POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Meccanica

Tesi di Laurea Magistrale

MODELLAZIONE E CALIBRAZIONE DI UN SISTEMA ORC PER IL RECUPERO DEL CALORE DEI GAS DI SCARICO DI UN MOTORE A COMBUSTIONE INTERNA

RELATORI

Prof.ssa Daniela Anna Misul

Prof. Mirko Baratta

Prof. Alfredo Gimelli

Ing. Giovanni Giardiello

Ing. Francesco de Nola

CANDIDATO

Michelangelo D'Arco

Anno Accademico 2019/2020

Sommario

SOMN	1ARIOI
INDIC	E DELLE FIGUREIV
INDIC	E DELLE TABELLEVIII
ABST	RACT1
INTR	ODUZIONE2
1 M	OTORI A COMBUSTIONE INTERNA7
1.1	Generalità7
1.2	Criteri di classificazione9
1.2.1	Modalità di innesco della combustione9
1.2.2	Durata del ciclo di lavoro12
1.2.3	Altre classificazioni
1.3	Parametri prestazionali
1.3.1	Potenza 16
1.3.2	Pressione media effettiva
1.4	Analisi dei rendimenti 19
1.4.1	Rendimento utile

1.4.2	2 Rendimento ideale e limite	. 20
1.4.3 Rendimento termofluidodinamico interno		24
1.4.4	4 Rendimento organico	26
1.4.5	5 Consumo di combustibile e mappa di funzionamento	27
1.5	Descrizione motore in esame	. 29
2 I	MPIANTI ORC	. 30
2.1	Ciclo Rankine	. 30
2.2	Fluidi organici	. 34
2.3	Confronto tra sistemi ORC e Rankine tradizionale	. 37
2.4	Descrizione impianto in esame	. 39
2.4.	1 Pompa	41
2.4.2	2 Scambiatori di calore	41
2.4.3	3 Espansore Scroll	43
2.4.4	4 Sensoristica e motori	45
2.4.5	5 Sorgente di calore	47
2.4.0	6 Sistema di acquisizione dati	49
2.4.7	7 Circuito di raffreddamento	. 49
3 (COSTRUZIONE E CALIBRAZIONE DEL MODELLO	. 51
3.1	Dati sperimentali	. 51

3.2	ORC	3
3.2.1	Espansore	4
3.2.2	Pompa	8
3.2.3	Condensatore	1
3.2.4	Evaporatore	5
3.2.5	Ricevitore di liquido	8
3.2.6	ORC completo	9
3.3	Motore a combustione interna	6
3.4	Accoppiamento ORC-Motore a combustione interna	9
3.4.1	Modifica dell'evaporatore	0
3.4.2	Definizione delle condizioni operative del motore	1
3.4.3	Setup simulazione	1
3.4.4	Sistema di controllo della temperatura	4
4 R	ISULTATI	8
5 C	ONCLUSIONI E SVILUPPI FUTURI9	3
APPE	NDICE	5
BIBLI	OGRAFIA 10'	7

Indice delle figure

Figura 0.1 Bilancio termico di un motore alternativo 4 tempi ad accensione per
compressione2
Figura 0.2 Rappresentazione schematica Turbosteamer BMW4
Figura 1.1 Rappresentazione schematica di cilindro, pistone, biella e manovella con
principali grandezze geometriche8
Figura 1.2 Andamento della pressione in camera in funzione dell'angolo di manovella per:
a) combustione normale; b) combustione con lieve detonazione; c) combustione con
intensa detonazione11
Figura 1.3 Fasi di un motore 4 tempi13
Figura 1.4 Fasi di un motore 2 tempi14
Figura 1.5 Rappresentazione di ciclo Otto (sx) e Diesel (dx) su diagramma p-V21
Figura 1.6 Andamento del rendimento ideale per ciclo Otto e ciclo Diesel in funzione del
rapporto volumetrico di compressione22
Figura 1.7 Fasi di espulsione (5-6) e aspirazione (6-1) di un motore 4 tempi
Figura 1.8 Rappresentazione di un ciclo indicato per un motore 4 tempi su piano p-V 24
Figura 1.9 Mappa di funzionamento di un motore ad accensione per compressione
sovralimentato (tratto continuo) e aspirato (tratto discontinuo)
Figura 2.1 Rappresentazione schematica di un ciclo Rankine tradizionale [5]30
Figura 2.2 Rappresentazione di un ciclo Rankine tradizionale su diagramma p-s

Figura 2.3 Diagramma T-s per diverse tipologie di fluidi
Figura 2.4 Diagrammi T-s di un ciclo Rankine per: a) fluido bagnato, b) fluido secco 36
Figura 2.5 Diagramma p-s di un ciclo Rankine che utilizza il refrigerante r245fa [9] 37
Figura 2.6 Impianto sperimentale ORC Purdue University
Figura 2.7 Schematizzazione impianto sperimentale 40
Figura 2.8 Rappresentazione del pacchetto di piastre degli scambiatori
Figura 2.9 Caratteristiche di una piastra degli scambiatori di calore
Figura 2.10 Fasi di un espansore Scroll
Figura 2.11 Rappresentazione schematica del funzionamento del sensore di portata 46
Figura 2.12 Oscillazioni di temperatura del boiler prima della modifica
Figura 2.13 Oscillazioni di temperatura del boiler dopo la modifica
Figura 3.1 Template TurbineRefrig dell'espansore scroll
Figura 3.2 Mappa espansore scroll
Figura 3.3 Temperatura d'uscita espansore56
Figura 3.4 Portata massica espansore 56
Figura 3.5 Potenza espansore
Figura 3.6 Template Pumprefrig della pompa58
Figura 3.7 Mappa della pompa a pistoni58
Figura 3.8 Temperatura d'uscita pompa

Figura 3.9 Portata massica pompa60
Figura 3.10 Modello di condensatore61
Figura 3.11 Dati geometrici condensatore62
Figura 3.12 Template HxNuMaprefrig con fluidi utilizzati nel condensatore
Figura 3.13 Mappa condensatore63
Figura 3.14 Potenza termica del condensatore64
Figura 3.15 Temperatura d'uscita del refrigerante dal condensatore64
Figura 3.16 Modello di evaporatore65
Figura 3.17 Dati geometrici evaporatore65
Figura 3.18 Template HxNuMaprefrig con fluidi utilizzati nell'evaporatore
Figura 3.19 Mappa evaporatore
Figura 3.20 Potenza termica scambiata dall'evaporatore67
Figura 3.21 Temperatura d'uscita del refrigerante dall'evaporatore67
Figura 3.22 Modello ricevitore di liquido68
Figura 3.23 Modello ORC complessivo 69
Figura 3.24 Ottimizzazione multi-oggetto multi-obiettivo70
Figura 3.25 Run setup modello ORC completo72
Figura 3.26 Modello condotto d'ingresso condensatore [13]73
Figura 3.27 Template RefrigCircInit73

Figura 3.28 Portata massica di pompa (sx) ed espansore (dx)74
Figura 3.29 Potenza termica di evaporatore (sx) e condensatore (dx)
Figura 3.30 Potenza dell'espansore75
Figura 3.31 Modello motore a combustione interna76
Figura 3.32 Caratteristiche geometriche motore77
Figura 3.33 Template iniettore77
Figura 3.34 Modello complessivo ORC e motore a combustione interna
Figura 3.35 Run setup modello completo motore e impianto ORC – TimeControl82
Figura 3.36 Run setup modello completo motore e impianto ORC – FlowControl
Figura 3.37 Template FlowControlImplicit83
Figura 3.38 Template FlowControlExplicit
Figura 3.39 Dettaglio bypass evaporatore
Figura 3.40 Template FlowSplitTRight
Figura 3.41 Template PID Controller87
Figura 4.1 Diagramma p-h dei casi analizzati nelle simulazioni91
Figura 4.2 Diagramma T-s dei casi analizzati nelle simulazioni

Indice delle tabelle

Tabella 1.1 Caratteristiche dei principali combustibili utilizzati nell'autotrazione	17
Tabella 2.1 Principali proprietà di r245fa e acqua	35
Tabella 2.2 Caratteristiche principali pompa a pistoni	41
Tabella 2.3 Principali caratteristiche scambiatori di calore	43
Tabella 2.4 Caratteristiche espansore Scroll	44
Tabella 2.5 Incertezze di misurazione degli strumenti	47
Tabella 3.1 Matrice di test sperimentale	51
Tabella 3.2 Risultati calibrazione espansore	57
Tabella 3.3 Risultati calibrazione pompa	60
Tabella 3.4 Risultati calibrazione condensatore	64
Tabella 3.5 Risultati calibrazione evaporatore	68
Tabella 3.6 Risultati ottimizzazione	74
Tabella 3.7 Risultati dopo l'ottimizzazione	75
Tabella 4.1 Incremento di potenza dell'impianto completo	89
Tabella 4.2 Analisi dei rendimenti dell'impianto completo	90
Tabella 0.1 Space Fillers ottimizzazione multi-oggetto multi-obiettivo	95
Tabella 0.2 Set completo di punti per la calibrazione ORC (parte 1)	97

Tabella 0.3 Set completo di punti per la calibrazione ORC (parte 2) 9	9
Tabella 0.4 Set completo di punti per la calibrazione ORC (parte 3)10	1
Tabella 0.5 Set punti ottimizzazione multi-oggetto multi-obiettivo (parte 1)10	3
Tabella 0.6 Set punti ottimizzazione multi-oggetto multi-obiettivo (parte 2)10	4
Tabella 0.7 Set punti impianto completo motore + ORC (parte 1) 10	5
Tabella 0.8 Set punti impianto completo motore + ORC (parte 2)	6

Abstract

Nell'elaborato è descritto lo sviluppo di un modello validato composto da un motore alternativo a combustione interna di piccola/media cilindrata e un impianto ORC (Organic Rankine Cycle) ad esso sottoposto. Con tale configurazione si intende analizzare dal punto di vista modellistico la possibilità di sostituire il fluido refrigerante tradizionale (acqua) con un fluido organico bassobollente (r245fa). In questo modo, è possibile sfruttare parte del calore (altrimenti perduto in ambiente) per la produzione di energia elettrica e incrementare contestualmente il rendimento del sistema.

Partendo da prove sperimentali presenti in letteratura di un impianto ORC per la microgenerazione, è stato costruito e calibrato un primo modello. Esso è composto da: un espansore di tipo scroll per la produzione di energia; una pompa a pistoni per la circolazione del fluido refrigerante; due scambiatori di calore per l'adduzione (circuito esterno di acqua calda) e la sottrazione del calore (impianto idrico dell'edificio in cui è installato).

Successivamente, tale sistema è stato accoppiato con un modello di motore ad accensione comandata per autovettura, adeguando la parte relativa all'adduzione di calore che prevede lo scambio termico con i gas di scarico e non più con l'acqua calda. Per gestire in maniera più precisa l'evoluzione del fluido refrigerante nell'impianto ORC, è stato implementato un sistema di controllo della temperatura che prevede come elementi aggiuntivi un circuito di bypass dell'evaporatore e due valvole a farfalla azionate tramite controllore PI.

Infine sono state analizzate le prestazioni del motore con e senza impianto di recupero. Inoltre, si è discusso della fattibilità di tale accoppiamento e di quali migliorie potrebbero essere apportate al modello costruito.

1

Introduzione

Un motore a combustione interna (MCI) riesce normalmente a convertire in potenza meccanica utile fino a circa un terzo della potenza termica prodotta durante il processo di combustione. L'aliquota rimanente viene dispersa in ambiente attraverso i gas di scarico o il liquido di raffreddamento.

L'esempio in Figura 0.1 riporta la suddivisione in termini percentuali dei contributi sopracitati nel caso di un motore 4 tempi ad accensione per compressione utilizzato in ambito industriale e funzionante alla massima potenza. In particolare, la potenza utile rappresenta circa il 38% del totale e, quindi, quella persa circa il 62% [1].

Figura 0.1 Bilancio termico di un motore alternativo 4 tempi ad accensione per compressione

In generale, nelle migliori condizioni di funzionamento, i motori ad accensione per compressione raggiungono un rendimento utile intorno al 40%, mentre quelli ad accensione comandata si fermano generalmente intorno al 35%. Questi valori rappresentano una piccola

zona della mappa di funzionamento, la quale viene raggiunta sporadicamente durante la vita del motore.

In particolare, in ambito automotive, considerando un classico utilizzo misto della vettura (urbano, extraurbano e autostradale) i rendimenti saranno ben inferiori ai massimi raggiungibili e dunque l'aliquota di potenza persa risulta ancora maggiore rispetto al sopracitato 62%.

Da ciò si può facilmente intuire che un sistema ausiliario, in grado di recuperare parte dell'energia dispersa nei gas di scarico, possa portare notevoli benefici dal punto di vista dell'efficienza del veicolo e del consumo di combustibile.

Attualmente la quasi totalità degli impianti dedicati al recupero dell'exergia dei gas di scarico di motori a combustione interna impiegati per la trazione sono implementati a bordo di veicoli pesanti (in genere autotreni con grandi motori diesel da oltre 10 litri di cilindrata). Ciò è dovuto al fatto che lo spazio disponibile a bordo permette un'agevole installazione dell'impianto aggiuntivo. Inoltre, motori di grossa cilindrata offrono quantitativi importanti di energia allo scarico e dunque anche il recupero ne risulta facilitato [2].

Il discorso cambia in modo radicale spostandosi nell'ambito delle autovetture, le quali introducono un livello di sfida più elevato essendo equipaggiate con motori nettamente più compatti e avendo a disposizione a bordo spazi molto risicati per l'inserimento dell'impianto di recupero. In questo ambito, il tentativo di implementazione di maggior rilievo è stato senza dubbio quello dell'azienda tedesca BMW, che a sua volta ha preso spunto dall'esperienza quarantennale della NASA nell'ambito della produzione di elettricità dal calore superfluo. Il progetto, denominato *"Turbosteamer"* (Figura 0.2) ha permesso l'accoppiamento tra un motore ad accensione comandata da 1.8 litri (montato su una berlina

3

media) e un impianto Rankine (Dual-Loop prima e Single-Loop poi). Stando ai test svolti, sono stati dichiarati: 13 CV e 20 Nm di picco restituiti all'albero (+10%), con aumenti di rendimento nell'ordine del 15% su lunghi tratti (non specificato il ciclo guida di riferimento). Nonostante i primi riscontri fossero incoraggianti, esso purtroppo non ha poi trovato spazio nella produzione di serie [3].

Figura 0.2 Rappresentazione schematica Turbosteamer BMW

Il progetto appena illustrato è un sistema di recupero dell'exergia dei gas di scarico del motore che impiega come fluido di lavoro l'acqua ed è quindi classificabile come ciclo Rankine tradizionale.

In questo elaborato si vuole analizzare la possibilità di poter installare un impianto che faccia evolvere un fluido organico (nello specifico r245fa) e, dunque, in questo caso si parlerà di *Organic Rankine Cycle* (ORC). A tal scopo, la fase preliminare del lavoro di tesi ha previsto una ricerca bibliografica incentrata sul reperire il maggior numero possibile di dati sperimentali di impianti di piccola taglia basati su ciclo Rankine Organico.

Essendo una tecnologia ancora in pieno sviluppo, la quantità di dati disponibili è purtroppo ancora scarsa. In particolare, la quasi totalità degli studi condotti fino a questo momento fa riferimento a condizioni di funzionamento dell'impianto in regime stazionario (*Steady-State*) e dunque le considerazioni illustrate in questo documento sono da intendersi in tal senso.

La scelta del sistema da modellare è ricaduta sull'impianto assemblato presso la Purdue University dell'Indiana, analizzato in maniera dettagliata nella tesi redatta da Felipe Airoldi Accorsi dal titolo "Experimental characterization of scroll expander for small-scale power generation in an Organic Rankine Cycle". Nel documento viene riportata l'intera campagna sperimentale condotta e una descrizione dei singoli componenti dell'impianto.

I suddetti dati sono stati utilizzati per la costruzione e validazione di un modello simulativo sulla piattaforma GT-SUITE, distribuita di Gamma Technologies.

Innanzitutto è stata realizzata la modellazione dei singoli componenti dell'impianto utilizzando un approccio *a parametri concentrati*, ovvero scegliendo per ogni organo degli opportuni indicatori di performance in modo da poter eseguire un confronto diretto con i dati sperimentali.

In secondo luogo, l'impianto virtuale è stato assemblato nella sua interezza e sono state eseguite delle prime simulazioni di prova in modo da verificare l'effettivo funzionamento del modello.

5

Introduzione

In seguito, vista l'assenza di alcuni parametri quali: lunghezza e diametri dei condotti di collegamento dei vari organi e carica totale di fluido circolante nell'impianto, è stata effettuata un' ottimizzazione multi-oggetto multi-obiettivo tramite algoritmo genetico. Tale operazione ha consentito di individuare la miglior combinazione possibile dei parametri mancanti citati in precedenza tramite la minimizzazione di funzioni di errore opportunamente definite rispetto ai dati sperimentali.

Il modello di impianto sopracitato è stato accoppiato *virtualmente* ad un motore a combustione interna ad accensione comandata. Per eseguire tale operazione è stato necessario modificare la parte relativa allo scambio termico all'interno dell'evaporatore in quanto nell'impianto sperimentale la fonte di calore è rappresentata da una produzione di acqua calda da un boiler mentre nell'accoppiamento finale il calore è prelevato dai gas di scarico del motore.

Successivamente è stato implementato un sistema di controllo della temperatura, costituito da un circuito di by-pass dell'evaporatore e due valvole a farfalla dal funzionamento complementare azionate da un controllore proporzionale e integrativo che a sua volta acquisisce in input la temperatura del refrigerante all'ingresso dell'espansore e restituisce in output il grado di apertura delle valvole.

Infine, sono stati calcolati degli indicatori di sintesi che hanno reso possibile la valutazione delle performance del motore prima e dopo il collegamento con l'impianto di recupero del calore.

6

1 Motori a Combustione Interna

1.1 Generalità

Un motore a combustione interna è una *macchina motrice termica e volumetrica*, capace di convertire l'energia chimica del combustibile in lavoro meccanico, tramite un evento di *combustione*. Prima di tale evento, il fluido di lavoro è costituito da una miscela di combustibile e aria comburente, mentre dopo è composto da aria e prodotti dell'ossidazione del combustibile stesso [4].

Essendo una macchina volumetrica, è necessaria una variazione di volume durante il ciclo. Essa è ottenuta tramite il moto alterno di uno o più *stantuffi (o pistoni)*, ognuno dei quali si muove all'interno di un *cilindro* chiuso superiormente da una *testata* ed inferiormente da un *carter*. Lo stantuffo è a sua volta connesso all'*albero motore* tramite un accoppiamento *biella-manovella ordinario e centrato*, il quale trasforma il moto rettilineo in una rotazione.

I punti in cui si annulla la velocità dello stantuffo rappresentano gli estremi di tale meccanismo e sono chiamati *punti morti*. In particolare, il *Punto Morto Superiore (PMS)* o *Top Dead Center (TDC)* è quello più vicino alla testata. Esso corrisponde ad un *angolo di manovella* (ϑ) pari a 0° e delimita il volume minimo della camera di combustione, detto a sua volta *volume di spazio morto (V_{min})*. Il *Punto Morto Inferiore (PMI)* o *Bottom Dead Center (BDC)* è, al contrario, quello più lontano dalla testata. Esso corrisponde ad un angolo di manovella pari a 180° e delimita il volume massimo della camera di combustione (V_{max}).

La differenza tra V_{max} e V_{min} prende il nome di *cilindrata unitaria (V)* e può essere scritta come:

$$V [cm^3] = V_{max} - V_{min} = \pi \frac{D^2}{4}c$$
 (1.1)

Dove D e c sono rispettivamente l'alesaggio e la corsa dello stantuffo.

