, that reflecting our aims, 

i.e. to minimize the learning time with a good result.  The problem with gradient descent is to slow down a 

little too fast and it ends up never converging towards the global optimum. The RMSProp optimization 

function solves this problem by considering only gradients from the most recent iterations. It focuses on a 

preferential direction in addition to the vertical minimization of error, considering our error as if it were in 

3D, in this way we can have a learning rate faster and a better accuracy. Except on very simple problems, this 

optimizer almost always works much better than gradient descent also converges faster. We choose for the 

first attempt RMSProp.  
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Activation function  

The activation function is a "gate" between neurons of two different layers. They decide whether the neuron 

should be activated or not, otherwise the activation function, weights and bias would simply make a linear 

transformation, neglecting the connections between the various layers, the (8) show this think.  

𝑦 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝛴(𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑖𝑛𝑝𝑢𝑡)  + 𝑏𝑖𝑎𝑠)    (20) 

Our neural network should have nonlinear activation functions, which can help the network learn complex 

data. The activation function selects the most important information from the least relevant. Activation 

functions also have an important effect on the ability of the neural network to converge and the speed of 

convergence, on the contrary it can happen that activation functions prevent the convergence of neural 

networks. Our neural network uses nonlinear activation functions, which allow the model to create complex 

mappings between the inputs and outputs of the network, essential for learning from complex data such as 

nonlinear data. Using nonlinear activation functions we can represent almost any problem that occurs in the 

scientific field. Nonlinear functions allow backpropagation because they have a derived function related to 

inputs and allow stacking multiple layers of neurons to create a deep, multi-layered neural network.   In figure 

2.5.3.2 are reported the most popular and used not linear activation function:  

 

Figure 2.5.3.2: Types of not linear activation functions [1] 

The choice of our activation function falls on ReLu, because in our case of analysis we will only have positive 

input and output data, for this reason it is not necessary to burden our network with activation functions 

used especially for classification problems such as Sigmoid and Tanh. It is computationally efficient and allows 

the network to converge very quickly. It is nonlinear, although it looks like a linear function, and allows 

backpropagation. The fading is done when the inputs are negative, the gradient of the function becomes 

zero, the network cannot perform backpropagation and cannot learn, but as said in our case it does not 

happen. 

 

 

 

Percentage of dropouts 

The percentage of dropout, indicates the amount of neurons, which are randomly deactivated and therefore 

do not contribute to learning. It might seem wrong as logic, but when the training process begins they are 

placed on random values and as the learning progresses they are prevented from making mistakes and 

changing their weights. But to make sure that the neurons do not depend strictly on a specific weight, so 
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avoid overfitting, we must select the dropout percentage, which turns them off randomly and lets the other 

neurons learn and adapt as well.  We choose 0.2 for the first attempt value.  

Hyperparameter value 

Number of hidden layers 2 

Number of the neurons per layers 64 

Optimization  RMSProp 

Activation function Relu  

Percentage of dropout 0.2 
Table 2.5.3.2: Standard model review 
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2.6 Classification network: NaN values  

As mentioned above, after analysing our datasets, obtained through simulations using Aramco2.0 and Gri-

mech 3.0 using chemical kinetics, we identified NaN values in the column corresponding to the velocity value. 

All the rows with the pressure, EGR percentage, dosing and temperature values that had these velocity 

values, as mentioned above, were eliminated before starting the training activity. The need arises to plot 

these 'non-numbers', showing how many there are for each dataset and for which pressure, EGR percentage, 

metering and temperature values they occur. Everything therefore consists of architecting, upstream of our 

main neural network, a non-pass classification network that returns "one" when a non NaN value is present 

and "zero" when it detects a non-number. Then a counter will be inserted in series which, reading the values 

obtained, returns a percentage index of the presence of the NaN values with respect to the analysed columns. 

We must also specify that the Aramco 2.0 dataset has non-speed numbers expressed through the string 

"NaN", while the Gri-mech 3.0 dataset has the value "1.0000000E-03" in the non-speed number string. For 

this reason, a network will be built in python to recognise "NaN" values and "1.000000000E-03" values in the 

speed string or column.  

 Gri-mech 3.0 dataset result 

Temperature [K] Pressure [bar] NaN counter  % NaN on total 

 
 
 
 

300 

1 53  
 
 
 

542 

 
 
 
 

20.63 

5 57 

10 56 

20 59 

40 57 

80 68 

120 65 

160 64 

200 63 

 
 
 
 

400 

1 52  
 
 
 

488 

 
 
 
 

18.57 

5 58 

10 49 

20 48 

40 54 

80 58 

120 59 

160 53 

200 57 

 
 
 
 

500 

1 43  
 
 
 

428 

 
 
 
 

16.29 

5 47 

10 56 

20 47 

40 45 

80 48 

120 47 

160 48 

200 47 
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Temperature [K] Pressure [bar] NaN counter Total NaN % NaN on total 

 
 
 
 

600 

1 37  
 
 
 

354 

 
 
 
 

13.47 

5 35 

10 36 

20 48 

40 40 

80 36 

120 42 

160 42 

200 38 

 
 
 
 

700 

1 39  
 
 
 

314 

 
 
 
 

11.95 

5 36 

10 37 

20 34 

40 33 

80 32 

120 35 

160 34 

200 34 

 
 
 
 

800 

1 40  
 
 
 

342 

 
 
 
 

13.01 

5 35 

10 38 

20 39 

40 37 

80 40 

120 36 

160 38 

200 39 

 
 
 
 

900 

1 39  
 
 
 

296 

 
 
 
 

11.26 
 

5 20 

10 19 

20 19 

40 33 

80 42 

120 45 

160 41 

200 38 

 
 
 
 

1000 

1 33  
 
 
 

302 

 
 
 
 

11.49 

5 32 

10 35 

20 33 

40 34 

80 33 

120 35 

160 33 

200 34 
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Temperature [K] Pressure [bar] NaN counter Total NaN % NaN on total 

 
 
 
 

1100 

1 33  
 
 
 

320 

 
 
 
 

12.18 

5 32 

10 32 

20 33 

40 34 

80 39 

120 37 

160 41 

200 39 

 
 
 
 

1200 

1 35  
 
 
 

377 

 
 
 
 

14.35 

5 39 

10 37 

20 37 

40 38 

80 37 

120 39 

160 38 

200 37 

 
 
 
 

1600 

1 36  
 
 
 

322 

 
 
 
 

12.25 

5 35 

10 36 

20 37 

40 36 

80 35 

120 36 

160 35 

200 36 

 

Total dataset NaN  
 

2627 

 

100 

Table 2.6.1: Table showing the NaN in Gri-mech 3.0 dataset 

We can notice how our dataset, initially divided in files collected by temperature and pressure range, show 

a greater number of non-numbers where the temperature is lower, remembering that the steps of dosing 

and portion of EGR opening remain equal for each file, respecting the steps reported in table 2.3.2.1. It is to 

specify that some simulated "limit" points, result in all the files with NaN values of speed, these points 

present:  

- dosing value equal: 0 / 0.2 / 5  

- EGR open to 100%  

These results were to be expected in a deliberately extreme dataset. We also noted the presence of non-

numbers, with stoichiometric ratios equal to 0.3 and 0.4, in a range between 300 K and 500 K.  We can see a 

high number of non-numbers in a very large dataset.  

