
POLITECNICO DI TORINO

Master’s Degree in Engineering And Management

Master’s Degree Thesis

Adopting Continuous Integration, Continuous
Delivery, Continuous Deployment, and Continuous

Testing in DevOps

Supervisor: Candidate:
Prof. Demagistris Paolo Eugenio Olapada Faith Tosin

Academic Year 2020/2021

 2

Abstract

Nowadays, Software companies are required to deliver features and products
frequently, faster, and seamlessly.
To accomplish these, the software delivery pipeline should be agile and must
diverge from traditional waterfall practices. This needed shift from traditional
software development practices to a presumably better approach birthed a new
practice called DevOps. DevOps is a set of practices breaching the gap between
development (Dev) and IT operations (Ops). Derived from agile practices,
DevOps looks to shorten the software development life cycle providing
continuous delivery and testing and ultimately, ensure higher software quality.

This thesis will shed light on DevOps practices, experiment with building
different types of CI/CD pipelines, evaluate the different stages in a DevOps
pipeline with a strong focus on the cloud leaders Amazon web services (AWS).

Finally, key metrics achieved with DevOps practices will be compared to metrics
derived from traditional software practices.

 3

Table of Contents
LIST OF FIGURES ... 5

1 INTRODUCTION ... 6

1.1 WHAT IS DEVOPS? .. 7
1.2 DEVOPS PRACTICES .. 8

1.2.1 Continuous Integration .. 8
1.2.2 Continuous Delivery.. 9
1.2.3 Continuous Deployment ... 9
1.2.4 Continuous Testing ... 9
1.2.5 Continuous Monitoring ..10

1.3 DEVOPS TOOLS ...10
1.3.1 Collaboration Tools ..11
1.3.2 Source Code Management Tools..12
1.3.3 Continuous Integration Tools ...12
1.3.4 Build Process Tools ...12
1.3.5 Continuous Deployment Tools..13
1.3.6 Continuous Monitoring Tools ...13

1.4 BENEFITS OF DEVOPS ADOPTION ..14
1.5 CHALLENGES OF DEVOPS ADOPTION ...16
1.6 OVERVIEW OF THE THESIS ...16

2 START OF THE ART ... 18

2.1 DEVOPS TOOLS USED ...19
2.1.1 GitHub (Version Control) ..19
2.1.2 AWS CloudFormation ...19
2.1.3 AWS CodePipeline ..20
2.1.4 AWS CodeBuild ...20
2.1.5 AWS CodeDeploy ..20

2.2 OTHER TOOLS ...21
2.2.1 Amazon RDS ...21
2.2.2 Amazon API Gateway ...21
2.2.3 Amazon Simple Storage Service (Amazon S3) ..22
2.2.4 Amazon CloudFront ..22
2.2.5 Amazon Elastic Container Service (Amazon ECS) ...22

3 CI/CD PIPELINES .. 23

3.1 DATABASE PIPELINE ..24
3.1.1 Architecture (Infrastructure as Code)...24
3.1.2 CI/CD Pipeline ...25
3.1.3 Deployment ..26

3.2 STATIC WEBSITE PIPELINE ..29
3.2.1 Architecture (Infrastructure as Code)...29
3.2.2 CI/CD Pipeline ...30
3.2.3 Deployment ..31

3.3 DYNAMIC WEBSITE PIPELINE ...35
3.3.1 Architecture (Infrastructure as Code)...35
3.3.2 CI/CD Pipeline ...36
3.3.3 Deployment ..37

4 CONCLUSION... 38

4.1 RESULTS ACHIEVED..39

 4

4.2 FUTURE IMPROVEMENTS ..40

REFERENCES .. 41

 5

List of Figures

Figure 1.1:Stages of a DevOps Pipeline ... 7
Figure 1.2:DevOps Practices .. 10
Figure 1.3:Periodic Table of DevOps Too ... 11
Figure 1.4:DevOps Stages and Example of Tools ... 14
Figure 3.1:Database stack architecture ... 24
Figure 3.2:Database pipeline .. 25
Figure 3.3:Database CloudFormation deployment ... 26
Figure 3.4:Database build stage... 27
Figure 3.5:Database pipeline stages .. 27
Figure 3.6:Static website stack .. 29
Figure 3.7:Static website pipeline .. 30
Figure 3.8:Static website CloudFormation resources .. 31
Figure 3.9:Static website Build stage ... 33
Figure 3.10:S3 bucket with website files ... 33
Figure 3.11:Static website CI/CD pipeline.. 34
Figure 3.12:Angular web application ... 34
Figure 3.13:Dynamic website stack ... 35
Figure 3.14:Dynamic website pipeline ... 36
Figure 3.15:Dynamic website CI/CD pipeline .. 37
Figure 4.1:Results achieved ... 39