Infine, il rapporto tra i due volumi sopracitati è detto *rapporto volumetrico di compressione*(ε):

$$\varepsilon = \frac{V_{\text{max}}}{V_{\text{min}}} = \frac{V + V_{\text{min}}}{V_{\text{min}}} = 1 + \frac{V}{V_{\text{min}}}$$
(1.2)

Della Figura 1.1 vi è una rappresentazione schematica delle grandezze geometriche appena illustrate per un motore *4 tempi*. In essa si possono notare anche le valvole di aspirazione e scarico (in alto) le quali mettono in comunicazione la *camera di combustione* con l'ambiente esterno.

Figura 1.1 Rappresentazione schematica di cilindro, pistone, biella e manovella con principali grandezze geometriche

1.2 Criteri di classificazione

I criteri di classificazione dei MCI sono molteplici. I più diffusi in letteratura sono:

- Modalità di innesco della combustione;
- Durata del ciclo;
- Modalità di alimentazione dell'aria;
- Modalità di alimentazione del combustibile;
- Modalità di refrigerazione.

1.2.1 Modalità di innesco della combustione

La classificazione per modalità di innesco della combustione è probabilmente la classificazione più utilizzata in assoluto. Essa distingue i motori in:

- Motori ad accensione comandata;
- Motori ad accensione per compressione.

Nei **motori ad accensione comandata** (o *Spark Ignition Engine*), la combustione è innescata dallo scoccare di una scintilla all'interno di una miscela formata da combustibile e comburente. Essi vengono anche detti impropriamente *motori a ciclo Otto*, in quanto utilizzano come ciclo di termodinamico di riferimento appunto il ciclo Otto (illustrato nel Paragrafo 1.4.2), che prende a sua volta il nome dall'ingegnere tedesco Nikolaus August Otto, inventore del primo motore a combustione interna a 4 tempi nel 1862 [5]. I combustibili utilizzati in questa tipologia di motori sono *a bassa reattività*, ovvero in condizioni di pressione e temperatura elevate non danno luogo spontaneamente a reazioni di combustione. Questa caratteristica è dovuta alla particolare struttura chimica delle molecole di tali

combustibili, le quali risultano estremamente rigide e compatte. Ciò permette loro di non dare origine alle *prereazioni* che a loro volta generano la combustione vera e propria. L'unico modo per avviare il processo è quello di innescarlo dall'esterno tramite una scintilla prodotta da due elettrodi, la cui differenza di potenziale si attesta intorno a qualche centinaio di Volt. Una volta innescato il primo nucleo, vi è un progressivo innesco della carica immediatamente adiacente tramite un meccanismo di scambio convettivo detto propagazione del fronte di fiamma. Tale evento si diffonde in tutta la camera, fino a raggiungere le zone più remote rispetto alla scintilla (denominate *endqas*), con una velocità finita che varia da qualche decina di cm/s in regime di quiete a qualche decina di m/s in regime di moto turbolento. L'intensità della turbolenza è funzione principalmente dei moti della carica presenti in camera di combustione e della velocità di rotazione del motore. La problematica più rilevante dei motori ad accensione comandata risiede nel fenomeno della detonazione o knock. Ciò si verifica quando l'endgas, per via di particolari condizioni di pressione e temperatura, si *autoaccende* prima dell'arrivo del fronte di fiamma, generando un brusco aumento di pressione che a sua volta è causa di rumore e vibrazioni. Questa problematica può essere mitigata agendo su due parametri geometrici illustrati nel paragrafo precedente, ovvero: sull'alesaggio D < 100 mm, in modo da ridurre le dimensioni della camera di combustione e "accorciare il percorso" al fronte di fiamma, che può raggiungere l'endgas prima che questo si autoaccenda; oppure sul rapporto volumetrico di compressione $\varepsilon < 10$, per evitare pressioni e temperature troppo elevate.

Figura 1.2 Andamento della pressione in camera in funzione dell'angolo di manovella per: a) combustione normale; b) combustione con lieve detonazione; c) combustione con intensa detonazione.

I motori ad accensione per compressione (o Compression Ignition Engine), comunemente definiti anche *motori diesel* per via del ciclo di riferimento ideato dall'ingegnere tedesco Rudolf Diesel, utilizzano combustibili ad alta reattività. Essi hanno caratteristiche diametralmente opposte rispetto a quelli visti in precedenza, ovvero: struttura molecolare lunga e flessibile che porta, in determinate condizioni di temperatura e pressione, all'esaurimento delle reazioni necessarie alla combustione in tempi molto rapidi. Per questo motivo anche le modalità di iniezione del combustibile devono essere differenti. In particolare, nel caso di motori ad accensione comandata si può pensare di iniettare relativamente presto rispetto al PMS, mentre per l'altra tipologia solitamente si inietta combustibile liquido "all'ultimo istante". Il problema della detonazione è assente nei motori diesel per via della diversa tipologia di combustione e in generale non sussistono i vincoli di alesaggio e rapporto di compressione visti in precedenza, anzi quest'ultimo arriva ad essere anche doppio rispetto al caso precedente (8-12 per accensione comandata contro 15-23 per accensione per compressione). L'unico limite da questo punto di vista è strutturale e di resistenza del componenti metallici. Il problema più rilevante nei diesel è dovuto al *rumore*, causato da un aumento di pressione repentino in camera di combustione, il quale si propaga anche all'esterno sottoforma di vibrazioni degli organi della driveline. Ciò è dovuto ad un accumulo di combustibile prima dell'evento della combustione che tende a bruciare simultaneamente e introducendo nel sistema una forzante quasi *a gradino*.

1.2.2 Durata del ciclo di lavoro

Un'altra classificazione molto utilizzata è quella che fa riferimento alla durata del ciclo di lavoro, che divide i motori in: **4 tempi** e **2 tempi**. Per *tempi* si intendono le corse del pistone necessarie a completare un intero ciclo di lavoro. Essi non vanno confusi con le *fasi di funzionamento* che sono sempre 6 per entrambe le tipologie.

Per un motore 4 tempi (Figura 1.3) si hanno:

- **Aspirazione** o *intake*: tramite valvole di aspirazione viene immessa carica fresca all'interno del cilindro, la quale può essere una miscela di aria e combustibile oppure solo aria, a seconda della tipologia di motore;
- **Compressione** o *compression*: le valvole di aspirazione vengono chiuse e si ha un aumento della pressione in camera tramite una corsa dal PMI al PMS del pistone;
- **Combustione** o *combustion*: nell'intorno del PMS si ha un rapido incremento di pressione per effetto delle reazioni chimiche citate in precedenza;
- **Espansione** o *expansion*: il pistone viene spinto dal PMS al PMI dall'aumento di pressione avuto nella fase della combustione;
- **Scarico spontaneo** o *exhaust blowdown*: si aprono le valvole di scarico prima del PMI e la differenza di pressione tra cilindro ed ambiente consente ai gas di fluire spontaneamente verso l'esterno;
- **Scarico forzato** o *exhaust displacement*: dopo il PMI il pistone "spinge" il gas verso l'esterno attraverso le valvole di scarico.

Da quanto descritto si può dedurre che per effettuare un ciclo completo in un motore 4 tempi si hanno 4 corse totali del pistone e, passando 2 volte per PMS e PMI, si distinguono: *PMS di combustione* e *PMS di incrocio valvole*. Il problema di questa tipologia risiede nel fatto che la macchina venga sfruttata per un solo giro ogni due per la produzione di lavoro utile.

Figura 1.3 Fasi di un motore 4 tempi

Per ovviare a ciò, il motore 2 tempi (Figura 1.4) esegue l'intero ciclo in 2 corse, ovvero un unico giro dell'albero motore. La struttura dal punto di vista geometrico è leggermente diversa dal 4 tempi, in quanto le valvole vengono sostituite da luci di aspirazione e scarico poste nella parete del cilindro, le quali vengono coperte o scoperte dal moto dello stantuffo, a seconda della posizione dello stesso.

Le fasi di compressione, combustione, espansione e scarico spontaneo sono concettualmente uguali a quelle di un 4 tempi, con l'ovvia differenza introdotta dalle luci sopracitate. La differenza sostanziale è presente nelle fasi di **lavaggio e carica** o *scavenging*. Infatti, nella corsa verso il PMI, il pistone scopre una terza luce (detta di lavaggio, posta sotto le luci di scarico e aspirazione) attraverso la quale viene immessa carica fresca. Quest'ultima, avendo una pressione superiore rispetto all'ambiente allo scarico, favorisce il ricambio fluido spingendo la carica esausta verso l'esterno.

Figura 1.4 Fasi di un motore 2 tempi

Pur essendo validi dal punto di vista delle prestazioni e della semplicità costruttiva, l'impiego di questi motori è diventato sempre più raro per via dell'inseverimento delle norme anti-inquinamento nel settore dell'autotrazione. Tuttavia, essi risultano ancora validi per applicazioni marine o stazionarie (potenze >10 MW).

1.2.3 Altre classificazioni

Distinguendo i motori per modalità di alimentazione dell'aria si possono classificare:

- Motori aspirati o ad aspirazione naturale, in cui il condotto di aspirazione è direttamente collegato con l'ambiente esterno e non vi è l'interposizione di nessun organo ausiliario;
- Motori sovralimentati, in cui si utilizzano organi ausiliari per aumentare la pressione di aspirazione e di conseguenza la potenza. La sovralimentazione può avvenire per comando meccanico o tramite turbina a gas di scarico. Nel primo caso il compressore risulta collegato meccanicamente all'albero motore tramite un accoppiamento a cinghia o ingranaggi, mentre nel secondo l'accoppiamento tra gruppo di sovralimentazione e motore non è più di tipo meccanico ma fluidodinamico. Si sfrutta in questo modo l'energia dei gas di scarico, i quali si espandono in una turbina

centripeta, la quale risulta collegata ad un compressore centrifugo che lavora sull'aria aspirata.

Classificando i motori per modalità di alimentazione del combustibile si passa dai primi sistemi a **carburatore** (ormai in disuso) ai sistemi più moderni di iniezione indiretta e diretta (citati in ordine di apparizione).

Nei sistemi ad **iniezione indiretta** per i motori ad accensione comandata il combustibile viene iniettato nel condotto di aspirazione (detto anche *port*), mentre per i motori ad accensione per compressione, l'iniezione avviene in una *precamera*, ovvero un volume collegato tramite ugello alla camera di combustione.

A partire dagli anni '90 è stato introdotto il sistema di **iniezione diretta**, in cui è prevista l'immissione di combustibile direttamente in camera. Tale sistema, abbinato ad una buona gestione elettronica, consente notevoli vantaggi nel controllo del processo di combustione, a fronte di costi più elevati delle precedenti soluzioni.

Ulteriori classificazioni distinguono i motori in base ai sistemi di raffreddamento, rapporto corsa/alesaggio, numero di cilindri, ecc.

1.3 Parametri prestazionali

1.3.1 Potenza

La potenza erogata da un motore a combustione interna viene denominata *potenza utile* (o *power brake*, potenza al freno) e rappresenta la potenza disponibile per l'utilizzatore all'albero, al netto di tutto il necessario per il funzionamento del motore. Può essere calcolata come:

$$P_{\rm u} = \omega \cdot C \tag{1.3}$$

Dove ω rappresenta la velocità di rotazione, espressa in rad/s e C la coppia erogata, in Nm. Una scrittura equivalente alla precedente può essere:

$$P_{\rm u} = L_{\rm u} \cdot i \cdot \frac{n}{m} \tag{1.4}$$

Dove i rappresenta il numero di cilindri, n è il numero di giri del motore ed m è il numero di giri necessario per effettuare un ciclo completo (vale 1 nei 2 tempi e 2 nei 4 tempi). Infine L_u indica il lavoro utile per ciclo per cilindro e può essere espresso come:

$$L_{u} = \eta_{u} E_{u} = \eta_{u} \cdot m_{b} \cdot H_{i} \tag{1.5}$$

Dove E_u rappresenta l'energia utilizzabile per ciclo espressa in J/ciclo; m_b è la massa di combustibile utilizzata per ciclo per cilindro espressa in kg/cil/ciclo; H_i è il potere calorifico inferiore del combustibile espresso in kJ/kg; η_u è il rendimento utile, che sarà analizzato in maniera più approfondita nel Paragrafo 1.4.1.

Si definisce il rapporto massa d'aria-massa di combustibile o *dosatura* come:

$$\alpha = \frac{m_a}{m_b} \tag{1.6}$$

Dove m_a rappresenta la massa d'aria aspirata per ciclo per cilindro espressa in kg/cil/ciclo.

La dosatura può assumere valori estremamente diversi a seconda del combustibile impiegato. I più comuni sono benzina e gasolio, i quali hanno una dosatura stechiometrica di circa 14.5, ovvero per bruciare 1 kg di combustibile sono necessari 14.5 kg d'aria.

Combustibile	Potere calorifico	Dosatura stechiometrica
Combustibile	inferiore <i>H_i</i> [MJ/kg]	$m_a/m_{b,st}$ [-]
Benzina	44	14.6
Gasolio	42.5	14.5
Metanolo	20	6.5
Etanolo	27	9
Metano	50	17.2
Idrogeno	120	34.3

Tabella 1.1 Caratteristiche dei principali combustibili utilizzati nell'autotrazione

La massa d'aria aspirata può essere confrontata con una massa di riferimento idealmente aspirabile definendo un ulteriore parametro denominato *coefficiente di riempimento*:

$$\lambda_{\rm v} = \frac{{\rm m}_{\rm a}}{{\rm m}_{\rm a,rif}} = \frac{{\rm m}_{\rm a}}{\rho_{\rm a} \cdot {\rm V}} \tag{1.7}$$

Dove ρ_a è la densità dell'aria nell'ambiente di aspirazione espressa in kg/m^3 e V la cilindrata unitaria espressa in m^3 .

Riscrivendo l'Equazione 1.4 con i parametri appena citati si ottiene:

$$P_{u} = \eta_{u} \cdot \frac{\lambda_{v} \cdot \rho_{a} \cdot H_{i}}{\alpha} \cdot i \cdot V \cdot \frac{n}{m}$$
(1.8)

1.3.2 Pressione media effettiva

Rapportando il lavoro utile definito in precedenza con la cilindrata unitaria si ottiene una grandezza le cui dimensioni fisiche sono quelle di una pressione ed è per questo detta *pressione media effettiva* (pme) o *brake mean effective pressure* (bmep). Essa può risultare utile nel confronto tra motori di diversa cilindrata.

pme =
$$\frac{L_u}{V} = \eta_u \cdot \frac{\lambda_v \cdot \rho_a \cdot H_i}{\alpha}$$
 (1.9)

Dalle Equazioni 1.8 e 1.9 si ottiene:

$$P_{\rm u} = pme \cdot i \cdot V \cdot \frac{n}{m} \tag{1.10}$$

$$pme = \frac{C \cdot 2\pi \cdot m}{i \cdot V}$$
(1.11)

Considerando i vari termini presenti nell'Equazione 1.11, il massimo valore di pme ottenibile è pari a: circa 10 bar per motori aspirati e 25 bar per motori sovralimentati.

1.4 Analisi dei rendimenti

1.4.1 Rendimento utile

Il rendimento utile massimo citato in precedenza è tipicamente nell'ordine del 30-35% sia per motori ad accensione comandata che per quelli ad accensione per compressione. Esso comprende tutte le cause di perdita che si hanno all'interno del motore. Considerando l'equazione inversa del lavoro utile può essere definito come:

$$\eta_{\rm u} = \frac{L_{\rm u}}{E_{\rm u}} = \frac{L_{\rm u}}{m_{\rm b} \cdot H_{\rm i}} = \frac{P_{\rm u}}{\dot{m}_{\rm b} \cdot H_{\rm i}}$$
(1.12)

Per comprendere meglio il contributo delle singole cause si può riscrivere l'equazione precedente come segue:

$$\eta_{u} = \frac{L_{u}}{m_{b} \cdot H_{i}} = \frac{L_{u}}{L_{i}} \cdot \frac{L_{i}}{L_{i,lim}} \cdot \frac{L_{i,lim}}{m_{b} \cdot H_{i}} = \eta_{o} \cdot \eta_{\vartheta i} \cdot \eta_{lim}$$
(1.13)

Dove gli ultimi 3 termini sono ulteriori rendimenti, definiti come segue:

• Rendimento organico:

$$\eta_{\rm o} = \frac{L_{\rm u}}{L_{\rm i}} \tag{1.14}$$

Il quale tiene conto del fatto che il lavoro disponibile all'albero L_u è sicuramente inferiore rispetto al lavoro indicato L_i compiuto dal fluido sugli organi della macchina. In questo caso non si può neanche parlare di vero e proprio rendimento, ma più correttamente di *efficienza*, in quanto entrambi i lavori sono energie meccaniche e non c'è alcuna conversione in altre forme. Tipicamente il rendimento organico può raggiungere valori prossimi al 90%;

• Rendimento termofluidodinamico interno:

$$\eta_{\vartheta i} = \frac{L_i}{L_{i,\text{lim}}} \tag{1.15}$$

Il quale tiene conto delle perdite termofluidodinamiche dovute alla conversione di energia. Anch'esso può raggiungere valori pari ad 80-90%;

Rendimento limite:

$$\eta_{\rm lim} = \frac{L_{\rm i,lim}}{m_{\rm b} \cdot H_{\rm i}} \tag{1.16}$$

Il quale tiene conto delle caratteristiche di un fluido reale che può essere soggetto a fenomeni chimici come la dissociazione o la variazione dei calori specifici con la temperatura. Esso rappresenta l'anello debole della catena dei rendimenti ed è il principale responsabile del valore non molto elevato del rendimento utile.

1.4.2 Rendimento ideale e limite

Come anticipato, classificando i motori in base alla modalità d'innesco della combustione e facendo riferimento a motori 4 tempi, si possono definire due cicli ideali di riferimento: il ciclo Otto e il ciclo Diesel.

In entrambi sono presenti:

• Compressione adiabatica 1-2;

- Espansione adiabatica 3-4;
- Cessione di calore isocora 4-1;

L'unica trasformazione che differisce è la fornitura di calore 2-3, la quale risulta essere isocora nel caso del ciclo Otto e isobara nel ciclo Diesel.

Figura 1.5 Rappresentazione di ciclo Otto (sx) e Diesel (dx) su diagramma p-V

Per entrambi risulta possibile definire un rendimento ideale:

$$\eta_{\rm id,Otto} = 1 - \frac{1}{\epsilon^{\rm k-1}}$$
 (1.17)

$$\eta_{\rm id,Diesel} = 1 - \frac{1}{\epsilon^{\rm k-1}} \cdot \frac{\tau^{\rm k} - 1}{{\rm k}(\tau - 1)}$$
(1.18)

Dove ε è il già citato rapporto di compressione volumetrico; τ è il *rapporto volumetrico di combustione* V_1/V_2 ; k è il rapporto tra i *calori specifici* c_p/c_v .

A parità di ε , il ciclo Otto ha un rendimento più elevato, ma un motore basato su ciclo Diesel ha generalmente un rapporto di compressione volumetrico circa doppio. Considerando quindi il campo reale di funzionamento di entrambe le tipologie, si nota che il rendimento ideale del Diesel risulta sempre superiore (Figura 1.6).

Figura 1.6 Andamento del rendimento ideale per ciclo Otto e ciclo Diesel in funzione del rapporto volumetrico di compressione

Considerando le alterazioni chimico-fisiche del fluido, risulta necessario passare da un ciclo chiuso ad un ciclo aperto, che preveda il cambio periodico della carica di lavoro. In tal modo si passa da un ciclo ideale (privo di perdite e descritto da un fluido ideale) ad un ciclo limite, ovvero privo di perdite ma descritto da un fluido reale.