 

  



39 
 

Aramco 2.0 dataset result 

EGR [%] Temperature [K] NaN counter Total NaN % NaN on total 

 
 
 
 

0 

300 6  
 
 
 

6 

 
 
 
 

4.68 

400 - 

500 - 

600 - 

700 - 

800 - 

900 - 

1000 - 

1100 - 

 
 
 
 

10 

300 12  
 
 
 

12 

 
 
 
 

9.37 

400 - 

500 - 

600 - 

700 - 

800 - 

900 - 

1000 - 

1100 - 

 
 
 
 

20 

300 8  
 
 
 

24 

 
 
 
 

18.75 

400 2 

500 9 

600 5 

700 - 

800 - 

900 - 

1000 - 

1100 - 

 
 
 
 

30 

300 2  
 
 
 

5 

 
 
 
 

3.90 
 

400 - 

500 - 

600 3 

700 - 

800 - 

900 - 

1000 - 

1100 - 

 
 
 
 

40 

300 20  
 
 
 

28 

 
 
 
 

21.87 

400 8 

500 - 

600 - 

700 - 

800 - 

900 - 

1000 - 

1100 - 
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EGR [%] Temperature [K]  NaN counter Total NaN % NaN on total 

 
 
 
 

50 

300 24  
 
 
 

53 

 
 
 
 

44.53 

400 22 

500 19 

600 - 

700 - 

800 - 

900 - 

1000 4 

1100 8 

 

Total dataset NaN  
 

128 

 

100 

Table 2.6.2: Table showing the NaN in Aramco 2.0 dataset 

As we can see, our Aramco dataset is derived from files saved by EGR value, so as the first column on the left 

we find the EGR opening percentage. We can see that in this dataset most of the "non-numbers" are 

concentrated on a temperature value equal to 300 K. In fact, if we consider a dosing value for these 

simulations always equal to one, and thirty-three pressure steps, we notice that the NaN values found at 300 

K are considerable. Moreover, we notice that the non-numbers increase as the percentage of EGR opening 

increases, and at the same time the temperature values where we find these values increase. 

We note that the temperature range between seven hundred and nine hundred Kelvin is almost free of non-

numbers, and also that almost 50% of these values were found with an EGR value equal to 50%. This is very 

significant if we look critically at the Gri-mech dataset, where excessively high velocity values were found 

near the same EGR value. We will see later that this will affect the learning of our model (which uses the Gri-

mech dataset), and how our optimisation will be less efficient. 
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3 First results  

Before presenting the first results we must introduce the “Loss value”, this is to indicate a sum of the errors 

made for each example in the training or validation sets.  The loss value implies how good or bad a given 

model behaves after each optimization iteration. Ideally, you would expect loss reduction after each or more 

iterations. The other variable to present is the number of “epochs”, it is a hyperparameter that defines the 

number of times the learning algorithm will work through the entire training dataset. An epoch means that 

each sample in the training dataset had the opportunity to update the parameters of the internal model. Our 

model was initially trained on 1000 epochs. The latter is a high value that leads to a slowdown in the learning 

phase of our model, but it is necessary to understand how this behaves and how we can improve and speed 

it up. 

 

3.1 First attempt Aramco 2.0 results  

 

Figure 3.1.1: MAE trend over 1000 epochs with standard model  

We can see how our model in the range of 200 epochs, meets our expectations, with a high learning rate, 

and with a difference, between the estimated target value of the model and the actual value, very close up 

to 200 epochs. However, when you exceed this threshold you do not get to minimize our objective function, 

which remains close to the value of one. We also notice that going beyond 200 epochs, only slows down our 

algorithm, as this is evident from the spikes that increase, going towards the plateau.  

From the figure 3.1.1, we can see how a very high learning rate, leads to a worsening of the learning phase, 

around the 200 epochs. To improve the perform of our model we must limit the oscillations and avoid the 

unnecessary learning phase time, through a cut to the number of epochs for our training phase. 
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Figure 3.1.2: LOSS trend over 1000 epochs with standard model 

Finding a good learning rate can be difficult, in fact if you set it too high, the training may diverge. On the 

contrary, if you set it too low, the training will eventually converge to the optimal, but it will take a lot of 

time. If the learning will be just above the optimal value, it will progress very quickly at first, but will end to 

drift around the optimal value, without ever reaching the plateau. In our case we used an adaptive learning 

rate, using as an activation function RMSProp, but even in this case it may take some time to stabilize. In 

addition, if you have a limited calculation budget, you will need to stop training before it converges properly, 

resulting in a non-optimal solution. 

From Figures 3.1.1 and 3.1.2, it is noted to increase the speed of our model, we have to stop learning the 

algorithm on 200 epochs, this to avoid obvious overfitting problems. The ways to avoid overfitting are 

multiple:  

- Retraining the neural networks using the same model, the same training set but with different 

weights, and then choose the network with the best performance 

- Multiple neural networks that see multiple neural networks trained in parallel, same structure but 

different weights, and at the end make an average of their output for choose the best 

- Regularization that for decrease the bias and weighs, adding a term to the error function, witch as 

result a smooth outputs with a low tendency to overfitting 

- Tuning performance ratio that is similar to regularization but use a particular parameter that 

indicated how much the network need to regularized 

- Early stopping that monitoring the error (LOSS) behaviour after each iteration, and stopping the 

training when overfitting starts.  

Obviously we will use something easy to implement with phyton code, where we automatically stop training 

when the validation result does not improve. We will then use the EarlyStopping callback function that checks 

the training condition at each epoch. If a given number of epochs pass without showing improvement, then 

training is automatically stopped.  The results of applying the function are shown in the figures 3.1.3 and 

3.1.4 and reveal an improvement in both computation time and avoidance of overfitting. 
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Figure 3.1.3: MAE trend over 250 epochs with standard model 

The graph shows that the error on the validation set is usually around +/- 1 [cm/s].  A satisfactory result, if 

we consider that our neural network has not been optimised now. It should also be noted that there is still 

margin for improvement, because there are still small oscillations around 200 epochs. 

 

Figure 3.1.4: LOSS trend over 250 epochs with standard model 
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Loss value is also decreasing over the 200 epochs. Both training loss and validation loss decrease 

exponentially as the number of epochs increases, suggesting that the model acquires a high degree of 

accuracy as our epochs (or number of forward and backward steps) increase. Again, there is room for 

improvement. 

Having seen how our algorithm performs in the training phase, it is now necessary to verify its performance 

when using our test dataset, remembering that it was not used for the learning and validation phase. Assess 

the hidden non-linear correlations from our training dataset and evaluate them on our test set. The graph 

below presents the speed obtained from the test set on the x-axis and on the y-axis the speed predicted by 

the training. 

 

Figure 3.1.5: Results obtained by testing our standard algorithm 

Our model seems to predict well, as evidenced by the many points that fit our regression line well. This shows 

that we can use deep learning to understand the non-linear relationships of the laminar velocity 

phenomenon in methane air mixtures. Now let us see from figure 3.1.6 how our error is distributed between 

actual and predicted value: 

 

Figure 3.1.6: Error distribution obtained by testing our standard algorithm 
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The distribution of our error is similar to a Gaussian.  We see that our model fits quite well and does not have 

high error values between predicted and actual values. There is a larger discrepancy around high velocity 

values, with a difference that however remains in the range of 10-20 cm/s. In general, we have an error 

between predicted and actual values that is always below 5 cm/s. 

 

3.2 First attempt GRI-Mech 3.0 results  

It will be very important for our model to see how the same algorithm behaves with a dataset, which as 

pointed out above is totally different from the one analysed previously (Aramco 2.0). We would like to 

mention that we have not changed the hyperparameters, which will be optimised for both datasets later. 