 6

1 Introduction

 7

1.1 What is DevOps?

From the Waterfall model, organizations moved to the Agile model, DevOps is
an evolution of the agile model, although not a replacement. DevOps is a set of
practices that integrates software development (Dev) and operation (Ops).
DevOps includes tools, cultural and technical practices that accelerates software
and feature delivery in an organization, compared to the rate of software release
using traditional software development and IT operations processes. This
increase in delivery time helps the organization battle competition more
effectively while simultaneously increasing customers satisfaction.

With the advent of the internet came disruptions of various industries, from the
financial industry to the music industry, to ecommerce. A commonality with these
disruptions has come in the role software plays in the value chain, software does
not just support business activities, it has become an important part of every
organization. In most case, customers interact with products and services offered
by a company through a website or applications on different devices. Different
software are also used to improve operational efficiency by innovations made in
parts of the value chain, such as communication, operations and logistics. To be
able to compete effectively, and meet the constant changing standards,
organizations must improve their software delivery pipelines [1].

Figure 1.1:Stages of a DevOps Pipeline

With DevOps practice, the development and operations teams work very closely.
Either by a merger into a single DevOps team or linked by a specialized DevOps
engineering team. This team works across the entire application lifecycle, from

 8

development, build, test and application deployment to operations including
monitoring. Seldomly, DevOps teams might include quality assurance (QA) and
security engineers. The goal of the DevOps team is to automate manual or
repetitive processes in the application lifecycle, using sets of tools.

DevOps tools are tools used in assisting cross departmental human collaboration
and interaction, enabling continuous delivery, continuous build, continuous
testing, continuous monitoring, and maintaining overall software reliability [2].

Adoption of DevOps requires a new type of mindset and organizational culture.
To achieve the best results, there must be a complete removal of any barriers
between the development and the IT operations team, otherwise separated in a
traditional model. Communication and coordination between these teams should
be seamless.

1.2 DevOps Practices

To innovate and ship software faster using the DevOps methodology, there are
some important practices which should be adopted by an organization.

1.2.1 Continuous Integration

Continuous integration is a software development practice where assigned actions
in the central repository like developers merging changes to a specified branch,
triggers the automated software build and test. With continuous integration, there
is a cultural practice of integrating code changes as frequently as possible and an
automation side (using CI and build tools like Jenkins or AWS CodePipeline).
The main aim of this stage is to improve software quality by reducing software
delivery time and early bug detection [1].

In a CI stage of the software delivery pipeline, developers frequently commit,
merge or push code to the central repository (version control-based system like
GitHub) after testing in a local environment. After the pipeline is triggered, a
build of the pushed code is done, after which unit testing is carried out to further
verify the built software is error free.

Traditionally, developers would work independently for a long time before
merging their codes for build. This process meant, bugs are accumulated over this
period and features are delivered to the customers much slower. Using CI, bugs
are found and addressed quicker, developer’s productivity is increased with
frequent code merge and customers get features and updates faster.

 9

1.2.2 Continuous Delivery

Continuous delivery is another software development practice where successful
code builds are made ready for the production environment i.e. for customer
usage. Continuous delivery further automates the process of the software
pipeline, it improves upon continuous integration by deploying the built code
changes to a specified deployment environment. Depending on the organization
practice and it size, deployment environment may include test environments (dev
or pre-prod) or production environment after a successful build. This means, after
a developer pushes code changes to a specified branch, the code is built, and unit
tested automatically (continuous integration) and the artifacts from the stage is
deployed straight to a specified environment (dev, pre-prod or prod).

With innovations in cloud computing, this stage has become cheaper and easier
to implement, compared to practicing on premises. At this stage, developers can
schedule and automate more types of tests on the now deployed and functional
deployment.

There is often a confusion with continuous delivery and continuous deployment
stages of the pipeline, especially when abbreviated as CD (could mean continuous
deployment or continuous delivery). With continuous delivery, deployment to the
production environment needs a manual approval while with continuous
deployment, deployments or software release is automated from end to end
without a manual stage. The use of either continuous delivery or deployment will
largely depend on organization maturity and needs.