Riferendosi sempre a motori a 4 tempi, saranno introdotte due corse di ricambio fluido dette di *Espulsione* (5-6) e *Aspirazione* (6-1).

Figura 1.7 Fasi di espulsione (5-6) e aspirazione (6-1) di un motore 4 tempi

In un ciclo limite, esse non influiscono sul lavoro prodotto, in quanto il bilancio finale risulta nullo:

$$L_{i,lim,5-6} = \int_{5}^{6} p \cdot dV = (V_{6} - V_{5}) \cdot p_{amb} = -p_{amb} \cdot V$$
 (1.19)

$$L_{i,lim,6-1} = \int_{6}^{1} p \cdot dV = (V_1 - V_6) \cdot p_{amb} = p_{amb} \cdot V$$
 (1.20)

Dunque il lavoro prodotto dal ciclo limite sarà dato dall'integrale dell'area racchiusa dai punti 1234, ovvero:

$$L_{i,lim} = \oint p \cdot dV \qquad (1.21)$$

Rapportando tale lavoro con l'energia introdotta nel ciclo tramite combustibile si ottiene l'equazione del rendimento limite citata in precedenza:

$$\eta_{\rm lim} = \frac{L_{\rm lim}}{E_{\rm u}} = \frac{L_{\rm lim}}{m_{\rm b}H_{\rm i}} \tag{1.22}$$

Essa tiene dunque conto del tipo di:

- Ciclo di riferimento (Otto o Diesel);
- Rapporti volumetrici di compressione e combustione;
- Variazione dei calori specifici con la temperatura;
- Reazioni di dissociazione in fase di combustione.

1.4.3 Rendimento termofluidodinamico interno

Il rendimento termofluidodinamico interno è definito come:

$$\eta_{\vartheta i} = \frac{L_i}{L_{i,lim}} \tag{1.23}$$

Esso valuta le perdite generate da una macchina reale, la quale descrive un ciclo di lavoro detto *ciclo indicato*. Questo, rispetto al ciclo limite descritto in precedenza, perde i punti angolosi a favore di curve realmente ottenibili e vede comparire un'area negativa (lettera B in Figura 1.8) per il ricambio fluido, che genera il cosiddetto *lavoro di pompaggio*.

Figura 1.8 Rappresentazione di un ciclo indicato per un motore 4 tempi su piano p-V

Le modifiche sopracitate sono dovute a diversi fenomeni inevitabili per un ciclo reale:

- L'apertura delle valvole è graduale e non più istantanea durante le fasi di scarico ed aspirazione;
- Il processo di combustione richiede un tempo finito (seppur molto breve) per la propagazione del fronte di fiamma;
- Il processo di ricambio fluido introduce perdite per laminazione e produce un lavoro negativo. La corsa d'espulsione avviene infatti ad una pressione leggermente superiore a quella ambiente e la corsa d'aspirazione ad una pressione leggermente inferiore.

Il lavoro indicato è dunque dato dall'integrale:

$$L_{i} = \oint p \cdot dV \tag{1.24}$$

Come si nota dalla Figura 1.8 esso rappresenta la somma algebrica delle due aree formate dal ciclo. L'area A, percorsa in senso orario, produce lavoro positivo e l'area B, percorsa in senso antiorario, produce lavoro negativo (pompaggio).

Il lavoro indicato è inferiore al lavoro del ciclo limite a causa di diverse tipologie di perdite:

- Per imperfetta combustione;
- Per scambi termici tra fluido e pareti del cilindro;
- Per fughe di fluido attraverso le tenute;
- Per pompaggio, come descritto in precedenza.

Rapportando il lavoro indicato con la cilindrata del motore si ottiene la *pressione media indicata* (pmi) o *indicated mean effective pressure* (imep):

$$pmi = \frac{L_i}{V}$$
(1.25)

1.4.4 Rendimento organico

Il rendimento organico tiene conto delle perdite meccaniche per attrito interne al manovellismo e della spesa in termini di lavoro necessaria all'azionamento di accessori del motore quali pompe di acqua e olio, albero di distribuzione, ecc.

$$\eta_0 = \frac{L_u}{L_i} = \frac{pme}{pmi}$$
(1.26)

Il limite massimo per il rendimento organico si attesta, come anticipato, intorno al 90% ma esso può raggiungere anche valore nullo, durante la cosiddetta *marcia a vuoto*. In tale condizione il lavoro indicato L_i risulta essere pari al *lavoro di marcia a vuoto* L_v , ovvero quello richiesto per vincere solamente attriti e azionare gli accessori.

Riferendo il lavoro di marcia a vuoto alla cilindrata unitaria si ottiene un'ulteriore grandezza detta *pressione di marcia a vuoto* (p_v) o *friction mean effective pressure* (*fmep*).

$$p_{v} = \frac{L_{v}}{V} = \frac{L_{i} - L_{u}}{V} = pmi - pme$$
(1.27)

Essa può essere ottenuta in alternativa dalla Relazione di Chen-Flynn:

$$p_{v} = A + B \cdot p_{max} + C \cdot \left(n \cdot \frac{c}{2}\right) + D \cdot \left(n \cdot \frac{c}{2}\right)^{2}$$
(1.28)
Dove A,B,C e D sono costanti determinate sperimentalmente in modo che vi sia buona approssimazione con l'andamento reale; p_{max} è la massima pressione raggiunta in camera ad un determinato regime di rotazione; c è la corsa del pistone ed n la velocità di rotazione.

Da ciò si nota come all'aumentare della velocità di rotazione cresca anche la pressione di marcia a vuoto in quanto aumentano le perdite dovute all'attrito *canna-stantuffo*.

1.4.5 Consumo di combustibile e mappa di funzionamento

Per avere un'idea più precisa dell'efficienza di un motore, spesso si preferisce non utilizzare il rendimento utile come indicatore, siccome quest'ultimo risulta dipendente dal potere calorifico inferiore del combustibile.

Per questo motivo si può introdurre una grandezza detta *consumo specifico di combustibile* o *brake specific fuel consumption* (*bsfc*):

$$bsfc = \frac{\dot{m}_b}{P_u} = \frac{1}{\eta_u \cdot H_i}$$
(1.29)

Esso, in maniera analoga al rendimento utile, è fortemente dipendente dalle condizioni di funzionamento del motore. Per tale motivo si utilizzano piani quotati che riportano sulle ascisse la velocità di rotazione del motore (o velocità media del pistone, proporzionale al prodotto $c \cdot n$) e sulle ordinate la pressione media effettiva (o coppia motrice generata).

In Figura 1.9 sono riportate due versioni di uno stesso motore ad accensione per compressione: una sovralimentata (tratto continuo) e una aspirata naturalmente (tratto discontinuo). Si può notare che la zona a minimo consumo di combustibile sia una parte molto ristretta della mappa di funzionamento e allontanandosi da tale condizione si ha una

variazione notevole della suddetta grandezza. In particolare, le zone a basso carico (pressione media effettiva molto ridotta) corrispondono a un elevato consumo di combustibile, dunque per avere una buona efficienza il motore dovrebbe operare nella maggior parte dei casi in condizioni di carico medio-alto. Tale necessità ha spinto il mercato automobilistico ad attuare manovre di *downsizing*, ovvero riduzione della cilindrata a parità di potenza erogata. In tal modo aumenta la pme ed il funzionamento del motore si sposta verso l'alto nel piano quotato.

Figura 1.9 Mappa di funzionamento di un motore ad accensione per compressione sovralimentato (tratto continuo) e aspirato (tratto discontinuo)

1.5 Descrizione motore in esame

Il motore utilizzato per l'accoppiamento *virtuale* con l'impianto di recupero è un 4 cilindri, 4 tempi, ad accensione comandata e alimentato a benzina. La cilindrata unitaria è pari a 499.7 cm^3 ed in particolare la corsa ed alesaggio risultano essere pari rispettivamente a 86.07 mm e 86 mm.

Il rapporto volumetrico di compressione è pari a 9.5, in completo accordo con quanto enunciato nel Paragrafo 1.2.1. La modalità di iniezione del combustibile è di tipo indiretto ed avviene perciò all'interno dei condotti di aspirazione.

Esso eroga una potenza massima pari a circa 96 kW a 5500 rpm e una coppia massima pari a 183 Nm a 4250 rpm. Il rapporto circa unitario tra corsa e alesaggio e le prestazioni appena citate lo rendono adatto all'utilizzo automobilistico a bordo di una vettura di medie dimensioni, come ad esempio una berlina di segmento C.

2 Impianti ORC

2.1 Ciclo Rankine

Il ciclo *Rankine* è formato da quattro trasformazioni termodinamiche: compressione, adduzione di calore, espansione e sottrazione di calore [6]. Ad esse possono essere aggiunte ulteriori trasformazioni che vanno, eventualmente, ad aggiungere componenti all'impianto.

Un impianto *tradizionale* prevede l'utilizzo come fluido evolvente del *vapor d'acqua*, ma esistono delle varianti che adoperano *fluidi organici*. Questi ultimi, avendo caratteristiche termodinamiche differenti, vengono impiegati in special modo per il recupero di calore da fonti a bassa temperatura.

Figura 2.1 Rappresentazione schematica di un ciclo Rankine tradizionale [5]

La Figura 2.1 rappresenta schematicamente un ciclo Rankine tradizionale in cui sono presenti: una macchina motrice (che può essere una turbina o un espansore), una macchina operatrice (pompa) e due scambiatori di calore (un evaporatore ed un condensatore), impiegati rispettivamente per addurre e sottrarre calore al fluido evolvente.

La Figura 2.2, invece, riporta quanto illustrato nella Figura 2.1 in un piano termodinamico p-s, ovvero pressione [MPa]-entropia specifica [kJ/kgK].

Figura 2.2 Rappresentazione di un ciclo Rankine tradizionale su diagramma p-s

Come anticipato, di base il ciclo risulta composto da quattro trasformazioni, nelle quali il vapor d'acqua vede variare le proprie caratteristiche termodinamiche:

- Compressione adiabatica 1-2, effettuata tramite una pompa, dalla pressione p₄ = p₁ alla pressione p₂;
- Adduzione di calore 2-3 a pressione costante *p*₂, effettuata tramite un generatore di vapore, che porta il fluido dalle condizioni di liquido compresso a quelle di vapore surriscaldato;
- Espansione adiabatica 3-4, effettuata tramite una macchina motrice (turbina, espansore, ecc.) dalla pressione $p_3 = p_2$ alla pressione p_4 ;
- Sottrazione di calore 4-1 a pressione costante p₄ = p₁ per portare il fluido di nuovo alle condizioni di liquido.

Indicando con il simbolo *h* l'entalpia specifica, scritta in [kJ/kg], si possono definire::

• Calore fornito *Q*_{vap}:

$$Q_{vap} = h_3 - h_2$$
 (2.1)

• Calore sottratto *Q*_{cond}:

$$Q_{\text{cond}} = h_4 - h_1 \tag{2.2}$$

• Lavoro ricavato dalla macchina motrice *W_{exp}*:

$$W_{exp} = h_3 - h_4 \tag{2.3}$$

• Lavoro assorbito dalla pompa *W*_{pump}:

$$W_{\text{pump}} = h_2 - h_1 \tag{2.4}$$

Quest'ultimo risulta valutabile anche come:

$$W_{pump} = \int v \cdot dt$$
 (2.5)

Essendo un liquido, l'acqua ha un volume specifico di diversi ordini di grandezza minore rispetto al vapore e quindi, anche per incrementi di pressione importati, si può considerare:

$$W_{pump} \ll W_{exp} \qquad h_1 \cong h_2$$
 (2.6)

Le trasformazioni termodinamiche sopracitate sono *reali* e dunque *irreversibili*. Per tale ragione, risulta necessario introdurre degli indicatori di prestazione del ciclo e dei singoli componenti, quali:

Rendimento isoentropico della pompa η_{pump}:

$$\eta_{\text{pump}} = \frac{h_{2_{\text{s}}} - h_1}{h_2 - h_1} \tag{2.7}$$

Dove h_{2_s} rappresenta l'entalpia del punto finale della trasformazione ideale $1-2_s$, ottenuta passando dalla pressione p_1 alla pressione p_2 lungo l'isoentropica.

Rendimento isoentropico dell'espansore η_{exp}:

$$\eta_{\exp} = \frac{h_3 - h_4}{h_3 - h_{4_s}} \tag{2.8}$$

Dove h_{4_s} rappresenta l'entalpia del punto finale della trasformazione ideale 3-4_s, ottenuta passando dalla pressione p_3 alla pressione p_4 lungo l'isoentropica.

• Rendimento termico del ciclo η_t:

$$\eta_{t} = \frac{W_{exp} - W_{pump}}{Q_{vap}} = \frac{Q_{vap} - Q_{cond}}{Q_{vap}} = \frac{(h_{3} - h_{2}) - (h_{4} - h_{1})}{(h_{3} - h_{2})}$$
(2.9)

Dalle considerazioni precedenti (Equazione 2.6) si può approssimare il rendimento nella forma:

$$\eta_{t} \cong \frac{W_{exp}}{Q_{vap}} = \frac{h_{3} - h_{4}}{h_{3} - h_{2}}$$
(2.10)

2.2 Fluidi organici

Come anticipato, il fluido utilizzato in un impianto Rankine tradizionale è l'acqua. Essa risulta particolarmente indicata per applicazioni che prevedono alte temperature di funzionamento e potenze considerevoli (nell'ordine delle decine o centinaia di MW). In questi casi si raggiungono rendimenti termici anche del 50% [7].

Il discorso cambia quando, invece, si vogliono sfruttare fonti di calore a temperatura variabile e non molto elevata. Per fare ciò bisogna ricorrere all'uso di fluidi di lavoro che godano di determinate proprietà termodinamiche, adatte allo scopo sopracitato, che saranno descritte in seguito.

I fluidi più indicati vengono comunemente definiti *organici*. Essi hanno di solito molecole dalla struttura complessa e sono principalmente *fluorocarburi e idrocarburi ad alta massa molecolare*. Tra questi si possono citare refrigeranti comuni come i freon, le paraffine, gli aromatici, i solventi, alcuni combustibili, ecc. [8].

Rispetto all'acqua, le sostanze organiche godono delle seguenti proprietà:

- Basso punto di ebollizione;
- Basso calore latente di vaporizzazione;
- Elevata densità;
- Elevato peso molecolare.

Tali differenze sono evidenziate nella Tabella 2.1, la quale mette a confronto le proprietà sopraelencate di acqua e r245fa, ovvero il fluido refrigerante utilizzato nell'impianto preso in esame per la costruzione del modello.

The de	Punto di	Calore latente di	Densità del	Peso molecolare		
FluidoPunto di calore latente di vaporizzazione [kJ/kg]R245fa287,32196,23	liquido [kg/m ³]	[g/mol]				
R245fa	287,32	196,23	1366	134,05		
Acqua	373,15	2257	997	18,015		

Tabella 2.1 Principali proprietà di r245fa e acqua

Figura 2.3 Diagramma T-s per diverse tipologie di fluidi

La Figura 2.3 riporta l'andamento del diagramma T-s (Temperatura-entropia) di diverse famiglie di fluidi organici. In particolare, è possibile distinguere gli stessi in base all'andamento della curva limite di saturazione del vapore. Si hanno:

Fluidi bagnati (wet fluids), i quali hanno pendenze negative della curva limite.
 Essi sono generalmente a basso peso molecolare (esempio classico può essere l'acqua);

- **Fluidi secchi** (dry fluids), i quali hanno pendenze positive della curva limite e sono caratterizzati da un alto peso molecolare (pentano ad esempio);
- Fluidi isoentropici (isoentropic fluids), che hanno curve limite pressoché verticali.

I fluidi secchi e isoentropici sono caratterizzati da espansioni che avvengono generalmente in totale assenza di liquido all'interno dell'espansore (al contrario di quelli bagnati). Tale differenza è evidenziata nella Figura 2.4, la quale riporta l'andamento di due diagrammi Ts per fluido bagnato (a) e fluido secco (b).

Figura 2.4 Diagrammi T-s di un ciclo Rankine per: a) fluido bagnato, b) fluido secco

2.3 Confronto tra sistemi ORC e Rankine tradizionale

Figura 2.5 Diagramma p-s di un ciclo Rankine che utilizza il refrigerante r245fa [9]

Gli impianti ORC risultano fortemente vantaggiosi rispetto ai tradizionali Rankine a vapor d'acqua in:

- Applicazioni di piccola taglia che richiedono piccole potenze elettriche (da pochi kW a pochi MW);
- Applicazioni che richiedono lo sfruttamento del calore da sorgenti a bassa temperatura (generalmente tra 70°C e 400°C).

Nel caso specifico, per il recupero del calore dei gas di scarico di motori ad accensione comandata di piccola/media taglia, la scelta è praticamente obbligata a favore della tecnologia che impiega un fluido organico. In tal senso risulta possibile definire una serie di vantaggi relativi all'impiego di impianti ORC in sostituzione dei tradizionali, quali:

- Buona efficienza anche per micro-generazioni da pochi kW (10-15%);
- Assenza di liquido all'interno della macchina adibita all'espansione, con relativo aumento della vita utile e diminuzione dell'usura e della manutenzione della stessa;
- Buone prestazioni a carico parziale;
- Basse velocità di rotazione dell'espansore, dovute ai ridotti salti entalpici. Ciò rende anche superfluo l'utilizzo di un riduttore tra macchina operatrice e generatore elettrico;
- Pressioni di condensazione più elevate, che evitano infiltrazioni d'aria e consentono l'utilizzo di componenti dai volumi molto ridotti;
- Fluidi utilizzati non corrosivi e lubrificanti, che riducono il numero di manutenzioni e aumentano l'affidabilità dell'impianto;
- Bassa rumorosità;
- Buone prestazioni a carico parziale.

Esistono, tuttavia, alcuni svantaggi da tenere in considerazione:

- Maggiori viscosità dei fluidi organici che comportano maggiori perdite per attrito;
- Coefficienti di scambio termico minori, che richiedono maggiori superfici di scambio;
- Lavoro della pompa più elevato in relazione a quello dell'espansore (2-3% contro 0.4-0.5% di un impianto Rankine tradizionale);
- Tecnologia ancora in fase di sviluppo che richiede la progettazione di espansori volumetrici. Ciò impone costi di investimento elevati.

2.4 Descrizione impianto in esame

Come anticipato, l'impianto sperimentale scelto per la costruzione del modello è quello della Purdue University nell'Indiana. Esso viene analizzato nel dettaglio nella tesi dal titolo "Experimental characterization of scroll expander for small-scale power generation in an Organic Rankine Cycle", redatta nel 2016 dallo studente Felipe Airoldi Accorsi [10]. Si può evincere dal titolo che l'obiettivo del documento è la caratterizzazione del comportamento dell'espansore scroll attraverso due modelli (uno empirico e uno semi-empirico dello stesso) che siano in grado di prevederne l'efficienza isoentropica e la potenza in output.

Figura 2.6 Impianto sperimentale ORC Purdue University

L'impianto in esame (Figura 2.6) è equipaggiato di tutti i componenti di un normale ORC, i quali verranno illustrati nel corrente paragrafo:

- Pompa;
- Scambiatori di calore;

- Espansore;
- Sensoristica;
- Sorgente di calore;
- Sistema di acquisizione ed elaborazione dati;
- Circuito di raffreddamento.

La Figura 2.7 riporta una schematizzazione dell'impianto che risulta particolarmente utile per comprenderne l'architettura. Il fluido evolvente è di tipo organico e si tratta nello specifico del già citato r245fa.