The goal is to see if with the Gri-mech dataset, the functions to evaluate learning and testing will change, and 

by how much.  

 

Figure 3.2.1: MAE trend over 1000 epochs with standard model 

As it is clear, the MAE, i.e. the difference between the estimated target value of the model and the actual 

value is much smaller than before, but this should not deceive us because our data obtained from the GRI-

mech dataset are expressed in m/s. We notice as a big difference that the MAE in this case starts its learning 

phase with a value almost comparable to the previously analysed case, but the trend towards the plateau is 

not correct. We notice that there is a sudden decrease in the MAE value and then it settles on values of 0.1 

m/s or 10 cm/s. This is a first indication that our "standard" algorithm does not perfectly fit the starting 

dataset.  In fact, as analysed in the previous chapters, although it is very different, it is almost eight times 

larger than the Aramco 2.0 dataset. As a result we have too high a learning rate in the initial phase which 

leads our learning curve to diverge. We now go on to analyse the loss function. 
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Figure 3.2.2: LOSS trend over 1000 epochs with standard model 

Also in this case we notice that the scales compared to the case previously analysed are totally different. We 

note that the learning rate is not high, probably it will converge to the target value with a large number of 

epochs. In this case we note the presence of a marked underfitting. Underfitting occurs when the neural 

network is not able to learn accurately from the training set, and it will be even more evident how well our 

model will not be able to fit the validation set. This is characterised by high bias and high variance. How to 

avoid underfitting in a neural network: 

- Add layers of neurons or increase inputs this can generate more complex predictions and improve 

model fit 

- Add more training samples and improve their quality, this way the more training samples fit into the 

network and the better they represent the data population, as consequence we will have a better 

behaviour from our network 

- Increase the dropout percentage, has as consequence the increasing neurons number deactivated in 

each training iteration ensuring that some learned information is removed randomly, also reducing 

the risk of overfitting 

- Decrease the regularization parameter using a regularization performance parameter to set the 

optimal degree of regularization, which can help the model to fit better. 

The reduction of overfitting will be done later when we go to optimise the hyperparameters, in an automatic 

way, through a piece of code that will be presented in the next part. This is to avoid trial and error and to 

automate the optimisation process of our deep learning algorithm. We will again use the function already 

implemented in our code, which aims to reduce overfitting. 
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Figure 3.2.3: MAE trend over 100 epochs with standard model 

We can see that our early stopping function cuts the learning state to about 100 epochs, which is not a 

satisfactory result, but expected, given the high value of MAE and LOSS. We can also see a slight presence of 

underfitting and overfitting. Even having set a function that limits overfitting, in this case we need to optimise 

the hyper parameters to achieve more satisfactory results.  

 

Figure 3.2.5: LOSS trend over 100 epochs with standard model 
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Even in the case of the LOSS function we are not satisfied with the trend shown, so optimisation using 

hyperparameters will be very important. Again, we use the test dataset to test our network and to see if it 

has found and created the right correlations through the deep learning algorithm used. 

 

Figure 3.2.5: Results obtain by testing our standard algorithm 

It is possible to see how in this case the testing of our network is strongly influenced by the marked 

underfitting, noted above. on both high and low speed values, we notice a marked difference between 

predicted and actual values, which is also reflected in the error distribution.  

 

Figure 3.2.6: Error distribution obtain by testing our standard algorithm 

We can see how the error distribution includes values that also reach a delta of 4 m/s. This confirms a non-

optimal optimization of our model. This was predictable using the same model used for a completely different 

dataset 
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3.3 Methods for hyperparameter optimisation 

Hyperparameters determine the behaviour of our neural structure, how it adapts to different input values 

and how it works with the different elements that compose it. A hyperparameter is an external parameter 

set by the neural network operator, as opposed to a parameter that is part of the network learning and 

cannot be changed.  It may seem strange but let us try to give some examples, such as the number of training 

iterations, the number of hidden layers, or the activation function, these are all hyperparameters, by 

changing them we can radically change our network. In a neural network, we try many possible values of 

hyperparameters and see which one works best. There are four main methods for optimising 

hyperparameters [4]: 

- Manual tuning of hyperparameters: this method is time consuming and therefore inefficient for fast 

optimisation, as well as requiring trial and error 

- Grid search: this involves systematically testing multiple values of each hyperparameter, using lines 

of code that we can think of as many cascading for-cycles, and then retraining the model for each 

combination 

- Random search: a more effective method than manual optimisation 

- Bayesian optimisation: a method that trains the model several times with different values of 

hyperparameters, observing the shape of the function generated by these, extending the best 

function to the whole model. 

In our work we chose to optimize the hyper parameters using the Grid search, because it is easy to implement 

in phyton and does not require a powerful GPU. To do this we have two options in phyton, use scikit-learn 

method, one is GridSearchCV which uses the scikit-learn API wrapper in Keras, the other method is Hyperas 

which allows us to train models faster and is also an easy way to approach hyper parameter tuning. Our 

choice falls on Hypera as it is a faster way of optimisation.   

 

 

3.3.1 Grid search optimised hyperparameters: results with Aramco 2.0 dataset 

The following tables give an account of what the hyperparameters are before and after grid search 

optimisation. 

Hyperparameters value 

Number of hidden layers 2 

Number of the neurons per layers 64-64 

Optimization  RMSProp 

Learning rate 0.01 

Activation function Relu  

Percentage of dropout 0.2 
Table 3.3.1.1: Aramco 2.0 standard model review 

We see how the number of neurons per hidden layer has changed, with a decrease that allows us to resolve 

the problems encountered with overfitting. In addition, the type of optimiser has also changed, i.e. the way 

in which we try to reduce the loss between the target value and the real value. 
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Optimised hyperparameters  value 

Number of hidden layers 2 

Number of the neurons per layers 64-32 

Optimization  Adam 

Learning rate 0.01 

Activation function Relu  

Percentage of dropout 0.2 
Table 3.3.1.2: Model Aramco 2.0 optimised using Grid search 

Adam is an optimisation algorithm that can be used in place of stochastic gradient descent to update network 

weights iteratively based on training. Stochastic gradient descent maintains a single learning rate and the 

learning rate does not change during training. A learning rate is maintained for each network weight 

(parameter) and adapted separately during learning, and the algorithm calculates individual adaptive 

learning rates for the different parameters from the first and second moment estimates of the gradients. 

Instead of adjusting parameter learning rates based on the mean of the first moment as in RMSProp, Adam 

also makes use of the mean of the second moments of the gradients (the uncentred variance). In particular, 

the algorithm computing an exponential moving average of the gradient and the squared gradient, checking 

the decay rates of these moving averages. We can see below what results have been achieved compared to 

those analysed in the previous chapter. 

 

 

Figure 3.3.1.1: MAE trend over 1000 epochs with Grid Search optimization 

Unlike the previous case, i.e. from figure 3.3.1.1, we do not see a marked oscillation, once the 200 epochs 

have been reached, in fact we have a more linear trend, with a difference between estimated and actual 

plate value that is less marked even as the number of epochs increases.  