1.2.3 Continuous Deployment

As with continuous delivery, continuous deployment is a more matured software
development practice. Here, deployment requires no manual intervention or
stage, end to end deployments are fully automated. As with continuous delivery,
developers can addition tests like UI testing, stress testing, integration testing etc.
Continuous deployment also makes use of another DevOps concept:
Infrastructure as a code (IaaC) or Infrastructure as code (IaC), which allows
organizations or companies to store and version control their infrastructure as
they do application code. Infrastructural code can either live with the respective
applications in the same repository or versioned separately in its own repository.
1.2.4 Continuous Testing

 10

Continuous testing refers to automating all test cases or scenarios. From unit
testing, load testing, UI testing, integration testing to API reliability testing. The
declared test case should be run at their respective stages i.e., unit testing during
the CI stage, load testing at CD stage. Continuous testing reduces errors in the
final software by detecting bugs way earlier than normal. Taking time to write
test cases is not a required stage to a achieving a fully automated CI/CD pipeline
but, definitely a best practice and a must for large organizations.

1.2.5 Continuous Monitoring

After software deployment is complete, it important to actively monitor but
application performance and its infrastructure. Monitoring application logs
provides organization with greater insight on different metrics, like customer
experience with each deployment, data collected can then be used as feedback for
future deployments. Monitoring infrastructural performance can also help the
DevOps team make improvements in performance optimization and optimizing
future environments.

Figure 1.2:DevOps Practices

1.3 DevOps Tools

There are tools used in each stage of the CI/CD pipeline, to help automate the
software delivery process. Practicing DevOps relies on a heavy usage of
automation tools, from multi-team collaboration tools, code version control tools,
continuous integration tools, continuous testing tools to observability or active
monitoring tools. The importance of proper tooling in DevOps cannot be over
emphasized but, DevOps is more than tools.

 11

Figure 1.3:Periodic Table of DevOps Too

1.3.1 Collaboration Tools

The cultural aspects of DevOps entails there is inter-departmental human
collaboration. Through the use of chat applications, tickets or issue tracking
systems and wikis, information sharing, and consistent communication should be
adopted. In most case, source control tools like GitHub or Gitlab offers issue
tracking and wiki creation supports.

Tools like Microsoft teams and Slack also fall into this category. They promote
collaboration by offering instant call and messaging services to teams and
organizations.
Confluence by Atlassian, built to improve collaboration and knowledge sharing
across teams. Confluence not only enables creation of documentations and
product requirements, but it also integrates with other Atlassian suite of products
like Jira and Trello for extended project management functionalities.
The mentioned collaboration tools and others play an important role in speeding
up communication and collaboration across teams (development team, operations
team, marketing and sales team), leading to a better alignment of project goals
and increased success rate.

 12

1.3.2 Source Code Management Tools

Source control tools help developers in a software development teams collaborate
and work more effectively. Development using a source control tool has become
a basic requirement in software development, developers can work on separate
features or branches and merge to make a fully functional product. Actions in the
source control is set to trigger the CI/CD pipeline.

The most common versioning tools are Git and SVN. Although products like
GitHub, Gitlab and Bitbucket provide a Git hosting repository for developers with
baked in tools to ship better code.

Source code management tools are the first point of integration for automating
software release. The pipeline can be set to start build on every successful merger
to the “master” branch or even at every pull request to the selected branch.

1.3.3 Continuous Integration Tools

Continuous integration tools orchestrate most part of the CI/CD pipeline [2]. The
CI tool is responsible for taking the source code from the repository (source code
management tool), pushing it to the build stage for unit testing and artifact or
package generation, execution of test cases, and deployment to the specified
environments. A popular example of CI tools are Jenkins, Travis CI, CircleCI etc.

The build stage of the pipeline is declared by developers while deployment
stage(s) is handled by the operators. Since the CI tool is a critical component of
a DevOps pipeline, it’s very important to make sure it’s highly available.

Examples of fully managed or highly available CI tools are AWS CodePipeline,
Travis CI and Gitlab CI (Gitlab Enterprise).

1.3.4 Build Process Tools

Build tools are used to generate deployable packages or artifacts as output using
source code as input. The build stage is very developer centred as it varies by
programming language. The build tools make continuous delivery possible, by
automatically creating a build of pushed developer code and making a deployable
version ready.

As earlier mentioned, build stage or tools differ by programming languages.
Example of package manager and build tools are as follows: Pip for Python,
Maven or Gradle for Java, SBT for Scala, Ruby Gems for Ruby. Maven not only

 13

builds Java code but also produces a .JAR or .WAR artifact as output, this output
will then be used for deployment. Some programming languages like Python and
Ruby do not need a build stage or build artifacts to be deployed.