Figura 2.7 Schematizzazione impianto sperimentale

2.4.1 **Pompa**

La pompa installata è una *Pumpcat 1051CM*, ovvero una pompa volumetrica a pistoni, particolarmente adatta in questa applicazione per via della sua capacità di lavorare con basse portate e elevati salti di pressione, conservando una buona efficienza meccanica. Inoltre, si ha una correlazione praticamente lineare tra la portata massica circolante e la velocità di rotazione della stessa. La Tabella 2.2 riporta le principali caratteristiche della pompa.

Tabella 2.2 Caratteristiche principali pompa a pistoni

Max Speed [RPM]	450
Bore [mm]	25
Stroke [mm]	30
Max pressure [bar]	152

2.4.2 Scambiatori di calore

Nell'impianto in esame sono presenti tre scambiatori di calore, ovvero: evaporatore, condensatore e sub-cooler.

L'evaporatore trasferisce calore dalla sorgente ad alta temperatura al fluido evolvente, mentre il condensatore sottrae calore al refrigerante per cederlo ad un circuito esterno di raffreddamento. Oltre ad essi, è presente un terzo scambiatore (di dimensioni minori) posizionato prima della sezione d'aspirazione della pompa, il quale ha una funzione di sicurezza, ovvero evitare che all'interno della stessa vi sia fluido bifasico che possa causare cavitazione. Tutti gli elementi sopracitati sono scambiatori in acciaio *a piastre saldobrasate* (Blazed Plate Heat Exchanger – BPHE), i quali, a parità di area di scambio, risultano più compatti dei classici scambiatori *a fascio tubiero*. I BPHE sono costituiti da un insieme di piastre saldate tra loro, al cui interno sono ricavati una serie di canali corrugati che permettono lo scambio termico tra lato caldo e lato freddo.

Figura 2.8 Rappresentazione del pacchetto di piastre degli scambiatori

Nel caso specifico, evaporatore e condensatore sono geometricamente identici e vengono prodotti dall'azienda svedese SWEP sotto la sigla *B80Hx70/1P-SC-S 4x42U*. Il sub-cooler è invece il modello *B10THx16/1P-SC-M*, anch'esso prodotto da SWEP. Entrambi hanno una configurazione di flusso controcorrente e le principali caratteristiche sono riportate in Figura 2.9 e Tabella 2.3.

Figura 2.9 Caratteristiche di una piastra degli scambiatori di calore

	Condenser and Evaporator	Subcooler
Primary media Volume [<i>cm</i> ³]	3942,72	426,88
Secondary media Volume [<i>cm</i> ³]	4059,07	487,84
A [mm]	523,875	292,1
B [mm]	114,3	114,3
Maximum working fluid temperature [°C]	240	240
Maximum working fluid pressure [kPa]	4481,59	4481,59
Number of plates	70	16
Plate thickness [mm]	0,3	0,3

Tabella 2.3	Principali	caratteristiche	scambiatori	di calore
1 4000114 -10	1 meipun	cur atter isticile	Scamoratori	ui cuiore

2.4.3 Espansore Scroll

Un espansore Scroll è composto da due spirali (una fissa e l'altra mobile) sfasate tra loro in modo da creare una serie di cavità a volumi crescenti radialmente. Essendo una tecnologia ancora giovane ed in fase di sviluppo, gli espansori Scroll sono ottenuti solitamente convertendo gli omonimi compressori, i quali sono una soluzione piuttosto comune negli impianti di condizionamento [11].

L'impianto in esame è equipaggiato con un espansore fornito dall'azienda statunitense Air Squared. In particolare si tratta del modello *E22H038B-L-SH*, le cui caratteristiche principali sono riportate in Tabella 2.4

Nominal Power [kW]	5
Built-in Volume Ratio	3,5
Displacement Volume [<i>cm</i> ³]	73,6
Max Inlet Pressure [kPa]	1380
Max Temperature [°C]	175
Speed range [RPM]	500-3600

Tabella 2.4 Caratteristiche espansore Scroll

Il principio di funzionamento dell'espansore (Figura 2.10) è esattamente opposto al sopracitato compressore. Infatti, il fluido entra attraverso la cavità centrale e viene spinto verso la periferia per via dell'elevata pressione, passando nelle cavità a volume crescente e venendo espulso una volta raggiunta la zona più esterna. L'albero dell'espansore è messo in rotazione e, se opportunamente collegato ad un generatore elettrico, si può produrre energia con rendimenti isoentropici anche nell'ordine del 70% a velocità prossime a quella massima.

Figura 2.10 Fasi di un espansore Scroll

2.4.4 Sensoristica e motori

Per determinare lo stato termodinamico del fluido c'è bisogno di conoscere almeno due proprietà indipendenti dello stesso. Ciò risulta fondamentale per controllare il ciclo e determinarne le prestazioni.

A tal scopo sono stati installati sensori di pressione e temperatura all'ingresso e all'uscita di ogni componente (illustrati in dettaglio nella Figura 2.7).

In particolare, i sensori di pressione sono alimentati a 24 V e calibrati mediante un apposito calibratore su 6 punti a diverse pressioni, su ognuno dei quali vengono effettuate 5 letture. L'incertezza stimata risulta essere pari a ± 4.11 kPa per quelli posizionati a bassa pressione e pari a ± 5.65 kPa per quelli sull'alta pressione.

I sensori di temperatura sono delle termocoppie, ovvero composti da due filamenti di materiali diversi che, se messi in contatto, producono una differenza di potenziale funzione della temperatura. Nel caso specifico, gli strumenti utilizzati sono costituiti da rame e lega di rame-nichel e ciò li rende adatti al funzionamento anche a temperature estreme (range di funzionamento da -250°C a 350°C).

Oltre ad essi, l'ORC è equipaggiato con un sensore di coppia per valutare il lavoro prodotto dalla macchina motrice. Esso è in grado di misurare una coppia massima pari a 23 Nm e ha una capacità di sovraccarico dichiarata pari al 150%. La metodologia di calibrazione è simile a quella adottata per i sensori di pressione, utilizzando 13 letture differenti.

Risulta altresì necessaria la presenza di due sensori di portata: uno per il fluido refrigerante (installato all'uscita della pompa) e uno per la sorgente di calore (installato all'uscita dell'evaporatore). Questi misurano il flusso di massa inducendo una vibrazione all'interno

45

del tubo, la quale genera un'onda sinusoidale. Il fluido, attraversando il condotto, genera uno sfasamento dell'onda tra ingresso ed uscita che risulta proporzionale alla portata. L'effetto è rappresentato in Figura 2.11.

Figura 2.11 Rappresentazione schematica del funzionamento del sensore di portata

Per controllare la velocità di rotazione di pompa ed espansore, vengono utilizzati due motori elettrici trifase controllati con un azionamento a frequenza variabile (VFD). Entrambi hanno le stesse caratteristiche: stessa potenza massima di 10 hp (circa 7.45 kW) e stesso regime massimo di rotazione (5000 RPM). Per poter testare le diverse condizioni dell'impianto c'è bisogno di uno schema di controllo in anello chiuso per regolare voltaggi, frequenze e intensità di corrente dei due motori.

Il motore connesso all'espansore funziona in maniera inversa, ovvero da generatore elettrico. Infatti, la potenza prodotta dall'espansione del fluido di lavoro viene trasferita al motore elettrico tramite una cinghia di distribuzione in modo da generare energia elettrica. Essa viene quindi dissipata in un banco di resistori dinamici con capacità nominale di 11,3 kW e una resistenza totale di 12,6 Ω . Tale produzione di energia potrebbe essere utilizzata localmente, come nel caso di applicazioni a bordo veicolo, oppure potrebbe essere immessa in rete e venduta.

In Tabella 2.5 sono riportate le incertezze degli strumenti appena descritti.

Sensor	Accuracy
Temperature	±0.5 K
Pressure (high)	<u>+</u> 5.65 kPa
Pressure (low)	<u>±</u> 4.11 kPa
Mass flow (r245fa)	±0.1 %
Mass flow (hot source)	±0.5 %
Torque	±1.5 %
Shaft Speed	±6.84 RPM

Tabella 2.5 Incertezze di misurazione degli strumenti

2.4.5 Sorgente di calore

La sorgente di calore dell'impianto in esame è rappresentata da un circuito chiuso di acqua calda (schematizzato in rosso in Figura 2.7). Il boiler è composto da 5 elementi riscaldanti da 20 kW ciascuno connessi tra loro, in modo da avere una potenza termica massima di 100 kW, calcolata come:

$$\dot{Q}_{evap} = \dot{m} \cdot c_p \cdot (T_{win} - T_{wout})$$
(2.11)

Per evitare fluttuazioni della temperatura troppo marcate è stato implementato un *tiristore* o SCR (Silicon Controlled Rectifier [12]), ovvero un controller proporzionale specifico per carichi resistivi.

Grazie all'introduzione di questo componente si è passati da un'oscillazione massima di 6°C (Figura 2.12) ad una di circa 0.5°C (Figura 2.13).

Figura 2.12 Oscillazioni di temperatura del boiler prima della modifica

Figura 2.13 Oscillazioni di temperatura del boiler dopo la modifica

Per calcolare in maniera adeguata la potenza termica scambiata tra il circuito di acqua calda ed evaporatore dell'impianto ORC (Equazione 2.12) è stato usato un fattore correttivo.

Impostando una temperatura d'uscita dell'acqua dal boiler, il valore dell'incremento è dato da:

$$\Delta \dot{Q}_{evap} = 5 \cdot (T_{setpoint} - T_{read})$$
(2.12)

Dove il fattore moltiplicativo 5 è stato determinato sperimentalmente.

Oltre ad esso viene aggiunto un ulteriore fattore correttivo che non dipende dalla temperatura acquisita dalla termocoppia pari a 2kW, anch'esso determinato sperimentalmente. Quest'ultimo viene implementato per tener conto delle perdite attraverso le tubazioni e dell'incertezza relativa alle resistenze del boiler.

Quindi la potenza termica totale scambiata nell'evaporatore risulta pari a:

$$\dot{Q}_{evap_{tot}} = \dot{Q}_{evap} + \Delta \dot{Q}_{evap} + 2kW$$
 (2.13)

2.4.6 Sistema di acquisizione dati

Per l'acquisizione dei dati è implementato un calcolatore con software dedicato alla lettura dei sensori e al calcolo delle proprietà termodinamiche del fluido in tempo reale. Tali informazioni vengono poi immagazzinate in fogli di calcolo per avere una consultazione più agevole.

2.4.7 Circuito di raffreddamento

Affinché il condensatore funzioni in maniera adeguata, c'è bisogno di un circuito che si occupi del raffreddamento del fluido e che lo riporti dalle condizioni di vapore a quelle di liquido per essere pressurizzato dalla pompa. A tal scopo, l'ORC è connesso con l'impianto idrico del laboratorio in cui è installato. La gestione della temperatura dell'acqua è affidata al controllore dell'edificio e presenta una variabilità praticamente trascurabile.

Infatti, nelle varie prove si è registrata una temperatura massima in ingresso al condensatore pari a 14.1°C, a fronte di una minima pari a 13.4°C. Inoltre, durante l'esecuzione di una singola prova essa rimane sostanzialmente costante e questo permette al ciclo di raggiungere agevolmente la condizione di steady-state.

3 Costruzione e calibrazione del modello

3.1 Dati sperimentali

L'impianto descritto nel Paragrafo 2.4 è completo di una serie di dati sperimentali rilevati in una lunga campagna. In particolare, sono stati scelti due possibili scenari per quanto riguarda la temperatura della sorgente di calore, ovvero 85°C e 110°C. Durante le prove viene fatta variare la velocità della pompa fino a raggiungere le condizioni di stabilità di pressione e portata, mentre la velocità dell'espansore è settata su 5 diversi regimi. In questo modo è possibile definire una matrice di test per gli studi sperimentali (Tabella 3.1)

Tabella 3.1 Matrice di test sperimentale

Source Temperature [°C]	Expander Speed [RPM]							
85	800	1600	2000	2500	3000			
110	800	1600	2000	2500	3000			

Il test è ritenuto concluso quando uno dei seguenti limiti è raggiunto:

- Il grado di surriscaldamento scende al di sotto dei 3°C;
- La coppia prodotta dall'espansore supera i 23 Nm (massimo valore misurabile dal sensore);
- La pressione di ingresso espansore è prossima ai 1380 kPa (massimo valore dichiarato dal produttore).

Alla fine dell'attività sperimentale, sono stati ricavati 61 punti di funzionamento dell'impianto, utilizzati per la costruzione e calibrazione del modello simulativo.

Essi sono raccolti in fogli di calcolo che riportano:

- Temperature e pressioni di ingresso e uscita di ogni organo e dell'ambiente esterno;
- Portate massiche di sorgente di calore, fluido refrigerante e impianto idrico collegato al condensatore;
- Velocità di rotazione di pompa ed espansore;
- Coppia prodotta dall'espansore.

Conoscendo la composizione del fluido, da questi sono state ricavate altre grandezze altrettanto importanti ai fini della modellazione quali:

- Entalpie specifiche;
- Potenze termiche scambiate negli scambiatori;
- Potenza prodotta dall'espansore.

3.2 ORC

La costruzione del modello di impianto ORC è stata eseguita nei seguenti passi:

- Modellazione e calibrazione dei singoli componenti, utilizzando parametri specifici per ogni organo e riducendo al minimo l'errore rispetto alle prove sperimentali;
- Collegamento dei suddetti organi in un unico modello;
- Ottimizzazione multioggetto-multiobiettivo per la definizione dei parametri mancanti quali: diametri delle tubazioni e carica di refrigerante nell'impianto.

Le funzioni d'errore sono state definite come segue:

$$e_{\%} = \frac{|valore_{simulazione} - valore_{sperimentale}|}{valore_{sperimentale}} \cdot 100$$
(3.1)

Dove *valore_{simulazione}* rappresenta il risultato ottenuto dal modello matematico e *valore_{sperimentale}* quello ricavato dalle letture dei sensori illustrati in precedenza. Per valutare la bontà del modello su ogni singola grandezza è stato assunto come soglia limite un valore arbitrario pari al 5%.

Nei paragrafi successivi verranno illustrati i criteri utilizzati durante le operazioni di modellazione e calibrazione, le quali verranno descritte in ordine pressoché cronologico.

3.2.1 Espansore

Figura 3.1 Template TurbineRefrig dell'espansore scroll

Il primo organo ad essere stato modellato è l'espansore di tipo Scroll, il quale è dotato di una potenza nominale pari a 5kW. Esso è stato modellato utilizzando il blocco "TurbineRefrig", particolarmente indicato quando si ha a disposizione un buon set di dati sperimentali. In questo caso, è stato utilizzato un approccio *map-based* che non ha tenuto conto della geometria dell'organo, ma soltanto dei dati sperimentali.

Template: Turbinel	MapGri	dRaw										×
Object Usage	He	Objec	t Comment:							Add Lo	ng Comment.	·
Emplate: TurbineMagGridRaw X Object Usage Object Comment: Add Long Comment • Objects • Object Section Add Long Comment • Objects • Object Section • Main • Add Long Comment • Objects • Main • Data • Pupul/Output (Advanced) • Options • Main • Data • Input/Output (Advanced) • Options • Add Long Comment • Main • Data • Popul/Output (Advanced) • Options • Add Long Comment • Nong • Popul • Popul												
	Attri	Turbine Speed	Mass Flow Rate	Volumetric Efficiency	Suction Pressure	Suction Temperature	Discharge Pressure	Discharge Temperature	Discharge Quality	Efficiency	Total Shaft Power	
	0	RPM V	kg/s ∨	fraction \vee	bar 🗸 🗸	C V	bar 🗸	C V	fraction \lor	fraction \vee	kw 🗸	1~
	1	800.0	0.0746	ign	9.0858	108.72	1.3599	70.82	ign	ign	1.398	
	2	800.0	0.0743		8.7767	108.9	1.3203	73.41			1.33	
	3	800.0	0.0789	•••	7.9021	108.00	1.3863	39.53			1.055	4
	5	800.0	0.0034		10 7009	108.78	1.3007	71.09			1.550	1
	6	800.0	0.0923		10.5841	109.14	1.4148	72.26			1.718	
	7	1600.0	0.0578		4.8558	83.73	1.3104	58.57			0.667	
	8	1600.0	0.0618		5.3989	108.01	1.3347	79.2			0.876	
	9	1600.0	0.0741		6.5461	108.67	1.3233	75.7			1.339]
	10	1600.0	0.0744		6.3857	108.6	1.3326	77.65			1.233	
	11	1600.0	0.0791		6.434	84.04	1.3761	55.27			1.114	4
	12	1600.0	0.08		6.//1/	108.53	1.3841	//.11			1.325	4
	10	1600.0	0.0882		7.0376	83.97	1.4331	53.81			1.049	4
	15	1600.0	0.0929		8.1959	108.89	1.3961	73.01			1.92	1
	16	1600.0	0.0927		7.8175	108.89	1.3988	75.53			1.751	1
	17	1600.0	0.1013		7.5628	80.79	1.5027	48.82			1.543	1
	18	1600.0	0.1112		9.597	109.06	1.5014	71.17			2.374	
< >	19	1600.0	0 1112		9 5149	109 39	1 5986	72 32			2 342	
			ОК		Cano	el	Арр	bly				

Figura 3.2 Mappa espansore scroll

Dopodiché è stata importata all'interno del template "TurbineMapGridRaw" la mappa dell'espansore, composta da 61 punti in cui sono presenti 5 diverse velocità di rotazione della macchina (da 800 a 3000 rpm, come indicato nella Tabella 3.1), alle quali sono abbinati:

- Portata massica del fluido evolvente;
- Pressione d'aspirazione;
- Temperatura d'aspirazione;
- Pressione di scarico;
- Temperatura di scarico;
- Potenza erogata all'albero.

Dopo aver lanciato la simulazione di diversi casi scelti come esempio, è stata analizzata la corretta calibrazione del modello attraverso il software GT-POST. Tale comparazione è stata eseguita utilizzando come parametri di confronto: temperatura del fluido all'uscita dell'espansore, portata massica dello stesso e potenza generata dalla macchina.

Come si nota dalla Figura 3.3, tutti i punti analizzati ricadono ampiamente nell'intervallo del \pm 5%, con un errore medio pari allo 0.26%.

Figura 3.3 Temperatura d'uscita espansore

Analogamente alla temperatura, anche nel caso della portata massica la correlazione è ottima e solamente due punti hanno un errore superiore al 5%. Nel complesso l'errore medio è pari all'1.23%.

Figura 3.4 Portata massica espansore

Figura 3.5 Potenza espansore

Per la potenza, l'errore cresce leggermente, così come crescono anche i punti che fuoriescono dalla soglia limite. L'errore medio ricade, però, abbondantemente nella fascia di tolleranza, essendo pari a 3.59%.

Grandezza misurata	Errore medio %	Errore massimo %
Temperatura d'uscita [K]	0.26	1.48
Portata massica [kg/s]	1.23	6.6
Potenza [kW]	3.59	18.31

Tabella 3.2 Risultati calibrazione espansore

3.2.2 Pompa

	🧾 Template: PumpRe	frig			×	
	Object Family PumpRefrig PumpRefrig	Help Object Comm Part Comm	nent:	Add Lo	ng Comment	
	C		Attribute	Unit	1	2
pumpr_RPM-1		Dependency Value		ign		
Init				rump_map	••••••••••••••••••••••••••••••••••••••	
	<u>O</u> K	Cance	el	Apply	x g Comment 2 	

Figura 3.6 Template Pumprefrig della pompa

Per quanto riguarda la modellazione della pompa a pistoni, la procedura eseguita è pressocché identica a quella appena descritta. Il blocco utilizzato in questo caso prende il nome di "PumpRefrig" e la mappa è stata importata nel template "PumpMap".