Also in this case, the LOSS curve in figure 3.3.1.2, which shows us how our system is learning for each 

iteration, shows an almost complete disappearance of overfitting, with the loss value decreasing, as we 

would expect from learning. 
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Figure 3.3.1.2: LOSS trend over 1000 epochs with Grid Search optimization 

 

Figure 3.2.1.3: MAE trend over 250 epochs with Grid Search optimization 

The use of the Early stopping function helps our model to be faster by stopping the training phase when there 

is no clear improvement set as a target in the code. The differences do not seem to be substantial, the 

overfitting has been slightly reduced. The graphs show that the error on the validation set is around +/- 1 

[cm/s].  A satisfactory result. We will see later how we have more marked advantages in the loss graph. 
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Figure 3.2.1.4: LOSS trend over 250 epochs with Grid Search optimization 

Loss value is also decreasing over the 250 epochs. Both the training loss and the validation loss decrease 

exponentially as the number of epochs increases, suggesting that the model acquires a high degree of 

precision as our epochs increase. The differences in this case, with respect to the same graph seen in the 

previous chapters, are substantial, in fact the two curves tend to join, a sign that our model tends to make 

less errors with the passing of the epochs. Final LOSS reduced by 50% with an optimal delta at the end of 

training. 

 

Figure 3.2.1.5: Results obtained by testing our optimised algorithm using Grid Search 
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It is time to use our test set, remember it has never been "seen" by our model, to evaluate the performance 

of our model.  Our model seems to predict well. There are two differences with respect to what has been 

analysed in the previous chapters: a better fitting in the part with high velocity values and a slight worsening 

in the central part of the values. We can see below, that the error distribution also replicates a Gaussian 

trend and the "prediction" error remains below the range of +/- 5 cm/s. A smaller error that increases for a 

few medium speed values, but a more appreciable result compared to the standard algorithm. 

 

Figure 3.2.1.6: Error distribution obtained by testing our optimised algorithm using Grid Search 

 

3.3.2 Grid search optimised hyperparameters: results with Gri-mech 3.0 dataset 

We move on to our second dataset, analysing how our algorithm changes between the optimised and non-

optimised model. 

Hyperparameters value 

Number of hidden layers 2 

Number of the neurons per layers 64-64 

Optimization  RMSProp 

Learning rate 0.01 

Activation function Relu  

Percentage of dropout 0.2 
Table 3.3.2.1: Gri-mech 3.0 standard model review 

The differences we notice concern the number of neurons per hidden layer, an increase of which is justified 

by the underfitting problems we previously had with the standard model. In fact, we must remember that 

the Grimech 3.0 dataset is about eight times larger than the Aramco 2.0 dataset, hence the need to increase 

the number of neurons to explore and to increase the learning capacity of our system. We also see how our 

leraning rate has changed, which we can justify as a natural consequence of an increase in the number of 

neurons. In fact, if we increase the capacity of learning, we must limit a descent of the loss gradient that is 

too fast, which would lead to a divergence between the targhet value and the current value. We also see that 

the optimiser has not changed, even if it is adaptive to the learning process as said before, and the percentage 

of dropout in the two levels remains unchanged. 
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Optimised hyperparameters  value 

Number of hidden layers 2 

Number of the neurons per layers 128-64 

Optimization  RMSprop 

Learning rate 0.001 

Activation function Relu  

Percentage of dropout 0.2 
Table 3.3.2.2: Gri-mech 3.0 model  optimised using Grid search 

 

Figure 3.3.2.1: MAE trend over 1000 epochs with Grid Search optimization 

The graph depicting the MAE trend over a thousand epochs, figure 3.3.2.1, has a behaviour that shows less 

overfitting, compared to the same graph analysed in the previous chapters with Grimech 3.0 dataset. This 

result is also obtained by increasing the number of neurons for the hidden layers, this shows us that our 

optimisation through Grid search has been successful. We see that there is still a slight overfitting from the 

four hundred epochs onwards, but we will see later how to improve this behaviour using Grid Search and 

Cross Validation. We always notice within the four hundred epochs that our target value is quite close to our 

actual value.  

This is even more evident with the LOSS graph, figure 3.3.2.2 which shows us how our model learns during 

each iteration. In fact, with respect to the same graph of the loss value in the non-optimised model, we see 

how the underfitting has almost completely disappeared and the training and validation learning curves, 

which come together around four hundred epochs show how our algorithm learns better and reaches a lower 

loss value which will be more evident when we analyse the graph of the loss value with early stopping 

function. 
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Figure 3.2.2.2: LOSS trend over 1000 epochs with Grid Search optimization 

 

Figure 3.2.2.3: MAE trend over 300 epochs with Grid Search optimization 

Let us now analyse the graph of the MAE, which uses the early stopping function and remember that it helps 

our model to be faster, interrupting the training phase when there is no net improvement set as a plate in 

the code and we see that compared to the non-optimised model we notice an almost total disappearance of 

the overfitting and a value of the error on the validation set that is around +/- 0.1 [m/s].  An unsatisfactory 

result, if compared to the almost ten times smaller value obtained with the Aramco 2.0 dataset, but which 

remains acceptable if we consider that the Grimech dataset is profoundly different. We note that the early 

stopping function occurred with a larger number of epochs, 300 epochs, a more accurate but slower learning. 
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Figure 3.2.2.4: LOSS trend over 300 epochs with Grid Search optimization 

Also analysing the loss value with optimized model we see that the number of epochs where our function 

has stopped learning is around three hundred epochs, which shows an improvement with the training 

process. The differences, compared to the previous case, we notice when the two curves tend to join, since 

the beginning of the learning phase sign that our model, tends to make fewer mistakes with the passage of 

epochs. Both training and validation loss decrease exponentially as the number of epochs increases, 

suggesting that the model acquires a high degree of accuracy as our epochs increase. Loss value reduced by 

30%, with a final value of 0.2 m / s. 

 

Figure 3.2.2.5: Results obtained by testing our optimised algorithm using Grid Search 
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Now is the time to evaluate the goodness of our system, using our test dataset, which our algorithm has 

never seen during learning. Let's see how there is a better fitting in the part with low average speed values 

and a slight deterioration with higher speed values. From this optimization we can think of a dataset that 

with certain values of speed, EGR, pressure and dosage do not fully represent most of the data that have 

contributed strongly to the realization of the connections of our network. If we analyze the starting grimech 

3.0 dataset, we notice that there are values with too high speed in the range with pressure of one bar, 

temperature 1600 K, dosage and EGR 0.4. Values that going to investigate, treats simulations with Aramco 

2.0 are not confirmed. This might be one of the main reasons for a non-optimal optimization, but we will 

keep our dataset unchanged to have an optimal comparison. 

 

 Figure 3.2.2.6: Error distribution obtained by testing our optimised algorithm using Grid Search 

We can see that the error distribution also replicates a bar trend and the "prediction" error remains below 

the range of +/- 4 m/s.  A smaller error, if we compare it with the standard result. A result that is an 

improvement respect the standard model, but not reach the result obtain with Aramco dataset. 
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3.4 Grid search with Cross Validation  

When doing machine learning it is difficult to know in advance which parameters and hyper-parameters will 

allow a specific model to make better predictions and deciding a priori which model will give better 

predictions is difficult. In addition, one has to consider for machine learning that the division into different 

percentages in training and test data affects the quality of the resulting model. These are challenges that 

need to be considered when optimising our system. There are some tools that make this process easier by 

making predictions with many different combinations of parameters, hyperparameters, models, training data 

and test data, returning the combination with the best prediction results, this is very useful to improve our 

algorithm. After having prepared the dataset, one of the Scikit-Learn techniques, that we can implement in 

python, more used to evaluate a decision model during this training phase is the so called K-fold cross 

validation: it randomly divides the training set in K subsets, called folds, and then trains and evaluates the 

algorithm in K iterations, dedicating K-1 folds for training and 1 fold for validation, always different at each 

iteration, as we can be seen in the figure below. 