Unit testing tools also help developers determine a section or unit of their
application meets requirements and behaves as intended. Example of unit testing
tools are Mockito and JUNIT for Java, NUnit for .NET and RSpec for Ruby.
Selenium help run tests on web applications test cases can be written in Java,
python, C#, Ruby, JavaScript and Kotlin.

Using a build tool, declaring build steps and unit testing all help with overall
automation of the software development pipeline.

1.3.5 Continuous Deployment Tools

Deployment tools are used to automate software deployments to specified
compute destinations. Deployment tools make the CD part of CI/CD possible,
either continuous delivery or continuous deployment.

Deployment tools are not limited to carrying out deployment to already
provisioned and existing environments but, they are also able to automate
infrastructure creation and provisioning on the go. Automated provisioning is
synonymous with cloud providers like Amazon Web services, Microsoft Azure
and Google cloud. Using IaC tools like AWS CloudFormation or Terraform,
infrastructure can be created and provisioned at the deployment stage.

Configuration management tools like Chef, Puppet and Ansible also fall into this
category. They help with provisioning or getting the deployment environment
ready before the built software is released to these environments.

1.3.6 Continuous Monitoring Tools

Monitoring tools are usually used to track application’s non-functional properties,
like reliability, resilience, scalability, availability and performance. They are also
used to track deployment environment metrics, like CPU utilization, Memory
utilization, Free storage etc. Monitoring tools also perform function ranging from
alerting, log management to gathering business metrics such as uptime to
generate SLA.

Examples of monitoring tools are Splunk, Zabbix, Prometheus, and Nagios. For
log management, tools like Graylog and Logstash are used. AWS CloudWatch

 14

also provides monitoring, alarming and log management functionality to
solutions deployed in AWS [2].

Figure 1.4:DevOps Stages and Example of Tools

1.4 Benefits of DevOps Adoption

The adoption of DevOps in an organization comes with lots of pros and cons. In
this section, we’ll be analysing the benefits of adopting DevOps.

1. Speed:
Since DevOps is automation heavy, organizations can reduce the time
taken to release software or time to market significantly. With a heavy
focus on software delivery pipeline automation, organizations will
experience reduction in time taken to adapt to market changes and also
Innovate at a faster rate. Hence, leading to a competitive advantage over
slower organizations.

2. Rapid Delivery:

Continuous deployment and delivery are DevOps practice that automates
release of built source code to a specified deployment environment, this
leads to an increase in software release as opposed to a traditional method.
Frequent software release means organization can increase software

 15

quality faster than ever, bugs can be fixed even more rapidly, and customer
expectations can be met as fast as possible.

3. Reliability:

With DevOps practices like continuous testing and continuous delivery
which helps with unit testing and different test cases, bugs are discovered
and fixed before software gets to the customers. Continuous monitoring
also provides real-time insight into software and infrastructure
performance. Implementing these components of DevOps helps increase
the overall software quality and user trust and experience.

4. Improved Collaboration and Communication:

Benefits from the people side of DevOps practice is also a major plus.
Since the practice of DevOps in an organization involves the breaking
down of any communication barrier between the development team and
the operations team, this leads to an increased in inter-departmental
collaboration, there is an increase in trust between personnel. Also,
changes can be communicated faster with reduced overhead. Overall
increase in collaboration levels, is a plus for the organization.

5. Scale and Security:
Organizations practicing DevOps, are able to operate in a scalable and
elastic manner. Using Infrastructure as code to handle deployment or
genera infrastructural needs, helps manage deployment environments
according to the need of the organization. Automating scaling up and down
(auto scaling) also helps handle complex requirements with reduce risk or
downtime. Security with majority of DevOps tools can be managed as code
(policy as code). This ensures practicing DevOps does not come at the cost
of reduce security.

 16

1.5 Challenges of DevOps Adoption

Practicing DevOps comes with some challenges that needs to be taking into
consideration, to achieve suitable results.

The first challenge might arise from the lack of conviction from senior
management. A lack of proper organizational structure can disrupt proper
DevOps adoption, senior managers might be opposed to a new concept especially,
when the current mode of operation is perceived to be efficient enough.

The shift to DevOps requires high level of communication and collaboration. For
this to work, everyone needs to be onboard to increase the level of collaboration
to ensure a successful adoption. Every team needs to embrace this increased
collaboration culture from the development team, operations team, product
managers, to the marketing team.

DevOps focuses heavily on increased efficiency but, doesn’t necessarily reduce
cost so much as it grows revenue. Increase in software quality, reliability and
speed translates to an increased revenue but the cost of training employees, new
tools and cost of increased deployment environments might cause an initial
negative net value. All these coupled with the increased responsibility of
managing multiple environments are major challenges to DevOps adoption.