He	17)	ou comment	:											Add Long	Comme	ent
	lp															
🛷 Da	ita 🛷 Dat	a: Options	🖋 Map: Advai	nced Options	🖌 🖋 Plots											
		Attri	bute		Unit	()bject Val	ue								
Perfo	rmance Me	asurement				Pressu	re Rise	~	/							
	lodel Viscos	ity Correction	for Centrifue	al Pumps												
Refer	ence Eluid	,						ion	1							
Refer	once Press	ire			har 🗸		def ((har)	1							
Refer	ence mess	ur c			- VOI		uei (-:		•							
	Sneed	Volumetric	Pressure	Temperatu	Total	>										_
Attri		Flow Rate	Rise		(Isentropic		12.00	XY Arr	ays - c	ase # 1						_
0	RPM ~	m^3/s >>	bar v	K V	fraction		12.00									
1	80.0	5.4552	7.6981	ign	0.45876		11.00					•				_
2	80.0	5.4322	7.4535		0.48868											
3	80.0	. 5.4194	. 5.2182		0.37578		10.00	-			•		•			_
4	80.0	. 5.439E-5	. 5.0385		0.4381				-		•			-		
5	80.0	. 5.4327	. 4.1103		0.3241	5	9.00	-	•	•	•	•	•			-
6	80.0	. 5.4265	. 4.331		0.33893	9	3									
0	80.0	5.4525-5	3.4302		0.20387	9	8.00	-		:	•	•				-
9	85.0	5 7692	6 5479		0.46927	õ		:			•					
10	85.0	5.7831	5.0525		0.35207	2017	7.00	-	•	• •						-
11	85.0	5.7767	. 3.7482		0.33244	, in the second s	5	•	•	• •						
12	90.0	6.099E-5	8.3878]	0.5542	ò	6.00	- •		• ••						
13	90.0	6.1128	. 6.0404		0.44585				•	•						
14	90.0	6.1261	4.3844		0.35765		5.00		•• :	•						1
15	95.0	. 6.4507	. 5.6449		0.4524			. •	•							
16	95.0	6.4003	4.9605		0.42643		4.00	•	- T							1
1/	95.0	6 7022	9.2760		0.34395			•								
10	100.0	6 7527	9.2709		0.59705		3,00	00500	0.000	0750 0.00	01000	0.000	01250	0.0001500	0.0	001
1.5	100.0	0.7527	. 5.2154		0.33402					Volum	etric Flo	w Rate	[m^3/s]			
`													,			
										-						
			OK		Cance			App	ply							

Figura 3.7 Mappa della pompa a pistoni

La mappa della pompa riporta, oltre alle velocità di rotazione:

- Portata volumetrica;
- Salto di pressione;
- Efficienza isoentropica della macchina.

I dati di interesse sono la portata massica e la temperatura d'uscita del fluido.

Figura 3.8 Temperatura d'uscita pompa

Essendo il campo di utilizzo molto ristretto, la temperatura d'uscita della pompa rientra abbondantemente nella fascia d'errore del $\pm 0,5\%$, come si può notare in Figura 3.8. L'errore medio in questo caso è pari allo 0.02%.

Figura 3.9 Portata massica pompa

Anche la portata massica ha un ottimo riscontro rispetto ai dati sperimentali. Infatti, l'errore medio in questo caso si attesta sullo 0.25%.

La Tabella 3.3 racchiude quanto appena illustrato.

Grandezza misurata	Errore medio %	Errore massimo %
Temperatura d'uscita [K]	0.02	0.09
Portata massica [kg/s]	0.25	1.36

3.2.3 Condensatore

A livello modellistico lo scambiatore è composto da due parti: un master e uno slave (Figura 3.10). Il master è collegato all'impianto del fluido refrigerante, mentre lo slave è collegato al circuito di acqua fredda che permette la sottrazione del calore.

Facendo sempre riferimento alla Figura 3.10, nei blocchi "Cond_External_In" e "Cond_External_Out" vanno definite le condizioni al contorno del circuito d'acqua. In particolare, il primo è un elemento di tipo "EndFlowInlet", ovvero prevede la definizione del flusso (in questo caso portata massica ricavata dai dati sperimentali) e di una temperatura in ingresso. Il secondo è un blocco denominato "EndEnvironment" e definisce lo stato dell'ambiente esterno attraverso pressione e temperatura del fluido.

Gli elementi "Refrigerant_In" e "Refrigerant_Out" si riferiscono al circuito di r245fa e sono analoghi a quelli appena citati per l'acqua.

Figura 3.10 Modello di condensatore

La geometria del condensatore viene descritta nel template "HxGeomPlate" (Figura 3.11). Ricordando quanto riportato al Paragrafo 2.4.2, esso è un elemento in acciaio con flusso in controcorrente, composto da 70 piastre saldobrasate.

Figura 3.11 Dati geometrici condensatore

Lo scambio di calore è stato modellato tramite il template "HxNuMapRefrig", in cui è stato definito il fluido evolvente (r245fa) e il fluido che adduce/sottrae calore durante le prove sperimentali (acqua).

Template: HxNuMa Object Usage Cond_HeatTransfer Objects Cond_HXSpecs	pRefrig Object Comment:	_	Add Long Comment		
⊡ • Objects 	Attribute	Unit	Object Value		
	Master Fluid				
	Master (Internal) Fluid Object		R245fa		
	Model Humidity				
	Slave Fluid				
	Slave (External) Fluid Object		Water		
	Model Humidity				
	Correlation Type				
	Master (Internal) Refrigerant Heat Transfer Correlation		Cond_Refr_HTC		
	Slave (External) Refrigerant Heat Transfer Correlation				
	Single Phase Heat Exchanger (two sided Re-Nu Correlation)				
			-1		
	OK <u>C</u> ancel	Apply			

Figura 3.12 Template HxNuMaprefrig con fluidi utilizzati nel condensatore

Inoltre, è stata definita una mappa di funzionamento, adattando l'input in base ai dati disponibili.
Template: HxNuMapRefrig												×
Object Usage Cond_HeatTransfer ⊖ o Objects ⊖ Cond_HXSpecs ⊖ o Objects	He	Object Co	omment:	dvanced							Add	Long Comment
Condenser_Master			Attribute			Unit	Object Val	ue				
	Type	of Performance	Input				int-temp-out	\sim				
	Maste	r (Internal) Flov	Rate Input				Mass Flow Rate	× ×				
	Slave	(External) Flow	Rate Innut				Mass Flow Rate	×				
		(External) non	riote input				indeb_indef_indeb					
	Attri	Master Inlet Temperature	Master Inlet Quality	Master Inlet Pressure	Master Outlet	Master Mass Flow Rate	Slave Inlet Temperature	Slave Inlet Quality	Slave Inlet Pressure	Slave Outlet Pressure	Slave Mass Flow Rate	Master Outlet Temperature
	0	C V		kPa ∨	kPa ∨	kg/s ∨	C V		bar v	bar 🗸	kg/s ∨	C ~ ^
	1	70.82	ign	135.99	132.40	0.0746	13.81	ign	2.15191	. 2.0	0.534	14.21
	2	73.41		132.03	128.31	0.0743	13.68		2.19114	. 2.0	0.62	14.06
	3	39.53		138.63	131.96	0.0789	13.63		2.14092	. 2.0	0.509	14.74
	4	72.7		136.87	131.47	0.0834	13.81		2.18996	. 2.0	0.618	14.3
	5	71.09		144.97	137.99	0.0929	13.67		2.15284	. 2.0	0.536	14.79
	6	72.26		141.48	134.91	0.0923	13.95		2.19089	. 2.0	0.62	14.82
	7	58.57		131.04	129.88	0.0578	13.71		2.15299	. 2.0	0.536	14.18
	8	79.2		133.47	132.44	0.0618	14.2		2.15245	. 2.0	0.535	14.7
	9	75.7		132.33	130.45	0.0741	13.9		2.18915	. 2.0	0.616	14.23
	10	77.65		133.26	131.07	0.0744	13.99		2.19389	. 2.0	0.627	13.98
	11	55.27		137.61	133.62	0.0791	13.63		2.15256	. 2.0	0.535	14.12
	12	77.11		138.41	134.64	0.08	13.83		2.15435	2.0	0.539	14.17
	13	74.24		143.51	141.49	0.0836	13./1		2.19173	2.0	0.622	14.12
	14	53.81		142.70	130.57	0.0882	13.83		2.15300	. 2.0	0.538	14.08
	15	73.01		139.01	134.98	0.0929	13.00		2.18901	. 2.0	0.017	14.3
	10	/5.53		139.88	135.20	0.0927	13.00		2.18977	. 2.0	0.01/	14.38
	10	71.17		150.27	142.61	0.1013	12.80		2.15479	2.0	0.54	15.76
< >	10	/1.1/		130.17		0.1112	13.09		2.19003	2.0	0.019	13.70
				<u>0</u> K		<u>C</u> ancel	Ар	ply				

Figura 3.13 Mappa condensatore

In essa vengono riportati i rilievi sperimentali di:

- Pressione d'ingresso e uscita refrigerante;
- Pressione d'ingresso e uscita acqua;
- Temperatura d'ingresso e uscita refrigerante;
- Temperatura d'ingresso acqua;
- Portata massica acqua e refrigerante.

Per questo componente i parametri su cui è effettuato il confronto con i rilievi sono: potenza termica scambiata e temperatura d'uscita del refrigerante.

Per quanto riguarda la potenza termica l'errore medio è pari a 1.41% e tutti i punti rientrano nella tolleranza.

La temperatura rientra abbondantemente nell'intervallo con un errore medio dello 0.92%.

Figura 3.14 Potenza termica del condensatore

Figura 3.15 Temperatura d'uscita del refrigerante dal condensatore

In Tabella 3.4 vengono riportati i risultati della calibrazione del condensatore.

Tabella 3.4	Risultati	calibrazione	condensatore
1 abouna bri	111001110111	carror abrone	contactionation c

Grandezza misurata	Errore medio %	Errore massimo %		
Temperatura d'uscita [K]	0.92	2.61		
Potenza termica [kW]	1.41	4.07		

3.2.4 Evaporatore

Figura 3.16 Modello di evaporatore

Anche per l'evaporatore sono state definite le condizioni di ambiente esterno e flusso di massa per fluido refrigerante e fonte di calore tramite gli elementi "Refrigerant_In", "Refrigerant_Out", "Evap_External_In" ed "Evap_External_Out".

Geometricamente i due scambiatori sono identici. L'unica differenza è nei fluidi che vi transitano. In questo caso nel Master passa acqua calda e nello Slave scorre r245fa. Il flusso rimane controcorrente.

Template: HxGeomPlate				×
Object Usage Evap_Geom • Objects • Objects • Evap_HXSpecs	Object Comment:			Add Long Comment
⊖ • Objects	Attribute	Unit Object Valu	With and Without Baffles	With Baffles
	Plate Length	mm y 522.97	5	Master Flow
	Plate Width	mm × 114	3 Outlet	Midth
	Plate Thickness	mm × 0.3		width !
	Connection Diameter (Master Fluid)	mm v 2	5 Width Master Flow	
	Channel Geometry Object (Master Fluid)	Plate Ch		
	Connection Diameter (Slave Fluid)	mm ~ 2	5 Master Length	Master
	Channel Geometry Object (Slave Fluid)	Plate_Ch		Inlet Length Outlet
	Pass Configuration			
	Single Pass			
	Number of Channels (Master Fluid)	7	0 Slave Master	
	Number of Channels (Slave Fluid)	7	0 Outlet the Inlet Length	
	O Multiple Pass			
	First Channel Fluid (on Master Fluid Inlet Face of HX)	Master	<u> </u>	Height
	Slave Inlet Location Relative to Master (Length)	Opposite	<u> </u>	
	Dry Mass of Heat Exchanger Material	kg ~ 13.7	5 Master	flaur 4
	Heat Exchanger Material Properties Object	Stainless	Outlet	Inlet
	Model Heat Exchanger with Conduction Through Wall		Multiple Pass configuration sho	wing Slave Inlet with
	Model Integrated Receiver Dryer		respect to the Master Inlet:	
			- Opposite Side (Length) - Opposite Face (Height)	
< >			ethorate (millin)	
	ОК	Cancel	Apply	

Figura 3.17 Dati geometrici evaporatore

bject Usage Evap_HeatRate • Objects Evap_HXSpecs • Objects	Object Comment: Help Image: Main of Data Image: Main of Data		Add Long Comment.		
Evaporator_Master	Attribute	Unit	Object Value		
	Master Fluid	_	1		
	Master (Internal) Fluid Object		Water .		
	Model Humidity				
	Slave Fluid				
	Slave (External) Fluid Object		R245fa		
	Model Humidity				
	Correlation Type				
	Master (Internal) Refrigerant Heat Transfer Correlation		Evap_HTCorr		
	Slave (External) Refrigerant Heat Transfer Correlation		Evap_HTCorr		
	Single Phase Heat Exchanger (two sided Re-Nu Correlation)			

Figura 3.18 Template HxNuMaprefrig con fluidi utilizzati nell'evaporatore

Analogamente al condensatore, viene definita una mappa che riporta:

- Pressione d'ingresso e uscita refrigerante;
- Pressione d'ingresso e uscita acqua;
- Temperatura d'ingresso e uscita acqua;
- Temperatura d'ingresso refrigerante;
- Portata massica acqua e refrigerante.

📕 Template: HxNuMapRefrig												
Object Usage Evap_HeatRate Objects Dens UNCorrect	He	Object Comment: Add Long Comment										
evap_HXspecs ⊖• Objects	🛷 Mi	ain 🛷 Data 🥪	• Output 🛷 Ad	dvanced								
Evaporator_Master			Attribute			Unit	Object Value					
	Туре	of Performance	Input			ext-	emp-out	\sim				
	Maste	er (Internal) Flov	v Rate Input			Mas	s_Flow_Rate	\sim				
	Slave	(External) Flow	Rate Input			Mas	s_Flow_Rate	\sim				
	F	Master Inlet	Master Inlet	Master Inlet	Master Outle	t Mactor Mass	Slave Inlet	Slave Inlet	Slave Inlet	Slave Outlet	Slave Mass	Slave Outlet
	Attri	Temperature	Quality	Pressure	Pressure	Flow Rate	Temperature	Quality	Pressure	Pressure	Flow Rate	Temperature
	0	C ~		bar 🗸 🗸	bar	√ kg/s ∖	C ~		kPa 🗸 🗸	kPa 🗸 🗸	kq/s ∨	C × ^
	1	110.21	ign	2.051	2.0	0.58	. 14.94	ign	901.39	908.58	0.0746	108.72
	2	110.27		2.154	2.0	0.615	. 14.75		872.81	877.67	0.0743	108.9
	3	85.13		2.18	2.0	0.624	. 14.77		785.23	790.21	0.0789	80.97
	4	110.31		2.157	2.0	0.616	. 14.85		969.02	973.23	0.0834	108.99
	5	110.04		2.06	2.0	0.583	. 14.82		1064.09	1070.09	0.0929	108.78
	6	110.3		2.16	2.0	0.617	. 15.07		1054.95	1058.41	0.0923	109.14
	7	110.36		2.154	2.0	0.615	. 14.91		651.85	654.61	0.0741	108.67
	8	110.15		2.16	2.0	0.617	. 14.56		634.42	638.57	0.0744	108.6
	9	84.99		2.18	2.0.	0.624	. 14.76		637.96	643.4	0.0791	84.04
	10	110.38		2.16	2.0.	0.617	. 14.76		745.07	750.11	0.0836	109.06
	11	85.02		2.18	2.0	0.624	. 14.83		699.65	703.76	0.0882	83.97
	12	109.97		2.163	2.0	0.618	. 14.68		815.9	819.59	0.0929	108.89
	13	110.07		2.189	2.0	0.627	. 14.7		778.34	781.75	0.0927	108.89
	14	84.89		2.18	2.0 .	0.624	. 15.56		753.29	756.28	0.1013	80.79
	15	110.03		2.163	2.0	0.618	. 15.08		957.51	959.7	0.1112	109.06
	16	110.41		2.169	2.0	0.62	. 14.81		947.11	951.49	0.1112	109.39
	17	110.0		2.171	2.0	0.621	. 15.86	l I	1058.52	1061.2	0.1293	109.24 *
	<											>
,					_							
				ОК		Cancel	Apply	Y				

Figura 3.19 Mappa evaporatore

L'evaporatore ha restituito un errore medio sulla potenza termica pari allo 0.87% e soltanto un punto è al di fuori dell'intervallo di tolleranza con un errore pari al 5.96%. La temperatura d'uscita del refrigerante è all'interno del \pm 1%, con un errore medio pari allo 0.29%.

Figura 3.20 Potenza termica scambiata dall'evaporatore

Figura 3.21 Temperatura d'uscita del refrigerante dall'evaporatore

In Tabella 3.5 vengono riportati i risultati della calibrazione dell'evaporatore.

Grandezza misurata	Errore medio %	Errore massimo %		
Temperatura d'uscita [K]	0.29	0.7		
Potenza termica [kW]	0.87	5.96		

Tabella 3.5 Risultati calibrazione evaporatore

3.2.5 Ricevitore di liquido

Un ulteriore componente è posto a valle del condensatore e a monte della pompa ed è chiamato "ReceiverDryerRefrig" (Figura 3.22). Esso è composto da un accumulatore di liquido dal volume di 1 gallone (3.785 l) che garantisce alla pompa le corrette condizioni di aspirazione. Data la semplicità dell'elemento, non è necessaria alcuna calibrazione prima di essere implementato nel modello completo.

Template: ReceiverDryerRe	frig		×	
Object Family Object Family ReceiverDryerRefrig ReceiverDryerRefrig-1	Object Comment: Help Part Comment:		Add Long Comment	
	🖋 Main 🛷 Options 🔀 Plots			
	Attribute	Unit	Object Value	
	Volume	L ×	3.785	
	Initial State Name		refr_init	
ОК	Cancel	Apply		

Figura 3.22 Modello ricevitore di liquido

3.2.6 ORC completo

Infine, tutti i componenti descritti in precedenza sono stati assemblati in un modello complessivo dell'impianto ORC (riportato in Figura 3.23), a sua volta parte dell'impianto completo motore + sistema di recupero.

Figura 3.23 Modello ORC complessivo

Come anticipato, vista l'assenza di alcuni parametri è stato necessario lanciare un'ottimizzazione multioggetto-multiobiettivo tramite algoritmo genetico (*Multi-Objective Genetic Algorithm - MOGA*) che individuasse la miglior combinazione degli stessi per rendere i risultati quanto più vicini possibili alle prove sperimentali.

Figura 3.24 Ottimizzazione multi-oggetto multi-obiettivo

Facendo riferimento alla Figura 3.24, i parametri mancanti e che sono stati definiti come input per l'ottimizzazione sono:

- 1. Diametro ingresso espansore (d_exp_in [mm]);
- 2. Diametro ingresso condensatore (d_cond_in [mm]);
- 3. Diametro ingresso ricevitore (d_rec_in [mm]);
- 4. Diametro ingresso pompa (d_pump_in [mm]);
- 5. Diametro ingresso evaporatore (d_evap_in [mm]);
- 6. Carica di fluido refrigerante (total_refrig_charge [kg]).

I valori minimi e massimi per i diametri sono rispettivamente 10 mm e 50 mm. Tali valori sono stati scelti tenendo conto della geometria dell'impianto in esame.

Allo stesso modo è stato scelto un intervallo di variazione della carica di fluido di refrigerante che va da 5 kg a 15 kg.

I parametri di output dell'ottimizzazione:

- 1. Potenza termica scambiata dal condensatore [kW];
- 2. Potenza termica scambiata dall'evaporatore [kW];
- 3. Potenza erogata dall'espansore [kW];
- 4. Portata massica del fluido nell'espansore [kg/s];
- 5. Portata massica del fluido nella pompa [kg/s].

Questi vengono inseriti all'interno di funzioni d'errore definite precedentemente (Equazione 3.1).