 

Figure 3.4.1: K-fold cross validation [12] 

In our case we have adopted a value of K equal to 8 for the Aramco 2.0 dataset and K equal to 50 for the 

Gimech 3.0 dataset, which means having the training set divided into eight folds and eight iterations for the 

first dataset and fifty folds and fifty iterations for the second dataset. The algorithm goes to see which of the 

iterations used gives the best results (results in score and not in mean absolute error mae or loss). At this 

point it is necessary to tune the algorithm with the best values of its parameters; this operation is called 

Tuning. One way would be to manually try different values of the algorithm's hyper-parameters, changing it 

from time to time until the best combination is found. Obviously, this is a tedious and time-consuming task, 

since there are functions in Scikit-Learn that perform this task automatically. Such a function is known as 

GridSearchCV. All we need to do is to assign multiple values to the hyperparameters that will be tested and, 

consequently, GridSearchCV will find the best combination, using cross-validation, i.e. training on the training 

set and validating on the validation set. The hyper-parameters used within the code are very important 

because they allow to increase the predictive power of the model or to build a faster one.  
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The hyper-parameters used by Scikit-Learn and in the present code are: 

- Number of hidden layers 

- Number of the neurons per layers  

- Optimization  

- Learning rate  

- Activation function  

- Percentage of dropout 

Setting the best hyperparameters is necessary to avoid overfitting and underfitting problems, as previously 

explained in the previous chapters, and is never a simple search and very often requires a high computational 

time, since the GridSearchCV has to investigate all possible combinations and find the optimal one on a set 

divided into as many iterations as the K-value of the cross-validation. It is possible to visualise the best 

combination of the hyper-parameters, also called best estimator, with the function “grid_result.best_score” 

and “grid_result.best_params” and the results in terms of score and standard deviation. Following the above, 

our network is trained using the best combination of the hyperparameters found through the GridSearchCV. 

It should be noted that thanks to GridSearchCV, we can automate the various iterations, so that we can for 

example differentiate the dropout levels for each internal level, which is difficult to do in the case of grid 

search using Hypera. We have to think of advantages in automation and also in code writing but a worsening 

in the time taken by the model to complete the whole iteration phase. We moved on to designate a scorer 

object with the function "scoring", in our case creating a function that takes into account parameters used 

to evaluate regression problems: 

- Mean absolute error (MAE)            (7) 

- Mean square error (MSE)                (6) 

- R-squared (R2): is one of the main indices of the goodness of the regression curve and is also known 

as determination coefficient. 𝑅 2 is always less than one and higher than zero. It must compare the 

training model with the model in which the response is constant and is equal to the mean of the 

training response  

           (8) 

All scorer objects follow the convention that higher return values are better than lower ones. These metrics 

that measure the distance between the model and the data return a low value, a sign of a reduced distance 

between actual and target values. It should be pointed out that we use these three parameters, indicated 

and most commonly used for regression problems, to initially optimise the iterations and  for search the ideal 

hyperparameters for the two different datasets, and then use the mean absolute error (MAE) to obtain our 

final refit and score. 
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3.4.1 Grid Search with Cross Validation: results with Aramco 2.0 dataset 

The following tables give an account of what the hyperparameters are before and after grid search 

optimisation. 

Hyperparameters value 

Number of hidden layers 2 

Number of the neurons per layers 64-64 

Optimization  RMSProp 

Learning rate 0.01 

Activation function Relu  

Percentage of dropout 0.2 
Table 3.4.1.1: Model standard review 

We see how the number of neurons per hidden layer has changed, with a decrease that allows us to resolve 

the problems encountered with overfitting. In addition, the type of optimiser has also changed, i.e. the way 

in which we try to reduce the loss between the target value and the real value. We also see that the learning 

rate and the dropout value between the first level and the second internal level change in value. We can see 

this result, with the best score, by interpreting the marked overfitting that we had in the non-optimised 

model, and for this a need to decrease the number of neurons per level and/or decrease the learning rate.  

We also see that the dropout value in the first level has been increased and decreased in the second level, 

remembering that increasing the dropout rate forces a shutdown of our neurons that forces a greater 

learning. 

Optimised hyperparameters  value 

Number of hidden layers 2 

Number of the neurons per layers 64-32 

Optimization  Adam 

Learning rate 0.001 

Activation function Relu  

Percentage of dropout 1° hidden layer 0.3 

Percentage of dropout 2° hidden layer 0.1 
Table 3.4.1.2: Aramco 2.0 model optimised using Cross Validation 

We can see below what results have been achieved compared to those analysed in the previous chapter. 

 

Figure 3.4.1.1: MAE trend over 1000 epochs with Cross Validation optimization 
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We note that the trend of the MAE along the thousand epochs has completely solved the overfitting 

problems, and is, compared to the model optimised with Hypera, accurate even after the four hundred 

epochs. With a low delta between target and actual value. We will see later how the final MAE value changes. 

We now turn to the analysis of the loss graph shown below. 

 

Figure 3.4.1.2: LOSS trend over 1000 epochs with Cross Validation optimization 

We note that, compared to the standard model, the overfitting has completely disappeared and that, 

compared to the model optimised by grid search, it shows a lower loss value from the start of learning. We 

notice from the almost overlapping of the training and validation curves a better learning during the epochs 

and a lower final value. 

 

Figure 3.4.1.3: MAE trend over 300 epochs with Cross Validation optimization 
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Observing the MAE graph, that uses the early stopping function, we can see that the overfitting has 

completely disappeared, moreover, unlike the model optimised with a simple grid search, we can see that 

with the passing of the epochs, our model becomes more and more accurate with an ever smaller distance 

between the target value and the real value. In addition, our final MAE value is smaller than the previously 

obtained result with a value of about 0.8 cm/s. 

 

Figure 3.4.1.4: LOSS trend over 300 epochs with Cross Validation optimization 

We pass to analyse the graph of the LOSS, we see, as anticipated before, a low loss value since the beginning 

of the training. We see how the loss value between the objective and real value is very low for the whole 

range of the three hundred epochs, with the two curves of validation and training superimposed. The thing 

that stands out the most is a very low final loss value, which is 0.78 cm/s. A truly appreciable value compared 

to the value of the standard model, with a reduction of almost 90%. 

 

Figure 3.4.1.5: Results obtained by testing our optimised algorithm using Cross Validation 
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Now it is time to use our test dataset, as we see there is an improvement in prediction for high speed values, 

confirmed by an almost optimal overlap on our line. We see that there is still a slight worsening in the middle 

part of the values, it will be clearer later on with the figure showing the distribution of the error of how much 

the prediction error has decreased in most part of the range. 

 

Figure 3.4.2.6: Error distribution obtained by testing our optimised algorithm using Cross Validation 

The error distribution is no longer similar to a Gaussian distribution but is much more like a single scatter bar. 

This means that our model makes a limited error very close to zero, comparing with almost the entire test 

dataset. There are still a few velocity values where a larger error is evident. However, we are satisfied with 

the result, with the error distribution curve no longer resembling a Gaussian, indicating a low error value.    

 

3.4.2 Grid Search with Cross Validation: results with Gri-mech 3.0 dataset 

The following tables give an account of what the hyperparameters are before and after grid search 

optimisation. 