1.6 Overview of The Thesis

To compliment previous projects on DevOps, which mostly take the quantitative
or the qualitative approach. This project will take a practical approach at DevOps,
building actual software development pipelines and practicing DevOps concepts
like continuous integration, continuous deployment and continuous delivery.

The Remainder of the thesis is structured as follows:

• In Chapter 2, the tools to be used are discussed. The selected DevOps tools
for pipeline (Database pipeline, User interface pipeline, Backend pipeline)
are described, reason for selection, pros and cons are enumerated.

• In Chapter 3, the user interface pipeline is explained. Infrastructure as code

is explained, deployment process is detailed, software is deployed to
selected AWS service.

 17

The database pipeline is explained. Infrastructure as code is explained,
deployment process is detailed, software is deployed to selected AWS
database service, monitoring is explained.

The backend pipeline is also discussed. Infrastructure as code is explained,
deployment process is detailed, software is deployed to selected AWS
container service.

• In Chapter 4, the conclusions made from the thesis are explained. Possible
improvements, and the possibility for future research areas are also
discussed.

 18

2 Start of the Art

 19

2.1 DevOps Tools Used

The practical section of this project shows how DevOps concepts like continuous
integration, continuous delivery and deployment can be implemented in different
parts of a distributed software. This project specifically focuses on using DevOps
cloud tools from Amazon web service.

2.1.1 GitHub (Version Control)

GitHub is a Git hosting repository that enables developers to collaborate better.
With features like pull requests, code review, issues (ticketing system),
developers can seamlessly work on the same code repository without conflicts.

Developers can work on the different branches of the same repository, commit
code changes to save them, create a pull request to the main branch, code changes
can be discussed, or peer reviewed before the pull request is merged.

A repository, also referred to as a repo. Repos are Git projects containing files
and folders related to a development project, along with each file’s revision
history. In Repositories, new branches can be created, pull requests and mergers
will also occur within a repository. The changelog shows the change history of
files within the repository.

GitHub is used to store and version all code changes for this project.

2.1.2 AWS CloudFormation

CloudFormation is an infrastructure as code tool that helps with the creation AWS
and third-party resources, provision them rapidly and consistently, and manage
them throughout their creation, updates and deletion.

Resources are declared in a template in either yaml or json. This allows for stacks
to be replicated in a controlled and predictable way. CloudFormation can used to
be manage simple or very complex stacks.

All infrastructural resources in this project are declared using a CloudFormation
template in yaml.

 20

2.1.3 AWS CodePipeline
CodePipeline is a continuous integration delivery tool, that helps automate
software release pipelines, providing fast and reliable infrastructure and
application. It gets triggered by a source control, and handles the orchestration of
build, test and deploy phases of the release process.

It’s a fully managed AWS service, which integrates seamlessly with GitHub or
any other third-party service.

CodePipeline is used to automate and orchestrate all source code build, test and
deployments phases for this project.

2.1.4 AWS CodeBuild
AWS CodeBuild is a continuous integration tool that compiles source code, runs
tests, and provides deployable software packages called artifacts. CodeBuild is
fully managed by AWS, there is no need to create, manage or scale build servers,
it’s all taken care of automatically.

CodeBuild can handle multiple builds simultaneously, different CI/CD pipelines
can run at the build stage in parallel. Builds can either be carried out in
preconfigured environments, AWS CodeBuild provides build environments for
Java, Python, Node.js, Ruby, Go, Android, .NET Core for Linux, and Docker.
Builds can also be done in user customized environments to provide a bespoke
solution.

All software builds made in the project was built using AWS CodeBuild.

2.1.5 AWS CodeDeploy
CodeDeploy is another DevOps tool, fully managed by AWS. It automates
software deployment to different AWS compute services like servers, containers,
serverless and on premises environments. Using a deployment service like code
deploy, prevents downtime during software releases, improves release speeds
while handling extremely complex scenarios.

AWS CodeDeploy is platform and language agnostic and works with any
application. CodeDeploy automates deployments to the containerized
environment used in this project.

 21

2.2 Other Tools
This project shows how different types of software delivery pipelines can be
automated. Static website deploys to AWS S3 and AWS CloudFront, database
pipeline to Amazon RDS and AWS ApiGateway, Backend application pipeline
to AWS ECS.