L'obiettivo delle simulazioni è quello di minimizzare tali funzioni in modo da raggiungere la condizione di ottimo rispetto ai dati sperimentali.

Per ottimizzare le tempistiche delle simulazioni sono stati scelti 13 punti sui 61 totali disponibili, collezionando circa 4000 combinazioni dei parametri di input sopracitati, ciascuno dei quali corrisponde ad una simulazione.

Tale numero di combinazioni è stato ottenuto impostando il numero di generazioni dell'algoritmo genetico su un valore di 100 ed utilizzando 4 tipologie di *Space Fillers*, ovvero:

- Random;
- Pseudo-Random;
- Uniform Latin Hypercube;
- Incremental.

Per ogni Space Filler sono state definite 10 famiglie di design di partenza dell'impianto. Essi sono riportati in dettaglio nella Tabella 0.1 in Appendice.

Come si può notare dalla Figura 3.25, il tempo massimo della simulazione è pari a 180 secondi, per dare modo al sistema di raggiungere una condizione stazionaria di flusso di massa e temperature. Nel caso tale condizione venisse raggiunta prima del tempo massimo, l'opzione di "Automatic Shut-Off When Steady-State" consente di passare al caso successivo immediatamente.

La condizione di Steady-State si concretizza quando per due step temporali consecutivi:

- La temperatura ha una variazione assoluta < 0.01 K;
- La portata massica ha una variazione assoluta < 0.01%;
- La pressione ha una variazione assoluta < 1%.

~	TimeControl 🖋 Initialization 🖋 FlowControl 🖋 ODECont	trol 🛷 Sig	gna	IControl 🛷 ThermalCon	trol 🛷 ConvergenceRLT				
	Attribute	Unit		Object Value					
Tir	ne Control Flag			continuous 🗸	•				
6	Maximum Simulation Duration (Cycles)								
Μ	Minimum Simulation Duration (Cycles)			ign					
	Maximum Simulation Duration (Time)	s	\sim	180					
P	Minimum Simulation Duration (Time)	s	\sim	ign					
Au	tomatic Shut-Off When Steady-State			on 🗸	•				
Ma	in Driver (Defines Periodic Frequency)								
۲	Automatic								
0	Part Name								
O	Reference Object								
Im	proved Solution Sequence for Multi-Circuit Models								
	QK <u>C</u> ancel Apply								

Figura 3.25 Run setup modello ORC completo

Una volta terminata l'ottimizzazione e analizzati i risultati ottenuti basandosi sulla minimizzazione della media delle funzioni d'errore, è stato possibile definire i parametri mancanti. Le tubazioni sono stata implementate tramite il template "PipeRound" (riportato in Figura 3.26).

Template: PipeRound Object Family	Object Comment:		Add Long Comment
Condenser_inlet	Help Part Comment:		
	Attribute	Unit	Object Value
	Basic Geometry and Initial Co	nditions	
	Diameter at Inlet End	mm ~	25
	Diameter at Outlet End	mm ~	25
	Length	mm ~	250
	Discretization Length	mm ~	250
	Initial State Name		refr_init
	Surface Finish		
	Smooth		
	O Roughness from Material		drawn_metal 🗸 🗸
	Sand Roughness	mm 🗸	
	Additional Geometry Opt	ions	
	Radius of Bend	mm ~	ign
	Angle of Bend	deg ~	ign
	Pipe Elevation Change or 3D Acceleration Object	mm ~	ign
	Number of Identical Pipes		def (=1.0)
	OK Cancel Apply		

Figura 3.26 Modello condotto d'ingresso condensatore [13]

Il template "RefrigCircInit" (Figura 3.27) definisce la tipologia di fluido utilizzato, la carica del suddetto espressa in kg e la temperatura iniziale del sistema.

Template: RefrigCir Object Family	Cclnit → Object Comment: → Part Comment: ✓ Main	Add Long Comment		
	Attribute	Unit	Object Value	
	Refrigerant		[Refrigerant]	
	Part Name Object Identifying Refrigerant Circuit to be Initialized		Refrig_Circuit	
	System Initial Temperature	See Ca ~	[Refrigerant_Temp	
	Initialization Method:			
	Total Refrigerant Charge	See Ca ∨	[Carica_Refrigerante]	
	User Specified Average System Density	kg/m^3 ∨		
	Accumulator/ReceiverDryer Liquid Level	% ~	def (=95.0)	
	QK <u>C</u> ancel	Apply		

Figura 3.27 Template RefrigCircInit

La Tabella 3.6 racchiude i migliori risultati dell'ottimizzazione, ovvero i parametri utilizzati nella modellazione successiva dell'impianto.

Total_Refrigerant_Charge	d_cond_in	d_evap_in	d_exp_in	d_pump_in	d_rec_in
[kg]	[mm]	[mm]	[mm]	[mm]	[mm]
11.8	33.8	39.2	43.4	32.7	29

Figura 3.28 Portata massica di pompa (sx) ed espansore (dx)

Figura 3.29 Potenza termica di evaporatore (sx) e condensatore (dx)

Figura 3.30 Potenza dell'espansore

Dalla Figura 3.28, Figura 3.29 e Figura 3.30 si può notare che il modello di ORC completo mantiene una buona fedeltà con l'impianto sperimentale e l'errore medio di tutte le grandezze (riportate in Tabella 3.7) risulta comunque inferiore alla soglia del 5%.

Grandezza misurata	Errore medio %	Errore massimo %
Portata massica pompa [kg/s]	0.87	4.26
Portata massica espansore [kg/s]	1.69	6.36
Potenza termica condensatore [kW]	2.74	9.07
Potenza termica evaporatore [kW]	2.71	8.31
Potenza espansore [kW]	4.31	20.94

Tabella 3.7 Risultati dopo l'ottimizzazione

3.3 Motore a combustione interna

La tesi è incentrata sulla costruzione del modello di ORC e dunque per il modello di motore a combustione interna è stato utilizzato un file d'esempio già opportunamente calibrato. Esso è stato modificato in alcuni punti in modo da essere adatto all'accoppiamento con l'impianto di recupero.

Figura 3.31 Modello motore a combustione interna

Il modello denominato "4cylSI-Final" e riportato in Figura 3.31 è un 4 tempi ad accensione comandata dotato di 4 cilindri. La Figura 3.32 riporta le caratteristiche geometriche di un singolo cilindro.

Essendo un motore ad iniezione indiretta, l'iniettore è affacciato nel condotto d'aspirazione. La Figura 3.33 riporta in dettaglio il template dello stesso. In essa si può notare la portata massica di combustibile in g/s e soprattutto la dosatura pari a 14.5, ovvero stechiometrica (come discusso nel Paragrafo 1.3.1).

Template: EngCylG	eom				×
Object Usage geom ⊖ • Objects 	Object Com	ment: 🔤	Crank-Slider Compliance		Add Long Comment
	Attribute	Unit	Object Value	Bore	-153 ¹
	Bore	mm 🗸	86		Clearance
	Stroke	mm 🗸	86.07		Height
	Connecting Rod Length	mm v	175		1 III I
	Compression Ratio		9.5	Rod Length	
	TDC Clearance Height	<u>mm </u>	1		
< >>					
		<u>О</u> К	Cancel	Apply	

🗾 Template: InjAFSec	qConn			×
Object Family Si-inject Si-inject-1 Si-inject-2 Si-inject-3	Object Comment:	zle (DI Only)	2 Plots	Add Long Comment
Si-inject-4	Attribute	Unit	Object Value	si-inject-1 override
	Injector Delivery Rate	g/s v	6	
	Fuel Ratio Specification		Air-to-Fuel 🗸 🗸	
	Fuel Ratio		14.5	
	Air Mass Flow Rate Sensor			
	Part Name		I nrottie-1	
	Number of Injectors per Sensor		4	
	Apply Engine Trapping Ratio to Air Mass Flow Rate			
	Attributes with part overrides or actuated signal overrid	es will have th	s background color	
	<u>O</u> K <u>C</u> a	incel	Apply	

Figura 3.33 Template iniettore

La scelta è ricaduta su questo motore per via di una serie di caratteristiche importanti per l'accoppiamento con l'impianto ORC. In particolare, si è tenuto conto soprattutto del contenuto energetico dei gas di scarico e della potenza erogata dal motore in un regime di giri di un tipico utilizzo stradale del veicolo (2000-4125 rpm).

Siccome la massima potenza termica che l'evaporatore deve trasmettere si attesta intorno ai 60 kW e la massima potenza erogabile dall'espansore dell'ORC pari a 5kW, sarebbe stato eccessivo equipaggiare l'impianto su un motore di dimensioni e prestazioni superiori, in quanto l'incremento di potenza e rendimento in termini percentuali sarebbe stato quasi trascurabile e il contenuto energetico dei gas di scarico sarebbe stato sovrabbondante in quasi tutte le condizioni di funzionamento.

3.4 Accoppiamento ORC-Motore a combustione interna

Figura 3.34 Modello complessivo ORC e motore a combustione interna

Un passo immediatamente successivo alla calibrazione del sistema ORC e alla ricerca del modello appropriato di motore è quello dell'accoppiamento tra le due parti sopracitate.

Tale operazione richiede l'adattamento di entrambi ad esigenze comuni quali:

- Ridefinizione delle caratteristiche di scambio dell'evaporatore ed in particolare il passaggio da un elemento liquido-liquido ad uno gas-liquido;
- Definizione delle condizioni operative e in particolare di un adeguato range di velocità di rotazione del motore durante le simulazioni per avere una corretta potenza termica recuperabile nei gas di scarico. Il regime non deve essere troppo basso in quanto si avrebbe una potenza termica allo scarico insufficiente per avere un buon rendimento dell'impianto visto le basse temperature e basse portate sul lato caldo dell'evaporatore. Al contrario, se fosse troppo elevato si avrebbe il problema

opposto, ovvero l'eccessivo calore scambiato nell'evaporatore con conseguente innalzamento della temperatura in ingresso dell'espansore. In questo caso il sistema opererebbe fuori dalla mappa della macchina motrice e i risultati (in special modo la potenza erogata) non sarebbero veritieri.

Inoltre, si devono operare delle modifiche dal punto di vista delle modalità di simulazione e risoluzione matematica del modello. Infatti, l'impianto ORC e il motore operano su intervalli temporali molto differenti e le modalità di funzionamento sono diametralmente opposte. Il primo è formato da un loop chiuso di refrigerante che evolve seguendo un determinato ciclo termodinamico e, dopo un transitorio iniziale, opera in condizioni praticamente stazionarie. Il secondo opera in transitori repentini, essendo composto da un ciclo aperto in cui avviene periodicamente il ricambio del fluido di lavoro e in cui lo stesso subisce alterazioni di composizione chimica a seguito degli eventi di combustione.

3.4.1 Modifica dell'evaporatore

Come anticipato, si passa da uno scambiatore liquido-liquido ad uno scambiatore gasliquido, in quanto la fonte di calore passa dall'acqua calda ai gas di scarico del motore. Ciò ha comportato la ridefinizione della mappa dell'evaporatore attraverso nuovi dati sperimentali che si adattassero alla geometria e alle caratteristiche di scambio termico dell'impianto precedentemente modellato.

Ciò ha richiesto una nuova calibrazione del singolo componente e successiva ricalibrazione anche dell'impianto complessivo, che ha restituito risultati pressocché identici al caso di scambiatore liquido-liquido.

3.4.2 Definizione delle condizioni operative del motore

Per avere un riscontro che rientri all'interno dei dati sperimentali (soprattutto all'interno della mappa dell'espansore che è l'organo adibito al recupero effettivo della potenza altrimenti dispersa) è stato definito un range di funzionamento del motore. Esso deve coniugare due esigenze fondamentali:

- I gas di scarico devono avere in ogni punto un contenuto energetico e dunque una potenza termica scambiabile che rientri all'interno della mappa dell'evaporatore;
- Il regime di rotazione deve essere adatto all'utilizzo di un guidatore medio in condizioni di guida mista.

Da tali considerazioni è emerso che le condizioni di funzionamento debbano ricadere tra i 2000 e i 4125 rpm. Dividendo l'intervallo ogni 125 rpm si generano 18 casi (estremi compresi) con potenza termica contenuta nei gas di scarico crescente. La scelta sui punti con cui dividere l'intervallo è stata ponderata in modo da avere un tempo per il lancio delle simulazioni ragionevole, ma sarebbe possibile usare una discretizzazione anche più fine per avere una mappa con più punti. In alternativa si potrebbe allargare l'intervallo dei regimi. Entrambe queste operazioni potrebbero però dilatare i tempi computazionali in maniera sensibile.

3.4.3 Setup simulazione

Ricordando la Figura 3.25 in cui è illustrato il Run Setup per il modello di ORC originale, bisogna apportare alcune modifiche per le ragioni citate in precedenza. Innanzitutto, è stata modificata l'opzione relativa al "Time Control Flag", che definisce il tipo di simulazione rispetto al tempo. L'opzione "periodic" indica che il modello contiene almeno una parte in cui è presente un evento periodico che richiede il tracciamento dei risultati rispetto all'angolo per ogni ciclo. Tale elemento è ovviamente il motore ed in particolare il template "EngineCrankTrain". La durata della simulazione può essere definita in cicli o in tempo (secondi) e in questo caso si preferisce esprimerla in secondi mantenendo un criterio coerente con quello utilizzato per il singolo impianto ORC.

1	TimeControl 🛷 Initialization 🛷 FlowControl 🛷 ODECont	trol	🛷 Sig	ina	IControl 🛷 T	hermalContro	ol 🛷 ConvergenceRLT
	Attribute	Unit			Object Value		
Ti	ne Control Flag				periodic	\sim	
	Maximum Simulation Duration (Cycles)					10	
P	Minimum Simulation Duration (Cycles)					ign	
	Maximum Simulation Duration (Time)	s		\sim		180	
P	Minimum Simulation Duration (Time)	s		\sim		ign	
Au	tomatic Shut-Off When Steady-State				on	\sim	
Ma	in Driver (Defines Periodic Frequency)				·		
\odot	Automatic						
0	Part Name						
0	Reference Object						
Im	proved Solution Sequence for Multi-Circuit Models						

Figura 3.35 Run setup modello completo motore e impianto ORC – TimeControl

Nella Figura 3.36 è riportata un'altra impostazione rilevante dello strumento di risoluzione relativa al controllo del flusso dei vari fluidi.

Siccome il modello completo è composto da due circuiti che richiedono differenti impostazioni bisogna utilizzare due colonne separate della tabella presente in figura.

PimeControl Initialization PlowControl ODEControl	🛷 SignalCon	trol 🛷 ThermalCon	trol 🛷 Convergence	RLT
Attribute	Unit	Flow Settings #1	Flow Settings #2	Flow Settin
Part Name List Object Identifying Circuits Belonging to Column		Circuits	Engine	
Time Step and Solution Control Object		Implicit	Explicit	
Solve All Circuits Together (Single Solution Cluster for the Column)				

Figura 3.36 Run setup modello completo motore e impianto ORC – FlowControl

Il template "Circuits" rappresenta l'insieme dell'impianto contenente r245fa e il circuito di raffreddamento ad acqua del condensatore. Esso utilizza un solutore di tipo implicito "FlowControlImplicit" (Figura 3.37) che è consigliato per applicazioni in cui i fenomeni dinamici non hanno particolare importanza o non bisogna prevederne lo sviluppo in maniera dettagliata. Inoltre, è necessario che il massimo numero di Mach del sistema sia minore di 0.3.

Figura 3.37 Template FlowControlImplicit

Il template "Engine" (sempre in Figura 3.36) rappresenta il modello del motore a combustione interna. Esso utilizza un solutore di tipo esplicito "FlowControlExplicit" (Figura 3.38) che è consigliato per applicazioni in cui i fenomeni dinamici hanno elevata importanza, come appunto un motore a combustione interna. Confrontato con un solutore implicito richiede step temporali più brevi.

Dalla Figura 3.37 e dalla Figura 3.38 si può notare anche come la tolleranza per definire la condizione di stazionarietà della portata sono di un ordine di grandezza superiore nel caso esplicito.

Template: FlowCon	trolExplicit		×				
Object Usage	Object Comment: Ire important (Engine, Acoustics, Fuel Inje) Add Long Comment Help V Circuit Setup Image: Flow Settings						
	Attribute	Unit	Object Value				
	Time Step Definition						
	Maximum Time Step		def				
	Time Step Multiplier		def				
	Allow > 1 Degree (non-def) Maximum Time Step						
	Maximum Ratio of Time Steps in Flow Circuits		ign				
	Steady-State Convergence Settings						
	Mass Flow Steady-State Tolerance for Auto Shut-Off	fraction 🗸	def (=0.002)				
	Fluid Temperature Steady-State Tolerance for Auto Shut	Delta K 🛛 🗸	ign				
	Fluid Temperature Rate Steady-State Tolerance for Auto	K/s 🗠	ign				
	Consecutive Cycles/RLT Update Intervals for Steady-State		def (=1.0)				
< >	t is linked to gtise2016.gto library. Attributes with this background	d color cannot	be modified. Right click on th				
	OK Cancel	Apply					

Figura 3.38 Template FlowControlExplicit

3.4.4 Sistema di controllo della temperatura

La temperatura dei gas di scarico all'ingresso dell'evaporatore potrebbe essere eccessiva in alcune condizioni di funzionamento (alti regimi di rotazione del motore) e di conseguenza la temperatura del fluido refrigerante all'ingresso dell'espansore potrebbe innalzarsi più del dovuto. Risulta, quindi, utile l'inserimento di un sistema di controllo che eviti quanto descritto.

Tale sistema è costituito da un circuito di bypass dell'evaporatore dotato di valvola a farfalla, la cui apertura è comandata da un controllore PI (Proporzionale e Integrativo). Esso monitora l'andamento della temperatura del refrigerante in uscita dall'evaporatore ed attiva la valvola di bypass nel caso essa si avvicini alla soglia prefissata di 109°C. Tale valore è scelto in base alla mappa sperimentale dell'espansore, in corrispondenza con la massima potenza registrata. Superare tale temperatura potrebbe portare a risultati poco indicativi, in quanto il software potrebbe operare un'interpolazione che non rispecchia il reale funzionamento del componente, compromettendo anche le considerazioni sulle performance dell'impianto ORC e dell'intero sistema.

Si è scelto di applicare un'ulteriore valvola a farfalla all'interno del condotto passante per l'evaporatore che operi in maniera complementare rispetto a quella all'interno del bypass. Per fare ciò è stato utilizzato un blocco di tipo "MathEquation" che prende in input il segnale del controllore PI e genera come output il segnale di azionamento della valvola.

Figura 3.39 Dettaglio bypass evaporatore

Nella Figura 3.39 è riportato un dettaglio del sistema di controllo della temperatura. In particolare, si possono notare i condotti a T che servono a dividere il flusso dei gas di scarico e modellati tramite il template "FlowSplitTRight" (Figura 3.40).

I blocchi "Monitor Signal" hanno la funzione di mostrare a schermo l'andamento di alcune grandezze rispetto al tempo durante l'esecuzione delle simulazioni, le cui durate in termini computazionali sono nettamente superiori rispetto a quelle eseguite in precedenza.

Template: FlowSplitTRight			×		
Object Family FlowSplitTRight-1	Object Comment:		Add Long Comment		
FlowSplit I Right=1-1	Help Part Comment:				
	🖋 Main 🛷 Thermal 🛷 Pressure Drop	🖾 Plots			
	Attribute	Unit Object Value	Length		
	Basic Geometry and In	itial Conditions			
	Diameter	mm 🗸 25			
	Length	mm 🗸 20	1 2 Diameter		
	Surface Area	mm^2 ~ def			
	Initial State Name	initial			
	Surface Fin	ish			
	O Smooth				
	Roughness from Material	cast_iron ∨			
	Sand Roughness	mm 🗸			
	Additional Geomet	try Options			
	Number of Identical Flowsplits	def (=1.0)			
·					
	OK Cance	el Apply			

Figura 3.40 Template FlowSplitTRight

In Figura 3.41 è riportato il template del controllore PID in cui sono stati inseriti i gains proporzionale ed integrativo per il controllo dell' apertura della valvola. I parametri di output sono limitati in un intervallo da 0 a 90° che rappresentano rispettivamente la completa chiusura e completa apertura del circuito di bypass.