Hyperparameters value 

Number of hidden layers 2 

Number of the neurons per layers 64-64 

Optimization  RMSProp 

Learning rate 0.01 

Activation function Relu  

Percentage of dropout 0.2 
Table 3.4.2.1: Model standard review 

Let's see, from the table below, how the number of neurons per hidden layer has changed, with an increase 

that as we will see later will allow us to solve the problems encountered with underfitting. The type of 

optimizer has not changed. The learning rate and dropout value between the first level and the second 

internal level also change in value. We can see this result, with the best score, interpreting the marked 

underfitting that we had in the model is not optimized, and thus a need to increase the number of neurons 

per layer, and/or decrease the rate of learning. We also see that the dropout value in the first level was 

increased and remained identical in the second level, remembering that increasing the dropout rate forces a 

shutdown of our neurons that forces more learning. 
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Optimised hyperparameters  value 

Number of hidden layers 2 

Number of the neurons per layers 128-64 

Optimization  RMSProp 

Learning rate 0.01 

Activation function Relu  

Percentage of dropout 1° hidden layer 0.5 

Percentage of dropout 2° hidden layer 0.2 
Table 3.4.2.2: Gri-mech 3.0 model optimised using Cross Validation 

We can see below what results have been achieved compared to those analysed in the previous chapter. 

 

Figure 3.4.2.1: MAE trend over 1000 epochs with Cross Validation optimization 

We note that the trend of the MAE along the thousand epochs has completely solved the overfitting and 

underfitting problems, and is, compared to the model optimised with Hypera, accurate even after the four 

hundred epochs. With a low delta between target and actual value. We will see later how the final MAE value 

changes. We now turn to the analysis of the loss graph shown below in figure 3.4.2.2. 

We note from the LOSS trend over 1000 epochs that, compared to the standard model, the underfitting has 

completely disappeared and that, compared to the model optimised by grid search, it shows a lower loss 

value from the start of learning. The lower underfitting is a great result, if we compare it with the standard 

model, that has a marked problem with the training process affecting the final prediction result. We notice 

from the almost overlapping of the training and validation curves a better learning during the epochs and a 

lower final value. We pay attention also at the starting loss value, that is lower respect the previous case, and 

confirm the good parameters optimization.  

 



65 
 

 

Figure 3.4.2.2: LOSS trend over 1000 epochs with Cross Validation optimization 

 

Figure 3.4.2.3: MAE trend over 400 epochs with Cross Validation optimization 

Observing the MAE graph, that uses the early stopping function, we can see that the overfitting has 

completely disappeared, moreover, unlike the model optimised with a simple grid search, we can see that 

with the passing of the epochs, our model becomes more and more accurate with an ever smaller distance 

between the target value and the real value. In addition, our final MAE value is smaller than the previously 

obtained result with a value of about 0.07 m/s, a better result I we compare it with the previous optimization. 
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Figure 3.4.2.4: LOSS trend over 400 epochs with Cross Validation optimization 

We pass to analyse the graph of the LOSS, we see a low loss value since the beginning of the training, starting 

from 0.4 m/s. We see how the loss value between the objective and real value is very low for the whole range 

of the three hundred epochs, with the two the overlapping of validation and training curve. The thing that 

stands out the most is a very low final loss value, which is 0.065 m/s. A truly appreciable value compared to 

the value of the standard model, with a reduction of almost 76%. 

 

Figure 3.4.2.5: Results obtained by testing our optimised algorithm using Cross Validation 

Now it is time to use our test dataset, we can see there is an improvement in the prediction of speed for both 

low and high values of the latter. We did not achieve a similar and appreciable result as in the case of the 
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Aramco dataset, but we managed to substantially improve the performance of our model. For high velocity 

values there is still some point that is probably not representative and does not respect chemical kinetics, so 

we can make considerations on a group of values, highlighted previously, that afflicts the goodness of our 

model. It will be clear with the figure below that show the error distribution, and of how much the prediction 

error has decreased in most part of the range. 

 

Figure 3.4.2.6: Error distribution obtained by testing our optimised algorithm using Cross Validation 

The error distribution is no longer like a Gaussian distribution but is much more like a single scattering 

rectangle. This means that our model makes a limited error very close to zero, comparing with almost the 

entire test dataset. There are still some speed values in which a larger error is evident, the result as previously 

specified of limited values. However, we are satisfied with the result, with the error distribution curve no 

longer resembling a Gaussian, indicating a low error value. 
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3.5 Summary of results achieved with our network  

In this chapter we are going to report on the performance of our algorithm, considering our three quantities 

that indicate the goodness of prediction of the model, i.e. the MAE, the LOSS value and the average  

prediction error.  

3.5.1 Summary of results obtained with the Aramco 2.0 dataset 

Let's look at the table below to see the progress of our optimisation. 

Aramco 2.0 dataset  

                            Train_test_split = 80%                                                 Test_size = 20% 

 Standard model Grid search  Gr.s. with Cross Validation 

MAE [cm/s] 1.08 1.02 0.80 

LOSS [cm/s] 5.11 2.52 0.78 

Prediction error [cm/s] 5.31 4.98 3.51 

% improvement of MAE 5.55 % 25.92 % 

% improvement of LOSS 50.68 % 84.73 % 

% improvement of prediction error 6.21 % 33.89 % 
Table 3.5.1.1: Results summary obtained with Aramco 2.0 dataset 

It must be remembered that these results were obtained with a percentage division of our entire dataset 

into 80% training data and 20% testing data, and that this was not changed for all the graphs obtained and 

analysed in the previous chapters. It is worth mentioning that the best fitting, i.e. the best result obtained, 

for the single folds, during the grid search with cross validation was used to obtain the results concerning the 

cross validation column. We note a progression and improvement in the reduction of the loss value, i.e. the 

loss that occurs during training, which reaches a value almost 85% lower than the initial value. This shows us 

that our model learns well and quickly during the training phase, improving accuracy and minimising time. 

This last one, the learning time, is very important if we think about the aim of our model, that is to try to find 

non-linear connections between our input quantities, and to avoid solving and mathematically obtaining this 

objective. For the loss value, we note that there is an improvement in both grid search and grid search with 

cross validation. The same cannot be said for the MAE value, which has a net improvement only with cross 

validation. The latter result may be caused by an improvement in finding the right hyperparameters through 

a method that splits our starting dataset into many folds and finds the best combination. A not so marked 

improvement of the MAE should also be analysed in the context of the analysed data, with velocity values 

expressed in cm/s, and also very high values. A MAE value, i.e. the difference between the predicted value 

and the actual value, of around one cm/s is already very good. Prediction error also has a tangible 

improvement with cross validation. In this case, we must emphasise that the results obtained must be 

interpreted as the distance between the actual and predicted values, so we refer to the distance of our points 

from the prediction line, as we have seen in the graphs in the previous chapters. The improvement is not 

clear-cut, even in this case, because in the case of the grid search we had an improvement in the prediction 

of high speed values and a slight worsening in the average values. With cross-validation we obtained an 

improvement over the whole range of velocities. An error value of around 3.5 cm/s as a final value satisfies 

us considering a test size of twenty percent. As you can imagine, by decreasing the percentage of the test 

dataset our results improve, we will see this later when we vary the "training/testing ratio". 
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3.5.2 Summary of results obtained with the Gri-mech 3.0 dataset 

Let's look at the table below to see the progress of our optimisation. 