2.2.1 Amazon RDS

Amazon Relational Database Service makes the process of setting up, operating,
and scaling a relational database in the cloud easy. It provides a managed database
service, i.e., time consuming tasks like hardware provisioning, database setup,
patching and backups while also being cost efficient. More focused can be placed
on delivering the best user experience to application users.

RDS supports six popular database engines including Amazon Aurora,
PostgreSQL, MySQL, MariaDB, Oracle Database, and SQL Server. It can also
be customized to suit the exact use case, selections range from memory optimized
instance, performance optimized to I/O optimized instances.

2.2.2 Amazon API Gateway

APIs act as an entry point for applications to access data or business logic.
Amazon API Gateway eases the process of creating, publishing, maintaining,
monitoring and securing APIs at any scale. It’s a fully managed service that
supports creation of RESTful APIs and WebSocket APIs that enable real-time
two-way communication applications.

API Gateway is environment agnostic, it supports containerized and serverless
workloads, as well as web applications. It handles all the necessary tasks involved
in accepting and processing multiple concurrent API calls, CORS support, traffic
management, authorization and access control, throttling, API version
management and monitoring.

For this project, API Gateway will be used to GET data stored in the database
instead of directly reading from the database endpoint. This not only provides a
secure access to the database instance protected with an API key, it also allows
the database instance to remain in a private subnet without being exposed to
attacks over the internet.

 22

2.2.3 Amazon Simple Storage Service (Amazon S3)

Amazon S3 is an object storage service that offers data durability, scalability,
availability, security and performance. S3 offers a plethora of use cases like,
storing static website components, mobile application, for backup and restore,
enterprise applications, big data analytics and archive. S3 is a very durable object
storage, designed for 99.9999999999% (11 9’s) of durability to be specific.

S3 website feature is implemented as delivery point for the “static website

pipeline”. S3 bucket will be configured to serve website files upon every request.
The solution is one of the easiest and cheapest ways to deploy a static website as
there are no servers or containers involved.

2.2.4 Amazon CloudFront

Amazon CloudFront is AWS’s own content delivery network (CDN) service the
securely delivers global content like, videos, data, applications and APIs to users
with high transfer speeds and very low latency.

CloudFront also offers advance security capabilities which includes field level
encryption and HTTPS support. Integration with AWS services like AWS Shield,
AWS Web Application Firewall for high level protection is seamless.

The “static website pipeline” serves website files using CloudFront, to make up
for the inability of S3 bucket website to perform compute required optimization.

2.2.5 Amazon Elastic Container Service (Amazon ECS)
Containers are a standard unit of software that packages up source code and all
its dependencies, so the application runs reliably and quickly independent of
computing environment. Containers are lightweight and a portable variant to full
fledge servers.

Amazon ECS is a fully managed container orchestrator. It’s a fully managed

service that provides security, reliability and scalability to mission critical and
sensitive applications.

This project uses Amazon ECS as a development environment for the “Dynamic

website pipeline”.

 23

3 CI/CD Pipelines

 24

3.1 Database Pipeline

3.1.1 Architecture (Infrastructure as Code)
This project implements a security cautious database architecture. The Postgres
database is deployed in a private subnet and only accessed through API
Gateway. API Gateway resources are secured with an API key. For the purpose
of this infrastructure, the consumer of the API is a frontend application. The
application performs only a ready action on the database.

Figure 3.1:Database stack architecture

The sequence starts when the application makes an API call through Amazon
API Gateway, providing an API key. After validating the API key, API
Gateway triggers a Lambda function.

The Lambda function executes a python script to run a SQL query, for example
a SELECT * from the appropriate table. The response from the database is
returned as a key-value pair

The Lambda function takes this response from the database and delivers it to
API Gateway as a JSON payload. This payload is then delivered to the
application.

The whole infrastructure is declared as a CloudFormation template. This allows
for versioning and easy replication of our infrastructure. A practice applauded
with the practice of DevOps.

 25

3.1.2 CI/CD Pipeline
The delivery pipeline is customised to automate the creation of schemas, tables
and send user feedback after completion.

Figure 3.2:Database pipeline

The CI/CD pipeline is trigger by developer action to the GitHub branch
specified in the CloudFormation template, CodePipeline triggers the build
engine in a CodeBuild instance. Since this CI/CD is really not a traditional
software or application that needs to be compiled or packaged, this stage simply
automates SQL queries that would have otherwise had to be run manually.

The build stage:

• Installs a Postgres client
• Connects to the RDS (Postgres) instance created, taking required

parameters like database host, database username and database password
from the environmental variable declared in the CloudFormation template

• Runs the SQL queries declared in the specified files
• Runs a SELECT * query on created tables to give user feedback

 26

A successful build means we’ve successfully automated the process of running
SQL commands against a database instance.