Per quanto riguarda il rate di apertura/chiusura si è optato per una limitazione a 15°/s in modo da raggiungere un compromesso tra rapidità d'esecuzione ed effettiva applicabilità fisica del comando.

Per la calibrazione ti tale blocco è stato usato un sistema semplificato che prende in input i dati di portata media e temperatura media dei gas di scarico del motore dei 18 casi analizzati. In tal modo la durata delle singole simulazioni è stata accorciata considerevolmente ma non è stata compromessa la qualità del risultato finale, in quanto il controllore una volta collegato con l'impianto definitivo formato da motore e ORC si comporta in maniera pressocché identica al caso semplificato.

🗾 Template: PIDCont	rolle	r			×			
Object Family PIDController		Object Comment:			Add Long Comment			
PIDController-1		Help Part Comment:						
	Solution Control V Input/Output Signal Setup							
		🖋 Main 🛛 🖋 Limits 🛛 🖋 In	itialization	1	Convergence			
		Attribute		Unit	Object Value			
	Та	rget for the Input Signal			109			
	Ga	ins Specification / Calculation						
		Gains Specified						
		Proportional Gain		-3.75 <mark></mark>				
	\odot	Integral Gain			-0.07			
		Derivative Gain			0			
		Derivative Time Constant		s 🗸	def			
		Gains Calculated						
	6	Slope						
	Μ	Time Constant (Tau)		s ×				
		Ratio of Settling Time to Time Constant						
	Dis	play Performance Monitor						
< >								
		<u>OK</u> <u>C</u> ancel		<u>A</u> pply				

Figura 3.41 Template PID Controller

4 Risultati

Come ultimo passo dopo l'assemblaggio del sistema completo e la calibrazione del controllore della temperatura, sono state effettuate alcune simulazioni per avere un'idea quantitativa dell'effettivo incremento di potenza e del rendimento del motore valutato in punti stazionari.

Nella Tabella 0.7 e Tabella 0.8 riportate in Appendice sono presenti i 18 punti sperimentali utilizzati per le suddette simulazioni. Di tali punti sono riportate temperature ad ingresso e uscita di tutti gli organi, le velocità di rotazione delle macchine e la portata di refrigerante.

Come anticipato, le velocità del motore sono state scelte in modo da avere portata e temperatura dei gas di scarico che permettano di scambiare una potenza termica nell'evaporatore quanto più conforme possibile alle prove sperimentali.

I risultati ottenuti sono quindi certamente significativi in quanto correlati con i dati empirici dell'impianto ORC esistente ma non rappresentano probabilmente la massima espressione in termini di performance di un impianto realmente realizzabile a bordo vettura.

Dunque, dal punto di vista numerico, in Tabella 4.1 sono riportati i risultati relativi alla potenza netta prodotta dall'impianto di recupero, confrontati con la potenza erogata dal motore. Da tale analisi consegue che il sistema supplementare fornisce un incremento di potenza medio a parità di regime di rotazione pari al 2.6%, ma come anticipato, tale valore potrebbe arrivare anche al di sopra del 10% nel caso di massima potenza erogata dall'espansore e basso regime di rotazione del motore. Ciò potrebbe avvenire nel caso in cui venga implementato un sistema di controllo in grado di variare il regime di rotazione di

88

pompa ed espansore, adattandolo alla potenza erogata dal motore e a quella scambiabile con i gas di scarico attraverso l'evaporatore.

N caso	Rpm motore	Potenza motore [kW]	Potenza netta impianto ORC [kW]	Incremento di potenza
1	2000	33.915	0.959	2.8%
2	2125	36.191	0.857	2.4%
3	2250	38.230	1.212	3.2%
4	2375	40.118	0.524	1.3%
5	2500	41.758	0.906	2.2%
6	2625	43.641	1.479	3.4%
7	2750	45.952	1.257	2.7%
8	2875	47.851	1.377	2.9%
9	3000	49.521	1.094	2.2%
10	3125	51.668	1.393	2.7%
11	3250	54.600	1.654	3.0%
12	3375	58.244	1.774	3.0%
13	3500	61.560	1.458	2.4%
14	3625	64.762	1.892	2.9%
15	3750	68.334	1.658	2.4%
16	3875	71.192	2.016	2.8%
17	4000	75.165	1.810	2.4%
18	4125	79.126	1.537	1.9%

Tabella 4.1 Incremento di potenza dell'impianto completo

Sempre in riferimento alla Tabella 4.1 si nota come, attenendosi ai dati sperimentali, la potenza erogata dall'impianto rimanga sostanzialmente invariata passando dai 2625 rpm ai 4125 rpm del motore. Per questo motivo e per quanto illustrato in precedenza, risulta

comprensibile come ai regimi di rotazione più elevati non siano sfruttate appieno le potenzialità dell'impianto di recupero.

Nerse	Rpm	η _t impianto	η_u motore	η_u motore	Incremento
IN Casu	motore	ORC [%]	stand-alone [-]	con ORC [-]	di η _u [%]
1	2000	5.0%	0.356	0.367	2.8%
2	2125	5.0%	0.355	0.363	2.4%
3	2250	5.5%	0.355	0.366	3.2%
4	2375	2.2%	0.355	0.360	1.3%
5	2500	3.6%	0.357	0.365	2.2%
6	2625	5.9%	0.362	0.375	3.4%
7	2750	4.9%	0.359	0.369	2.7%
8	2875	5.0%	0.360	0.371	2.9%
9	3000	4.4%	0.358	0.366	2.2%
10	3125	4.6%	0.360	0.370	2.7%
11	3250	6.9%	0.363	0.374	3.0%
12	3375	7.1%	0.362	0.373	3.0%
13	3500	4.8%	0.361	0.370	2.4%
14	3625	7.7%	0.365	0.375	2.9%
15	3750	5.2%	0.364	0.372	2.4%
16	3875	5.7%	0.365	0.375	2.8%
17	4000	5.8%	0.366	0.375	2.4%
18	4125	5.9%	0.361	0.370	2.4%

Tabella 4.2 Analisi dei rendimenti dell'impianto completo

In Tabella 4.2 sono riportati i risultati riguardanti l'efficienza del solo impianto ORC, del solo motore e dell'impianto complessivo.

Si può notare come i rendimenti dell'impianto ORC non siano particolarmente elevati (al massimo 7.7%) nei punti sperimentali analizzati e lasciano un cospicuo margine di

miglioramento. Nonostante ciò, l'incremento percentuale di rendimento utile del motore dotato di sistema di recupero non è per nulla trascurabile (mediamente 2.6%).

Infine, può risultare interessante valutare l'evoluzione dei cicli termodinamici dell'impianto ORC (riportati in Figura 4.1 e Figura 4.2).

In particolare, nella prima si possono distinguere chiaramente le 4 fasi descritte nel Paragrafo 2.1: compressione che innalza la pressione; evaporazione a pressione costante che adduce calore al sistema e porta il fluido in condizioni di vapore; espansione in condizioni di 100% vapore per evitare i problemi nella macchina motrice descritti in precedenza; condensazione che riporta il refrigerante alle condizioni inziali sulla curva limite inferiore.

Figura 4.1 Diagramma p-h dei casi analizzati nelle simulazioni

Nella seconda risulta interessante notare l'evoluzione delle temperature nel ciclo (limitate dal sistema di controllo descritto in precedenza).

Figura 4.2 Diagramma T-s dei casi analizzati nelle simulazioni

5 Conclusioni e sviluppi futuri

L'intento della presente tesi è avere un'idea qualitativa e quantitativa sulla fattibilità di un impianto di recupero che vada a incrementare l'efficienza del sistema di trazione a bordo veicolo. Essendo un accoppiamento virtuale tra due apparati molto diversi dal punto di vista termofluidodinamico ha richiesto un adattamento reciproco sulle metodologie di simulazione. In aggiunta, l'assenza di un impianto complessivo fisicamente esistente non ha permesso di avere un reale riscontro sperimentale, ma piuttosto si è cercato di adattare i punti motore con quelli dell'ORC prendendo in esame i soli dati empirici disponibili e restando all'interno delle mappe di funzionamento dei singoli componenti per avere un riscontro con l'impianto fisico più fedele possibile.

In ogni caso, i primi risultati ottenuti possono essere ritenuti soddisfacenti, ma il modello può essere migliorato ed evoluto in diversi aspetti, che saranno descritti in seguito.

Innanzitutto, disponendo di dati sperimentali in condizioni transitorie dell'ORC si potrebbero implementare, invece dei punti stazionari analizzati in questo documento, dei veri e propri cicli guida come ad esempio quelli utilizzati per l'omologazione (NEDC, WLTC, ecc.). In tal caso sarebbe importante l'introduzione di un sistema di controllo di pompa e turbina che regoli finemente il funzionamento di tali organi in modo da adattarne il regime alla potenza termica contenuta nei gas di scarico.

Un ulteriore passo in avanti potrebbe essere rappresentato dalla creazione di un ulteriore modello, da abbinare a quello descritto nel presente documento, che sia in grado di sfruttare la potenza meccanica prodotta dalla macchina motrice dell'impianto ORC come ad esempio un generatore elettrico oppure un sistema di compounding che restituisca potenza direttamente all'albero motore eliminando il bisogno di un ulteriore conversione energetica.

93

Una volta completato il modello matematico, si può effettuare un'analisi sull'effettiva realizzazione della struttura, partendo dallo studio di un veicolo d'esempio e degli spazi disponibili a bordo per un'eventuale installazione. Da questo si può realizzare un possibile design dei vari componenti con cui poter valutare ingombri, materiali e costi per produzione e manutenzione dell'intero apparato.

Come appena descritto, le possibilità di sviluppo sono molteplici e il presente modello (con i relativi risultati) può essere considerato come incipit di un filone di ricerca sull'implementazione di sistemi di recupero a bordo veicolo basati su ciclo Rankine Organico.

Appendice

CATEGORIA	total_refrig_charge	d_cond_in	d_evap_in	d_exp_in	d_pump_in	d_rec_in
RANDOM	12.3	26.4	18.3	23.3	48.7	10.2
RANDOM	14.6	47.6	47.9	47.5	25.9	23.9
RANDOM	7.9	30.3	14.6	40.8	36.4	16.3
RANDOM	8.8	15.6	37.8	42.2	10.2	30.9
RANDOM	12.4	15.7	29.3	31.8	33.1	18.2
RANDOM	11.2	17.4	10.4	16.4	17.1	31.6
RANDOM	14.7	19.8	25.8	18.7	27.3	19.3
RANDOM	13.9	11.5	33.7	36.2	14.8	36.1
RANDOM	14.8	18.3	25.0	28.5	23.3	27.7
RANDOM	10.0	50.0	35.2	46.4	30.3	29.7
PSEUDO-	5.0	10.0	10.0	10.0	10.0	10.0
RANDOM	5.0	10.0	10.0	10.0	10.0	10.0
PSEUDO-	7 5	10.0	10.0	40.0	20.0	20.0
RANDOM	/.5	40.0	40.0	40.0	20.0	20.0
PSEUDO-	10 5	20.0	20.0	20.0	40.0	40.0
RANDOM	12.5	20.0	20.0	20.0	40.0	40.0
PSEUDO-	12.0	45.0	15.0	25.0	45.0	25.0
RANDOM	13.0	45.0	15.0	25.0	45.0	35.0
PSEUDO-	8.8	25.0	25.0	45.0	25.0	15.0
RANDOM	0.0	23.0	55.0	45.0	23.0	15.0
PSEUDO-	63	35.0	25.0	15.0	15.0	25.0
RANDOM	0.5	35.0	23.0	15.0	15.0	25.0
PSEUDO-	11 3	15.0	45.0	35.0	35.0	45.0
RANDOM	11.5	15.0	43.0	55.0	33.0	45.0
PSEUDO-	11 9	42 5	27 5	47 5	12.5	42.5
RANDOM	11.5	42.5	27.5	-7.5	12.5	42.0
PSEUDO-	69	22.5	47 5	27 5	32.5	22.5
RANDOM	0.5	22.0	47.5	27.5	52.5	22,0
PSEUDO-	94	32.5	17 5	37 5	42 5	12 5
RANDOM	5.4	02.0	17.0	07.0	42.0	12.0
UNIFORM						
LATIN	6.3	34.0	44.6	11.1	26.5	39.4
HYPERCUBE						
UNIFORM						
LATIN	12.8	20.7	11.4	18.0	20.1	46.7
HYPERCUBE						
UNIFORM						
LATIN	7.1	17.6	24.8	47.9	46.8	11.1
HYPERCUBE						
UNIFORM						
LATIN	14.0	26.2	30.3	20.8	24.7	41.2
HYPERCUBE						

Tabella 0.1 Space Fillers ottimizzazione multi-oggetto multi-obiettivo

UNIFORM						
LATIN	8.4	24.6	13.3	14.9	45.8	22.5
HYPERCUBE						
UNIFORM						
LATIN	10.9	38.6	48.8	36.7	48.5	33.3
HYPERCUBE						
UNIFORM						
LATIN	5.2	43.0	15.4	38.2	17.4	36.5
HYPERCUBE						
UNIFORM						
LATIN	12.2	22.0	40.2	41.5	18.2	13.4
HYPERCUBE						
UNIFORM						
LATIN	14.7	41.7	26.5	29.5	32.7	21.0
HYPERCUBE						
UNIFORM						
LATIN	8.6	14.6	29.2	32.6	14.1	15.0
HYPERCUBE						
INCREMENTAL	7.1	30.6	31.9	34.2	38.4	37.4
INCREMENTAL	13.2	17.7	13.9	41.6	43.3	26.4
INCREMENTAL	13.9	44.4	35.8	25.7	11.8	14.8
INCREMENTAL	9.1	28.7	35.5	24.6	16.1	41.0
INCREMENTAL	9.0	44.8	43.6	19.4	45.4	22.9
INCREMENTAL	12.2	46.6	49.3	27.3	26.4	20.2
INCREMENTAL	8.4	31.5	19.6	20.7	27.7	10.1
INCREMENTAL	12.3	31.1	19.6	41.9	21.4	21.0
INCREMENTAL	7.5	50.0	22.5	15.6	23.0	40.1
INCREMENTAL	11.4	28.3	42.6	12.1	34.4	34.1

Exp	Pump	Tari	Devi	Tarra	Dama	Tai	Det	T
speed	speed	I exi	Pexi	Texu	Pexu	151	P 51	Th
rpm	rpm	°C	kPa	°C	kPa	°C	kPa	°C
800	80	108.72	908.58	70.82	135.99	14.21	132.40	14.19
800	80	108.9	877.67	73.41	132.03	14.06	128.31	14.08
800	85	80.97	790.21	39.53	138.63	14.74	131.96	14.15
800	90	108.99	973.23	72.7	136.87	14.3	131.47	14.21
800	100	108.78	1070.09	71.09	144.97	14.79	137.99	14.18
800	100	109.14	1058.41	72.26	141.48	14.82	134.91	14.43
1600	80	108.67	654.61	75.7	132.33	14.23	130.46	14.26
1600	80	108.6	638.57	77.65	133.26	13.98	131.07	14.04
1600	85	84.04	643.4	55.27	137.61	14.12	133.62	14.08
1600	90	109.06	750.11	74.24	143.51	14.12	141.49	14.15
1600	95	83.97	703.76	53.81	142.76	14.68	136.57	14.27
1600	100	108.89	819.59	73.01	139.61	14.3	134.99	14.07
1600	100	108.89	781.75	75.53	139.88	14.38	135.26	14.1
1600	110	80.79	756.28	48.82	150.27	17.21	141.03	15.11
1600	120	109.06	959.7	71.17	150.14	15.76	142.62	14.56
1600	120	109.39	951.49	72.32	159.86	14.3	153.99	14.25
1600	140	109.24	1061.2	71.29	161.16	17.77	148.69	15.33
1600	140	109.42	1070.12	71.42	171.33	14.89	161.96	14.67
1600	160	108.98	1175.52	71.43	206.59	14.16	196.59	14.16
1600	160	109.09	1189.82	69.28	176.28	16.35	162.74	15.15
1600	180	107.66	1262.68	67.59	180.15	22.43	160.67	17.17
2000	80	83.94	548.36	57.73	136.53	14.08	133.36	14.13
2000	80	108.81	567.5	80.51	132.63	14.22	130.94	14.24
2000	95	83.88	638.3	55.59	144.49	14.7	138.75	14.46
2000	100	109.13	704.43	78.48	140.42	14.45	135.24	14.21
2000	120	79.72	748.18	48.73	155.82	18.18	145.06	15.44
2000	120	109.2	829.27	75.48	147.98	15.25	140.46	14.16
2000	160	109.45	1047.9	74.14	172.01	19.58	155.49	16.05
2000	180	109.5	1149.21	72.99	181.85	21.6	162.63	16.98

Tabella 0.2 Set completo di punti per la calibrazione ORC (parte 1)