Gri-mech 3.0 dataset  

                            Train_test_split = 80%                                                 Test_size = 20% 

 Standard model Grid search  Gr.s. with Cross Validation 

MAE [m/s] 0.12 0.10 0.071 

LOSS [m/s] 0.25 0.17 0.065 

Prediction error [m/s] 4.10 3.52 1.57 

% improvement of MAE 16.66 % 40.83 % 

% improvement of LOSS 32 % 74 % 

% improvement of prediction error 14.14 % 61.70 % 
Table 3.5.2.1: Results summary obtained with Gri-mech 3.0 dataset 

We can see that even in this second case, there is a clear improvement with cross validation. It should be 

pointed out that the Grimech dataset presented some problematic points, with high speed values around a 

dosage value of 0.4 and high temperature values. In fact, with and without optimisation, we were unable to 

achieve the predicted speed values, with an error range comparable to the results obtained with the Aramco 

dataset. As pointed out, these points, as well as the entire Grimech dataset, must be analysed point by point. 

The objective of using the second dataset is to see how our network adapts to completely different input 

values. Having recalled these two points, let's move on to an analysis of the table above to see where 

improvements have been made. We note that the MAE value started from a very high value, which was 

reduced by about forty percent with cross validation, then analysing our dataset in various subsets called 

folds, and then changing our hyperparameters. A value that is reduced, reducing the distance between the 

target value and the real value. The MAE value obtained with the Grimech dataset is still slightly far from the 

values obtained with the other dataset, where we managed to achieve an accuracy of less than one 

centimetre per second. If we analyse the loss value, in this case we achieve a reduced final value of about 74 

per cent. This value is satisfactory and shows that our optimisation was successful. Again, with a lower loss 

value, we have a faster and more accurate model in the training phase. The final loss value, as in the case of 

the mean absolute error, does not reach the values obtained with the Aramco dataset, but we obtain a 

substantial reduction in the loss value, with all the benefits listed above. When analysing the prediction error, 

the presence of these trends must be taken into account, as they distort the final results somewhat. In fact, 

as analysed above, these groups of points have not been eliminated from our dataset in order to have a 

uniformity of results, from the beginning of the drafting of the algorithm to its optimisation. This choice 

affects the reading of the values of the prediction error, since it is not possible to see a very clear percentage 

improvement, but if we analyse the prediction graph, we can see that there is an improvement in the fitting 

between the real value and the predicted value. This can be seen for both low and high speed values, with a 

total improvement over the entire speed range. However, there are also points which are far from the 

prediction value and which affect the final value of the prediction error reported in the table. However, a 

percentage improvement of around sixty percent is achieved, again obtained by cross validation, which has 

proved very useful in finding the ideal hyper parameters. 
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3.6 Sensitivity analysis: k-fold cross validation varying the T/T ratio 

One of the key points of this thesis work is to monitor the performance of our algorithm as the size of the 

training set changes. The assumption behind this procedure is that performance should be better by 

increasing the size of the training set. Since it is not possible to increase the size and thus the various database 

instances, as it would also be very time consuming, the performance of the network is monitored as the 

"train+validation/test split" (t/t ratio) changes. It is clear that by reducing the portion of examples used for 

testing, more examples will be available for training, and therefore we can understand how an increase in 

the training portion will improve the performance of the model.  It should be remembered that it is essential 

to use cross validation, we will use the k-folds cross validation procedure, to avoid misleading results caused 

by a strong dependency on a specific training dataset.  In this way we obtain the best result for the k-th fold 

and use this to choose the ideal hyperparameters and use these to optimise the model.  

With less training data, the parameter estimates will have a higher variance, while with less test data, the 

performance statistics will have a higher variance. In general, we should try to split the data so that neither 

variance is too high, which has more to do with the absolute number of instances in each category rather 

than the percentage. Assuming we have 100 instances, we will probably be stuck with cross-validation, as no 

single split will give us a satisfactory variance in our estimates. If we have 100,000 instances, it doesn't really 

matter if we choose an 80/20 or 90/10 split, we may choose to use less training data if our method is 

particularly computationally intensive. Assuming we have enough data to do a proper test (rather than cross-

validation), the following is an instructive way to get a handle on variance:  

- We split our data into training and testing (80/20 is a really good starting point also suggested by the 

Pareto Theorem) 

- We split our training data into training and validation (again, 80/20 is a fair split)  

- We subsample by making random batches of the training data, train the model with these, and 

record the performance on the validation set 

- We try a series of tests with different amounts of training data: randomly sample 20%, say, 10 times 

and observe performance on the validation data, then do the same with 40%, 60%, 80%. We should 

notice, both a higher performance with more data, but also a lower variance between the different 

random samples 

- To get an idea of the variance due to the size of the test data, we need to perform the same 

procedure in reverse. We train on all our training data, then randomly sample a percentage of our 

validation data a number of times, then observe the performance. Now we should notice that the 

average performance on small samples of our validation data is about the same as the performance 

on all validation data, but the variance is much higher with fewer test samples  

Remember that in our case we will use the GridSearchCV function in python to obtain the sensitivity results 

and to analyse how our final MAE and LOSS values vary. Before analysing the table, we must point out two 

parameters present in it:  

- Best training K-fold score: this refers to the best result, obtained from the iterations via our 

GridSearchCV function for the single fold, and is a value between zero and one. The closer it is to 

one, the more valid and optimal our optimisation is, and we will then use the listed hyperparameters 

referring to this result to complete the grid search operation in our model 

- Best training K-fold MAE: this refers to the result of the single fold, and represents our mean absolute 

error referring to the k-subset. 
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3.6.1 Sensitivity analysis: different T/T ratio using Aramco 2.0 dataset 

Looking at the table, we see that as we thought, there is clearly an interesting trend that seems to confirm 

the initial theory, i.e. performance increases as the training set increases.  

Aramco 2.0 dataset 

    Test size 

 40% 30% 20% 10% 

 
 
 

Best  
Hyperparameters 

 
 

Number of hidden layers 2 2 2 2 

Number of neurons per layer 64-32 64-32 64-32 64-32 

Optimization Adam Adam Adam Adam 

Learning rate 0.001 0.001 0.001 0.001 

Activation function Relu Relu Relu Relu 

% of dropout 1° hidden layer  0.2 0.2 0.3 0.3 

% of dropout 2° hidden layer  0.1 0.1 0.1 0.1 

 

Cross Validation 
results 

Best training K-fold score  0.93 0.92 0.92 0.93 

Best training K-fold MAE [cm/s] 0.13 0.12 0.12 0.12 

 

Final 
results 

Test final MAE [cm/s]  0.89 0.88 0.80 0.78 

Test final LOSS [cm/s] 0.85 0.81 0.78 0.77 

Test final Prediction error [cm/s] 3.89 3.74 3.51 2.95 
Table 3.6.1.1: Different T/T ratio with Aramco 2.0 dataset 

In our Aramco dataset, we do not notice any particular outliers, which confirms the goodness of the validation 

of our starting dataset, and confirms that the code written in python optimises our algorithm well. Analysing 

the best chosen hyper-parameters, we notice that the dropout percentages change when our test size is 30 

and 40 percent of our starting dataset. This is a normal consequence of the decrease in data available for 

training. In fact, if the dropout value were unchanged, we would probably have overfitting as a final result. 