3.1.3 Deployment

The CloudFormation template was deployed through the AWS console with
appropriate parameters.

Figure 3.3:Database CloudFormation deployment

Immediately after stack creation was successful, the CI/CD pipeline was
triggered by a merger to the master branch in the GitHub Repository.

 27

Figure 3.4:Database build stage

The build stages executes the SQL queries in the files on the specified path. It
returns the content on the table after a successful execution.

Figure 3.5:Database pipeline stages

 28

The AWS console provides a visual feedback detailing the status of each stage
of the pipeline.

 29

3.2 Static Website Pipeline

3.2.1 Architecture (Infrastructure as Code)

The Static website is deployed as an S3 website, this allows static website files
to be deployed in a very cheap manner while enjoying benefits of Amazon S3
like versioning, policy-based security and high durability. The S3 bucket uses a
lifecycle policy to delete old and not needed files to keep the bucket clean and
ordered while keeping storage cost low.

The website is built with latency in mind. The architecture makes use of a CDN
which allows the end users to get response to request significantly faster than
normal. The CDN used is Amazon CloudFront, it makes use of AWS edge
locations to cache most requested files and deliver them to users in fast secure
manner.

Figure 3.6:Static website stack

CloudFront is set to update its version of website files every 1 hour, the process
is called invalidation. After every deployment, cached files will be invalidated
as part of the build process and new ones copied over at the first request.

 30

3.2.2 CI/CD Pipeline

The delivery pipeline is built to automate the website deployment process.

The CI/CD pipeline is triggered by developer action to the GitHub branch
specified in the CloudFormation template, CodePipeline triggers the build
engine in a CodeBuild instance.

Figure 3.7:Static website pipeline

CodeBuild is set to build using the Dockerfile declared in the repository. After
the build, the build files located in the. dist folder in the case (angular
application) is copied from the build container to the website S3 bucket.

 31

After the build stage, the CloudFront files are invalidated on the last build step
using an AWS cli command.

3.2.3 Deployment

The CloudFormation template was deployed through the AWS console with
appropriate parameters.

Figure 3.8:Static website CloudFormation resources

 32

Immediately after stack creation was successful, the CI/CD pipeline was
triggered by a merger to the master branch in the GitHub Repository.

 33

Figure 3.9:Static website Build stage

The build stage packages the source code into deployable artifacts. These artifacts are copied
to the destination S3 bucket.

Figure 3.10:S3 bucket with website files

 34

With the built source code copied to the specified destination, all stages of the CI/CD pipeline
are declared successful.

Figure 3.11:Static website CI/CD pipeline

The angular application is accessed using the CloudFront endpoint.

Figure 3.12:Angular web application

 35

3.3 Dynamic website pipeline

3.3.1 Architecture (Infrastructure as Code)

The dynamic web application is deployed in a containerized environment. The
request from users is passed through CloudFront, this reduces latency to a bare
minimum by caching frequently requested file at edge locations closest to the
user. CloudFront forwards this request to an application load balancer. The load
balancer does exactly what it says, it distributes load according to declared set
of rules to a specified target. The target in this case are containers in a target
group. By distributing load evenly among these containers, resources are
maximized without stressing any particular container. Containers also connect
to a database, to store and retrieve needed data.

Figure 3.13:Dynamic website stack

Amazon ECR is a container registry housing the docker images needed by the
containers to provision packaged code.

 36

3.3.2 CI/CD Pipeline

The delivery pipeline for the dynamic website uses 3 tools in this case.
CodeDeploy is needed to automate deployment to a compute service, in this
case Amazon ECS.

Figure 3.14:Dynamic website pipeline

The CI/CD pipeline is triggered by developer action to the GitHub branch
specified in the CloudFormation template, CodePipeline triggers the build
engine in a CodeBuild instance. CodeBuild builds the docker image, pushes it to
ECR with the tag “latest”.

After a successful build, CodeBuild then triggers the next stage “Deployment

stage”. Using artifacts from the build stage, CodeDeploy uses this information

 37

to deploy new containers. The containers are spun up, health checks are
performed. if passed, traffic is directed towards the newly deployed containers.

3.3.3 Deployment

As with other delivery pipelines in this project, CloudFormation template was
deployed through the AWS console with appropriate parameters.

Figure 3.15:Dynamic website CI/CD pipeline

The visual feedback shows, the 3 stages of the pipeline ran successfully all other
5mins.