		1			1			1
2400	130	79.42	733.08	50.73	158.29	18.99	147.08	15.34
2400	160	109.18	966.68	76.85	181.83	20.79	166.46	16.33
2500	80	84.1	482.14	63.83	137.74	14.58	134.78	14.58
2500	85	108.73	542.75	82.91	135.33	14.16	133.33	14.17
2500	90	108.88	588.59	82.18	147.95	14.63	146.54	14.66
2500	95	84.14	567.53	59.7	141.91	14.44	137.38	14.18
2500	100	108.92	634.24	80.76	141.58	14.48	136.79	14.3
2500	110	84.51	646.81	61.33	181.84	21.58	172.84	17.07
2500	110	84.39	649.04	57.28	149.75	15.61	142.61	14.49
2500	110	109.13	691.64	80.77	150.9	15.26	144.72	14.38
2500	120	84.29	697.56	56.62	154.75	17.02	146.11	14.94
2500	130	109.07	802.55	78.95	162.12	16.86	151.17	14.81
2500	130	109.88	803.48	79.43	165.48	17.65	153.92	15.52
2500	135	78.64	732.59	49.87	162.47	19.73	149.52	16.15
2500	135	109.25	844.12	76.03	157.5	16.6	146.59	14.75
2500	175	109.43	1065.16	73.56	180.36	20.88	162.72	16.84
2500	200	109.59	1170.88	73.19	199.01	19.32	179.54	16.52
2500	210	107.22	1194.23	70.12	197	24.72	173.91	18.48
2500	210	106.2	1195.06	70.13	217.87	15.6	201.95	14.81
2500	225	100.85	1206.31	65.22	221.41	16.68	199.94	15.37
2500	225	102.17	1208.66	65.2	204.32	25.55	179.61	19.51
3000	80	108.85	472.98	88.47	134.15	14.32	131.81	14.34
3000	100	84.13	549.78	63.38	140.69	14.29	135.37	14.13
3000	100	109.03	578.43	85.57	141.29	14.26	136.33	14.11
3000	120	84.39	647.39	60.2	149.79	15.83	139.57	14.62
3000	120	109.02	691.75	82.85	152.33	15.71	142.60	14.76
3000	140	109.16	793.42	80.95	163.27	17.39	149.99	15.36
3000	160	109.6	891.11	79.27	172.45	19.48	156.20	16.1
3000	175	109.33	956.63	78.77	180.11	20.44	162.38	16.57
3000	180	109.29	982.54	77.89	183.03	21.33	164.68	16.94
3000	200	109.64	1069.79	77.06	192.83	23.04	172.29	17.71
3000	225	107.22	1161.9	72.48	205.89	25.17	180.86	19.32
							1	
Ррі	Tevi	Pevi	Tamb	mdot_r	mdot_source	Twevi	Twevo	Twci
--------	-------	---------	-------	--------	-------------	--------	--------	-------
kPa	°C	kPa	°C	kg/s	kg/s	°C	°C	°C
131.58	14.94	901.39	24.31	0.0746	0.580	110.21	101.09	13.81
127.46	14.75	872.81	23.92	0.0743	0.615	110.27	101.87	13.68
130.44	14.77	785.23	23.77	0.0789	0.624	85.13	77.74	13.63
130.24	14.85	969.02	24.07	0.0834	0.616	110.31	101.32	13.81
136.4	14.82	1064.09	24.76	0.0929	0.583	110.04	99.21	13.67
133.41	15.07	1054.95	24.05	0.0923	0.617	110.3	99.9	13.95
130.03	14.91	651.85	25.08	0.0741	0.615	110.36	101.84	13.9
130.57	14.56	634.42	24.32	0.0744	0.617	110.15	101.77	13.99
132.71	14.76	637.96	25.73	0.0791	0.624	84.99	77.07	13.63
141.03	14.76	745.07	23.79	0.0836	0.617	110.38	101.05	13.71
135.16	14.83	699.65	25.74	0.0882	0.624	85.02	76.09	13.83
133.93	14.68	815.9	25.23	0.0929	0.618	109.97	99.78	13.66
134.21	14.7	778.34	24.32	0.0927	0.627	110.07	100.1	13.65
138.92	15.56	753.29	25.68	0.1013	0.624	84.89	75.44	14.12
140.9	15.08	957.51	25.23	0.1112	0.618	110.03	97.64	13.89
152.65	14.81	947.11	23.84	0.1112	0.62	110.41	98.29	13.81
145.84	15.86	1058.52	25.23	0.1293	0.621	110	95.85	14.04
159.82	15.12	1067.51	23.77	0.1294	0.627	110.21	96.39	14.2
194.31	14.66	1173.46	23.69	0.1476	0.627	109.78	94.22	13.78
159.65	15.63	1187.16	23.9	0.1476	0.628	109.99	64.52	14.03
156.22	17.79	1261.26	24.49	0.1629	0.622	110.15	93.14	14.01
132.63	14.74	543.66	24.35	0.0743	0.625	84.95	77.23	13.73
130.55	14.85	563.65	24.24	0.0742	0.615	110.38	101.92	13.87
137.44	14.99	633.49	24.3	0.0883	0.624	84.95	75.84	14.09
134.05	14.67	701.05	24.19	0.0926	0.617	110.37	99.96	13.77
142.6	15.9	745.57	24.3	0.1108	0.624	85.2	74.69	14.11
138.74	14.74	826.73	22.75	0.1109	0.627	110.16	98.05	13.43
151.72	16.56	1048.2	22.81	0.1472	0.625	110.32	94.36	14.09
158.24	17.43	1147.98	23.31	0.1651	0.627	110.25	92.96	14.03
144.52	15.83	731.44	23.77	0.12	0.624	85.3	74	14.02

Tabella 0.3 Set completo di punti per la calibrazione ORC (parte 2)

162.95	16.77	965.6	24.09	0.1475	0.587	110.07	92.62	14.3
134.1	15.22	477.12	22.82	0.0745	0.626	85.28	77.61	14.25
132.87	14.71	507.69	26.09	0.079	0.615	110.28	101.28	13.8
146.22	15.24	584.66	23.83	0.0837	0.619	110.18	100.9	14.27
136.34	14.77	562.63	22.56	0.088	0.625	85.07	75.92	13.76
135.69	14.79	630.48	23.78	0.0931	0.618	110	99.63	13.9
170.78	17.53	643.94	22.7	0.1018	0.624	85.21	75.55	13.39
140.98	15.03	645.7	22.52	0.1022	0.624	85.27	74.89	13.84
143.31	14.94	687.51	23.42	0.1022	0.619	110.12	98.95	13.67
144.13	15.34	695.73	22.51	0.1113	0.624	85.12	74.29	13.8
148.67	15.31	798.72	23.53	0.1207	0.62	109.83	96.72	13.65
151.28	15.94	800.68	23.49	0.1204	0.62	110.88	97.83	14.3
146.56	16.5	730.54	22.64	0.1241	0.624	84.95	73.5	14.15
144.1	15.31	838.78	25.4	0.1248	0.62	110.18	96.24	13.78
158.69	17.29	1052.82	25.74	0.1614	0.624	110.1	93.14	14.15
175.09	16.91	1170.04	23.71	0.1841	0.627	110.32	91.1	14.02
168.63	19.11	1156.17	25.41	0.1923	0.627	110.01	90.26	14.07
198.31	15.24	1194.33	23.74	0.1941	0.627	110.02	89.84	13.81
195.03	15.72	1206.79	23.98	0.2066	0.627	110.04	89.12	13.92
173.96	19.97	1207.75	23.82	0.2052	0.627	110.19	89.74	14.06
131.27	14.95	469.09	25.32	0.0744	0.615	110.48	101.85	14
134.15	14.62	547.26	25.23	0.0931	0.625	84.9	75.23	13.77
135.2	14.58	575.12	25.03	0.093	0.582	110.22	99.25	13.69
137.23	15.03	645.79	24.53	0.1115	0.624	85.19	74.29	13.92
140.37	15.28	688.88	25.12	0.1113	0.586	109.9	97.07	13.99
146.95	15.77	792.15	25.17	0.1297	0.619	109.98	95.79	14.19
152.48	16.61	889.59	22.81	0.1479	0.625	110.31	94.69	14.08
158.33	16.98	954.26	24.91	0.1613	0.623	110.12	92.99	13.97
160.49	17.46	982.99	22.78	0.1658	0.627	109.98	92.5	14.04
167.6	18.17	1070.36	22.69	0.1836	0.627	110.27	91.04	13.93
175.14	19.75	1162.64	23.73	0.2053	0.627	110.17	89.05	14.01

Twco	Twsi	Twso	Tor	mdot_wcond
°C	°C	°C	Nm	kg/s
22.11	13.97	14.21	16.69	0.534
20.87	13.86	14.05	15.87	0.620
21.69	13.85	14.40	12.59	0.509
21.88	14.00	14.23	18.33	0.618
23.94	13.79	14.40	20.16	0.536
22.81	14.12	14.53	20.51	0.620
21.18	14.04	14.21	7.99	0.616
21.24	13.99	13.99	7.36	0.627
21.88	13.80	14.08	6.65	0.535
21.8	13.90	14.07	9.84	0.622
22.9	13.92	14.40	8.07	0.538
22.67	13.81	14.12	11.46	0.617
22.72	13.86	14.22	10.45	0.617
24.12	14.21	15.92	9.21	0.540
24.47	13.99	14.96	14.17	0.619
24.48	13.98	14.20	13.98	0.621
26.22	14.20	16.28	16.17	0.619
26.51	14.35	14.68	16.32	0.622
27.91	13.94	14.15	17.15	0.619
27.91	14.29	15.66	18.69	0.619
28.69	14.03	19.32	19.61	0.620
21.54	13.88	14.08	4.48	0.537
21.19	14.05	14.21	4.97	0.625
23.22	14.17	14.51	6.00	0.538
22.96	13.97	14.27	7.44	0.615
24.99	14.18	16.49	7.84	0.539
24.15	13.58	14.52	10.09	0.622
27.88	14.18	17.48	13.58	0.623
29.2	14.16	18.94	15.02	0.625
25.86	13.99	16.46	5.80	0.539

Tabella 0.4 Set completo di punti per la calibrazione ORC (parte 3)

30.36	14.29	17.89	9.55	0.538
22.18	14.31	14.52	1.71	0.542
21.79	13.98	14.16	3.44	0.615
22.56	14.42	14.55	3.76	0.625
23.06	13.86	14.25	3.35	0.537
23.17	14.08	14.35	4.85	0.619
31.64	13.72	20.55	3.40	0.305
24.54	13.95	14.97	4.84	0.533
25.29	13.81	14.70	5.53	0.539
25.3	13.95	15.81	5.68	0.534
27.1	13.71	15.66	7.08	0.542
27.76	14.40	16.38	7.12	0.539
26.29	14.29	17.75	6.10	0.539
25.74	13.85	15.40	8.72	0.624
29.08	14.27	18.65	11.97	0.624
31.28	14.26	17.80	13.54	0.620
31.1	14.13	21.28	13.93	0.629
32.04	14.02	15.17	13.41	0.622
32.83	14.13	15.97	13.36	0.622
31.77	14.17	22.38	14.31	0.628
21.68	14.16	14.32	0.79	0.615
22.52	13.91	14.19	1.78	0.613
23.19	13.90	14.18	2.25	0.615
24.17	14.06	15.10	3.02	0.613
25.15	14.22	15.16	4.07	0.615
26.86	14.33	16.18	5.55	0.621
28.3	14.24	17.46	7.44	0.620
29.27	14.12	18.28	7.90	0.623
29.72	14.21	18.78	8.33	0.620
31	14.05	20.05	9.62	0.622
32.35	14.16	22.14	11.39	0.627

Exp.	Pump	Tari	Derri	Tava	Davia	Tai	Dei	Tni	Dai	Tari
speed	speed	Iexi	Pexi	Texo	Pexo	1 51	PSI	1 pi	грі	Tevi
rpm	rpm	°C	kPa	°C	kPa	°C	kPa	°C	kPa	°C
800	100	100 70	1070.00	71.00	144.07	1470	127.00	1/10	176 /	1407
000	100	100.70	10/0.09	/1.09	144.97	14./9	137.99	14,10	150.4	14.02
800	100	109.14	1058.41	72.26	141.48	14.82	134.91	14.43	133.41	15.07
1600	140	109.24	1061.2	71.29	161.16	17.77	148.69	15.33	145.84	15.86
2000	80	83.94	548.36	57.73	136.53	14.08	133.36	14.13	132.63	14.74
2000	80	108.81	567 5	80.51	132.63	14 22	130.94	14 74	130 55	14 85
2000	00	100.01	507.5	00.51	152,05	14.22	130.34	14.24	100.00	14.05
2000	95	83.88	638.3	55.59	144.49	14.7	138.75	14.46	137.44	14.99
2000	100	109.13	704.43	78.48	140.42	14.45	135.24	14.21	134.05	14.67
2000	100	100.0		10					100 - 1	
2000	120	109.2	829.27	75.48	147.98	15.25	140.46	14.16	138.74	14.74
2000	141	109 39	940.23	75 39	160 35	17 39	149 21	15.09	146 66	15.61
2000	141	105.55	540.25	70.00	100.55	17.00	170.21	10.00	140.00	15.01
2000	160	109.45	1047.9	74.14	172.01	19.58	155.49	16.05	151.72	16.56
1600	80	83.73	485.58	58.57	131.04	14.18	129.88	14.54	129.62	15.1
1.000		100.01		-0.0					100.01	
1600	80	108.01	539.89	79.2	133.47	14.7	132.44	15.08	132.21	15.62
3000	242	100.22	1182.82	65 55	21 <i>1</i>	26 72	185 90	20.41	179 /18	20.76
5000	242	100.22	1103.03	00.00	41 4	20.75	102.20	20.41	1/3.40	20.70

Tabella 0.5 Set punti ottimizzazione multi-oggetto multi-obiettivo (parte 1)

Pevi	Tamb	mdot_r	mdot_s	Twevi	Twevo	Twci	Тwсо	Twsi	Twso	Tor
kPa	°C	kg/s	kg/s	°C	°C	°C	°C	°C	°C	Nm
1064.09	24.76	0.0929	0.583	110.04	99.21	13.67	23.94	13.79	14.4	20.16
1054.95	24.05	0.0923	0.617	110.3	99.9	13.95	22.81	14.12	14.53	20.51
1058.52	25.23	0.1293	0.621	110	95.85	14.04	26.22	14.2	16.28	16.17
543.66	24.35	0.0743	0.625	84.95	77.23	13.73	21.54	13.88	14.08	4.48
563.65	24.24	0.0742	0.615	110.38	101.92	13.87	21.19	14.05	14.21	4.97
633.49	24.3	0.0883	0.624	84.95	75.84	14.09	23.22	14.17	14.51	6
701.05	24.19	0.0926	0.617	110.37	99.96	13.77	22.96	13.97	14.27	7.44
826.73	22.75	0.1109	0.627	110.16	98.05	13.43	24.15	13.58	14.52	10.09
928.15	22.5	0.129	0.622	110.18	96.02	13.88	26.23	13.99	15.95	11.73
1048.2	22.81	0.1472	0.625	110.32	94.36	14.09	27.88	14.18	17.48	13.58
479.43	25.99	0.0578	0.625	85.08	78.86	13.71	19.81	13.84	14.09	3.98
533.8	25.45	0.0618	0.579	109.84	102.52	14.2	21.27	14.43	14.71	5.23
1184.06	23.78	0.2205	0.627	110.48	88.41	14.08	33.03	14.23	23.56	11.44

Tabella 0.6 Set punti ottimizzazione multi-oggetto multi-obiettivo (parte 2)

Exp.	Pump			-	5					
speed	speed	Texi	Pexi	Texo	Pexo	151	PSI	Трі	Ррі	Tevi
	_									
rpm	rpm	°C	kPa	°C	kPa	°C	kPa	°C	kPa	°C
2000	00	92.04	E 40 26	E7 72	126 52	14.09	122.26	1/10	122.62	1474
2000	00	05.94	540.50	57.75	150.55	14.00	155.50	14.15	152.05	14./4
800	80	108.72	908.58	70.82	135.99	14.21	132.40	14.19	131.58	14.94
2000	95	83.88	638.30	55.59	144.49	14.70	138.75	14.46	137.44	14.99
3000	100	84.13	549.78	63.38	140.69	14.29	135.37	14.13	134.15	14.62
2500	110	84.51	646.81	61.33	181.84	21.58	172.84	17.07	170.78	17.53
2000	120	79.72	748.18	48.73	155.82	18.18	145.06	15.44	142.60	15.90
2500	110	109.13	691.64	80.77	150.90	15.26	144.72	14.38	143.31	14.94
2500	135	78.64	732.59	49.87	162.47	19.73	149.52	16.15	146.56	16.50
3000	120	109.02	691.75	82.85	152.33	15.71	142.60	14.76	140.37	15.28
2500	130	109.07	802.55	78.95	162.12	16.86	151.17	14.81	148.67	15.31
1600	140	109.42	1070.12	71.42	171.33	14.89	161.96	14.67	159.82	15.12
1600	160	109.09	1189.82	69.28	176.28	16.35	162.74	15.15	159.65	15.63
3000	160	109.60	891.11	79.27	172.45	19.48	156.20	16.10	152.48	16.61
1600	180	107.66	1262.68	67.59	180.15	22.43	160.67	17.17	156.22	17.79
3000	180	109.29	982.54	77.89	183.03	21.33	164.68	16.94	160.49	17.46
3000	200	109.64	1069.79	77.06	192.83	23.04	172.29	17.71	167.60	18.17
2500	225	102.17	1208.66	65.20	204.32	25.55	179.61	19.51	173.96	19.97
3000	225	107.22	1161.90	72.48	205.89	25.17	180.86	19.32	175.14	19.75

Tabella 0.7 Set punti impianto completo motore + ORC (parte 1)

Pevi	mdot_r	mdot_s	Twevi	Twevo	Twci	Тwсо	Twsi	Twso
kPa	kg/s	kg/s	°C	°C	°C	°C	°C	°C
543.66	0.0743	0.625	84.95	77.23	13.73	21.54	13.88	14.08
901.39	0.0746	0.58	110.21	101.09	13.81	22.11	13.97	14.21
633.49	0.0883	0.624	84.95	75.84	14.09	23.22	14.17	14.51
547.26	0.0931	0.625	84.90	75.23	13.77	22.52	13.91	14.19
643.94	0.1018	0.624	85.21	75.55	13.39	31.64	13.72	20.55
745.57	0.1108	0.624	85.20	74.69	14.11	24.99	14.18	16.49
687.51	0.1022	0.619	110.12	98.95	13.67	25.29	13.81	14.70
730.54	0.1241	0.624	84.95	73.50	14.15	26.29	14.29	17.75
688.88	0.1113	0.586	109.90	97.07	13.99	25.15	14.22	15.16
798.72	0.1207	0.62	109.83	96.72	13.65	27.10	13.71	15.66
1067.51	0.1294	0.627	110.21	96.39	14.20	26.51	14.35	14.68
1187.16	0.1476	0.628	109.99	64.52	14.03	27.91	14.29	15.66
889.59	0.1479	0.625	110.31	94.69	14.08	28.30	14.24	17.46
1261.26	0.1629	0.622	110.15	93.14	14.01	28.69	14.03	19.32
982.99	0.1658	0.627	109.98	92.50	14.04	29.72	14.21	18.78
1070.36	0.1836	0.627	110.27	91.04	13.93	31.00	14.05	20.05
1207.75	0.2052	0.627	110.19	89.74	14.06	31.77	14.17	22.38
1162.64	0.2053	0.627	110.17	89.05	14.01	32.35	14.16	22.14

Tabella 0.8 Set punti impianto completo motore + ORC (parte 2)

Bibliografia

- [1] F. Millo, «Lezioni di Propulsori Termici,» Torino, A.A. 2019-2020.
- [2] C. D. Charles Sprouse III, «Review of organic Rankine cycles for internal combustion engine,» *Applied Thermal Engineering*, vol. 51, pp. 711-722, 2013.
- [3] B. Group, «Comunicato stampa N. 133/11,» San Donato Milanese, 2011.
- [4] G. Ferarri, Motori a combustione interna, Bologna: Società Editrice Esculapio, 2016.
- [5] Wikipedia, «Nikolaus August Otto,» [Online]. Available: https://it.wikipedia.org/wiki/Nikolaus_August_Otto.
- [6] R. D. Volpe, Macchine, Napoli: Liguori Editore, 2011.
- [7] A. Tursi, Cicli ad acetone in un impianto solare termodinamico a concentrazione (CSP): analisi termodinamica utilizzando sali fusi od olio diatermico come fluidi termovettori, Scuola Politecnica e delle Scienze di Base, 2013.
- [8] G. S. Schiavo, Impianto ORC per la produzione di energia elettrica, alimentato da syngas ottenuto tramite gassificazione di biomasse provenienti da scarto vegetale, Università degli Studi di Padova, 2013.

- [9] A. Somma, Organic Rankine Cycle (ORC) con MDM: dimensionamento di un impianto solare termodinamico da 20 kWe, Università degli Studi di Napoli Federico II, 2013.
- [10] F. A. Accorsi, Experimental characterization of scroll expander for small-scale power generation in an Organic Rankine Cycle, Purdue University, 2016.
- [11] S. Ditto, Impianti ORC per lo sfruttamento di risorse energetiche alternative e reflui termici: stato dell'arte e scelta dell'espansore, Università degli Studi di Napoli Federico II, 2014.
- [12] Wikipedia, «Tiristore,» [Online]. Available: https://it.wikipedia.org/wiki/Tiristore#:~:text=Il%20tiristore%20o%20SCR%20(Sili con,un%20terzo%20terminale%20denominato%20gate..
- [13] G. T. LLC, «Waste Heat Recovery Tutorial,» 2016.
- [14] «Wikipedia,» [Online]. Available: https://it.wikipedia.org/wiki/Ciclo_di_Rankine.
- [15] C. Giordano, Progettazione e realizzazione di una Sala Prove per la sperimentazione di un espansore volumetrico per un impianto ORC-CSP di piccola potenza (10-200kW), Scuola Politecnica e delle Scienze di Base, 2013.