In addition, we can observe how the scalability of the values is confirmed as the percentage of the test size 

changes. As a matter of fact, as the test size increases, the performance worsens, with an increase in the final 

MAE value and in the loss value.  We can also notice that the value of the best training k-fold, has a value 

that oscillates around 0.92, which means that we have a good result in finding the best hyperparameters in 

our k-fold subset. As a matter of fact, we notice that even with the variation of the percentages of the test 

size, the k-fold score remains quite uniform, a sign that the optimisation reaches a limit level around a value 

equal to 0.9, a satisfactory value. Consequently, if we analyse the MAE value of the k-fold score, it too reaches 

a value of around 0.12, a value relative to our subset that achieves the best results. If we analyse the latter, 

in relation to the MAE obtained with the whole dataset, we notice that the mean absolute error obtained 

from the whole dataset is about six times larger than the value of the single fold. This is because the single 

fold is smaller than the whole dataset, with the size of the single fold being about 6/8 times smaller than the 

starting dataset. Consequently, the MAE ratios between the single fold value and the whole dataset are also 

confirmed. 
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3.6.2 Sensitivity analysis: different T/T ratio using Gri-mech 3.0 dataset 

Looking at the table, we see that as we thought, there is clearly an interesting trend that seems to confirm 

the initial theory, i.e. performance increases as the training set increases, but with some difference. 

Gri-mech 3.0 dataset 

    Test size 

 40% 30% 20% 10% 

 
 
 

Best  
Hyperparameters 

 
 

Number of hidden layers 2 2 2 2 

Number of neurons per layer 128-64 128-64 128-64 128-64 

Optimization RMSProp RMSProp RMSProp RMSProp 

Learning rate 0.01 0.01 0.01 0.01 

Activation function Relu Relu Relu Relu 

% of dropout 1° hidden layer  0.5 0.3 0.5 0.5 

% of dropout 2° hidden layer  0.1 0.2 0.2 0.2 

 

Cross Validation 
results 

Best training K-fold score  0.87 0.88 0.87 0.91 

Best training K-fold MAE [m/s] 0.013 0.011 0.010 0.011 

 

Final 
results 

Test final MAE [m/s]  0.079 0.080 0.071 0.063 

Test final LOSS [m/s] 0.074 0.077 0.065 0.061 

Test final Prediction error [m/s] 1.61 1.64 1.57 1.49 
Table 3.6.2.1: Different T/T ratio with Gri-mech 3.0 dataset 

In our Grimech dataset we note small outliers in the MAE and loss values, which we can attribute to the 

pattern of points identified earlier that also gives problems with the final best fitting. Moreover, it must be 

remembered that our Grimech dataset has not been validated on time as in the case of the Aramco dataset. 

As a matter of fact we tried to simulate those outliers points with a different simulation method, to make a 

direct comparison, but simulating the Grimech outliers points in Aramco did not give us any results, with the 

simulation not being able to interpolate those points. For this reason, even making a three-way comparison 

with the kinematics equations was difficult, because if we could not get results from the simulation, we would 

have to investigate the origin of the problem, which could be related to the calculation sheets used by the 

two softwares. We should keep this event in mind, considering that the whole dataset has been kept both 

for the first attempt results and for the results obtained by the optimisation. Analyzing the best chosen hyper-

parameters, we notice that the dropout percentages change in the case where our test size is 30 and 40 

percent of our starting dataset, this as happened before, is a normal consequence of the decrease of the data 

available for training. In fact, if the dropout value were unchanged, we would probably have overfitting as a 

final result. Furthermore, we can observe that the scalability of the values as the percentage of the test size 

varies, is not completely confirmed, with higher MAE and dropout values in the case in which we have a 

percentage of test size equal to 30%. In the case where we have normal scalability, we should note that as 

the test size increases, there should be a worsening of the performance, with an increase in the final MAE 

value and the loss value. With the values considered as outliers: one for all, the 70/30 t/t split, which shows 

a peak in the final MAE value, clearly out of trend. We can then simulate the optimisation several times with 

this test/training split to see if there are any differences.  With several simulations with the same set, we can 

observe something interesting, that the performance does not change much but, with the very first 

simulations we see a slight increase in performance and therefore a lower MAE value, while those reported 

are lower with a loss and MAE value very similar to the one in the table. This is because it is believed to be a 

side effect of the reduced number of attempts, where even with a reduced hyperspace, a finer search will 

always be beneficial in the long run. 
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4 Conclusion and future development  

The work that has been carried out tries to provide a predictive model of laminar combustion speed obtained 

through supervised machine learning.  Specifically, a code written in Python is used, which exploits functions 

(in Tensorflow, Hypera, Sklearn) to train the regression model and try to predict, through non-linear 

connections, the laminar combustion speed. The input data used, organised as a txt file, were extracted by 

means of two chemical kinetics simulation mechanisms, namely Aramco 2.0 and Gri-mech 3.0 for different 

values of pressures, unburnt gas temperature, fuel-air equivalence ratio, EGR rate, methane and hydrogen 

concentration in the mixture. These data then feed our neural network, and are used to select the validation 

scheme, train and optimise the regression model. The latter can generate responsive predictions for each 

new dataset if they are organised with the same number of input arguments given during the training activity 

processed in the application, in fact this is one of the many advantages of using a machine learning model, 

namely that of adapting to numerous data and input files. In our case, the model fed from the Aramco files 

had a minus column, because it simulated a dosage value always equal to one. The main results can be 

summarised as follows: 

- The regression model designed thanks to the machine learning algorithms has not only a 

mathematical meaning, which presents a good goodness of fit, tested thanks to two completely 

different datasets, but it has also a physical meaning which presents great potential for development. 

In fact, it was shown, especially with the Aramco dataset, that the speed forecasts achieved excellent 

results, with predicted and actual speed values very close to each other, and therefore respected the 

correlations, even non-linear ones, that linked the independent variables together. In fact, linear 

regression was chosen to find the weights linking the input variables with the final speed value. It 

must be remembered that our Aramco dataset has been validated and complies with the equations 

of chemical kinetics with deviations of less than five percent. On the contrary, our Gri-mech dataset 

has not yet been validated, and from the data contained in it we have obtained worse prediction 

values from our model. One of the next developments must be a validation of the latter, replicating 

all the simulations with the Aramco dataset, and then observing if there are any patterns or points 

that tend to have results with large differences from the equations of kinetics. 

- Two model optimisation methods, namely Grid Search and Cross Validation, were observed and 

implemented, and the improvements of these optimisations were evaluated and quantified. It was 

seen that in both models, clear improvements were obtained which resulted in our model predicting 

speed values better and made our model much faster 

- A sensitivity assessment was carried out which showed that a decrease in training data leads to a 

deterioration in model performance. It was noted that even in this case a complete scalability of the 

results was not obtained in the case of the Gri-mech dataset, which proves to be less reliable than 

the results obtained with the Aramco data 

It might be interesting to test different types of architectures and different types of regression to build Deep 

Neural Networks to try to further increase performance. Another interesting development could be to 

implement other types of optimisation to evaluate the performance and look for further optimisation. In 

addition, the dataset should be extended in the Aramco case, and validated in the Gri-mech case. A further 

goal could be to include more simulation data as input to our network, perhaps even from different 

simulation software. Also the choice of programming language for machine learning is quite important, 

Python is very flexible and reliable in building the networks, in fact, it is one of the most used programs to 

the architecture and construction of neural networks, but would be interested to try to compare the results 

obtained using Python with models written and train with other programming languages. In conclusion, 

artificial intelligence, and in particular Deep Learning, has been a reliable tool to tackle the tasks related to 

this project, and this technology will transform the way we think and interact with the world. 
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