 38

4 Conclusion

 39

4.1 Results achieved
In summary, the technical section of this project tests the adoption of CI/CD
pipelines with different use cases. Results achieved from implementing the
DevOps process was compared to using a traditional software delivery process:

Figure 4.1:Results achieved

• Change failure rate (Lower is better): this is the likelihood for code changes

to fail during the deployment process. Using a continuous delivery process,
failure rate drastically reduced as opposed to a traditional process.

• Incident Recovery Time (Lower is better): This is the time taken to recover
from general incidents, this includes incident experienced during new
deployment in production. With the current modernized architecture,
features like roll back and health checking aids speedy recovery, reducing
down time. It’s also important to make sure delivery is not being sped up
at the expense of negative customer experience.

• Time from commit to deploy (lower is better): This is the total time taken
to deliver software from source control management to complete
deployment. Total time taken for commit to become and actual product
reduced drastically with the use of a CI/CD pipeline.

• Number of code deployments (higher is better): This is measure of how
often a software deploys to production. It is a batch size indicator; smaller
batch sizes show greater market agility. Could also be translated to number
of features released or bug fixes pushed. Practicing DevOps technically
means an increase to this metric.

 40

4.2 Future Improvements
While this project experimented with CI/CD pipelines in different scenarios, there
still lots of improvements to be done on the pipelines built in this project, and in
DevOps research generally.

Involving a monitoring tool provides possibility to track the application’s non-
functional properties, like reliability, resilience, scalability, availability and
performance. They are also used to track deployment environment metrics, like
CPU utilization, Memory utilization, Free storage etc. Adding a monitoring tool
gives visibility into the stack.

Cost optimization is also a big factor, deploying solutions to the cloud can be
costly if not properly optimized. Cloud financial management (FinOps) helps
identify the most efficient way for teams to manage their cloud costs, where
everyone takes ownership of their cloud usage supported by a central best-
practices group. Cross-functional teams work together to enable faster delivery,
while at the same time gaining more financial and operational control.

The inclusion of Automated Testing to the pipeline drastically reduces bugs and
increase quality of shipped software. Inclusion of Unit testing makes sure the
code functions as intended. Integrations test can help test interconnectivity of
infrastructural components. GUI testing can also help test the deployed
application’s functionality.

 41

References

[1] “What is DevOps? - Amazon Web Services (AWS),” Amazon Web Services, Inc.

https://aws.amazon.com/devops/what-is-devops/ (accessed Dec. 26, 2020).

[2] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A Survey of DevOps Concepts

and Challenges,” ACM Comput. Surv., vol. 52, no. 6, p. 127:1-127:35, Nov. 2019, doi:
10.1145/3359981.

	List of Figures
	1 Introduction
	1.1 What is DevOps?
	1.2 DevOps Practices
	1.2.1 Continuous Integration
	1.2.2 Continuous Delivery
	1.2.3 Continuous Deployment
	1.2.4 Continuous Testing
	1.2.5 Continuous Monitoring

	1.3 DevOps Tools
	1.3.1 Collaboration Tools
	1.3.2 Source Code Management Tools
	1.3.3 Continuous Integration Tools
	1.3.4 Build Process Tools
	1.3.5 Continuous Deployment Tools
	1.3.6 Continuous Monitoring Tools

	1.4 Benefits of DevOps Adoption
	1.5 Challenges of DevOps Adoption
	1.6 Overview of The Thesis

	2 Start of the Art
	2.1 DevOps Tools Used
	2.1.1 GitHub (Version Control)
	2.1.2 AWS CloudFormation
	2.1.3 AWS CodePipeline
	2.1.4 AWS CodeBuild
	2.1.5 AWS CodeDeploy

	2.2 Other Tools
	2.2.1 Amazon RDS
	2.2.2 Amazon API Gateway
	2.2.3 Amazon Simple Storage Service (Amazon S3)
	2.2.4 Amazon CloudFront
	2.2.5 Amazon Elastic Container Service (Amazon ECS)

	3 CI/CD Pipelines
	3.1 Database Pipeline
	3.1.1 Architecture (Infrastructure as Code)
	3.1.2 CI/CD Pipeline
	3.1.3 Deployment

	3.2 Static Website Pipeline
	3.2.1 Architecture (Infrastructure as Code)
	3.2.2 CI/CD Pipeline
	3.2.3 Deployment

	3.3 Dynamic website pipeline
	3.3.1 Architecture (Infrastructure as Code)
	3.3.2 CI/CD Pipeline
	3.3.3 Deployment

	4 Conclusion
	4.1 Results achieved
	4.2 Future Improvements

